
UC Irvine
UC Irvine Previously Published Works

Title
Structural Commutation Relations for Stochastic Labelled Graph Grammar Rule Operators

Permalink
https://escholarship.org/uc/item/97k485bj

Author
Mjolsness, Eric

Publication Date
2019-09-09

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
availalbe at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/97k485bj
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


ar
X

iv
:1

90
9.

04
11

8v
1 

 [
cs

.F
L

] 
 9

 S
ep

 2
01

9

Structural Commutation Relations for

Stochastic Labelled Graph Grammar

Rule Operators

Eric Mjolsness 1

September 11, 2019

Abstract

We show how to calculate the operator algebra and the operator Lie algebra of a stochastic

labelled-graph grammar. More specifically, we carry out a generic calculation of the product

(and therefore the commutator) of time-evolution operators for any two labelled-graph gram-

mar rewrite rules, where the operator corresponding to each rule is defined in terms of ele-

mentary two-state creation/annihilation operators. The resulting graph grammar algebra has

the following properties: (1) The product and commutator of two such operators is a sum of

such operators with integer coefficients. Thus, the algebra and the Lie algebra occurs entirely

at the structural (or graph-combinatorial) level of graph grammar rules, lifted from the level

of elementary creation/annihilation operators (an improvement over [1], Propositions 1 and

2). (2) The product of the off-diagonal (state-changing) parts of two such graph rule operators

is a sum of off-diagonal graph rule operators with non-negative integer coefficients. (3) These

results apply whether the semantics of a graph grammar rule leaves behind hanging edges

(Theorem 1), or removes hanging edges (Theorem 2). (4) The algebra is constructive in terms

of elementary two-state creation/annihilation operators (Corollaries 3 and 8). These results

are useful because dynamical transformations of labelled graphs comprise a general modeling

framework, and algebraic commutators of time-evolution operators have many analytic uses

including designing simulation algorithms and estimating their errors.

1 Introduction

In ([1], Propositions 1 and 2) we showed that the labelled-graph rewrite rule operator semantics

specified there (in two versions, one without and one with hanging edge removal) is contained

within a somewhat larger operator algebra closed under addition, scalar multiplication, and op-

erator multiplication (and hence under commutation, as in a Lie algebra). The purpose of this

paper is to show that the enlargement is not necessary. So, under either semantics (hanging edges

removed or not), the vector space spanned by the graph rewrite rule operators previously defined

form an operator algebra and a Lie algebra among themselves. In particular, the product of the

1 Department of Computer Science, University of California Irvine CA 92697. Email: emj@uci.edu .

1

http://arxiv.org/abs/1909.04118v1


state-changing portions of two such operators can be written as a sum of such operators with

nonnegative integer weights, and the full product and commutator of two such operators can be

written as a sum of such operators with integer weights.

These results occur within a larger scope discussed at length in [1], including grammar-like

or rule-based structured models of molecular complexes [2] and of tissues with dividing cells

[3, 4] Potential applications include cytoskeletal dynamics in cellular and developmental biology,

neurobiology, and smart materials as well as the dynamics of more abstract, non-spatial graphs in

a wide variety of fields.

Given such state-changing operators Ŵr for the rules in a grammar, the Master Equation for

the stochastic dynamics is [5]

dp

dt
“ W ¨ p , where

Dr “ diagp1 ¨ Ŵrq ; Wr “ Ŵr ´ Dr ; W “
ÿ

r

Wr ;
(1)

(generalizing [6, 7, 8] for stochastic chemical reaction networks), and where probability is defined

over a suitable Fock space for varying numbers of graph nodes (with labels) and graph edges.

Here we assume this and related background as explained in [1, 9], for efficiency in calculating

the main result (Section 2.4, 4).

2 Problem statement and main result

2.1 Graph grammar rule semantics

In the following as described in [1,10,9], stochastic labelled graph grammar (SLGG) rule semantics

with variables X in the labels is obtained by integrating over a collection of rule variables X that

appear in graph labels λ; as a special case, some λ parameters can be constant as a function of X.

Then

Ŵr “

ż

dµrpXqŴrpλpXq, λ
1pXqq (2)

where µrpXq is a suitable measure that could be discrete (so the integral becomes a sum) or con-

tinuous.

Define “
ř

xi1,...iky‰
. . .” to be a sum over indices pi1, . . . ikq constrained so that each il is unequal

to all the others, in the simplest case (but see Section 3.3.3) we define the time-evolution operator

of a graph rewrite rule:

Ŵr “
1

CrpNmax freeq

ż

dX ρrpλpXq, λ
1pXqq

ÿ

xi1,...iky‰

âi1,...ik
pGr outqai1,...ik

pGr inq (3)

where as explained in [1] the graph grammar rule operator first annihilates all the edges and

labelled nodes in the incoming graph and then, but uninterruptibly and with zero delay, creates

2



the corresponding elements of the outgoing graph:

âi1 ,...ik
pG1q “ âi1 ,...ik

pG1
linksqâi1 ,...ik

pG1
nodesq

“

«

ź

s1,t1Prhsprq

´

âis1 it1

¯g1
s1 t1

ff«

ź

v1Prhsprq

âiv1 λ1
v1

ff

“

«

ź

ps1,t1qPG1
links

âis1 it1

ff«

ź

v1PG1
nodes

âiv1 λ1
v1

ff

ai1,...ik
pGq “ ai1 ,...ik

pGlinksqai1 ,...ik
pGnodesq

“

«

ź

s,tPlhsprq

`

ais it

˘gs t

ff«

ź

vPlhsprq

aivλv

ff

.

“

«

ź

ps,tqPGlinks

ais it

ff«

ź

vPGnodes

aivλv

ff

.

(4)

The sets lhsr and rhsr comprise the nodes or vertices in the left hand side and ride hand side

graphs, G and G1, with adjacency matrices g and g1, of rule r. The factor of 1{CrpNmax freeq in

Equation (3) will be discussed in Section 3.1.

In order to specify labelled graphs by ordinary syntactic means, we have imposed a numbering

on the nodes in lhsr and rhsr as discussed further in [1]; this numbering allows us to use adjacency

matrices g and g1 to define the graph links or edges, to map labels to nodes, and to define disjoint

unions of nodes where needed.

Thus from Equations (3) and (4),

Ŵr “
1

CrpNmax freeq

ż

dµrpXq ρrpλpXq, λ
1pXqq

ÿ

xi1,...iky‰

«

ź

s1,t1Prhsprq

´

âis1 it1

¯g1
s1 t1

ff«

ź

v1Prhsprq

âiv1 λ1
v1

ff

ˆ

«

ź

s,tPlhsprq

`

ais it

˘gs t

ff«

ź

vPlhsprq

aivλv

ff

.

(5)

Also we have the product

Ŵr2Ŵr1
“

1

Cr1
pNmax freeq

1

Cr2pNmax freeq

ż ż

dµr1
pX1qdµr2 pX2q ρr1

pλ1pX1q, λ
1
1pX1qq ρr2pλ2pX2q, λ

1
2pX2qq

ÿ

xj1,...jk2
y‰

ÿ

xi1,...ik1
y‰

âj1,...jk2
pGr2 out

links qâj1,...jk2
pGr2 out

nodesqaj1,...jk2
pGr2 in

linksqaj1,...jk2
pGr2 in

nodesq

ˆ âi1,...ik1
pGr1 out

links qâi1 ,...ik1
pGr1 out

nodesqai1 ,...ik1
pGr1 in

linksqai1 ,...ik1
pGr1 in

nodesq ,

(6)

and consequently

Ŵr2Ŵr1
“

1

Cr1
pNmax freeq

1

Cr2pNmax freeq

ż ż

dµr1
pX1qdµr2 pX2q ρr1

pλ1pX1q, λ
1
1pX1qq ρr2pλ2pX2q, λ

1
2pX2qq

ÿ

xj1,...jk2
y‰

ÿ

xi1,...ik1
y‰

âj1,...jk2
pGr2 out

links q
”

aj1,...jk2
pGr2 in

linksqâi1,...ik1
pGr1 out

links q
ı

ai1,...ik1
pGr1 in

linksq

ˆ âj1,...jk2
pGr2 out

nodesq
”

aj1,...jk2
pGr2 in

nodesqâi1,...ik1
pGr1 out

nodesq
ı

ai1,...ik1
pGr1 in

nodesq .

3



(7)

2.2 Problem statement

Up to equivalence, how can the product of two graph grammar rewrite rule operators be ex-

pressed in terms of a sum of such operators?

Likewise for the commutator of such operators?

2.3 Equivalence of rule operators

Two models defined by the Master Equation (ME) will be “equivalent” if their state variables can

be identified so that solutions of the Master Equation are identical in all statistically observable

respects: in all moments of all number operators at all choices of observation times. If α indexes

the observable numbers nα of objects and Nα is the corresponding number operator, then we can

read out a broad range of joint probabilities with the moments of Kronecker delta functions:

PrMEprnαpqqptqq|qsq “
A

ź

q

δpNαpqqptqq ´ nαpqq Iαpqqq
E

ME

(8)

As the operative definition of equivalence, we demand equality of all such moments. Other observ-

ables x f prNαpqqptqq|qsqyME (where f is applied componentwise to diagonal matrices) follow from

Equation (8) as a linear basis.

2.4 Main result

After a calculation and several arguments, the main result will take the form of an operator alge-

bra equivalence that turns products of graph rewrite operators into sums of other graph rewrite

operators:

ŴGr2 inÑGr2 outŴGr1 inÑGr1 out »
ÿ

H Ď Gr1 out
» H̃ Ď Gr2 in

| edge-maximal

ÿ

h:H
1–1
ãÑH̃

ŴG1;2 inpH̃qÑ
h

G1;2 outpHq (9)

where the new labelled graphs, roughly given by

G1;2 inpH̃q “ Gr1 in Y pGr2 inzH̃q

G1;2 outpHq “ Gr2 out Y pGr1 outzHq ,
(10)

and their labelled-graph overlap will be defined more carefully in Section 4.

This result will be shown both without (Theorem 1, Section 4.1) and with (Theorem 2, Sec-

tion 4.2) hanging edge cleanup semantics. First we discuss some operator algebra calculational

techniques and strategies we use, without claiming any optimality for them.

In addition, in the course of proving these two theorems we exhibit in each case a construc-

tive mapping (Corollaries 3 and 8) from the graph rewrite rule operator algebra semantics to the

elementary bitwise (two-state) operator algebras of Section 3.2.1.

4



3 Techniques

3.1 Normalization

The factor of 1{CrpNmax freeq in Equation (3) accounts for a large number of equivalent states that

could result from a rule firing, whose weight should add up to Op1q. It reflects the fact that in

operator algebra formalism reaction rates naturally follow the law of mass action, so that if (as

one would hope) a large number Nmax free of unallocated node indices are available for creating

new graph content then the net rate of creation for that content is proportionately very high; yet

this factor should instead be unimportant, so we scale it out. Roughly, CrpNmax freeq should be

Nmax free!{ppNmax freeq ´ mrq! where mr is the number of new nodes |Gr out
nodeszGr in

nodes| appearing in

the output graph but not the input graph. However, Nmax free should be much larger than mr so

that it does not change appreciably when graph nodes are created or destroyed, in which case

CrpNmax freeq » pNmax freeqmr with equality in the Nmax free Ñ `8 limit. Then in the limit Cr is

“multiplicative” for additive mr (i.e. pNmax freeqmr1 pNmax freeqmr2 “ pNmax freeqmr1
`mr2 as we assume

for Theorems 1 and 2 below). Alternatively, Cr could be held constant by an index allocation

mechanism such as that described in Section 3.3.2. (Thus, one could invent a memory gatekeep-

ing mechanism similar to "malloc" in C, "new" in C++, and "gensym" in Lisp, but expressed in

operator algebraic notation for allocating one block of indices at a time, at the risk of some degree

of unnecessary serialization.) A useful limit of this route is to set Nmax free “ 1, Cr “ 1 (also multi-

plicative) by imposing a unique choice of new, unique index value for each new node generated

in each rule firing; this method requires a suitable choice function.

3.2 Operator algebra techniques

The expressions r. . .s in square brackets in Equation (7) need to be restored to normal order, with

annihilators aα to the right of (preceding) creation operators âα .

3.2.1 Elementary operators’ algebra

To do this systematically we need various operator rules for 2x2 elementary operators:

â “

ˆ

0 0

1 0

˙

, a “

ˆ

0 1

0 0

˙

implies (11a)

âa “ N ”

ˆ

0 0

0 1

˙

, aâ “ Z ” I ´ N “

ˆ

1 0

0 0

˙

, and (11b)

raα, âβs “ δαβpIα ´ 2NαqI Alternative for normal form calcs: (11c)

aα âβ “ âβaα ´ 2δαβâαaα ` δαβ Iα (11d)

aα âβ “ p1 ´ δαβqâβaα ` δαβZα (11e)

Then

â2
α “0 “ a2

α

Nα ”âαaα (diagonal)

Zα ”Iα ´ Nα (diagonal)

aα âβ “p1 ´ δαβqâβaα ` δαβZα

and
NαNα “Nα

ZαZα “Zα
and

Zαaα “aα

aαZα “0

Zα âα “0

âαZα “âα

(12)

5



An extra multiplicative algebra sector governs the erasure operator E ” Z ` a:

Eα ” Π0 α ” Zα ` aα

Eαaα “ aα

aαEα “ 0

Eα âα “ Zα

âαEα “ Π1 α

and

Π1 α ” âα ` Nα

Π1 αaα “ Nα

aαΠ1 α “ Π0α

Π1 α âα “ âα

âαΠ1 α “ 0

(13)

In order to control the signs of integer-valued weights in operator products, we observe the

following: For creation/annihilation operators pertaining to graph edges, including those making

up the edge erasure operators Eip i and Ei iq
, using e.g. Equation (11e) rather than (11d) removes

the explicit negative signs from the algebra by introducing matrix Zip iq
which has nonnegative

entries.

This algebra governs the graph edge creation and annihilation operators, for which α “ pi, jq.

It does not apply directly to the node label creation and annihilation operators, except as targets of

an operator homomorphism to be described next. For this homomorphism the elementary bitwise

operators obeying the algebra above will be denoted “b” rather than “a”.

3.3 Operator Algebra homomorphisms

A homomorphism of operator algebras is defined here as a mapping from one operator algebra to

another that preserves the basic algebraic operations: finite sums, scalar multiplication, and finite

products of operators. It is thus a ring homomorphism, for a ring of linear operators that act on a

vector space. In our case the vector space is a Fock space capable of hosting classical probability

distributions [5, 9, 1]. If the operator algebra homomorphism is also injective, it could be called

an “embedding”.

3.3.1 Winner Take All (WTA or 1-Hot) Encoding of Labels

We can enforce a winner-might-take-all logic of labels either by fiat using axioms:

ai, λai, λ1 “0

âi, λ âi, λ1 “0

ai, λ âi, λ1 “δλ λ1Yi, λ1 .

(14)

where N
paq
i, λ1 and Yi, λ1 are diagonal in the number basis and idempotent, satisfying

Yαaα “aα

aαYα “0

Yα âα “0

âαYα “âα

and

Yαaβ “aαYβ for pα ‰ βq

Yα âβ “âβYα for pα ‰ βq

YαYα “Yα

(15)

for α “ pi, λq as appropriate for node labels. Likewise for N:

Nαaα “0

aαNα “aα

Nα âα “âα

âαNα “0

and

Nαaβ “aαNβ for pα ‰ βq

Nα âβ “âβNα for pα ‰ βq

NαNα “Nα

(16)

6



and NαYα “ 0 “ YαNα; also NαYβ “ YβNα.

Alternatively, we can ground this WTA algebra in terms of the usual elementary 0/1-valued

states using the 0/1-winner mapping

ai, λ “ b̂i,∅bi, λ

âi, λ “ b̂i, λbi,∅

(17)

in which the b, b̂ operators obey the bitwise algebra above, and they also by induction obey the

WTA/one-hot subspace constraint imposed by initial condition and preserved by operators con-

structed from a, â:

Ni,∅ `
ÿ

λ

N
pbq
i, λ » I

bi,∅bi, λ » 0 » bi, λbi,∅ ,

bi, λbi, λ1 » 0 .

(18)

In the number basis for b, these equivalences follow from the initialization and inductive preser-

vation of

ni,∅ `
ÿ

λ

n
pbq
i, λ “ 1

ni,∅, n
pbq
i, λ P t0, 1u

(19)

so that ni,∅n
pbq
i, λ “ 0 and λ ‰ λ1 ùñ n

pbq
i, λn

pbq
i, λ1 “ 0; then use bα| . . . nα . . .y “ n

pbq
α | . . . pnα ´ 1q . . .y .

Using this algebra for b, b̂ and the operator algebra homomorphism to a, â induced by Equa-

tion (17), then the a, â algebra of Equations (14),(15), and (16) (interpreting N in (14)-(16) as Npaq

below, not as Npbq) can be verified by direct computation. We find the additional homomorphism

mappings to the bitwise “b” algebra for Y and Npaq:

N
paq
i,λ “ N

pbq
i,λ Zi,∅ “ b̂i, λbi, λbi,∅b̂i,∅

Yi,λ “ Z
pbq
i,λ Ni,∅ “ bi, λb̂i, λb̂i,∅bi,∅

(20)

Of course operators indexed by nodes i ‰ j all commute. Combined with the last line of

Equation (14), this fact produces a major calculational tool for nodes in the form of the following

key commutation relation:

aj , λ âi , λ1 “ p1 ´ δijqâi , λ1 aj , λ ` δijδλλ1Yj , λ1 (21)

This relation differs from Equation (11e) in producing fewer nonzero results, so it is more con-

straining, and a slightly different diagonal operator Y obeying the same algebra for node labels

(in Equation (15)) as Z (in Equation (12)) does for edges. Equation (11e) however still governs

edge operators.

Thus we reach sufficient multiplicative information on ta, â, N, Z, Y, E, Π1u in principle to com-

pute all products of Ŵ operators.

7



3.3.2 Controlled index allocation

Each graph rewrite rule may introduce new graph nodes not already present. The graph rewrite

rule algebra will be simpler if these can be modeled with fresh node indices i not previously

used - even if some further algebra homomorphism and remapping not undertaken here actually

reuses old, deallocated graph node indices. (Edge index pairs will necessarily be fresh - heretofore

unused - if at least one of their node indices is fresh.) Here we just seek to express algebraically

a continual, parallelism-compatible supply of fresh indices. Choose an index block size B that

is large enough to encompass the new nodes of any rule we consider. The chosen B could even

be countably infinite, e.g. if we use a diagonal raster traversal of B and the infinite collection of

blocks needed; however in Theorem 2 we will assume B is finite. Index the blocks needed by

µ P M where M is a countably infinite tree of finite maximum branching degree, and let φ Ď M

denote a frontier in M: the collection of next blocks available for allocation, whose ancestors have

all been allocated.

As a special case, if M is a graph isomorphic to the integers with succession (N`) as the tree

relationship, then this scheme will force serial computation; but an average branching degree

even slightly greater than 1 permits parallelism.

Each block τ has binary variables Aτ P t0, 1u taking the value 1 if and only if block τ is ”allo-

cated” or “alive” (in which case all of τ’s ancestors mush also be alive), and Fτ P t0, 1u taking the

value 1 if and only if block τ is in the current frontier φ, in which case Aτ “ 1 but all of τ’s chil-

dren must be unallocated (AσPchildrenpτq “ 0). These binary variables F have creation/annihilation

operators b̂ind
τ and bind

τ . Then |φ| “
ř

τPM Fτ .

We will assume that nodes i which have never been allocated in a memory block all obey the

initial condition that ni ,∅ “ 1 and ni ,λ “ 0 for other labels λ and inductively have no way of

changing until the memory block τ containing i is allocated; and likewise all the edge numbers nij

and nji involving node i are all initialized to zero and inductively have no way of changing until

the memory blocks σ, τ containing i and j respectively are both allocated.

Let Chpτq be the set of child blocks of memory block τ in M. Then the combined operator

Advanceτ ”
”

ź

σPChpτq

b̂ind
σ

ı

bind
τ (22)

could be used to advance the frontier φ of allocated memory under a single rule firing. (M could

even be permitted to be a directed acyclic graph, if the child operator b̂ind
σ in the product in Equa-

tion (22) is replaced by pb̂ind
σ ` Nind

σ q. Then child memory blocks that are already alive and in the

frontier are permitted, and remain that way.) If we initialize the aliveness and frontier at the root

of the tree and maintain it by Equation (22) inductively, then we can take

aind
τ “ bind

τ

âind
τ “ b̂ind

τ

(23)

More conservatively we could continually check that old memory is not about to be reused incor-

rectly:

aind
τ “ bind

τ

âind
τ “ b̂ind

τ

´

ź

σPancestorspτq

Zind
σ

¯

(24)

8



The index allocation frontier maps to parallel computational architectures in which time can be

local, for example time can be a spacelike foliation of spacetime that respects signal propagation

delays.

Now the idea is that rule-firing operators Ŵr will act also in the index allocation space, using

and then advancing the frontier φ of blocks τ from which newly allocated graph nodes i can be

drawn. Denoting by Ŵr,τ the variant of Ŵr that draws all newly allocated nodes i from block τ

(the block size B being always large enough for this), then

Ŵr ”
ÿ

τPM

”

ź

σPChpτq

âind
σ

ı

Ŵrτaind
τ

1

|φ|
. (25)

where all such expressions as τ varies are regarded as equivalent owing to index permutation

invariance and operator linearity. In the special case M “ N
`, φ “ tτu, |φ| “ 1 and this operator

becomes

Ŵr ”
ÿ

τPM

âind
τ`1Ŵrτaind

τ (26)

(cf. [11], a quantum version that adds in the time-reversal Hermitian conjugate of all transitions)

which is the form we will assume.

With more complex dynamics one could try try to ensure that in Equation (25) the |φ|, size

of the frontier, is constant or nearly constant in time, and move its inverse to the left of the
ř

τ

above. For example M could be a root node connected to the zero nodes of |φ| half-infinite chains

each isomorphic to the integers under succession. Alternatively one could track the relationship

between simulated and computational time. In what follows we’ll assume one of these options

has been taken, so that the factor of 1{|φ| is the same for all rules, treat the general M case as

equivalent (using » as previously defined) to the special case M “ N
`, φ “ tτu, |φ| “ 1 that we

assume in the calculations that follow.

Similar “aliveness” variables in quantitative grammar models have been used in [3] and [12],

along with winner-take-all variable subset constraints, though without the operator algebra frame-

work. Controlled index allocation could be related in a computational implementation to con-

trolled memory allocation.

3.3.3 Hanging edge cleanup

Another elaboration of rule operators Ŵr can clean up hanging edges that may otherwise be left

behind by a rule firing:

Ŵcleaned
r “

´

ź

k1PLrzRr

ź

k2PU

Ek1k2
Ek2k1

¯

Ŵbare
r

»
´

ź

pk1,k2qPS

Ek1k2

¯´

ź

pk1,k2qPS

Ek2k1

¯

Ŵbare
r

(27)

where S is the set of indices specified by

S “ rpLrzRrq ˆ UA˚s (28)

9



where UA˚ = all node indices that have ever been allocated in a memory block, hence all memory-

live node indices, and U = the whole universe of node indices, so that UA˚ Ď U . The second

line in Equation (27) is equivalent, » to the first because as discussed above, unallocated k2 indices

inductively have nk1k2
“ 0 “ nk2k1

, and the erasure operator does nothing (is equivalent to the

identity operator) in that case. The reason for including this restriction in the definition of S is

that, for rules with finite graphs and index allocation with finite block size and after any finite

number of rule firings, UA˚ is finite and both factors of the set S are finite, so S itself is finite; only

a finite amount of cleanup work needs to be done for each rule firing. We will use this assumption

in the proof of Theorem 2.

In the next section we will use the notation Pχ “ rpLχzRχq ˆ U s for the predicate that des-

ignates the possibly infinite superset of index set S above, that pertains to the top line of Equa-

tion (27).

In greater detail the hanging-edge removal semantics as specified less formally in the top line

of Equation (27) is

Ŵr “
1

CrpNmax freeq
ρrpλ, λ

1q
ÿ

xi1,...iky‰

EcleanuppGrqâi1,...ik
pGr outqai1 ,...ik

pGr inq (29)

where

EcleanuppGr in, Gr outq “

«

´

ź

pPGr in
nodeszGr out

nodes

ź

iPU

Eip i

¯´

ź

pPGr in
nodeszGr out

nodes

ź

iPU

Ei ip

¯

ff

âi1 ,...ik
pG1q “ âi1 ,...ik

pG1
linksqâi1 ,...ik

pG1
nodesq

“

«

ź

ps1,t1qPG1
links

âis1 it1

ff«

ź

v1PG1
nodes

âiv1 λ1
v1

ff

ai1,...ik
pGq “ ai1 ,...ik

pGlinksqai1 ,...ik
pGnodesq

“

«

ź

ps,tqPGlinks

ais it

ff«

ź

vPGnodes

aivλv

ff

.

(30)

3.4 Index Set Notations

In order to calculate operator products we introduce systematic index set notation as follows.

Define Lχ, Lχ, Lχ, Rχ, for χ P t1, 2u:

lhs nodespr1q
I

ÞÑ IpG1 in
nodesq ” L1 rhs nodespr1q

I
ÞÑ IpG1 out

nodesq ” R1

lhs nodespr2q
J
ÞÑ J pG2 in

nodesq ” L2 rhs nodespr2q
J
ÞÑ IpG2 out

nodesq ” R2;

lhs linkspr1q
I

ÞÑ IpG1 in
linksq ” L1 rhs linkspr1q

I
ÞÑ IpG1 out

links q ” R1

lhs linkspr2q
J
ÞÑ J pG2 in

linksq ” L2 rhs linkspr2q
J
ÞÑ IpG2 out

links q ” R2.

(31)

10



In this notation the no-edge-cleanup semantics of Equation (4) becomes

Ŵrχ “
1

CrχpNmax freeq
ρrχpλ

pχq, λ
1pχq

q
ÿ

Iχ :LχYRχ
1-1
ãÑU

ˆ

«

ź

pi1,i2qPRχ

âi1i2

ff«

ź

i5PRχ

â
i5 , λ

1p1q

I´1pi5q

ff«

ź

pi3,i4qPLχ

ai3i4

ff«

ź

i6PLχ

a
i6 , λ

p1q

I´1pi6q

ff (32)

for χ P t1, 2u, where Iχ“1 ” I and Iχ“2 ” J . Note that the middle square-bracketed terms

commute trivially since elementary node and link operators operate in different spaces.

Also in this notation, once again

S “ rhs1 X h´1plhs2q “ Gr1 out
nodes X h´1pGr2 in

nodesq

hpSq “ lhs2 X hprhs1q “ Gr2 in
nodes X h´1pGr1 out

nodesq

IpSq “ J phpSqq “ L2 X R1

IpSq “ L2 X R1 “ L2 Y R1.

(33)

Note also that

Lχ Ď rLχ ˆ Lχs and Rχ Ď rRχ ˆ Rχs (34)

should be preserved inductively by rule-firing semantics.

Define Pχpi1, i2q = a predicate that determines which edges Ei1,i2 are hanging, if present, and

should be deleted, where χ P t1, 2u. It may be a predicate function: PχrLχ, Rχ, . . . , G
χ in
links, G

χ out
links spi1, i2q.

Also PTpi1, i2q ” Ppi2, i1q. We will use one of several equivalent possibilities:

Pχ “ rpLχzRχq ˆ U s
duals
ÐÑ P˚

χ “ PT
χ “ rU ˆ pLχzRχqs (35)

As before, U = the universe of possible node indices i.

(Any of these alternative formulations of P would be equivalent:

I :

II :

III :

IV :

Pχ “ rpLχzRχq ˆ U s

Pχ “ rpLχzRχq ˆ Lχ Y Rχs

Pχ “ rpLχzRχq ˆ U szpLχzRχqs

Pχ “ rpLχzRχq ˆ Lχ Y RχszpLχzRχqs;

duals
ÐÑ

P˚
χ “ PT

χ “ rU ˆ pLχzRχqs

P˚
χ “ PT

χ “ rLχ Y Rχ ˆ pLχzRχqs

P˚
χ “ rU ˆ pLχzRχqszpLχzRχqs

P˚
χ “ rLχ Y Rχ ˆ pLχzRχqszpLχzRχqs.

(36)

But we will use Equation (35) = case I above, since it is the easiest to work with.)

Denote the sought-after “compound rule” for rules r1 followed by r2 as r1;2. Calculate L1;2 “

L1 Y pL2zR1q “ L1 Y pL2zIpSqq because IpSq Ď R1 and L2 X R1 Ď IpSq; likewise R1;2 “ R2 Y

pR1zL2q “ R2 Y pR1zIpSqq because IpSq Ď L2 and R1 X L2 Ď IpSq. Similarly for L1;2 and R1;2.

Then we have these compound rule index set definitions:

L1;2 “ L1 Y pL2zR1q “ L1 Y pL2zIpSqq

R1;2 “ R2 Y pR1zL2q “ R2 Y pR1zIpSqq

∆ “ pL2zR2q X pR1zL1q ” R2 X L2 X R1 X L1

L1;2 “ L1 Y pL2zR1q “ L1 Y pL2zIpH1 linksqq

R1;2 “ R2 Y pR1zL2q “ R2 Y pR1zIpH1 linksqq

D “ pL2zR2q X pR1zL1q ” R2 X L2 X R1 X L1

. (37)

11



The index sets ∆ and D above will turn up in the calculation of the next section.

From a2 “ 0 “ â2, we have:

pR1zL1q X pR2zL2q “ ∅

pL1zR1q X pL2zR2q “ ∅

pR1zL1q X pR2zL2q “ ∅

pL1zR1q X pL2zR2q “ ∅.

(38)

4 Calculations

4.1 Commutation calculation - no edge cleanup

The product of two such operators is (omitting for now the integral over parameters X)

Ŵr2Ŵr1
“

1

Cr1
pNmax freeq

1

Cr2pNmax freeq
ρr1

pλ
p1q, λ

1p1q
qρr2pλ

p2q, λ
1p2q

q

ˆ
ÿ

J :L2YR2
1-1
ãÑU

ÿ

I :L1YR1
1-1
ãÑU

ˆ

«

ź

pj1,j2qPR2

âj1 j2

ff«

ź

pj3,j4qPL2

aj3 j4

ff«

ź

j5PR2

â
j5 , λ

1p2q

J ´1pj5q

ff«

ź

j6PL2

a
j6 , λ

p2q

J´1pj6q

ff

ˆ

«

ź

pi1,i2qPR1

âi1i2

ff«

ź

pi3,i4qPL1

ai3i4

ff«

ź

i5PR1

â
i5 , λ

1p1q

I´1pi5q

ff«

ź

i6PL1

a
i6 , λ

p1q

I´1pi6q

ff

(39)

Grouping the node operators together at the end, and grouping together terms that need to be

commuted next as
 

. . .
(

1© and
 

. . .
(

2©, this is:

Ŵr2Ŵr1
“

1

Cr1
pNmax freeq

1

Cr2pNmax freeq
ρr1

pλ
p1q, λ

1p1q
qρr2pλ

p2q, λ
1p2q

q

ˆ
ÿ

J :L2YR2
1-1
ãÑU

ÿ

I :L1YR1
1-1
ãÑU

«

ź

pj1,j2qPR2

âj1 j2

ff

ˆ

#«

ź

pj3,j4qPL2

aj3 j4

ff«

ź

pi1,i2qPR1

âi1i2

ff+

1©

«

ź

pi3,i4qPL1

ai3i4

ff«

ź

j5PR2

â
j5 , λ

1p2q

J ´1pj5q

ff

ˆ

#«

ź

j6PL2

a
j6 , λ

p2q

J ´1pj6q

ff«

ź

i5PR1

â
i5 , λ

1p1q

I´1pi5q

ff+

2©

«

ź

i6PL1

a
i6 , λ

p1q

I´1pi6q

ff

(40)

12



Strategically rewriting the sum over J ,

Ŵr2Ŵr1
“

1

Cr1
pNmax freeq

1

Cr2pNmax freeq
ρr1

pλ
p1q, λ

1p1q
qρr2pλ

p2q, λ
1p2q

q

ˆ
ÿ

TĎG
r1 in

nodeszG
r1 out

nodes

ÿ

π:T
1–1
ãÑG

r2 out

nodes zG
r2 in

nodes

ÿ

SĎG
r1 out

nodes

ÿ

h:S
1–1
ãÑG

r2 in

nodes

ÿ

I :L1YR1
1-1
ãÑU

ÿ

J :L2YR2
1-1
ãÑU

ImpIqXImpJ q“IpSqYIpTq
IpSq“J phpSqq^IpTq“J pπpTqq

«

ź

pj1,j2qPR2

âj1 j2

ff

ˆ

#«

ź

pj3,j4qPL2

aj3 j4

ff«

ź

pi1,i2qPR1

âi1i2

ff+

1©

«

ź

pi3,i4qPL1

ai3i4

ff«

ź

j5PR2

â
j5 , λ

1p2q

J´1pj5q

ff

ˆ

#«

ź

j6PL2

a
j6 , λ

p2q

J´1pj6q

ff«

ź

i5PR1

â
i5 , λ

1p1q

I´1pi5q

ff+

2©

«

ź

i6PL1

a
i6 , λ

p1q

I´1pi6q

ff

(41)

In the controlled index model the sum over maps J will simplify because T and πpTq will

both be the null set. In any case, note that

IpTq Ď L1zR1 and J pπpTqq Ď R2zL2 . (42)

The more constraining form to commute is
 

. . .
(

2©:

#«

ź

j6PL2

a
j6 , λ

p2q

J ´1pj6q
q

ff«

ź

i5PR1

â
i5 , λ

1p1q

I´1pi5q
q

ff+

2©

“

«

ź

j6 0PL2XIpSq

ź

j6 1PL2XIpSq

a
j6 0 , λ

p2q

J ´1pj6 0q

a
j6 1 , λ

p2q

J ´1pj6 1q

ff

ˆ

«

ź

i5 0PR1XIpSq

ź

i5 1PR1XIpSq

â
i5 0 , λ

1p1q

I´1pi5 0q

â
i5 1 , λ

1p1q

I´1pi5 1q

ff

.

(43)

Using Equation (21) aj , λ âi , λ1 “ p1 ´ δijqâi , λ1 aj , λ ` δijδλλ1Yj , λ1 , so that only indices in IpSq may

13



fail to commute, this becomes
 

. . .
(

2© :

#«

ź

j6PL2

a
j6 , λ

p2q

J´1pj6q
q

ff«

ź

i5PR1

â
i5 , λ

1p1q

I´1pi5q
q

ff+

2©

“
ź

j6 0PL2XIpSq“IpSq“L2XR1

ź

j6 1PL2XIpSq“L2XR1

ź

i5 0PR1XIpSq

ź

i5 1PR1XIpSq

a
j6 0 , λ

p2q

J ´1pj6 0q

a
j6 1 , λ

p2q

J ´1pj6 1q

â
i5 0 , λ

1p1q

I´1pi5 0q

â
i5 1 , λ

1p1q

I´1pi5 1q

“
ź

j6 0PL2XR1

ź

j6 1PL2XR1

ź

i5 0PL2XR1

ź

i5 1PR1XL2

â
i5 1 , λ

1p1q

I´1pi5 1q

a
j6 1 , λ

p2q

J ´1pj6 1q

a
j6 0 , λ

p2q

J ´1pj6 0q

â
i5 0 , λ

1p1q

I´1pi5 0q

“
ź

j6 1PL2XR1

ź

i5 0PL2XR1

ź

i5 1PR1XL2

â
i5 1 , λ

1p1q

I´1pi5 1q

a
j6 1 , λ

p2q

J ´1pj6 1q

δ
λ

1p1q

I´1pi5 0q
, λ

p2q

J ´1pj6 1q“hpI´1pi5 0qq

Y
i5 0 , λ

1p1q

I´1pi5 0q

(44)

and thus
#«

ź

j6PL2

a
j6 , λ

p2q

J´1pj6q
q

ff«

ź

i5PR1

â
i5 , λ

1p1q

I´1pi5q
q

ff+

2©

“

«

ź

i5 1PR1zL2

â
i5 1 , λ

1p1q

I´1pi5 1q

ff «

ź

j6 1PL2zR1

a
j6 1 , λ

p2q

J´1pj6 1q

ff

ˆ

«

ź

i5 0PL2XR1

δ
λ

1p1q

I´1pi5 0q
, λ

p2q

hpI´1pi5 0qq

Y
i5 0 , λ

1p1q

I´1pi5 0q

ff

(45)

since on S, J ´1 “ h ˝ I´1. The last line implements label-checking in the node correspondence

portion of graph matching between a subgraph HpS, hq of the output graph of rule r1 and a corre-

sponding subgraph of the input graph of rule r2.

We must now simplify
!

. . .
)

1©
by commuting its leftmost factor,

”

ś

pj3,j4qPR2

aj3 j4

ı

, to the right

of its rightmost factor,
”

ś

pi1,i2qPR1

âi1i2

ı

. To this end, using Equation (11) and the conditions ImpIq X

ImpJ q “ IpSq Y IpTq, and (from Equation (42) ) IpTq X R1 “ ∅^J pπpTqq X L2 “ ∅, we compute:
#«

ź

pj3,j4qPL2

aj3 j4

ff«

ź

pi1,i2qPR1

âi1i2

ff+

1©

“

«

ź

pj3,j4qPL2

ź

pi1,i2qPR1

aj3 j4 âi1i2

ff

“

«

ź

pi1,i2qPR1zL2ĎrL2XR1 ˆ L2XR1s

âi1i2

ff «

ź

pj3,j4qP pL2 Ď rL2 X R1 ˆ L2 X R1sqzR1

aj3 j4

ff

ˆ

«

ź

pj7,j8qPL2 X R1 Ď rL2 X R1 ˆ L2 X R1s

Zj7 j8

ff

(46)

14



Thus in our case,

#«

ź

pj3,j4qPL2

aj3 j4

ff«

ź

pi1,i2qPR1

âi1i2

ff+

1©

“

«

ź

pi1,i2qPR1zL2

âi1i2

ff «

ź

pj3,j4qPL2

aj3 j4

ff «

ź

pj7,j8qPL2XR1”IpHlinksq

Zj7 j8

ff (47)

Here IpHlinksq ” L2 XR1, or equivalently Hlinks ” Gr1 out
links X I´1pJ pGr2 in

linksqq “ Gr1 out
links X h´1pGr2 in

linksq;

likewise Hnodes ” Gr1 out
nodes X h´1pGr2 in

nodesq.

Thus we have:

Lemma 1 HpS, hq must be the maximal common subgraph of both Gr1 out and Gr2 in, for any given choice

of nodes S in Gr1 out and 1-1 corresponding nodes hpSq in Gr2 in. From factor 2© we can restrict S to sets

of nodes whose labels match in Gr2 in
nodes and Gr1 out

nodes . For any such H, we can commute the link operators as

follows:

«

ź

pj3,j4qPL2

aj3 j4

ff«

ź

pi1,i2qPR1

âi1i2

ff

“

«

ź

pi1,i2qPIpG
r1 out

links zHlinksq

âi1i2

ff «

ź

pj3,j4qPJ pG
r2 in

links zh´1pHlinksqq

aj3 j4

ff «

ź

pj7,j8qPIpHlinksq”L2XR1

Zj7 j8

ff (48)

The last factor above augments the graph matching of Equation (45) by implementing the edge-checking or

link correspondence portion of graph matching between a subgraph HpS, hq of the output graph of rule r1

and a corresponding subgraph of the input graph of rule r2.

No proper subsets of L2 XR1 from commuting creation and annihilation operators need to be

considered, because the Z factor in the last term, arising from Equation (41), is already a sum of

two terms: I and ´N corresponding to commutation with index miss and hit.

Thus, the “CommonpG1, G2q” set of shared subgraphs H that we sum over in the graph rewrite

commutator is:

Definition CommonpG1, G2q = An isomorphic pair of (edge-maximal) labelled subgraphs H1 »

H2 » H, with graph embeddings H1 ãÑ G1 and H2 ãÑ G2.

From IpSq “ IppHnodesq “ L2 X R1 and edge-maximality we conclude IpHlinksq “ L2 X R1,

whence Equation (48) becomes

«

ź

pj3,j4qPL2

aj3 j4

ff«

ź

pi1,i2qPR1

âi1i2

ff

“

«

ź

pi1,i2qPL2zR1

âi1i2

ff «

ź

pj3,j4qPR1zL2

aj3 j4

ff «

ź

pj7,j8qPL2XR1

Zj7 j8

ff (49)

15



We now assemble partial results of Equations (41), (45), and (49):

Ŵr2Ŵr1
“

1

Cr1
pNmax freeq

1

Cr2pNmax freeq
ρr1

pλ
p1q, λ

1p1q
qρr2pλ

p2q, λ
1p2q

q

ˆ
ÿ

TĎG
r1 in

nodeszG
r1 out

nodes

ÿ

π:T
1–1
ãÑG

r2 out

nodes zG
r2 in

nodes

ÿ

SĎG
r1 out

nodes

ÿ

h:S
1–1
ãÑG

r2 in

nodes

ÿ

I :L1YR1
1-1
ãÑU

ÿ

J :L2YR2
1-1
ãÑU

ImpIqXImpJ q“IpSqYIpTq
IpSq“J phpSqq“L2XR1 ^ IpTq“J pπpTqq

«

ź

pj1,j2qPR2

âpj1,j2q

ff

#«

ź

pi1,i2qPR1zL2

âi1i2

ff «

ź

pj3,j4qPL2zR1

aj3 j4

ff«

ź

pj7,j8qPIpHlinksq”L2XR1

Zj7 j8

ff+

1©

ˆ

«

ź

pi3,i4qPL1

ai3i4

ff«

ź

j5PR2

â
j5 , λ

1p2q

J ´1pj5q

ff

ˆ

#«

ź

i5 1PR1zL2

â
i5 1 , λ

1p1q

I´1pi5 1q

ff «

ź

j6 1PL2zR1

a
j6 1 , λ

p2q

J´1pj6 1q

ff

ˆ

«

ź

i5 0PR1XIpSq“IpSq

δ
λ

1p1q

I´1pi5 0q
, λ

p2q

hpI´1pi5 0qq

ff

(a commuting scalar)

ˆ

«

ź

i5 0PR1XIpSq“IpSq

Y
i5 0 , λ

1p1q

I´1pi5 0q

ff+

2©

«

ź

i6PL1

a
i6 , λ

p1q

I´1pi6q

ff

(50)

Ungrouping
 

. . .
(

1© and
 

. . .
(

2©, and using the identities Zαaα “ aα, Yαaα “ aα, and paαq2 “

16



0 “ pâαq2, and regrouping,

Ŵr2Ŵr1
“

1

Cr1
pNmax freeq

1

Cr2pNmax freeq
ρr1

pλ
p1q, λ

1p1q
qρr2pλ

p2q, λ
1p2q

q

ˆ
ÿ

TĎG
r1 in

nodeszG
r1 out

nodes

ÿ

π:T
1–1
ãÑG

r2 out

nodes zG
r2 in

nodes

ˆ
ÿ

SĎG
r1 out

nodes

ÿ

h:S
1–1
ãÑG

r2 in

nodes

«

ź

i5 0PL2XR1“IpSq

δ
λ

1p1q

I´1pi5 0q
, λ

p2q

hpI´1pi5 0qq

ff

// defines
ÿ

H

and adjusts 1
C

ÿ

I :L1YR1
1-1
ãÑU

ÿ

J :L2YR2
1-1
ãÑU

ImpIqXImpJ q“IpSqYIpTq
IpSq“J phpSqq“L2XR1 ^ IpTq“J pπpTqq

#«

ź

pj1,j2qPR2

âpj1,j2q

ff«

ź

pi1,i2qPR1zL2

âi1i2

ff +

3©

ˆ

#«

ź

j5PR2zpR1XL2XR1q“R2zpR1zL2q

â
j5 , λ

1p2q

J ´1pj5q

ff«

ź

i5 1PR1zL2“IpG
r1 out

nodes zSq

â
i5 1 , λ

1p1q

I´1pi5 1q

ff+

4©

ˆ

#«

ź

pj3,j4qPL2zR1

aj3 j4

ff«

ź

pi3,i4qPL1

ai3i4

ff+

5©

ˆ

#«

ź

j6 1PL2zR1“J pG
r2 in

nodeszh´1pSqq

a
j6 1 , λ

p2q

J´1pj6 1q

ff«

ź

i6PL1

a
i6 , λ

p1q

I´1pi6q

ff+

6©

ˆ

#«

ź

pj7,j8qPIpHlinksqzL1”pL2XR1qzL1

Zj7 j8

ff«

ź

i5 0 0PIpHnodesqzL1“pL2XR1qzL1

Y
i5 0 0 , λ

1p1q

I´1pi5 0 0q

ff+

7©

(51)

Then, using Equation (37) to redefine the index set domains, along with extended indices

i‹
n with ‹ superscripts to run over them (according to the index map I‹ which extends I with

nonoverlapping assignments from J as appropriate); and using the index allocation scheme to

17



force T “ ∅; we have

Ŵr2Ŵr1
“

1

Cr1
pNmax freeq

1

Cr2pNmax freeq
ρr1

pλ
p1q, λ

1p1q
qρr2pλ

p2q, λ
1p2q

q
ÿ

SĎG
r1 out

nodes

ÿ

h:S
1–1
ãÑG

r2 in

nodes

ÿ

I :L1YR1
1-1
ãÑU

ÿ

J :L2YR2
1-1
ãÑU

ImpIqXImpJ q“IpSq
IpSq“J phpSqq“L2XR1

«

ź

i5 0PL2XR1“IpSq

δ
λ

1p1q

I´1pi5 0q
, λ

p2q

hpI´1pi5 0qq

ff

«

ź

pi‹
1 ,i‹

2 qPR1;2“R2YpR1zL2q

âi1i2

ff

3©

«

ź

i‹
1 PR1;2

â
i‹
1 , λ

1p1;2q

I‹´1
1

pi‹q

ff

4©

ˆ

«

ź

pi‹
3 ,i‹

4qPL1;2“L1YpL2zR1q

ai3i4

ff

5©

«

ź

i‹
2 PL1;2

a
i‹
2 , λ

p1;2q

I‹´1pi‹2q

ff

6©

ˆ

#«

ź

pj7,j8qPD“pL2XR1qzL1zR2

Zj7 j8

ff«

ź

i5 0 0P∆“pL2XR1qzL1zR2

Y
i5 0 0 , λ

1p1q

I´1pi5 0 0q

ff+

7©

(52)

Here, by the indexed form for graph grammar rules of Equation (32),

“

. . .
‰

3©
“

. . .
‰

4© “ âpGr1;2 outq
“

. . .
‰

5©
“

. . .
‰

6© “ apGr1;2 inq
(53)

as in the non-indexed semantics form of Equation (3). Furthermore, the idempotent factors of Y

and Z (diagonal in the number basis, multiplying each pure graph state by 0 or 1 ) just require

sufficient free memory to operate the “churn” of memory used in rule 1 and released in rule 2;

assuming index allocation works as designed from a countably infinite store, it is equivalent in

the sense of Equation (8) to drop these factors. The Kronecker delta functions are interpreted as

label-matching conditions in labelled graph matching as in Lemma 1, constraining the 1-1 corre-

spondence map h to respect the node labels and thus (again by Lemma 1) to be an isomorphism

of labelled graphs; and they also help to ensure that the normalization for number of equivalent

outcome graphs is correct. Thus in order to compute the labelled, numbered graph rewrite rule in

each summand over S and h, one needs to find a labelled subgraph H of Gr1 out that is isomorphic

as a labelled graph to a labelled subgraph H̃ of Gr2 in, and do this in an edge-maximal way; then

one needs to pick an isomorphism h between H and H̃; then using H, H̃ and h to map between the

rule r1 and r2 node numberings, one needs to compute the left hand side and right hand labelled

graphs as numbered and labelled node sets and link sets.

Thus by careful interpretation of terms we arrive at the main result, except limited to the case

in which hanging edges are not removed by the rule semantics: for the hanging-edge permissive

semantics of Equations (3) and (4), or equivalently Equation (32),

ŴGr2 inÑGr2 outŴGr1 inÑGr1 out »
ÿ

H Ď Gr1 out
» H̃ Ď Gr2 in

| edge-maximal

ÿ

h:H
1–1
ãÑH̃

ŴGr1 inYpGr2 inzH̃qÑ
h

Gr2 outYpGr1 outzHq (54)

18



In more detail, the summand graph rewrite rule is then defined by the disjoint unions 9Y (re-

flecting time-reversal L Ø R duality):

G1;2 in
nodespH̃nodesq “ Gr1 in

nodes 9YpGr2 in
nodeszH̃nodesq G1;2 out

nodes pHnodesq “ Gr2 out
nodes 9YpGr1 out

nodeszHnodesq

” Gr1 in
nodes Y h´1‹pGr2 in

nodeszH̃nodesq ” Gr2 out
nodes Y h‹pGr1 out

nodeszHnodesq

G1;2 in
links pH̃nodesq “ Gr1 in

links Y h´1‹pGr2 in
linkszH̃linksq G1;2 out

links pHnodesq “ Gr2 out
links Y h‹pGr1 out

links zHlinksq

(55)

where 9Y denotes disjoint union, and where h‹ extends h by remapping the nodes of Gr1 along h if

possible, and to the disjoint union nodes if not; and likewise for h´1. The conserved core graphs

are determined by shared node labels on the left and right of a rule:

Ka “ Gra in
nodes X Gra out

nodes

K1;2 “ pK1zHnodesq Y h´1pK2zH̃nodesq Y pK1 X h´1‹pK2qq
(56)

The exact mechanics of graph numbering and disjoint union are discussed in [1], and examples

are given in Section 5.

Given the definitions of the compound label graphs in Equations (55) and (56), one can write

the graph rewrite rule algebra as announced in Section 2.4:

Theorem 1 For the hanging-edge-permissive semantics of Equations (3) and (4), or equivalently Equa-

tion (32), and assuming multiplicative normalization Cr, then

ŴGr2 inÑGr2 outŴGr1 inÑGr1 out »
ÿ

H Ď Gr1 out
» H̃ Ď Gr2 in

| edge-maximal

ÿ

h:H
1–1
ãÑH̃

ŴG1;2 inpH̃qÑ
h

G1;2 outpHq (57)

where the compound labelled graphs G1;2 inpH̃q and G1;2 outpHq, and their label overlaps K1;2, are defined

by Equations (55) and (56) above. The coefficients in this expression are all nonnegative integers (as the

same graph grammar rule could arise several times by different means). Rate factors ρ multiply, as in

Equation (52).

Corollary 1 There is an algebraic reduction of operator products to sums, similar to Theorem 1, that applies

to the Wr operators that subtract off diagonal operators from Ŵr to conserve probability as in Equation (1),

except that the coefficients can be any integer.

Proof: W
G

r1 in
χ ÑG

r1 out
χ

“ Ŵ
G

r1 in
χ ÑG

r1 out
χ

´ Ŵ
G

r1 in
χ ÑG

r1 in
χ

(as shown in [1]) for χ P tr1, r2u; the latter

two terms are each subject to Theorem 1. Thus Wr2Wr2 is equivalent to a sum of Ŵs operators for

a set of labelled graph grammar rules indexed by s. Since Wr2 preserves probability, 1 ¨ Wr2Wr1
“

0 ¨ Wr1
“ 0 . We can therefore subtract zero in the form of diagp1 ¨ Wr2Wr1

q, applied term by term

with the same sum of graph grammar rules substituted in for Wr2Wr1
q, and find that Wr2Wr2 is

equivalent to a sum of W “ Ŵs ´ diagp1 ¨ Ŵsq operators for a set of labelled graph grammar rules

indexed by s.

19



Corollary 2 There is an algebraic reduction of commutators of labelled graph grammar rule state-change

operators Ŵr to sums of the same form, similar to Theorem 1, with integer coefficients. Also there is a

similar algebraic reduction of commutators of labelled graph grammar rule full operator Wr commutators

to sums of the same form, with integer coefficients.

Proof: As in Corollary 1, but with extra minus signs on some of the rule operators.

Corollary 3 There exists (as exhibited in the proof of Theorem 1) a constructive mapping from the graph

rewrite rule operator algebra semantics to the elementary bitwise operator algebras of Section 3.2.1. Since

it depends on an index allocation scheme which can be done in many ways, this mapping is not unique.

Corollary 4 One particular subgraph that always contributes to the product is H “ ∅ “ H̃, the empty

graph. Its contribution always cancels out of the commutator rŴr2 , Ŵr1
s “ Ŵr2Ŵr1

´ Ŵr1
Ŵr2 , because

then H “ ∅ then nothing is shared between the two rule firings so their order doesn’t matter.

Corollary 5 Integrating Equation (57) over parameters
ş

dµrpXq . . ., as in Equation (2), results in a ver-

sion of Equation (57) that incorporates parameter integrals term-by-term.

Proof: Using the delta functions in Equation (52),
ş

dµr1
pX1qdµr2pX2q

ś

δλ1λ . . . integrates out

some of the variables in pX1, X2q via the delta functions (Kronecker or Dirac depending on the

measures µr) but leaves behind others that assume the same form
ş

dµrpXq . . ..

4.2 Commutation calculation - with edge cleanup

We now turn to the hanging-edge cleanup semantics, and prove (Theorem 2) that the same algebra

as in Theorem 1 and Equations (55), (56), and (57), above still applies.

The semantics is now

Ŵrχ “
1

CrχpNmax freeq

ż

dµrχ X ρrχ pλrXs, λ
1rXsq

ÿ

Iχ :LχYRχ
1-1
ãÑU

«

´

ź

pi1, iqPPχ

Ei1 i

¯´

ź

pî, î1qPP˚
χ

Eî î1

¯

ff

ˆ

«

ź

pi1,i2qPRχ

âi1i2

ff«

ź

pi3,i4qPLχ

ai3i4

ff«

ź

i5PRχ

âi5 , λ1

I´1
χ pi5q

ff«

ź

i6PLχ

ai6 , λ
I´1

χ pi6q

ff

.

(58)

The product of two such operators is (omitting for now the integral over parameters X)

Ŵr2Ŵr1
“

1

Cr1
pNmax freeq

1

Cr2pNmax freeq
ρr1

pλ
p1q, λ

1p1q
qρr2pλ

p2q, λ
1p2q

q

ˆ
ÿ

J :L2YR2
1-1
ãÑU

ÿ

I :L1YR1
1-1
ãÑU

«

´

ź

pj1, jqPP2

Ej1 j

¯´

ź

p ĵ, ĵ1qPP˚
2

E ĵ ĵ1

¯

ff

ˆ

«

ź

pj1,j2qPR2

âj1 j2

ff«

ź

pj3,j4qPL2

aj3 j4

ff«

ź

j5PR2

â
j5 , λ

1p2q

J ´1pj5q

ff«

ź

j6PL2

a
j6 , λ

p2q

J´1pj6q

ff

ˆ

«

´

ź

pi1, iqPP1

Ei1 i

¯´

ź

pî, î1qPP˚
1

Eî î1

¯

ff

ˆ

«

ź

pi1,i2qPR1

âi1i2

ff«

ź

pi3,i4qPL1

ai3i4

ff«

ź

i5PR1

â
i5 , λ

1p1q

I´1pi5q

ff«

ź

i6PL1

a
i6 , λ

p1q

I´1pi6q

ff

20



(59)

The problem is to treat the potentially very high degree factors of
ś

P1YP˚
1

E that have been in-

serted into the middle of this semantics.

4.2.1 Edge cleanup asymptotics

We now work to replace the product of Eij factors above with the exponential of a sum.

Eα “ Zα ` aα “ Iα ` paα ´ Nαq “ Iα ` WαÑ∅ (60)

First we note an application of the Euler formula for the matrix exponential. Defining

τ “ ρeraset , (61)

where ρerase is an effective high speed of interpolated edge erasures, then

exp

˜

τ
ÿ

αPS

WαÑ∅

¸

“ lim
mÑ8

´

I `
τ

m

ÿ

αPS

WαÑ∅

¯m

“ lim
mÑ8

´

ź

αPS

pI `
τ

m
WαÑ∅q

¯m

“
ź

αPS

´

lim
mÑ8

pI `
τ

m
WαÑ∅qm

¯

(62)

where the product orders are arbitrary because different WαÑ∅ commute. Defining ǫ “ τ{m,

another expression for this is

exp

˜

τ
ÿ

αPS

WαÑ∅

¸

“ lim
mÑ`8,ǫ´ą0`

´

ź

αPS

pI ` ǫWαÑ∅q
¯m

. (63)

On the other hand, recalling that Eα, Nα, Zα and Iα are all idempotent (E2 “ E, etc.) in the 2 ˆ

2 case,

exp

˜

τ
ÿ

αPS

WαÑ∅

¸

“ exp

˜

τ
ÿ

αPS

pEα ´ Iαq

¸

“ exp

˜

´τ
ÿ

αPS

Iα

¸

exp

˜

τ
ÿ

αPS

Eα

¸

“ expp´τ|S |qrI ` τ
ÿ

αPS

Eα `
τ2

2
r
ÿ

αPS

Eα `
ÿ

α‰βPS

EαEβs ` ¨ ¨ ¨ s

“ expp´τ|S |q

«

8
ÿ

k“0

τk

k!

ÿ

α1 ...αkPS

Eα1
. . . Eαk

ff

(64)

21



Using E2
α “ Eα and grouping α˚s into partition blocks of equal α value,

exp

˜

τ
ÿ

αPS

WαÑ∅

¸

“ expp´τ|S |q

«

8
ÿ

k“0

τk

k!

ÿ

α1 ...αkPS

Eα1
. . . Eαk

ff

“ expp´τ|S |q

«

I `
8
ÿ

k“1

τk

k!

minpk,|S |q
ÿ

l“1

"

k

l

*

ÿ

xβ1 ...βlPSy‰

Eβ1
. . . Eβk

ff

“ expp´τ|S |q

«

I `

|S |
ÿ

l“1

”
8
ÿ

k“l

τk

k!

"

k

l

*

ÿ

xβ1 ...βlPSy‰

Eβ1
. . . Eβk

ff

“ expp´τ|S |q

«

I `

|S |
ÿ

l“1

peτ ´ 1ql

l!

ÿ

xβ1 ...βlPSy‰

Eβ1
. . . Eβk

ff

(65)

where
 k

l

(

are Stirling numbers of the second kind and where the last line uses a generating func-

tion for these numbers.

Then asyptotically as τ “ ρeraset Ñ `8, and defining |S |pmq ” |S |!{p|S | ´ mq!, where m ` l “

|S |,

exp

˜

τ
ÿ

αPS

WαÑ∅

¸

Ñ expp´τ|S |qI `
1

|S |!

|S |´1
ÿ

m“0

|S |pmqe
´mt

ÿ

xβ1 ...β|S|´mPSy‰

Eβ1
. . . Eβ|S|´m

Ñ
1

|S |!

ÿ

xβ1 ...β|S|PSy‰

Eβ1
. . . Eβ|S|

“
ź

αPS

Eα.

(66)

So, complete erasure is the limiting behavior of this edge-by-edge stochastic erasure process, and it can be

achieved simply by taking the limit ρerase Ñ `8.

Now we apply these calculations to the actual hanging-edge erasure operator:

exp

¨

˝τ
ÿ

pi1,i2qPS

Wpi1,i2qÑ∅

˛

‚“ exp

¨

˝τ
ÿ

pi1,i2qPS

pEi1,i2 ´ Ii1,i2qNi2 Zi1

˛

‚ (67)

Here the node operator Zi checks for unallocated nodes i with no label:

Zi ”
ź

λ

Yi ,λ “ Ni ,∅

ź

λ

Zi ,λ

“ Ni ,∅

ź

λ

pI ´ Ni ,λq

» Ni ,∅pI ´
ÿ

λ

Ni ,λq (since Ni ,˚ cross-terms vanish from WTA)

» Ni ,∅ ¨ Ni ,∅ (from Equation (18), top line)

Zi “ Ni ,∅

(68)

22



whence ZiZi “ Zi. Also Ni ”
ř

λ Ni ,λ counts the number of active labels for node i which by

WTA constraint is 0 or 1; we have again NiNi “ Ni and Ni ` Zi “ I and NiZi “ 0. We note here

that the operator Z in Equation (68) doesn’t quite fit within the graph grammar rule semantics we

have defined so far because it checks for nonexistence. Nonexistence checks are identified as a

more general kind of semantics in [5] and [1], which we do not treat in the present work except

for this particular technical example. Of course, Equation (67) doesn’t need to fit within the rule

semantics, as it is not explicitly accessible at the level of stochastic labelled graph grammar rules

- it is just substructure.

Again defining ǫ “ τ{m, another expression for the exponential in Equation (68) is

exp

˜

τ
ÿ

αPS

Wpi1,i2qPSÑ∅

¸

“ lim
mÑ`8,ǫ´ą0`

´

ź

pi1,i2qPS

pI ` ǫWpi1,i2qPSÑ∅
q
¯m

(69)

On the other hand,

exp

¨

˝τ
ÿ

pi,jqPS

Wpi1,i2qÑ∅

˛

‚“ exp

¨

˝τ
ÿ

pi,jqPS

pEi,j ´ Ii,jqNjZi

˛

‚

“ exp

¨

˝´τ
ÿ

pi,jqPS

NjZi

˛

‚exp

¨

˝τ
ÿ

pi1,i2qPS

Ei,jNjZi

˛

‚

“ expp´τ|S |q

«

8
ÿ

k“0

τk

k!

ÿ

pi1,j1q...pik,jkqPS

pEi1,j1 . . . Eik,jkqpNj1 . . . NjkqpZi1 . . . Zik
q

ff

“ expp´τ|S |q

«

I `
8
ÿ

k“1

τk

k!

minpk,|S |q
ÿ

l“1

"

k

l

*

ÿ

xpi1,j1q...pil ,jlqPSy‰

pEi1,j1 . . . Eil ,jlqpNj1 . . . NjlqpZi1 . . . Zil
q

ff

“ expp´τ|S |q

«

I `

|S |
ÿ

l“1

”
8
ÿ

k“l

τk

k!

"

k

l

*

ÿ

xpi1,j1q...pil ,jlqPSy‰

pEi1,j1 . . . Eil ,jlqpNj1 . . . NjlqpZi1 . . . Zil
q

ff

“ expp´τ|S |q

«

I `

|S |
ÿ

l“1

peτ ´ 1ql

l!

ÿ

xpi1,j1q...pil ,jlqPSy‰

pEi1,j1 . . . Eil ,jlqpNj1 . . . NjlqpZi1 . . . Zil
q

ff

(70)

where as before
 k

l

(

are Stirling numbers of the second kind and where the last line uses a gen-

erating function for these numbers. Then asyptotically as τ “ ρeraset Ñ `8, and defining

23



|S |pmq ” |S |!{p|S | ´ mq!,

exp

˜

τ
ÿ

αPS

WαÑ∅

¸

Ñ expp´τ|S |qI `
1

|S |!

|S |´1
ÿ

m“0

|S |pmqe
´mτ

ÿ

xpi1,j1q...pil ,jlqPSy‰

pEi1,j1 . . . Eil ,jlqpNj1 . . . Njl qpZi1 . . . Zil
q

Ñ
1

|S |!

ÿ

xpi1,j1q...pil ,jlqPSy‰

pEi1,j1 . . . Eil ,jlqpNj1 . . . Njl qpZi1 . . . Zil
q

“
ź

pi,jqPS

Ei,jNjZi

»
ź

pi,jqPP

Ei,j .

(71)

The final line above is a key step prepared for by the discussion in Section 3.3.3, and it is justified

by the fact that inductively the operator Nj produces a zero value unless node j has been allocated

at some point in the history of rule-firings .

So again we get the product of forward edge erasures by an incremental process of deletion,

run for a long effective time τ.

4.2.2 Commutation with edge cleanup

In Equation (59), as in (28),

Ŵcleaned “
´

ź

pk1,k2qPS

Ek1k2
Ek2k1

¯

Ŵbare

“ lim
nÑ`8,ǫÑ0`

rI ` ǫ
ÿ

pk1,k2qPS

pak1,k2
´ Nk1,k2

qNk2
Zk1

snrI ` ǫ
ÿ

pk1,k2qPS

pak2,k1
´ Nk2,k1

qNk1
Zk2

snŴbare

(72)

The core calculation within Ŵcleaned
r2

¨ Ŵcleaned
r1

is thus:

Ŵbare
r2

rǫ
ÿ

pk1,k2qPS

pak1,k2
´ Nk1,k2

qNk2
Zk1

s

“
ǫ

Cr2

ÿ

I

ÿ

pk1,k2qPS

”

ź

pi1,i2qPR2

âi1i2

ı”

ź

pi3,i4qPL2

ai3i4

ı

pak1 ,k2
´ Nk1,k2

q

ˆ
”

ź

i5PR2

âi5,λ
I´1pi5q

ı”

ź

i6PL2

ai6,λ
I´1pi6q

ı

Nk2
Zk1

(73)

Now calculate components:

Nodes:

”

ź

i6PL2

ai6 ,λ
I´1pi6q

ı

Nk2
“

$

&

%

r
ś

i6PL2
ai6,λ

I´1pi6q
s if k2 P L2

Nk2
r
ś

i6PL2
ai6,λ

I´1pi6q
s if k2 R L2

(74)

24



”

ź

i5PR2

âi5,λ
I´1pi5q

ı

Nk2
“

#

0 if k2 P R2

Nk2
r
ś

i5PR2
âi5,λ

I´1pi5q
s if k2 R R2

(75)

so

”

ź

i5PR2

âi5,λ
I´1pi5q

ı”

ź

i6PL2

ai6,λ
I´1pi6q

ı

Nk2
“

$

’

’

’

&

’

’

’

%

0 if k2 P R2zL2
”

ś

i5PR2
âi5,λ

I´1pi5q

ı”

ś

i6PL2
ai6 ,λ

I´1pi6q

ı

if k2 P L2

Nk2

”

ś

i5PR2
âi5,λ

I´1pi5q

ı”

ś

i6PL2
ai6 ,λ

I´1pi6q

ı

if k2 P L2 X R2

(76)

Likewise Zk “ I ´ Nk ùñ Nk “ I ´ Zk and

”

ź

i6PL2

ai6 ,λ
I´1pi6q

ı

Zk1
“

#

0 if k1 P L2

Zk1
r
ś

i6PL2
ai6,λ

I´1pi6q
s if k2 R L2

(77)

”

ź

i5PR2

âi5,λ
I´1pi5q

ı

Zk1
“

$

&

%

r
ś

i5PR2
âi5 ,λ

I´1pi5q
s if k2 P R2

Zk1
r
ś

i5PR2
âi5,λ

I´1pi5q
s if k2 R R2

(78)

so

”

ź

i5PR2

âi5,λ
I´1pi5q

ı”

ź

i6PL2

ai6,λ
I´1pi6q

ı

Zk1
“

$

’

’

’

&

’

’

’

%

0 if k1 P L2
”

ś

i5PR2
âi5 ,λ

I´1pi5q

ı”

ś

i6PL2
ai6,λ

I´1pi6q

ı

if k1 P R2zL2

Zk1

”

ś

i5PR2
âi5,λ

I´1pi5q

ı”

ś

i6PL2
ai6 ,λ

I´1pi6q

ı

if k1 P L2 X R2

(79)

Together, then,

”

ź

i5PR2

âi5,λ
I´1pi5q

ı”

ź

i6PL2

ai6,λ
I´1pi6q

ı

Nk2
Zk1

“

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

0 if pk1 P L2q _ pk2 P R2zL2q
”

ś

i5PR2
âi5,λ

I´1pi5q

ı”

ś

i6PL2
ai6,λ

I´1pi6q

ı

if pk1 P R2zL2q ^ pk2 P L2q

Zk1

”

ś

i5PR2
âi5 ,λ

I´1pi5q

ı”

ś

i6PL2
ai6 ,λ

I´1pi6q

ı

if pk1 P L2 X R2q ^ pk2 P L2q

Nk2

”

ś

i5PR2
âi5,λ

I´1pi5q

ı”

ś

i6PL2
ai6,λ

I´1pi6q

ı

if pk1 P R2zL2q ^ pk2 P L2 X R2q

Nk2
Zk1

”

ś

i5PR2
âi5 ,λ

I´1pi5q

ı”

ś

i6PL2
ai6 ,λ

I´1pi6q

ı

if pk1 P L2 X R2q ^ pk2 P L2 X R2q.

(80)

Links: We continue to calculate

”

ź

pi3,i4qPL2

ai3i4

ı

ak1 ,k2
“

#

0 if pk1, k2q P L2

ak1,k2
r
ś

pi3,i4qPL2
ai3i4s if pk1, k2q R L2

(81)

25



and

”

ź

pi1,i2qPR2

âi1i2

ı

ak1,k2
“

#

Nk1,k2
r
ś

pi1,i2qPR2zpi1,i2q âi1i2s if pk1, k2q P R2

ak1 ,k2
r
ś

pi1,i2qPR2
âi1i2s if pk1, k2q R R2

(82)

Next,

”

ź

pi3,i4qPL2

ai3i4

ı

âk1 ,k2
“

#

Zk1,k2
r
ś

pi3,i4qPL2zpk1,k2q ai3i4s if pk1, k2q P L2

âk1,k2
r
ś

pi3,i4qPL2
ai3i4s if pk1, k2q R L2

(83)

and since Zαaα “ aα,

”

ź

pi3,i4qPL2

ai3i4

ı

Nk1,k2
“
”

ź

pi3,i4qPL2

ai3i4

ı

âk1,k2
ak1,k2

“

#

r
ś

pi3,i4qPL2
ai3i4s if pk1, k2q P L2

Nk1,k2
r
ś

pi3,i4qPL2
ai3i4s if pk1, k2q R L2

(84)

so from Equations (81) and (84),

”

ź

pi3,i4qPL2

ai3i4

ı

pak1 ,k2
´ Nk1,k2

q “

#

´r
ś

pi3,i4qPL2
ai3i4s if pk1, k2q P L2

pak1 ,k2
´ Nk1,k2

qr
ś

pi3,i4qPL2
ai3i4s if pk1, k2q R L2

(85)

Likewise:

”

ź

pi1,i2qPR2

âi1i2

ı

Nk1,k2
“

#

0 if pk1, k2q P R2

Nk1,k2
r
ś

pi1,i2qPR2
âi1i2s if pk1, k2q R R2

(86)

so from Equations (82) and (85),

”

ź

pi1,i2qPR2

âi1i2

ı

pak1,k2
´ Nk1,k2

q “

#

Nk1,k2
r
ś

pi1,i2qPR2
âi1i2s if pk1, k2q P R2

pak1,k2
´ Nk1,k2

qr
ś

pi1,i2qPR2
âi1i2s if pk1, k2q R R2

(87)

Combining,

”

ź

pi1,i2qPR2

âi1i2

ı”

ź

pi3,i4qPL2

ai3i4

ı

pak1 ,k2
´ Nk1,k2

q

“

$

’

’

’

&

’

’

’

%

´
”

ś

pi1,i2qPR2
âi1i2

ı”

ś

pi3,i4qPL2
ai3i4

ı

if pk1, k2q P L2

Nk1,k2

”

ś

pi1,i2qPR2
âi1i2

ı”

ś

pi3,i4qPL2
ai3i4

ı

if pk1, k2q P R2zL2

pak1 ,k2
´ Nk1,k2

q
”

ś

pi1,i2qPR2
âi1i2

ı”

ś

pi3,i4qPL2
ai3i4

ı

if pk1, k2q P R2 X L2.

(88)

Next we argue: If pk1, k2q P R2 X L2 as in the third line of the right hand side of Equation (88)

above then the commutation was successful, and the factor of a ´ N simply joins the infinite

supply of such factors to the left. That leaves two cases in Equation (88). If pk1, k2q P L2 (as in the

first line of the right hand side of Equation (88) above) then k1 P L2 ^ k2 P L2 so in Equation (80) the

first line applies and the term is zero; it doesn’t contribute. That leaves one case: pk1, k2q P R2zL2,

in which case k1 P R2 ^ k2 P R2. Then either the first line the right hand side of in Equation (80)

26



again applies and eliminates the present term, or else neither of its alternative conditions apply

and k1 P R2zL2 ^ k2 P R2 X L2; thus the condition for a surviving prefactor of Nk1,k2
is:

pk1, k2q P rR2zL2 ˆ L2 X R2s X pR2zL2q (89)

... a condition excluded by the index allocation scheme, which implies k1 R R2zL2. So, all surviving

terms behave as in the third line of Equation (88), and the factor of a ´ N to the right of the second

rule firing simply joins the infinite supply of such factors to its left.

Intuitively, this means that hanging edges can be eliminated at any time rather than promptly

after every rule firing. This is because the assumed form of the graph rewrite rules does not

recognize or respond to hanging edges; all edges are verified to have two vertices before a rule can

fire. As an aside, this explanation would not be valid if another alternative semantics considered

in [1] were used in which, like the nonconforming operator Wpi1,i2qÑ∅ above, the LHS of a rule

could test for nonexistence as well as existence of some entities. Then a more complex algebraic

operator equation might result.

Thus we find no change to the algebraic formula of Theorem 1 for the hanging-edge removal

semantics:

Theorem 2 For the hanging-edges removal semantics of Equations (27) and (29), or equivalently Equa-

tion (58), and assuming finiteness of rules, index allocation blocks, and number of rule firings, and assum-

ing multiplicative normalization Cr, then

ŴGr2 inÑGr2 outŴGr1 inÑGr1 out »
ÿ

H Ď Gr1 out
» H̃ Ď Gr2 in

| edge-maximal

ÿ

h:H
1–1
ãÑH̃

ŴG1;2 inpH̃qÑ
h

G1;2 outpHq (90)

where the compound labelled graphs G1;2 inpH̃q and G1;2 outpHq, and their label overlaps K1;2, are defined

by Equations (55) and (56) above. The coefficients in this expression are all nonnegative integers (as the

same graph grammar rule could arise several times by different means). Rate factors ρ multiply, as in

Equation (52).

Corollary 6 There is an algebraic reduction of operator products to sums, similar to Theorem 2, that applies

to the Wr operators that subtract off diagonal operators from Ŵr to conserve probability, except that the

coefficients can be any integer.

Proof: Exactly as for Corollary 1.

Corollary 7 There is an algebraic reduction of commutators of labelled graph grammar rule state-change

operators Ŵr to sums of the same form, similar to Theorem 2, with integer coefficients. Also there is a

similar algebraic reduction of commutators of labelled graph grammar rule full operator Wr commutators

to sums of the same form, with integer coefficients.

Proof: As in Corollary 6 or 1, but with extra minus signs on some of the rule operators.

Corollary 8 There exists (as exhibited in the proofs of Theorem 1 and 2) a constructive mapping from the

graph rewrite rule operator algebra semantics to the elementary bitwise operator algebras of Section 3.2.1.

Since it depends on a index allocation scheme which can be done in many ways, this mapping is not unique.

27



Corollary 9 One particular subgraph that always contributes to the product is H “ ∅ “ H̃, the empty

graph. Its contribution always cancels out of the commutator rŴr2 , Ŵr1
s “ Ŵr2Ŵr1

´ Ŵr1
Ŵr2 , because

nothing is shared between the two rule firings so their order doesn’t matter.

We note here that a previous attempt to prove Theorem 2 directly using the large product of

E operators and P , L, R,L,R etc. by Boolean logic ran aground in notational complexity. The

method used here, with the exponential of a sum of E ´ I operators, seems more tractable.

Corollary 10 Integrating Equation (90) over parameters
ş

dµrpXq . . ., as in Equation (2), results in a

version of Equation (57) that incorporates parameter integrals term-by-term.

Proof: Exactly as for Corollary 5.

4.3 Discussion of Theorems

In Lie group theory, the Lie algebra is related to the curvature tensor of a group-invariant metric.

The Lie algebras discussed here are in much higher dimension but may also relate to geometric

or topological structures.

As discussed in [1], operator commutators provide an analytic tool, when used with perturba-

tion series expansions such as the Baker-Campbell-Hausdorff theorem (as suggested for rewrite

operator algebras in [5, 13]) underlying operator splitting methods, or the Time-Ordered Product

Expansion for Feynman diagrams underlying the Gillespie Stochastic Simulation Algorithm and

some of its generalizations [10], by which to derive both general and model-specific simulation

simulation algorithms and to estimate and/or bound their errors.

By way of comparison with other work, there is an alternative category-theory based approach

to graph grammar semantics based on single or double pushout commutative diagrams rather

than operator algebras, and a collection of “independence” conditions for two successive rule fir-

ings to have an order-independent result [14]. In our operator algebra language these conditions

would guarantee a zero commutator. The work of [15, 13] combines and connects together both

double-pushout and master equation semantics, using a restricted subset of the operator algebra

implied by Propositions 1 or 2 of [1] or the more powerful Theorems 1 and 2 of this work.

5 Examples and Discussion

A minority of biological models have been formulated in terms of structural rewrite rules for

graphs and cell complexes, e.g. [16, 17, 18, 3] and the literature of L-systems, all reviewed from

the present operator algebra point of view in [1].

Here we will take as a working example a highly simplified stochastic labelled graph gram-

mar (SLGG) for microtubule dynamics including treadmilling, bundling/zippering, and katanin-

mediated severing, in cytoskleleton dynamics as it appears in current plant biology.

5.1 MT stochastic graph grammar

A diagrammatic presentation of an MT graph grammar, with subscripts for the rule-local arbitrary

but consistent numbering of vertices in left- and right-hand side graphs of each rule, is below. Dis-

crete parameters will include a six-valued categorical label s P tinternal, grow_end, retract_end, junctu

28



( or s P t˝, ‚,�,Nu ) for status as interior segment, growth-capable end segment, retraction-capable

end segment, or bundling junction segment respectively.

// Rule 1: Treadmilling growth

p  1q xxpx1, u1qyy ÝÑ p #1
✲  2q xxpx1, u1q, px2, u2qyy

with ρ̂growprYgsqN px1 ´ x2; Lu1, σqN|u2|“1pu2; u1q, ǫq,

// Rule 2: Treadmilling retraction

p �1
✲ #2q xxpx1, u1q, px2, u2qyy ÝÑ p �2q xxpx2, u2qyy

with ρ̂retractprYrsq

// Rule 3: Collision-induced bundling or zippering
˜

#1
✲ #2

✲ #3

 4

¸

xxpx1, u1q, px2, u2q, px3, u3q, px4, u4qyy

ÝÑ

˜

#1
✲ N2

✲ #3

#4

✲

¸

xxpx1, u1q, px2, u2q, px3, u3q, px4, u4qyy

with ρ̂bundlep|u2 ¨ u4|{| cos θcrit|q exp
´

´|x2 ´ x4|2{2L2
¯

// Rule 4: Katanin-induced severing

p #1
✲ #2

✲ #3q xxpx1, u1q, px2, u2q, px3, u3qyy

ÝÑ p #1
✲  2 �4

✲ #3q xxx1, u1q, px2, u2q, px3, u3q, px4, u4qyy

with ρ̂severprkataninsqN px; 0, σbroadqδDiracp|u| ´ 1qq

(91)

Here Yg is a diffusible MT growth factor such as tubulin itself, or a catalyst or regulator of

tubulin polymerization and/or nucleation, such as (perhaps) XMAP215 [19] and Yr plays the

same role for catastrophe/retraction.

In working out the commutators we will drop the propensity functions ρ, but they just multi-

ply the results, with appropriate variable identifications.

5.1.1 Selected MT commutator calculations

The commutator calculations for this minimal MT graph grammar’s Lie algebra can be outlined

as follows.

rŴ2, Ŵ1s:

Ŵ2 ¨ Ŵ1: Shared same-label vertex sets run over by H and their mappings under h are: ∅;

tp1 ÞÑ 2qu.

Ŵ1 ¨ Ŵ1: Shared same-label vertex sets run over by H and their mappings under h are: ∅.

H “ ∅ always cancels in the commutator.

More detailed work lets us calculate rŴ2, Ŵ1s “ by abusing notation slightly:

rŴ2, Ŵ1s “ rp �11 ✲ #21q ÝÑ p �21q , p  1q ÝÑ p #1
✲  2qs

» p �11 ✲  1q ÝÑ p �1
✲  2q

(92)

which is just a renumbering of the same graph, which provided that the model-specific rules of

MT representation are respected by the other grammar rules, should be equivalent to the identity

29



operator. The corresponding full W “ Ŵ ´ D operator should therefore (by Corollary 1 to Theo-

rem 1) be equivalent to the zero operator, using this model-specific extension of the equivalence

relation in Equation (8).

rŴ3, Ŵ1s:

Ŵ3 ¨ Ŵ1: Shared same-label vertex sets run over by H and their mappings under h are: ∅ ;

tp1 ÞÑ 11qu ; tp1 ÞÑ 21qu ; tp1 ÞÑ 31qu; tp1 ÞÑ 11q, p2 ÞÑ 41qu ; tp1 ÞÑ 21q, p2 ÞÑ 41qu ; tp1 ÞÑ 31q, p2 ÞÑ 41qu.

Ŵ1 ¨ Ŵ3: Shared same-label vertex sets run over by H and their mappings under h are: ∅.

H “ ∅ always cancels in the commutator.

rŴ3, Ŵ1s “ r

˜

#11 ✲ #21 ✲ #31

 41

¸

ÝÑ

˜

#11 ✲ N21 ✲ #31

#41

✲

¸

, p  1q ÝÑ p #1
✲  2qs

»

˜

#11 ✲ #21 ✲  1

 41

¸

ÝÑ

˜

#11 ✲ N21 ✲ #1
✲  2

#41

✲

¸

(rare coincidence)

`

˜

#11 ✲ #21 ✲ #31

 11

¸

ÝÑ

¨

˚

˚

˝

#11 ✲ N21 ✲ #31

#2

✲

#1

✲

˛

‹

‹

‚

(likely)

` p #11 ✲ #21 ✲  1q ÝÑ

˜

#11 ✲ N21 ✲ #1

#41

✻✛

¸

(high bending energy)

` (3 terms whose LHS rely on MT syntax violations - omitted)

(93)

rŴ4, Ŵ1s:

Ŵ4 ¨ Ŵ1: Shared same-label vertex sets run over by H and their mappings under h are: ∅ ;

tp1 ÞÑ 11qu ; tp1 ÞÑ 21qu ; tp1 ÞÑ 31qu;

Ŵ1 ¨ Ŵ4: Shared same-label vertex sets run over by H and their mappings under h are: ∅;

tp21 ÞÑ 1qu .

H “ ∅ always cancels in the commutator.

rŴ4, Ŵ1s “ rp #11 ✲ #21 ✲ #31q ÝÑ p #11 ✲  21 �41 ✲ #31q , p  1q ÝÑ p #1
✲  2qs

» p #11 ✲ #21 ✲  1q ÝÑ p #11 ✲  21 �41 ✲ #1
✲  2q

´ p #11 ✲ #21 ✲ #31q ÝÑ p #11 ✲ #21 ✲  2 �41 ✲ #31q

` (2 terms whose LHS rely on MT syntax violations - omitted)

(94)

The foregoing commutators can also be calculated directly by operator algebra, bypassing the

general theorems, with the same results.

30



rŴ4, Ŵ3s:

rŴ4, Ŵ3s “ rp #11 ✲ #21 ✲ #31q ÝÑ p #11 ✲  21 �41 ✲ #31q ,
˜

#1
✲ #2

✲ #3

 4

¸

ÝÑ

˜

#1
✲ N2

✲ #3

#4

✲

¸

s » . . .
(95)

Ŵ3 ¨ Ŵ4: Shared same-label vertex sets run over by H and their mappings under h are: ∅;

tp11 ÞÑ 1qu ; tp11 ÞÑ 2qu ; tp11 ÞÑ 3qu; tp31 ÞÑ 1qu ; tp31 ÞÑ 2qu ; tp31 ÞÑ 3qu; tp11 ÞÑ iq, p31 ÞÑ jqu where

unordered sets ti, ju are chosen without replacement from t1, 2, 3u (6 possibilities); tp41 ÞÑ 4qu

simultaneously with any of the foregoing 12 possibilities; Thus, 4 ˆ 6 “ 24 terms.

Ŵ4 ¨ Ŵ3: Shared same-label vertex sets run over by H and their mappings under h are: ∅;

tpi ÞÑ jqu where i is chosen from t1, 3, 4u and j is chosen from t11, 21, 31u (3 ˆ 3 “ 9 possibilities);

also tpi ÞÑ kq, pj ÞÑ lqu where unordered pairs ti, ju are chosen without replacement from t1, 3, 4u

(3 possibilities) and ordered pairs pk, lq are chosen without replacement from t11, 21, 31u (6 possi-

bilities, for a total of 3 ˆ 6 “ 18 possibilities); tp1 ÞÑ iq, p3 ÞÑ jq, p4 ÞÑ kqu where ordered sets ti, j, ku

are chosen without replacement from t11, 21, 31u (6 possibilities). Thus, there are 9 ` 18 ` 6 “ 33

terms.

H “ ∅ always cancels in the commutator. Other cancellations are possible, since the scalar

propensity functions multiply commutatively, leaving at most 24 ` 33 “ 57 terms. As before,

many of these terms will have no effect within a grammar that preserves inductively valid MT

representation structures.

5.2 Related kinds of rewrite rules

We have analyzed the semantics of, and given examples of, stochastic labelled graph grammar

(SLGG) models. In [5] we demonstrated how to use integer-valued Object ID (OID) parameters to

encode graph grammars within stochastic parameterized grammars (SPG) comprising parameter-

bearing stochastic rewrite rules with operator algebra semantics. Since the reverse inclusion is

trivial, SLGGs and SPGs are different syntax for the same semantics; SLGGs may be easier to

write since the OID encoding step is not needed. But [5] also showed how to add to SPGs rules

with ordinary and/or stochastic differential equation syntax and differential operator semantics,

obtaining “dynamical grammars” (DGs), a matter discussed further in [1]. DGs can be taken to

be a continuum limit (in label space and in time) of SPGs. If we allow differential equation rules

together with stochastic labeled graph grammar rules we arrive at dynamical graph grammars

(DGGs), again equivalent to but easier to write than DGs. Many other notational conveniences

are possible, while maintaining or generalizing the operator algebra semantics.

5.2.1 Cell complex rewrite rules

In [1] the operator algebra semantics for a labelled-graph rewrite rule is generalized in several

ways. One of these generalizations is to cell complexes (each of some maximal dimension d),

which have been applied to developmental modeling [16,18]. Reference [1] also provides a con-

structive implementation mapping from the generalized rewrite rules back to graph grammar

rewrite rules. In principle then, the graph grammar operator algebra of our Theorems 1 and 2

31



apply to these generalized settings - but whether the sum of graph grammar operators result-

ing from a higher-level product is also a sum of higher-level rewrite rules, or not, remains to be

worked out.

Here we point out a useful special case for cell complex dynamics: that if a graph can be locally

embedded in d dimensions (i.e. in d dimensional manifolds with R
d as the usual case), in such

a way that it becomes a Voronoi diagram or a power diagram (weighted Voronoi diagram), then

its label set can be augmented by the resulting node positions, and more importantly there is a

dual d-dimensional cell complex consisting of the boundaries at equal distance (in the Voronoi

case) from two or more graph node positions, together with the d-dimensional single-node cells

they bound. Then, local graph grammar rewrite rules will generically result in local updates to

the embedding and to the dual cell complex, inducing local cell complex changes describable as

rewrite rules.

6 Conclusions

We have computed the product and commutator for any two stochastic labelled-graph rewrite

rule operators, in a stochastic graph grammar possessing operator algebra semantics, in structural

(graph-expressed, combinatorial) form. In this form, the product of the state-changing portions

(off-diagonal in the number basis) of two graph rewrite rule operators is a sum, with nonnegative

integer coefficients, of other such operators. Non-negative real-valued rate multipliers are also

carried along in the expected way. The product of the full graph rewrite rule operators, and the

commutator of off-diagonal or full rule operators, are likewise expressed as a sum with integer-

valued weights of other full graph rewrite rule operators. The results are expressed in Theorem 1

and its Corollaries, for the case of semantics in which hanging edges are left behind, and Theorem

2 and its Corollaries, for the case in which they aren’t.

There is also a computer-implementable constructive mapping from the resulting graph rewrite

rule algebra to many elementary two-state creation/annihilation operators. Because the algebra

is expressed in the present work entirely in terms of operators for graph rewrite rule operators,

rather than in terms of the underlying elementary two-state creation/annihilation operators, The-

orems 1 and 2 are a substantial improvement in utility and perspicuity over the corresponding

Propositions 1 and 2 of [1]. As a clarifying test case, the resulting graph-grammar level algebra

was applied to an elementary example inspired by the dynamics of cortical microtubules in plant

cells, one of a large number of structure-changing dynamical systems in biophysics and other

sciences that could be amenable to modeling by stochastic labelled-graph grammars.

Acknowledgements

The author wishes to acknowledge the hospitality of the Sainsbury Laboratory Cambridge University, the

Center for Nonlinear Studies of the Los Alamos National Laboratory, and the Kavli Institute for Theoretical

Physics at the University of California Santa Barbara; also funding from the Leverhulme Trust, National In-

stitute of Aging grant R56AG059602, and Human Frontiers Science Program grant HFSP - RGP0023/2018.

32



References

[1] Eric Mjolsness, “Prospects for Declarative Mathematical Modeling of Complex Biological Sys-

tems”. Bulletin of Mathematical Biology, Vol. 81, Issue 8, pp 3385-3420, August 2019.

[2] Michael L. Blinov, James R. Faeder, Byron Goldstein and William S. Hlavacek. BioNetGen: soft-

ware for rule-based modeling of signal transduction based on the interactions of molecular

domains. Bioinformatics, Vol. 20 no. 17, pages 3289-3291, 2004.

[3] Eric Mjolsness, David H. Sharp, and John Reinitz, “A Connectionist Model of Development”.

Journal of Theoretical Biology, vol 152 no 4, pp. 429-454, 1991.

[4] P. Prusinkiewicz, M. S. Hammel, and E. Mjolsness, “Animation of Plant Development”. SIG-

GRAPH ’93 Conference Proceedings, ACM 1993.

[5] Eric Mjolsness and Guy Yosiphon, “Stochastic Process Semantics for Dynamical Grammars”,

Annals of Mathematics and Artificial Intelligence, 47(3-4) August 2006.

[6] M. Doi, Journal of Physics A: Mathematical and General 9, 1465 (1976).

[7] M. Doi, Journal of Physics A: Mathematical and General 9, 1479 (1976).

[8] D. C. Mattis and M. L. Glasser, Rev. Mod. Phys. 70, 979 (1998).

[9] Eric Mjolsness, “Towards Measurable Types for Dynamical Process Modeling Languages”.

Proceedings of the 26th Conference on Mathematical Foundations of Programming Seman-

tics (MFPS 2010). Electronic Notes in Theoretical Computer Science (ENTCS), Elsevier, vol.

265, pp. 123-144, 6 Sept. 2010.

[10] Eric Mjolsness, “Time-ordered product expansions for computational stochastic systems bi-

ology”. Physical Biology, v 10, 035009, June 2013.

[11] Richard P. Feyman, “Quantum mechanical computers” Foundations of Physics, Volume 16,

Issue 6, pp 507-531. June 1986. See Hamiltonian on p. 517.

[12] Eric Mjolsness, “Symbolic Neural Networks Derived from Stochastic Grammar Domain Mod-

els”, in Connectionist Symbolic Integration, eds. R. Sun and F. Alexandre, Lawrence Erl-

baum Associates, 1997.

[13] Nicolas Behr, Vincent Danos, Ilias Garnier “Combinatorial Conversion and Moment Bisimu-

lation for Stochastic Rewriting Systems” arXiv:1904.07313 April 15, 2019.

[14] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic Graph Transfor-

mation. Springer-Verlag Berlin Heidelberg, 2006.

[15] Nicolas Behr, Vincent Danos, Ilias Garnier, “Stochastic mechanics of graph rewriting”. Pro-

ceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, New

York City, United States. pp.46 - 55, 2016.

[16] Antoine Spicher and Olivier Michel, “Declarative modeling of a neurulation-like process”.

Bio Systems, vol 87 2-3, pp. 281-8, 2007.

[17] Jean-Louis Giavitto, Antoine Spicher “Topological rewriting and the geometrization of pro-

gramming” Physica D 237 (2008) 1302-1314.

[18] Brendan Lane, “Cell Complexes: The Structure of Space and the Mathematics of Modular-

ity”’, PhD thesis, University of Calgary, September 2015.

[19] Olivier Hamant, Daisuke Inoue, David Bouchez, Jacques Dumais, and Eric Mjolsness, “Are

microtubules tension sensors?” Nature Communications, v10 article no. 2360, 29 May

2019.

33



Appendix

Pure chemical reactions: Operator algebra

If none of the graphs involved has any edges, then each rule transforms a collection of nodes, par-

titioned into indistinguishable subsets by their labels, into another such set – and this is equivalent

to a pure stochastic chemical reaction network. The algebra of elementary creation/annihilation

operators is the Heisenberg algebra ra, âs “ I for each chemical species i. What is the algebra of

the reaction rules? Each reaction rule or channel has off-diagonal operator [D 1976a, D1976b, MG

1998]:

Ŵr “ Ŵ
tm

pr1q

i uÑtn
pr1q

i u
“ kprq

ź

i

pâiq
n

prq
i paiq

m
prq
i (96)

so a product of such operators is

Ŵr2Ŵr1
“ kpr2qkpr1q

ź

i

pâiq
n

pr2q

i paiq
m

pr2q

i pâiq
n

pr1q

i paiq
m

pr1q

i (97)

The middle two terms paiq
m

pr2q

i pâiq
n

pr1q

i can be put into canonical form by mapping the Heisen-

berg algebra into generating functions, a Ñ Bx, â Ñ x ˆ . . .:

am ân ÑrpBxqmxns ˝ f pxq “ pBxqmpxn f pxqq

“

minpm,nq
ÿ

l“0

ˆ

m

l

˙

pBx
lxnqpBx

m´l f pxqq

“

minpm,nq
ÿ

l“0

ˆ

m

l

˙

pnql x
n´lpBx

m´l f pxqq

Ð

minpm,nq
ÿ

l“0

pmqlpnql

l!
ân´lam´l

(98)

where pnql ” n!{pn ´ lq! for l ď n. If we define also nl ” 0 for l ą n then we can increase or remove

the upper limit, e.g. replace min by max

Then

Ŵr2Ŵr1
“ kpr2qkpr1q

ź

i

”

minpm
pr2q

i ,n
pr1q

i q
ÿ

li“0

pm
pr2q
i qli

pn
pr1q
i qli

li!
pâiq

n
pr1q

i `n
pr2q
i ´lipaiq

m
pr1q

i `m
pr2q
i ´li

ı

“ kpr2qkpr1q
ÿ

tli“0... minpm
pr2q
i ,n

pr1q

i qu

´

ź

i

pm
pr2q
i qli

pn
pr1q
i qli

li!

¯”

ź

i

pâiq
n

pr1q

i `n
pr2q
i ´lipaiq

m
pr1q

i `m
pr2q
i ´li

ı

(99)

34



i.e.

Ŵ
tm

pr2q
i uÑtn

pr2q
i u

Ŵ
tm

pr1q

i uÑtn
pr1q

i u
“ kpr2qkpr1q

ÿ

tli“0... minpm
pr2q
i ,n

pr1q

i qu

´

ź

i

pm
pr2q
i qli

pn
pr1q
i qli

li!

¯

ˆ Ŵ
tpm

pr1q

i `m
pr2q
i ´liquÑtpn

pr1q

i `n
pr2q
i ´liqu

(100)

Likewise

rŴ
tm

pr2q
i uÑtn

pr2q
i u

,Ŵ
tm

pr1q

i uÑtn
pr1q

i u
s

“ kpr2qkpr1q
ÿ

tli“0... minpm
pr2q
i ,n

pr1q

i qu^l‰0

«

´

ź

i

pm
pr2q
i qli

pn
pr1q
i qli

li!

¯

´
´

ź

i

pm
pr1q
i qli

pn
pr2q
i qli

li!

¯

ff

ˆ Ŵ
tpm

pr1q

i `m
pr2q
i ´liquÑtpn

pr1q

i `n
pr2q
i ´liqu

(101)

where l ‰ 0 is the particle analog of Corollaries 4 or 9 regarding the cancellation of H “ ∅ from a

graph grammar commutator.

35


	1 Introduction
	2 Problem statement and main result
	2.1 Graph grammar rule semantics
	2.2 Problem statement
	2.3 Equivalence of rule operators
	2.4 Main result

	3 Techniques
	3.1 Normalization
	3.2 Operator algebra techniques
	3.2.1 Elementary operators' algebra

	3.3 Operator Algebra homomorphisms
	3.3.1 Winner Take All (WTA or 1-Hot) Encoding of Labels
	3.3.2 Controlled index allocation
	3.3.3 Hanging edge cleanup

	3.4 Index Set Notations

	4 Calculations
	4.1 Commutation calculation - no edge cleanup
	4.2 Commutation calculation - with edge cleanup
	4.2.1  Edge cleanup asymptotics
	4.2.2 Commutation with edge cleanup

	4.3 Discussion of Theorems

	5 Examples and Discussion
	5.1 MT stochastic graph grammar
	5.1.1 Selected MT commutator calculations

	5.2 Related kinds of rewrite rules
	5.2.1 Cell complex rewrite rules


	6 Conclusions



