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Abstract

This report presents a finite element solution for the vibration interaction between an
inviscid fluid and a solid. The equation of motion governing the inviscid fluid is
expressed in terms of the displacements. This ensures that compatibility and equilibrium
will be satisfied automatically along the interface of the coupled systems. To suppress cir-
culation modes with non-zero energy, reduced integration is used when computing the ele-
ment stiffness matrix contributed by the fluid. In addition, a projection is used on the ele-
ment mass matrix in order to remove the spurious modes which result from the usc of
reduced integration. Numerical examples for both fluid and coupled fluid-solid systems
are performed and the results are shown.
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1. Introduction

Fluid-solid interactions arise in many engineering problems. Predicting the response
of fluid-solid coupled systems is generally a difficult task. In most practical problems, it is
not possible to obtain closed form analytical solutions for the coupled systems. As a result,
much effort has gone into the development of general finite element methods for coupled
systems. Some difficulties, however, have been encountered in using the finite element
method to predict the dynamic responses of coupled systems. The goal of this study is to
develop a robust method suitable for finding the natural frequencies and mode shapes of
coupled systems.

The vibration analysis of fluids alone is usually treated by choosing the pressure as
the primary variable, as in [Petyt e a/; Kiefling and Feng]. For coupled systems, however,
there are generally two approaches in terms of the variables used. One is to use either the
pressure alone or the displacements alone as variables, as described in [Tabarrok]. The
other is to use both the pressure and the displacements as variables, as shown in [Zienk-
iewicz and Bettess, Olson and Bathe]. In finite element analysis, displacements are
predominantly used to describe the motion of solids. Therefore, using a displacement for-
mulation to describe fluids has the advantage that no special interface consideration is
required. That is, the compatibility and equilibrium along the interface between solids and
fluids will be satisfied automatically and boundary conditions can be easily taken into
account. Moreover, the finite element matrices contributed by fluids can be generated
from an existing finite element code for solids and there is no need to develop a new code
for fluids. For these reasons, it is popular to use the displacement formulation for fluids
when dealing with coupled problems [Maheri].

It has been found that the displacement formulation for fluids suffers from the pres-
ence of circulation modes. These circulation modes may have zero frequencies as well as
non-zero frequency, depending upon the type of element and mesh used. Consequently it
is not possible to separate the real modes from the circulation modes by merely inspecting
the values of the frequencies computed. To deal with the difficulty due to the circulation
modes, an irrotational constraint can be introduced and taken into account by a penalty

method [Hamdi er al]. The circulation modes can then be identified by changing the



value of the penalty parameter. Reduced integration can be used, together with the irrota-
tional constraint, to construct the stiffness matrix for better results [Wilson and Khalvati].
Both methods require solving the problem more than once using different penalty values
and often require frial-and-error methods to determine an optimum value for the irrota-
tional constraint parameter.

In this study, we derive a finite element displacement formulation for a fluid and
show its similarity to that for a solid. To suppress the circulation modes which have non-
zero frequencies, we use reduced integration to find the stiffness contributed by the fluid.
The use of reduced integration, unfortunately, leads to element stiffness matrices which are
rank-deficient and thus produces extra zero-energy modes [Bicanic and Hinton]. These
extra zero-energy modes can combine with circulation modes into global modes which have
the same frequency as the real modes, thus corrupting the mode shapes of the real modes.
To remove these spurious modes, we first identity the extra zero-energy modes at the ele-
ment level. This is accomplished by splitting the strain and subsequently the stiffness
matrices into two parts using the 4-node element shape function representation given in
[Belytschko and Bachrach]. Then, we remove these extra zero-energy modes from the
solution space by performing a projection on the element mass matrix. In this way, We can
use the reduced-integration technique without introducing the spurious modes into the
solution. Finally, numerical examples are solved and results are presented to show the per-
formance of the under-integrated stiffness matrix and the projected mass matrix in treating

fluids and coupled problems.

2. Governing Equations for Inviscid Fluid
We consider an ideal inviscid barotropic fluid. The governing equations for small

amplitude motions of such fluid are given by
pitpv,=20 (2.1)
p + pc? ik =0 (2.2)

where v; is the velocity components, p is the mass density, p is the pressure, and c is the

acoustic speed in the fluid. In this formulation two set of variables, the velocity and the



pressure, are used to describe the behavior of the fluid.
It is possible to combine (2.1) and (2.2) to obtain a single-variable formulation for
the fluid. Since only small amplitude motions are considered, the velocity in the fluid can

be taken as
Vi = l‘ii (23)

where u; is the displacement components. After differentiating (2.2) with respect to t and
(2.1) with respect to x;, one can subtract (2.1) from (2.2) to obtain the classical wave equa-
tion
P —c?py=0 (2.4)
where only the pressure is used as variable. However, the solid is described generally in
terms of the displacements. Therefore, when dealing with coupled systems where a pres-
sure formulation is used to describe the fluid, additional effort is required in order to com-
pletely satisfy equilibrium and compatibility along the interface between the fluid and the
solid.
An alternative single-variable formulation can be obtained in the following way.

Substituting (2.3) into (2.2) and then integrating with respect to ¢ leads to
p=—pcluy (2.5)
Differentiating (2.5) with respect to x; and then substituting the result into (2.1), we obtain
pi‘}—PCzuk.ki=0 (2.6)

where only the displacements are used as variables. If this displacement formulation is
used to describe the fluid in coupled systems, then compatibility and equilibrium will be
automatically satisfied along the interface between the fluid and the solid.

The weak form of equation (2.6) is
JowiCpii; —pcuy 4 )d =0 (2.7)
Performing integration by parts on the second term, one obtains
fn w; pu; + J:’l Wi i p c? u 3 dl = J} w; pc? w ¢ n; dT (2.8)

The right hand side in the above is zero along rigid boundaries since the weighting



function w; must satisfy the condition of w; n; = 0 on the boundary I',. Therefore, the

weak form of eqn (2.6) becomes
L[W:Pi‘}+“'i,fpfzuk,k]dﬂ=—J;- w; m; p dl’ (2.9)
where p is a known pressure.

Using the usual finite element discretization procedure for a two dimensional prob-
lem, one can express the trial functions u = [u3, ;] and the the weighting functions
w=[wy,wy] as

u=NU w=NW
where the N is a shape function array which relates the displacements u and w to the nodal

displacements U and W. For convenience in subsequent discussion, we introduce a dif-

ferential operator

L= { RN (2.10)
6.1'] axz

so that the divergence of the displacement vector can be written as
4 ;=Lu=LNU=BU (2.11)
Using the above notation, we have
w i, = w' i = WN NU (2.12)
and
w; ;i =W B"BU (2.13)
and the governing equation (2.9) then becomes
W’fn[ﬁ'pﬁﬂ+B'pc2BU]dQ=—W'J;,’Iq’np-dr (2.14)
This is true for all W, therefore we have the matrix equation :
MU+KU=F (2.15)
where the coefficient matrices M and K given by

M = jﬂ pN' NdQ (2.16a)



K = fapCZB'Bda (2.16b)
= - f. Nnpgdr (2.16c)

Equation (2.15) is the same as that which appears in the vibration analysis of elastic solid
systems. Therefore, one can directly assemble the stiffness and mass matrices due to the
solid part and those due to the fluid part together to obtain the final martrices for the whole
coupled system. In addition, the K in (2.15) is equal to the volumetric part of the stiffness
matrix for a two-dimensional elasticity problem. Therefore, by choosing appropriate
material constants, an existing finite element code for the two-dimensional elasticity prob-
lem can readily be used to compute the element mass and stiffness matrix for the fluid ele-
ment.

In the following sections we show results from using reduced integration to compute
the stiffness matrix and how to construct a projected mass matrix to eliminate the problems

introduced by the reduced integration.

3. Under-integrated Stiffness Matrix
Consider a general 4-node quadrilateral element with constant unit thickness. The

shape functions, Ny, for the 4-node bilinear element are given by

M€ m) = £ (14 & €) (1 +m m) (3.1)

where & and m; are values of the natural coordinates ¢ and m at the node 7. For conveni-

€hce, we can express the shape functions in vector form as

N m)=(0+&s+mt+Enqh) (3.2)
where
1 1
= o 3 !11 1 I, t= — _1: lalvl "
s=3l-11,1,-1] Tl ]
1 ' 1 ¢
1=4—[1,1,I,1], h=;—[1,-—1,1,—1]. {3.3)

We note that any one of the above four vectors is orthogonal to the other three vectors.

Therefore, they can be used as a basis in RY. This orthogonality will be useful in



subsequent derivations.

The coordinates of a point in the element can be expressed by
x=x'N y=yN (3.4)

where x and y contain the x-coordinates and y -coordinates of the 4 nodes respectively.
The Jacobian of the transformation between the global coordinate x—y and local

coordinate £—) is expressed by

[ 8x  38y]
| ¢ a& | J11 J12]

1= 8x oy | T [121 I (35}
[Gm  dm |

The expressions in eqns (3.4) and (3.2) may be used to define the coefficients in the Jaco-

bian matrix. The result is
Jipu=x's+ x'hnq Jin=¥s+ yhn
Joay=x"t+ x'h¢ Jun=yt+ y ht (3.6)
The determinant of the Jacobian can be expressed by
det] = J(E,m) =Jg+ J1 £+ Ja7 (3.7)
where the values of /¢, /4, and J, can be shown to be
Jo=x'sy't—-x"tys
Ji=x'syh—-x"hy's (3.8)
Jo=xhyt—xtyh

It is useful to note that J; and J, are zero when the element is a parallelogram and Jj is

equal to one-fourth of the area A of the element. The inverse of the Jacobian is expressed

by
a dm ]
P ax axl 1] /2 —-’12]
g = |i§_ m - Ti{n fnJ (3.9)
o oy |
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Based upon (3.4), the displacement approximations for an isoparametric element are
given by

u; = U{N u = UJN (3.10)

where U; and U, contain the nodal values of u; and u, respectively. Altemnatively, as

shown by Belytschko er. al. [6], the displacement approximations may be written as

up=Uj (A + xb, +yb, + hy)
u2=U2'(A+xbx+yby+h'y) {3.11)
where
A=[1-x"1b, —y'1 b, ] (3.12a)
Y =[h —x'hb, —y'hb, ] (3.12b)
and
h =En (3.12¢)
with
by = %i:—l6=11=0 (3.12d)
b, = %,Hzo (3.12¢)

which can be shown to be

b, = - (sy't - ty's ) (3.12d)
Jo
b, = .710— tx's —sx't) (3.12e)

This form will be particularly useful in subsequent calculations where derivatives of the
functions are involved.

To form the stiffness matrix, we first compute the B matrix. From (2.11) we have

B=i'“q——§-—][N‘OJ]

5x; 9x, [0’ N"J = [fo ny} (3.13)



Using (3.11) we can split the B into two parts :
B = By + B (3.14)
where the first part results from the derivatives of the first three terms in (3.11), namely,
Bo = [ b by | (3.15)

which is consrant over the element. The second part results from the derivatives of the }

term and is given by

B, = [hﬂ' Ay ]=gr (3.16)
with
t i
vy 0
T'= [O, 7,] € R2*8 (3.17)
and
g = [ By | € R!*2 (3.18)
[ Bheg & ‘
The partial derivatives of & are given by
() [8€ om]
Jax! x dx , 111
8T 13 am {l¢] et
l&yJ ay ByJ
This can be computed using (3.9) and (3.6) to give
(84 )
dx "t —y st
- Lpptn=y (3.20)
ah J XsE—x"tn
L8y )

Accordingly, we may observe that the integrals of the derivatives of 4 have the property

Jh . da=0 fhr ,da=o0 (3.21)
0 N

This holds on any quadrilateral element and is called ap orthogonality property.
The element stiffness matrix is given by (2.15b). Using the split of the B given by

(3.14), we can write the element stiffness matrix given by (2.15b) as
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K=fpc2[BéBo+B5B]+B{BD+B{B]]dQ (3.22)
0

In the above the integrals of products between By and B, vanish due to the orthogonality

property, i.e. (3.21). Thus, the stiffness matrix reduces to

K=fpc23530d0+fpc213;31d0=KU+K1 (3.23)
0 n

Since By is constant over the element, we have
Ko= pc?A BB, (3.24)

where A is the area of the element. It is apparent that a one-point Gaussian quadrature is

enough to compute the Ky exactly. Using (3.16) the K; matrix may be written as

Ki= [pc?BiB, d0=T"WT (3.25)
9]

The 2% 2 matrix W may be easily computed to be

4 [ M |
where
Ho = [h3d0, n, = Jrhda, H = Jh h ,da (3.27)
19} 0 n

It is important to note that the H, ny, and Hyy are all equal to zero if they are evaluated
by 1-point Gaussian quadrature. Therefore, Ky is what will be obtained if the element
stiffness matrix is under-integrated, i.e. integrated using 1-point Gaussian quadrature.
Here, the K, can be looked upon as a correction to give a fully integrated element stiff-

ness.

4. Projected Mass Matrix
In the previous section we split the matrix B into two parts, By and B; and accord-
ingly the stiffness K into two parts, Kg and K;. The important fact s that Ky is actually
what will be obtained when the stiffness is under-integrated. A direct calculation of the

eigenvalues of a 4-node element can verify that the rank of Ky is less than the rank of K
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by two. We first identify the modes which have zero energy when the K is under-

integrated so that we know what is to be tackled. To this end, we can use the four vectors

in (3.3) to construct the following eight element displacement modes d; fori = 1, .. ., 8,
where
[1 [0] s 0
dl = 0 dz = 1 d3 = 0 d4 = S
) ] " ]
1] [0] [h] 0]
ds = ol ds= lj d; = ol dg= hJ (4.1)

They represent, respectively, rigid body, uniform extension, shear, and hourglass modes in
the x and y directions for the 4-node element. These eight modes are linearly independent

since they satisfy the condition
' 1 oo
di dJ = 4"’" 6‘] 1,] = 1 ..... 8 (4.2)

where 8;; is the Kronecker delta. Therefore, They can be used as a set of basis vectors for
the 8-dimensional solution space of the element and any solution can be simply written as

a linear combination of these eight modes. With these basis modes defined, we note that
Bpd, = 0 Bydg = 0 (4.3)

while B;d; and B,dg are not equal to zero. Therefore, it can be concluded that the hour-
glass modes d; and dg, or equivalently any linear combination of them, are the two extra
zero-energy modes when the under-integrated stiffness matrix Ky is used. These two
modes can combine with other modes and result in global modes which have nonzero
energy but are spurious.

To prevent the presence of the spurious modes in the computation, we can remove
the subspace span {d,, dg} from the solution space of the element. That is, we construct a

subspace Q
Q=1I-0a;d;d} - agdg d} ¢ RE*8 (4.4)

where

0y = ——=4 k=178 (4.5)
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and then form the projection of the element consistent mass matrix onto this subspace? :
My=Q'MQ (4.6)

A direct calculation can show that the projected element mass matrix My has the property
that the generalized masses for the two extra zero-energy modes, and therefore any linear

combination of them, are zero, i. e.,
d/Myd;, =0 i =178 (4.7)

while the generalized masses for the other modes, and therefore any linear combination of

them, are preserved, i. e.,
dj Mgd; = d/ M d, j=1...,6 (4.8)

Therefore, by projecting the element mass matrix onto the subspace Q we make
span {d,. dg} become the null space of the element mass matrix so that they will not be
present in the computation. In this way, we are able to remove the spurious modes due to
the under-integration of the element stiffness matrix, as will be shown by examples in the

next section.

5 Numerical Examples

The method of using the under-integrated stiffness matrix and projected mass matrix
described above for the fluid were tested by solving some example problems. We first solve
a simple problem with known solution to illustrate the effect of using the under-integrated
stiffness matrix and projected mass matrix. We then study the convergence property of the
method presented here by gradually changing the size of the mesh. We also show the
effect of the interaction between fluid and solid by comparing the frequencies of the cou-
pled system and the frequencies of the solid alone and of the fluid alone. Finally, we vary

some properties of the fluid to study how the frequencies of the solid are affected.

} The projected mass Mg cannot be transformed to diagonal form and satisfy the properties on the
subspace.
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Fluid in a rigid caviry

The frequencies of a fluid in a rigid cavity are computed. The dimension of the cay-
ity is 20 by 20, the density p of the fluid is 1 and the acoustic speed 4 is 340, Table 1
presents the frequencies obtained using : (I) fully-integrated stiffness K and conventional
mass M, (II) under-integrated stiffness Ko and conventional mass M, and (OI) under-
integrated stiffness Ky and projected mass M;. By comparing with the analytic solution
and plotting the mode shapes found, we find the following. In (I), there are only 4 real
modes and all the others are spurious modes. In (II), there are 8 spurious modes with zero
frequency, three real modes, and five spurious modes with non-zero frequency. In (II),
the first 8 are spurious modes with zero frequency and all the other 8 are real modes.

From these results, we can draw the following conclusions: First, some of the solu-
tions from using the K are rea] modes, however, there is no simple way to distinguish them
from the circulation modes. Second, the use of reduced integration makes the frequencies
of all the circulation modes zero so that one can identify them merely by inspection.
Unfortunately, there still exist modes which have multiplicity more than 2. even though the
frequencies of these modes are good approximates to the analytic solutions. From the ana-
lytic solutions, we know that only two of these modes with high multiplicity can be real
modes and the redundant ones are spurious. In the computation, however, the mode
shapes of the real modes are corrupted by the redundant modes. Therefore, all these
modes should not be considered as real modes in practice. Finally, by using the M, we
tan suppress the spurious modes and therefore remove the redundant modes from the solu-

tions. Figure 1 shows the rea] modes obtained using (I1I).

Mesh sensitiviry
We can investigate the effect of the size of the mesh on the error for the frequencies
of fluid in cavity. For a rectangular plane cavity a x5 confined by perfectly rigid walls,

the frequencies w are given by the analytic solution :
n m
Omn) =c | (a—)2 + (b—)2 V2

where m, n are integers and ¢ is the acoustic speed in the fluid. Here the error is defined
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by

numerical solution — analytic solution
error (%) = yo

; 5 X 100
analytic solution

Figure 2 shows the errors on the lower frequencies versus the number n of divisions along
the sides. A skew 5x5 mesh, as shown in Figure 3, is also tested and the errors are 1.62%
for (1,0) mode, 0.23% for (1,1) mode, 6.55% for (2,0) mode, 3.33% for (2,1) mode, and
-0.09% for (2,2) mode. The errors from the skew 5X5 mesh are about the same level as
the errors from the regular 5x5 mesh. These results show that satisfactory results can be

obtained by using a rather coarse mesh and the convergence rate is quadratic,

Coupled system

The difficulty of using the displacement formulation to analyze the fluid can be
resolved by employing simultaneously the under-integrated stiffness matrix and the pro-
jected mass matrix. This method is now applied to a coupled system to investigate the
interaction between the fluid and the solid. We solve the same cavity example as above,
but one wall of the cavity is now replaced by a simply supported elastic plate while the
other three walls remain rigid. The material properties for the plate are : plate bending
rigidity D is 108, thickness is 1, and density is 1. For this plane strain problem, we may
use a beam element to model the plate element by choosing the beam bending rigidity
equal to the plate bending rigidity D. The same coarse mesh as above is used and there
are only three plate elements. To illustrate the effect of interaction, we show in Table 2
the frequencies of the coupled system, of the plate alone, and of the fluid alone in a rigid
cavity. By plotting the mode shapes, we can identify whether a mode is associated with
the plate or with the fluid. For the modes associated with the plate, the presence of the
fluid affects the bending modes, but does not affect the axial and rotational modes. For
the modes associated with the fluid, the normal modes in one direction is greatly affected
due to the presence of the elastic plate, while the normal modes in the other direction and

the tangential modes are almost unaffected.
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Effect of coupling

We can investigate the effect of coupling by gradually changing some properties of
the coupled system. For example, Table 3 presents the frequencies of the plate bending
modes in the coupled system for different values of acoustic speed. These results are
obtained using an uniform 5x5 mesh. From the Table 3 it is seen that the effect of cou-
pling is most important on the fundamental mode of the plate. The fundamental mode of
the plate always requires a compressibility for the fluid inside the cavity, so this frequency
is strongly influenced as the compressibility of fluid increases. On the other hand, the
higher modes are less affected by the compressibility of the fluid since their shapes occurs
with little or no overall volume change in the fluid. To see this phenomenon, we present
in Table 4 the frequencies of the plate bending modes for different values of fluid density.
Increasing the density of the fluid will increase both the stiffness and mass of the fluid.
We note that the increase in the stiffness has more effect on the fundamental mode due to
the compressibility requirement and hence its frequency increases. On the other hand, the
increase in the mass has more effect on the higher modes and thus reduces the frequencies
of those modes. For comparison, we show in Figure 4 the first few modes of the fluid
alone in the cavity, in Figure 5 the fluid modes, and in Figure 6 the plate modes of the

coupled system.

6 Conclusions

A simple finite element displacement method is presented for the vibration analysis of
fluid-solid coupled systems. The main feature is to use an under-integrated stiffness matrix
and a projected mass matrix for the fluid. Due to the use of the displacement formulation,
no special consideration is required for the interface of coupled systems and existing finite
element programs for the analysis of solids can be easily modified for the analysis of fluids
and coupled systems. In contrast to the previously published displacement methods, the
current method is straight forward and can suppress the spurious modes which have non-

zero frequencies.
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Table 1

Results from different methods

K and M mode | K;and M mode | Ky and My | mode
7.667 . 0.000 . 0.000 .
39.504 # 0.000 . 0.000 .
39.504 * 0.000 . 0.000 y
55.868 ® 0.000 » 0.000 -
55.868 . 0.000 g 0.000 *
55.868 k 0.000 . 0.000 .
55.868 * 0.000 ¥ 0.000 »
77.008 (1,1) 0.000 ® 0.000 4
88.335 g 55.868 (1,0) 55.868 (1,0)
124.924 ¥ 55.868 (0,1) 55.868 (0,1)
124.924 J 74.954 (1,1) 75.332 (1,1)
124.924 * 124.924 » 124.924 (2,0)
124.924 * 124.924 : 124.924 (0,2)
131.021 (2,1) 124.924 ¥ 128.169 (2,1)
131.021 (1.2) 124.924 ¥ 128.169 (1,2)
153.000 (2,2) 124.924 * 144.250 (2,2)

*

! spurious mode

17



Table 2

Comparison of frequencies of different systems

plate alone fluid in cavity coupled system mode description
0.000 0.000 spurious
0.000 0.000 spurious
0.000 0.000 spurious
0.000 0.000 spurious
0.000 0.000 spurious
0.000 0.000 spurious
0.000 0.000 spurious
0.000 0.000 spurious
55.868 52.103 (1,0)
55.868 55.823 (0,1)
75.332 75.200 (1,1)
124.924 112.996 (2,0)
124.924 124.924 (0,2)
128.169 127.820 (2,1)
128.169 127.940 (1,2)
144.250 142.392 (2,2)
246.940 193.221 bending
998.626 775.046 bending
1643.168 1643.168 axial
2464.752 2464.752 rotational
3674.235 3674.235 axial
4583.023 3952.920 bending and rotational
§200.376 7055.985 bending and rotational
11294.910 11294.910 rotational
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Table 3

Jrequencies of plate bending modes for different sound speed

acoustic speed Ist mode 2nd mode 3rd mode 4th mode
0 171.9 733.4 1821.5 3668.4
340 278.7 747.3 1825.6 3669.2
680 536.7 797.6 1838.3 3671.5
1020 802.3 916.3 1861.5 3675.5
1360 1068.4 1123.5 1899.2 3681.3
Table 4

Jrequencies of plare bending modes for different fluid densiry

density 1st mode 2nd mode 3rd mode 4th mode
0 246.8 988.6 2238.3 4038.8
1 278.7 747.3 1825.6 3669.2
10 285.0 394.4 923.1 2238.6
100 285.9 298.9 393.6 837.7
1000 285.9 289.4 315.2 347.4
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Figure 1 Mode shapes of fluid in cavity
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Figure 1 Mode shapes of fluid in cavity
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Figure 2 Error on frequencies versus number of divisions
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Figure 3 A skew 5 by 5 mesh
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Figure 4 Modes of fluid in cavity
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Figure 5 Fluid modes of coupled system
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Figure 6 Plate modes of coupled system





