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for learning at the cortico-striatal synapses. The filled and open circles denote
inhibitory and excitatory synapse, respectively. (c), Schematic diagram of the
cortico-cerebellar loop. In a supervised learning model of the cerebellum, the
climbing fibers from the inferior olive provide the error signal for the Purkinje
cells (PC). Coincident inputs from the inferior olive and the granule cells result
in LTD of the granule-to-Purkinje synapses. The filled and open circles denote
inhibitory and excitatory synapses, respectively. . . . . ... ... ... ...

Figure 2.3 Features of motor behavior. (a), Trajectories and velocities of the hand
during point-to-point reaching movements in the horizontal plane using a me-
chanical linkage to monitor motion of the hand in space [3]. Trajectories of the
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movement and the velocity of the hand shows a characteristic bell-shaped profile
with peak hand velocity proportional to movement distance. (b), Hand motions
when subjects hit a ping-pong ball repeatedly [4]. . . . . . ... ... .....

Figure 2.4 The levels in the motor hierarchy are shown with the triangles between
the levels indicating the reduction in the degrees of freedom between the higher
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Figure 2.8 Experimental paradigms for three types of perturbations. (a), Experi-
mental setup for mechanical perturbation. Subjects were asked to make arm
movements while grasping the handle of a robot arm [8]. A monitor, placed
directly in front of the subject and above the robot arm, displayed the location
of the handle as well as targets of reaching movements. The robot arm had two
torque motors at its base that allowed for production of a desired force field.
Subjects were aksed to compensate for the force on the robot arm so as to bring
the cursor of hand within the target square. (b), Experimental paradigm for vi-
sual perturbation [9]. As the finger moved from the starting circle, the cursor
was extinguished and shifted laterally from the true finger location. The hand
was never visible and visual feedback was briefly displayed with different un-
certainty on halfway to the target. Subjects were asked to place the cursor on the
target, thereby compensating for the lateral shift. (c), Experimental paradigm
for target jump. Subjects were asked to move to the target, which was either
stable or displaced unexpectedly during the movement. Subjects were instructed
that the perturbation might occur, and asked to always move to the final target
location. . . . . . . L.

Figure 3.1 Results in Experiment 1. (a), Average hand paths in experiment 1. Ver-
tical marks show where the hand was at each perturbation time. Trajectory av-
eraging was done as follows. The trajectory data from each individual trial were
smoothed with a cubic spline ("csaps” function in the Matlab Spline Toolbox,
smoothing parameter 0.001), and resampled at 100 points equally spaced in time.
Analytical derivatives of the cubic spline were also computed at these 100 points
—yielding velocities and accelerations. The resampled data were averaged sepa-
rately in each condition. (b), Tangential speed profiles for the hand paths shown
in (a). (¢), Corrective (forward) movement. The backward-perturbed trials have
been mirrored around the horizontal axis, and pooled with the corresponding
forward-perturbed trials. The color code is the same as given in the legend in
(a). (d), Undershoot, defined as endpoint error in the direction indicated in the
plot. Standard errors are computed as described in Methods. (e), Positional vari-
ance of the hand trajectories in unperturbed trials. Variances at each point in
time are computed separately for each subject (from the resampled data), then
averaged over subjects, and the square root is plotted. (f), Acceleration in the for-
ward direction. For each perturbation time, the corresponding curve is aligned
on the time when forward acceleration reached 5% of peak forward accelera-
tion. (g), Movement duration. (h), Percent time-out errors, as signalled during
the experiment. Note that for data analysis purposes we increased the threshold
on movement duration by 100msec. . . . . . .. ... ... oL
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Figure 3.2 An optimal feedback control model for Experiment 1. (a)-(e), Same as
the corresponding subplots of Fig. 4.1, but for data generated by our optimal
feedback control model. The dashed lines in (c) show predictions of a different
optimal control model, where movement duration is not adjusted when a pertur-
bation arises. There is no dashed line for the 100msec perturbation (red) because
in that condition subjects did not increase the movement duration. (f), Corrective
movements predicted by the modified minimum-jerk model. . . . . . ... ..

Figure 3.3 Optimal feedback gains and undershoot from Experiment 1-3. (a,c), Op-
timal feedback gains, each scaled by its maximum value. The stop condition
is shown in (a); the hit condition is shown in (c). (b), Corrective movements
predicted by the optimal feedback controller in the hit condition. (d), Velocity
of the corrective movements predicted in the hit condition. Note that velocity
is not reduced to zero at the end of the movement, especially for the 300msec
perturbation. (e), Standard deviation of the undershoot in the model and all three
experiments. The standard deviation was computed separately for each subject
and perturbation time, and then averaged over subjects (by the anova procedure
— see Methods). In unperturbed trials ("none"), we compute variability along the
perturbation axis for the corresponding experiment, even though these trials are
unperturbed. . ... L. e

Figure 3.4 Experimental setup and results in Experiment 2-3. (a), Setup for Exper-
iment 2. Subjects make a movement from the starting position receptacle to a
target attached to the robot, while clearing a horizontal obstacle (bookshelf). The
robot may displace the target by 9cm left or right during the movement. (b), Av-
erage hand paths in the stop condition of experiment 2. Trajectory averaging was
done in a way similar to experiment 1, except that we now used a zero-phase-
lag 4th-order Butterworth filter. The color code is the same as before: black —
baseline; red — early perturbation; blue — late perturbation. (c), Corrective move-
ments in experiment 2. Dashed lines — hit condition; solid lines — stop condition.
(d), Undershoot in Experiment 2. (e), Movement duration in experiment 2. (f),
Corrective movements in Experiment 3. (g), Undershoot in Experiment 3. (h),
Movement duration in experiment 3. . . . . ... ..o L.



Figure 3.5 Variability during movement in Experiment 2-3. (a), Spatial variability
of unperturbed hand paths in Experiment 2. The ellipsoids correspond to +2
standard deviations in each direction. Aligning 3D trajectories for the purpose of
computing variance is nontrivial, and was done as follows. We first resampled all
movements for a given subject at 100 points equally spaced along the path, and
found the average trajectory. Then, for each point along the average trajectory,
we found the nearest sample point from each individual trajectory. These nearest
points were averaged to recompute the corresponding point along the average
trajectory, and the procedure was repeated until convergence (which only takes
2-3 iterations). In this way we extracted the spatial variability of the hand paths,
independent of timing fluctuations. That is why the covariance ellipsoids are flat
in the movement direction. (b), Variability per dimension, for the stop (solid)
and hit (dashed) conditions in experiment 2. At each point along the path, this
quantity was computed as the square root of the trace of the covariance matrix
for the corresponding ellipsoid, divided by 3. To plot variability as a function of
time, we resampled back from equal-space to equal-time intervals. (c,d), Same
as subplots (a,b) but for experiment 3. (e), Normalized target acceleration in the
lateral direction, lateral hand position, and hand position in the forward direction
(positive is towards the robot). Dashed lines — hit condition; solid lines — stop
condition. Note that the onset of hand acceleration occurs before the movement
reversal in the forward direction. . . . . . . . ... ... oL oL

Figure 3.6 Endpoint standard deviation, lateral velocity and writst contribution in
Experiment 2-3. (a), Endpoint standard deviation in different directions, exper-
iments 2 and 3, unperturbed trials. Black — lateral direction; white — vertical
direction (coordinates relative to the target); gray — vertical direction (absolute
coordinates). In experiment 3 the relative and absolute endpoint positions are
different in the vertical direction, because the target is falling and the variability
in movement duration causes variability in vertical target position at the end of
the movement. (b), Lateral velocity immediately before contact with the robot,
in late perturbation trials. (c), Wrist contribution to the lateral correction, in
a pilot experiment with ten subjects. The main difference from experiment 2
was that the wrist was not braced. The lateral correction could be accomplished
with humeral rotation (resulting mostly in translation of the hand-held pointer)
or wrist flexion/extension (resulting in rotation of the pointer in the horizontal
plane). The pointer was held in such a way that the Polhemus sensor was near
the wrist. Therefore the lateral displacement of the sensor on perturbed trials
(relative to the average trajectory on unperturbed trials) can be used as an index
of how much humeral rotation contributes to the correction. The displacement
of the tip of the pointer is defined as the total correction. The difference between
the two is the contribution of the wrist. Dividing the latter by the total correction,
and multiplying by 100, we obtain the percent wrist contribution. . . . . . . .
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Figure 3.7 A MDP model for Experiment 2-3. (a), Corrective movements of the
more general optimal feedback control model. The solid and dashed lines corre-
spond to the stop and hit conditions respectively. The hand is restricted to a grid
of discrete states, however the dynamics are stochastic, and so the average (over
1000 simulated trials) is smooth even though the individual trajectories have a
staircase pattern. (b,c), Undershoot and movement duration in the stop and hit
conditions for different perturbation times. Same format as the experimental
datain Fig. 4.4. . . . . . . . . e

Figure 3.8 Hand positional variance on unperturbed trials from MDP model and Ex-
periment 2-3. Hand positional variance on unperturbed trials, measured along
the perturbation direction. Trajectories are aligned at equal intervals along the
movement path in order to compute variance. Solid line (baseline) is the variance
in blocks without perturbations. Dashed line (adapted) is the variance in blocks
with 66% perturbations. Data from the hit and stop conditions are averaged. . .

Figure 4.1 Experimental setup and paradigm. . . . ... ... ... ........
Figure 4.2 Learning results in response to target perturbations in Experiment 1. (a),
Average hand paths for EARLY, LATE, COG in both DIRECT and SPRING
conditions. Average has been done separately for baselines (catch no jump tri-
als), trials where the target was perturbed to the same direction as in the previous
trial (adaptation trials) or to the opposite direction (catch jump trials). Trials fol-
lowing left perturbations have been mirrored around the vertical axis and pooled
with the corresponding trials following the right ones. Thus, the probability of
going to the right is much larger. Blue: adaptation trials. Red: catch no jump
trials. Green: catch jump trials. Dark, hand. Light, the hand cursor in SPRING.
All movements started at the lower box. The dashed line connects the starting
position and the initial target position. The horizontal line indicates the average
hand position when perturbations occurred. (b), Lateral hand position measured
at 100ms after early and late perturbation time for only adaptation trials. (c),
Earliest correction time, measured as the first point in time where accelerations
in left-perturbed trials are significantly different from those in right-perturbed
trials, for adaptation trials only. To get an accurate measurement of accelera-
tions, data from the accelerometer and the second order derivative of data from
the Polhemus are combined optimally. Black dot: earliest correction time be-
fore learning in Experiment 2. Red dot, earliest correction time after learning
in Experiment 2. (d), Endpoint lateral errors for adaptation trials. (e), Distribu-
tion of lateral hand positions measured at 100ms after late perturbation time for
adaptation trials. Measurement from each trial is treated as a sample and sam-
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for Experiment 1. Right panels show the zoom-in results of the left. Filled circle
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ABSTRACT OF THE DISSERTATION

Computational and Psychophysical Studies of Goal-Directed Arm Movements
by

Dan Liu

Doctor of Philosophy in Cognitive Science
University of California San Diego, 2008

Professor Emanuel Todorov, Chair

Movements produced in everyday life pursue a goal. Key to the success of such move-
ments is the motor system’s ability to adjust sensorimotor strategies in a flexible way according to
the goal. On the high level, flexibility entails taking into account multiple task requirements and
properties of the environment and preparing a sensorimotor strategy customized for the present
task and circumstances to better achieve the goal. On the low level, a strategy is flexible if it
makes on-line adjustments that exploit the multiple ways in which a redundant musculoskele-
tal plant can achieve the same behavioral goal. Both levels of flexibility, however, are mostly
ignored by traditional theories. This thesis uses both psychophysical experiments and computa-
tional modeling to explain how biological movements arise from different goals they pursue.

Our first focus is on how task goals shape motor planning. We show that the motor
system customizes sensorimotor strategies for current task requirements, rather than generat-
ing a rigid motor trajectory regardless of the goal. We account for such customization of task
goals in the optimal feedback control framework by using a composite cost function instead of a
homogeneous cost with multiple hard constraints.

We also address how a control strategy is adapted in changing environments. We show
that motor learning involves not only the statistical formation of an internal model to predict
external changes, but also the flexible use of such predictions to adjust motor commands for
maximum performance. Such flexible dependence on predictions is accommodated by extending
the optimal control framework to deal with complicated noise and cost formulations.

Finally, rather than ignoring the musculoskeletal structures of human body, we apply

XX



a hierarchical control framework to a more realistic arm model with 7 degrees of freedom. This
framework is inspired by the facts that optimal feedback controllers for redundant systems ex-
hibit hierarchical organization, and that sensorimotor control occurs simultaneously on many
levels. The basic idea is to have the high level solve the optimal control problem with reduced
dimensionality, and the low level perform an instantaneous feedback transformation of plant dy-
namics according to the high-level commands. This work sheds light on understanding how the

brain controls human body which is a complex redundant system.
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Chapter 1

Introduction

The study of motor control can make use of a large number of experimental tech-
niques including behavioral psychophysical studies, single-cell electrophysiology in non-human
primates, electromyographic (EMG) measurements of muscle activities, functional magnetic
resonance imaging (fMRI) on brain activities, and transcranial magnetic stimulation (TMS) on
selected brain areas. In order to combine the findings of such a large and varied collection of ex-
perimental evidence to better understand motor function on a more fundamental level, we need
some notion of how the brain processes information and implements control. In other words,
how the brain solves the computational problem. The main theme of this thesis is to build a
quantitative model of some aspects of movement control, and use behavioral experiments to
verify the modeling.

Given the high complexity of the central nervous system (CNS) and the motor appa-
ratus itself, studying behavior from a computational perspective always requires making sim-
plifications. For example, traditional theories consider movements generation as two separate
processes. During the planning phase, a desired trajectory is generated based on some cri-
teria; during the execution phase, such trajectory is realized using servo control mechanisms
[10, 11, 12, 13, 13, 14, 15]. The appeal of this idea is that it is easy to implement. In fact, most
industrial robots are controlled in this way. However, given the notion that human movement
is far more graceful than that from a industrial robot, using only simple models bears the risk
of missing the essence of what makes our motor systems special. Indeed, although these theo-
ries account for a large number of averaged behavioral data, they cannot explain the trail-to-trial

variability, e.g., the trajectories are rarely the same when a movement is made repeatedly even



for a well-trained athlete. The challenge hence lies in building "good" models that are complex
enough to capture the underlying computational principles, yet simple enough to be solvable.

We believe that optimal feedback control [4, 16, 17, 1, 6] satisfies the above criteria
to be a good model in studying biological movements. First, the biological processes that con-
tinuously improve behavior closely resemble iterative optimization. This makes optimal control
theory a natural framework for studying the neural control of movement. Secondly, different
from traditional optimal control models that only optimize a desired trajectory and ignore on-line
sensory feedback, optimal feedback control models also optimize a sensorimotor transformation
(control law) to utilize the on-line sensory feedback in a flexible way to better archive the perfor-
mance. Indeed, optimal feedback control models have arguably been more successful than any
other classes of models in terms of explaining the details of experimental data [17]. In particular,
the flexible sensorimotor transformation generated from optimal feedback control has provided
a prefect tool in studying the flexible sensorimotor strategies of the motor system, which is key
to the success of various motor behavior.

Previous work on optimal feedback control has emphasized the sensorimotor strategies
during movement execution, in particular the structure of motor variability and the goal-directed
nature of on-line corrections [18, 19, 20, 21, 4]. Such flexibility has been explained with the
minimal intervention principle, which states that task irrelevant deviations from the average be-
havior should be left uncorrected to maximize performance [4, 17, 16]. The flexibility in motor
planning/preparation, in particular the the systematic relationship between sensorimotor strate-
gies and mixtures of task goals, on the other hand, has received surprisingly little attention.
Optimal control models, which dominate the thinking on trajectory planning, have traditionally
optimized a homogeneous cost and treated all other goals as hard constraints, the latter are sup-
posed to be specified externally, outside the scope of such models. The homogeneous cost could
be energy consumption [22, 23], derivative of hand acceleration [10], derivative of joint torque
[11], or end-point variance [12]. The constraints include endpoint position, final velocity and
acceleration (typically zero), movement time, and intermediate points along the trajectory, all of
which are rarely explicit in real-world tasks, thus raising two questions: (i) how are their values
being chosen; (ii) are their values "chosen" in the first place, or are they stochastic outcomes
of the complex interactions among sensorimotor strategy, noise, musculoskeletal dynamics, and

environment — like any other feature of individual movements? Previous analysis [4, 16] showed



that choosing desired values for movement parameters that are not explicitly specified by the
task is suboptimal, no matter how the choice is made. This answers question (ii) and renders
question (i) irrelevant. We show that as the relative importance of these components is varied
by the experimenter, subjects modify their strategy in agreement with our theory. As in prior
stochastic optimal control models [12, 4, 24], taking into account the empirically established
signal-dependent nature of motor noise [25, 26, 24, 27] turns out to be important.

Another form of sensorimotor system’s flexibility is its remarkable ability to adapt in
a changing environment. Such adaptability has been demonstrated in adaptation experiments
using visual perturbations [28, 29, 30] as well as force-fields produced by a robotic manipulan-
dum [8, 31, 32]. The common finding is that an internal model of the experimentally imposed
perturbation is acquired, and then used to generate predictive compensation [33, 34]. Despite ex-
tensive work on the statistical formulation of internal models [35, 30, 36, 37, 38], the question of
how the CNS uses these internal models to produce motor commands has received surprisingly
little attention. There is an implicit assumption in the literature that the output of internal models
is in one-to-one correspondence with changes in motor behavior, or in other words the control
system itself is not changing. This assumption has no reason to be true and indeed we show here
that it can be systematically violated. In particular, we demonstrate that the same perturbation
sequence can elicit very different forms of adaptation as far as motor behavior is concerned,
even though the information content (and presumably the internal model being formed) is the
same. These differences are found to be explained within the framework of optimal feedback
control if certain novel extensions are made to the framework. The extensions have to do with
robustness (as in high-order energy costs) as well as a preference for control strategies that tend
to be successful in everyday life outside the lab.

The ultimate goal in the study of motor control is to understand how the brain con-
trols the rest of the body to give rise to a large variety of skilled movements. Although optimal
feedback control models are extremely powerful in explaining high-level computational princi-
ples of motor control, they are not applicable to controlling complex redundant systems such
as human body due to the high dimensionality of the state and control spaces. In fact, most
optimal feedback control models in explaining arm movements have to simplify the entire arm
into a point mass [4, 16]. As a result, they cannot explain important questions such as how to

choose one particular arm configuration, among the many alternatives, to achieve the desired



end-effector location. As an attempt to solve this control problem on redundant systems, [7]
proposed a hierarchical control framework. This framework is inspired by two observations.
First, from a computational viewpoint, optimal feedback controllers for redundant systems ex-
hibit hierarchical organizations [4, 16]. Secondly, from a biological viewpoint, it is known that
sensorimotor control occurs simultaneously on many levels [39, 40]. Lower-level circuits (e.g.,
the spinal cord) interact with the musculoskeletal system directly by both receiving rich sensory
input and generating corresponding motor outputs before the rest of the brain has had time to re-
act to that input. High-level circuits (e.g., the motor cortex), on the other hand, operate on a more
abstract and goal-related movement representations [41]. The proposed hierarchical framework
also has two layers. The plant is augmented with a low-level feedback controller, which receives
information about the plant state, and sends to the high level more abstract representation that
captures the task-relevant aspects of plant dynamics but has reduced dimensionality. The high
level monitors task progress, and issues commands to archive the goal. Then the low-level con-
troller computes energy-efficient controls to match the high-level commands. In this way, the
high level solves the optimal control problem without considering all the details of the plant
and thus avoid running into the curse of dimensionality, the low level performs an instantaneous
feedback transformation to deal with the details. We apply this framework to a more realistic
arm model with 7 degrees of freedom (DOF) and 14 muscles whose dynamics resemble those

from real muscles.

1.1 Organization of Thesis

The rest of the thesis is organized as follows.

Chapter 2 reviews the literature on studies of the sensorimotor system from three as-
pects: neural basis, motor behavior and computational models. The goal is to raise the attention
on issues that have been over-simplified by traditional computational models of biological move-
ments, which motivate our work.

Chapter 3 focuses on the sensitivity of movements to task goals. We argue that the
CNS relies on sensorimotor strategies optimized for composite cost functions based on specific
task requirements, instead of optimizing a homogeneous cost and treating all other goals as hard

constraints.



Chapter 4 extends optimal feedback control framework to account for motor learning
in a changing environment. In particular, we examine how statistical properties of the environ-
ment is used in generating predictive movements to better achieve the behavioral goal.

As an attempt to understand how the brain controls human body, which is characterized
by complex musculoskeletal properties, Chapter 5 applies a hierarchical control framework to
a more realistic arm model with 7 degrees of freedom in tasks such as reaching, drawing, and
orienting.

Chapter 6 summarizes the thesis.



Chapter 2

Background

2.1 The organization of movement

2.1.1 The hierarchical structure of the motor system

Skilled motor behavior is a result of an intimate interaction between the complex me-
chanical properties of the body and a highly distributed control system. This control system is
known to be organized in a hierarchical structure: Lower levels have a variety of reflex circuits
that govern the temporal details of an involving movement; high levels operates on more abstract
and more goal-related movement representations. Fig. 2.1 illustrates a simplified hierarchical
structure of the CNS with three levels: spinal cord, brain stem, and forebrain. The spinal cord
is the lowest level, which includes motor neurons as the "final common pathway" for all mo-
tor output [42], and interneurons that integrate sensory feedback with descending commands
from higher centers. This level mediates a variety of reflexes and rhythmic automatisms such
as locomotion and scratching. The brain stem is the second level in the motor hierarchy, which
integrates spinal reflexes into a variety of automated movements that control posture and loco-
motion. The highest level is provided by the cerebral cortex, which projects directly to the spinal
cord and also regulates motor tracts originated in the brain stem. The most important areas in
this level includes the primary motor cortex (M1), posterior parietal cortex (PPC), and the pre-
frontal cortex (PFC). M1 contributes the largest number of axons to the corticospinal tract and
receives input from other cortical regions that are predominantly involved in motor planning. M1

neurons have the unique property of coding anything from hand directions to detailed patterns



of muscle activity [43]. PPC is crucial for internal feedback loop and thus on-line corrections.
The most convincing argument is provided in [44], where the smooth on-line corrections during
a reaching movement was found to be disrupted when a single transcranial magnetic stimulation
(TMS) was applied over the left intraparietal sulcus(IPS) at the onset of hand movement. PPC
may also play an important role in integrating sensory signals from many modalities (e.g. visual,
proprioceptive, auditory and vestibular), as well as afferent copy signals from motor structures
[45]. PFC is important for the organization of goal-directed, rule-based behaviors [46, 47].

In addition to this hierarchical structure, the cerebellum and basal ganglia also provide

feedback circuits that regulate cortical and brain stem motor areas.

1. Cerebellum
It is widely believed that the cerebellum regulates movement by both predicting the conse-
quence of taking an action and providing the neural command necessary to archive some
desired trajectory. The fact that cerebellum patients had difficulty adapting their motor
commands when limb dynamics were altered [48] provides direct evidence for the above
hypothesis. This idea is also supported by the experiments showing that although mon-
keys were able to learn to contract the extensor triceps muscle to prevent the elbow from
overshooting after the forearm was unexpected perturbed, such predictive movement was

disturbed when some deep nuclear neurons in the cerebellum were deactivated [49].

2. Basal ganglia
Basal ganglia is usually assumed to be important in the selection and initiation of move-
ments, the regulation of continuous movements, the control of movement sequences and
of other automated actions, and the scaling of movement parameters. Both Huntington’s
disease (HD) and Parkinson’s disease (PD) are due to pathological changes in the basal
ganglia. In HD, degeneration begins in the striatal patches that inhibit dopamine (DA)
neurons, resulting in an underestimation of the likelihood of success as the movements
progresses. This causes the frequent change of control policies for small errors and leads
to excessive movement [48]. PD, on the other hand, is due to the decreased level of
dopamine in the basal ganglia. PD patients are found to be able to make on-line cor-
rections only when the arm was not visible. This suggests that basal ganglia dependent

circuits are important in integrating sensory information from different sources, especially



proprioception, and in transforming the integrated signal for motor utilization [50].

2.1.2 Areas involved in motor learning

One characteristic of the motor system is its remarkable ability of learning. Many areas

in the hierarchical structure are involved in motor learning, and different areas may in change of

different types of learning [2], see Fig. 2.2.

1. Cerebellum

The cerebellum is proposed to be specialized for supervised learning based on the er-
ror signal encoded in the climbing fibers. The most direct evidence comes from Ito in
vestibulo-ocular reflex (VOR) adaptation experiments, showing that long-term depression
(LTD) of the Purkinje cell synapses dependent on the climbing fiber input is the neural

substrate of such error-driven learning [51].

. Basal Ganglia

The basal ganglia is suggested to drive the variability in behavior necessary for trial-
and-error learning based on reinforcement [52]. Dopamine-containing neurons have been
demonstrated to encode the probability of reward (sometimes the conditional probability
of reward) in their phasic firing and the uncertainty of the prediction in their maintained
firing levels [53, 54]. [55] also found that the neural activity responses shifted relative to

the expected reward value, and the gain adjusted to the variance of reward value.

. Cerebral cortex
The cerebral cortex is assumed to make unsupervised learning based on Hebbian plasticity

and reciprocal connections within and between cortical areas.

2.1.3 Psychophysical principles obeyed by voluntary movements

Rather than studying the neural basis for generating movements, psychophysical stud-

ies analyzed motor behaviors during various voluntary movements and have revealed some gen-

eral laws of biological movements summarized as follows:

1. Smooth movement trajectories: Trajectories of the hand between the spatial targets are

relatively straight from the start to end of movement, and the velocity of the hand usually



Neural control

Figure 2.1 Hierarchical organization of the CNS [1]. VN, vestibular nuclei; RF, reticular forma-
tion; C, cerebellum; RN, red nucleus; BG, basal ganglia; V1, primary visual cortex; M1, primary
motor cortex; PF, prefrontal cortex; dPM, dorsal premotor cortex; SMA, supplementary motor
area; S1, primary somatosensory cortex; 5, parietal cortex area 5; 7, region of posterior parital
cortex.
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Figure 2.2 Illustration of the three main learning components [2]. (a), Specialization of the cere-
bellum, the basal ganglia, and the cerebral cortex for different types of learning. (b), Schematic
diagram of the cortico-basal ganglia loop and the possible roles of its components in a rein-
forcement learning model. The neurons in the stratum predict the future reward for the current
state and the candidate actions. The error in the prediction of future reward, the temporal differ-
ence (TD) error, is encoded in the activity of dopamine neurons and is used for learning at the
cortico-striatal synapses. The filled and open circles denote inhibitory and excitatory synapse,
respectively. (c), Schematic diagram of the cortico-cerebellar loop. In a supervised learning
model of the cerebellum, the climbing fibers from the inferior olive provide the error signal for
the Purkinje cells (PC). Coincident inputs from the inferior olive and the granule cells result
in LTD of the granule-to-Purkinje synapses. The filled and open circles denote inhibitory and
excitatory synapses, respectively.
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shows a characteristic bell-shaped profile with peak hand velocity proportional to move-
ment distance (Fig. 2.3(a)). The motor equivalence theory [3] proposed that a purposeful
movement is represented in the brain in some abstract form rather than as a series of joint
motions or muscle contractions. This is consistent with the idea that the high level in the
hierarchical structure represent the more abstract way, and leaves all the details to the low

levels.

. Relationship between path curvature and hand angular velocity : Hand movements are
usually slowed down during curved movement segments and sped up during straight seg-
ments. This phenomena is captured by the two-thirds power law based on observations
during drawing or scribbling. Denote path curvature with c and hand angular velocity with
w, then the two-thirds power law states w o< ¢?(3 ~ 2/3) or equivalently v o< 7'~ where

v is the tangential velocity and r is radius of curvature (1/w).

. Trade-off between movement duration and terminal accuracy: Faster movements are usu-
ally less accurate for a given amplitude, captured by Fitt’s law [56]. Denote movement
distance with d, movement duration with ¢, and target width with w, then Fitt’s law states

t=c1+c logQ(% + 1), where ¢y, co are experimentally determined constants.

. Trial-to-trial variability: Despite the fact that movement can be remarkably precise, even
a simplest reaching movement is seldom performed twice in exactly the same way. Fig.
2.3(b) illustrated the trial-to-trial variability of hand motion when subjects hit a ping-pong
ball repeatedly [4]. Such variability is mainly due to the inherent noise in the sensorimotor
system. For example, in an experiment to study the trial-to-trial variation of Purkinje
cell (PC) activity in the floccular complex of the cerebellum during smooth-pursuit eye
movement, it has been shown that some correlated variation are shared across a population
of neurons and can not be canceled out by averaging. This highly covariant PC activity
leads to motor variation in pursuit initiation even before the noise accompanied with motor

output is sent out [57].
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Figure 2.3 Features of motor behavior. (a), Trajectories and velocities of the hand during point-
to-point reaching movements in the horizontal plane using a mechanical linkage to monitor mo-
tion of the hand in space [3]. Trajectories of the hand between the spatial targets are relatively
straight from the start to end of movement and the velocity of the hand shows a characteris-
tic bell-shaped profile with peak hand velocity proportional to movement distance. (b), Hand
motions when subjects hit a ping-pong ball repeatedly [4].
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2.2 Optimization principle in sensorimotor control

Section 2.1 summarized some key results regarding biological movement based on
neurological and psychophysical studies. An important challenge for understanding motor func-
tions is to connect the neural control with motor behavior by taking the complex limb mechanics
into account. To do this, computational modeling provides a useful tool. Among the many com-
putational models aiming to explain biological movement, optimal control models have been the
most successful ones. The appeal of optimality principles lies in the fact that they only require a
performance criterion that describes what the goal is and then fill in all movement details auto-
matically by searching for the control strategy to best achieves the performance. Such a criterion
is referred to as a ’cost function’, defined as a scaler function that depending on the current set of
control signals as well as the set of variables describing the current state of the musculo-skeletal
system and environment. Depending on how on-line sensory feedback is used in optimization,
optimal control modes can be classified into two categories: open-loop and closed-loop opti-
mization. Open-loop optimization usually assumes deterministic dynamics and ignores the role
of on-line sensory feedback. Closed-loop optimization, in contrast, assumes stochastic system
and tries to construct the sensorimotor transformation (or feedback control law) that yields the

best possible performance. Key models in each category will be reviewed next.

2.2.1 Open-loop optimization

Most existing optimal control models use open-loop optimization, where performing a
task is assumed to have two separate stages: motor planning and motor execution. During motor
planning, the best movement trajectory is formed by optimizing some cost function. During

motor execution, some predefined servo mechanism is used to track the desired trajectory.

Motor planning

A fundamental property of the motor system is the redundancy. For example, to reach a
target, there are many trajectories and velocities the hand may follow. Given each trajectory and
velocity profile, each location along the path can be achieved with multiple combinations of joint
angles. Finally, each arm configuration can be accomplished by different muscle activations, due

to the overlapping actions of muscles and the ability to co-contract (Fig. 4.1). Motor planning
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Figure 2.4 The levels in the motor hierarchy are shown with the triangles between the levels
indicating the reduction in the degrees of freedom between the higher and lower levels [5].
Specifying a pattern of behavior at any level completely specifies the patterns at the level below
but may result from different output from the level above. Planning can be considered as the
process to choose specific patterns at each level to achieve the extrinsic task goals.

is considered as the computational process of choosing one particular pattern, among the many
alternatives, to achieve the goal.
Many theories have been proposed to find the "optimal plan", differing mainly in how

"optimal" is defined, or what cost function is being minimized.

1. Minimum Jerk Model [10]

Based on the observation that point-to-point movements of the hand are always smooth in
the Cartesian space, it was proposed that a major goal of motor coordination is to produce
the smoothest possible movement of the hand. In this model, the cost function is defined
as the square of the magnitude of jerk (derivative of hand acceleration in the Cartesian

space) integrated over the entire movement.

This model has been testified in unconstrained point-to-point movements, unconstrained
curved movements, and obstacle-avoidance movements. In addition to generating smooth
movements, it also accounts for the two-third power law for movement along a constrained

path.
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However, since this model is based solely on the kinematics of movement while neglect-
ing the dynamics of the musculoskeletal system, it is successful only when formulated
extrinsic space and when the demands of the movement lie within the capabilities of the
neuromuscular system. Also, it is not clear why people want to generate smooth move-
ment. As the author pointed out "It is not suggested that minimizing the jerk is the single
objective underlying all movements. Minimization of mean-squared jerk is a mathematical

model of one movement objective, the production of smooth, graceful movements".

. Minimum Torque-change Model [11]

Different from the minimum jerk model that considers only the geometry of movement,
this model takes the dynamics of the arm into account, and generates motor commands
required to achieve the movement directly. This model defines the cost function as the
square of the derivative of joint torque integrated over the entire movement, based on the
notion that the control minimizing the change of torque generates the smooth torque move-
ment and therefore reduces wear and tear on the musculoskeletal system. Meanwhile, the

consumption of energy is relatively low because unnecessary force is avoided.

This model is closely related to the minimum jerk model, because acceleration is locally
proportional to torque at zero speed. However, by taking into account the dynamics, the
minimum torque-change model successfully predict the curved path as observed in move-
ment under external force and movement through a sequence of via points, rather than the

straight path predicted by the minimum jerk model.

Despite its success, the minimum torque-change model, as the minimum jerk model, still
does not answer the question why the CNS should optimize this quantity other than the
others, how the CNS estimate such complex quantities and then integrate them over the
duration of a movement, and how to select the movement duration. Most importantly,

neither of the above two models can explain the motor variability.

. Minimum Variance Model [12]

This model defines the cost function as total positional variance in the end of the move-
ment. This is based on the observation that neural commands have signal-dependent noise,
whose standard deviation increases linearly with the absolute value of the neural control

signal.
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This approach has several important ramifications. First, because abrupt changes in the
trajectory of the eye or arm require large driving signals which would generate more noise
and therefore are suboptimal, this model explains why optimal trajectories are inherently
smooth. Secondly, signal-dependent noise inherently imposes a trade-off between move-
ment duration and terminal accuracy, consistent with Fitt’s law. Thirdly, different from
previous models that predicts only the average trajectories, this model also predicts the
pattern of variability. Most importantly, it provides a biologically plausible theoretical un-
derpinning for both eye and arm movements. Since such costs are directly available to the
nervous system,the optimal trajectory could be learned from the experience of repeated

movements

However, as an open-loop method, it ignores the on-line sensory feedback. Since variabil-
ity is significantly affected by feedback especially, the predicted variance is less reliable

in movements of longer duration.

Motor execution

After the motor plan is generated, sequence of the motor commands is needed to gen-
erate the desired movement trajectory and correct the error caused by the noise in both the
sensorimotor system and the environment during the movement. Such process is referred to as
"inverse problem". This inverse problem is difficult to solve mainly due to the fact that the hu-
man body is a highly non-linear system with huge redundancies. As the result, discovering the
values of the model parameters may be time-consuming, and extra criteria is needed to select one
parameter set among the many alternatives all consistent with the data. Among the many meth-
ods, the Equilibrium-Point (EP) hypothesis attracts the most attention since it takes advantage of
the springlike muscle properties, and solves the inverse problem easily without considering the
complicate non-linear dynamics. This idea roots in two facts: (1) a limb is at static equilibrium
in the absence of external loads when all the torques generated by opposing muscles cancel out;
(2) when the net stiffness due to muscle action on the limb is positive, neural actives related to
the limb movement can be translated into corresponding equilibrium angle, determined by the
balance of the springlike torques that keep the limb at rest [13]. According to this hypothesis, the
equilibrium acts as centers of attraction, and the difference between actual and desired position

generates a springlike force directed toward a virtual position, like a servo controller. Although
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the early Alpha model [15] only focuses on the feed-forward path and can not deal with external
force, the later Lambda model [13, 14] also considers the feedback mechanisms and therefore
is able to take dynamics of the system into account. Nevertheless, the Lambda model can not
explain explicitly how to control the equilibrium point to move different external loads since this
gets into inverse dynamic problems again.

Criticism of the EP hypothesis usually focuses on four aspects. First, theoretical val-
ues necessary to produce very fast forearm movements are much higher than those estimated
from human arm [58]. Secondly, the EP hypothesis can not explain why sensory feedback is im-
portant in precise movement [59]. Thirdly, it is not clear how to get the "equilibrium positions".
Minimum Jerk model provided a way to find such desired trajectories based on the geometry of
the movement. Later, this model was modified so that it could account for the trajectory mod-
ification task [60] and obstacle avoidance task [61]. Nonetheless, it is not known how such a

trajectory might be computed in more complex tasks.

2.2.2 Optimal feedback control

In addition to optimizing the desired trajectory as in open-loop optimization, closed-
loop optimization also constructs the best possible transformation from states of the body and
environment into control signals, or the control law, to better utilize the on-line feedback in
achieve the goal. As the result, it can accounts for not only the averaged behavior as open-loop
optimization does, but also the trial-to-trial variability during movement. Closed-loop optimiza-

tion is usually referred to as optimal feedback control [4, 16, 17, 1, 6].

General framework

The general framework of optimal feedback control is illustrated in Fig. 2.5. It is com-
posed of both an estimator and a controller. The goal of the estimator is to integrate different
sources of information to reduce the overall uncertainty and compensate for the delay, indepen-
dent of the behavioral goal; whereas the goal of the controller is to determine what actions to

take at each time step to best achieve the overall performance.

1. Optimal estimator
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Figure 2.5 Schematic illustration of optimal feedback control [1].

Since the state of the plant (i.e. the arm in reaching movements) is observable only through
delayed and noisy sensors, a recursive estimator is developed to predict internal state
changes before the corresponding sensory data have arrived. This predictive capability

of the estimator allows the controller to counteract disturbance before they cause errors.

Input to the estimator includes both the sensory inflow (information from visual feedback
and proprioception) and the motor outflow (the motor commands sent to the arm). Evi-
dence of using sensory feedback comes from the fact that visually guided movements are
in general more accurate, and movement from deafferent patients are less accurate [62].
Evidence of using the motor outflow has been provided in a series studies showing that the
self-produced tactile stimulus is perceived as less ticklish than the same stimulus generated
externally [63]. Based on the fMRI result, it has been proposed that the cerebellum might
be involved in predicting the specific sensory consequences of movements, providing the

signal that is used to cancel the sensory response to self-generated stimulation.

The estimator is usually implemented by a Kalman filter [64]. Kalman filter an optimal
estimation when the system is linear and the noise is Gaussian [64], and can be extended to
accommodate non-linear system [65]. It integrates different sources of information, such
as sensory data, recent control signals, earlier output, as well as the knowledge of body
dynamics, in proportion to their reliability regarding the current state, and thereby reduces
the overall uncertainty. Although little is known how the Kalman filter is implemented in
the brain, many studies have shown that movements under different kinds of uncertainties
can be explained using Kalman filter. The most well documented study is from [33], where

participants were asked to estimate the location of the hand at the end of movements made
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in the dark and under externally imposed forces. They found that subjects overestimated
the extent of unseen arm movements, and the temporal dynamics of such estimation could

be fully accounted by a Kalman filter that integrates the sensory inflow with motor outflow.

2. Optimal controller

Based on the estimation of current states and a predefined cost function to evaluate how the
current action is related to the overall performance, the controller explores all the possible
controls and selects the one that minimizes the cost. Different from open-loop optimiza-
tion where the control law is predefined arbitrarily, here the control law is determined by

requirement of specific tasks as well as the noise and delay in the sensorimotor system.

A key feature of the controller is its ability to choose one out of many possible solutions
from the redundant system such as our motor system. This has been explained by the
"minimal intervention" principle [16], which states that deviations away from the average
behavior is not corrected unless those deviations interfere with task performance. This
idea is explained in Fig. 4.3. The goal of the task is to use the control as small as possible
to maintain x; + o = target. If the variance of initial errors is a circular Gaussian,
then traditional open-loop methods force 1 = x2 = target/2 and try to reduce the
errors equally from all directions resulting in the gray circle. On the other hand, the
optimal controller only depends on x; + x3 but not individual values of ;1 and z2. As
the result, it pushes the states only along the task-relevant direction and leaves the error
in the redundant direction uncorrected, represented by the black ellipse. According to
the minimal intervention principle, trial-to-trial variability during movement is not due to

sloppiness, but actually indicates a good quality of the sensorimotor system.

Solution to optimal feedback control

Optimal feedback control is in general hard to solve, except for the simple case of
linear dynamics, quadratic costs and Gaussian noise sources (LQG) [66]. To model motor be-
havior in more realistic situations, the iterative LQG (ILQG) algorithm [67] provides a more
flexible framework. It iteratively uses linearizations of the nonlinear dynamics around the ac-
curate trajectory, and improves that trajectory by minimizing a quadratic approximation to the

optimal cost-to-go function (estimated accumulated cost till the end of movement assuming the
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Figure 2.6 Properties of optimal feedback controllers in redundant tasks [6].

behavior is optimal). As a result, it can deal with nonlinear systems such as our arm, with more
complex models of cost. In addition, it allows us to embed statistical distributions of external
perturbations in the framework. Both LQG and ILQG, however, require a predefined duration,
which is usually not specified in real movements. One modification is to add a term to punish
long duration in the cost function [68], whereas a more general way to solve the optimal control
problem is to discretized the state and control spaces and convert it into a Markov decision prob-
lem (MDP) [69] which can be solved via dynamic programming [70]. The MDP model can deal
with any forms of dynamics with any forms of noise and any forms of cost functions. However,
when the dimension of the states in describing the dynamical system is too big (>6), such method
becomes inapplicable due to the curse of dimensionality. Despite the nice mathematical formula
and wide success in explaining behavioral data of the above methods, details in the low-level of
the motor system such as dynamic mechanical properties of muscle, the natural coordinates of
somatosensory receptors, and the interneuronal circuitry of the spinal cord, are usually oversim-
plified or even ignored. In order to better capture the real control problem faced by the brain,
which is much more complex than a industry robot, [7] proposed a hierarchical framework. The
low levels receive rich sensory input and interact with the world directly. The high levels operate
on more abstract and more goal-related movement representations with lower dimensions. In

engineering models such as LQG and ILQG in modelling biological motor control, low levels
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are usually oversimplified or even ignored because they include too many details such as the dy-
namic mechanical properties of muscle, the natural coordinates of somatosensory receptors, the
interneuronal circuitry of the spinal cord, and computational noise. In order to better capture the
real control problem faced by the brain, which is much more complex than a industry robot, [7]
proposed a hierarchical framework for approximately optimal control of redundant manipulators
such as our arm. We next review some of the mathematical foundations for LQG, ILQG and the

hierarchical control.

1. Linear-Quadratic-Gaussian (LQG) [66]

Optimal feedback control for a linear dynamical system with multiplicative noise can be

modeled in discrete time as follows:

(&
Dynamics Xi41 = Axy + Buy + & + Z aiC’iut 2.1
i=1
d .
Feedback ye=Hx+wi+ Y eiDixy (2.2)
i=1
Cost per step It x,up) = XtTtht + u Ryuy 2.3)
n
Objective min tz_; I(t,x¢,u) (2.4)

where x; € R™ is the state vector, u; € RP is the control vector, y; € R* is the feedback
vector, and ¢ € [0, ..., n] is the discrete time index. A, B, H are dynamical and observation
matrices, C' and D are multiplicative control and observation matrices. The mean and
covariance of the initial state, as well as all the matrices are known. The control cost matrix
R is symmetric positive definite, the state cost () is symmetric positive semidefinite, and
the final cost is XZQan- Noise terms €, wy, €¢, €; are modeled as independent random
variables with multidimensional Gaussian distributions with mean 0 and covariances ¢ >

0,0>0,0=10=1.

Different from open-loop optimization where the goal is to find the control function based
on the dynamics and previous control output, here the goal is to find u;(ug, ...up—1,yo0, ---Yn—1)

to minimize the expected total cost by taking into account the on-line feedback yq, ...yn—1
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Classic LQG problem only considers additive noise (i.e., Cy, ...,C. = 0, D1, ..., Dg = 0)

and the solution includes a Kalman filter and a Linear-Quadratic regulator ??.

Linear-Quadratic Regulator Kalman Filter

w = —Lixy Xi41 = Axy + Buy + K (yr — Hx)

Li=(R+B"S;1B)"'BTS; 1A | K; = A HT(HSHT + Q@)1

Si = Q¢+ ATS; 1 (A — BLy) Vi1 = Qf + (A - K H)S AT

The Kalman filter updates the estimated current state X; in a way to reduce the overall
uncertainty. The linear-quadratic regulator, on the other hand, depends on the output from
the Kalman filter and the history of control. Note the Kalman gain K does not depend
on the cost or control, whereas the control law L does not depend on the noise covariance
or the filter coefficients. This is because when the noise does not depend on the state or

control, estimation and control can be treated separately.

However, one characteristic of human movement is that the noise scales proportional to the
force. In another word, Dy, ..., D4 are no longer zeros. When such multiplicative noise
is present, the above independence property between estimation and control no longer
holds. Assuming that the filter is non-adaptive and does not change as a function of the
specific controls and observations within a simulation run, one iterative algorithm has been
developed [7] which is guaranteed to converge. The algorithm starts with an initialized
Kalman gains Ky, ...K;,,_1 chosen arbitrarily, and then computes the control law based on
this Kalman filter. Next, the Kalman filter is modified according to the updated control
law and such iteration continues until it converges. Equations to compute the control law

and Kalman gain are summarized in Equation 2.5 and Equation 2.6.
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Uy — —Lt}A(t (25)
Li=(R+B"S}. B+ _ Cl(SF+S51)C) ' BTS5,A

S¥ = Qi+ ATS{ (A~ BLy) + ZDz’TKtTSfHKtDi? Sp=Qn
Sg = ATSY | BL, + (A — K;H)'S¢ (A — K. H); S8 =0
st = tr(SE Q0 + S2 (8 + QT+ K QUK ) + 8415 5y, =0

The total expected cost is X7 STx1 + tr((S¥ + S$)X1) + s1.

)A(t+1 = (A — BLt))A(t + Kt(yt — H)A(t) + e (26)
Ky = ASPHT(HSSHT + Q9+ Di(S5 + 55 + £F¢ + 5% D)~

(2

S =4+ Q7+ (A- K H)SPAT + ) GLEFLCF e =¥
7
Y ="+ KHYSAT + (A~ BL)YH(A - BLy) "+
(A— BL)X*HTKF + K,HY$*(A — BL,)T; ¥ = %o%l
1= (A - BL)SI(A— K:H)" — Q" Z5¢ =

Here 7 is the internal noise added to the estimator to account for the multiplicative noise,
which affects the estimator and thus indirectly affects the control law. The Kalman gain
and the control law now depends on each other. When multiplicative noise is gone, Equa-
tion 2.5 and 2.6 are identical to the previous linear-quadratic regulator and Kalman filter.
This model is different from previously introduced minimum variance model [12], since
it not only optimizes the average sequence of control signals, but also the feedback gains

that determine the on-line sensory-guided adjustments.

This LQG model is the first optimal control model of reaching that incorporates signal-
dependent noise and combines state estimation and feedback control into an optimal sen-

sorimotor loop, and has been applied to various reaching and eye movements [66, 71, 68].
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2. Tterative Linear-Quatratic-Gaussian (ILQG) [72, 67]

When the dynamical system is nonlinear, optimal feedback control can be framed as fol-

lows:

Dynamics dx = f(x,u)dt + F(x,u)dw (2.7)
T
Cost-to-go v (t,x) £ E[h(x(T)) + / (1, x(7), 7(7, (x(7)))dT] (2.8)
¢
Objective minv” (0, xq) (2.9)
u

with state x € R™, control u € R™ and standard Brownian motion noise w € RP.
[(t,x,u) > 0 and h(x(T")) > 0 are the instantaneous cost rate and final cost respectively,
which do not need to be quadratic. The admissible control signal may be constrained,
but the constraints are assumed to be convex. Since it is hard to find the globally optimal

control law 7*(¢,x) independent of the initial state, the ILQG algorithm seeks locally-

optimal control law based on specific xg.

To compute the control law, the above system is discretized with time step A, and the time
index is represented by k € [0,n]. To linearize the system dynamics and quadratize the
cost function around the mean trajectory X(¢) and open-loop control sequence u(t), the
state and control are expressed in terms of deviations dxy, £ x.—Xp, dug = up—ug. Then
it has been proved that if the LQG approximation is affine in the form du = 7 (dx) =

I + Li6x%, the corresponding cost-to-go function remains in the quadratic form
T LT
v (0%) = s + 0x" s + 55){ S0x
for all k& € [0, n], and vg(dx) depends on the control duy, = 7 (dx) through the term
1
a(du,6x) = dul (g + Gox) + iéuTHéu

where s,s,.5,9,G, H,l, L can be computed iteratively following some formulas. The

main iterative algorithm can be summarized as follows:

1) Specify the initial open-loop control and compute the corresponding mean trajectory

K1 = Xp + AF (X, Ty)
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Figure 2.7 Schematic illustration of the hierarchical control framework [7].

2) Build a local LQG approximation around X and

3) Design an affine control law for the linearized system in the form du; = 7, (dx) =
Il + Li6x and update the cost-to-go.

4) Compute the new control law u; = Uy + duy , apply the new control law forward
in time to the linearized system 0xj41 = Apdxi + Biouy initialized at dx; = 0, and
compute the new cost.

5) If the new cost and the old cost are sufficiently close, the iteration ends. Otherwise,
apply Levenberg-Marquardt method in computing du and repeat from 2. The process of
Levenberg-Marquardt is as follows. When H is positive semi-definite, we have du =
—H~1(g + Gox). In the case where H has negative eigenvalues (due to approximating
errors), H is resembled by replacing the negative eigenvalues with a positive constant
A. If the new cost is smaller, replace i with u and decrease the Levenberg-marquardt

constant \ to increase the step size. Otherwise, increase .

. Hierarchical framework for approximately optimal control [7]

As an attempt to control a redundant manipulator, [7] proposed a hierarchical control
framework. This framework is inspired by two observations. First, from a computational
viewpoint, optimal feedback controllers for redundant systems exhibit hierarchical orga-
nizations [4, 16]. Secondly, from a biological viewpoint, it is known that sensorimotor

control occurs simultaneously on many levels [39, 40]. Lower-level circuits (e.g., the
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spinal cord) interact with the musculoskeletal system directly by both receiving rich sen-
sory input and generating corresponding motor outputs before the rest of the brain has
had time to react to that input. High-level circuits (e.g., the motor cortex), on the other
hand, operate on a more abstract and goal-related movement representations [41]. The
proposed hierarchical framework also has two layers, illustrated in Fig. 5.1. The plant
is augmented with a low-level feedback controller, which receives information about the
plant state x, and sends to the high-level y(x) that captures the task-relevant aspects of
plant dynamics but has reduced dimensionality. The high-level monitors task progress,
and issues commands v(y) to specify how y(x) should change to archive the goal. Then
the low-level controller computes energy-efficient controls u(v, x) to control the plant to
accomplish the trajectory designed from the high-level. In this way, the high-level solves
the optimal control problem without considering all the details of the plant and thus avoid
running into the curse of dimensionality, the low-level performs an instantaneous feedback

transformation to deal with the details.

Mathematically, the hierarchical control framework can be described as

low-level dynamics %(t) = a(x(t)) + B(x(t))u(t) (2.10)
high-level dynamics y(t) = f(y(t)) + G(y(t))v(t) (2.11)
low-level to high-level y = h(x) (2.12)

where

low-level | high-level

state vector xeR™ | yeR™
control vector ueR™ | veRw
passive dynamics a(x) f(y)

control-dependent dynamics | B(x)u Gly)v

Function h represents a static mapping from the low-level state x € R™* to the high-level
state y € R™, which is selected to satisfy: (1) 3G s.t. §(¢,h(x)) = ¢(¢,x) so that y
contains enough information to compute the state defendant cost, and (2) ny < ny to

reduce the dimensionality.

The objective of the low-level and high-level controller is as follows. The high-level de-

fines y and computes the control v to efficiently accomplish the goal. The low-level
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chooses the control u(v,x) so that y from the low-level will match that from the high-
level, or

H(x)a(x) + H(x)B(x)u=f(y) + G(y)v (2.13)

where H(x) = 0h(x)/0x is the Jacobian of the function h. When there are multiple

u(v, x) to satisfy this, choose the control that leads to smaller control cost r(u, X).

This framework has been applied to a 2 degreee of freedom arm model with 6 muscles
during a 2D reaching task. Its validity, however, needs to be further verified using more

realistic arm models on more complex tasks.

2.3 Motor learning

Everyday experience suggests that we are able to learn from a changing environment
and adjust our movements accordingly. A number of studies have investigated the processes in-
volved in motor adaptation in both predictable and randomly varying environments. The major
approach is to expose subjects to specific perturbations and quantify the changes in their re-
sponses over time during a point-to-point arm reaching movements. The perturbation paradigms

can be classified into three groups:

1. Mechanical perturbation
This is to change the dynamics of the environment by perturbing the moving arm with

some robot arm [8, 31, 32], see Fig. 2.8(a).

2. Visual perturbation
This is to change the relationship between the visual inputs and motor output by displacing

or deforming the visual feedback of the moving arm [28, 29, 30], see Fig. 2.8(b).

3. Target jump
This is to change the original target (virtual or visual) position unexpectedly during a

reaching movement aiming to it [73, 74, 44], see Fig. 2.8(c).
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Figure 2.8 Experimental paradigms for three types of perturbations. (a), Experimental setup
for mechanical perturbation. Subjects were asked to make arm movements while grasping the
handle of a robot arm [8]. A monitor, placed directly in front of the subject and above the
robot arm, displayed the location of the handle as well as targets of reaching movements. The
robot arm had two torque motors at its base that allowed for production of a desired force field.
Subjects were aksed to compensate for the force on the robot arm so as to bring the cursor of
hand within the target square. (b), Experimental paradigm for visual perturbation [9]. As the
finger moved from the starting circle, the cursor was extinguished and shifted laterally from the
true finger location. The hand was never visible and visual feedback was briefly displayed with
different uncertainty on halfway to the target. Subjects were asked to place the cursor on the
target, thereby compensating for the lateral shift. (c), Experimental paradigm for target jump.
Subjects were asked to move to the target, which was either stable or displaced unexpectedly

during the movement. Subjects were instructed that the perturbation might occur, and asked to
always move to the final target location.

28
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2.3.1 Internal model

Many studies have reported that when the perturbation (applied to the hand, visual
scene, or the target) is fixed and repeatable, people can adapt to it quite well. When the per-
turbations are first applied, the trajectory of the hand are distorted compared with the normal,
roughly straight paths, with an increasing end error. After prolonged exposure, people learn
to generate compensatory force that cancels the mechanical perturbation [8, 31, 32], adjust the
moving direction of the arm to cancel the visual displacement [28, 29, 30], or move to the new
target location even before it was displaced [73, 74, 44]. Then, the hand trajectories gradually
become normal, straight paths, and the end errors are also decreased. When the perturbations are
removed suddenly after the adaptation has occurred, the trajectories become distorted and the er-
roneous movement shows approximately the mirror image of the initial deviation caused by the
perturbations [8, 31, 75]. This after-effect supports the idea that motor system forms an internal
model of the perturbation to compensate for the delay and uncertainty of sensory feedback in a
predictive fashion [33, 34]. Among the many attempts to investigate how such internal model is

formed, trial-by-trial learning and Baysian learning have attracted much attention.

2.3.2 Trial-by-trial learning

Inspired by the notion that people learn from their errors, many studies investigated
how errors experienced from the past affect subsequent movements. [75] first reported that
the current movement is affected by only a small number of previous movements, often only
one. Based on this result, [32] proposed a trial-by-trial learning model, which states that error
experienced in a previous trial is used to modify the motor comments in subsequent trials to
prevent similar errors from occurring. [32] also employed a simple linear dynamical system
(LDS) model with a memory of one trial to quantify how such an internal model is acquired
during learning. Later, [76] developed a more general class of LDS which provides a first-
order approximation for any Markovian learning rule in specifying how sensory feedback on
each movement affects the sensorimotor transformation in subsequent movements during motor

learning.
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The LDS model is represented as follows:

z(n+1)=A4z(n)+ Bw(n) +n(n
y (n) =Cz(n) + Dw (n) + v (n) (2.15)

~—

(2.14)

where n is the trial number, y (n) represents the correction on trial n, w (n) represents the
perturbation, and z (n) is the internal learning state free to use in whatever way needed to fit
the data. 7 (n), (n) are independent zero-mean random variables with covariances () and S,
representing the noise during learning and applying the learning in corrections respectively. In
this model, correction y (n) and perturbation w (n) can be measured from experiments, and the
goal is to find the parameter set A, B, C, D, @, S as well as the internal learning sequence z to
best fit the data. [76] also presented an expectation-maximization (EM) algorithm to solve this.
This model, however, has two limitations. First, although "error" was usually mea-
sured as the deviation from the baseline during the movement in most experiment [75, 32, 77],
it is not clear why subjects should to care about the accuracy other than in the end of the move-
ment during a reaching task. Also, "error" should be a relative quantity based on what the goal is,
since the same amount of endpoint positional error may elicit different reactions depending on
how it is related to the performance evaluation [78]. The second limitation lies in the first-order
Markov assumption. Although this assumption has been demonstrated by many experiments
showing that neural structures modified as a result of motor learning do not explicitly retrain
memories of perturbations beyond one trial in the past [75, 32], it