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Movements produced in everyday life pursue a goal. Key to the success of such move-

ments is the motor system’s ability to adjust sensorimotor strategies in a flexible way according to

the goal. On the high level, flexibility entails taking into account multiple task requirements and

properties of the environment and preparing a sensorimotor strategy customized for the present

task and circumstances to better achieve the goal. On the low level, a strategy is flexible if it

makes on-line adjustments that exploit the multiple ways in which a redundant musculoskele-

tal plant can achieve the same behavioral goal. Both levels of flexibility, however, are mostly

ignored by traditional theories. This thesis uses both psychophysical experiments and computa-

tional modeling to explain how biological movements arise from different goals they pursue.

Our first focus is on how task goals shape motor planning. We show that the motor

system customizes sensorimotor strategies for current task requirements, rather than generat-

ing a rigid motor trajectory regardless of the goal. We account for such customization of task

goals in the optimal feedback control framework by using a composite cost function instead of a

homogeneous cost with multiple hard constraints.

We also address how a control strategy is adapted in changing environments. We show

that motor learning involves not only the statistical formation of an internal model to predict

external changes, but also the flexible use of such predictions to adjust motor commands for

maximum performance. Such flexible dependence on predictions is accommodated by extending

the optimal control framework to deal with complicated noise and cost formulations.

Finally, rather than ignoring the musculoskeletal structures of human body, we apply

xx



a hierarchical control framework to a more realistic arm model with 7 degrees of freedom. This

framework is inspired by the facts that optimal feedback controllers for redundant systems ex-

hibit hierarchical organization, and that sensorimotor control occurs simultaneously on many

levels. The basic idea is to have the high level solve the optimal control problem with reduced

dimensionality, and the low level perform an instantaneous feedback transformation of plant dy-

namics according to the high-level commands. This work sheds light on understanding how the

brain controls human body which is a complex redundant system.
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Chapter 1

Introduction

The study of motor control can make use of a large number of experimental tech-

niques including behavioral psychophysical studies, single-cell electrophysiology in non-human

primates, electromyographic (EMG) measurements of muscle activities, functional magnetic

resonance imaging (fMRI) on brain activities, and transcranial magnetic stimulation (TMS) on

selected brain areas. In order to combine the findings of such a large and varied collection of ex-

perimental evidence to better understand motor function on a more fundamental level, we need

some notion of how the brain processes information and implements control. In other words,

how the brain solves the computational problem. The main theme of this thesis is to build a

quantitative model of some aspects of movement control, and use behavioral experiments to

verify the modeling.

Given the high complexity of the central nervous system (CNS) and the motor appa-

ratus itself, studying behavior from a computational perspective always requires making sim-

plifications. For example, traditional theories consider movements generation as two separate

processes. During the planning phase, a desired trajectory is generated based on some cri-

teria; during the execution phase, such trajectory is realized using servo control mechanisms

[10, 11, 12, 13, 13, 14, 15]. The appeal of this idea is that it is easy to implement. In fact, most

industrial robots are controlled in this way. However, given the notion that human movement

is far more graceful than that from a industrial robot, using only simple models bears the risk

of missing the essence of what makes our motor systems special. Indeed, although these theo-

ries account for a large number of averaged behavioral data, they cannot explain the trail-to-trial

variability, e.g., the trajectories are rarely the same when a movement is made repeatedly even

1
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for a well-trained athlete. The challenge hence lies in building "good" models that are complex

enough to capture the underlying computational principles, yet simple enough to be solvable.

We believe that optimal feedback control [4, 16, 17, 1, 6] satisfies the above criteria

to be a good model in studying biological movements. First, the biological processes that con-

tinuously improve behavior closely resemble iterative optimization. This makes optimal control

theory a natural framework for studying the neural control of movement. Secondly, different

from traditional optimal control models that only optimize a desired trajectory and ignore on-line

sensory feedback, optimal feedback control models also optimize a sensorimotor transformation

(control law) to utilize the on-line sensory feedback in a flexible way to better archive the perfor-

mance. Indeed, optimal feedback control models have arguably been more successful than any

other classes of models in terms of explaining the details of experimental data [17]. In particular,

the flexible sensorimotor transformation generated from optimal feedback control has provided

a prefect tool in studying the flexible sensorimotor strategies of the motor system, which is key

to the success of various motor behavior.

Previous work on optimal feedback control has emphasized the sensorimotor strategies

during movement execution, in particular the structure of motor variability and the goal-directed

nature of on-line corrections [18, 19, 20, 21, 4]. Such flexibility has been explained with the

minimal intervention principle, which states that task irrelevant deviations from the average be-

havior should be left uncorrected to maximize performance [4, 17, 16]. The flexibility in motor

planning/preparation, in particular the the systematic relationship between sensorimotor strate-

gies and mixtures of task goals, on the other hand, has received surprisingly little attention.

Optimal control models, which dominate the thinking on trajectory planning, have traditionally

optimized a homogeneous cost and treated all other goals as hard constraints, the latter are sup-

posed to be specified externally, outside the scope of such models. The homogeneous cost could

be energy consumption [22, 23], derivative of hand acceleration [10], derivative of joint torque

[11], or end-point variance [12]. The constraints include endpoint position, final velocity and

acceleration (typically zero), movement time, and intermediate points along the trajectory, all of

which are rarely explicit in real-world tasks, thus raising two questions: (i) how are their values

being chosen; (ii) are their values "chosen" in the first place, or are they stochastic outcomes

of the complex interactions among sensorimotor strategy, noise, musculoskeletal dynamics, and

environment – like any other feature of individual movements? Previous analysis [4, 16] showed
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that choosing desired values for movement parameters that are not explicitly specified by the

task is suboptimal, no matter how the choice is made. This answers question (ii) and renders

question (i) irrelevant. We show that as the relative importance of these components is varied

by the experimenter, subjects modify their strategy in agreement with our theory. As in prior

stochastic optimal control models [12, 4, 24], taking into account the empirically established

signal-dependent nature of motor noise [25, 26, 24, 27] turns out to be important.

Another form of sensorimotor system’s flexibility is its remarkable ability to adapt in

a changing environment. Such adaptability has been demonstrated in adaptation experiments

using visual perturbations [28, 29, 30] as well as force-fields produced by a robotic manipulan-

dum [8, 31, 32]. The common finding is that an internal model of the experimentally imposed

perturbation is acquired, and then used to generate predictive compensation [33, 34]. Despite ex-

tensive work on the statistical formulation of internal models [35, 30, 36, 37, 38], the question of

how the CNS uses these internal models to produce motor commands has received surprisingly

little attention. There is an implicit assumption in the literature that the output of internal models

is in one-to-one correspondence with changes in motor behavior, or in other words the control

system itself is not changing. This assumption has no reason to be true and indeed we show here

that it can be systematically violated. In particular, we demonstrate that the same perturbation

sequence can elicit very different forms of adaptation as far as motor behavior is concerned,

even though the information content (and presumably the internal model being formed) is the

same. These differences are found to be explained within the framework of optimal feedback

control if certain novel extensions are made to the framework. The extensions have to do with

robustness (as in high-order energy costs) as well as a preference for control strategies that tend

to be successful in everyday life outside the lab.

The ultimate goal in the study of motor control is to understand how the brain con-

trols the rest of the body to give rise to a large variety of skilled movements. Although optimal

feedback control models are extremely powerful in explaining high-level computational princi-

ples of motor control, they are not applicable to controlling complex redundant systems such

as human body due to the high dimensionality of the state and control spaces. In fact, most

optimal feedback control models in explaining arm movements have to simplify the entire arm

into a point mass [4, 16]. As a result, they cannot explain important questions such as how to

choose one particular arm configuration, among the many alternatives, to achieve the desired
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end-effector location. As an attempt to solve this control problem on redundant systems, [7]

proposed a hierarchical control framework. This framework is inspired by two observations.

First, from a computational viewpoint, optimal feedback controllers for redundant systems ex-

hibit hierarchical organizations [4, 16]. Secondly, from a biological viewpoint, it is known that

sensorimotor control occurs simultaneously on many levels [39, 40]. Lower-level circuits (e.g.,

the spinal cord) interact with the musculoskeletal system directly by both receiving rich sensory

input and generating corresponding motor outputs before the rest of the brain has had time to re-

act to that input. High-level circuits (e.g., the motor cortex), on the other hand, operate on a more

abstract and goal-related movement representations [41]. The proposed hierarchical framework

also has two layers. The plant is augmented with a low-level feedback controller, which receives

information about the plant state, and sends to the high level more abstract representation that

captures the task-relevant aspects of plant dynamics but has reduced dimensionality. The high

level monitors task progress, and issues commands to archive the goal. Then the low-level con-

troller computes energy-efficient controls to match the high-level commands. In this way, the

high level solves the optimal control problem without considering all the details of the plant

and thus avoid running into the curse of dimensionality, the low level performs an instantaneous

feedback transformation to deal with the details. We apply this framework to a more realistic

arm model with 7 degrees of freedom (DOF) and 14 muscles whose dynamics resemble those

from real muscles.

1.1 Organization of Thesis

The rest of the thesis is organized as follows.

Chapter 2 reviews the literature on studies of the sensorimotor system from three as-

pects: neural basis, motor behavior and computational models. The goal is to raise the attention

on issues that have been over-simplified by traditional computational models of biological move-

ments, which motivate our work.

Chapter 3 focuses on the sensitivity of movements to task goals. We argue that the

CNS relies on sensorimotor strategies optimized for composite cost functions based on specific

task requirements, instead of optimizing a homogeneous cost and treating all other goals as hard

constraints.



5

Chapter 4 extends optimal feedback control framework to account for motor learning

in a changing environment. In particular, we examine how statistical properties of the environ-

ment is used in generating predictive movements to better achieve the behavioral goal.

As an attempt to understand how the brain controls human body, which is characterized

by complex musculoskeletal properties, Chapter 5 applies a hierarchical control framework to

a more realistic arm model with 7 degrees of freedom in tasks such as reaching, drawing, and

orienting.

Chapter 6 summarizes the thesis.



Chapter 2

Background

2.1 The organization of movement

2.1.1 The hierarchical structure of the motor system

Skilled motor behavior is a result of an intimate interaction between the complex me-

chanical properties of the body and a highly distributed control system. This control system is

known to be organized in a hierarchical structure: Lower levels have a variety of reflex circuits

that govern the temporal details of an involving movement; high levels operates on more abstract

and more goal-related movement representations. Fig. 2.1 illustrates a simplified hierarchical

structure of the CNS with three levels: spinal cord, brain stem, and forebrain. The spinal cord

is the lowest level, which includes motor neurons as the "final common pathway" for all mo-

tor output [42], and interneurons that integrate sensory feedback with descending commands

from higher centers. This level mediates a variety of reflexes and rhythmic automatisms such

as locomotion and scratching. The brain stem is the second level in the motor hierarchy, which

integrates spinal reflexes into a variety of automated movements that control posture and loco-

motion. The highest level is provided by the cerebral cortex, which projects directly to the spinal

cord and also regulates motor tracts originated in the brain stem. The most important areas in

this level includes the primary motor cortex (M1), posterior parietal cortex (PPC), and the pre-

frontal cortex (PFC). M1 contributes the largest number of axons to the corticospinal tract and

receives input from other cortical regions that are predominantly involved in motor planning. M1

neurons have the unique property of coding anything from hand directions to detailed patterns

6
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of muscle activity [43]. PPC is crucial for internal feedback loop and thus on-line corrections.

The most convincing argument is provided in [44], where the smooth on-line corrections during

a reaching movement was found to be disrupted when a single transcranial magnetic stimulation

(TMS) was applied over the left intraparietal sulcus(IPS) at the onset of hand movement. PPC

may also play an important role in integrating sensory signals from many modalities (e.g. visual,

proprioceptive, auditory and vestibular), as well as afferent copy signals from motor structures

[45]. PFC is important for the organization of goal-directed, rule-based behaviors [46, 47].

In addition to this hierarchical structure, the cerebellum and basal ganglia also provide

feedback circuits that regulate cortical and brain stem motor areas.

1. Cerebellum

It is widely believed that the cerebellum regulates movement by both predicting the conse-

quence of taking an action and providing the neural command necessary to archive some

desired trajectory. The fact that cerebellum patients had difficulty adapting their motor

commands when limb dynamics were altered [48] provides direct evidence for the above

hypothesis. This idea is also supported by the experiments showing that although mon-

keys were able to learn to contract the extensor triceps muscle to prevent the elbow from

overshooting after the forearm was unexpected perturbed, such predictive movement was

disturbed when some deep nuclear neurons in the cerebellum were deactivated [49].

2. Basal ganglia

Basal ganglia is usually assumed to be important in the selection and initiation of move-

ments, the regulation of continuous movements, the control of movement sequences and

of other automated actions, and the scaling of movement parameters. Both Huntington’s

disease (HD) and Parkinson’s disease (PD) are due to pathological changes in the basal

ganglia. In HD, degeneration begins in the striatal patches that inhibit dopamine (DA)

neurons, resulting in an underestimation of the likelihood of success as the movements

progresses. This causes the frequent change of control policies for small errors and leads

to excessive movement [48]. PD, on the other hand, is due to the decreased level of

dopamine in the basal ganglia. PD patients are found to be able to make on-line cor-

rections only when the arm was not visible. This suggests that basal ganglia dependent

circuits are important in integrating sensory information from different sources, especially



8

proprioception, and in transforming the integrated signal for motor utilization [50].

2.1.2 Areas involved in motor learning

One characteristic of the motor system is its remarkable ability of learning. Many areas

in the hierarchical structure are involved in motor learning, and different areas may in change of

different types of learning [2], see Fig. 2.2.

1. Cerebellum

The cerebellum is proposed to be specialized for supervised learning based on the er-

ror signal encoded in the climbing fibers. The most direct evidence comes from Ito in

vestibulo-ocular reflex (VOR) adaptation experiments, showing that long-term depression

(LTD) of the Purkinje cell synapses dependent on the climbing fiber input is the neural

substrate of such error-driven learning [51].

2. Basal Ganglia

The basal ganglia is suggested to drive the variability in behavior necessary for trial-

and-error learning based on reinforcement [52]. Dopamine-containing neurons have been

demonstrated to encode the probability of reward (sometimes the conditional probability

of reward) in their phasic firing and the uncertainty of the prediction in their maintained

firing levels [53, 54]. [55] also found that the neural activity responses shifted relative to

the expected reward value, and the gain adjusted to the variance of reward value.

3. Cerebral cortex

The cerebral cortex is assumed to make unsupervised learning based on Hebbian plasticity

and reciprocal connections within and between cortical areas.

2.1.3 Psychophysical principles obeyed by voluntary movements

Rather than studying the neural basis for generating movements, psychophysical stud-

ies analyzed motor behaviors during various voluntary movements and have revealed some gen-

eral laws of biological movements summarized as follows:

1. Smooth movement trajectories: Trajectories of the hand between the spatial targets are

relatively straight from the start to end of movement, and the velocity of the hand usually
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PPC

Figure 2.1 Hierarchical organization of the CNS [1]. VN, vestibular nuclei; RF, reticular forma-
tion; C, cerebellum; RN, red nucleus; BG, basal ganglia; V1, primary visual cortex; M1, primary
motor cortex; PF, prefrontal cortex; dPM, dorsal premotor cortex; SMA, supplementary motor
area; S1, primary somatosensory cortex; 5, parietal cortex area 5; 7, region of posterior parital
cortex.
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(a)

(b) (c)

Figure 2.2 Illustration of the three main learning components [2]. (a), Specialization of the cere-
bellum, the basal ganglia, and the cerebral cortex for different types of learning. (b), Schematic
diagram of the cortico-basal ganglia loop and the possible roles of its components in a rein-
forcement learning model. The neurons in the stratum predict the future reward for the current
state and the candidate actions. The error in the prediction of future reward, the temporal differ-
ence (TD) error, is encoded in the activity of dopamine neurons and is used for learning at the
cortico-striatal synapses. The filled and open circles denote inhibitory and excitatory synapse,
respectively. (c), Schematic diagram of the cortico-cerebellar loop. In a supervised learning
model of the cerebellum, the climbing fibers from the inferior olive provide the error signal for
the Purkinje cells (PC). Coincident inputs from the inferior olive and the granule cells result
in LTD of the granule-to-Purkinje synapses. The filled and open circles denote inhibitory and
excitatory synapses, respectively.
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shows a characteristic bell-shaped profile with peak hand velocity proportional to move-

ment distance (Fig. 2.3(a)). The motor equivalence theory [3] proposed that a purposeful

movement is represented in the brain in some abstract form rather than as a series of joint

motions or muscle contractions. This is consistent with the idea that the high level in the

hierarchical structure represent the more abstract way, and leaves all the details to the low

levels.

2. Relationship between path curvature and hand angular velocity : Hand movements are

usually slowed down during curved movement segments and sped up during straight seg-

ments. This phenomena is captured by the two-thirds power law based on observations

during drawing or scribbling. Denote path curvature with c and hand angular velocity with

ω, then the two-thirds power law states ω ∝ cβ(β ≈ 2/3) or equivalently v ∝ r1−β where

v is the tangential velocity and r is radius of curvature (1/ω).

3. Trade-off between movement duration and terminal accuracy: Faster movements are usu-

ally less accurate for a given amplitude, captured by Fitt’s law [56]. Denote movement

distance with d, movement duration with t, and target width with w, then Fitt’s law states

t = c1 + c2 log2( dw + 1), where c1, c2 are experimentally determined constants.

4. Trial-to-trial variability: Despite the fact that movement can be remarkably precise, even

a simplest reaching movement is seldom performed twice in exactly the same way. Fig.

2.3(b) illustrated the trial-to-trial variability of hand motion when subjects hit a ping-pong

ball repeatedly [4]. Such variability is mainly due to the inherent noise in the sensorimotor

system. For example, in an experiment to study the trial-to-trial variation of Purkinje

cell (PC) activity in the floccular complex of the cerebellum during smooth-pursuit eye

movement, it has been shown that some correlated variation are shared across a population

of neurons and can not be canceled out by averaging. This highly covariant PC activity

leads to motor variation in pursuit initiation even before the noise accompanied with motor

output is sent out [57].
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(a)

(b)

Figure 2.3 Features of motor behavior. (a), Trajectories and velocities of the hand during point-
to-point reaching movements in the horizontal plane using a mechanical linkage to monitor mo-
tion of the hand in space [3]. Trajectories of the hand between the spatial targets are relatively
straight from the start to end of movement and the velocity of the hand shows a characteris-
tic bell-shaped profile with peak hand velocity proportional to movement distance. (b), Hand
motions when subjects hit a ping-pong ball repeatedly [4].
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2.2 Optimization principle in sensorimotor control

Section 2.1 summarized some key results regarding biological movement based on

neurological and psychophysical studies. An important challenge for understanding motor func-

tions is to connect the neural control with motor behavior by taking the complex limb mechanics

into account. To do this, computational modeling provides a useful tool. Among the many com-

putational models aiming to explain biological movement, optimal control models have been the

most successful ones. The appeal of optimality principles lies in the fact that they only require a

performance criterion that describes what the goal is and then fill in all movement details auto-

matically by searching for the control strategy to best achieves the performance. Such a criterion

is referred to as a ’cost function’, defined as a scaler function that depending on the current set of

control signals as well as the set of variables describing the current state of the musculo-skeletal

system and environment. Depending on how on-line sensory feedback is used in optimization,

optimal control modes can be classified into two categories: open-loop and closed-loop opti-

mization. Open-loop optimization usually assumes deterministic dynamics and ignores the role

of on-line sensory feedback. Closed-loop optimization, in contrast, assumes stochastic system

and tries to construct the sensorimotor transformation (or feedback control law) that yields the

best possible performance. Key models in each category will be reviewed next.

2.2.1 Open-loop optimization

Most existing optimal control models use open-loop optimization, where performing a

task is assumed to have two separate stages: motor planning and motor execution. During motor

planning, the best movement trajectory is formed by optimizing some cost function. During

motor execution, some predefined servo mechanism is used to track the desired trajectory.

Motor planning

A fundamental property of the motor system is the redundancy. For example, to reach a

target, there are many trajectories and velocities the hand may follow. Given each trajectory and

velocity profile, each location along the path can be achieved with multiple combinations of joint

angles. Finally, each arm configuration can be accomplished by different muscle activations, due

to the overlapping actions of muscles and the ability to co-contract (Fig. 4.1). Motor planning
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Figure 2.4 The levels in the motor hierarchy are shown with the triangles between the levels
indicating the reduction in the degrees of freedom between the higher and lower levels [5].
Specifying a pattern of behavior at any level completely specifies the patterns at the level below
but may result from different output from the level above. Planning can be considered as the
process to choose specific patterns at each level to achieve the extrinsic task goals.

is considered as the computational process of choosing one particular pattern, among the many

alternatives, to achieve the goal.

Many theories have been proposed to find the "optimal plan", differing mainly in how

"optimal" is defined, or what cost function is being minimized.

1. Minimum Jerk Model [10]

Based on the observation that point-to-point movements of the hand are always smooth in

the Cartesian space, it was proposed that a major goal of motor coordination is to produce

the smoothest possible movement of the hand. In this model, the cost function is defined

as the square of the magnitude of jerk (derivative of hand acceleration in the Cartesian

space) integrated over the entire movement.

This model has been testified in unconstrained point-to-point movements, unconstrained

curved movements, and obstacle-avoidance movements. In addition to generating smooth

movements, it also accounts for the two-third power law for movement along a constrained

path.
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However, since this model is based solely on the kinematics of movement while neglect-

ing the dynamics of the musculoskeletal system, it is successful only when formulated

extrinsic space and when the demands of the movement lie within the capabilities of the

neuromuscular system. Also, it is not clear why people want to generate smooth move-

ment. As the author pointed out "It is not suggested that minimizing the jerk is the single

objective underlying all movements. Minimization of mean-squared jerk is a mathematical

model of one movement objective, the production of smooth, graceful movements".

2. Minimum Torque-change Model [11]

Different from the minimum jerk model that considers only the geometry of movement,

this model takes the dynamics of the arm into account, and generates motor commands

required to achieve the movement directly. This model defines the cost function as the

square of the derivative of joint torque integrated over the entire movement, based on the

notion that the control minimizing the change of torque generates the smooth torque move-

ment and therefore reduces wear and tear on the musculoskeletal system. Meanwhile, the

consumption of energy is relatively low because unnecessary force is avoided.

This model is closely related to the minimum jerk model, because acceleration is locally

proportional to torque at zero speed. However, by taking into account the dynamics, the

minimum torque-change model successfully predict the curved path as observed in move-

ment under external force and movement through a sequence of via points, rather than the

straight path predicted by the minimum jerk model.

Despite its success, the minimum torque-change model, as the minimum jerk model, still

does not answer the question why the CNS should optimize this quantity other than the

others, how the CNS estimate such complex quantities and then integrate them over the

duration of a movement, and how to select the movement duration. Most importantly,

neither of the above two models can explain the motor variability.

3. Minimum Variance Model [12]

This model defines the cost function as total positional variance in the end of the move-

ment. This is based on the observation that neural commands have signal-dependent noise,

whose standard deviation increases linearly with the absolute value of the neural control

signal.
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This approach has several important ramifications. First, because abrupt changes in the

trajectory of the eye or arm require large driving signals which would generate more noise

and therefore are suboptimal, this model explains why optimal trajectories are inherently

smooth. Secondly, signal-dependent noise inherently imposes a trade-off between move-

ment duration and terminal accuracy, consistent with Fitt’s law. Thirdly, different from

previous models that predicts only the average trajectories, this model also predicts the

pattern of variability. Most importantly, it provides a biologically plausible theoretical un-

derpinning for both eye and arm movements. Since such costs are directly available to the

nervous system,the optimal trajectory could be learned from the experience of repeated

movements

However, as an open-loop method, it ignores the on-line sensory feedback. Since variabil-

ity is significantly affected by feedback especially, the predicted variance is less reliable

in movements of longer duration.

Motor execution

After the motor plan is generated, sequence of the motor commands is needed to gen-

erate the desired movement trajectory and correct the error caused by the noise in both the

sensorimotor system and the environment during the movement. Such process is referred to as

"inverse problem". This inverse problem is difficult to solve mainly due to the fact that the hu-

man body is a highly non-linear system with huge redundancies. As the result, discovering the

values of the model parameters may be time-consuming, and extra criteria is needed to select one

parameter set among the many alternatives all consistent with the data. Among the many meth-

ods, the Equilibrium-Point (EP) hypothesis attracts the most attention since it takes advantage of

the springlike muscle properties, and solves the inverse problem easily without considering the

complicate non-linear dynamics. This idea roots in two facts: (1) a limb is at static equilibrium

in the absence of external loads when all the torques generated by opposing muscles cancel out;

(2) when the net stiffness due to muscle action on the limb is positive, neural actives related to

the limb movement can be translated into corresponding equilibrium angle, determined by the

balance of the springlike torques that keep the limb at rest [13]. According to this hypothesis, the

equilibrium acts as centers of attraction, and the difference between actual and desired position

generates a springlike force directed toward a virtual position, like a servo controller. Although
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the early Alpha model [15] only focuses on the feed-forward path and can not deal with external

force, the later Lambda model [13, 14] also considers the feedback mechanisms and therefore

is able to take dynamics of the system into account. Nevertheless, the Lambda model can not

explain explicitly how to control the equilibrium point to move different external loads since this

gets into inverse dynamic problems again.

Criticism of the EP hypothesis usually focuses on four aspects. First, theoretical val-

ues necessary to produce very fast forearm movements are much higher than those estimated

from human arm [58]. Secondly, the EP hypothesis can not explain why sensory feedback is im-

portant in precise movement [59]. Thirdly, it is not clear how to get the "equilibrium positions".

Minimum Jerk model provided a way to find such desired trajectories based on the geometry of

the movement. Later, this model was modified so that it could account for the trajectory mod-

ification task [60] and obstacle avoidance task [61]. Nonetheless, it is not known how such a

trajectory might be computed in more complex tasks.

2.2.2 Optimal feedback control

In addition to optimizing the desired trajectory as in open-loop optimization, closed-

loop optimization also constructs the best possible transformation from states of the body and

environment into control signals, or the control law, to better utilize the on-line feedback in

achieve the goal. As the result, it can accounts for not only the averaged behavior as open-loop

optimization does, but also the trial-to-trial variability during movement. Closed-loop optimiza-

tion is usually referred to as optimal feedback control [4, 16, 17, 1, 6].

General framework

The general framework of optimal feedback control is illustrated in Fig. 2.5. It is com-

posed of both an estimator and a controller. The goal of the estimator is to integrate different

sources of information to reduce the overall uncertainty and compensate for the delay, indepen-

dent of the behavioral goal; whereas the goal of the controller is to determine what actions to

take at each time step to best achieve the overall performance.

1. Optimal estimator
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Figure 2.5 Schematic illustration of optimal feedback control [1].

Since the state of the plant (i.e. the arm in reaching movements) is observable only through

delayed and noisy sensors, a recursive estimator is developed to predict internal state

changes before the corresponding sensory data have arrived. This predictive capability

of the estimator allows the controller to counteract disturbance before they cause errors.

Input to the estimator includes both the sensory inflow (information from visual feedback

and proprioception) and the motor outflow (the motor commands sent to the arm). Evi-

dence of using sensory feedback comes from the fact that visually guided movements are

in general more accurate, and movement from deafferent patients are less accurate [62].

Evidence of using the motor outflow has been provided in a series studies showing that the

self-produced tactile stimulus is perceived as less ticklish than the same stimulus generated

externally [63]. Based on the fMRI result, it has been proposed that the cerebellum might

be involved in predicting the specific sensory consequences of movements, providing the

signal that is used to cancel the sensory response to self-generated stimulation.

The estimator is usually implemented by a Kalman filter [64]. Kalman filter an optimal

estimation when the system is linear and the noise is Gaussian [64], and can be extended to

accommodate non-linear system [65]. It integrates different sources of information, such

as sensory data, recent control signals, earlier output, as well as the knowledge of body

dynamics, in proportion to their reliability regarding the current state, and thereby reduces

the overall uncertainty. Although little is known how the Kalman filter is implemented in

the brain, many studies have shown that movements under different kinds of uncertainties

can be explained using Kalman filter. The most well documented study is from [33], where

participants were asked to estimate the location of the hand at the end of movements made
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in the dark and under externally imposed forces. They found that subjects overestimated

the extent of unseen arm movements, and the temporal dynamics of such estimation could

be fully accounted by a Kalman filter that integrates the sensory inflow with motor outflow.

2. Optimal controller

Based on the estimation of current states and a predefined cost function to evaluate how the

current action is related to the overall performance, the controller explores all the possible

controls and selects the one that minimizes the cost. Different from open-loop optimiza-

tion where the control law is predefined arbitrarily, here the control law is determined by

requirement of specific tasks as well as the noise and delay in the sensorimotor system.

A key feature of the controller is its ability to choose one out of many possible solutions

from the redundant system such as our motor system. This has been explained by the

"minimal intervention" principle [16], which states that deviations away from the average

behavior is not corrected unless those deviations interfere with task performance. This

idea is explained in Fig. 4.3. The goal of the task is to use the control as small as possible

to maintain x1 + x2 = target. If the variance of initial errors is a circular Gaussian,

then traditional open-loop methods force x1 = x2 = target/2 and try to reduce the

errors equally from all directions resulting in the gray circle. On the other hand, the

optimal controller only depends on x1 + x2 but not individual values of x1 and x2. As

the result, it pushes the states only along the task-relevant direction and leaves the error

in the redundant direction uncorrected, represented by the black ellipse. According to

the minimal intervention principle, trial-to-trial variability during movement is not due to

sloppiness, but actually indicates a good quality of the sensorimotor system.

Solution to optimal feedback control

Optimal feedback control is in general hard to solve, except for the simple case of

linear dynamics, quadratic costs and Gaussian noise sources (LQG) [66]. To model motor be-

havior in more realistic situations, the iterative LQG (ILQG) algorithm [67] provides a more

flexible framework. It iteratively uses linearizations of the nonlinear dynamics around the ac-

curate trajectory, and improves that trajectory by minimizing a quadratic approximation to the

optimal cost-to-go function (estimated accumulated cost till the end of movement assuming the
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Figure 2.6 Properties of optimal feedback controllers in redundant tasks [6].

behavior is optimal). As a result, it can deal with nonlinear systems such as our arm, with more

complex models of cost. In addition, it allows us to embed statistical distributions of external

perturbations in the framework. Both LQG and ILQG, however, require a predefined duration,

which is usually not specified in real movements. One modification is to add a term to punish

long duration in the cost function [68], whereas a more general way to solve the optimal control

problem is to discretized the state and control spaces and convert it into a Markov decision prob-

lem (MDP) [69] which can be solved via dynamic programming [70]. The MDP model can deal

with any forms of dynamics with any forms of noise and any forms of cost functions. However,

when the dimension of the states in describing the dynamical system is too big (>6), such method

becomes inapplicable due to the curse of dimensionality. Despite the nice mathematical formula

and wide success in explaining behavioral data of the above methods, details in the low-level of

the motor system such as dynamic mechanical properties of muscle, the natural coordinates of

somatosensory receptors, and the interneuronal circuitry of the spinal cord, are usually oversim-

plified or even ignored. In order to better capture the real control problem faced by the brain,

which is much more complex than a industry robot, [7] proposed a hierarchical framework. The

low levels receive rich sensory input and interact with the world directly. The high levels operate

on more abstract and more goal-related movement representations with lower dimensions. In

engineering models such as LQG and ILQG in modelling biological motor control, low levels
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are usually oversimplified or even ignored because they include too many details such as the dy-

namic mechanical properties of muscle, the natural coordinates of somatosensory receptors, the

interneuronal circuitry of the spinal cord, and computational noise. In order to better capture the

real control problem faced by the brain, which is much more complex than a industry robot, [7]

proposed a hierarchical framework for approximately optimal control of redundant manipulators

such as our arm. We next review some of the mathematical foundations for LQG, ILQG and the

hierarchical control.

1. Linear-Quadratic-Gaussian (LQG) [66]

Optimal feedback control for a linear dynamical system with multiplicative noise can be

modeled in discrete time as follows:

Dynamics xt+1 = Axt +But + ξt +
c∑
i=1

εitCiut (2.1)

Feedback yt = Hxt + ωt +
d∑
i=1

εitDixt (2.2)

Cost per step l(t,xt,ut) = xTt Qtxt + utRtut (2.3)

Objective min
u

n∑
t=0

l(t,xt,ut) (2.4)

where xt ∈ Rm is the state vector, ut ∈ Rp is the control vector, yt ∈ Rk is the feedback

vector, and t ∈ [0, ..., n] is the discrete time index. A,B,H are dynamical and observation

matrices, C and D are multiplicative control and observation matrices. The mean and

covariance of the initial state, as well as all the matrices are known. The control cost matrix

R is symmetric positive definite, the state cost Q is symmetric positive semidefinite, and

the final cost is xTnQnxn. Noise terms εt, ωt, εt, εt are modeled as independent random

variables with multidimensional Gaussian distributions with mean 0 and covariances Ωξ ≥
0, Ωω > 0, Ωε = I , Ωε = I .

Different from open-loop optimization where the goal is to find the control function based

on the dynamics and previous control output, here the goal is to find ut(u0, ...un−1,y0, ...yn−1)

to minimize the expected total cost by taking into account the on-line feedback y0, ...yn−1

.
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Classic LQG problem only considers additive noise (i.e., C1, ..., Cc = 0, D1, ..., Dd = 0)

and the solution includes a Kalman filter and a Linear-Quadratic regulator ??.

Linear-Quadratic Regulator Kalman Filter

ut = −Ltx̂t x̂t+1 = Ax̂t +But +Kt(yt −Hx̂t)

Lt = (R+BTSt+1B)−1BTSt+1A Kt = AΣtH
T (HΣtH

T + Ωω)−1

St = Qt +ATSt+1(A−BLt) Σt+1 = Ωξ + (A−KtH)ΣtA
T

The Kalman filter updates the estimated current state x̂t in a way to reduce the overall

uncertainty. The linear-quadratic regulator, on the other hand, depends on the output from

the Kalman filter and the history of control. Note the Kalman gain K does not depend

on the cost or control, whereas the control law L does not depend on the noise covariance

or the filter coefficients. This is because when the noise does not depend on the state or

control, estimation and control can be treated separately.

However, one characteristic of human movement is that the noise scales proportional to the

force. In another word, D1, ..., Dd are no longer zeros. When such multiplicative noise

is present, the above independence property between estimation and control no longer

holds. Assuming that the filter is non-adaptive and does not change as a function of the

specific controls and observations within a simulation run, one iterative algorithm has been

developed [7] which is guaranteed to converge. The algorithm starts with an initialized

Kalman gains K0, ...Kn−1 chosen arbitrarily, and then computes the control law based on

this Kalman filter. Next, the Kalman filter is modified according to the updated control

law and such iteration continues until it converges. Equations to compute the control law

and Kalman gain are summarized in Equation 2.5 and Equation 2.6.
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ut = −Ltx̂t (2.5)

Lt = (R+BTSx
t+1B +

∑
i

CTi (Sx
t+1 + Se

t+1)Ci)−1BTSx
t+1A

Sx
t = Qt +ATSx

t+1(A−BLt) +
∑
i

DT
i K

T
t S

e
t+1KtDi; Sx

n = Qn

Se
t = ATSx

t+1BLt + (A−KtH)TSe
t+1(A−KtH); Se

n = 0

st = tr(Sx
t+1Ωξ + Se

t+1(Ωξ + Ωη +KtΩωKT
t )) + st+1; sn = 0

The total expected cost is x̂T1 S
x
1 x̂1 + tr((Sx

1 + Se
1 )Σ1) + s1.

x̂t+1 = (A−BLt)x̂t +Kt(yt −Hx̂t) + ηt (2.6)

Kt = AΣe
tH

T (HΣe
tH

T + Ωω +
∑
i

Di(Σe
t + Σx̂

t + Σx̂e
t + Σex̂

t )DT
i )−1

Σe
t+1 = Ωξ + Ωη + (A−KtH)Σe

tA
T +

∑
i

CiLtΣx̂
t L

T
t C

T
i ; Σe

0 = Σ0

Σx̂
t+1 = Ωη +KtHΣe

tA
T + (A−BLt)Σx̂

t (A−BLt)T+

(A−BLt)Σx̂e
t H

TKT
t +KtHΣex̂

t (A−BLt)T ; Σx̂
1 = x̂0x̂T0

Σx̂e
t+1 = (A−BLt)Σx̂e

t (A−KtH)T − Ωη; Σx̂e
0 = 0

Here ηt is the internal noise added to the estimator to account for the multiplicative noise,

which affects the estimator and thus indirectly affects the control law. The Kalman gain

and the control law now depends on each other. When multiplicative noise is gone, Equa-

tion 2.5 and 2.6 are identical to the previous linear-quadratic regulator and Kalman filter.

This model is different from previously introduced minimum variance model [12], since

it not only optimizes the average sequence of control signals, but also the feedback gains

that determine the on-line sensory-guided adjustments.

This LQG model is the first optimal control model of reaching that incorporates signal-

dependent noise and combines state estimation and feedback control into an optimal sen-

sorimotor loop, and has been applied to various reaching and eye movements [66, 71, 68].
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2. Iterative Linear-Quatratic-Gaussian (ILQG) [72, 67]

When the dynamical system is nonlinear, optimal feedback control can be framed as fol-

lows:

Dynamics dx = f(x,u)dt+ F (x,u)dω (2.7)

Cost-to-go vπ(t,x) , E[h(x(T)) +
∫ T

t
l(τ,x(τ), π(τ, (x(τ)))dτ ] (2.8)

Objective min
u
vπ(0,x0) (2.9)

with state x ∈ Rm, control u ∈ Rm and standard Brownian motion noise ω ∈ Rp.

l(t,x,u) ≥ 0 and h(x(T )) ≥ 0 are the instantaneous cost rate and final cost respectively,

which do not need to be quadratic. The admissible control signal may be constrained,

but the constraints are assumed to be convex. Since it is hard to find the globally optimal

control law π∗(t,x) independent of the initial state, the ILQG algorithm seeks locally-

optimal control law based on specific x0.

To compute the control law, the above system is discretized with time step ∆, and the time

index is represented by k ∈ [0, n]. To linearize the system dynamics and quadratize the

cost function around the mean trajectory x̄(t) and open-loop control sequence ū(t), the

state and control are expressed in terms of deviations δxk , xk−x̄k, δuk , uk−ūk. Then

it has been proved that if the LQG approximation is affine in the form δu = πk(δx) =

lk + Lkδx, the corresponding cost-to-go function remains in the quadratic form

vk(δx) = sk + δxT sk +
1
2
δxTSkδx

for all k ∈ [0, n], and vk(δx) depends on the control δuk = πk(δx) through the term

a(δu, δx) = δuT (g +Gδx) +
1
2
δuTHδu

where s, s, S, g,G,H, l, L can be computed iteratively following some formulas. The

main iterative algorithm can be summarized as follows:

1) Specify the initial open-loop control and compute the corresponding mean trajectory

x̄k+1 = x̄k + ∆f(x̄k, ūk)
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Figure 2.7 Schematic illustration of the hierarchical control framework [7].

2) Build a local LQG approximation around x and u

3) Design an affine control law for the linearized system in the form δuk = πk(δx) =

lk + Lkδx and update the cost-to-go.

4) Compute the new control law ũk = uk + δuk , apply the new control law forward

in time to the linearized system δxk+1 = Akδxk + Bkδuk initialized at δx1 = 0, and

compute the new cost.

5) If the new cost and the old cost are sufficiently close, the iteration ends. Otherwise,

apply Levenberg-Marquardt method in computing δu and repeat from 2. The process of

Levenberg-Marquardt is as follows. When H is positive semi-definite, we have δu =

−H−1(g + Gδx). In the case where H has negative eigenvalues (due to approximating

errors), H is resembled by replacing the negative eigenvalues with a positive constant

λ. If the new cost is smaller, replace ūk with ũk and decrease the Levenberg-marquardt

constant λ to increase the step size. Otherwise, increase λ.

3. Hierarchical framework for approximately optimal control [7]

As an attempt to control a redundant manipulator, [7] proposed a hierarchical control

framework. This framework is inspired by two observations. First, from a computational

viewpoint, optimal feedback controllers for redundant systems exhibit hierarchical orga-

nizations [4, 16]. Secondly, from a biological viewpoint, it is known that sensorimotor

control occurs simultaneously on many levels [39, 40]. Lower-level circuits (e.g., the
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spinal cord) interact with the musculoskeletal system directly by both receiving rich sen-

sory input and generating corresponding motor outputs before the rest of the brain has

had time to react to that input. High-level circuits (e.g., the motor cortex), on the other

hand, operate on a more abstract and goal-related movement representations [41]. The

proposed hierarchical framework also has two layers, illustrated in Fig. 5.1. The plant

is augmented with a low-level feedback controller, which receives information about the

plant state x, and sends to the high-level y(x) that captures the task-relevant aspects of

plant dynamics but has reduced dimensionality. The high-level monitors task progress,

and issues commands v(y) to specify how y(x) should change to archive the goal. Then

the low-level controller computes energy-efficient controls u(v,x) to control the plant to

accomplish the trajectory designed from the high-level. In this way, the high-level solves

the optimal control problem without considering all the details of the plant and thus avoid

running into the curse of dimensionality, the low-level performs an instantaneous feedback

transformation to deal with the details.

Mathematically, the hierarchical control framework can be described as

low-level dynamics ẋ(t) = a(x(t)) +B(x(t))u(t) (2.10)

high-level dynamics ẏ(t) = f(y(t)) +G(y(t))v(t) (2.11)

low-level to high-level y = h(x) (2.12)

where

low-level high-level
state vector x ∈ Rnx y ∈ Rny

control vector u ∈ Rnu v ∈ Rnv

passive dynamics a(x) f(y)

control-dependent dynamics B(x)u G(y)v

Function h represents a static mapping from the low-level state x ∈ Rnx to the high-level

state y ∈ Rny , which is selected to satisfy: (1) ∃q̃ s.t. q̃(t,h(x)) = q(t,x) so that y

contains enough information to compute the state defendant cost, and (2) ny < nx to

reduce the dimensionality.

The objective of the low-level and high-level controller is as follows. The high-level de-

fines y and computes the control v to efficiently accomplish the goal. The low-level
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chooses the control u(v,x) so that ẏ from the low-level will match that from the high-

level, or

H(x)a(x) +H(x)B(x)u = f(y) +G(y)v (2.13)

where H(x) = ∂h(x)/∂x is the Jacobian of the function h. When there are multiple

u(v,x) to satisfy this, choose the control that leads to smaller control cost r(u,x).

This framework has been applied to a 2 degreee of freedom arm model with 6 muscles

during a 2D reaching task. Its validity, however, needs to be further verified using more

realistic arm models on more complex tasks.

2.3 Motor learning

Everyday experience suggests that we are able to learn from a changing environment

and adjust our movements accordingly. A number of studies have investigated the processes in-

volved in motor adaptation in both predictable and randomly varying environments. The major

approach is to expose subjects to specific perturbations and quantify the changes in their re-

sponses over time during a point-to-point arm reaching movements. The perturbation paradigms

can be classified into three groups:

1. Mechanical perturbation

This is to change the dynamics of the environment by perturbing the moving arm with

some robot arm [8, 31, 32], see Fig. 2.8(a).

2. Visual perturbation

This is to change the relationship between the visual inputs and motor output by displacing

or deforming the visual feedback of the moving arm [28, 29, 30], see Fig. 2.8(b).

3. Target jump

This is to change the original target (virtual or visual) position unexpectedly during a

reaching movement aiming to it [73, 74, 44], see Fig. 2.8(c).
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(a) (b)

(c)

Figure 2.8 Experimental paradigms for three types of perturbations. (a), Experimental setup
for mechanical perturbation. Subjects were asked to make arm movements while grasping the
handle of a robot arm [8]. A monitor, placed directly in front of the subject and above the
robot arm, displayed the location of the handle as well as targets of reaching movements. The
robot arm had two torque motors at its base that allowed for production of a desired force field.
Subjects were aksed to compensate for the force on the robot arm so as to bring the cursor of
hand within the target square. (b), Experimental paradigm for visual perturbation [9]. As the
finger moved from the starting circle, the cursor was extinguished and shifted laterally from the
true finger location. The hand was never visible and visual feedback was briefly displayed with
different uncertainty on halfway to the target. Subjects were asked to place the cursor on the
target, thereby compensating for the lateral shift. (c), Experimental paradigm for target jump.
Subjects were asked to move to the target, which was either stable or displaced unexpectedly
during the movement. Subjects were instructed that the perturbation might occur, and asked to
always move to the final target location.
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2.3.1 Internal model

Many studies have reported that when the perturbation (applied to the hand, visual

scene, or the target) is fixed and repeatable, people can adapt to it quite well. When the per-

turbations are first applied, the trajectory of the hand are distorted compared with the normal,

roughly straight paths, with an increasing end error. After prolonged exposure, people learn

to generate compensatory force that cancels the mechanical perturbation [8, 31, 32], adjust the

moving direction of the arm to cancel the visual displacement [28, 29, 30], or move to the new

target location even before it was displaced [73, 74, 44]. Then, the hand trajectories gradually

become normal, straight paths, and the end errors are also decreased. When the perturbations are

removed suddenly after the adaptation has occurred, the trajectories become distorted and the er-

roneous movement shows approximately the mirror image of the initial deviation caused by the

perturbations [8, 31, 75]. This after-effect supports the idea that motor system forms an internal

model of the perturbation to compensate for the delay and uncertainty of sensory feedback in a

predictive fashion [33, 34]. Among the many attempts to investigate how such internal model is

formed, trial-by-trial learning and Baysian learning have attracted much attention.

2.3.2 Trial-by-trial learning

Inspired by the notion that people learn from their errors, many studies investigated

how errors experienced from the past affect subsequent movements. [75] first reported that

the current movement is affected by only a small number of previous movements, often only

one. Based on this result, [32] proposed a trial-by-trial learning model, which states that error

experienced in a previous trial is used to modify the motor comments in subsequent trials to

prevent similar errors from occurring. [32] also employed a simple linear dynamical system

(LDS) model with a memory of one trial to quantify how such an internal model is acquired

during learning. Later, [76] developed a more general class of LDS which provides a first-

order approximation for any Markovian learning rule in specifying how sensory feedback on

each movement affects the sensorimotor transformation in subsequent movements during motor

learning.
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The LDS model is represented as follows:

z (n+ 1) = Az (n) +Bw (n) + η (n) (2.14)

y (n) = Cz (n) +Dw (n) + γ (n) (2.15)

where n is the trial number, y (n) represents the correction on trial n, w (n) represents the

perturbation, and z (n) is the internal learning state free to use in whatever way needed to fit

the data. η (n) , γ (n) are independent zero-mean random variables with covariances Q and S,

representing the noise during learning and applying the learning in corrections respectively. In

this model, correction y (n) and perturbation w (n) can be measured from experiments, and the

goal is to find the parameter set A,B,C,D,Q, S as well as the internal learning sequence z to

best fit the data. [76] also presented an expectation-maximization (EM) algorithm to solve this.

This model, however, has two limitations. First, although "error" was usually mea-

sured as the deviation from the baseline during the movement in most experiment [75, 32, 77],

it is not clear why subjects should to care about the accuracy other than in the end of the move-

ment during a reaching task. Also, "error" should be a relative quantity based on what the goal is,

since the same amount of endpoint positional error may elicit different reactions depending on

how it is related to the performance evaluation [78]. The second limitation lies in the first-order

Markov assumption. Although this assumption has been demonstrated by many experiments

showing that neural structures modified as a result of motor learning do not explicitly retrain

memories of perturbations beyond one trial in the past [75, 32], it is against the fact that even

monkeys can learn a complicate sequence of movement. Direct evidence against this assumption

comes from a well designed experiment to compare the on-line corrections in different perturba-

tion experiments. In this experiment, strong trial-by-trial learning was observed only in responds

to random visual and mechanical perturbations, but not to random target jumps [77]. It has been

proposed that errors in visual and mechanical perturbations are due to mis-calibration of inter-

nal models (called "execution errors") and therefore result in adaptation of internal models and

subsequently changes in motor commands, whereas errors in the target jump paradigm should

not change the internal model. The puzzle remains, however, whether the lack of trial-by-trial

learning in the target jump paradigm was because subjects learned from the sequence of pertur-

bations in the past and thus captured the random pattern. If this hypothesis is true, the first-order

Markov assumption during motor learning no longer holds.
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2.3.3 Bayesian estimation

Instead of focusing on errors in affecting subsequent movements, other studies ex-

ported how the CNS utilizes statistical properties of both the inherent noise in the sensorimotor

system and the uncertainty in the world. Models based on Bayesian statistics haven been the

most successful ones by taking into account sensory data, recent control signals, knowledge

of body dynamics, as well as its earlier output, and weighting all these sources of information

regarding the correct state in proportion to their reliability.

The most well documented study is from [36], where subjects were asked to reach to

a visual target and the visual feedback of their hands were displaced with some lateral shift. On

each movement, the shift was randomly drawn from a prior distribution and briefly displayed

once midway through the movement. By manipulating the reliability of this visual feedback

on each trial, they studied how sensory feedback and the prior knowledge about the distribu-

tion of the shift were combined. The result was explained using Maximum A Posterior (MAP)

model. This model was also verified in a force field reaching experiment later [79]. In addition

to explaining sensorimotor integration, Bayesian estimation has also been used to explain cue

combination. For example, [80] showed that position and velocity feedback were integrated in

a manner consistent with the reliability of signals in on-line control of hand movements, [35]

showed that visual and haptic information was also integrated in a way depending on their rel-

evant reliability in estimating the height of an object. [30] further suggested that during motor

planning, such sensory integration depended on not only the reliability, but their relevance to

the task. In a recent study [38], Bayesian estimation has been demonstrated to be able to as-

sign errors to different timescales (i.e., fast-timescale disturbances occur when muscles fatigue,

slow-timescale disturbances occur when muscles are damaged or when limb dynamics change as

a result of development) and thus account for several previously puzzled learning effects, such as

the initially rapid rate of adaptation followed by progressively slower rates, and the spontaneous

recovery when error feedback was clamped at zero following an adaptation-extinction training

episode [81]. Previously introduced Kalman filter is an optimal estimator, or Bayesian estima-

tor, when the dynamics and sensory measurements are linear and the noise is Gaussian. A fMRI

study suggests that the anterior cingularte cortex (ACC) area may conduct Bayesian integration

[82].

Bayesian estimation, however, only estimates what the most likely state is currently
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and predicts what the most likely state will be next, but does not address the question how the

control should be generated based on the estimation. In fact, as a forward process, it can not take

into account how current action will affect the states in the future and thus is unable to select the

action to best archive the overall behavioral goal.

2.3.4 Learning in unstable environment

When it is impossible to construct an internal model to compensate for the externally

imposed perturbations (i.e. the dynamic task is not only unpredictable but unstable), subjects

were found to increase the stiffness of their arm by co-contracting muscles and thereby reduce

the perturbing influence. [83] have developed a task where any deviation of the hand during

the movement was exacerbated by a force acting perpendicular to the line. They showed that

subjects skillfully adapted their stiffness to the instability of the environment so that stiffness

increased only in the required direction and by the required amount.



Chapter 3

Evidence for the flexible sensorimotor

strategies predicted by optimal

feedback control

3.1 Introduction

Humans interact with a diverse and uncertain environment requiring flexible motor be-

havior. Here we show that the optimal feedback control theory which we [4, 16, 17, 66, 7] and

others [84, 85, 86, 87, 1] have pursued affords the flexibility apparent in behavioral data, in con-

trast with more traditional theories [10, 11, 14, 15]. We distinguish two forms of flexibility. From

the perspective of motor planning or preparation, flexibility entails taking into account multiple

task requirements and properties of the environment known before movement, and preparing

a sensorimotor strategy with both open-loop and closed-loop components customized for the

present task and circumstances. From the perspective of motor execution, a strategy is flexible

if its closed-loop component makes online adjustments that exploit the multiple ways in which a

redundant musculoskeletal plant can achieve the same behavioral goal. Both forms of flexibility

are obvious desiderata for a well-designed estimation-control system such as the sensorimotor

system.

Prior work has emphasized the evidence for flexibility during execution, in particular

the structure of motor variability (which is larger in task-irrelevant dimensions) and the goal-

33
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directed nature of online corrections [18, 19, 20, 21, 4]. We have explained such phenomena with

the minimal intervention principle – which states that task-irrelevant deviations from the average

behavior should be left uncorrected in order to maximize performance [4, 17, 16]. This argument

is further advanced here by showing that: (i) target displacement can cause correction before

the hand has cleared an intermediate obstacle – ruling out the imaginary via-points postulated

by alternative models; (ii) end-point variability matches the shape of an elongated target and

feedback corrections in the redundant dimension are suppressed – as the minimal intervention

principle predicts. Apart from these findings, however, our emphasis here is on flexibility in

motor planning/preparation.

With the exception of speed-accuracy trade-offs [88], the systematic relationship be-

tween sensorimotor strategies and mixtures of task goals (as well as properties of the environ-

ment) have received surprisingly little attention. Optimal control models – which dominate the

thinking on trajectory planning – have traditionally optimized a homogeneous cost and treated

all other goals as hard constraints; the latter are supposed to be specified externally, outside the

scope of such models. The homogeneous cost could be energy consumption [22, 23], derivative

of hand acceleration [10], derivative of joint torque [11], end-point variance [12]. The constraints

include endpoint position, final velocity and acceleration (typically zero), movement time, inter-

mediate points along the trajectory. However these hypothetical constraints are rarely explicit

in real-world tasks, raising two questions: (i) how are their values being chosen; (ii) are their

values "chosen" in the first place, or are they stochastic outcomes of the complex interactions

among sensorimotor strategy, noise, musculoskeletal dynamics, and environment – like any other

feature of individual movements? Our previous analysis [4, 16] showed that choosing desired

values for movement parameters that are not explicitly specified by the task is suboptimal, no

matter how the choice is made. This answers question (ii) and renders question (i) irrelevant.

Instead of satisfying self-imposed constraints, we propose that the CNS relies on sensorimotor

strategies optimized for composite cost functions. In the present experiments the relevant cost

components encourage energetic efficiency, endpoint positional accuracy (measured as bias and

variance), endpoint stability (defined as bringing the movement to a complete stop), and move-

ment speed (avoiding the time-out errors incurred when duration exceeds a threshold). We show

that as the relative importance of these components is varied by the experimenter, subjects mod-

ify their strategy in agreement with our theory. As in prior stochastic optimal control models



35

[12, 4, 24], taking into account the empirically established signal-dependent nature of motor

noise [25, 26, 24, 27] turns out to be important.

Even though our focus is on effects taking place before movement, the effects in ques-

tion correspond to changes in a control strategy with both open-loop and closed-loop components

– which in turn is best studied using perturbations. Perturbing the target of a reaching movement

in an unpredictable direction has been a productive paradigm for investigating the mechanisms

of online visuo-motor corrections [73, 74, 89]. Most prior studies have introduced perturbations

around the time of movement onset, and found that the hand path is smoothly corrected to reach

the displaced target – in agreement with multiple models of motor control [90, 60, 91, 92]. How-

ever, perturbations introduced late in the movement may be more informative because they are

not fully corrected – in contradiction with alternative models, and, somewhat paradoxically, in

agreement with optimal feedback control. Such phenomena have been observed with both visual

target perturbations [93] and mechanical limb perturbations [94]. In case of limb perturbations,

the correction reflects both neural feedback and musculoskeletal impedance – which are seam-

lessly integrated [95] and difficult to disentangle. Therefore we focus on target perturbations.

We first design a 2D reaching experiment to rule out the trivial explanation that the incomplete

correction is simply due to lack of time. We then replicate the phenomenon in our model, and

find that it reflects a previously unknown trade-off between endpoint accuracy and stability. This

yields a novel prediction: if stability requirements are decreased then accuracy should increase.

The prediction is confirmed in 3D obstacle avoidance and interception experiments. The latter

experiments give rise to rich motor behavior, allowing us to make a number of additional obser-

vations consistent with our theory. These include shaping variability patterns to buffer noise in

redundant dimensions; adjusting movement duration to take advantage of temporal error mar-

gins; exploiting target impedance and surface friction to achieve end-point stability; reallocating

corrective action among redundant actuators to balance signal-dependent noise and inertial con-

straints; and correcting for task-relevant perturbations before having reached the task-irrelevant

subgoals hypothesized by alternative models.
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3.2 Materials and Methods

3.2.1 Experimental Setup

Experiment 1

Seven subjects made planar reaching movements on a table positioned at chest level. A

21" flat-screen CRT was mounted above the table facing down, and was viewed in a see-through

horizontal mirror. In this way computer-generated images could be physically aligned with the

hand workspace. Movement kinematics were recorded with an Optotrak 3020 infrared sensor

at 100Hz. A small pointer, which had an Optotrak marker and an LED attached near its tip,

was held in the dominant right hand. The task was to move the LED to a starting position, wait

for a target to appear, and move to the target when ready. Movement onset was detected online

using a 1cm threshold on the distance between the pointer and the starting position. Analysis of

speed profiles (Fig. 4.1(b)) revealed that the actual movement started about 100msec before the

distance threshold was reached. Therefore we define the origin of the time axis to be 100msec

before the online detection of movement onset, and report all times relative to this corrected

origin.

The end of the movement was defined as the first point in time when the hand speed

had remained below 0.5cm/s for 40msec. The LED was turned off at movement onset, turned

on at the end of the movement, and remained on in the repositioning phase. The room was

dark. The target was always visible. Thus movements were made without visual feedback

of the hand, although subjects could see their endpoint error as soon as the movement ended.

Movement duration was required to be between 600msec and 800msec. If the duration on any

trial fell outside these boundaries, the computer displayed a "slow down" or "speed up" message

respectively. Movement amplitude was 30cm. The main movement was in the lateral direction

from right to left (although in Fig. 4.1(a) and Fig. 4.2(a) we plot the movements from left to

right, for consistency with the space-time plots).

After a brief familiarization session every subject performed 240 trials. Within each

trial the target could either remain stationary or jump 5cm forward or backward, orthogonal to

the main movement direction. Subjects were instructed that jumps may occur, and asked to

always move to the final target position and stop there within the allowed time interval. The

jumps occurred at 100msec, 200msec or 300msec. There were 180 perturbed trials (30 for
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every possible latency-direction combination) and 60 non-perturbed trials, presented in random

permutation order.

Experiment 2

Eight subjects made 3D arm movements around a horizontal obstacle while aiming for

the center of a vertical target (Fig. 4.4(a)). Movement dimensions are illustrated in Fig. 4.4(b).

The target was a 20cm x 5cm wooden board with a bull’s-eye pattern, and was mounted on a

3DOF robot (Delta Haptic Device, Force Dimension Inc). Subjects held in their right hand a

7cm wooden pointer with an electromagnetic Polhemus Liberty sensor attached to it. The sensor

measured 3D position and orientation (at 240Hz) making it possible to compute the position of

the tip of the pointer. The latter is referred to as the "hand". Another sensor was attached to

the target (which was also tracked via the robot’s encoders at 1000Hz). Before each trial the

robot moved the target away and waited for the subject to initiate the trial – by inserting the

tip of the pointer in a small receptacle mounted below the obstacle and remaining stationary for

100msec. Then the robot "presented" the target by moving towards the subject, at which time

the subject was free to move when ready. In case of an anticipation error the computer played a

sound and aborted the trial. Hand movement onset was detected with a 1cm position threshold

on the distance from the starting position. Subsequent analysis of speed profiles revealed that

the movement started about 50msec before it was detected. Therefore we define the origin of the

time axis to be 50msec earlier.

Movement end was detected when the hand speed remained below 10cm/s for 40msec,

or when the target was displaced due to impact with the hand by more than 0.4 cm. The maxi-

mum allowed movement duration was 900msec. Time-out errors were signaled by moving the

target away and playing a loud sound. During the hand movement the target was either station-

ary, or was rapidly displaced by the robot 9cm left or right. The robot trajectory is illustrated in

Fig. 4.4(c)(f); it was generated by a model-based controller with both open-loop and closed-loop

components. The target jump could be initiated at 50msec (early) or 350msec (late).

After brief familiarization subjects performed 20 trials without perturbations, followed

by two experimental conditions/sessions with perturbations, 120 trials each. Each experimen-

tal session included 40 early jumps, 40 late jumps, and 40 baseline trials presented in random

permutation order. Left and right jumps were equally probable. Subjects were instructed that
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jumps may occur, and asked to always move to the final target position within the allowed time

interval. The two experimental sessions differed in the stopping requirements of the task. In the

stop condition subjects were asked to slow down their hand movement before contact and touch

the target gently, so that the impact would not displace the target by more than 0.4cm. If it did,

the computer played an explosive sound and the target was moved away rapidly. This indicated

to the subject that the target has been hit too hard. In the hit condition hitting the target hard was

no longer an error. The robot was placed in high-gain servo mode (with carefully chosen non-

linearities to avoid instability) and was able to absorb the impact with the hand. The maximum

force output of the robot is 25N. Subjects were not explicitly asked to hit the target harder, but

they quickly discovered the benefits of using such a strategy. Half of the subjects performed the

hit condition first and then the stop condition; the order was reversed for the other half of the

subjects.

Experiment 3

Ten subjects performed a task similar to Experiment 2, with the following modifica-

tions. A pressure sensor (FSR, Interlink Electronics) was installed inside the starting position

receptacle and used to detect movement onset earlier and more reliably. An ATI Mini-40 six-axis

force-torque sensor (2000Hz sampling) was mounted behind the target. It allowed more reliable

detection of contact (which was now defined as the movement end) as well as direct measurement

of contact force. Subjects still initiated the movement when ready. As soon as hand movement

was detected, the robot began to move downward at a constant speed (6.67cm/s). This motion

continued until the trial ended due to hand-target contact, or until the target hit the horizontal

edge of a wooden board mounted underneath. This happened 900msec after movement onset,

and was defined as a time-out error. The downward motion was repeatable and easily predictable

– providing subjects with an explicit representation of allowed movement duration. When the

target jumped (9cm left or right) the rapid lateral motion was superimposed on the slow down-

ward motion. Instead of the bull’s-eye pattern the target now had a pattern of vertical stripes

(5cm x 1cm each), with gray levels increasing with lateral distance from the center stripe (which

was white). Subjects were asked to make contact with the target as close to the center stripe as

possible. In the stop condition the threshold for hitting too hard was now defined in terms of

force rather than displacement (0.8N in the first 8msec after contact). The bookshelf obstacle
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from Fig. 4.4(a) was now replaced with a horizontal bar, and moved backwards to induce a more

curved hand movement (dimensions are illustrated in Fig. 4.5(c)). Early jumps were triggered

at movement onset; late jumps were triggered at 400msec after movement onset; allowed move-

ment duration was 900msec. Every subject still participated in two conditions – hit and stop –

in counterbalanced order. In each session we scheduled 25 baseline trials, 25 early jumps, and

25 late jumps in random permutation order. Any failed trials (time-out errors or hitting-hard er-

rors) were now rescheduled at a random time later in the same session, yielding a more balanced

database of analyzable trials. Instead of 20 no-perturbation trials before the experiment, we now

had 10 trials before and 10 trials after the experiment. These were used to compute variability in

the absence of perturbations ("baseline" in Fig. 3.8).

In experiments 2 and 3 the wrist was immobilized with an orthopedic brace so as to

avoid corrective movements using the wrist. There were two reasons for this restriction. First,

pilot experiments revealed different involvement of the wrist in early versus late corrections

(Fig. 4.6(c)) making the comparison between conditions difficult. Second, our models assume

point-mass dynamics and do not capture wrist movements.

3.2.2 Statistical analysis

In experiments 2 and 3 both the time-out errors and the hitting-hard errors were sig-

nalled immediately, in a way that disrupted the behavior, and therefore error trials could not be

included in the analysis. Only no-error trials were analyzed. They constituted 79% percent of

all trials in experiment 2 and 58% in experiment 3. The higher overall error rate in experiment

3 is because we repeated failed trials, and so subjects performed more trials in the more difficult

conditions (late/stop in particular). In experiment 1 errors were signalled by the computer only

after the movement had stopped. Thus the error signals could not disrupt the behavior, allowing

us to include trials whose duration was slightly over the time limit (up to 100msec). Presumably

these movements were generated by the same underlying mechanism and the longer duration

was simply due to trial-to-trial variability. 93% of all trials in experiment 1 were analyzed.

All statistical tests were based on n-factor ANOVA ("anovan" in the Matlab Statis-

tics Toolbox). We avoided averaging to the extent possible. In the comparisons of undershoot

and duration (Fig. 4.1(d)(g) and Fig. 4.4(e)(g)(h)) and wrist contribution (Fig. 4.6(c)), individ-

ual trials were treated as repeated measures, and the factors were the experimental conditions
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(perturbation time, stop vs. hit when applicable) as well as the subject identity. Thus we had

two factors in experiment 1 and three factors in experiments 2, 3 and the pilot experiment in

Fig. 4.6(c). The subject identity was modeled as a factor with random effects since subjects are

drawn randomly from the population. In the comparisons of standard deviations (Fig. 4.3(e) and

Fig. 4.6(a)), time-out error rates (Fig. 4.1(h)), and lateral velocities (Fig. 4.6(b)), all trials that

a subject performed in a given condition were combined to obtain a single number. All com-

parisons of means were based on Tukey’s criterion for post-hoc hypothesis testing. Differences

are reported as significant when p < 0.05. The error bars shown in the figures correspond to

±1 pooled standard error of the mean, as computed by the multiple comparison function used to

perform Tukey’s test ("multcompare" in the Matlab Statistics Toolbox).

3.2.3 Computational models

Optimal feedback control model (LQG)

We model the hand as an m = 1kg point mass moving in a horizontal plane, with

viscosity b = 10Ns/m approximating intrinsic muscle damping. The point mass is driven by two

orthogonal force actuators which can both pull and push (approximating two pairs of agonist-

antagonist muscles). The actuators act as muscle-like first-order low-pass filters of the control

signals, with time constant τ = 0.05s. These settings of m, b, τ were chosen to be compatible

with biomechanics and were not adjusted to fit the data.

Let p (t) ,v (t) ,a (t) ,u (t) be the 2D hand position, velocity, actuator state, and con-

trol signal respectively. The corresponding units are m, m/s, N, N. The time index is t ∈ [0, tf ].

The final time tf is specified (taken from the experimental data in Fig. 4.1(g)). The plant dy-

namics in continuous time are modeled as

dp (t) = v (t) dt

m dv (t) = (a (t)− bv (t)) dt

τ da (t) = (u (t)− a (t)) dt+M (u (t)) dw (t)

w (t) is standard Brownian motion. M (u (t)) represents control-multiplicative or signal-dependent

motor noise, and is given by

c1 = 0.15 corresponds to 2D noise in the same direction as the control vector u (t),

while c2 = 0.05 corresponds to 2D noise in the direction orthogonal u (t). The parallel noise
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component is larger because muscles pulling in the direction of net muscle force are more active

and therefore more affected by signal-dependent noise. The parameters c1, c2 as well as the

sensory noise magnitude σ described below are adjusted so that the baseline variability predicted

by the model (Fig. 4.2(e)) is similar to the experimental data (Fig. 4.1(e)). Note that the shape

of these curves cannot be fully captured by three scalar parameters, and so the good fit mostly

reflects the quality of the model.

Denoting the target position p∗ (t), we can assemble all variables into an 8D state

vector

x (t) = [p (t) ; v (t) ; a (t) ; p∗ (t)]

and write its dynamics in general first-order form

dx (t) = (Ax (t) +Bu (t)) dt+ C (u (t)) dw (t)

with A,B,C obtained from the above equations.

In order to define an optimal control problem we also need a cost function. As in our

previous work [4], we use a mixed cost function defined as

‖p∗ (tf )− p (tf )‖2 + wstop

(
‖v (tf )‖2 + ‖saa (tf )‖2

)
+ wenergy

∫ tf

0
‖u (t)‖2 dt

The three cost terms encourage endpoint positional accuracy, stopping at the target, and energetic

efficiency respectively. The activations a (t) are scaled by sa = 0.1 because their numerical

values turn out to be an order of magnitude larger than positions and velocities. The weight

wenergy = 0.00005 of the control term is a free parameter (it is not clear how to estimate this

parameter independently). The weight wstop determines the relative importance of coming to a

complete stop (i.e. achieving zero velocity and acceleration) at the end of the movement. We

use wstop = 1 for the stop condition and wstop = 0.01 for the hit condition. These values are

chosen to capture the qualitative differences between the stop and hit conditions. Note that we

do not model the 3D experiments explicitly.

The state of the plant x (t) is not directly observable, but has to be inferred from noisy

observations whose time-integral y (t) satisfies

dy (t) = x (t) dt+Gdz (t)
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The sensory noise covariance is diagonal: G = σdiag (1, 1, 1, 1, 1/sa, 1/sa, 0, 0) with σ =

0.015 adjusted to reproduce the observed movement variability. z (t) is standard Brownian mo-

tion. In comparison with our earlier model [4], the present model is simpler in that here we use

first-order rather than second-order muscle filters and do not explicitly represent sensory delays.

We do not model explicitly the visuo-motor delays or uncertainty in detecting the target obser-

vations. To obtain correct reaction times, we simply model each target perturbation as occurring

120msec later than the corresponding experimental perturbation.

With these definitions, we discretize the time axis (with 1msec time step) and obtain

a discrete-time linear-quadratic-Gaussian optimal control problem. The reason for formulating

the model in continuous time and then discretizing the time axis, as opposed to working in

discrete time all along, is that in a discrete-time formulation the model parameters are affected

by the time step. If one were to change the time step it would not be obvious how the model

parameters should scale. Continuous-time formulations have the advantage of being independent

of discretization time steps. For details on how to discretize a continuous-time system see [96].

The presence of signal-dependent noise complicates matters, however we have derived

an efficient algorithm for solving such problems elsewhere [66]. That algorithm is applied here

to yield a modified Kalman filter for computing the optimal state estimate x̂ (t), and an optimal

feedback controller of the form

u (t) = −L (t) x̂ (t)

Once the filter and controller are available, the state is initialized with the experimentally-defined

starting position and v (0) = a (0) = 0, and the system is simulated until the final time tf .

The time-varying matrix of feedback gains L (t) is 2x8 and is in principle described

by 16 numbers. However in the present problem it turns out to have a lot of structure which can

be captured by only 3 independent parameters. In particular, the control law can be written as

u (t) = kp (t) (p∗ (t)− p̂ (t))− kv (t) v̂ (t)− ka (t) â (t)

where kp, kv, ka are time-varying scalar gains illustrated in Fig. 4.3(a)(c).

When a perturbation is introduced in the model, the final time tf is adjusted according

to Fig. 4.1(g) and the optimal estimator and controller for the remainder of the movement are

recomputed (given the new final time and target position). This is necessary because the opti-

mal feedback gains are originally scheduled up to the duration of the unperturbed movement.
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Table 3.1 Parameters of linear-quadratic-Gaussian model

parameters criteria

m = 1kg, b = 10Ns/m, τ = 0.05s compatibility with biomechanics

sa = 0.1 order-of-magnitude normalization

c1 = 0.15, c2 = 0.05, σ = 0.015 fit to variability of unperturbed trials
wenergy = 0.00005 overall fit to data

wstop = 1→ 0.01 qualitative predictions regarding stop vs. hit

Consequently the predicted feedback corrections are not generated by exactly the same feedback

gains as shown in Fig. 4.3(a)(c). However the change due to the recomputation is small, and

so our intuitive analysis of feedback gains is valid. Similar re-computation is involved in the

minimum-jerk feedback controller. A more general optimal feedback control model capable of

predicting the changes in movement duration is described later.

The model parameters, and the criteria for choosing their values, can be summarized

as follows:

Modified minimum-jerk model

The original minimum-jerk model [10] postulates that the hand moves from a starting

position p0 to a target position p∗ along a trajectory which minimizes the time-integral of the

squared jerk (third derivative of position):

min
p(·)

∫ tf

0
‖
...
p (t)‖2 dt

To make this optimization problem well-posed one has to specify the velocity and acceleration

at the endpoints. Let v0 and a0 be the initial velocity and acceleration (possibly non-zero) and

suppose the final velocity and acceleration are 0. Then the constraints are

p (0) = p0, ṗ (0) = v0, p̈ (0) = a0, p (tf ) = p∗, ṗ (tf ) = 0, p̈ (tf ) = 0
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One can find the solution to this minimization problem using the calculus of variations [10]. The

expression for the optimal trajectory p (t) is a somewhat complicated function of t, tf ,p0,v0,a0,

and p∗. Differentiating that function with respect to t three times yields

...
p (t) =

60
(tf − t)3 (p∗ − p0)− 36

(tf − t)2 v0 −
9

(tf − t)
a0

where tf − t is the remaining movement time. The rationale for working with third derivatives

is that we are given all derivatives up to second order at the initial time, and if have a way

of computing the third derivative at each time, we could simply integrate and obtain the entire

trajectory. This suggests a feedback-control formulation [91] in which
...
p is only computed at the

current time and is treated as an instantaneous control signal u:

u (t) =
...
p (t) =

60
(tf − t)3 (p∗ (t)− p (t))− 36

(tf − t)2 ṗ (t)− 9
(tf − t)

p̈ (t)

The three scalar coefficients in the above expression are time-varying feedback gains for a third-

order system with state vector x (t) = [p (t) ; ṗ (t) ; p̈ (t)]. Note that the feedback-control for-

mulation allows us to make the target position time-varying.

In the absence of perturbations the trajectory predicted by this modified minimum-

jerk model [91] is identical to the prediction of the original minimum-jerk model [91]. The

advantage of the modified formulation is that it can generate feedback corrections and thus serve

as a model of perturbation experiments. Note that the modified minimum-jerk model reflects a

very different philosophy compared to the original model, because a trajectory plan for the rest

of the movement is no longer needed. In that sense it is closer to our optimal feedback control

model [4]. The empirical success of jerk-minimization has often been interpreted as evidence

for trajectory planning. Such interpretations are unjustified given that the same predictions can

be made without the assumption of trajectory planning.

Optimal feedback control model (MDP)

Here we describe a different optimal feedback control model where movement dura-

tion is no longer predefined and task constraints are enforced more explicitly. It is constructed

using the more general but less efficient methodology of Markov Decision Processes (MDP):

the continuous state and action spaces are discretized [69] and the resulting discrete optimiza-

tion problem is solved via dynamic programing [70]. Discretization methods suffer from the
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curse of dimensionality and only apply to low-dimensional problems. This necessitates a simpli-

fication of the dynamics model: the arm is now modeled as a fully-observable second-order plant

with state vector containing hand position p and velocity v and control vector u corresponding

to hand acceleration. All quantities are expressed in units of centimeters and seconds. The initial

state is p (0) = v (0) = [0; 0]. The default target position is p∗ = [20; 0] but can be perturbed

to either [20; 5] or [20;−5]. Instead of perturbing the target, we perturb the hand in the opposite

direction (without changing hand velocity) and then correct the hand and target positions in the

subsequent analysis. In this way the target can be treated as constant and omitted from the state

vector.

Each trial ends when the horizontal hand position exceeds 20cm (i.e. the hand reaches

the target plane) or when the duration exceeds a maximum allowed duration of 0.6sec, whichever

comes first. Let tf denote the duration of a given trial. The total cost to be minimized is defined

as

total_cost = final_cost + wenergy

∫ tf

0
‖u (t)‖2 dt

The final cost, computed at the end of the movement, is defined as

final_cost =

 ‖p∗ − p (tf )‖2 + wtimetf , if tf < 0.6 and ‖v (tf )‖ < vmax

100, otherwise

The endpoint velocity threshold vmax is 5cm/sec in the stop condition and 20cm/sec in the hit

condition. These values were chosen to match the observed endpoint velocities. The main move-

ment amplitude (20cm), perturbation amplitude (5cm), maximum movement duration (0.6sec),

constraint violation cost (100) and other simulation parameters described below were chosen in

advance and were not adjusted. The only parameters which were adjusted to fit the data were

wenergy = 0.00003 and wtime = 20. This was done by solving the problem multiple times for

different points in wenergy − wtime space. The qualitative pattern of results shown in Fig. 3.7

and 3.8 depended weakly on wtime but was sensitive to wenergy. The latter parameter, denoted r

in other papers, has proven to be important in almost every optimal control model we have ever

constructed.

The sizes of the discretization grids were 101 x 61 points in position (20 x 12cm, step

size 0.2cm), 25 x 25 points in velocity (80 x 80cm/sec, step size 3.33cm/sec), 11 x 11 points in

acceleration (1666.67 x 1666.67cm/sec2, step size 166.67cm/sec2), and 31 points in time (0.6sec,
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step size 0.02sec). These numbers were carefully balanced so that the grid density was sufficient

to allow accurate approximation, the grid range was sufficient to cover the optimal state-control

trajectories, and yet the number of grid points was not intractably large. The noise was uniform

and additive, and perturbed the hand velocity by up to ±2 grid points in each time step.

The feedback control law is in the general form

u = π (p,v, t)

where u,p,v, t are constrained to the corresponding grids. Unlike the LQG framework where

the function π is linear and can be represented with a small number of feedback gains, here we

do not know in advance the form of π. Instead we represent it as a lookup table which specifies

the value of u for every possible combination of p,v, t. This table consists of about 220 million

numbers computed by the dynamic programming algorithm in about half on hour of CPU time.

To speed up the computation and be able to explore the effects of various parameters, we also

implemented the algorithm on an nVidia GeForce 8800 GTX videocard with 128 parallel proces-

sors. This reduced the running time of the algorithm by about a factor of 30. Since the videocard

only supports single-precision floating point arithmetic, we used it for model exploration and

run the final model on an Intel CPU with double precision. Once the control laws for the stop

and hit conditions were obtained (the only difference being the value of vmax), we applied them

to the stochastic plant and simulated 3000 movement trajectories per condition: 1000 without

perturbation, 1000 with perturbation at 0.1sec, and 1000 with perturbation at 0.3sec.

Even though perturbations were applied in the testing phase to characterize the re-

sponse of the optimal feedback control laws, the control laws themselves were optimized for an

environment without perturbations. To study possible adaptation effects, we computed a second

pair of feedback control laws optimized for a perturbed environment. In the latter environment

the target could jump either up or down (at 0.2sec) or remain stationary. The three types of trials

had equal probability. Target perturbations were taken into account in the optimization process

by incorporating an appropriate position noise term (with tri-modal distribution) in the dynamics

model.
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3.3 Results

3.3.1 Undershoot in reaching to perturbed targets

We define "undershoot" as endpoint error in the direction in which the target was

displaced. In reaching movements, undershoot (or incomplete correction) for late target pertur-

bations has already been demonstrated [93]. However a key question remains unanswered: is

the effect simply due to lack of time, or is there a more subtle reason? Experiment 1 was de-

signed to rule out the first possibility. Subjects made lateral reaching movements on a horizontal

table, without vision of the hand, while the target was displaced in an orthogonal direction (for-

ward or backward relative to the subject) at different times during movement. Reach duration

was experimentally controlled so as to ensure that even the latest perturbation could have been

fully corrected if that was the only objective of the underlying control strategy. More precisely,

the remaining time after the onset of the latest correction was substantially larger than the time

necessary to make the same movement in isolation.

Fig. 4.1(a) shows the average hand paths for different perturbation times as well as

for baseline (unperturbed) movements. Note the undershoot for 300msec perturbations. In the

rest of the analysis the backward-perturbed trials are mirrored around the horizontal axis and

pooled with the corresponding forward-perturbed trials. Fig. 4.1(b) shows the tangential speed

profiles. The early correction is incorporated so smoothly that its effect on the speed profile is

hardly visible. The late correction, on the other hand, causes a clear deviation from the bell-

shaped baseline profile. One could interpret this as a discrete sub-movement superimposed on

the main movement; however we will see below that the same effect can arise from a continuous

optimal controller. The corrective movement, defined as movement in the forward direction, is

shown in Fig. 4.1(c). The undershoot for the 300msec perturbation is significantly larger than

the undershoot for the 200msec and 100msec perturbations (Fig. 4.1(d)). Note that subjects are

moving without visual feedback of the hand, and therefore some misalignment between vision

and proprioception [97] should be expected. This may be the cause for the slight overshoot in

the 100msec conditions (indeed no overshoot was observed in the remaining experiments which

were performed with visual feedback). Such misalignment should not depend on the time of the

target perturbation, and so the comparison between conditions is meaningful. There is also some

systematic endpoint error in the lateral direction although it shows a weaker and opposite trend
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(Fig. 4.1(d)); we return to it later.

Fig. 4.1(f) shows the acceleration profile of each corrective movement, aligned on the

time when forward acceleration first exceeds 5% of peak forward acceleration. The correction for

the late perturbation lasts around 400msec – which is more than sufficient to make a movement

with the amplitude needed for complete correction. Indeed, an accurate 5cm movement to a

1cm-diameter target should take a little under 300msec according to Fitts’ law [88]. Thus the

lack of complete correction is not simply due to lack of time. Yet it has something to do with

time: the overall movement duration was significantly increased in late-perturbation trials, all the

way up to the 800msec time limit (Fig. 4.1(g)), and consequently the percent time-out errors was

increased (Fig. 4.1(h)). Although we asked subjects to treat the time limit as a hard constraint,

they treated it on equal footing with the instruction to reach as close as possible to the center of

the target and found a balance between these two task requirements. It is reasonable to assume

that if we had convinced subjects to avoid time-out errors at all cost the undershoot would have

been even larger.

3.3.2 Optimal feedback control versus alternative models

The undershoot phenomenon is inconsistent with all prior models of motor control we

are aware of. One such model [60] is an extension of the minimum-jerk model of trajectory

planning [10] to the domain of feedback corrections. It postulates that the hand tracks a planned

minimum-jerk trajectory, and if the target is displaced, another minimum-jerk trajectory connect-

ing the original and displaced target positions is added vectorialy to the original plan. Naturally

that model predicts full correction in all cases (Fig. 4.2(f)). A related model [91], discussed

in more detail below, is a feedback-control version of the minimum-jerk model. In our task it

makes the same predictions as the additive model [60] in Fig. 4.2(f). Another incompatible class

of models consists of equilibrium-point control [14, 15] as well as other schemes [90, 91, 92]

in which the hand is drawn to the target by some virtual spring. In such models stopping can

only occur when the hand reaches the target – which is in general contradiction with systematic

endpoint errors that cannot be attributed to sensory-motor misalignment. In addition to the un-

dershoot studied here, phenomena that are problematic for these models include the undershoot

of primary saccades [98], the overshoot of rapid wrist movements [99, 100], and the lack of

equifinality (or failure to reach the target) in certain adaptation paradigms [101, 102].
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Figure 3.1 Results in Experiment 1. (a), Average hand paths in experiment 1. Vertical marks
show where the hand was at each perturbation time. Trajectory averaging was done as follows.
The trajectory data from each individual trial were smoothed with a cubic spline ("csaps" func-
tion in the Matlab Spline Toolbox, smoothing parameter 0.001), and resampled at 100 points
equally spaced in time. Analytical derivatives of the cubic spline were also computed at these
100 points – yielding velocities and accelerations. The resampled data were averaged separately
in each condition. (b), Tangential speed profiles for the hand paths shown in (a). (c), Corrective
(forward) movement. The backward-perturbed trials have been mirrored around the horizontal
axis, and pooled with the corresponding forward-perturbed trials. The color code is the same as
given in the legend in (a). (d), Undershoot, defined as endpoint error in the direction indicated in
the plot. Standard errors are computed as described in Methods. (e), Positional variance of the
hand trajectories in unperturbed trials. Variances at each point in time are computed separately
for each subject (from the resampled data), then averaged over subjects, and the square root is
plotted. (f), Acceleration in the forward direction. For each perturbation time, the corresponding
curve is aligned on the time when forward acceleration reached 5% of peak forward acceleration.
(g), Movement duration. (h), Percent time-out errors, as signalled during the experiment. Note
that for data analysis purposes we increased the threshold on movement duration by 100msec.
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Our optimal feedback control model [4], which we have previously used to explain a

number of unrelated phenomena, turns out to be compatible with the undershoot. One might

have thought (as we did) that an optimal feedback controller should make larger online correc-

tions and get closer to the displaced target than any other controller. This is not so, for interesting

reasons explained in the next section. Here we only present the simulation results. The model

uses a linear approximation to arm dynamics. This is justifiable because the detailed nonlin-

earities of the arm are unlikely to influence the response to visual perturbations significantly

(they are much more relevant when it comes to resisting mechanical perturbations). The model

incorporates signal-dependent motor noise [25, 26, 12, 24] as well as sensory noise, and opti-

mizes a mixed cost encouraging endpoint positional accuracy, endpoint stability (stopping), and

energetic efficiency.

The model predictions (Fig. 4.2(a)-(e)) are plotted in the same format as the data (Fig.

4.2(a)-(e)). Note the close correspondence, and in particular the undershoot for the late perturba-

tion. When a target perturbation occurs in the model, we increase the remaining movement time

as in the experimental data (Fig. 4.1(g)) and recompute the optimal controller (see Methods). If

we use the unmodified optimal controller which always ends the movement at the same time, the

predicted undershoot is greatly increased (dashed lines in Fig. 4.2(c)). Thus, increasing move-

ment duration is essential for avoiding a much larger undershoot in late perturbations – which

may be why subjects were so reluctant to finish the movement on time as instructed.

In Fig. 4.2(d) we also see endpoint error in the lateral direction, but its magnitude

decreases with increasing perturbation time – as in the experimental data. This is because the

target is not perturbed in the lateral direction, and yet the overall movement time is increased,

so the control costs which cause this endpoint error (energy consumption, and reduced accuracy

due to signal-dependent noise) are effectively smaller. Note also the secondary speed bump in

Fig. 4.2(b) which could be mistaken for a discrete sub-movement.

In addition to reproducing average behavior, the model faithfully captures the po-

sitional variability pattern of the hand trajectories in unperturbed trials (Fig. 4.1(e) and Fig.

4.2(e)). The larger variability in the lateral (main movement) direction reflects signal-dependent

motor noise – which is larger in actuators that are more active. The reduction seen towards the

end of the movement is an example of structured movement variability consistent with the mini-

mal intervention principle [4]. Another manifestation of signal-dependent noise is the increased
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variability of the undershoot for late perturbations (Fig. 4.3(e)). This phenomenon is observed in

the model and all experiments, and is only present in the corrective movement direction. While

any corrective movement incurs signal-dependent noise in that direction, the feedback controller

has less time to suppress it when the noise is introduced late.

3.3.3 Analysis of feedback gains and new predictions

The above simulation results show that the optimal thing to do is make an incomplete

correction. Why is this seemingly paradoxical strategy optimal? Such questions are often mean-

ingless: the solution to a complex optimization problem is what it is, and the relation between

the problem and its solution does not have to be intuitive. Nevertheless, analysis of the model

yields intuitive answers here. Key to our analysis is the fact that the optimal feedback gains are

time-varying.

As explained in Methods, the optimal feedback controller can be written as

u (t) = kp (t) (p∗ − p̂ (t))− kv (t) v̂ (t)− ka (t) â (t)

where kp, kv, ka are the optimal feedback gains, p̂, v̂, â are the optimal estimates of hand po-

sition, velocity, and muscle activation state (obtained by a modified Kalman filter), p∗ is the

target position, and u is the optimal control signal. The optimal feedback gains are illustrated

in Fig. 4.3(a). We see that the positional gain kp peaks early and then decreases in the last

phase of the movement. In that phase the velocity gain kv as well as the activation gain ka –

which can be thought of as force feedback – are large. While these gain fluctuations are hard

to understand quantitatively, qualitatively they have a simple interpretation: near the end of the

movement the optimal controller enters a regime where it is less sensitive to positional errors

and instead aims to stop the movement in a stable manner. In retrospect this is not surprising. If

we think of a mass-spring-damper system, a large spring constant (or positional gain) will make

the system underdamped and cause oscillations – which is in conflict with the requirement to

stop. The optimal controller effectively makes the system overdamped, achieving stability while

compromising its ability to fully respond to last-minute positional errors. Thus our analysis has

uncovered a trade-off between endpoint stability and positional accuracy.

Another intuitive explanation for the undershoot observed in the model is the control

cost associated with large and rapid last-minute corrections. Large control signals are penalized
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sponding subplots of Fig. 4.1, but for data generated by our optimal feedback control model.
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perturbation (red) because in that condition subjects did not increase the movement duration.
(f), Corrective movements predicted by the modified minimum-jerk model.
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in two ways. One is a direct energy cost; the other is an indirect accuracy cost resulting from the

signal-dependent nature of motor noise. Increased noise is particularly undesirable near the end

of the movement when the feedback loop no longer has time to correct for it (Fig. 4.3(e)). In

agreement with the latter interpretation, the undershoot predicted by the model increases when

either the energy cost or the signal-dependent noise magnitude are increased (results not shown).

Analysis of feedback gains is also illuminating with regard to the modified minimum-

jerk model and its failure to predict the undershoot (Fig. 4.2(f)). Consider the following

feedback-control formulation [91] of the minimum-jerk model. At each point in time a new

minimum-jerk trajectory is formed, starting at the current hand position, velocity and acceler-

ation, and ending at the target with zero velocity and acceleration. The initial portion of this

trajectory is used to control the movement, and then the procedure is repeated – making it possi-

ble to correct for online disturbances. More precisely, the hand is treated as a third-order system

where the position p, velocity v and acceleration a are state variables, and the control signal

u is defined as the derivative of acceleration (or jerk). It can be shown (see Methods) that the

minimum-jerk feedback controller has the same general form as the optimal feedback controller,

but with different feedback gains:

kp (t) =
60

(tf − t)3 , kv (t) =
36

(tf − t)2 , ka (t) =
9

(tf − t)

We now see something which is in retrospect obvious: the only way the minimum-jerk feedback

controller can always make a full correction, regardless of how late the perturbation arises, is

to use infinite feedback gains at the end of the movement. As the time t approaches the final

time tf all three feedback gains go to infinity, with kp increasing faster than kv and ka. Note

that we could apply this minimum-jerk controller to a partially-observable system, where state

estimates are obtained by a Kalman filter, and obtain a control scheme which overall is very

similar to optimal feedback control. The only important difference is in the sequence of time-

varying feedback gains being used. The optimal feedback gains (Fig. 4.3(a)) not only predict

behavior which better corresponds to the experimental data, but also guarantee minimal expected

cost, and are finite rather than infinite (which is more biologically plausible).

We now return to the stability-accuracy trade-off, and use the model to obtain novel

predictions reflecting this trade-off more directly. In the above analysis the reason for the reduced

sensitivity to positional errors was the need to stop at the target. What would happen if the
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importance of stopping decreases relative to the importance of reaching the target? In the model

stopping is enforced with a cost term quadratic in the final velocity and activation. If we scale

down this cost term, then the optimal feedback gains change as shown in Fig. 4.3(c). Note that

the positional gain kp now peaks much later. Consequently the predicted undershoot is almost

eliminated (Fig. 4.3(b)). The optimal controller for the modified cost function takes advantage

of the relaxed stopping requirement, and no longer brings the velocity to zero at the specified

final time – particularly for late perturbations (Fig. 4.3(d)).

3.3.4 Experimental confirmation of model predictions

The above predictions were tested in experiment 2 which compared two conditions:

asking subjects to stop at the target versus allowing them to hit the target. Subjects made 3D

movements around a horizontal obstacle and aimed for a physical target attached to a 3D robot

(see Methods and Fig. 4.4(a)). The obstacle was introduced in order to increase movement

duration (so that we no longer had to impose a lower limit) and also to test the different pre-

dictions of optimal feedback control and alternative models with regard to obstacle avoidance

(see next section). On randomly chosen trials the robot rapidly displaced the target, left or right,

either 50msec or 350msec after movement onset. Exceeding the maximum allowed duration

(900msec) resulted in a time-out error. Average movement trajectories are shown in Fig. 4.4(b).

Each subject was now tested in two conditions. In the stop condition subjects were

required to slow down their movement and touch the target gently. The robot used a low-gain

servo controller so that the target could be easily displaced by the hand; a displacement larger

than 0.4cm resulted in a "hitting-hard" error. In the hit condition subjects were allowed to hit

the target, although they were not instructed to do so. The robot used a high-gain servo con-

troller and could absorb the impact with the hand; displacing the target no longer resulted in an

error. The difference in target impedance made the distinction between the two conditions more

ecologically valid.

The experimental results confirmed our model predictions. The undershoot for late

perturbations was still present (Fig. 4.4(c)(d)) but it was significantly smaller in the hit condition

compared to the stop condition. For early perturbations the undershoot was smaller (compared

to late perturbations) and the difference between the hit and stop conditions was not significant.

As before, late perturbations caused an increase in movement duration (Fig. 4.4(e)), and a sub-
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stantial percentage of time-out errors in late/stop trials (40%). Movement duration in the stop

condition was larger compared to the hit condition, and yet the correction was smaller (i.e. the

undershoot was larger). Thus, as in experiment 1, subjects could have made a larger correction

in the stop condition if that was their only objective.

Although at this point we had a convincing story, we remained puzzled by subjects’

reluctance to treat the time limit as a hard constraint – even though in experiment 2 we made

time-out errors much more salient. We reasoned that this may be because the time limit does not

correspond to any physical property of the environment, and instead is signalled by the computer

on the basis of an (invisible) timer. Could the outcome change if we provided an explicit and

ecologically valid time cue? More importantly, could such a time cue reduce the uncertainty in

the task and somehow enable subjects to eliminate the undershoot? These issues were addressed

in experiment 3 where we used an interception task rather than a pointing task (see Methods).

The main change was that as soon as hand movement was detected, the robot began to move

the target downward at a low constant speed. Lateral target jumps were superimposed on this

downward motion. Subjects were instructed to make contact with the target before it hit the

horizontal edge of a board mounted underneath. The downward motion was repeatable and

easily predictable, providing an explicit representation of allowed movement duration.

The results from experiment 3 (Fig. 4.4(f)(g)(h)) were similar to experiment 2, and in

agreement with our model predictions. The undershoot in the stop condition was again larger

than in the hit condition; the difference was now significant even for early perturbations (per-

haps because we modified the method for detecting hitting-hard errors, making the threshold

effectively smaller). Movement duration was again increased in late-perturbation trials, and was

larger in the stop condition compared to the hit condition. The time-out error rate in late/stop

trials was reduced to 31%, indicating that the explicit time cue had an effect, but this rate was

still higher than what would be expected if subjects treated the time limit as a constraint. The

time-out error rate in late/hit trials was much lower (12% in experiment 2 and 7% in experiment

3).

3.3.5 Absence of imaginary targets in obstacle avoidance

Optimal feedback control differs from most alternative models in that it does not in-

vent arbitrary subgoals – such as desired trajectories or imaginary targets – but instead uses all
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available resources to pursue the high-level movement goal. In obstacle avoidance tasks it pre-

dicts that the hand should clear the obstacle without aiming for a specific imaginary target to

the side of the obstacle. In contrast, deterministic trajectory planning models [10, 11] as well

as other models [103] need such imaginary targets in order to avoid obstacles (and make curved

movements in general). Note that stochastic optimal control models can avoid this limitation,

by taking into account the probability of collision due to random deviations from the average

trajectory [104].

Here we present two lines of evidence that subjects do not use imaginary targets in

obstacle avoidance. First we analyze the variability pattern of the hand paths in unperturbed

trials in experiments 2 and 3. If subjects were aiming for an intermediate target, their hand paths

should be less variable in the vicinity of that target – as we have shown previously with real

targets [4]. The variability pattern is plotted spatially in Fig. 4.5(a)(c) , and as a scalar quantity

(variability per dimension) in Fig. 4.5(b)(d). For both experiments, and for both the hit and

stop conditions, we see that the pattern is bell-shaped. In particular there is no evidence for a

reduction of variability in the middle of the movement where the imaginary target should be.

Second we analyze the onset of the lateral correction relative to the time when the

hand clears the obstacle and starts moving towards the robot. If subjects were aiming for an

imaginary target in order to clear the obstacle, that target should be close to the reversal point and

should not move when the robot displaces the final target. Therefore the corrective movement

should not start before the reversal point. We focus on experiment 3, which was specifically

designed to address this question by shifting the obstacle further away from the starting position

(thus delaying the reversal) and detecting the onset of hand movement with a pressure sensor

(allowing an earlier perturbation). Fig. 4.5(e) shows that the reversal occurs at around 300msec

in both the hit and stop conditions, while the corrective lateral acceleration in early perturbations

starts at 100-150msec. Given the filtering of the musculoskeletal system, the neural command

driving the correction must have been generated even earlier. Thus, subjects begin to correct for

the target jump before having reached the hypothetical via-point – casting serious doubt on the

existence of the latter.
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the procedure was repeated until convergence (which only takes 2-3 iterations). In this way we
extracted the spatial variability of the hand paths, independent of timing fluctuations. That is
why the covariance ellipsoids are flat in the movement direction. (b), Variability per dimension,
for the stop (solid) and hit (dashed) conditions in experiment 2. At each point along the path,
this quantity was computed as the square root of the trace of the covariance matrix for the cor-
responding ellipsoid, divided by 3. To plot variability as a function of time, we resampled back
from equal-space to equal-time intervals. (c,d), Same as subplots (a,b) but for experiment 3. (e),
Normalized target acceleration in the lateral direction, lateral hand position, and hand position
in the forward direction (positive is towards the robot). Dashed lines – hit condition; solid lines
– stop condition. Note that the onset of hand acceleration occurs before the movement reversal
in the forward direction.
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3.3.6 Flexible strategies for opportunistic control

The sensorimotor strategies predicted by optimal feedback control exhibit great flexi-

bility – in the sense that they are adapted to the task, body and environment, and take advantage

of every opportunity for achieving higher performance. This is in sharp contrast with traditional

trajectory-planning models [10, 11] which essentially view all tasks as being the same as long

as the average trajectory is the same. Here we make four additional experimental observations

illustrating the flexibility inherent in the optimal control framework.

First, in the hit condition in experiments 2 and 3 subjects actually hit the target harder,

even though they were not instructed to do so (and half of them had already performed the

task in the stop condition). In both experiments the forward hand velocity before impact was

2-3 times larger in the hit condition compared to the stop condition. In experiment 3, where

we used a force sensor, the normal force in the first 50msec after contact was about 3 times

larger in the hit condition compared to the stop condition. Both the model and the experimental

results suggest that the stopping requirement causes decreased sensitivity to positional errors

late in the movement. Thus the relaxed stopping requirement in the hit condition is exploited to

increase positional accuracy. It should be noted however that the stopping requirement was not

fully eliminated in the hit condition. In experiment 2 (unperturbed trials, hit condition) subjects

reduced their hand speed from 175cm/s peak to 39cm/s before contact – a 78% reduction; in

experiment 3 this reduction was 84%. For comparison, the speed reduction in the stop condition

was 96% and 92% respectively.

Second, subjects exploited the relaxed accuracy requirement in the vertical direction in

experiment 3 – where the target was a vertical stripe rather than a circle. Focusing on unperturbed

trials, we see that lateral and vertical endpoint errors are equally variable in experiment 2, but

vertical "errors" are significantly more variable than lateral errors in experiment 3 (Fig. 4.6(a)).

Furthermore, in experiment 3 subjects did not fully utilize feedback in order to adjust their

vertical hand position relative to the falling target. Indeed, variability of the vertical endpoint

position in absolute coordinates (relative to the room) was smaller than variability relative to the

target. We know that subjects are able to correct in the lateral direction – not completely, but

still the undershoot is much smaller than the correction. Thus the difference between absolute

and relative variance in the vertical direction does not reflect an inability to correct, but rather an

absence of a need to correct – in agreement with the minimal intervention principle [4].
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Third, subjects found a way to exploit the different methods we used to detect the

movement end in experiments 2 and 3. Here we focus on late perturbation trials and analyze

the hand velocity immediately before contact with the target. In experiment 2 we used a speed

threshold which required both forward and lateral velocity to be reduced in order to end the trial.

In the hit condition the necessary velocity reduction could result from contact with the target,

due to target impedance and friction respectively. In the stop condition, however, the target

could not be exploited to stop the movement in either direction – and thus the lateral velocity in

experiment 2 was small (Fig. 4.6(b)). In experiment 3 we used a force sensor to detect contact

with the target, and defined the time of contact as the movement end, so lateral velocity did not

have to be reduced as much. Subjects took advantage of this: the difference in lateral velocity

between the stop and hit conditions in experiment 3 was much smaller than in experiment 2, and

was not significant (Fig. 4.6(b)). We already know that the stopping requirement conflicts with

positional accuracy. It is then likely that finding a way to partially avoid this requirement (in the

lateral direction) afforded improved positional accuracy in experiment 3.

Fourth, subjects exploited the biomechanical redundancy of the arm when they had

a chance. In experiments 2 and 3 redundancy was reduced by bracing the wrist; however we

performed an earlier pilot experiment where the wrist was not braced (otherwise it was similar

to experiment 2). In that case the lateral correction was accomplished with a combination of wrist

flexion/extension and humeral rotation. We found that the percent contribution of the wrist was

larger in late perturbations compared to early perturbations, in both the hit and stop conditions

(Fig. 4.6(c)). The fact that the wrist contributes less than 30% in early corrections suggests that

the preferred strategy is to use humeral rotation. This may be because for a given force level

larger muscles are less affected by signal-dependent noise [27]. In late corrections, however, it

is perhaps more difficult to accelerate and deccelerate the entire forearm within the remaining

time, and thus the wrist contribution increases.

3.3.7 Modeling changes in duration and variability

The LQG framework, which we used in the above model as well as in most of our prior

work on optimal feedback control, is computationally efficient but has a number of limitations.

In the present context its limitations are: (i) movement duration cannot be modified online in

response to target perturbations; (ii) stopping constraints have to be modeled with quadratic
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Figure 3.6 Endpoint standard deviation, lateral velocity and writst contribution in Experiment
2-3. (a), Endpoint standard deviation in different directions, experiments 2 and 3, unperturbed
trials. Black – lateral direction; white – vertical direction (coordinates relative to the target); gray
– vertical direction (absolute coordinates). In experiment 3 the relative and absolute endpoint
positions are different in the vertical direction, because the target is falling and the variability
in movement duration causes variability in vertical target position at the end of the movement.
(b), Lateral velocity immediately before contact with the robot, in late perturbation trials. (c),
Wrist contribution to the lateral correction, in a pilot experiment with ten subjects. The main
difference from experiment 2 was that the wrist was not braced. The lateral correction could be
accomplished with humeral rotation (resulting mostly in translation of the hand-held pointer) or
wrist flexion/extension (resulting in rotation of the pointer in the horizontal plane). The pointer
was held in such a way that the Polhemus sensor was near the wrist. Therefore the lateral
displacement of the sensor on perturbed trials (relative to the average trajectory on unperturbed
trials) can be used as an index of how much humeral rotation contributes to the correction. The
displacement of the tip of the pointer is defined as the total correction. The difference between
the two is the contribution of the wrist. Dividing the latter by the total correction, and multiplying
by 100, we obtain the percent wrist contribution.
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costs instead of more natural step-function costs; (iii) the controller cannot be adapted to the

statistics of the target perturbations. Here we present an optimal feedback control model which

avoids these limitations. The new model is constructed using more general but less efficient

discretization techniques which require a simpler 2nd-order model of arm dynamics. Movement

duration is defined as the point in time when the hand first reaches the target plane. A term

proportional to movement duration is included in the cost function. Time-out errors and hitting-

hard errors are penalized with step-function costs. The tri-modal distribution of final target

positions is taken into account in the optimization process. See Methods for details.

The new model (Fig. 3.7) accounts for the salient findings in Experiment 2 (Fig.

4.4(c)(d)(e)) and Experiment 3 (Fig. 4.4(f)(g)(h)). The speed of the corrective movement (slope

of the positional traces in Fig 7a and Fig. 4.4(c)(f)) is smaller in early perturbations. The

undershoot in late perturbations is larger in the stop versus hit condition. The undershoot in

early perturbations is smaller compared to late perturbations, in both stop and hit conditions.

Movement duration in baseline and early perturbations is larger in the stop versus hit condition.

For late perturbations movement duration increases in both the stop and hit conditions. Note that

the changes in movement duration are now predicted by the model, as opposed to being taken

from the data as in the LQG model. This is possible because the new controller can adjust the

duration online – by modulating the speed in the main movement direction and thus reaching the

target plane at different times.

The new model allows us to address an additional phenomenon which is beyond the

scope of LQG models. The phenomenon (Fig. 3.8) is that trajectory variability on unperturbed

trials was larger in experimental sessions with perturbations compared to baseline sessions with-

out perturbations. Results from the hit and stop conditions are averaged in this analysis. Fig

8 shows that frequent perturbations lead to some adaptive change in the sensorimotor system

which in turn leads to increased variability on trials without perturbations. The precise time-

course of such adaptation is difficult to estimate because measuring variability requires many

trials.

What could be the nature of this adaptive change? One possible explanation is that, in

sessions with perturbations, trial-to-trial adaptation [31, 32] causes the system to be in a different

state every time an unperturbed trial is encountered. However in target perturbation paradigms

trial-to-trial adaptation is negligible [77], see also below. Another possible explanation is that
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target perturbations are for some reason misinterpreted as an increase in sensory noise – in which

case the "optimal" thing to do is reduce the reliance on sensory feedback, causing suboptimal

performance. A third explanation, which we pursue below, is an adaptive change in the feedback

controller.

In environments with large unpredictable perturbations one would expect the optimal

feedback controller to be more concerned with correcting the perturbations than the smaller er-

rors due to internal noise. This is confirmed by our simulations. In Fig. 3.8(a) we compare

the trajectory variability of two feedback controllers, one optimized for an unperturbed environ-

ment and the other one for a perturbed environment matching our task. As expected the latter

controller is better at correcting for perturbations (data not shown), however it allows higher vari-

ability on trials without perturbations. This is broadly consistent with the minimal intervention

principle as well as with the idea of Pareto optimality: improving any aspect of the behavior of

an optimal controller requires sacrifices elsewhere. Analyzing the specific changes in feedback

gains which lead to increased variability is interesting but beyond the scope of the present paper.
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3.3.8 Lack of trial-to-trial adaptation

Trial-to-trial adaptation has been found in perturbations of the hand [31, 32] but not

the target [77]. Here we replicate the latter finding: in our target perturbation experiments trial-

to-trial adaptation turns out to be negligible.

To quantify such adaptation we adopted a version of the state-space approach, namely

z (n+ 1) = Az (n) +Bw (n) + η (n)

y (n) = Cz (n) +Dw (n) + γ (n)

The correction on trial n is denoted y (n) and has two elements: distance in the corrective di-

rection from the average unperturbed trajectory, measured at the time of the late perturbation

and at the end of the movement. The perturbation w (n) has two elements specifying the target

position (again in the corrective direction) immediately before the late perturbation and at the

end of the movement. The vector z (n) is the internal learning state. It also has two elements

which the model is free to use in whatever way is needed to fit the data. We quantify the cor-

rection and the perturbation using pairs of measurements so as to allow the model the capture

the difference between early and late perturbations. η (n) , γ (n) are independent zero-mean 2D

Gaussian random variables with covariances Q,S.

The next learning state z (n+ 1) may in general depend on the current learning state

z (n), the perturbation w (n) and the correction y (n). However y is a linear function of z,w

and so we do not include a y-term in the first equation. Note also that if there is any trial-to-trial

learning here it should be related to predicting the final target position (and initiating a normal

movement aimed at that position); thus it makes more sense to learn from w rather than y.

The sequences of corrections y (n) and perturbations w (n) were measured. Given

these measurements, the most likely values of A,B,C,D,Q, S as well as the sequence of learn-

ing states z (n) were computed using the EM algorithm [76]. Since EM can get trapped in local

mimima, model fitting was run multiple times with different initial conditions and the best result

was used. We fit the model separately for each experiment (2 vs. 3), condition (stop vs. hit) and

subject. The first 2/3 of the data in each experimental session were used for model fitting and

the last 1/3 for model testing.

To evaluate the performance of the learning model we regressed each component of y

either on z and w, or on w alone, or on z alone. The first regression measures the performance of
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Table 3.2 100R2 for regressions on fitted model

variable regressor all trials baseline early jump late jump
y1 z,w 74.36∗ · 91.13∗ ·
y1 w 71.50∗ · 86.33∗ ·
y1 z · · · ·
y2 z,w 99.34∗ · 99.85∗ 98.15∗

y2 w 99.28∗ · 99.83∗ 97.34∗

y2 z · · · ·

the full model while the latter two regressions measure the contribution of feedback correction

(w) and learning component (z) respectively. The R2 and p values for the regressions were

averaged over subjects, experiments and conditions. The regressions were frist done on all trials,

and then separately on the baseline (no perturbation) trials, early jump trials and late jump trials

– because the models are likely to perform differently on different trial types. Table 1 shows the

average R2 values multiplied by 100 (to obtain a measure of variance explained), only for the

cases where p < 0.05 on average. In the remaining cases we found p > 0.3, thus there was clear

separation between significant and non-significant regression fits.

None of the regressions on z alone are significant, suggesting lack of trial-to-trial

learning. The regressions on w are as expected: given the target position at the middle and at

the end of the movement, one can predict the hand position at the end of the movement (y2) in

both types of perturbations as well as the hand position at the middle of the movement (y1) in

early perturbations. Note that the combined model z,w is slightly but systematically better than

w alone, suggesting that there may be a small learning effect. Given how small this effect is, it

is not surprising that regressions on z alone were far from significant.

3.4 Discussion

The biological processes that continuously improve behavior closely resemble itera-

tive optimization. This makes optimal control theory a natural framework for studying the neural

control of movement. It is also a very successful framework in terms of explaining the details of

experimental data [17]. However one of its most appealing features remains largely untapped:

the ability to predict task-specific sensorimotor strategies and thereby changes in behavior that
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result from systematic task variation. This is a gap not only in optimal control models but in the

field of motor control in general. A substantial number of studies (including most of the litera-

ture on motor adaptation) have used a single task: reaching. The emphasis on servo control has

created the impression that as long as a desired trajectory can somehow be planned, motor execu-

tion (and all sensorimotor processing during movement) is the same no matter what the organism

is trying to accomplish. Planning models have focused on the geometry of limb trajectories and

have largely ignored the context which gives functional meaning to these trajectories. We see

this as a substantial gap in the current understanding of sensorimotor function; the present paper

is a step towards filling that gap.

In order to vary the task systematically, we need a compact and experimentally acces-

sible representation of the task space. Optimal control provides the perfect tool: composite cost

functions. A central argument of this paper is that subjects optimize a composite cost as opposed

to a homogeneous cost under multiple hard constraints. Indeed we did everything we could to

enforce a hard constraint on movement duration, and yet subjects never treated it as such. In-

stead they always found a balance between undershoot and time-out errors. The changes in our

experimental design affected the relative importance of these errors; in particular the switch to

the intercept task (which made the duration threshold explicit) resulted in the lowest percent

time-out errors. In addition to accuracy and duration, we proposed that the composite cost in-

cludes endpoint stability (stopping in particular) and energy consumption. We showed directly

that stability is part of the cost – by allowing subjects to interact with a high-impedance target

and finding that they take advantage of it. The only evidence for the energy cost was indirect:

it was needed to make our model fit the data. However other studies have provided more direct

evidence: increased muscle cocontraction has been found to yield more accurate movements

[83, 105], and yet this is not a strategy that subjects normally use – suggesting that they care

about energetic efficiency in addition to accuracy. It is also notable that successful optimal con-

trol models of full-body movements are predominantly based on energy minimization [23, 106].

In obstacle avoidance tasks (experiments 2 and 3) there is likely to be a fifth component of the

cost having to do with avoiding the obstacle. Although we did not model this cost, we showed

that obstacle avoidance does not rely on hard constraints such as fixed imaginary targets to the

side of the obstacle.

The main effect we analyzed – the incomplete correction for late perturbations – re-



69

flects the closed-loop component of the sensorimotor strategy. The fact that the effect decreased

in the hit condition means that the visuo-motor loop operated differently, as predicted by our

model. Thus changes in stopping requirements (as well as target impedance) caused changes in

the way visual feedback is used to make online corrections. This may be the first demonstration

that visuo-motor feedback loops are affected by the task and in particular by non-visual com-

ponents of the task. In addition to demonstrating task sensitivity, we provided further evidence

that sensorimotor strategies are consistent with the minimal intervention principle of optimal

feedback control [4]. We found that positional variability is large during movement (especially

3D movement) and is only reduced near the end, where accuracy is needed. We also found that

when the target is a vertical stripe, endpoint variability is larger in the vertical direction and vi-

sual feedback is not fully utilized to suppress variability in that direction. These results reaffirm

the utility of looking beyond average trajectories, studying variability patterns and responses to

perturbations, and modeling the sensorimotor strategies responsible for such effects.

Motor adaptation is a phenomenon which has not yet been addressed in the optimal

control framework, but in principle is easy to address, as we showed in our model of increased

variability due to frequent perturbations. One can impose any change in the task or environment,

compute the new optimal controller and use it as a model of adapted behavior. Of course adap-

tation is rarely complete, thus the predicted adaptation effect should be somewhere in between

the baseline and fully-adapted optimal controllers. An interesting open question is how to relate

trial-to-trial dynamics of learning to asymptotic predictions regarding optimal adaptation. One

way to do this is to model trial-to-trial changes as arising from an iterative optimization algo-

rithm which in the limit converges to the adapted optimal controller. This approach may yield

richer models of learning dynamics than the linear state-space models currently used.

Acknowledgment

This chapter, in part, was originally published in the Journal of Neuroscience, 27(35):

9354-9368,2007. The dissertation author was the primary author of the paper.



Chapter 4

Smart Learning

4.1 Introduction

Everyday experience suggests that we are able to learn from a changing environment

and adjust our movements accordingly. This remarkable adaptability of the sensorimotor sys-

tem has been demonstrated in adaptation experiments using visual perturbations [28, 29, 30] as

well as force-fields produced by a robotic manipulandum [8, 31, 32]. The common finding is

that an internal model of the experimentally imposed perturbation is acquired, and then used to

generate predictive compensation [33, 34]. Despite extensive work on the statistical formulation

of internal models [35, 30, 36, 37, 38] the question of how the CNS uses these internal mod-

els to produce motor commands has received surprisingly little attention. There is an implicit

assumption in the literature that the output of internal models is in one-to-one correspondence

with changes in motor behavior, or in other words the control system itself is not changing. This

assumption has no reason to be true and indeed we show here that it can be systematically vio-

lated. In particular, we show that the same perturbation sequence can elicit very different forms

of adaptation as far as motor behavior is concerned, even though the information content (and

presumably the internal model being formed) is the same. We account for these differences in

the framework of optimal feedback control.

The evidence for flexible control strategies during both motor planning and motor

execution has been demonstrated in previous work [4, 71, 16]. However, these optimal feedback

control models are essentially a description of the biological system in its steady state. They

70
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have not addressed how the control system responds when the motor plant undergoes changes,

especially the flexible adjustments based on knowledge about the statistical properties of the

environment learned from past experience. This limitation is partly due to the fact that optimal

feedback control is in general hard to solve, except for the case of linear dynamics, quadratic

costs and Gaussian noise (LQG) [66]. Although a recent study successfully applied the LQG

framework to explaining the curvature in saccades after adapting to target perturbations, it did

not model the statistical distribution of the perturbations explicitly [68]. Here we applied an

iterative LQG algorithm [67] which enables us to handle non-Gaussian perturbation statistics

and non-quadratic cost functions necessary to model our data.

Our point of departure is the puzzle why strong trial-by-trial learning [31, 32] has

been observed in response to visual and mechanical perturbations but not to target jumps [32,

77, 71]. We first designed a reaching experiment where the target was perturbed in a non-

random way at different times during the movement and in different dynamic environments. We

found that subjects modified their behavior based on the statistics of the perturbations, but only

in conditions where lack of adaptation would have been detrimental to task achievement. In

particular, no learning effect was observed when the target perturbation occurred early in the

movement and subjects had enough time to make an on-line correction. To understand whether

this lack of predictive responses in early perturbations was attributable to a lack of learning, we

designed a second experiment where we tested subjects both before and after forcing them to

predict. We found that subjects preferred not to rely on prediction in early-perturbation trials

even after learning to do so in a different condition. One possible reason is that, even though

the perturbation direction was predictable in a statistical sense, the target could still jump in a

different direction and thereby require large on-line correction. If the motor system is sensitive to

such outliers, limiting the perturbation to one direction should increase the predictive response.

This hypothesis was tested in a third experiment where perturbations were generated from one of

the two distributions with the same mean but different shapes: both left and right perturbations

were possible in one case but only right perturbations were possible in the other. We found

that when outliers were eliminated the predictive response increased. This was modeled by

introducing an energy cost which increases faster than the usual quadratic cost.

The flexible use of internal models in generating motor commands, which we observed

in all three experiments, could be largely explained within the framework of optimal feedback



72

control. This required some novel extensions to the framework. The extensions have to do with

robustness (as in high-order energy costs) as well as a preference for control strategies that tend

to be successful in everyday life outside the lab.

4.2 Materials and Methods

4.2.1 Experimental Design

Experimental Setup

In all three experiments, we used a similar setup. Subjects made planar reaching move-

ments on a table positioned at chest level (Fig. 4.1a). A 21 inch flatscreen monitor was mounted

above the table facing down and was viewed in a see-through horizontal mirror. In this way

computer-generated images could be physically aligned with the hand workspace. Subjects held

in their right hand a small pointer with an electromagnetic Polhemus (Colchester, VT) Liberty

sensor and a 3D accelerometer attached to it. The Polhemus sensor measured three-dimensional

position at 240Hz, and the accelerometer measured the acceleration at 960Hz. The room was

dark to prevent subjects from seeing their hands. Visual feedback of hand position was provided

by a 2-cm-diameter red disk on the computer monitor, referred to as the hand cursor. A 2-cm-

diameter green disk represented the target. The task was to move the hand cursor to a starting

position, wait for the target to appear, and move to the target after a ready signal was released.

The main movement was on the vertical direction from bottom to up. During the movement, the

target was either stationary or rapidly displaced left or right relative to the subject. Subjects were

instructed that perturbations may occur and asked to always move to the final target position

within the allowed time limit.

Movement onset was detected on-line using a 0.1cm threshold on the distance between

the current hand position and the hand position when the ready signal was released. Movement

was terminated when target was hit within the allowed time interval (successful trial), when a

horizontal boundary line going through the target was crossed without hitting the target (missing

error), or when the allowed time exceeded (time-out error).



73

trials

B

A

20

175 0 350175 175

80 80 80

N/A

20 20

perturbation time (ms)

trials

C

40 80 80 40

D

0

20 10 70

50 50

baseline

EARLY

EARLY

testing testingtraining

  EARLY
with COG

  EARLY
with COG

EARLY

LATE COGRANDOM RANDOM RANDOM

bimodal

tri-modal

left right

Figure 4.1 Experimental setup and paradigm. (a), Experimental setup. (b), Chronology of
Experiment 1. (c), Chronology of Experiment 2. (d), Chronology of Experiment 3.
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Experiment 1

After a brief familiarization session, twelve subjects performed 20 baseline trials with-

out perturbations, followed by six blocks of trials with perturbations (Fig. 4.1b). The main

blocks were EARLY, LATE and COG, each separated by a RANDOM block to eliminate the

interference from the previous block. The three main blocks had the identical sequence of per-

turbations applied to the target. Each sequence contained 10 baseline trials, 35 left perturbation

trials, and 35 right perturbation trials. Perturbation trials were not permuted randomly, but or-

dered such that once a perturbation occurred, it would repeat to the same direction in the next

2-4 trials in a row with different probabilities (Table 1). The sequence was generated using a first

order Markov Model with added constraints on the number of trials with repeating perturbations,

leading to this uneven distribution. Once a baseline trial occurred, it was followed by either a

left or a right perturbation with equal probabilities. Despite the same perturbation sequence,

perturbations times were different in these three blocks. The target was visible all the time in

EARLY and LATE but was perturbed at onset of the movement in EARLY and 350ms into the

movement in LATE. In COG, in contrast, the target was invisible during the movement and sub-

jects were asked to move to the predicted final target position, with visual feedback of the true

final target position provided briefly after the movement was finished (the horizontal boundary

line was reached).

In addition to varying perturbation times, we also changed the dynamics of the hand

cursor in either the DIRECT condition or the SPRING condition. In the DIRECT condition,

the hand cursor reflected the true hand position. In the SPRING condition, in contrast, the hand

cursor was simulated as a point mass attached to the hand via a spring and thus had its own

dynamics. Parameters of this mass-spring-damper system were set as follows: mass m = 1kg,

spring constant α = 100N/m, and viscous damper of damping coefficient β = 20Ns/m. As a

result, the hand cursor lagged behind the real hand and could not change directions as rapidly.

Since the parameters satisfied the critical damping criterion β2 = 4mα, stability of the hand

cursor was guaranteed.

Subjects were divided into two groups, and were tested in the six blocks under either

the DIRECT condition (group 1) or the SPRING condition (group 2). Within each group, one

half of the subjects performed the EARLY block first, and then the LATE block; this order

was reversed in the other half; COG was always the final block. In all these blocks/conditions,
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Table 4.1 Probability of perturbation directions after perturbing the target to a different direction
from the previous trial

trial number after first perturbation same direction opposite direction baseline
3 53 29 18
4 89 11 0
5 0 63 37

subjects were required to finish the movement within 800ms.

Experiment 2

Subjects were tested in two identical blocks before and after they were forced to learn

to predict the perturbations in a training block (Fig. 4.1c). In both training and testing blocks,

the perturbation sequence followed the same pattern as in Experiment 1. In the testing block,

target was visible all the time and all perturbations occurred at the onset of the movement. In

the training block, however, to force subjects to learn to predict the perturbations, in 1/8 of the

trials the target became invisible before the movement and subjects were asked to move to the

predicted target position. The true final target position was provided briefly after the movement

was finished. Subjects could not predict when these cognitive trials occurred, and had to predict

the perturbation in the following trial after each movement. Each testing block had 40 trials,

long enough to get a stable learning effect based on results from Experiment 1. The training

block had 160 trials to make sure the perturbation pattern was learned.

Sixteen subjects participated in the experiment. The target was visible all the time

in the experiment except for the cognitive trials, and the hand cursor reflected the true hand

position.

Experiment 3

Different from the repeat-and-switch pattern in Experiment 1 and 2, here perturba-

tions were independently generated from either a bimodal distribution in the bimodal block,

or a tri-modal distribution in the tri-modal block. Let j be a vector representing the proba-

bility of left perturbation, baseline, and right perturbation, then jbimodal = [0.0, 0.5, 0.5] and
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jtri−modal = [0.2, 0.1, 0.7]. These two distributions were chosen because they had the same

mean but different shapes, especially, outliers only occurred in the latter where the perturbation

could change directions from left to right, or vice versa. In perturbation trials, the target was

rapidly displaced 10cm left or right at 150ms during the movement. In both blocks, subjects

were required to finish the movement within 700ms. The target was visible all the time in the

experiment, and the hand cursor reflected the true hand position.

After a familiarization session, Sixteen subjects performed both the bimodal block and

the tri-modal block, with 100 trials in each (Fig. 4.1(d)). Before starting each block, subjects

were instructed whether the target would be displaced to both left and right, or only right. One

half of the subjects performed the bimodal block first, and then the tri-modal block; this order

was reversed in the other half.

4.2.2 Statistical analysis

To get a stable learning effect in response to target perturbations in Experiment 1-3,

only data from the second half of each block were used (see Fig. 4.2 and Fig. 4.5). In the

comparison of hand movements on the lateral direction (corrective direction) in Experiment

1 and 2 (see Fig. 4.2(b)(c)(d)(e)), only adaptation trials, defined as trials where target was

perturbed to the same direction as in the previous trial, were used. To analyze the learning

process, all adaptation trials were included in Experiment 1 (see Fig. 4.6(a), 4.6(b)), and all data

in the bimodal block were used in Experiment 3 (see Fig. 4.6(c)).

Statistical tests were based on n-factor ANOVA (“anovan” in the MATLAB Statistics

Toolbox). We avoided averaging to the extent possible. In the comparisons of the lateral hand

movement prior to perturbations (see Fig. 4.2(b), Fig. 4.5(b)), earliest correction time (see Fig.

4.2(c)), and the endpoint lateral error (see Fig. 4.2(d)) to study the learning effect in Experiment

1-3, individual trials were treated as repeated measures, and the factors were the experimental

conditions (EARLY vs. LATE vs. COG, DIRECT vs. SPRING in Experiment 1; bimodal vs.

tri-modal in Experiment 3) and perturbation directions if applicable (see Fig. 4.2(c)). In the

comparisons of lateral hand positions before the late perturbation time in the SPRING condi-

tion in Experiment 1 (see Fig. 4.6(a)), endpoint lateral error and the corresponding correction

prior to perturbations through the LATE block in Experiment 1 (see Fig. 4.6(b)) and through

the bimodal block in Experiment 3 (see Fig. 4.6(c)) to study the learning process, individual
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trials were treated as repeated measures, and the factors were trial numbers and experimental

conditions if applicable (EARLY vs. LATE vs. COG in Fig. 4.6(a) DIRECT vs. SPRING in

Fig. 4.6(b)). All comparisons of means were based on Tukey’s criterion for post hoc hypothesis

testing. Differences were reported as significant when p < 0.05. The error bars shown in the

figures correspond to 1 pooled SE of the mean, as computed by the multiplecomparison function

used to perform Tukey’s test (“multcompare” in the MATLAB Statistics Toolbox). In the com-

parison of corrections in response to right perturbations in the two blocks in experiment 3 (see

Fig. 4.5(a)), all right-perturbed trials that a subject performed in each block were combined to

obtain a single number, and then a t-test was used and the only factor was the block.

4.2.3 Optimal feedback control model (ILQG)

We model the hand as a m = 1kg point mass moving in a horizontal plane, with

viscosity b = 10Ns/m approximating intrinsic muscle damping. The point mass is driven by two

orthogonal force actuators which can both pull and push (approximating two pairs of agonist-

antagonist muscles). The actuators act as muscle-like first-order low-pass filters of the control

signals, with time constant τ = 0.05s. These settings of m, b, τ are chosen to be compatible

with biomechanics and are not adjusted to fit the data. For the mass-spring-damper system in

the SPRING condition in experiment 1, spring constant α = 100N/m and viscous damper of

damping coefficient β = 20Ns/m are kept the same as in the experiment.

Let p (t) ,v (t) ,a (t) ,u(t), p̃(t), ṽ (t) , p∗ (t) be the 2D hand position, hand velocity,

hand actuator state, control signal, cursor position, cursor velocity, and target position respec-

tively. The corresponding units are cm, cm/s, N, N, cm, cm/s and cm. Time axis was discretized

with time step ∆t = 20ms. Time index is t ∈ [0, tf ], where the final time tf is specified

according to the experimental data. The hand dynamics are modeled as

p (t+ 1) = p (t) + v (t) ∆t

v (t+ 1) = v (t) +
1
m

(a (t)− bv (t)) ∆t

a (t+ 1) = a (t) +
1
τ

(u (t)− a (t)) ∆t

and the hand cursor dynamics are modeled as
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DIRECT SPRING

p̃ (t) = p (t) p̃ (t+ 1) = p̃ (t) + ṽ (t) ∆t

ṽ (t) = v (t) ṽ (t+ 1) = ṽ (t) + 1
m(α(p(t)− p̃(t))− βṽ (t))∆t

In order to define an optimal control problem we also need a cost function. As in our

previous work [71], we use a mixed cost function defined as

‖p∗ − p̃(tf )‖2 + wstop ‖ṽ(tf )‖2 + wenergy

ti=tf−1∑
ti=0

‖u(ti)‖4 ∆t

The three cost terms encourage endpoint positional accuracy, stopping at the target,

and energetic efficiency, respectively. The weights wenergy and wstop are unknown parameters.

Note the energy cost is not quadratic but 4th order. This will be explained later.

The initial state is p (0) = v (0) = p̃ (0) = ṽ (0) = [0; 0]. The default target position

p∗ is [0; y∗] but can be perturbed to either [x∗; y∗] or [−x∗; y∗] . Consistent with the experiment,

we set x∗ = 8cm, y∗ = 20cm for Experiment 1; x∗ = 10cm, y∗ = 18cm for Experiment

3. Again, let j be the vector representing the probability of left perturbation, baseline and right

perturbation. We set j
bimodal

= [0.0, 0.5, 0.5] and jtri−modal = [0.2, 0.1, 0.7] using values from

Experiment 3. For Experiment 1, if we ignore the constraints on the number of sequence of

trials with the same perturbations and simply compute the probability of perturbing the target

to the three directions after a perturbation trial, we get j = [0.1, 0.1, 0.8] after flipping the left

perturbations to the right, as used in the model. We do not model explicitly the visuomotor delays

or uncertainty in detecting the target observations. To obtain correct reaction times, we simply

model each target perturbation as occurring 120ms later than the corresponding experimental

perturbation.

However, this optimal control problem does not fit in the well-developed Linear-

Quadratic-Gaussian (LQG) formalism due to two reasons. First, p∗(1) (lateral endpoint target

position) is not Gaussian but rather a mixture of 3 delta functions. Second, the energy cost is not

quadratic, which will prove to be crucial in explaining data in Experiment 3. Another option is to

discretize the state and control spaces and convert it into a Markov decision problem (MDP) [69]

which can be solved via dynamic programming [70]. We did try this on the DIRECT condition

in Experiment 1 and got similar results as reported later when the dynamics was modeled as a
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2nd order system using six states. However, when the dimension of state goes higher (necessary

in modeling the SPRING condition in Experiment 1), such method becomes inapplicable due to

the curse of dimensionality.

Since performance of our perturbation experiments is measured based on only hand

trajectories, we used the Iterative LQG (ILQG) [67]. This method iteratively uses linearizations

of the nonlinear dynamics around the accurate trajectory, and improves that trajectory by min-

imizing a quadratic approximation to the optimal cost-to-go function. As a result, it can deal

with nonlinear system such as the human arm, with more complex models of cost. In addition, it

allows us to embed statistical distributions of external perturbations in the framework after mak-

ing the following modifications: given the Bellman equation [107], optimal cost-to-go function

v(xt) (i.e. the cost expected to accumulate from now until the end of the movement, assuming

optimal behavior) has the following form

v(xt) = min
uxt

(
‖uxt‖4 + E(v(xt+1))

)
Since uncertainty only occurs at the perturbation time, we have

t 6= tjump, E(v(xt+1)) = v(xt+1)

t = tjump, E(v(xt+1)) = j(left)vleft(xt+1) + j(middle)vmiddle(xt+1) + j(right)vright(xt+1)

for t ∈ [0, tf ], where left, middle and right refers to left perturbation, baseline, and

right perturbation respectively. Thus, in each iteration we can first solve the control problem

for the left, middle and right paths after the perturbation separately, and combine them at the

perturbation time according to the probability of left perturbation, baseline, and right perturba-

tion. This result is then used to initialize the path before the perturbation and solve the problem

backwards. During this process, an affine control law is designed for the system and applied

forward in time to the system to obtain an updated open-loop control along the way. For the

next iteration, the splitting point is modified by applying this new open-loop control law and

the above process repeats. Such iteration continues until the new sequence of control law and

the old one are sufficiently close. Since this is essentially a local method and can get trapped in

local minima, it was run multiple times with different u0 and the best result, which yields the

minimum cost, is used.
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Table 4.2 Parameters of iterative-linear-quadratic-Gaussian model

parameters criteria

m = 1kg, b = 10Ns/m, τ = 0.05s compatibility with biomechanics

α = 100N/m, β = 20Ns/m same as in Experiment 1 (SPRING)

x∗ = 8cm, y∗ = 20cm, j = [0.1, 0.1, 0.8] same as in Experiment 1

tEARLY
f = 27, tLATE

f = 34, tCOG
f = 19 from data in Experiment 1 (DIRECT)

tEARLY
f = 32, tLATE

f = 34, tCOG
f = 31 from data in Experiment 1 (SPRING)

x∗ = 10cm, y∗ = 18cm same as in Experiment 3

jbimodal = [0.0, 0.5, 0.5], jtri−modal = [0.2, 0.1, 0.7] same as in Experiment 3

tbimodal
f = 29, ttri−modal

f = 29 from data in Experiment 3

wstop = 0.00005, wenergy = 1E − 10 overall fit to data

From the MDP model we developed in a pilot study, we found that the control dependant-

noise had very little effect on the results. Therefore, here we simply put this noise term to 0. We

also dropped the additive noise since it has no effect on the control law in the absence of control-

dependent noise in the model [67]. The model parameters, and the criteria for choosing their

values, can be summarized as follows:

4.3 Results

4.3.1 On-line corrections to perturbed target after learning

Experiment 1 was to test whether subjects could learn the statistical properties of per-

turbations, and use such knowledge in on-line corrections to compensate for the delay of sensory

feedback. Subjects made forward reaching movement on a horizontal table, while the target was
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displaced in an orthogonal direction (left or right relative to the subject) unexpectedly in pertur-

bation trials. Since no learning effect was observed when the direction of perturbation applied

to target was random from previous experiments [77, 71], in this experiment, perturbations were

carefully controlled such that once a perturbation occurred, it would be more likely to repeat to

the same direction in the next trial (see materials and methods for details). The same perturba-

tion sequence was tested in three blocks under two conditions. The three blocks differed in the

way the target perturbation was represented were provided. Target was visible all the time but

disturbed early in the EARLY block and late in the LATE block. Perturbation time was carefully

controlled such that subjects could have enough time to make full corrections based on the visual

feedback of the perturbation in EARLY but not LATE. In COG, on the other hand, the target was

invisible during the movement to force subject to learn to predict the final target position. Each

subject performed these three blocks under either the DIRECTION condition or the SPRING

condition, differing in the hand cursor dynamics. In the DIRECT condition, the hand cursor re-

flected the true hand position; whereas in the SPRING condition, the hand cursor was simulated

as a mass attached to the hand via a spring. Parameters in the mass-spring-damper system were

chosen so that the hand cursor lagged behind the true hand and thus made the online-correction

of the hand cursor much harder especially in the LATE block.

In the following analysis, only data from the second half in each block were included

to get a stable learning effect. The learning process through trials are presented in section 4. Fig.

4.2(a) shows the average hand/cursor paths in EARLY, LATE and COG blocks under DIRECT

and SPRING conditions. In the rest of the analysis, trials following the left perturbations are

mirrored around the vertical axis and pooled with the corresponding trials following the right

perturbations. In this way, the previous perturbation is always to the right (trials following base-

lines are not included). We define adaptation trials as trials where the target was displaced to

the same direction as in the previous trial (to the right), catch no jump trials as baselines, and

catch jump trials as trials where the perturbation was to the opposite direction to the previous

trial (to the left). When the target was visible during the movement as in EARLY and LATE, all

movements exhibit smooth corrections, regardless of the perturbation time and the hand cursor

dynamics. The fact that initial hand paths to different perturbation directions are not separable

shows that subjects have not responded to the perturbations. In COG, in contrast, the lack of

curvatures in hand paths indicates that no visual target was available in guiding on-line correc-
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tions. Note the discrepancy between the real hand (thin lines) and the hand cursor (thick lines) in

SPRING, especially the delay of the latter. As can be seen, although the perturbation sequence

applied to the target was identical in all these blocks/conditions, hand movements on the lateral

direction (corrective direction) were quite different.

The different corrective movements in different blocks/conditions are further quanti-

fied using both the lateral hand position measured at 100ms after the early and late perturbation

time (Fig. 4.2(b)), and the earliest correction time, measured as the first point in time where

accelerations in left-perturbed trials differed significantly from those in right-perturbed trials

(Fig. 4.2(c)). In Fig. 4.2(c) 0 represents the main movement onset detected using a positional

threshold, which is thus later than that based on accelerations. As we expected, when no target

perturbation was available during the movement as in COG, corrective movements started from

the beginning of the main movement and became significantly bigger than 0 even measured at the

early perturbing time. A similar learning effect was also observed in LATE-SPRING, indicating

the use of prediction in on-line corrections to compensate for delays of the target perturbation

and the hand cursor. In LATE-DIRECT and EARLY (both DIRECT and SPRING), on the other

hand, corrections were not significant and were initiated much later with respect to the pertur-

bation time, indicating little or no learning effect. Fig. 4.2(d) shows the endpoint lateral error,

with COG being the largest, followed by LATE, and that in EARLY was close to 0. Note the

similar accuracy in LATE with or without delaying the hand cursor, even the task was much

more difficult in the former. The reason will be explained in section 4.

In addition to the average movement, Fig. 4.2(e) shows the distribution of hand move-

ments on the lateral direction for adaptation trials measured at 100ms after the late perturbation

time in each block/condition. In EARLY blocks, the distribution shows the response to the al-

ready perturbed target, in which case the shape is close to a Gaussian distribution with the mean

approaching the final target position. This unimodal distribution is replaced by a tri-modal one

in COG (left peak not shown), in which case the corrections were based on predictions alone

and could not be adjusted on-line using the visual target. The higher peak on the right indicates

that predictions in most trials were successful. In LATE, on the other hand, subjects were about

to but have not reacted to the perturbations. Note the different distributions between DIRECT

and SPRING. In the DIRECT condition, the single peak is close to 0, again indicates little or no

learning; whereas the two peaks with equal probabilities in the SPRING condition reflect both
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the use of prediction in on-line corrections and the uncertainty of such predictions.

Give the perturbation sequence was identical in all blocks/conditions, why learning

effects were only observed in COG and LATE-SPRING? Was the lack of learning effect in

other blocks/conditions because subjects didn’t learn, or because subjects chose not to use what

they learned? To answer this question, we tested subjects under the DIRECT condition using

the EARLY block both before and after two learning blocks in Experiment 2. Each learning

block was identical to the EARLY block in experiment 1, but had 10 cognitive trials interspersed

among early perturbation trials to force subjects to learn to predict the perturbations. To measure

the learning effect, the earliest correction time both before and after learning was estimated as

before. After learning, the earliest correction time dropped from 120ms to 60ms, represented by

the black and red dot respectively in Fig. 4.2(c). This change can not be simply due to the long

exposure to the perturbations, since movements became very stable after 20 trials in EARLY in

Experiment 1 (data not shown here). Therefore, on one hand, subjects used what they learned

about the perturbations in on-line corrections once they were forced to learn, resulting in the drop

of the earliest correction time. On the other hand, the fact that the earliest correction time after

learning was still much later than that in COG indicates that predictions were not fully trusted

when the target was visible to guide on-line corrections.

4.3.2 Predictions of optimal feedback control

The above results show that subjects were able to learn the statistical properties of

external perturbations and apply such knowledge in on-line corrections to compensate for the

delay of visual feedback. The learning effect, however, varied depending on the perturbation

time and the hand cursor dynamics, regardless of the identical perturbation sequence. Is this

behavior optimal? To answer this question, we model Experiment 1 using the Iterative Linear

Quadratic Gaussian (ILQG) framework (see materials and methods for details).

To understand how corrective movements prior to perturbations influence the overall

performance, we fix the control on the lateral direction before the perturbation time to a constant

value, and compute the corresponding increase of cost, δcost, comparing with the cost from the

optimal solution where the control is free to change all the time. Fig. 4.3 reveals the change of

δcost as a function of fixed initial control for different blocks/conditions. As can be seen, all

the curves of δcost are smooth and convex around the corresponding minimum point. When
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Figure 4.2 Learning results in response to target perturbations in Experiment 1 (to be continued).
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Figure 4.2 Learning results in response to target perturbations in Experiment 1. (a), Average
hand paths for EARLY, LATE, COG in both DIRECT and SPRING conditions. Average has
been done separately for baselines (catch no jump trials), trials where the target was perturbed
to the same direction as in the previous trial (adaptation trials) or to the opposite direction (catch
jump trials). Trials following left perturbations have been mirrored around the vertical axis and
pooled with the corresponding trials following the right ones. Thus, the probability of going
to the right is much larger. Blue: adaptation trials. Red: catch no jump trials. Green: catch
jump trials. Dark, hand. Light, the hand cursor in SPRING. All movements started at the lower
box. The dashed line connects the starting position and the initial target position. The horizontal
line indicates the average hand position when perturbations occurred. (b), Lateral hand position
measured at 100ms after early and late perturbation time for only adaptation trials. (c), Earliest
correction time, measured as the first point in time where accelerations in left-perturbed trials
are significantly different from those in right-perturbed trials, for adaptation trials only. To get
an accurate measurement of accelerations, data from the accelerometer and the second order
derivative of data from the Polhemus are combined optimally. Black dot: earliest correction time
before learning in Experiment 2. Red dot, earliest correction time after learning in Experiment
2. (d), Endpoint lateral errors for adaptation trials. (e), Distribution of lateral hand positions
measured at 100ms after late perturbation time for adaptation trials. Measurement from each
trial is treated as a sample and samples from all trials are pool together to compute the histogram
(unit interval is 0.1cm). Then the histogram is smoothed using 1d Gaussian kernels centered at
each interval with variance of 0.1cm and nomalized so that its sum is 1. Dashed lines represent
the initial and final target positions.
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the lateral control is fixed to 0, or equivalently no correction is made before the perturbation,

δcost in COG and LATE-SPRING is much larger than the rest (δcost >10), whereas δcost

in EARLY, especially in the DIRECT condition, becomes negligible (δcost <0.1). That is,

performance is reduced without using prediction-based on-line corrections, but the impairment

is much larger in COG and LATE-SPRING than the rest. This explains why learning effects were

significant only in COG and LATE-SPRING. The sensitivity of performance to corrections prior

to perturbations is also revealed by the slope of δcost. The much more flat curve in EARLY

implies that subjects’ reluctance to use predictions would have little impact on their performance,

which explains why little or no learning effect was observed in EARLY in the experiment. If

subjects would like to sacrifice a little performance to rely more on the visual feedback rather

than the prediction in on-line corrections in EARLY, they should do the same thing in other

cases. Based on this assumption, we draw a line through δcost = 0.03, which goes across each

curve twice, except for COG-SPRING, one before the minimum point and one after. Fig. 4.4(a)-

(d) shows the results when the lateral control before perturbations is fixed to the corresponding

left cross for each block/condition separately (lateral control in COG-SPRING is fixed to the

point corresponding to the lowest δcost), in the same format as in Fig. 4.2(a)-(d). Note the

close correspondence with experimental data, especially the much larger and earlier corrections

in COG and LATE-SPRING. If the model is free to choose lateral control before perturbations

to achieve the lowest cost, the resulting corrective movements are close to data except for the

bigger predicted corrections in EARLY (see Fig. 4.4(e). Therefore, as long as the performance

was good enough, subjects preferred suboptimal strategies to avoid using prediction in on-line

corrections in Experiment 1.

4.3.3 On-line corrections to perturbations generated from different distributions

Why did subjects prefer suboptimal control strategies instead of fully using prediction

in on-line corrections? One possible reason is that since target was displaced both right and

left, moving to one direction before the perturbation could increase the distance to the target if

the perturbation was to the opposite direction. In this case, the large error had to be corrected

using large effort, which subjects may try to avoid. If the motor system is indeed sensitive to

large energy consumptions, limiting the perturbation to only one direction should increase the

amount of prediction-based corrections. This hypothesis was tested in Experiment 3, where
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Figure 4.4 An optimal feedback control model for Experiment 1 (to be continued).
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Figure 4.4 An optimal feedback control model for Experiment 1. (a)-(d), Same as the corre-
sponding plots of Fig. 4.2(a)-(d), but for data generated by the suboptimal solution from the
optimal feedback control model. Earliest correction time from the model is measured as the first
point in time where the lateral velocity exceeds 3.5cm/m. Fig. 4.2(e)same as 4.2(b) but based on
the optimal solution from the model.
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perturbations were independently generated from either a bimodal distribution (bimodal block)

or a tri-modal distribution (tri-modal block). The two distributions shared the same mean but

had different shapes, especially, perturbations could occur both left and right in the tri-modal

one but only to the right in the bimodal one.

We first compare the hand paths in the two blocks within each subject, and find that

the difference varied slightly depending on which block was experienced first. To get rid of the

interference from the past, only data in the first experienced block for each subject are used.

Fig. 4.5(a) left panel shows the average hand paths in the two blocks, filled area indicates where

corrections to right perturbations in the two blocks are significantly different. As we expected,

initial hand movements were away from the middle and moved towards the right, which had

a higher probability for perturbations to occur. Furthermore, corrections prior to perturbations

became significantly larger once the perturbation was limited to the right as in the bimodal block,

also shown in Fig. 4.5(b) left panel, confirming the sensitivity of the motor system to large energy

consumptions.

We also model Experiment 3 in the same ILQG framework as before, and the results

are plotted in the same format as data on the right in Fig. 4.5(a)-(b). When the energy cost

is framed as a quadratic term of control, widely used due to its nice mathematical property,

corrections prior to perturbations in the two blocks are identical. The discrepancy occurs only

when the order of control goes higher, shown in the right panel in Fig. 4.5(a). Results in the right

panel in Fig. 4.5(a) are based on the 4th order energy cost. As can be seen, model prediction

faithfully captures the different corrective movements prior to perturbations between the two

distributions.

4.3.4 Changes in on-line corrections as a result of learning

The above analysis focuses on on-line corrections to perturbed target after learning. In

this section, we further explore how on-line corrections changed during learning.

We first quantify learning in experiment 1 using a version of the statespace approach

following the idea of trial-to-trial learning as follows [71]:

z (n+ 1) = az (n) +Bw (n) + η (n)

y (n) = z (n) + γ (n)
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Figure 4.5 Learning results in response to perturbations in Experiment 3 (left column), and
the corresponding prediction by the optimal feedback control model (right column). (a), Hand
paths in bimodal and tri-modal blocks in Experiment 3. Red, bimodal. Blue, tri-modal. In the
left panel, filled area indicates that the paths in right-perturbed trials are significantly different
between the two blocks. In the right panel, energy cost was modeled as a forth order term of
the control to get the result. (b), Lateral hand position measured at 100ms after the perturbation
time in the two blocks. In the right panel, energy cost is modeled as a second, forth, and sixth
order term of the control respectively.
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The correction on trial n is denoted by y(n), representing the position in the corrective direction

from the average unperturbed trajectory measured at 100ms after the perturbation. Thus, the

deviation from the average unperturbed trajectory should be due to prediction. w(n) has two

elements specifying the endpoint target position and the endpoint positional error (again in the

corrective direction). z(n) is the internal learning state that the model is free to use in what-

ever way is needed to fit the data. η (n) and γ (n) are independent zero-mean one-dimensional

Gaussian white noise processes with variances q and r. Given these measurements, the most

likely values of a, B, q, r as well as the sequence of learning states z (n) are computed using

the expectation maximization (EM) algorithm [76, 71]. Because EM can get trapped in local

minima, model fitting is run multiple times with different initial conditions and the best result

is used. We fit the model separately for the EARLY, LATE and COG block as well as the

first RANDOM block for each subject. To evaluate the performance of the learning model, we

regress y(n) on z (n). To measure the contribution of learning from previous perturbation and

previous error alone, we fit the model again using either one of the two and regressed y(n) on

the fitted z (n) separately. The R2 and p values for the regressions are averaged over subjects

for each block under DIRECT and SPRING conditions separately. Table 2 shows the average

R2 values multiplied by 100 (to obtain a measure of variance explained), only for the cases in

which p < 0.01 on average. For the RANDOM block in both conditions, the regression is not

significant even on the full model, indicating no learning effect, consistent with previous report

[77, 71]. When the perturbation was not random as in EARLY, LATE and COG, the regressions,

either on the full model or previous perturbation alone or previous error alone, are significant

in all blocks/conditions except for EARLY in the DIRECT condition, similar to the result from

section 1. Furthermore, R2 for using previous perturbation alone is in general bigger than using

previous error alone. In fact, the combined model is only slightly but systematically better than

using previous perturbation alone. This suggests that instead of naively correcting the previ-

ous error as observed in random hand perturbation experiments, subjects learned the pattern of

perturbations applied to the target, and used such knowledge in subsequent movements.

However, trial-to-trial learning would not be effective in Experiment 1, where pertur-

bations followed a complex repeat-and-switch pattern. Once the target was perturbed to a certain

direction, the same perturbation would repeat in the next 2-4 trials in a row and then switch to

the other direction and repeat. To understand whether subjects learned this repeat-and-switch
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Table 4.3 100R2 for regressions on fitted model

DIRECT SPRING
regression RANDOM EARLY LATE COG RANDOM EARLY LATE COG

full · · 45∗ 50∗ · 23∗ 39∗ 42∗

previous pert. · · 42∗ 50∗ · 20∗ 35∗ 40∗

previous error · · 34∗ 50∗ · 13∗ 34∗ 32∗

pattern, we analyzed sequence of trials where all the perturbations were to the same direction

in a row. Trials from different sequences were grouped according to the number of preceding

trials with the same perturbations. For example, 0 represents a different perturbation from the

previous trial, corresponding to catch jump trials; 1-4 represent trials where the same perturba-

tion has repeated for 1-4 times, corresponding to adaptation trials. Catch no jump trials are not

analyzed here. Fig. 4.6(a) compares the initial correction, defined as the lateral hand position

before reacting to perturbations (trials in COG are measured at the same time as in LATE), aver-

aged in the first 20 trials (grey) and last 20 trials (black) for EARLY, LATE and COG separately

in the SPRING condition. In EARLY, initial corrections were never significantly different from

0, confirming the lack of learning again. In LATE and COG, in contrast, initial corrections in-

creased significantly after learning. Although the corrections after catch jump trials and after

adaptation trials were similar before learning, after learning, corrections after adaptation trials

became much larger than those after catch jump trials. This dramatic increase after catch jump

trials implies that subjects followed the most recent perturbation while ignoring the perturba-

tions experienced in the past. This resetting mechanism can not be accounted for using a fixed

learning rate, as assumed in trial-to-trial learning. In fact, we fit the trial-to-trial learning model

described above to the first and last 20 trials in each corresponding block separately, and analyze

the best fitted initial correction z (n) the same way as we analyze the data, shown in blue lines

in Fig. 4.6(a). As we can see, the trial-to-trial model can not reproduce the sharp increase of

the initial corrections after catch jump trials. Thus, subjects learned the perturbation pattern in a

more complex way than the trail-to-trial manner.

Fig. 4.6(a) also reflects a different learning mechanism between the LATE and COG

blocks in the SPRING condition, despite the similar learning effects between the two from sec-

tion 1. In LATE, initial corrections to adaptation trials were similar, regardless of the times the
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same perturbation has repeated. In COG, in contrast, initial corrections dropped significantly

after 4 trials in a row with the same perturbation. As subjects reported after the experiment,

they noticed not only the repeat-and-switch pattern, but also the constraints on the number of

repetitions in this case. This counting strategy implies that learning became even more complex

once target was not visible to guide on-line corrections.

To investigate what caused the different learning effects under the same perturbation

sequence in Experiment 1, we examined the relationship between the endpoint lateral error

and the corresponding initial correction through adaptation trials. Here we only focus on the

LATE block because of the salient difference in the corrective movements between DIRECT

and SPRING from section 1, and the results are plotted in Fig. 4.6(b). Despite the same pertur-

bation sequence and the same perturbation time in the two conditions, significant increase of the

initial correction through learning are only observed in SPRING, causing the endpoint lateral

error to drop significantly. As a result, although the task was much harder when the hand cursor

was delayed in SPRING, as reflected from the much larger error in the beginning of the block in

this case, the error was not significantly different from that in the DIRECT condition in the end

of the block. This result suggests that prediction was used in on-line corrections only if it could

lead to accuracy improvement. Therefore, the reason why no learning effect was observed in

EARLY might be due to the fact that full corrections could be achieved by relying on feedback

alone.

The relationship between the endpoint lateral error and the corresponding initial cor-

rection is also analyzed to data in the bimodal block in Experiment 3, shown in Fig. 4.6(c).

Different from Experiment 1, the significant increase of initial correction didn’t reduce the end-

point lateral error. This implies that in addition to the endpoint accuracy, the motor system is

also sensitive to other factors. One possibility is the energetic efficiency, as suggested by results

in section 3.

4.4 Discussion

This paper studies how subjects learned the statistical properties of target perturbations

and applied such knowledge in on-line corrections. Our central argument is that people learn

from the changing world in a flexible way. This is supported by two lines of evidence. First,
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Figure 4.6 Learning process during Experiment 1 and 3 (to be continued).
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Figure 4.6 Learning process during Experiment 1 and 3. (a), Initial correction, defined as the
lateral hand position at 100ms after perturbations (trials in COG are measured at the same time
as in LATE), in the first 20 trials (light) and the last 20 trials (dark) in the SPRING condition
from both experimental data (black) and the fitted trial-by-trial learning model (blue). Results
are averaged according to how many times the same perturbation has repeated in the preceding
trials in a row. More specifically, 0 represents the catch jump trials, 1-4 represent the adaptation
trials, and catch no jump trials are not shown. (b), Endpoint lateral error and the corresponding
initial correction during adaptation trials in LATE in both DIRECT and SPRING conditions in
Experiment 1. Results are averaged every 10 trials for all subjects in the group. (c), Endpoint
lateral error and the corresponding initial correction during learning in the bimodal block in
Experiment 3. Results are averaged every 10 trials for all subjects in the group.
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the same perturbation sequence could elicit different learning effects, depending on whether the

use of prediction in on-line corrections could lead to better endpoint positional accuracy and less

energy consumptions. Second, instead of adopting a fixed learning rule, subjects used different

learning mechanisms when the perturbations followed a more complex pattern.

4.4.1 Different learning effects in on-line corrections under the same perturba-
tion sequence

One main phenomena we analyzed, different learning effects in on-line corrections in

response to the same perturbation sequence under different visual feedback conditions in Exper-

iment 1, shows that although the motor system is able to learn the statistics of a changing envi-

ronment from the experience, learning effects are more significant when the sensory feedback is

not sufficient to achieve good performance. The correlation between the initial correction and

the corresponding endpoint lateral error indicates that the motor system is sensitive to endpoint

positional accuracy, and will use prediction in on-line corrections only when it could improve

such accuracy. The fact that limiting the perturbation to only one direction instead of two re-

duced subjects’ reluctance to use prediction in on-line corrections in Experiment 3 suggests that

the motor system is also sensitive to energetic efficiency, and will not rely on a prediction if it

has the potential to lead to large energy consumptions. This may be the first demonstration that

the output of the visuomotor feedback loop is not a simple readout of the prediction. Instead,

how adjusting motor commands based on a prediction will affect the overall performance is also

taken into account, with emphasis given to the uncertainty of the prediction.

Such flexible adaptive response based on the statistical properties of a changing envi-

ronment is inherent in our optimal feedback control model. It represents performance using a

cost function and at each time step computes the control law to minimize the expected final cost

by taking into account both uncertainties from the changing world and the noise and delay in the

sensorimotor system. In this way, our model is able to compare how different control strategies

based on the same prediction affect the overall performance, always choosing the optimal strat-

egy. To explain the data in the experiments, we used a composite cost function encouraging both

endpoint positional accuracy and energetic efficiency. Moreover, to model the sensitivity to large

energy consumptions, the traditional quadratic energy cost was replaced by a higher order term.

Although this non-quadratic cost as well as the non-Gaussian noise in modeling perturbations
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can not be dealt with under the LQG framework, they were successfully accommodated by the

ILQG method.

4.4.2 High level learning mechanisms in response to non-random perturbations

It has been suggested that motor learning occurs in a trial-to-trial manner, which, how-

ever, is apparently not effective when the environment is changing in complex ways, such as in

the real world. In Experiment 1, we demonstrated that different levels of learning mechanisms

may be involved in learning the repeat-and-switch pattern of perturbations. Some of them are

more complex than trial-to-trial learning. When the visual feedback was sufficient to make full

corrections as in EARLY-DIRECT, subjects didn’t learn the perturbation pattern at all. When

learning was necessary to compensate for delays of the perturbation and the hand cursor as in

LATE-SPRING, subjects moved towards the most recent perturbation direction in a predictive

way regardless of the past, and the learning rate in catch jump trials was much smaller than that

in adaptation trials. This result can not be account for by trial-to-trial learning, which assumes

accumulating learning with a constant learning rate. Finally, when learning was the only means

to make corrections as in COG, subjects moved to the opposite direction to the previous per-

turbation after seeing the same perturbation for several times in a row. As they reported after

the experiment, they noticed not only the repeat-and-switch pattern, but also the constraints on

the number of repetitions. This counting strategy further challenges trial-to-trial learning, which

relies on the idea that the neural structures modified as a result of motor learning don’t explicitly

retrain memories of perturbations beyond one trial in the past.

4.4.3 Explanations to the lack of learning effect in response to random perturba-
tions

Based on the above results, we propose three explanations for the apparent lack of

trial-by-trial learning in some target perturbation experiments. First, subjects always learn to

predict but do not use the prediction unless the lack of time for on-line corrections forces them

to do so. In this way they can still accomplish the task, while avoiding large corrections in cases

where the perturbation happens to be opposite to the expected direction. Second, subjects do not

bother to learn in conditions where they know they can rely on on-line corrections. Third, the
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motor system has a preference for moving towards the current target, and needs a good reason

(such as task failure) to deviate from this preferred strategy.
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Chapter 5

Hierarchical Control as an

Approximation to Optimal Control on

a Realistic Arm Model

5.1 Introduction

The human body has over 250 muscles each with a distinct mechanical action at one

or more joints, and the nervous system must learn which muscles to use to perform a movement

[62]. key to understanding biological motor control is thus to solve the control problem of com-

plex redundant systems. This control problem, however, has not been well addressed because the

the nonlinear dynamics and high-dimensional state and control spaces of human body prevent

the use of many traditional methods for controller design.

As an attempt to control a redundant manipulator, [7] proposed a hierarchical con-

trol framework. This framework is inspired by two observations. First, from a computational

viewpoint, optimal feedback controllers for redundant systems exhibit hierarchical organizations

[4, 16]. Secondly, from a biological viewpoint, it is known that sensorimotor control occurs si-

multaneously on many levels [39, 40]. Lower-level circuits (e.g., the spinal cord) interact with

the musculoskeletal system directly by both receiving rich sensory input and generating corre-

sponding motor outputs before the rest of the brain has had time to react to that input. High-level

circuits (e.g., the motor cortex), on the other hand, operate on a more abstract and goal-related

100
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Figure 5.1 Schematic illustration of the hierarchical control framework [7].

movement representations [41]. The proposed hierarchical framework also has two layers, illus-

trated in Fig. 5.1. The plant is augmented with a low-level feedback controller, which receives

information about the plant state x, and sends to the high-level y(x) that captures the task-

relevant aspects of plant dynamics but has reduced dimensionality. The high-level monitors task

progress, and issues commands v(y) to specify how y(x) should change to archive the goal.

Then the low-level controller computes energy-efficient controls u(v,x) to control the plant to

accomplish the trajectory designed from the high-level. In this way, the high-level solves the op-

timal control problem without considering all the details of the plant and thus avoid running into

the curse of dimensionality, the low-level performs an instantaneous feedback transformation to

deal with the details. This hierarchical control framework has been tested on a simplified arm

model with 2 degrees of freedom (DOF) in 2D movements. The goal of this paper is to apply this

framework to a more realistic arm model with 7 DOF and 14 muscles on 3D movements. Our

focus is on designing the high-level controller to capture the low-level dynamics, and designing

the low-lever controller to generate biologically plausible arm configurations to accomplish the

control designed by the high-level.
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5.2 General framework

Mathematically, the hierarchical control framework can be described as

low-level dynamics ẋ(t) = a(x(t)) +B(x(t))u(t) (5.1)

high-level dynamics ẏ(t) = f(y(t)) +G(y(t))v(t) (5.2)

low-level to high-level y = h(x) (5.3)

where

low-level high-level
state vector x ∈ Rnx y ∈ Rny

control vector u ∈ Rnu v ∈ Rnv

passive dynamics a(x) f(y)

control-dependent dynamics B(x)u G(y)v

Here function h defines the transformation from low-level to high-level circuits. Such

transformation should allow the high-level to acquire enough information in computing the state-

dependent cost q(t,x), and at the same time operate on a reduced state space to avoid running

into the curse of dimensionality during optimization. In other words, h needs to satisfy ∃q̃ s.t.

q̃(t,y) = q(t,x) and ny < nx. The goal of the high-level controller is to choose v to accomplish

the goal of the task without considering the full details of the plant.

Differentiating Eq. 5.3 w.r.t. time t and using Eq. 5.1, the dynamics of y become

ẏ = H(x)(a(x) +B(x)u) (5.4)

where H(x) = ∂h(x)/∂x is the Jacobian of the function h. The goal of the low-lever controller

is to choose u(v,x) so that the y dynamics from the low-level (Eq. 5.4) match those from the

high-level (Eq. 5.2). That is

H(x)a(x) +H(x)B(x)u = f(y) +G(y)v (5.5)

The goals of the two levels can be archived using two methods:

1. Explicit modeling

We can treat the high-level as an autonomous system, explicitly model its dynamics, and
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then use standard optimization techniques to solve the optimal control problem in the high-

level. The low-level then seeks energy efficient u to satisfy Eq. 5.5. Ideally, we would

like to have the high-level dynamics to mimic those from the low-level, so

f(y) ≈ H(x)a(x) (5.6)

However, when the high-level considers only the end-effector location as in most reaching

movements, Eq. 5.6 cannot be guaranteed because different arm configurations may result

in the same end-effector location. In other words,

H(x1)a(x1) 6= H(x2)a(x2) even h(x1) = h(x2) (5.7)

In this case, low-level dynamics cannot be fully captured by the high-level. As a result,

the optimal solution generated from the high-level may not be optimal with respect to the

low-level dynamics.

2. Implicit modeling

The drawback of explicit modeling can be avoided by not modeling the passive dynam-

ics explicitly on the high-level. Instead, the high-level controller is given on-line access

to H(x)a(x) and is responsible for dealing with it. The discrepancy between f(y) and

H(x)a(x) is no longer compensated on the low-level. So the low-level controller only

needs to satisfy

H(x)B(x)u = G(y)v (5.8)

In this way, the high-level dynamics can exploit the passive dynamics of the plant while

operating on a lower-dimensional system. In addition, now we can apply Eq. 5.8 to match

the low-level control cost r(u,x) exactly to the high-level r̃(v,y). In this way, the high-

level can seek to solve the exact optimal control problem with respect to the true plant

dynamics. However, since now the high-level is no longer an autonomous system, regular

optimization tools are not guaranteed to provide optimal solutions.

5.3 Low-level dynamics

Here we considering a 7-DOF arm with the same skeletal structure as human arms:

the shoulder is modeled as a 3-DOF joint (only the glenohumeral joint was taken into account
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Figure 5.2 A realistic arm model.

here), with flexion-extension, abduction-adduction and external-internal rotation; the elbow is

modeled as a 2-DOF joint (humeroulnar joint and radioulnar joint), with flexion-extension and

pronation-supination movements; the wrist is modeled as a 2-DOF joint, with flexion-extension

and abduction-adduction movements.

The low-level dynamics are modeled as a third-order system resembling those in hu-

man arms [108]. The state vector of the low-level includes joint angles (θ), joint velocities (θ̇)

as well as muscle activations (s). Although each joint is actually controlled by a groups of mus-

cles which are also connected to other joints, here we consider a simplified case where each

joint is independently controlled by two muscles acting on opposite directions. So the com-

plete system has a 28D state vector x .= (θ1, ..., θ7, θ̇1, ..., θ̇7, s1, ...s14)T and 14D control vector

u .= (u1, ..., u14)T .

Forward dynamics of the arm can be expressed as

θ̈ = I(θ)−1
(
τ(θ, θ̇, s)− n(θ, θ̇)

)
(5.9)

where I(θ) ∈ R7×7 is a positive definite symmetric inertia matrix, τ(θ, θ̇, s) ∈ R7 represents

joint torques, and n(θ, θ̇) ∈ R7 are Centripetal, Coriolis, gravitational, and viscoelastic forces.
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polynomial function to punish moving towards joint limits.

Joint torques are generated by muscles following

τ(θ, θ̇, s) = M(θ)T (s, l(θ), l̇(θ, θ̇)) (5.10)

whereM(θ) ∈ R7×7 is the moment arm, defined as the perpendicular distance from the muscle’s

line of action to the joint’s center of rotation. Although moment arms are posture dependent, here

we consider it as constant. T (s, l(θ), l̇(θ, θ̇)) represents muscle tension. The tension produced

by muscle i depends on its physiological cross-sectional area (PCSA) and activation state si,

as well as the muscle length l and velocity l̇. The substantial length-and-velocity dependence

is modeled based on the Virtual Muscle model [109] which provides a state-of-the-art fit to a

range of physiological data, with slight simplification for computational purpose, illustrated in

Fig. 5.3(a) for maximal activation si = 1. Muscle activation states s have first-order low-pass

filter dynamics

ṡi =
1
α

(ui − si) (5.11)

with α = 40msec. Each control ui is constrained to the range [0, 1]. In this way, our arm model

captures most key features of human arms even with some simplifications.

The low-level dynamics described above can be summarized as follows:

a(x) =


θ̇

I(θ)−1
(
τ(θ, θ̇, s)− n(θ, θ̇)

)
− 1
αs

 ,B(x) =


0

0
1
α

 (5.12)
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5.4 Design of high-level controller

The goal of movement in everyday life (e.g. pick up a cup of coffee) is usually defined

in Cartesian hand coordinates rather than in joint coordinates, and evidence has also shown that

human movements are planned in Cartesian coordinates [3]. Therefore, we only include 3D

positions (p) and velocities (ṗ) of the end-effector (fingertip) in Cartesian hand coordinate in the

high-level, so y .= [px, py, pz, ṗx, ṗy, ṗz]T . The high-level control, accordingly, is defined as 3D

forces v .= [vx, vy, vz]T . Including velocity in the high-level is necessary, because it has been

shown that people would slow down during a simple goal-directed reaching movement even the

only requirement was the endpoint accuracy [71], and [7] also demonstrated that controlling

hand position through instantaneous velocity commands are too far removed from muscles that

have to carry them out.

As introduced in Section 5.2, there are two ways to design the high-level controller.

Using the explicit modeling, we can simplify the entire arm into a point mass (m) and model the

dynamics as a simple linear system:

f(y) =

ṗ

0

 ,G(y) =

0
1
m

 (5.13)

The transformation from low-level to high-level can be represented as

H(x) =

J(θ) 0 0

J̇(θ) J(θ) 0

 (5.14)

where J is the Jacobian J(θ) = ∂p/∂θ, and J̇(θ) = d
dt(J(θ)).

We can also use the implicit modeling. Instead of explicitly modeling the high-level

dynamics, we add a constant vector in the high-level states y .= [px, py, pz, ṗx, ṗy, ṗz, 1, 1, 1]T

to capture the low-level dynamics:

f(y) =


ṗ

e

0

 ,G(y) =


0

I(y)−1

0

 (5.15)

where e is the 4th to 6th rows of H(x)a(x). I(y) is the end-effector inertial matrix and
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I(y)−1 = J(θ)I(θ)−1J(θ)T . The transformation from low-level to high-level becomes

H(x) =


J(θ) 0 0

J̇(θ) J(θ) 0

0 0 0

 (5.16)

5.4.1 Dynamics compatibility

Since the high-level dynamics is second order whereas the low-level dynamics is third

order, dynamics from the two levels are not compatible. In particular, now the low-level control

is the muscle activation (see Eq. 5.12), which controls the torque change and cannot affect

acceleration on the high-level instantaneously (see Eq. 5.14 and Eq. 5.16), causingH(x)B(x) =

0. However, the change of torque has a predicable effect when applied over time, suggesting that

the "instantaneous" a andB should be replaced with some function that can incorporate temporal

predictions. [7] provided an effective way to construct such functions using implicit integration,

briefly summarized as follows. First, it discretized the low-level dynamical system (Eq. 5.1)

with time step δ:

x(t+ δ) = x(t) + δ (a(x(t)) +B(x(t))u(t)) (5.17)

Then each time step was segmented into n smaller time steps with the same duration δ/n, and

Euler integration was performed in each of the n time steps to get

x(t+ δ) = x(t) + δQ(δA, n) (a(x(t)) +B(x(t))u(t)) (5.18)

where A = ∂a
∂t |x=xt and

Q(X,n) =
1
n

(
I +

(
I +

X

n

)
+ · · ·+

(
I +

X

n

)n−1
)

(5.19)

Then the continuous notation was obtained by taking the limit n→∞, so Eq. 5.18 becomes

x(t+ δ) = x(t) + δQ(δA,∞) (a(x(t)) +B(x(t))u(t)) (5.20)

Eq. 5.20 differs from Eq. 5.17 only byQ. Therefore, a andB can be replaced by the "predictive"

dynamics ã and B̃, where

ã(x) = Q(δA,∞)a(x)

B̃(x) = Q(δA,∞)B(x) (5.21)
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Numerically, we have found that Q(X,n) converges as n > 100 even for singular X . B̃ now

turns into the form

B̃ =


0

∆
1
α

 (5.22)

resulting in HB̃ 6= 0. The only drawback is the increased computational cost per step. On the

other hand, such cost may be offset by the larger time steps that implicit integrations can safely

take.

5.4.2 High-level optimization

Ideally, we would like to minimize a cost function that enforces both task performance

and energy efficiency. That is,

L(x,u) =
∫ T

0
(q(t,x) + r(t,u)) dt (5.23)

where q(t,x) and r(t,u) are state-dependent (or task-dependent) cost and control-dependent

cost respectively.

As assumed before, y contains enough information to satisfy q̃(t,y) = q(t,x). Thus

the state-dependent cost can be fully captured in the high-level. Control-dependent control, on

the other hand, may not be fully accounted for from the high-level. Control-dependent cost is

usually modeled with a quadratic form

r(t,u) =
γ

2
u(t)Tu(t) (5.24)

If we can represent low-level control u using high-level control v as

u(t) = K(x, t)v(t) (5.25)

then we can reformulate the control-dependent cost r(t,u) in high-level again in a quadratic

form:

r̃(t,v) =
γ

2
u(t)TK(x, t)TK(x, t)u(t) (5.26)

This can be archived by the implicit modeling but not explicit modeling. In particular, applying

Eq. 5.15, Eq. 5.16, and Eq. 5.22 to Eq. 5.8, we have

Pu = I(y)−1v (5.27)
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where P = J(θ)∆ and P ∈ Rnv × Rnu . Since nv = 3 whereas nu = 14, Eq. 5.27 means that

only a subspace of the low-level control will affect the task performance and is thus projected to

the high-level. Apply singular value decomposition to P and get P = UΛV T . V T projects the

low-level control into task-relevant space (Ω) and task-irrelevant space (Ω̄). Then minimizing

r(t,u) becomes equivalent to minimizing the control in Ω and setting Ω̄ into 0. So we get

K = (U Λ̃)−1I(y)−1 (5.28)

where Λ̃ is the first nv columns of Λ.

Although implicit modeling allows the high-level to capture both the passive dynamics

and the true cost of the low-level, optimization in the high-level becomes difficult since the high-

level is no longer an autonomous dynamical system. Indeed, we apply the iterative LQG (iLQG)

method [72], guaranteed to converge for autonomous system, to the high-level, and find that it

does yield good solutions. To make the high-level system slightly simpler but still capture the

natural dynamics of the low-level, we let the high-level consider only the non-linear skeletal

structure of the low-level, while ignore the complex muscle properties. Under the assumption

that muscles are strong enough to achieve the torques required by the high-level, the low-level

can control the muscle activations to match the high-level controls exactly. After making this

modification, the optimization process using iLQG can converge to good solutions after several

iterations, which will be presented in numerical simulations.

5.5 Design of low-level controller

In addition to generating energy efficient control u to satisfy Eq. 5.5, the low-level

controller also needs to take into account the constraints of biological movement. First, ui is

constrained to ui ∈ [0, 1]. Secondly, each joint can only move within a certain range, so θi ∈
[θmin
i , θmax

i ]. In order to punish moving towards the joint limits, we use a polynomial function:

g(θi) = (αiθi + βi)6/1006 for i = 1, 2, ..., 7. (5.29)

where

αi =
200

θmax
i − θmin

i

,βi = 100− 200
θmax
i − θmin

i

θmax
i
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Here, αiθi + βi normalizes joint angle θi ∈ [θmin
i , θmax

i ] into [−100, 100], and 1006 normalizes

g(θi) into [0, 1]. Thus g(θi) increase dramatically when the joint angle (θi) approaches its joint

limit, shown in Fig. 5.3(b).

Now, low-level control u at each time t can be considered as the solution to the fol-

lowing constrained optimization problem: given v and x, find u that minimizes

1
2
uTRu + η (a(x) +B(x)u)T ∇x

7∑
i=1

g(θi) (5.31)

subject to

H(x)B(x)u = f(y) +G(y)v −H(x)a(x)

0 ≤ ui ≤ 1 (5.33)

where η specifies the weight on moving away from joint limits. This optimization problem

can be solved via quadratic programming. Note in implicit modeling, f(y) = H(x)a(x) is

guaranteed automatically.

5.6 Numerical simulations

Here we consider three tasks: reaching, orienting and drawing. Our focus is to test the

validity of the proposed framework, and also explore the representation of high-level states to

account for different task requirements.

5.6.1 Reaching task

The task is to start from some initial position, move and stop the end-effector (finger-

tip) at a target p∗ defined in Cartesian hand coordinates in a specified time interval T . The cost

can be formed in the high-level as follows:

L(y,v) =
γ

2

∫ T

0
v(t)Tv(t)dt+ ω1‖p(T )− p∗‖2 + ω2‖ṗ(T )‖2 (5.34)

where p(T ) and ṗ(T ) are the endpoint position and velocity of the end-effector in Cartesian

hand coordinates. γ, ω1 and ω2 are the relative weights of the terms enforcing energy efficiency,

endpoint accuracy and stopping at the target respectively. These three parameters are usually
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Figure 5.4 Normalization. (a), Total control as a function of movement distance. (b), Time
duration as a function of movement distance.

adjusted manually to fit movements with different distance. To automatically scale these param-

eters, we do the following normalizations. Accuracy and stopping requirements are assumed to

be independent of movement distance, therefor their weights (ω1 and ω2 ) are kept constant. The

weight of control cost (γ), on the other hand, needs to be scaled according to the distance so that

the contribution of energy consumption is relatively the same with respect to that of accuracy

and stopping. To get this scaling, we apply an optimal feedback control model [67] to reaching

movements with different distance ranging from 10cm to 50cm, and fit the dependency of the

total energy consumption (Γ = 1
2

∫ T
0 v(t)Tv(t)dt) on distance (d ≥ 5cm ) and mass (m) on the

moving direction as

Γ = (3.1d− 12.8)m2 (5.35)

Fig. 5.4(a) shows Γ as a function of distance. Then we can normalize the control cost by setting

γ = 1
Γ .

Movement duration T is determined based on Fitt’s law [56], which states that the

time taken to acquire a visual target should depends on both the movement distance (d) and the

accuracy requirement (w) in the form T = c1 + c2 log2( dw + 1) where c1, c2 are experimentally

determined constants. Assuming finishing a movement of 30cm with an accuracy of 1cm takes

about 750msec, we set c1 = 0 and c2 = 1.5. Fig. 5.4(b) shows T as a function of distance.

We first compare the explicit modeling and implicit modeling on a reaching move-

ment from p = [48,−8,−15]T to p∗ = [21,−21,−30]T . In explicit modeling, high-level is

considered as a linear system and the optimization problem is solved using LQG [67]. In im-
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plicit modeling, high-level is not treated as an autonomous system but accounts for the low-level

dynamics. The optimization problem is solved using iLQG. Since iLQG is a local method and

may get trapped in local minima, the initial control is provided by LQG which treats the entire

arm as a point mass. Fig. 5.5(a) shows how the final cost converges over iterations based on

the two methods. As we expected, LQG converges within one iteration. However, the cost cal-

culated from the high-level (blue star) does not match that from the low-level (red star). Cost

from iLQG, on the other hand, converges after 20 iterations, with the cost calculated from the

high-level truthfully captured that from the low-level. Note iLQG guarantees converges only for

autonomous dynamical systems, which is why the cost here increases occasionally rather than

monotonically decreases. As we can see, the low-level cost after optimization is much smaller

from implicit modeling than that from implicit modeling. Fig. 5.5(b) further compares the end-

effector trajectory during both movement planning and movement execution from both methods.

In explicit modeling, the planned trajectory from the high-level (black line) is straight based on

the linear dynamics. However, due to the discrepancy of the dynamics from the two levels, this

planned trajectory cannot be executed from the low-level, causing big endpoint positional error

(green line). The implicit method, in contrast, takes into account the true low-level dynamics

and thus planned a curved movement (blue line). This trajectory is tracked exactly by the low-

level during execution, leading to much better endpoint accuracy (megenda line). Therefore, the

implicit method yields better performance although it takes more computational time. The rest

of results are all based on implicit modeling.

Fig. 5.5(c) shows the positions and velocities of the end-effector in the Cartesian hand

coordinates, as well as the joint angles and velocities in joint coordinates. As we can see, the end-

effector velocities in Cartesian coordinates are close to bell-curved profiles, and the end-effector

position reaches the target in the end of the movement. Fig. 5.5(d) shows the muscle activations

during the movement. Note each joint is controlled by two muscles acting on opposite directions

(solid lines vs. dashed lines). The two muscle in each muscle pair are activated at different

time to either push the joint to move or pull the joint to stop. Fig. 5.5(e) and (f) show the arm

configurations at the beginning and the end of the movement. Note although there are many ways

to accomplish the same end-effector position, the arm configuration in (f) is a natural posture in

the sense that every joint stays in its movement limit. This is archived by including the term g(θ)

on punishing movement approaching joint limits in computing low-level controls (Eq. 5.29 and
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Eq. 5.31 ). Fig. 5.5(g) compares the movement of joint 1 and joint 3 before (solid lines) and

after (dashed lines) including g(θ). As we can see, function g(θ) pushes joint 1 to stay away

from its joint limits, and moves joint 3 further to maintain the same end-effector position.

We further test this implicit modeling method with 77 targets evenly distributed in a

3D space surrounding the initial end-effector location. Fig. 5.6(a) shows target locations (red

circles) and error vector on each target (blue line connecting the end-effector and the correspond-

ing target). Each target location is determined by two parameters: heights and angles on the x-y

plane. Fig. 5.6(b) and (c) show how the error varies over different height (x axis) and angles

(represented by different colors of lines) during both planning and execution. As we can see,

since the high-level captures the natural plant dynamics, the planned movement is well accom-

plished by the low-level controller. Also, the normalization of the control cost mentioned before

makes it possible to generate movements ranging from 20cm to 50cm with similar accuracy

(although error for bigger movement is slightly bigger).

5.6.2 Orienting task

The task is to make a reaching movement and stop at the target, again defined in

Cartesian hand coordinates, with a specific palm orientation. One way to solve this problem

is to consider a fixed-length pointer attached to the palm with an orientation perpendicular to

the palm. The goal of control is to move the two ends of the pointer to two desired positions

respectively. The high-level state thus becomes a 18D vector with 9D for each target defined

as before. However, this control problem is really hard to solve since now the dynamics in the

high-level becomes very complex and iLQG gets trapped in local minia so easily. To make

the task slightly simpler, we directly provide the joint angles which will lead to different palm

orientations, and define the cost in the high-level as follows

L(y,v) =
γ

2

∫ T

0
v(t)Tv(t)dt

+ ω1‖p(T )− p∗‖2 + ω2‖ṗ(T )‖2

+ ω3‖p̃(T )− p̃∗‖2 + ω4‖˜̇p(T )‖2 (5.36)

where p(T ) and ṗ(T ) are the endpoint positions and velocities of the end-effector in Carte-

sian hand coordinate as defined in reaching tasks. p̃(T ) and ˜̇p(T ) are the endpoint joint an-
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Figure 5.5 Arm movement during reaching. (a), Chang of cost during optimization. (b), Move-
ment trajectory during movement planning and movement execution based on implicit matching
or explicit matching. (c), Joint angel, joint velocity, finger position, and finger velocity during a
reaching movement. (d), Muscle activations during a reaching movement. (e), Arm configura-
tion at the starting position. (f), Arm configuration at the end position. (g), Comparison of joint
moments before and after including cost to punish hitting joint limits.
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116

gles and velocities of specific joints. p∗ and p̃∗ specify target position and desired joint an-

gles. γ, ω1, ω2, ω3, ω4 are the relative weights of the terms enforcing energy efficiency, end-

point accuracy, stopping at the target, getting specific joint angels, and stopping moving the

joints respectively. γ is normalized to account for different moving distance as explained before.

ω1, ω2, ω3, ω4 are adjusted to get the best result.

Fig. 5.7 shows arm configurations in the end of a reaching movement aiming to the

same target but with different palm orientations. Fig. 5.7(a) is the neutral posture where the wrist

is not bended, Fig. 5.7(b)(c) are cases requesting for pronation-supination of the palm (move-

ment of joint 5), Fig. 5.7(d)(e) are cases requiring flexion-extension of the palm (movement

of joint 7). Fig. 5.8 shows how movement of joint 1 is adjusted automatically to accomplish

different desired angles of joint 7, while keeping the endpoint end-effector position the same.

5.6.3 Drawing task

The task is to start from some point on a predefined ellipse and track this ellipse as fast

as possible. Suppose this ellipse is defined in a 2D plane (e.g., x-z coordinate in the Cartesian

hand coordinates with constant value in y coordinate p∗y), with the two foci p1 and p2 and the

sum of the distances to these two foci a constant l. The control cost can be defined as in Eq.

5.24, and the state-dependent cost can be formed as follows:

q(t,y) = ω1‖d(t)‖2 + ω2
ṗ(t) · p⊥(t)
‖p(t)− o‖2

+ ω3‖py(t)− p∗y‖2 (5.37)

where d(t) is the tracking error measured as d(t) = ‖p − p1‖ + ‖p − p2‖ − 2l, o is the

center of the ellipse o = 1
2(p1 + p2), p(t) = [px(t), pz(t)]T and ṗ(t) = [ṗx(t), ṗz(t)]T are

the current position and velocity of the end-effector in the x-z coordinate, p⊥(t) is a vector on

the tangential direction defined as p⊥(t) = [pz(t),−px(t)]T , ṗ(t)·p⊥(t)
‖p(t)−o‖2 computes the angular

velocity. ω1, ω2, ω3 are the relative weights of the three terms enforcing tracking the ellipse,

circling fast, and staying within the 2D plane of the ellipse. As we can see, we do not specify

the end-effector position at each time step as in a tracking task, which makes this drawing task

even harder.

We apply implicit modeling on a drawing task where the ellipse is simply a circle with

the radius of 10cm, and the duration is 6s. Fig. 5.9 (a) and (b) illustrate the arm configurations

before the movement and during the movement. Fig. 5.9 (c) show the end-effector trajectories
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Figure 5.7 Arm configuration with the same end-effector position but different wrist orienta-
tions. (a), wrist is not bended. (b), positive pronation-supination of the wrist. (c), negative
pronation-supination of the wrist. (d), positive flexion-extension of the wrist. (e), negative
flexion-extension of the wrist.
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in Cartesian hand coordinates. As we can see, the planned trajectory (light blue line) tracks

the desired circle (red line) closely even though the position at each time step is not explicitly

specified in the task. This planned trajectory is also well acomplished by the low-level controller

(dark blue line). Fig. 5.9 (d) shows the joint angles and velocities in joint coordinate, as well as

the end-effector positions and velocities in Cartesian hand coordinates. The circular movement

involves mainly the movement of joint 2, 4, and 6. Although there is slight oscillation in the

beginning, movements become very stable after 0.5s.

5.7 Discussion

A hierarchical control framework is designed for controlling a 7-DOF arm model,

which captures most key features of human arm. The high-level feedback controller solves the

original control problem but operates on more abstract representations to avoid running into

the curse of dimensionality; the low-level feedback controller performs an instantaneous feed-

back transformation to deal with the details. We show that by allowing the high-level feedback

controller to mimic the low-level dynamics, the original optimal control problem can be better

captured from the high-level which yields better solutions. To avoid making the high-level too

complex to be optimized, the high-level considers only the skeletal structures of the joints rather

than the full details of complex muscle properties. Simulation results suggest that taking into
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account the low-level dynamics in the high-level generates better results than treating the high-

level as a simple linear system. We also provide a scheme to shaping the task-irrelevant space of

low-level control to solve the redundancy problem. In particular, by punishing joint movements

approaching their limits, the low-level feedback controller generates natural arm configurations

to satisfy the task requirements monitored by the high-level. Satisfactory results in tasks such

as reaching, orienting and drawing suggest that this hierarchical control framework may not

only provide a solution to controlling complex redundant systems, but also shed some light on

understanding the neural control of biological movements.

This hierarchical frameworks is more general than other hierarchical schemes aiming

to decouple task-level control from details of plant dynamics. For example, the operational space

(OS) formulation [110] cannot handle systems other than second order, whereas our hierarchical

framework can deal with third-order systems without any modification. This makes it possible

for our hierarchical framework to accommodate the true musculoskeletal dynamics of human

body. Comparing with feedback linearization (FL) [111, 112] which usually assumes equal

numbers of inputs and outputs, our hierarchical framework is able to deal with the mismatch

in dimensionality and thus solves the redundancy problem with many more inputs than task-

relevant outputs. In addition, instead of augmenting y to handle the mismatch between the

high-level and low-level dynamics, our hierarchical controller uses the predictive version ã and

B̃ without increasing the dimensionality of the high-level state. Most importantly, OS usually

assumes linear dynamics in the high-level and FL tries to linearize the high-level dynamics, both

to some extend ignore the complex nonlinearity in the low-level. Our hierarchical framework, in

contrast, aims to have the high-level controller exploit the natural plant dynamics and yet operate

on reduced dimensionality to better pursue optimality.

Future work includes using more realistic muscle models with non-constant moment

arms, examining how control-dependent noise [12, 4] helps to solve the redundancy problem,

and testing this framework with more complex tasks.
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Chapter 6

Summary

A main point of this thesis is that during goal-directed movement, the CNS exploits

every opportunity to best archive the goal, instead of depending on a fixed control strategy. Such

flexibility has been largely ignored by traditional theories emphasizing movement geometry and

servo control mechinisms, but lies at the core of optimal feedback control.

The first form of flexibility we studied was the sensitivity of motor planning to task

goals, presented in Chapter 3. Our point of departure was the little-known fact that corrections

for target perturbations introduced late in a reaching movement are incomplete. We showed that

this was not simply attributable to the lack of time, in contradiction with alternative models and,

somewhat paradoxically, in agreement with our optimal feedback control model. Analysis of op-

timal feedback gains reveals that the effect was partly attributable to a previously unknown trade-

off between stability and accuracy. This yielded a testable prediction: if stability requirements

were decreased, then accuracy should increase. We confirmed the prediction experimentally in

three-dimensional obstacle avoidance and interception tasks in which subjects hit a robotic target

with programmable impedance. In additional agreement with the theory, we found that subjects

exploited every opportunity for increased performance. These results suggest that the remark-

able flexibility of motor behavior arises from sensorimotor control laws optimized for composite

cost functions.

The second form of flexibility we studied was motor system’s adaptability in a chang-

ing environment, presented in Chapter 4. By experimentally changing the perturbation time and

dynamic environments during a reaching movement, we showed that prediction of perturbations
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was used in on-line corrections only if it can lead to better endpoint positional accuracy and

less energy consumptions. These results suggest that motor learning involves both the statisti-

cal formulation of internal models to predict how the environment changes, and the flexible use

of internal models in adjusting motor commands to best achieve the behavior goal. This view

challenges the implicit assumption in the literature that the output of internal models is in one-

to-one correspondence with changes in motor behavior. The flexible use of internal models in

generating motor commands was largely explained within the framework of optimal feedback

control. This required some novel extensions to the framework. The extensions have to do with

robustness (as in high-order energy costs) as well as a preference for control strategies that tend

to be successful in everyday life outside the lab.

The last form of flexibility we focused on arises from the redundant musculoskeletal

structure of human body. In Chapter 5 we applied a hierarchical control framework to a more

realistic arm model with 7 degrees of freedom and 14 muscles whose dynamics resemble real

muscle dynamics. By designing the high-level controller to account for the complex low-level

dynamics but operate on more abstract representations, we were able to solve the optimal con-

trol problem with respect to the non-linear musculoskeletal dynamics without running into the

curse of dimensionality. Meanwhile, the low-level controller solved the redundancy problem by

considering both energy efficiency and biological constraints during optimization. Satisfactory

results in tasks such as reaching, drawing and orienting suggest that this hierarchical control

framework may provide us some insight on how the brain controls human body which is a com-

plex redundant system.
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