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GENERATIVE NEURAL ACTIVITY PATTERNS IN THE HIPPOCAMPUS 

ALISON EMELIE COMRIE 

 

 

ABSTRACT 

Animals can leverage prior experience to guide adaptive decision making. To decide 

where to forage, for instance, an animal may recall previous locations and internally 

simulate paths to take next. These functions are thought to rely on the hippocampus, a 

brain structure long implicated in learning, memory, and navigation. Accordingly, 

hippocampal neural activity can represent an animal’s current position, as well as 

generate representations of alternative possible locations. These representations of 

alternative “non-local” possibilities are hypothesized to enable internal simulation of 

previous experiences, alternative pasts, and potential futures to support cognition and, 

in turn, experience-guided decision making. However, it remains unclear whether or 

how internally generated hippocampal non-local representations are regulated during 

active behavior depending on changing cognitive needs for learning about and deciding 

among alternatives. In this work, I first synthesize evidence describing hippocampal 

non-local representations that suggests that they are well-suited to serve a wider range 

of cognitive abilities than previously thought. This work advances the idea that 

hippocampal function is well characterized not only by its representation of actual 

experience, but also by its regular representation of alternatives to actual experience. I 

then present experimental findings that show that the hippocampus generates 

representations of a wide range of spatial possibilities during active navigation, and that 
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representations of these distinct possibilities are distinctly modulated with learning and 

decision making in a complex and dynamic foraging environment. These findings 

indicate that the brain regulates the generation of alternatives in the hippocampus to 

meet momentary cognitive demands for adaptive behavior.  
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CHAPTER 1: IMAGINATION AS A FUNDAMENTAL FUNCTION OF THE 

HIPPOCAMPUS 

 

Summary 

Imagination is a biological function that is vital to human experience and advanced 

cognition. Despite this importance, it remains unknown how imagination is realized in 

the brain. Substantial research focusing on the hippocampus, a brain structure 

traditionally linked to memory, indicates that firing patterns in spatially tuned neurons 

can represent previous and upcoming paths in space. This work has generally been 

interpreted under standard views that the hippocampus implements cognitive abilities 

primarily related to actual experience, whether in the past (e.g., recollection, 

consolidation), present (e.g., spatial mapping), or future (e.g., planning). However, 

relatively recent findings in rodents identify robust patterns of hippocampal firing 

corresponding to a variety of alternatives to actual experience, in many cases without 

overt reference to the past, present, or future. Given these findings, and others on 

hippocampal contributions to human imagination, we suggest that a fundamental 

function of the hippocampus is to generate a wealth of hypothetical experiences and 

thoughts. Under this view, traditional accounts of hippocampal function in episodic 

memory and spatial navigation can be understood as particular applications of a more 

general system for imagination. This view also suggests that the hippocampus 

contributes to a wider range of cognitive abilities than previously thought. 
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Introduction 

The ability to imagine is essential to human experience. At a broad level, imagination 

has a major role in human creativity, agency, and everyday thoughts and actions. More 

specifically, humans have and express many types of imagined experiences. These 

include recollections, predictions, simulations, counterfactuals, fantasies, suppositions, 

and mind-wandering – and, in pathological cases, hallucinations and confabulations. 

These wide-ranging forms of imagination are relevant, if not essential, to a similarly 

wide range of cognitive domains, such as memory, planning, learning, and inference. 

Despite this fundamental importance, our understanding of how imagination is realized 

as a biological process in the brain remains nascent. Indeed, the sheer diversity of 

imagined experiences makes it challenging to begin to envision a possible biological 

approach. 

As starting point, we identify a unifying characteristic of imagined experiences: 

they do not refer to actual present experience, or directly reflect ongoing circumstances 

in the external world. Rather, imagined experiences refer to non-actualities, and arise 

from a source internal to the subject. Awake healthy subjects can, in other words, 

“mentally” self-generate thoughts and experiences and distinguish them from thoughts 

and experiences driven by ongoing stimuli in the actual present. We refer to this 

fundamental ability to generate possibilities that do not correspond to the actual present 

as generativity. By this definition, generativity is a basic function that underlies 

imaginative abilities broadly, regardless of more specific properties, such as references 

in time (e.g., remembering the past or simulating futures). As further clarification, we 

also note that our present use of “generativity” differs from its senses in linguistics and 
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in statistical models (notwithstanding potential connections between these uses1–3). 

Defining generativity enables us to focus on a single characteristic ability that may 

ultimately facilitate our understanding of the diverse types and components of 

imagination. 

Crucially, generativity can be understood at the level of the brain. Mirroring the 

subject-level ability to distinguish actual from imagined experience4, specific neural 

processes in the healthy brain must “parse” internal representations as ongoing 

experience (actual) versus internally generated alternative experience (imagined). 

Importantly, this substrate-level generativity does not presuppose features such as 

mental imagery, mental time travel, or conscious awareness. Indeed, defining 

generativity enables us to refer to the brain’s capacity to internally generate experiences 

that are distinguished from externally driven present experience, without invoking these 

features that are associated with subjective human imagination. As an example, a 

soccer player approaching a moving ball can rapidly assess numerous dynamic ongoing 

events and stimuli, consider multiple possible responses, and decide on a play, all in a 

split second and without overt awareness of each internally represented possibility. In 

animals, ethologically relevant scenarios such as predation and escape make similar 

demands on cognition5. Thus, direct investigation of the brain may be essential to 

understand generativity. 

In this review, our overall aim is to describe and advance our understanding of 

how generativity – an ability underlying imagination – is realized in the brain. Our review 

is guided by five questions: (1) where generativity might be implemented in the brain, 

(2) how generative neural activity can be identified, (3) what candidate generative 
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neural activity patterns and representational correlates have been previously described, 

and (4) how the brain can organize actual versus generative activity patterns. This 

discussion establishes that the hippocampus, a brain structure in the medial temporal 

lobe, is a candidate biological substrate of generativity, and that patterns of 

hippocampal neural firing reflect generative processes by representing a diverse range 

of alternatives to ongoing experience. Finally, we consider (5) what these observations 

suggest about the biological basis of generativity and its role in cognition. More 

specifically, in light of recent findings at the level of neuronal firing patterns in rodents, in 

addition to brain research related to imagination in humans, we suggest that the 

hippocampus – often understood as a system that characteristically represents actual 

experience, whether in the past, present, or anticipated future – may be better 

understood as a system that also represents imagined alternatives to actual experience. 

 

The Hippocampus as a Locus of Generativity in the Brain 

What structure within the brain might implement generativity? One approach to this 

question is to determine whether damage to specific parts of the brain causes deficits in 

imaginative abilities relying on generativity, including recollecting the past, envisioning 

the future, or constructing fictional scenarios. Notably, the earliest case studies linking 

imagination of the future to specific brain areas are in individuals with previously 

established deficits in memory of the past6–10. In one classic case, patient H.M. suffered 

severe amnesia after his hippocampus and adjacent medial temporal areas were 

surgically removed, which established the hippocampus as an important site for 

memory, particularly episodic memory11,12. Notably, while episodic memory impairments 

are most traditionally reported, H.M. and many other patients with hippocampal damage 
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have since been examined and found to have severe impairments in future-oriented 

thinking and constructing fictional events more generally9,13–18. These findings raise the 

possibility that recollection of the past, anticipation of the future, and imaginative abilities 

more broadly may share common underlying functions as well as dependence on the 

hippocampus17,18.  

 Complementing lesion studies, functional brain imaging has revealed activation 

of the hippocampus during a variety of self-reported imagined experiences that overtly 

differ from subjects’ actual circumstances19–22. In such studies, subjects are typically 

asked to imagine experiences that differ from present experience through changes in 

time, space, and/or personal perspective. The hippocampus, in addition to a group of 

cortical areas known as the default mode network, is consistently activated during, for 

instance, recalling autobiographical experiences, imagining anticipated future episodes, 

imagining counterfactuals, mentally simulating common activities (e.g., brushing teeth), 

constructing fictional scenes, imagining non-actual events and stories, taking on others’ 

perspectives, and unprompted mind-wandering19,20,23–27. These results highlight that the 

hippocampus, along with other brain regions in the default mode network, is important 

for the capacity to generate mental displacements from actual present circumstances, 

whether in time, space, personal perspective, and possibly other domains13,18,19,28,29. 

Thus, although the cognitive role of the hippocampus is often conceptualized in relation 

to prior experience (i.e., episodic recollection, recall) or explicitly anticipated experience 

(i.e., planning, prospection)30–32, the hippocampus appears to play a more general role 

in imaginary experience28.  
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 In efforts to clarify this role, studies have often probed the availability and 

character of mental imagery. Several further studies help refine the role of the 

hippocampus beyond the observation mentioned above that hippocampal damage is 

associated with deficits in vividly visualizing fictional scenes. First, patients with partial 

hippocampal lesions show activation of residual hippocampal tissue when tasked with 

imagining complex scenes33,34. Second, one patient with longstanding hippocampal 

damage found it effortful but possible to visualize single imaginary objects and simple 

scenes, yet could not readily imagine complex scenes in one automatic and coherent 

picture – instead, he built up the scenes “bit by bit”34. Residual hippocampal tissue in 

this patient was not activated during these tasks as it was in control participants34. 

These findings suggest that the hippocampus is not strictly required for mental imagery, 

and therefore that the role of the hippocampus in imagination may be only indirectly 

related to mental imagery. The requirement of the hippocampus for readily constructing 

complex scenes in particular suggests a different basis or principle by which the 

hippocampus contributes to imagination 34; we revisit this issue in the section 

“Generativity as a function of the hippocampus.” 

 The above lesion and functional imaging work implicates the hippocampus as a 

candidate substrate for generative thinking, typically by relying on conscious verbal or 

behavioral reports. This approach is, however, limited in addressing how generative 

processes are implemented at a neuronal level. For example, the timing of underlying 

processes relative to eventual behavioral reports remains unclear. Generative 

processes may also unfold at timescales considerably faster than behavior, which 

suggests the need for complementary approaches with finer temporal resolution. Here 
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animal models provide an important advantage by enabling greater access to neural 

firing. This potential approach in turn raises the question of whether animals also exhibit 

behaviors indicating generative thought, and if so, whether the hippocampus is also 

implicated, as in humans.  

From work dating at least a century, it is clear that animals behave based on 

memory of prior experience and conceptual insight rather than solely trial and error, 

instinct, and presently sensed information35–37. This implies a corresponding ability to 

construct and use internal representations and suggests the existence of generative 

neural processes in animals. In the case of rats, a common model for hippocampal 

studies, a seminal example of behavior based on internal representations is spatial 

navigation. When navigating, rats can take novel paths (for instance, short-cuts to goal 

locations), implying an internal model enabling the ability to generate such novel 

courses of action38,39. Rat behavior can also appear deliberative and regretful, 

suggestive of internally generating representations of possibilities, including 

counterfactual pasts40–42. In service of these and other behaviors, the hippocampus is 

thought to be essential for using an abstract internal model, or “cognitive map,” that 

relates items, events, and features of experience40,43,44. Indeed, hippocampal damage 

impairs various behaviors thought to rely on abstract internal representations such as 

rats’ abilities to infer relationships between stimuli45. Further, hippocampal lesions impair 

rats’ abilities to make choices dependent on an internal model and predictions or plans 

made by that model46. These findings suggest that the hippocampus is an important 

locus in the rodent brain for constructing abstract mental models, which in turn could be 
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used to generate representations of prior, new, and otherwise not presently experienced 

possibilities, enabling insightful behaviors. 

With the hippocampus as a starting point for investigating generativity in both 

humans and animals, we now aim to clarify what neural firing patterns have been 

observed in the hippocampus and what internal representations they suggest. To do so, 

it is necessary to address our second question: how can generative neural activity 

patterns be identified?  

 

Identifying Neural Firing Patterns That are Generative 

Identifying neural firing patterns that may represent imagined experiences requires us 

first to identify neural firing that corresponds to actual experience. Here, we focus on 

studies of neural firing in the rodent hippocampus. To investigate internal 

representations at the level of neurons, neurobiologists have leveraged the well-

established relationship between spatial location and hippocampal firing in freely 

moving rats47. Over fifty years of work have established that principal neurons in the 

rodent hippocampus exhibit increased firing rates when the animal is in distinct physical 

locations47,48 (Figure 1.1). As the rat moves through an environment, each of these 

“place cells” consistently increases its firing rate when the animal is in the neuron’s 

“place field” location(s)47,48. Importantly, place cell firing also varies based on numerous 

factors besides location49; for example, in linear environments, a large proportion of 

place cells fire more when the animal is traveling in a particular direction50. Therefore, at 

a broader level, it is important to note that a place field describes average firing over 

many individual runs through a location, even though there is often substantial variability 

in a place cell’s firing across individual runs through the same place (Figure 1.1). 
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The basic notion of a place field, along with the ubiquity of place cells in the rat 

hippocampus, provides a possible approach to identifying actual and generative activity 

at a neural level. If we take a place cell’s activity to represent its place field location, 

then each instance of firing by that neuron can be provisionally understood as 

representing that location. By this interpretation, a place cell will reliably fire when the 

animal is in the cell’s place field, thereby representing the animal’s actual present 

location.  

Importantly, in certain moments, a place cell can also fire when the animal is not 

actually in the cell’s time-averaged place field location51–53 (Figure 1.1). Accordingly, 

these moments can be provisionally understood as times in which a representation of 

the place field location is internally generated, even though the animal actually occupies 

a different location at that moment.   

Strikingly, place cells have been found to fire outside of their place fields in 

coordination with each other54,55 (Figure 1.1). During these events, the collective activity 

of place cells can be understood to express a representation that corresponds to 

locations different from the animal’s current location52,53. In other words, this neural firing 

is consistent with a generative representation; while it appears displaced from the 

animal’s actual state and present stimuli, it is internally coordinated across cells (Figure 

1.1). 

A variety of analysis methods have been used to investigate these generative 

firing events and internal spatial representations in the hippocampus56–58. Briefly, one 

approach is to model the firing of many individual place cells as their time-averaged 

place field locations, and then invert that model to produce an estimate of the neurally-



 10 

represented location at each moment in time59–61. Doing so enables us to infer, or 

decode, the animal’s moment-to-moment “mental location” based on hippocampal firing 

patterns. Thus, by identifying periods when the decoded representation of location (or 

direction) differs from the animal’s actual state, we can examine periods when 

hippocampal activity is collectively inconsistent with a representation of actual 

experience and may instead be generative. This enables us to address our third 

question: what kinds of generative representations have been observed in the 

hippocampus? 

 

Generative Representations in Hippocampal Neural Firing 

Single-cell and population decoding approaches have revealed a striking variety of 

putative generative representations in the rat hippocampus over the past several 

decades62–65. Traditionally, these representations have been accounted for as specific 

episodes and abstracted experiences that are based on the past, or that anticipate 

experiences in the future66,67. Recent results, however, imply that the hippocampus also 

regularly represents alternatives to actual experience, whether in the past, present or 

anticipated future68–70. Together, these findings suggest that the hippocampus may 

generate a substantially wider range of internally constructed alternatives to the 

animal’s actual experience than traditionally understood. 

 

Representations Consistent With Past Experiences  

The first reports of hippocampal activity patterns related to past experiences focused on 

sleep51,54. Firing sequences of place cells that were active during running on a maze 
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were found to reactivate in similar sequential order during subsequent sleep, as if briefly 

“replaying” past spatial experience71–73. These replays occur on the order of tens to 

hundreds of milliseconds, far faster than the seconds-long timescale over which the 

actual behavioral traversal of those locations unfolds71 (Figure 1.1). Importantly, replay 

events were subsequently found also to occur during waking periods in which rats are 

behaviorally immobile, such as sitting still or eating74,75 (Figure 1.1). During wake and 

sleep, replay typically occurs during a burst-like hippocampal network-level activity 

pattern, the sharp wave-ripple (SWR), that is itself internally generated (rather than 

externally driven), consistent with the notion of generativity76. 

 As suggested by its name, replay has been interpreted as recapitulating specific 

episodes of prior experience. An early observation was that after an animal ran towards 

and then came to rest at a reward location, a path was replayed starting at the animal 

location and proceeding in reverse, as if retracing the path that led to the reward74,77,78. 

Replay representations not only initiate at a stationary animal’s location75, but can also 

correspond to paths that start farther away from the animal within the current maze, as 

well as on a different maze experienced beforehand79,80 (Figure 1.1). These examples 

are evocative of the hippocampus’ long hypothesized role in cognitive functions that rely 

on experiences from the past, such as memory consolidation and episodic recall62,81. 

 Additional findings on replay suggest a more complex picture. Unlike a rigidly 

recapitulative process that uniformly represents recent experiences, replay can be 

enriched for previously taken paths associated with reward, paths associated with 

aversive outcomes, nearby locations, and paths that have not recently been taken61,82–

84. Further, these and several additional findings82,84–88 suggest that replay events are 
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collectively well described as reflecting an abstract internal spatial model of the 

encountered environment, or a spatial “cognitive map”43,53,64. For instance, replays can 

be biased toward paths that are less behaviorally traversed, and replays can be 

consistent with random trajectories through a familiar space87,88; replays like these may 

sample locations that are not the most behaviorally salient or the most physically 

occupied to support the maintenance of a flexible model of the environment, and this 

function could help explain why replays are inconsistent with a rigid recapitulation that 

passively records recent experience82,87,88. These reports suggest that replay, instead of 

directly reinstating specific episodes, may abstractly reflect past experience via an 

internal spatial map. 

While there is little doubt that replays can be derived from prior experience, both 

in the case of a rigid recapitulation or abstract model based on the past, what remains 

unclear is whether neural processes within or beyond the hippocampus interpret replay 

events as temporally situated in the past. For example, a replay of recently traversed 

locations behind the animal, that are not subsequently traversed, is better correlated 

with past than future behavior, but this does not rule out the possibility that this replay 

represented a potential future traversal of those locations, or a spatial sequence without 

a projection in time. Despite this ambiguity, replay can indeed be related to prior 

behavioral experiences. And, moreover, these findings on replay exemplify how 

generative activity in the hippocampus can represent various possibilities that differ from 

the actual present – here, in the form of spatial paths in known environments.  

 In parallel to replay during rest, neural firing in the hippocampus during 

movement has also been suggested to be recapitulative. During movement, an 
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internally generated network-level activity pattern, the 8 Hz theta rhythm, is observed 

throughout the rodent hippocampus89–92. Place cells are known to fire systematically in 

relation to the theta rhythm, such that neurons with place fields behind, at, and ahead of 

the animal fire at early, intermediate, and later phases of theta cycles, 

respectively55,93,94. Accordingly, collective place cell firing during a single cycle can 

represent a series of locations consistent with sweeping from the immediate past and 

present ahead to anticipated future locations63 (rightmost example in Figure 1.1). 

Although firing in early phases of the theta rhythm can recapitulate locations just 

traversed by the animal, this firing appears to be consistent with the immediate actual 

past (for instance, as opposed to alternative past (counterfactual) locations)63,95. This 

suggests that early theta phase representations may also be best understood as 

reflecting actual experience, and not possible experience. That said, hippocampal firing 

during movement can correspond to locations behind the animal and is often thought to 

reflect the recent past52,96,97. 

 

Representations Consistent With Anticipated Futures 

Place cell firing can also correspond to upcoming spatial paths, suggesting that 

generative representations may anticipate future experience. As introduced above, 

place cells firing in late phases of theta cycles tend to have place fields in locations 

ahead of the animal52,55. The extent to which this activity projects ahead of the animal 

can correlate with the distance the animal subsequently traverses, consistent with the 

possibility of future anticipation or prediction98. When multiple paths are available (such 

as a path bifurcating into two), hippocampal firing has been found to proceed ahead 



 14 

along only one path at a time69,99. Furthermore, place cell firing corresponding to the left 

or right path ahead can occur on interleaved theta cycles, consistent with serially 

representing alternatives69 (Figure 1.2). These internally generated representations are 

consistent with generatively representing anticipated possibilities, and are reminiscent 

of deliberation99. However, while theta-associated neural firing can predict the animal’s 

subsequently taken path99–101, firing patterns associated with alternation between paths 

fail to reliably predict the animal’s subsequent choice69,99.  

 Apart from generative activity associated with theta, replays suggestive of 

anticipated future experience have also been reported. In early work, replay was found 

to correspond to sequences of locations starting near and projecting ahead of the 

animal, just prior to running along that same path in the linear maze, consistent with 

anticipation of upcoming experience75,79,80. Since then, several studies have reported 

that replay in environments with more options (an open arena or multi-arm maze) is 

biased toward goal locations that the animal subsequently visits102,103. While replay can 

indeed correspond to subsequently taken paths, recent work from our group shows that 

replay fails to predict upcoming choices84. 

Seeking to relate generative firing to behavioral episodes in subjects’ past or 

future (e.g., the choice of maze arm in the previous or next trial) has been a common 

approach in investigating the contributions of hippocampal activity to cognitive functions, 

especially past-oriented functions such as episodic recall and future-oriented functions 

such as planning. Task paradigms that disambiguate prior from upcoming experience 

are well-suited for this approach84. However, relating generative neural activity to 

particular locations behaviorally occupied in the past and future does not necessarily 
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indicate that such activity is an internal representation that refers temporally to the past 

or future. For example, neural firing corresponding to one of two paths ahead of the 

subject is consistent with a possible future, yet may also reflect recall of a prior traversal 

of that location, or simply not have any reference in time. In this sense, it remains an 

open question whether generative firing patterns observed in the hippocampus can refer 

to experiences projected into the future. Apart from this, it remains the case that some 

instances of generative firing during theta and replay can correspond to potential future 

locations, and may thereby contribute to explicitly anticipatory functions such as 

planning.  

 

Representations Consistent With Alternative Possibilities 

Firing patterns corresponding to locations different from a subject’s actual location 

indicate that the hippocampus can generate representations of alternatives to actual 

ongoing experience. As discussed above, it has been hypothesized that these firing 

patterns reflect internal representations referring to episodes of experience in the past 

or anticipated future. Critically, recent findings indicate that generative firing patterns 

exhibit properties that may be more consistent with an underlying process that 

generates representations of non-actual hypotheticals and possibilities more broadly, 

rather than a process characterized primarily by projection of actual experience in 

time68–70. 

In recent work focusing on periods of movement, we found that neural firing in 

the rat hippocampus can regularly represent various alternatives with striking speed and 

regularity69 (Figure 1.2). In initial observations, we found that alternative locations ahead 
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of moving animals could be represented not only as quickly as the frequency of the 

theta rhythm (~125 millisecond cycles), but also sustained across many consecutive 

theta cycles69 (Figure 1.2). As in previous work showing that place cell activity can 

serially alternate between upcoming paths99, or correspond to paths subsequently 

taken98,102, one possibility is to interpret this pattern of neural firing as reflecting an 

essentially anticipatory function, such as planning or deliberating over future behavior.  

However, we also found that place cell firing corresponding to opposite directions 

of travel exhibited the same pattern of serial alternation: sustained 8 Hz cycling between 

the animal’s actual direction and an alternative, or non-actual, direction69 (Figure 1.2). 

Toward clarifying what this pattern of alternating activity might reflect about the 

underlying process in the hippocampus, we highlight three points of consideration. 

First, this generative firing pattern has no overt or intuitive temporal reference. 

Unlike the case of alternative locations ahead of the animal, alternative direction is 

neither more consistent with upcoming experience, nor more consistent with previous 

experience. This was especially the case given the experimental setting, in which rats 

routinely traveled in either direction through maze as part of navigating in an alternation 

task69 (similar to Figure 1.2). Thus, neural firing signaling the non-actual direction was 

just as plausibly a recollected past as an anticipated future. Importantly, this ambiguity 

regarding time extends further: it is also just as plausible that the firing pattern reflected 

a representation of a counterfactual past, an alternative present, or an experience with 

no specific reference in time. This last possibility is reminiscent of imaginative thoughts 

in humans which do not explicitly project experience into the past or future, but 

nonetheless differ from a subject’s present circumstances. Without further knowledge, it 
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may be relatively parsimonious not to attribute temporal reference to the observed 

hippocampal firing pattern – rather, a simpler interpretation is that this neural activity 

corresponded to non-actual experience. 

Second, the speed of alternations between actuality and location or direction may 

be at odds with conscious human thought processes that are, at least subjectively, 

slower than ~125 ms theta cycles. For this reason, we speculate that a neural process 

at this speed is unlikely to be directly coupled to conscious awareness, such as during a 

human subject’s internal deliberation over two choices, or mental imagery of a 

remembered episode of navigating a path. Rather, these generative neural firing 

patterns suggest a function that, like generativity, is marked by moment-to-moment 

variability and productivity. 

The third point is that this generative hippocampal activity, which alternated 

between possibilities not actually being presently experienced, was largely independent 

from behavior69. This was the case both for cycling of non-actual locations and direction. 

Specifically, generative alternating firing patterns occurred commonly across classes of 

locomotor behaviors (e.g., running, crawling, turning, head scanning, brief pauses in 

running). Additionally, the number of theta cycles corresponding to alternatives varied 

widely between instances of otherwise similar trajectories through the maze. Further, 

activity that cycled between to two paths ahead at a bifurcation did not reliably predict 

animals’ upcoming turn behavior on individual run trajectories69. These observations 

suggest an underlying process that can be uncoupled from behavior at three levels: 

classes of behavioral state, behavioral trajectories, and upcoming behavioral choices. 
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These three points are complemented by an additional line of investigation. 

Examination of the timing of neural firing within theta cycles revealed a surprising 

commonality between firing corresponding to alternative locations and direction: for 

either representational correlate, firing corresponding to the non-actual circumstance 

occurred specifically in late phases of theta cycles69 (Figure 1.2). This observation 

indicates that late theta phases, previously understood to contain firing related to 

upcoming paths52,67, are not exclusive to locations ahead of the animal (Figure 1.3). 

Rather, late phases can also contain firing related to alternative direction, which raises 

the possibility that firing corresponding to alternative possibilities in any other domain 

encoded by the hippocampus may also be generated in late theta phases. Toward this, 

further observations from our group suggest two additional examples of generative firing 

during late phases of theta; firing may correspond to locations behind the animal on a 

path that was not just taken, suggesting an alternative past representation69, and may 

also correspond to locations relatively far from the animal, not only locations 

immediately ahead70. Together, these findings illustrate that late-phase firing can 

correspond to multiple kinds of alternatives to actual ongoing experience (direction and 

various locations). This is surprising because it is not consistent with the canonical 

understanding of theta cycles as organizing a sequential representation of locations 

along a single path, sweeping from past to future locations, or behind to ahead of the 

animal in space and time52,55,67,94 (Figure 1.3). Rather, these findings suggest revising 

the established view that hippocampal firing during late theta phases corresponds to 

locations immediately ahead of the animal. A more inclusive view is that late theta 
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phases may be enriched for firing related to a diversity of alternative possibilities and 

hypotheticals, including, but not limited to, anticipated experiences (Figure 1.3).  

In the preceding discussion, we largely focused on recent findings regarding 

hippocampal neural activity associated with movement. Several parallel results indicate 

that replay events, occurring during periods of immobility, can also represent possible or 

hypothetical experiences that are not clearly recapitulative nor anticipatory. Replays can 

represent trajectories that link physically connected spatial paths that the animal has not 

traversed behaviorally, as if simulating short-cut paths82,104. Such synthesized 

trajectories were not directly experienced by the animal, and therefore are inconsistent 

with strict recapitulation of the past. Furthermore, in some cases subjects never took the 

short-cut paths, suggesting that these replays may not have been anticipatory. Recently, 

another study found that replay is biased to an unchosen path even when that path 

would not fulfill the animal’s motivational state (i.e. biased to water when hungry, and 

food when thirsty). This finding is inconsistent with both replay of the recent past and of 

the immediate future68. In sum, generative neural firing in the hippocampus during both 

movement (theta) and rest (replay) may reflect a process that represents a diversity of 

possibilities that are alternatives to actual present experience (Figure 1.3, Figure 1.4).  

 

Organization and Origin of Generative Activity in the Brain 

Having reviewed multiple types of generative neural activity in the hippocampus, we 

turn to our next question of how generative representations may be organized and 

“parsed” from representations of actual, ongoing experience. One would expect that 

neural processes are in place to separate actual and generative activity to avoid their 

confusion, reminiscent of the subject-level ability to internally distinguish actual from 
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imagined experience4. Multiple organizational schemes are possible; different sets of 

neurons could participate in actual versus generative representations, these 

representations could occur at different relative times, or some combination of these 

schemes could take place.  

Findings in the rodent hippocampus indicate that neural firing corresponding to 

actual and generative representations occur at different relative times that are internally 

determined105. Generative representations tend to occur not only with temporal 

separation from representations of actuality, but also in alignment with underlying 

network-level activity patterns in the hippocampus that are internally generated: sharp 

wave-ripples (SWRs) and the theta rhythm69,106 (Figure 1.3). This results in a serial 

alternation of neural firing corresponding to actuality and generativity, or a temporal 

“multiplexing” of actual and generative representations in the brain. 

This serial alternation is present across behavioral states. During immobility, 

neural firing corresponding to the animal’s actual present location is maintained for 

prolonged periods, transiently suppressed during sharp-wave ripple events that typically 

contain generative replays (10s-100s of milliseconds), and then subsequently 

restored106,107 (Figure 1.3). 

Similarly, during movement and exploratory behaviors, neural firing 

corresponding to actual present and non-actual alternative experience, or actual and 

generative representations, occurs serially and in alignment with characteristic phases 

of the theta rhythm1,69. More specifically, early phases characteristically contain 

representations of the animal’s actual past and present experience, while late phases 

may contain firing corresponding to a variety of hypothetical experiences, resulting in 
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alternating actual and generative representations69 (examples in Figure 1.2, schematic 

in Figure 1.3). Furthermore, there are multiple levels of alternation between actual and 

generative activity during movement – representations not only alternate within ~125 

millisecond theta cycles (e.g., actual and upcoming position), but also across 

consecutive theta cycles69 (e.g., alternation of two possible paths ahead) (Figure 1.2). 

Additional findings are also consistent with the idea that multiple representations can be 

accommodated in the hippocampus via serial alternation at a sub-second timescale. For 

instance, studies in the rat hippocampus have reported theta-modulated “flickering” 

between representations of two environmental contexts, as well as dynamic switching 

between two spatial reference frames, and separate reverse and forward-ordered 

location sequences within theta cycles108–110. 

The organization of actual and generative neural firing in the hippocampus also 

extends to other brain areas, consistent with the engagement of a distributed network in 

these representations20,111,112. Network-level neural activity patterns underlying 

generative representations can be coherent across the hippocampus and prefrontal 

cortex during replays and along the theta rhythm, with some reports of concurrent 

expression of actual versus alternative location representations across both 

regions107,113–117. Additionally, some generative firing events in the hippocampus are not 

only coordinated with but also predicted by the activity of cells in the medial prefrontal 

cortex70. Numerous other cortical and subcortical areas also share coordinated firing 

patterns with the hippocampus, during both replay events and the theta rhythm 67,118–125. 

Recruitment of a large network of brain areas during activity related to actual and 

generative experience appears to reflect brain-wide organization, and the question of 
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how firing patterns in other regions across the brain specifically contribute and respond 

to generative representations in the hippocampus remains an active area of 

research116,124. 

How might organized generative neural firing patterns in the hippocampus come 

about through hippocampal and extrahippocampal processes? This remains largely 

unknown, but some initial points can be made. First, one would expect generative firing 

patterns, which do not correspond to immediately ongoing circumstances, to arise 

primarily from internally driven activity patterns, as opposed neural activity driven 

directly by external stimuli. Consistent with this, generative events are observed during 

SWRs and in association with the theta rhythm – and both of these activity patterns are 

generated internally in the brain (spontaneously) rather than elicited by external 

stimuli76,126. More specifically, SWRs spontaneously occur during sleep in the absence 

of dynamic sensory stimuli and can be intrinsically generated in isolated hippocampal 

slices in vitro76. Hippocampal theta oscillations arise in vivo in coordination with a 

rhythm generator region, the medial septum, and can also be generated in isolated 

rodent hippocampus in vitro127,128. Furthermore, late phases of theta, during which 

generative representations tend to occur, are associated with increased recurrent 

network activity from within the hippocampus, and relatively weaker influence from 

cortical areas that are thought to provide multimodal information to the 

hippocampus63,67,129,130. 

While SWR and theta oscillations are understood to be internally generated and 

are associated with the occurrence of generative neural firing patterns in the 

hippocampus, the question of how specific groups of neurons (such as place cells with 
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overlapping place fields) are recruited during generative events remains open131. In 

addition to mechanisms that support SWR and theta generation, it is likely the case that 

input from brain regions beyond the hippocampus have a role in this process67. One 

possibility is that the activation of particular sets of spatially tuned neurons during 

generative events is guided by extrahippocampal areas, such as the prefrontal cortex, 

that are also implicated in the default mode network20. This possibility is consistent with 

evidence that cortical activity can predict generative spiking during theta oscillations 

several cycles in advance, as well as SWR activity during sleep, and would argue 

against the idea that hippocampal ensembles are activated by exclusively unstructured 

input 70,123. Studies focusing on the internal correlates of generative activity within the 

brain, over external behavioral correlates, may be especially important to understand 

what determines the generative neural firing patterns observed in the hippocampus. 

The segregation of generative and actual representations in the hippocampus 

also raises the question of whether the hippocampus further differentiates subtypes of 

generative representations. For example, are events that reflect veridical experience 

from the past somehow distinguished from those that reflect constructed alternatives, or 

those that are predictive of future choices? At the level of neural firing, it remains 

unclear whether or how the hippocampus might separate these possible 

representations. However, two points of reference in the human literature offer clues 

that the relevant neural substrates may be outside the hippocampus. First, patients with 

hippocampal amnesia can entertain thoughts that distinguish the past or the future, 

despite impairments in episodic memory132,133. Additionally, hippocampal activation 

during mental simulations without temporal placement versus those specifically set in 
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the future result in similar activation levels in the medial temporal lobe and default mode 

network133,134. These results are consistent with the idea that temporally differentiating 

representations related to the past or the future may not be hippocampally dependent. 

Second, healthy human subjects can subjectively discriminate internally and externally 

derived information, an ability known as reality monitoring135. Based on functional 

imaging studies in both healthy subjects and patients with schizophrenia who 

experience hallucinations, reality monitoring is thought to rely primarily on prefrontal 

cortical networks112. In contrast, another study reports that hippocampal activation was 

similar across cases of true and false recognition memory136, further suggesting that this 

ability does not strictly rely on the hippocampus. Although probing reality monitoring in 

rodents is not straightforward, it would be notable if, for example, frontal cortical firing 

patterns systematically differed based on the representation of possibilities in the 

hippocampus that reflected veridical experience versus constructed alternatives. Such a 

result would be consistent with the idea that the hippocampus alone may not distinguish 

subcategories of generative events, but that the brain may do so via the engagement of 

prefrontal circuits.  

Looking beyond rodents, it remains an open question as to which patterns of 

generative activity in the hippocampus are shared across species137. On the one hand, 

SWRs have been observed in a range of vertebrates, as have neural reactivation 

patterns suggestive of replay138–144. In humans, replay and replay-like patterns have 

also been reported, including activity patterns consistent with reactivating prior 

experience, as well as inferred sequential activity that is not simply recapitulative145–149. 

In contrast to the ubiquity of SWRs across vertebrates, the theta rhythm appears to be 
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more prominent and continuous in the rodent hippocampus than in various other 

species137. A notable example is the bat hippocampus, which shows network-level 

activity fluctuations that are not generally rhythmic yet still organize place cell firing 

according to phase140,150–153. This may suggest that actual and generative 

representations can be organized via temporal multiplexing even in the absence of 

strong rhythmicity. In nonhuman primates and humans, the hippocampal theta rhythm 

appears to occur in intermittent bouts and at a lower frequency140,150–153. Recently, theta 

phase coding has also been shown in single cells in human subjects154,155. In all, these 

results indicate some conservation across species of the organization of neural firing 

with respect to network-level hippocampal activity. More generally, they leave open the 

possibility that the brains of many species temporally multiplex actual versus generative 

internal representations. 

 

Generativity as a Function of the Hippocampus 

Recent findings described above suggest that the hippocampus regularly generates a 

wider range of representations than previously thought. What functional implications 

does this suggest? 

 The cognitive roles commonly ascribed to the hippocampus offer a starting point. 

Existing theories of hippocampal function are often based on the established role of the 

hippocampus in human episodic memory30–32. Under an essentially episodic view, 

hippocampal activity necessarily represents or refers to both to time and space, in 

accordance with the definition of an episodic experience156 (Figure 1.3). Along these 

lines, hypotheses based on this view propose that hippocampal neural firing 

corresponds to cognitive processes such as past-oriented memory retrieval and 
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consolidation, or future-oriented planning and prospection1,62. The view that 

hippocampal neural firing can support memory of past episodes has been suggested by 

findings that causally link sharp wave-ripple events (which generally co-occur with 

replay) to performance on tasks requiring memory of a choice made on a previous 

trial157,158, although the diversity of generative neural firing patterns reviewed above 

during replays suggests a more complex picture53,62,64. Both replay as well as theta-

associated generative representations have also been posited as anticipatory 

processes, such as planning, in support of decision-making159. These ideas have been 

reinforced by observations reviewed above that replay and theta-associated activity can 

relate not only to past but also potentially upcoming behavior. To account for findings 

that neither of these firing patterns appears to encode animals’ upcoming choice with 

high reliability53,69,84,99 (but see98,100,101), another version of the anticipatory planning 

hypothesis posits that the hippocampus generates a “menu” of relevant options 

evaluated by other brain areas prior to the decision42,99. 

Each of these functional interpretations is plausible and conceptually important, 

yet only consistent with a subset of the instances and properties of generative neural 

firing patterns across studies reviewed above. Specifically, it is unclear how retrieval of 

past experience and planning for the future account for the prevalence and variety of 

generative representations observed, particularly those that are ambiguously related or 

unrelated to behavior in the past or future, and those that run counter to immediate 

experiences and choices68,69,82.  

As an alternative view, generative firing patterns may be understood as 

characteristically expressing alternatives to actual circumstances, irrespective of 
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whether those circumstances are in the past, present, or future. Indeed, we suggest that 

temporal referencing to the past, present, or future for a given firing pattern in the 

hippocampus may not be intrinsic or essential (Figure 1.3), a view which has also been 

posited to account for recent findings in human subjects133. 

By this interpretation, past- and future-oriented cognitive functions that require or 

involve the hippocampus would be particular applications of a broader and more 

essential underlying role in generativity, or representing non-actual experiences 

including possibilities and hypotheticals. This view of the hippocampus’ role at the level 

of cognition is closer to imagination (Figure 1.4). A neural system implementing 

generativity may often construct a variety of potentially useful representations that do 

not necessarily relate to known circumstances, or predict immediate behavior, yet 

remain relevant for behavior in an indefinite horizon of time. This advantage is akin to 

that of insightful thoughts generated in the course of seemingly undirected mental 

activity, such as free reflection or mind-wandering.  

If generative neural activity in the hippocampus does not intrinsically refer to 

actual experiences, what type of relevance might it have to experience, thought, and 

behavior? One unifying idea is that the hippocampus is a system for “relational” 

memory: a system for inferring abstract relationships between observable events (such 

as sensory stimuli, actions, and internal states). Integrating information in relational 

memory is beneficial in that it enables inference and generalization to novel 

circumstances, such as those where elements of previous experience are 

reconfigured40,160,161. This can be advantageous regardless of whether those novel 

circumstances can be anticipated at the time of generating the relational information, 
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consistent with the idea that generative activity can but does not always relate to 

immediate behavior. 

Generativity could support relational thinking by bringing together elements from 

experience that are not actually experienced together. Specifically, the role of generative 

activity could be to combine otherwise separate elements of experience so that their 

relationship can be inferred. To illustrate, one classic example is inference of a transitive 

relationship; if a subject learns that A should be chosen over B and B over C from real-

world experiences, then the subject can infer that A should be chosen over C, despite 

never having experienced A and C together. This sort of inferential ability is dependent 

on the hippocampus in rodents and is furthermore associated with hippocampal 

activation in humans45,162–164. A second example is inferring spatial relationships, which 

often relies on the ability to link physically discontiguous prior experiences. Rodent 

behavior has long indicated the ability to infer novel routes, including more efficient 

shortcuts, through a spatial environment38,39. At the level of neural firing, replay events 

can stitch together into one coherent representation two track segments that the rat has 

never traversed in a single run, and can represent novel paths to goals that have not 

been taken before82,104. Further, the mouse hippocampus has been shown to coactivate 

neurons related to representation of distinct events during SWRs in an inferential 

reasoning task164. Generative representations such as these appear to combine 

information across separate prior episodes into internally constructed possibilities that 

may have the potential, but are not required, to inform behavior. Consistent with these 

findings, not only is human hippocampal activation associated with correct inferential 

choices164, human subjects also exhibit internally generated sequences of hippocampal 
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activity that reorder elements of experience into novel, inferred sequences that do not 

simply recapitulate previously experienced sequences147. Taken together, these results 

suggest that generative hippocampal activity may be well suited to contribute to 

relational thinking, and ultimately the internal generation of new knowledge that goes 

beyond actual experience.  

Importantly, inferences in such a relational memory system can operate not only 

across various modalities, such as sensory, motor, and internal states, but also 

generate all kinds of relations160,165–167. Under this view of the hippocampus, temporal 

and spatial relations are instances of relations which are rich and prevalent – and 

experimentally accessible – yet not fully comprehensive. This is evidenced by the 

requirement of the hippocampus for animals to infer relations that are neither temporal 

nor spatial45,163,164,168. 

Understanding the hippocampus as intrinsically representing alternatives to 

actuality suggests that the hippocampus may have a broader role in cognition than is 

often described. If the role of the hippocampus in cognition is not restricted to particular 

types of relations such as in time and space, generative neural activity might involve the 

construction and application of any number of relations across additional domains. In 

rodents for instance, neural firing in the hippocampus is often studied in relation to 

space yet can also encode a wide variety of variables from experience such as odors 

and sounds100,169–174. Accordingly, we would expect the hippocampus to exhibit 

generative activity corresponding to alternatives to actual experience in terms of such 

variables. This could include linking aspects of experience across modalities into 

internally constructed representations of possibilities or hypotheticals that have not 
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actually been experienced. In the case of humans, it is particularly notable that the 

hippocampus has long been linked not only to the acquisition of episodic memory, but of 

declarative memory more generally, which entails acquisition of semantic memory. By 

this token, it may be plausible that generative neural activity in humans (in addition to 

animals) can represent alternatives to actuality by engaging in semantic relations – for 

instance, in language comprehension or production, and in creativity understood more 

broadly2,34,133,175–177. 

This broader view of generativity in the hippocampus may have additional 

implications at a higher level than representation. An advantage of internal models is 

that they enable internally directed exploration, or generative simulations and 

hypothesis formation intended to yield maximum information gain159. Interestingly, 

though such exploration is recognized to be ultimately adaptive, it might have little or no 

immediate utility, and, further, neural activity implementing this process could be 

uncorrelated with immediately upcoming behavior. Exploration can also be driven by 

curiosity, an intrinsic motivation that has notably been linked to the construction of rich 

internal models178. These are several points of contact between information-based 

exploration and generative activity patterns. Yet even beyond information-based 

exploration, it is increasingly recognized that humans and a range of animals can harbor 

intrinsic motivations expressed as self-determined and self-guided goals, manifesting in 

behavior as “play”179. Critically, like exploration, play has (practically by definition) little 

or no immediate utility to subjects, though its relevance or role in advanced cognition is 

potentially crucial179. It is therefore worth speculating that analogous play-like adoption 

of seemingly arbitrary internal aims and constraints is relevant to understanding 
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generative activity patterns in the hippocampus, both in animals and humans. Thus, 

generative hippocampal representations and the hippocampus at large may represent 

alternatives to actual experience not only to navigate immediately relevant 

environments and objectives, but also to pursue any number of internally directed and 

invented goals. Ultimately, doing so may be crucial not only to evolve a greater 

understanding of past and immediately relevant experience, but also to deal adaptively 

and flexibly with unexpected scenarios and unknown circumstances in the future. 

 

Conclusion 

Imagination requires the ability to generate experience, thoughts, or representations 

that do not refer to the actual present. This essential ability, termed “generativity,” can 

be understood at the level of the brain and need not entail conscious awareness or 

mental imagery. Human studies have linked imagination and the construction of 

hypotheticals to the hippocampus and complementary studies in the rodent 

hippocampus have identified neural firing patterns corresponding to experiences that do 

not reflect the actual present. Traditional accounts of hippocampal function often 

interpret these generative firing patterns, such as those observed during SWR replays 

and late phases of the theta rhythm, in relation to actual experience in the past and 

future. This important view may be limited in accounting for the diversity of generative 

hippocampal firing patterns suggested by recent findings. Rather, we propose that 

representing alternatives to actual present experience is itself essential to the 

hippocampus. These representations may span a wide range of self-generated 

possibilities, hypotheticals, and non-actualities of all kinds: from past episodes and 
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anticipated futures, to counterfactuals, alternative presents, novel combinations of 

experiences, and to creative or even playful simulations, including those without spatial 

or temporal reference. We further suggest that diverse generative hippocampal activity 

patterns may be used to learn, infer, and consider various abstract relations. This in turn 

would suggest that functions of the hippocampus that refer to time or space (such as 

episodic memory and mental time travel) may be particular applications of a broader 

system of imagination7,15,18,180 (Figure 1.4). Notably, this view advocates that the 

function of generative neural activity in the hippocampus may not be characterized by 

the strength of its correlation to immediate behavioral choices, but rather by its 

relationships to internal processes69,116,124,181. The contribution of generativity to 

behavior may not be immediate, and in fact might have an indefinite horizon in the 

lifetime of subject. This system may be elaborated in humans, supporting frequent and 

at times seemingly undirected flights of creativity and imagination. 
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Figure 1.1 Hippocampal neural firing patterns 
(a) Place cell firing. Left: a rat runs on a linear maze. Middle: the firing activity of multiple 
neurons is recorded simultaneously from the hippocampus while the rat runs. Right: one 
example recorded place cell fires in the same spatial location on the track over many 
runs, but with notable variability across individual runs (firing denoted by raster lines). 
The time averaged firing of the example place cell over many runs forms the cell's place 
field (oval). (b) Generative place cell firing examples. Left: place field locations (ovals) of 
multiple place cells (A-F) that fire as the rat runs along the linear maze (one run takes 
~2 sec.). Right: examples (Ex 1-4) of generative firing patterns that occur when the rat is 
not actually in the cells' place field locations. Place cell firing is denoted by cell-colored 
raster lines. Ex 1: replay occurs while sleeping in an environment separate from the 
maze. Ex 2: replay occurs while rat is stationary at the lower maze end. Ex 3: replay 
occurs while rat is stationary and in a different maze environment (light grey lines 
indicate firing of a cell active in the different maze, but not active on the maze shown at 
Left). Ex 4: occurs while the rat is running on the maze, during the theta rhythm. In Ex 1-
4, place cell firing corresponds to a series of locations not presently occupied by the rat. 
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Figure 1.2 Generative activity corresponding to alternative possibilities 
(a) Example of neural firing corresponding to alternative locations. Left: a rat running on 
the central arm of a bifurcating maze can either turn left or right. Middle: individual place 
cells fire when the animal is in particular place field locations on the maze (ovals colored 
by cell). Right: generative activity. While the rat is resting at the end of the central maze 
arm, generative neural firing during a sharp wave-ripple (SWR) can replay other 
locations (raster lines colored by cell). At other times while the rat is running up the 
central maze arm towards the bifurcation, neural firing during the theta rhythm 
alternates between current and upcoming locations within each cycle, and between the 
left and right trajectories ahead across the second halves of theta cycles. (b) Example 
of neural firing corresponding to alternative directions. Left: a rat on a linear maze can 
run in up or down directions. Middle: different sets of direction-selective place cells fire 
in their place field locations (ovals) when the rat runs up or down (ovals colored by cell). 
Right: generative activity. Neural firing during SWRs replays locations that do not 
correspond to the rat’s actual location at the end of the maze. Additionally, while the rat 
is running in one direction, cells corresponding to the rat’s actual and alternative 
directions fire in alternation along the theta rhythm. 
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Figure 1.3 Two views of hippocampal firing during network-level activity patterns 
(a) Generative view (proposed). Neural firing during early theta phases represents 
actual circumstances, while representations during late theta phases and sharp wave-
ripple (SWR) replays are imagined (generative). (b) Episodic view (traditional). Neural 
firing during each theta cycle corresponds to sequential locations in the past, present, 
and future, and neural firing during SWR replays correspond to past or future locations. 
Note that the Episodic view can be understood as a particular application of the 
proposed Generative view. 
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Figure 1.4 Schema for interpreting hippocampal activity 
We suggest that generative activity arising from the hippocampus may not only 
correspond to the experienced past or anticipated future, but also to a wide range of 
possibilities. This view may also organize or suggest various cognitive functions. 
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CHAPTER 2: HIPPOCAMPAL REPRESENTATIONS OF ALTERNATIVE 

POSSIBILITIES ARE FLEXIBLY GENERATED TO MEET COGNITIVE 

DEMANDS 

 

Summary 

The cognitive ability to go beyond the present to consider alternative possibilities, 

including potential futures and counterfactual pasts, can support adaptive decision 

making. Complex and changing real-world environments, however, have many possible 

alternatives. Whether and how the brain can select among them to represent 

alternatives that meet current cognitive needs remains unknown. We therefore 

examined neural representations of alternative spatial locations in the rat hippocampus 

during navigation in a complex patch foraging environment with changing reward 

probabilities. We found representations of multiple alternatives along paths ahead and 

behind the animal, including in distant alternative patches. Critically, these 

representations were modulated in distinct patterns across successive trials: alternative 

paths were represented proportionate to their evolving relative value and predicted 

subsequent decisions, whereas distant alternatives were prevalent during value 

updating. These results demonstrate that the brain modulates the generation of 

alternative possibilities in patterns that meet changing cognitive needs for adaptive 

behavior. 
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Introduction 

Animals are continually faced with decisions about what to do and where to go next. In 

the context of behavioral tasks, a long tradition of animal experiments and behavioral 

models suggest that the brain can make adaptive decisions by comparing the expected 

values of available options, which are learned through experience. As an example, in 

spatial settings, an animal may compare the expected values of different rewarded 

locations and associated paths. After making a choice, a rewarding outcome would lead 

to an update that increases the stored value of the rewarded location and the path taken 

to get there, enabling subsequent adaptive decisions even as outcomes 

change53,65,182,183. 

While the idea of retrieving and updating expected values of possible options 

seems relatively simple, in real-world situations like navigation, choices often lead to 

outcomes that are distant in space or time. This poses a challenge: the brain must go 

beyond current experience to decide among or learn about alternative “non-local” 

possibilities. For instance, when making a choice among nearby routes, the brain may 

retrieve values related to their ultimate destinations. Further, in complex structured 

scenarios, rewards received in one location can imply information about the availability 

of rewards in other places, as in zero-sum situations or multi-step planning tasks. In 

such cases, the brain may take advantage of learned structure to make inferences 

across space, and update not only the value of the current location but also the values 

of alternative locations and paths46,74,184,185. Additionally, unlike many laboratory tasks, 

naturalistic scenarios can have many alternatives available at once159,186–190. This 

indicates a need to prioritize191; when deciding among or updating different possibilities, 
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some judicious mechanism is required to consider the most relevant non-local 

alternatives to meet current demands. 

The neural mechanisms that enable such prioritized computations about relevant 

non-local possibilities during complex behavior are not understood. Existing data 

indicate the hippocampus and its representations of space as a starting point. First, the 

hippocampus is critical for rapid learning and performance of spatial tasks where 

animals must learn the locations of and routes among rewarded locations192–199. 

Second, the hippocampus is well known for spatially tuned “place cells” whose activity 

typically signals the actual location of the animal47. These cells are often described as 

the substrate for a cognitive map, or an internal model of the world, that encodes the 

relationships among both locations and experiences more broadly43,49. Critically, while 

place cells are best known for coding an animal’s actual position, they are also capable 

of expressing non-local representations of alternative locations at a sub-second 

timescale54,55,74,80,200–203. Finally, natural behavior often involves experience-guided 

decision making during active navigation, and hippocampal non-local representations 

can be regularly expressed during movement69,204. Thus, during active behavior, 

generating a non-local representation corresponding to a particular alternative location 

could serve to retrieve or update information associated with that location, including its 

value. 

Non-local representations have been linked to cognitive processes for both 

decision making and learning during navigation. These population-level representations 

are most often associated with the sequential firing of place cells corresponding to a 

trajectory through locations behind, at, and ahead of the animal’s actual 
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location55,93,200,95,181. In the context of decision making, as animals approach a choice 

point, these representations can sweep along future paths ahead, which is evocative of 

a role in retrieving at least immediately upcoming options69,98–101,117,159,205,206. These 

sequences also engage place cell activity on timescales consistent with synaptic 

plasticity, suggesting a role in learning55,200,207–210, and potentially updating internal 

representations based on experience. 

Yet, whether or how the brain generates representations of different alternatives 

as cognitive demands change throughout experience-guided decision making and 

learning remains unclear. We therefore combined approaches typically used to 

separately study decision making and reinforcement learning, or experience-guided 

navigation. We developed a dynamic patch-foraging task where changing reward 

probabilities across six locations challenged animals to continually update their internal 

models to make experience-guided choices about where to go for reward. By leveraging 

a computational model, we estimated internal cognitive variables from animal behavior 

related to both value-guided decision making and value updating. As these cognitive 

variables evolved across successive trials of experience, we monitored hippocampal 

neural activity to identify non-local representations expressed during active navigation. 

We observed a range of representations of alternatives, corresponding to potential 

paths not only ahead of, but also behind the animal, including along counterfactuals, 

and to distant locations in remote foraging patches. We further found that these 

representations were modulated across successive trials in two distinct patterns, one for 

representational content and the other for spatial extent, each of which was related to 

distinctly evolving cognitive variables. These findings demonstrate that mechanisms 
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exist that regulate the expression of distinct non-local possibilities in conjunction with 

cognitive needs. 

 

Results 

Rats Make Experience-Guided Decisions in the Spatial Bandit Task 

We developed a dynamic foraging task where performance could benefit from 

representing alternative possibilities, both for deliberating among alternatives and for 

updating information about alternatives. This “spatial bandit” task combined features of 

spatial memory and decision-making paradigms (Figure 2.1). First, as in classic spatial 

memory behaviors, rats (n=5) navigated a maze based on prior experience to reach 

reward locations. The track was made up of three Y shaped “foraging patches” radiating 

from the center of the maze, and each patch contained two reward ports at the ends of 

the linear segments (Figure 2.1). The multiple bifurcations and reward locations 

provided many opportunities for deliberation among alternative options and reward-

based updating. Second, as in classic decision-making tasks, we introduced uncertainty 

by dispensing rewards probabilistically. Each port was assigned a nominal probability of 

reward, p(R), of 0.2, 0.5, or 0.8 (Figure 2.1), and one of the three patches had a greater 

average p(R) than the other two. On any visit to a port the rats either did or did not 

receive reward, determined by the p(R), and consecutive visits to the same port were 

never rewarded. Thus, animals could only accurately infer each port’s hidden reward 

probability state through experiences across multiple visits and multiple port locations.  

During run sessions, reward probabilities around the track covertly changed in 

blocks (as in Figure 2.1) every 60 (n=4 animals) or 80 (n=1 animal) trials. Each day of 
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task experience consisted of up to 8 run sessions, separated by rest sessions in a rest 

box, and each run session consisted of 180 (n=4 animals) or 160 (n=1 animal) trials. A 

trial was defined as the period between a departure from one port to a departure at 

another port, and animals individually completed 5760, 8970, 10191, 7917, and 5220 

trials, providing a large dataset compatible with behavioral and neural analyses. 

Importantly, the reward contingency block transitions were uncued and changed which 

patch was associated with the highest overall nominal probability of reward. These 

reward probability transitions thereby encouraged experience-based, adaptive decision 

making. 

Animals exhibited choice behavior akin to patch foraging211 (Figure 2.1). They 

began by serially exploring the ports in the three patches, often making repeated 

choices to alternate between ports within a patch (Stay trials) and occasionally making 

flexible choices to navigate to an alternative patch (Switch trials) (Figure 2.1, Figure 

2.6). Animals adapted their choices based on their dynamic reward experiences across 

reward ports, trials, and contingencies (as in Figure 2.1). As a result, animals generally 

learned and remained within the patch with the highest nominal reward probabilities by 

the end of each block (Figure 2.1). 

The patterns of these Stay and Switch choices indicated a decision strategy that 

used reward history information, including reward history related to both the current 

patch and to alternative patches. To understand how reward information related to 

animals’ choices at a single-trial level, we fit a behavioral learning model to each 

animal’s sequence of port choices and reward outcomes (see Methods). We estimated 

weights related to the expected values of the animal’s two potential options on each 
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trial: Staying within the current patch or Switching between patches. Logistic 

regressions predicting Stay or Switch choices revealed significant effects of not only the 

Stay value (measured as the value of the upcoming port in the current patch) but also 

the Switch value (measured as the value of the more valuable unoccupied patch) in 

each animal (Figure 2.1). The coefficients were negative for Stay values, indicating that 

animals were less likely to make Switch choices as the value of Staying increased 

(Figure 2.1). In contrast, the coefficients were positive for Switch values, indicating that 

animals were more likely to choose to Switch as the value of Switching increased 

(Figure 2.1). Thus, animals’ behavior depended on previous reward experiences both 

from nearby Stay locations and more spatially distant Switch locations across the maze 

(Figure 2.1, Figure 2.10). 

Since Switch choices were value-guided and punctuated often longer, stable 

bouts of Stay choices (Figure 2.1, Figure 2.6), we anchored further analyses around 

these self-paced patch changes. Here, a central decision variable is the relative value 

between these two options on each trial: Switch value - Stay value (Figure 2.1). This 

relative value was low during trials far from a Switch and on average increased over the 

course of the Stay trials leading up to a Switch choice. On the Switch trial, relative value 

was highest, and then decreased again across trials after the Switch (Figure 2.1). Note 

that these relative values do not incorporate the bias to Stay (or cost to Switch) as 

illustrated by the negative constants in Figure 2.1. We also note the relative value 

fluctuations on alternating trials before a Switch, which are consistent with animals 

tending to Switch after visiting the higher value port within a patch (Figure 2.1). 

Importantly, the increasing and decreasing relative value pattern around Switches 
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reflects a gradual updating of values over successive trial outcomes. This suggests that 

animals may similarly access internal estimates of values associated with Switch and 

Stay options when deciding whether to leave the current patch and, after Switching, 

whether to remain in the new patch or again navigate elsewhere. 

Taken together, these findings provide evidence that animals learn from their 

changing reward experiences and leverage this experience to make value-guided 

decisions among alternative paths. Furthermore, they suggest that seemingly isolated 

and behaviorally overt Switch choices occur in the context of gradually changing covert 

reward expectancies that place evolving cognitive demands on the animal across 

successive trials. 

 

Representations of Alternative Paths Ahead of the Animal 

Given these behavioral results, we then asked whether the content of hippocampal 

representations of alternative paths was also modulated around Switch choices. As 

previous work has identified non-local representations consistent with possible future 

locations69,98,99,101,117, we began by examining non-local representations extending 

ahead of the animal’s actual position that occurred while the animal was in the first 

segment of each trial. In this period, the animal approached the first choice point, which 

is associated with the choice to Stay or Switch. We used an established state space 

decoding algorithm212,213 (2 cm spatial bins, 2 ms temporal bins, see Methods) to 

assess the instantaneous hippocampal representation of space59,60,214 during navigation 

(animal speed > 10 cm/s) across all five rats, each implanted with tetrode microdrives 

targeting the CA1 region of the hippocampus (Figure 2.6). We limited our analyses of 
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non-local representations to periods with high confidence that the decoded hippocampal 

representation was in a non-local track segment, defined as a segment distinct from the 

one corresponding to the rat’s actual location (Figure 2.2, see Methods). 

We observed non-local representations that reflected locations along either of the 

two paths ahead of the choice point (Figure 2.2). We also verified the expected 

organization of these non-local representations of paths ahead based on the phase of 

the hippocampal theta rhythm55,89,91,93,200 (Figure 2.7). On each trial, we then classified 

non-local representations as reflecting paths that, if physically traversed, would either 

lead the animal to Stay in the patch or to Switch between patches (Figure 2.2). We 

began by examining the Stay trials leading up to and following Switch choices. Critically, 

this enabled us to assess the content of non-local representations as the relative value 

of Stay and Switch paths changed (Figure 2.1), while the behavioral choice to Stay 

remained constant. 

Strikingly, the relative representation of Switch and Stay paths mirrored their 

evolving relative value. Across trials preceding a patch Switch, non-local 

representations of Switch paths ahead became increasingly prevalent relative to Stay 

paths (Figure 2.2). All animals exhibited this pattern, showing an approximately 1.3-1.5 

fold increase in the likelihood of non-local representations consistent with the unchosen 

Switch versus the chosen Stay paths over the 20 trials before a Switch choice (Figure 

2.2, Figure 2.7). This culminated in a ratio approaching equal (0.5) representation of 

each path ahead on the trial before a Switch trial (Figure 2.2, Figure 2.7). Additionally, 

on Stay trials after the animal arrived in a different patch following a Switch, non-local 

representations were again enriched for the unchosen Switch path. Then, the longer the 
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animal chose to Stay, the less the non-local representations reflected the Switch path 

(Figure 2.2, Figure 2.7). These increases and decreases in the proportion of Switch 

path representations were driven largely by changes in the amount of time spent 

representing the Switch path, while the level of Stay path representation remained, on 

average, relatively stable across successive Stay trials (Figure 2.8). We also confirmed 

that the roughly symmetrical increasing and decreasing pattern around a Switch was 

not driven by periods when the animal and decoded non-local spatial representation 

were very close by, as is possible near choice points, by requiring representations to 

extend at least 10 cm from the animal (Figure 2.8). Additionally, this pattern was not 

driven only by short Stay bouts, but was also seen when analyses were restricted to 

long bouts (Figure 2.8). 

Notably, the modulation of non-local representations of paths ahead of the animal 

before and after Switch trials resembles the changes in relative value between the 

Switch and Stay options (Figure 2.1). That is, trials with a higher relative value of 

Switching were associated with greater relative representation of Switch paths. This 

same relationship could also explain differences in non-local representations across 

Stay and Switch trials. Stay trials were on average associated with approximately 20-

30% non-local representation of paths consistent with Switching, whereas the 

complementary bias was seen on Switch trials, in which 70-80% of the alternative 

representations were of the Switch path (Figure 2.2). 

These findings indicate that the hippocampus continually tunes the retrieval of 

spatial alternatives in a pattern related to their evolving relative value. In the context of 

experience-guided decision making, our results are consistent with an across-trial 
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process where internal sampling of alternatives is biased by relative expected value, 

such that as these estimated values become more similar—and the cognitive demand 

for distinguishing between them potentially greater—the options are sampled more 

equally. Recruiting representations of relevant paths based on their viability for making 

the best choice, in turn, could enable more accurate comparisons of the values215.  

The possibility that non-local representations are engaged across trials in an 

internal sampling process led us to ask whether the proportion of non-local 

representation of the Switch path was predictive of the future choice to Stay or Switch. 

We reasoned that proportionally more representation of the Switch option on the Stay 

trial an entire trial in advance of the Switch could provide samples of the relatively high 

value Switch option (Figure 2.1) that in turn could influence the decision on the next 

trial. To investigate this at the level of single trials, we used a cross-validated logistic 

regression to predict whether an animal would choose to Stay or Switch on each trial 

based on the proportion of non-local representation corresponding to Switch paths as 

the animal approached the first choice point of each trial (using the same metric as in 

Figure 2.2). Training data were balanced such that chance level was 0.5. 

We found evidence that non-local representations could be used in an across-

trial decision process. Non-local representations occurring on the previous trial 

predicted the subsequent trial’s Stay or Switch choice better than chance. This indicates 

that the increased alternative representation on the Stay trial before a Switch trial was 

predictive of a future Switch choice an entire trial in advance, even when the 

immediately upcoming choice on the current trial was still to Stay (Figure 2.2). This 

choice prediction was even more accurate when considering only the non-local 
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representations that occurred during the approach of the choice point on the current trial 

(Figure 2.2), which is expected from Figure 2.2. Strikingly, including non-local 

representations on both the previous trial and the current trial led to an even better 

prediction of the choice the animal would make on the current trial (Figure 2.2). While 

Figure 2.2 indicate a ramping process on average across bouts of Stay trials before 

patch Switches, this regression result extends the observation of an across-trial 

modulation to the level of individual choices within bouts. 

 

Representations of Alternative Paths Behind the Animal 

The idea that representations of alternatives may be flexibly generated to meet 

decision-making needs across trials, rather than only for the immediate future choice, 

led us to ask next whether non-local representations of alternatives could be expressed 

at times when there was no immediately upcoming choice point. Here we focused on 

periods when the animal was traversing the final track segment of a trial and 

approaching a reward port. During this period, we found that non-local representations 

not only corresponded to the path the animal recently traversed, but also the unchosen 

Stay or Switch path that the animal could have come from or gone to but did not. This is 

consistent with the representation of counterfactuals (Figure 2.3). 

These non-local representations of Stay or Switch paths behind the animal 

(Figure 2.3) showed a very similar pattern of modulation around Switch choices as did 

non-local representations of paths ahead of the animal (Figure 2.2). Even though the 

representations behind were expressed after the animal had behaviorally indicated a 

choice on the current trial (Figure 2.3), the relative representation of the counterfactual 
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Switch path ramped up across Stay trials before a Switch and ramped down across the 

subsequent Stay trials after arriving in a different patch (Figure 2.3, Figure 2.7). Again, 

this increasing and decreasing pattern was roughly symmetric on average around the 

Switch trial. Furthermore, just as for representations ahead (Figure 2.2), representations 

behind the animal were biased on average to represent locations along the actual path 

taken on the current Stay or Switch trial (Figure 2.3). Thus, the non-local 

representations behind the animal were systematically modulated with the evolving 

relative values of the options (Figure 2.1). 

As with non-local representations extending ahead of the animal, the dynamic 

generation of representations of alternatives behind the animal was primarily driven by 

changing levels of Switch path representation (Figure 2.8). This is consistent with an 

increasing relative representation of the unchosen alternative path leading up to and 

following a choice to Switch. These results were also consistent when analyses were 

limited to representations extending at least 10 cm behind the animal (Figure 2.8), as 

well as in bouts within a patch lasting at least 10 Stay trials (Figure 2.8). Further, these 

non-local representations behind were concentrated in early phases of the theta rhythm, 

as expected from previous work55,91,93,200 (Figure 2.7). 

Representations behind the animal could also predict future behavior, consistent 

with an across-trial decision process. The relative representation of non-local paths 

behind the animal on the previous trial were predictive of whether the animal chose to 

Stay or Switch on the entirely subsequent trial (Figure 2.3). These predictions were, as 

expected (Figure 2.3), not as accurate as those from non-local representations 

occurring as the animal traversed the final segments of trials, after the animal had 
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already behaviorally expressed a choice to Stay or Switch (Figure 2.3). Nonetheless, 

previous trial non-local representations predicted subsequent choice well above chance. 

Thus, the proportion of non-local representation of the Switch path behind the animal on 

a given trial could predict what the animal would do several seconds later following 

traversal down the track segment to the reward port and back up the track segment to 

the choice point. 

Together with the results from representations ahead of the animal (Figure 2.2), 

these findings indicate that animals can progressively engage non-local representations 

associated with a progressively more valuable unchosen alternative (here Switching) 

both before and after the choice point leading to that option on each trial. These findings 

provide further support that the hippocampus dynamically samples alternative options, 

and can do so across successive trials with varying cognitive demands throughout 

flexible decision making. 

 

Representations of Remote Alternatives 

Beyond retrieving information from an internal model related to an ongoing decision-

making process, non-local information could be useful for additional purposes, including 

relating experiences or making inferences across space. In this task, where reward 

ports are distributed far across the maze, representing distant locations70,95,98,108,109, 

including those in alternative patches, could support relating reward experiences across 

space or updating values of distant locations based on local reward experiences. We 

therefore asked whether there was evidence for representations of distant locations 

across the maze, and whether these representations were specifically generated in 

relation to patch Switching, as animals learned from dynamic reward experiences. 
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In addition to non-local representations corresponding to track segments 

neighboring the animal’s actual location (Figure 2.2, Figure 2.3, Figure 2.4), we also 

observed non-local representations corresponding to alternative patches, closer to other 

reward ports (Figure 2.4). Alternative patches were represented on 10-20% of trials with 

any non-local representation (Figure 2.9). To quantify the extent of non-local 

representations, we then measured the maximal distance in centimeters between the 

animal’s actual position and the most likely decoded position represented by the 

hippocampus on each trial, during running at least 10 cm/s (Figure 2.4). Given our 

previous observation of representations of paths both ahead (Figure 2.2) and behind 

(Figure 2.3), we investigated non-local distance both as animals approached the first 

choice point and after the animal passed the final choice point in each trial (Figure 2.4). 

We found that non-local distance ahead was strongly modulated (Figure 2.4) in a 

pattern surprisingly distinct from the modulation of non-local content (Figure 2.2). The 

maximum non-local distance gradually ramped up across Stay trials and the first 

segment of Switch trials (Figure 2.4). The extent was then greatly elevated once the 

animal arrived in a new patch, and then decreased rapidly across the subsequent few 

Stay trials (Figure 2.4). This is in marked contrast to the modulation of non-local content, 

which increased and decreased in a roughly symmetrical manner. The maximum non-

local distances could reach an average of approximately 90 cm from the animal (Figure 

2.4, Figure 2.9), and, across animals, increased by approximately 40 cm from baseline 

(Figure 2.4) on the Stay trial following a Switch. This asymmetric pattern of non-local 

extent around Switch trials suggests a second kind of modulation of the generation of 
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non-local representations across successive trials by the hippocampus during 

experience-guided decision making. 

We then examined how these distances changed throughout the Switch trials 

themselves (Figure 2.4). Here we considered maximally distant representations both 

ahead and behind the animal during traversal of each of the four track segments of 

Switch trials. We found that while on average non-local representations extended as far 

as 40-60 cm from the animal on the first segment, this distance dropped to 

approximately 20 cm on both the second and third segment. Then, interestingly, the 

maximum distances rose again to approximately 40-80 cm as the animal traversed the 

final track segment of the trial and approached the reward port in the new patch. 

The extent of non-local representations behind the animal also showed an 

asymmetric pattern of across-trial modulation around Switches (Figure 2.4, Figure 2.9). 

That is, the maximum distance of non-local representations behind the animal on the 

final segment of trials was also elevated upon Switching patches, and then decreased 

back to baseline over subsequent Stay trials (Figure 2.4). Thus, the extent both ahead 

and behind showed a modulation pattern around Switch trials that was distinct from the 

modulation of Switch versus Stay path content (Figure 2.2, 2.3). 

We next asked whether non-local representations that corresponded to 

alternative, unoccupied patches were predictive of past or future patch choices. We 

found no evidence for such a relationship. Representations of specific alternative 

patches were neither biased to represent the patch the animal just arrived from nor 

predictive of the patch the animal would visit next (Figure 2.9). And, while in some 

animals these alternative patch representations did tend to overrepresent the track 
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segments containing reward ports, rather than the central three track segments, this 

effect was not consistently observed across animals (Figure 2.9). These results indicate 

that representations of specific distant spatial alternatives in other patches are not 

directly reflective of specific prior or upcoming Switch choices. 

Together, these patterns indicate that non-local extent is modulated above and 

beyond distance to a goal98 or choice point95. These findings also raise the possibility 

that more distant representations are involved in computations particularly required 

upon patch switching, including the initial approach of the first reward port in the new 

patch. This is a period in which the animal has the opportunity to learn about the reward 

values in the new patch, and potentially how they relate to values across the maze. 

Importantly, the reduced maximum distances observed in the third segment of Switch 

trials (Figure 2.4) indicates that the relative novelty or time since last visit for each track 

segment cannot be the main driver of the elevated distances observed after a patch 

Switch (Figure 2.4). This is because the third segment has a very similar level of relative 

novelty to the final segment, but the expression of non-local representations was very 

different. 

 

Non-local Distance is Enhanced During Learning Opportunities 

The observation that the extent of non-local representations was greatly elevated on the 

final segment of a Switch trial and for a few trials thereafter, after entering the new 

patch, suggested that representing distant locations might be particularly useful at those 

times. Specifically, we hypothesized that these representations might support 

computations that enable inference and updating related to alternative options across 
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the environment. We then returned to our computational model of choice behavior, 

which suggested why this might be the case.  

This model is an abstract statistical learning model that captures what a rational 

observer would expect about the probability of reward at each port given the animal’s 

actual history of reward experiences, which themselves occurred across different ports. 

Additionally, we fit the parameters of a choice model, similar to logistic regression, to 

estimate how this value information was used in relation to choice behavior. These 

analyses provided the opportunity to ask when information about the values of distant 

ports around the maze are most likely to be updated in relation to behavior at the level 

of trials. 

Our model choice was guided by the blocked reward contingency structure in this 

task, in which high reward probabilities tend to be mutually exclusive across patches at 

any given time. For example, the presence of a highly rewarding patch indicates that the 

other patches are less rewarding, and vice versa. An animal could account for this 

structure by estimating value jointly across ports rather than separately. Accordingly, the 

model estimates the expected value of each port on each trial by inferring the 

underlying contingency state across the entire maze. Specifically, the learning model is 

a hidden Markov model (HMM) whose hidden states are the sets of reward probabilities 

across all six ports (Figure 2.5, left and upper right, see Methods). This “global” model 

enables non-local value updating, where a reward outcome at one port can impact the 

expected values of other ports across the maze by providing evidence for specific 

contingency states. 



 55 

We first asked whether this non-local updating was important to model animal 

behavior in this task. If so, then a model that included this feature should fit the data 

better than an otherwise closely matched model that does not allow for non-local 

updating. We therefore implemented a second “local” model that inferred the value state 

of each port independently, as separate HMMs (Figure 2.5, lower right) that were 

otherwise identical to the initial “global” model (see Methods).  

The global model that allowed for non-local inference across ports significantly 

improved the fit to behavior in all animals (Figure 2.5). This suggests that animals did 

not learn port values independently, and instead adopted a non-local learning strategy 

in which outcomes at one port informed reward estimates at other ports, across the 

maze. 

We then asked whether the dynamics of variables related to value updating in 

the model corresponded to the dynamics of non-local representation distance in the 

neural data (Figure 2.5, Figure 2.4). Importantly, in this model, the degree of updating is 

not required to be uniform for every trial’s experienced reward outcome. Instead, as is 

typical in Bayesian statistical learning, an outcome drives greater learning when its 

reward probability is more uncertain. We therefore quantified both outcome uncertainty 

as well as global value updating using the model (Figure 2.5). We first assessed 

outcome uncertainty, defined as the entropy over the value state of the upcoming port. 

As with non-local extent, this outcome uncertainty was, on average, relatively 

stable in trials before animals Switched, increased substantially on Switch trials, and 

then decayed rapidly back to baseline (Figure 2.5, Figure 2.10). Higher values upon 

Switching patches reflect the lack of recent information about likely outcomes at the 
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locations in the new patch, which, in turn, could drive stronger value updating. The 

asymmetric pattern of outcome uncertainty around Switch trials is similar to that of the 

hippocampal extent results (Figure 2.5), potentially reflecting preferential updating or 

propagation of value information to internally represented distant non-local places 

during these uncertain periods. 

We next aimed to specifically capture this global value updating process using 

the model. To do so, we quantified the total change in the estimated values across all 

ports, including both the local (occupied) and non-local (unoccupied) patches in the 

maze from trial to trial (Figure 2.5, Figure 2.10). This revealed that value updating at 

locations across the maze was also asymmetric around patch Switch trials, with higher 

degrees of updating on and after the Switch, and a rapid decay thereafter (Figure 2.5), 

again akin to the pattern of hippocampal extent (Figure 2.5). Taken together, these 

results are consistent with the idea that the hippocampus preferentially samples more 

distant locations across the environment when expected values are uncertain, and new 

reward outcome information must be integrated into the animal’s internal model across 

the environment. 

 

Discussion 

Our findings demonstrate the distinct modulation of the content and spatial extent of 

non-local representations of alternatives in the hippocampus, in patterns that are well-

matched to the animals’ evolving cognitive needs throughout flexible decision making. 

The task structure encouraged animals to continually update their estimates of the 

values of different options based on experience and to use those values to decide 
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whether to Stay in the current patch or Switch to a different patch. Moment-by-moment 

decoding of hippocampal spatial representations during navigation, in combination with 

behavioral modeling, revealed two distinct patterns of modulation: (1) non-local 

representations of alternatives were expressed in relation to their relative expected 

values, with the higher value alternative making up the greater fraction, and (2) non-

local representations extended further from the animal at times where our model 

suggested that non-local learning was most prevalent. These patterns of modulation 

spanned successive trials and engaged non-local representations of locations not only 

ahead of, but also behind the animal. Further, the representations included locations 

that were not only close to, but also very distant from the animal. These findings reveal 

the broad representational capacity of the hippocampus during locomotion and indicate 

that this representational capacity is specifically engaged in patterns appropriate to 

subserve cognitive demands for both making decisions among and updating internal 

representations of alternatives. 

Our behavioral model provided a framework for understanding these contrasting 

patterns between non-local content corresponding to alternatives (Figure 2.2, 2.3, which 

are approximately symmetric around Switch trials) and non-local extent (Figure 2.4, 

which is asymmetric). In the trials leading up to a patch Switch, the hippocampus 

tended to reflect locations at distances within the neighboring track segments (Figure 

2.4), along either the Stay or Switch path (Figure 2.2, 2.3), rather than at the remote 

port locations where reward was previously obtained. This is consistent with a key idea 

of many reinforcement learning models—that choices are guided by a learned 

representation of the long-term reward consequences of some local action. In this 
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framework, an animal would evaluate Stay or Switch options leading up to a Switch 

choice by retrieving the up-to-date values associated with the neighboring paths nearby 

rather than their ultimate remote destinations. The observation that non-local 

representations extend further during greater non-local value updating, particularly after 

Switching, is further consistent with the idea that non-local updating of locations across 

the maze could help to propagate value information from those distal reward port 

targets to proximal choice points. Thus, whereas the elevated extent of non-local 

representations after Switches may reflect a non-local updating process (Figure 2.5), 

the representation of alternative Stay and Switch paths may reflect judicious retrieval of 

nearby segments when they are relevant to an ongoing choice between alternatives 

(Figure 2.1).  

 

Modulation of Non-Local Representations With Relative Choice Value 

Previous work on non-local representations and cognitive functions during locomotion 

has often focused on representations ahead of the animal and identified a variety of 

inconsistent relationships between the alternatives represented and current trial 

behavior. These results included an association between alternative representation 

content and head-scanning behavior205, although non-local representations are also 

observed in the absence of this behavior69,216. These results also include reports that 

representations of specific alternatives either did98,100,101 or did not69,99,117 predictably 

relate to the upcoming choice on the current trial. 

Our results provide a potentially unifying framework to explain these previous 

observations. We identified a modulation of non-local representational content with 
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relative value across successive trials. Specifically, when the difference between the 

values of the Stay and Switch options was large, the higher value alternative dominated 

non-local representations. When the differences were smaller, the relative proportion of 

non-local representation of each was more similar. These findings suggest that the 

expected values of options or related decision variables influence the extent to which 

those options are expressed in the context of non-local activity. This provides a potential 

prioritization of options to be considered, as the hippocampus would be most likely to 

represent the best, most viable options. Similar prioritization, in which the most 

promising options are internally sampled most extensively, also arises in rational 

computational analyses of choice under uncertainty215. 

Thus, when the preferred choice is clear, the hippocampus primarily represents 

that path, but nevertheless samples occasionally from the alternative, potentially to 

retrieve information about the path not taken. In conditions where the preferred choice 

becomes less clear, the hippocampus generates progressively more balanced 

representations of the two options. Critically, therefore, hippocampal non-local 

representations are neither constantly predicting the planned choice, nor strictly 

providing a menu that evenly represents all potential options—rather, representations 

can be more or less predictive of behavior depending on the current decision-making 

demands. 

At the same time, relative value-related modulation of non-local representations 

suggests that the mechanisms selecting non-local representations already have an 

estimated value of the alternatives. If so, then why would it be useful to generate a non-

local representation? We suggest that non-local representations activate place and 
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associated value representations on the actual path toward possible goals. This 

sampling of place and value could progressively refine and provide a more accurate 

estimate of the value, and thus serve to better inform decision processes159,206. This is 

consistent with our observation that the proportion of representation of the Switch path 

ahead was predictive of choice on even the next trial, and that similar patterns of non-

local content extending behind the animal also related to upcoming choice, well in 

advance of physically approaching the next choice point. 

 

Modulation of Non-Local Extent During Periods of Updating 

Our results also suggest that non-local representations of distant locations may 

particularly be recruited to support updating an internal model. Behavior in the Spatial 

Bandit task was better fit by a model that included non-local value updates wherein 

experiences at one reward port could alter the values at other ports. The pattern of 

model-estimated updates around Switch trials was similar to the measured extent of 

non-local representations on these trials, with the largest updates and the most distant 

representations preferentially expressed after the Switch decision was made and on 

subsequent trials in the new patch.  

One way to understand why value updating is associated with the representation 

of more distant locations is that it may enable more proximal value retrieval at the time 

of later choices. In the context of a choice to Switch patches, we found that animal 

behavior was driven in part by the reward value experienced at remote destination 

ports. Yet, the non-local representations in trials immediately preceding a patch Switch 

largely sampled paths along the neighboring track segments, rather than sampling distal 
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reward port locations. This is consistent with the widespread idea that the brain learns a 

value function, mapping locations near each choice point to the rewards to which the 

paths ultimately lead185. Thus, when outcomes are experienced at reward ports, the 

hippocampus may support non-locally updating information at distant locations across 

the maze in part to simplify later retrieval when that up-to-date information is needed for 

evaluating nearby choices. 

While the potential mechanisms by which non-local representations during 

navigation could support updating merit further investigation, some initial points can be 

made. First, the extent of non-local representations was low as animals traversed the 

central segments on a Switch trial but increased substantially in the final segment; that 

is, non-local extent increased immediately before rather than only after the first outcome 

in the new patch was revealed. This suggests that the role of these remote 

representations is not dependent on having just experienced an outcome at a reward 

port. Instead, the hippocampus may facilitate post-outcome updating by activating 

representations of distant alternatives that should be subsequently updated after new 

outcomes are observed in the chosen patch. One possibility is that activation during 

running could promote reactivation during subsequent replay events at the reward 

port217, and thus link the outcome of the current trial to representations of distant places. 

Second, prior work has demonstrated that non-local representations during navigation 

are strongly associated with the theta rhythm, and sequences along the theta rhythm 

are thought to support learning by binding together elements of experience at a 

compressed timescale through plasticity mechanisms90,91,95,208,218. Thus, this system 

could be used to learn relationships between current experience and unchosen 
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alternatives within theta cycles (or other organizing codes152), in support of updating 

knowledge of remote alternatives during active navigation. 

These possibilities are consistent with prior work showing that animals make 

internal model-based choices that rely on structural knowledge40,46,185,219–222 rather than 

just stimulus-response associations. Internal model maintenance and updating is 

particularly beneficial for flexible decision making to keep up with changing 

environments. However, previous neurophysiological and computational work on how 

non-local representations in the hippocampus may support value updating has primarily 

focused on replay during “offline” rest74,77,78,84,120,125,164,223–226, rather than active 

locomotion227,228. Thus, our findings suggest that “online” movement-associated non-

local representations in the hippocampus also have the potential to contribute to this 

learning. 

 

A Broad Range of Alternatives Are Flexibly Engaged 

Our results also establish that a diverse range of alternatives are expressed by 

hippocampal non-local representations. In the context of a specific decision among 

options, previous work has often focused on representations that corresponded to 

possible future locations on the current trial98,99,117. Our findings show that 

representations of alternative paths not only ahead of the animal but also behind the 

animal—even when moving away from the associated choice point—are flexibly 

engaged across trials associated with decision-making and learning processes. We also 

found that this engagement included non-local representations of very remote locations, 
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including representations that occasionally jump far across the maze rather than sweep 

ahead at a constant rate.  

The dynamic engagement of a broad range of alternative possibilities by the 

hippocampus69 during locomotion is consistent with the idea that non-local population 

representations can support a range of cognitive functions that involve computations 

about alternatives3,17,229,230. In particular, the dynamic engagement of representations 

behind the animal95 during navigation raises the possibility that the hippocampus 

supports computations about actual and counterfactual41 past paths during navigation, 

not only during rest. Moreover, the relative prevalence of representations behind the 

animal predicted behavior on the subsequent trial, indicating that representations of 

alternatives behind the animal need not be strictly retrospective, but could also support 

future decision making. 

Additional observations from prior studies exemplify that hippocampal activity 

during locomotion can correspond to various correlates, including representations of 

opposite directions69, forward and reverse sequences110, distant locations70,98, 

alternative environmental contexts109, and different spatial reference frames108; our 

results are consistent with the idea that any of these representations of alternatives may 

be differentially engaged and specifically curated across trials depending on the 

cognitive computations needed for the task at hand. 

 

Non-Local Computations in Immediate and Long-Term Adaptive Behavior 

Retrieving information about alternative options related to making a specific upcoming 

decision and retrieving information about alternatives in service of updating an internal 



 64 

model are both computations that inform inference across space (“non-local inference”). 

In the former case, representations of alternatives may support non-local inference of 

which alternative has the greater expected value based on prior experience. And, in the 

latter, representations of alternatives may support non-local inference about how the 

expected value of remote alternatives should be altered based on outcomes observed 

elsewhere. This possibility is consistent with prior work indicating that the hippocampus 

is important for inference45,46,164,168,231–236, and relational thinking more broadly49,161,237–

240. 

The prolonged relationship across trials of non-local representations to Switching 

behavior serves as a reminder that the behavioral benefit of non-local inference need 

not be immediate. While we observed that non-local representations can predict 

immediate future and past Stay or Switch choices, we also found that representations of 

alternatives ramped across many trials before and after Switch choices, that they 

predicted choices an entire trial in advance, and that remote representations in 

alternative patches did not predict prior or subsequent patch choices. Thus, while non-

local representations can have immediate behavioral benefit by supporting the 

immediately upcoming choice, they may also support decision making over the longer 

term, perhaps by integrating and accumulating241,242 retrieved information across trials. 

This is consistent with the idea that inferring structure in an environment and relations 

between experiences may occur in the background of behavior243, particularly as new 

information needs to be incorporated into an internal model, even if an animal does not 

yet know if or when it will later need to draw on that knowledge to support adaptive 

choices. This is thought to be especially important in complex and dynamic 
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environments to enable flexible decision making when confronted with new or 

unexpected circumstances. 

While the circuit-level mechanisms that determine the flexible generation of 

representations of alternatives remain largely unstudied, our observations of modulation 

with respect to relative values and the need to learn them implicates brain regions like 

the prefrontal cortex as possible drivers244–251. Consistent with this possibility, activity in 

the medial prefrontal cortex (mPFC) and the hippocampus can be precisely 

coordinated117,252,253 and mPFC spiking can predict the future engagement of non-local 

hippocampal spiking70. Further, observations of coordination of hippocampal 

representations and peripheral sensory-motor processes254 suggest broad engagement 

of many brain areas at times when hippocampal non-local activity may be important for 

ongoing behavioral computations. The specific generation of non-local hippocampal 

activity patterns and associated representations of alternative possibilities could engage 

widely distributed computations to enable learning and adaptive decision making in a 

complex and dynamic world. 

 

Methods 

Experimental Methods 

Subjects. All animal procedures were approved by the Institutional Animal Care and use 

Committee at University of California, San Francisco. Five adult male Long-Evans rats 

(Charles River Laboratories, 450-650g) were each pair housed in a temperature-and 

humidity-controlled environment on a 12-hour light-dark cycle with lights on 6 AM - 6 

PM. Rats had ad libitum access to standard rat chow and water. Prior to behavioral 
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training, rats were transitioned to single housing and food restricted to 85% of their 

baseline weight. 

 

Behavioral Pre-Training. All behavioral tasks were controlled via custom code written in 

Python and Statescript in combination with an Environmental Control Unit 

(Spikegadgets). Animals were pre-trained to run back and forth on a linear track with 

walls for liquid food reward (Carnation evaporated milk sweetened with 5% sucrose) 

from reward ports fixed at each end of the track. Upon entry of a reward port, 100 µL 

reward was delivered by syringe pump immediately and automatically, gated by an 

infrared beam. Animals learned to alternate between and obtain rewards from the two 

ports across two 40-minute and one 25-minute sessions. To familiarize animals with 

navigating an elevated maze, animals then performed the same task on an elevated 

linear track (1.1 m long, 84 cm high) until they performed at least 30 rewards in a 15-

minute session. Pretraining took place in an environment with distal spatial cues on the 

walls. The pretraining environments were fully separate from the Spatial Bandit Task 

environment. Animals were subsequently returned to ad libitum food access prior to 

surgical implantation. 

 

Neural Implant. Custom hybrid microdrives contained 24 independently movable 12.5 

µm diameter nichrome tetrodes (California Fine Wire and Kanthal). The drive body was 

3D printed (PolyJet HD, Stratasys) and funneled tetrodes into two cannulae to target 12 

tetrodes to each hemisphere. Tetrodes were gold plated to reduce impedance to ~250 

kOhms. Implants also contained a custom headstage (Spikegadgets) that coupled with 
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a stacking set of up to four custom 128-channel polymer probes255 (Lawrence Livermore 

National Labs) per animal. Implant was housed in a custom 3D-printed enclosure with 

removable cap. Drive was sterilized before surgical implantation. 

Custom hybrid microdrives were implanted stereotaxically under sterile 

conditions. In anesthetized animals, cannulae were implanted above dHC (+/-2.6-2.8 

ML, -3.7-3.8 AP relative to skull Bregma) and polymer probes were implanted in mPFC 

and OFC. A stainless-steel ground screw was implanted over the cerebellum to serve as 

a global reference. Titanium screws were placed in the skull to help anchor the implant, 

which was secured with Metabond (Parkell, Inc) and dental cement (Henry Schein). 

After surgery, tetrodes were advanced deeper into the brain daily over ~3-4 

weeks. One tetrode per hemisphere was advanced to corpus callosum as a local 

reference and all other tetrodes were advanced to dorsal hippocampus CA1 stratum 

pyramidale, guided by physiological signatures of spiking activity and the local field 

potential. 

After full recovery from surgery, animals were food deprived to 85% of their 

baseline weight and reintroduced to the elevated linear track, as described above. 

Animals reached criterion again over several days to refamiliarize them with obtaining 

reward on a track and to familiarize them with running with their implant. Two rats had 

additional experience on a fork maze256. Re-training animals to run after surgery 

recovery ensured that the animals were motivated enough to begin the main 

experiment. 
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Data Collection: Spatial Bandit Task. The Spatial Bandit task took place on a maze with 

three radially arranged Y-shaped foraging “patches” each containing a central hallway 

that bifurcated into two hallways that each terminated in a photogated reward port, 

resulting in two ports per patch and six total reward ports. Each port had a separate 

automated pump, as described above. Hallways were 6.5 cm wide and linear track 

segments were each 53 cm long. All hallways intersected at 120 degrees, such that the 

track had three-fold symmetry. The track was made of black acrylic (TAP Plastics) with 

walls that were 3 cm high, enabling animals to see distal spatial cues. 

The behavior took place in a dimly lit room (2.4 m by 2.9 m) with black distal 

spatial cues on the white walls and a plastic black curtain separating the maze from the 

experimenter, rig, and computer. A ceiling-mounted camera (Allied Vision) centered over 

the maze recorded animal behavior at 30 frames/second and was synchronized with all 

other data via Precision Time Protocol. Before behavior began each day, a ring of red 

and green LEDs was mounted atop the implant to enable online head position and 

direction tracking via SpikeGadgets Trodes software. 

Animals began the task only once tetrodes had reached stratum pyramidale. 

Neural data was recorded from the animals’ first experience of the Spatial Bandit maze 

and environment. The general structure of each day of recording began by moving rats 

from their home cage into a rest box in the same room as the Spatial Bandit maze. Run 

sessions were interleaved with rest sessions throughout the day; rats typically 

completed 7 or 8 ~20-minute run sessions per day, interleaved with rest sessions of at 

least 30 minutes each. Rest sessions helped to maintain stable motivation by providing 
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breaks throughout each day. Each day also started and ended with a rest session. 

These behavioral data were collected over 8-17 days per animal. 

During each run session, an animal was first placed in the center of the track 

facing the same wall each time, and then navigated freely in the environment, which 

was otherwise fully automated by Trodes (SpikeGadgets) software and custom 

behavioral control scripts written in Statescript (SpikeGadgets) and Python. At a high 

level, each individual run session contained multiple reward contingency blocks. Each 

contingency defined the reward probability p(R) assigned to each of the six reward 

ports. Contingency blocks covertly changed when an animal completed a certain 

number of trials, or hit a 20-minute time limit per contingency, whichever came first. 

Contingency changes almost always occurred based on the trial limit, very rarely 

changed based on the time limit, and did not depend on any other performance metric. 

A trial was defined as the period from exiting one photogated reward port to exiting a 

different port. Therefore, each trial contained both the run between two ports and an 

outcome (100 µL reward or omission) at the chosen port. Reward was only available 

probabilistically if an animal poked into a distinct port; consecutive pokes at the same 

port were never rewarded. 

Each animal’s first run session began with reward probability p(R) of 1 at all 

reward ports for 100 trials, followed by an uncued contingency change to p(R) of 0.5 at 

all ports for the next 100 trials. This first session exposed the animal to the environment, 

encouraged the animal to visit all reward ports, and introduced probabilistic rewards. 

After this session, run sessions were each 180 trials long and contained three reward 
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contingencies that each lasted 60 trials for four animals. One animal had 160 trial 

sessions each containing two contingencies of 80 trials. 

From the second run session onward, each reward contingency defined a p(R) of 

0.2, 0.5, and 0.8 per port, such that each contingency had a best patch on average. 

Both ports within a patch could have the same or different reward probabilities, but the 

best patch combination was 0.5 and 0.8 (not 0.8 and 0.8) across the two ports in a 

patch. By having ports of two different values within a patch, animals were encouraged 

to spend some trials not only at high-value but also at nearby lower-value locations, 

enabling us to sample neural data as animals visited ports of a full range of values. 

Contingencies were pseudorandomized to counterbalance which patch was best, 

whether the left or right port within each patch was best, and whether the best, medium, 

and worst patch followed a clockwise or counterclockwise order around the track. 

Contingency changes and reward port values were never cued, so that animals had to 

make navigational choices based on memory of their prior experiences across the 

maze. 

Continuous neural data, as well as digital inputs and outputs associated with 

beam breaks and reward pumps, were recorded during each rest and run session at 30 

kHz in four animals and 20 kHz in one animal using Trodes version 1.8.2 

(SpikeGadgets). 

 

Histology. At the conclusion of behavioral experiments, animals were anesthetized with 

isoflurane, and small electrolytic lesions were made. One day later, animals were 

anesthetized and transcardially perfused with 4% paraformaldehyde. Brains were fixed 
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in situ overnight, after which tetrodes were retracted from the tissue and brains were 

extracted from the skull. Brain fixation continued for two days. After cryoprotection by 

30% sucrose for 5-7 days, brains were blocked and sectioned with a cryostat into 50-

100 µm sections. Nissl labeling enabled identification of tetrode tracks and localization 

of tetrode tips at the sites of electrolytic lesions (Figure 2.6). 

 

Data Processing and Analyses 

All data processing and analyses were carried out using Python and Julia using 

Spyglass257. 

 

Behavioral Analysis. Trials were parsed based on behavioral Statescript log files 

(SpikeGadgets). A trial was defined as the final exit from one port to the final exit from 

another port, and therefore included both the run from one port to the next as well as 

the entry into and outcome at the chosen port. Stay trials were defined as starting and 

ending within the same track patch, while Switch trials were defined by starting and 

ending in distinct track patches. The nominal reward probabilities assigned to each port 

and reward delivery times were also tracked by parsing log files. The nominal best 

patch on each trial was defined as the patch with the highest average of the nominal 

reward probabilities of the two ports within the patch (Figure 2.1). These reward 

probabilities are referred to as nominal because they are assigned by the reward 

contingency. Importantly, an animal’s experienced reward values at each port at any 

time in behavior are related to but not necessarily identical to the location’s nominal 
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reward probability, given the self-paced nature of the task and stochasticity of the 

rewards in the environment. 

 

Behavioral Hidden Markov Model. To estimate the rats’ expected belief about the value 

of each of the six ports, we used a Hidden Markov Model (HMM), which tracks belief 

across a discrete set of states of the world via a forward model of expected reward 

outcomes. The rationale for this modeling approach is to abstract away many under-

constrained implementational decisions in a more mechanistic model, and instead take 

as a starting point the question of what inferences would be drawn by an ideal statistical 

observer experienced with the task environment’s structure. More specifically, the HMM 

is capable of modeling the true dynamics of how rewards change during the experiment 

by having states of the HMM directly map onto the joint reward probabilities across the 

six reward ports, allowing it, for example, to capture the intuition that a change of reward 

probability at one patch should indicate to the animal that rewards have likewise 

changed at the other two patches, an inference that is not feasible with traditional Q-

learning models. That said, we expect that a more mechanistic implementation would 

approximate the HMM computations by augmenting a Q-learning style model with non-

local activations and updates223,258. 

Here, state is an assignment of expected reward probability to each of the six 

ports, and whose dynamics directly capture the ideal estimation strategy of an agent 

aware of the true underlying task structure, but without explicit knowledge of the precise 

timing of state changes. Notably, unlike traditional Q-learning models, the HMM 

captures the high-level idea that state configurations jointly change across each 
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session, and that each trial can be viewed as evidence of which among these possible 

state configurations the rat is currently experiencing. 

The HMM tracks value of reward ports by assigning a probability, or belief, to 

each possible state configuration of the six reward ports, alongside dynamics to update 

these beliefs via per-trial outcomes. Here, we considered a state to be a particular 

assignment of reward probabilities to each of the 6 reward ports, such as: 

𝜙! = [𝑝" = 0.2, 𝑝# = 0.2, 𝑝$ = 0.5, 𝑝% = 0.2, 𝑝& = 0.8, 𝑝' = 0.5] 

Each trial can be viewed as evidence of which among these possible state 

configurations the rat is currently experiencing, allowing trial-by-trial state inference and 

thus value estimations of each of the reward ports. 

 

Reward Port Value Estimation. In the HMM, we are modeling belief about which of 𝑛 

discrete states the rat is currently in. These states correspond to the contingencies that 

define reward probabilities for the rats. For computational convenience, and motivated 

by the informed ideal observer perspective, our set of contingencies, 𝜙, was the subset 

of the 𝑛 = 72 most frequently occurring of these possible contingencies in the actual 

experimental design, though we found our results to be relatively insensitive to the exact 

choice of contingencies.  

Our belief state, 𝛼, is a probability distribution over these 72 contingencies such 

that ∑𝛼! = 1. On any given trial, we can combine our belief state 𝛼 with the set of 

contingencies 𝜙 to find an estimate of reward 𝑄 at each of the six ports that minimizes 

the MSE: 
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𝑸 = [𝑄", 𝑄#, 𝑄$, 𝑄%, 𝑄&, 𝑄'] = 	4𝛼!𝜙!

(

!)"

 

 

Patch Value Estimation. Patch values were derived from the reward port estimates as 

follows: As the rat approaches a bifurcation and must choose between the upcoming 

port within a patch or the ports within the other patches, 𝑄*+,-. for the current patch was 

defined as the Q-value of the upcoming reward port as estimated by the HMM. For the 

other two patches, it was assumed that their value was an average of their two reward 

ports as estimated by the HMM, or 𝑄*+,-. = (𝑄+ + 𝑄/)/2, where 𝑎 and 𝑏 were the two 

reward ports of the respective patch. 

  

Behavioral Model State Updates. We assumed that any contingency could transition to 

any other contingency with a fixed probability, or hazard rate ℎ, which is the probability 

of transitioning to any new contingency, and 1 − ℎ is the probability of remaining in the 

current contingency. This hazard rate was assumed to be identical among all state 

transitions, and was a free parameter inferred via fitting. 

At each timestep, beliefs were updated via 𝝓 ← 𝑻𝝓, where 𝑻 was an 𝑛 × 𝑛 matrix 

whose diagonal entries were 1 − ℎ and all other entries were ℎ/(𝑛 − 1). This essentially 

results in a small diffusion of all reward port values around the maze towards baseline. 

To incorporate observations (here, whether a port was rewarded), at the end of 

each trial we updated each entry of 𝛼 based on the probability of the observed outcome 

for each respective contingency. If the outcome was positive, the probability given by a 

contingency was the value of 𝜙 for that contingency and port, and so 𝛼! ← 𝛼! 	𝜙!0 for 
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contingency 𝑖 and port 𝑗. If the outcome was negative, this became 𝛼! ← 𝛼!(1	 − 𝜙!0). 

This update was performed for all contingencies. 

 

Behavioral Choice Model. To connect this learning model to choices and assess our 

ability to capture animal behavior, we computed the likelihood of choice of patch on 

every trial as the softmax of the three patch values, given by: 

𝑝*+,-.! =
𝑒1"#$%&!

𝑒1"#$%&'21"#$%&(21"#$%&)
 

The value at the current patch was given by: 

𝑉*+,-.! = 𝛽3,+4𝑄*+,-.! + 𝑏3,+4 

For the patch clockwise from the current patch, value was given by: 

𝑉*+,-.! = 𝛽56𝑄*+,-.! + 𝑏,78( 

The value of the remaining patch was given by: 

𝑉*+,-.! = 𝛽56𝑄*+,-.! 

where 𝑄*+,-.! was either an individual port estimate or average of ports as described 

above. 

The inverse temperature parameters, 𝛽56 and 𝛽3,+4, determined how sensitive 

choice behavior was to differences in expected reward – high temperatures indicate 

high sensitivity to reward, while low temperatures indicate insensitivity. To allow for 

differential sensitivity to reward estimates at the current patch versus alternate patches, 

we fit two independent softmax temperatures, 𝛽3,+4 for the current patch, and 𝛽56 for the 

two alternative patches. 
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The term 𝑏3,+4 reflected a fixed cost to changing patches due to the time and 

distance to reach a new patch (as opposed to the reward sensitivity fit by 𝛽3,+4), and 

was added to the valuation of the current patch. 

To incorporate tendencies of the animals to prefer to turn in certain directions 

when changing patches, we included a turn bias 𝑏,78(, an offset which was consistently 

applied to the patch to the left of the animal’s current position. If the rat was in patch 1, 

this was added to patch 2. If the rat was in patch 2, this was added to patch 3, and if the 

rat was in patch 3, this was added to patch 1. 

On trials where the animal switched patches, likelihood of port choice was 

modeled as a subsequent softmax between the two ports, with a separate softmax 

temperature 𝛽*68, applied to the per-port reward estimates: 

𝑝*68,*/, =
𝑒1"-.$*/,

𝑒1"-.$*21"-.$,
 

The value of the left port was given by: 

𝑉*68,*	)	𝛽*68,𝑄*68,* + 𝑏*68,/!+3! 

where 𝑏*68,/!+3! was fit independently for each of the three patches, reflecting biases in 

which reward port each rat tended to enter when switching to each of the three patches. 

The value of the right port was given by: 

𝑉*68,,	)	𝛽*68,𝑄*68,, 

 

Local Behavioral Model. To test whether animal behavior reflected a belief that the 

outcomes at the six reward ports were linked, a core assumption of our Global 

behavioral model, or whether the animals instead estimated the value of the six reward 
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ports independently from one another, we considered an alternate model in which we 

estimated animal behavior via a set of six independent HMMs, one for each of the six 

reward ports (Figure 2.5). Each HMM individually contained the same distribution of 

rewards as in the distribution in our joint HMM model, as well as a belief distribution 

over those rewards. However, the belief distributions at the six reward ports were 

independent – while volatility would be modeled for all six reward ports after each trial, 

only the belief distribution of the visited reward port would be updated from observation 

via the forward model on each trial – the other five belief distributions would not 

incorporate this reward information. Importantly, the comparison between these two 

models (rather than, for instance, between the HMM and a local Q learning model) most 

directly isolates the question of local versus non-local updating, since the models are 

identical in all other features. 

To compare the independent Local model with the original joint Global model, we 

computed a cross-validated approximation to the negative log marginal likelihood for 

each day. Specifically, we used leave-one-session-out cross validation for the 

population-level prior parameters and a Laplace approximation for the per-day 

parameters: for each day, we refit the population-level model omitting that day, then 

conditional on that prior, we computed a Laplace approximation to that day’s log 

marginal likelihood. We aggregated these per-day scores to obtain a total score for 

each rat and model. Finally, we use paired tests on these scores across rats, between 

both models, to formally test whether either model fit consistently better over the 

population of rats (Figure 2.5).  
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Global Model Reward Sensitivity. To confirm that the HMM’s behavioral predictions were 

driven by its reward estimates, and that incorporating these estimates improved its 

performance, we compared our Global behavioral model against two nested models, 

one model where 𝛽56 was fixed to 0 (such that choice predictions ignored the estimate 

of the current patch value) and one model where 𝛽3,+4 was fixed to zero (such that 

choice predictions ignored the estimate of alternative patch values). These two 

alternative models were compared against the full model (Figure 2.10) with an identical 

procedure to the Local model comparison (see above). 

 

Behavioral Model Fitting Procedure. For our HMM, we optimized the free parameters of 

the model by embedding each of them within a hierarchical model to allow parameters 

to vary from day-to-day. Day-level parameters were themselves modeled as arising from 

a population-level Gaussian distribution over days, separately for each rat. We 

estimated the model for each rat to obtain best fitting day- and rat-level parameters to 

minimize the negative log likelihood of the data using an expectation-maximization 

algorithm with a Laplace approximation to the day-level marginal likelihoods in the M 

step259. 

 

Behavioral Model Variables. In subsequent analyses, we characterized value-guided 

Stay and Switch choices at the level of trials using variables estimated through the 

HMM, including the values associated with each port on each trial. We built a binomial 

family generalized linear model (Logit link function) for each animal to predict Stay or 

Switch choices from estimated expected values associated with the choice to Stay or to 
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Switch (Figure 2.1). The value of Staying was defined as the model-estimated value of 

the upcoming port within the patch on the current trial, and the value of Switching was 

defined as the greater of the average port values in the two alternative unoccupied 

patches into which the animal had the option to Switch on the current trial. The 

difference between the Switch and Stay values on each trial, without accounting for the 

cost of Switching or other biases, defined the relative value of Switching and Staying on 

each trial (Figure 2.1). The entropy over the reward belief state of the upcoming port 

(Figure 2.5) was calculated on each trial as follows. Given a belief state a, and reward 

probabilities 𝜙, each port 𝑗 had a marginal reward distribution [𝑝",𝑝#,𝑝$] where 𝑝" =

𝑝(𝑟 = 0.2), 𝑝# = 𝑝(𝑟 = 0.5), 	𝑝$ = 𝑝(𝑟 = 0.8). For each port 𝑗, 𝑟𝑒𝑤𝑎𝑟𝑑	𝑒𝑛𝑡𝑟𝑜𝑝𝑦0 =

	−∑ 𝑝! log(𝑝!)! . The value update at each port on each trial was calculated as the 

difference between the port value before and after the outcome was observed on each 

trial, and absolute value updates across a patch, set of patches, or the entire maze, 

were summed across ports to determine the total update magnitude on each trial 

(Figure 2.5, Figure 2.10). 

 

Position. LEDs mounted on the front and back of the implant were tracked via overhead 

camera at 30 frames/second using Trodes software (SpikeGadgets). Positions were 

converted from pixels to centimeters, smoothed, interpolated and upsampled to 500 Hz 

to match neural decoding resolution. The front and back LEDs were used to calculate 

head orientation and angular velocity. The head position and head speed were 

calculated from the centroid of the font and back LEDs. To enable faster decoding, head 

position was linearized into one dimension by projecting the two-dimensional head 
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position onto a graph representation of the track with nodes at the reward ports and 

track segment intersections, connected by edges. In between the track edges, which 

corresponded to the nine physical track segments, we introduced 15 cm gaps in 1D 

space to avoid inappropriate smoothing across adjacent linear positions that were not 

adjacent in physical space (Figure 2.6). 

 

Spatial Decoding. To decode spatial position from hippocampal spiking at high spatial 

and temporal resolution, we used a previously established clusterless state space 

algorithm212,213,260,261,84,262,254 from Denovellis et al., 2021212. Briefly, for each session, 

we built an encoding model to relate spike waveform features to the animal’s linearized 

head position in 2 ms bins using data from the beginning of the first trial to the end of 

the final trial of the session. The peak amplitude of each spike on each dCA1 tetrode 

channel served as spike waveform features. Spikes were detected by a 100 µV 

threshold on the recorded neural signal filtered 600-6000 Hz. To remove potential 

artifacts, a 1 ms window around times in which at least 75% of channels had an 

amplitude of 2000 µV or greater was excluded. 

For each session, we then decoded spatial position from this hippocampal 

population spiking in 2 cm linear position bins and 2 ms temporal bins (Figure 2.6). The 

state space decoding model212 had two states, spatially continuous and spatially 

fragmented, to capture smooth and discontinuous movement dynamics, respectively, of 

the hippocampal representation through the maze. The fragmented state was modelled 

by a uniform transition matrix and the continuous state was modelled by a random-walk 

transition matrix with a 6 cm movement variance. The probability of staying in the 
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current state in the discrete transition matrix was 0.98. The initial conditions were set to 

be uniform across states and uniform across positions, as we did not have prior 

information about the most likely initial conditions. The model used kernel density 

estimators with a 24 µV bandwidth for waveform features and a 6 cm bandwidth for 

position to estimate the likelihood of a spike waveform feature predicting a position. 

 The model output the posterior probability of position across the two movement 

dynamic states. We marginalized the joint probability over the two states, and then 

determined the most likely decoded position in each 2 ms bin as the peak of the 

posterior probability distribution. 

We assessed decoding quality based on the concentration of the posterior 

probability, and only included times that were decoded with high confidence in 

subsequent analyses, by requiring the highest 50% of the posterior probability values to 

be concentrated within 50 cm of the track, as has been done previously254. We further 

note that this decoding approach was conservative in the sense that we decoded using 

the same data used to build the encoding model. In contrast, a cross-validated 

approach would instead decode periods distinct from those used to encode, and 

thereby exclude the place cell spikes predominantly associated with the animal’s actual 

current position during the decoded moments. 

We measured the distance between the animal’s actual position to the most likely 

decoded position as the shortest path distance in linear space along the track in each 2 

ms bin based on Dijkstra’s263 algorithm, with the rat and most likely decoded position as 

nodes on the track graph. We also classified the animal position and most likely 

decoded position into one of nine track graph segments in each 2 ms bin. For 
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visualization, we projected linearized position back to the 2D track graph (Figs. 2.2, 2.3, 

2.4). 

 

Non-local representation of Stay and Switch paths. Non-local representation times were 

identified as times in which the most likely decoded position (hereafter “decoded 

position”) was in a track segment distinct to the animal’s actual position. We analyzed 

valid times of high speed (>10 cm/s) in order to limit our analyses to locomotor periods 

in which theta power is high and associated theta sequences are known to 

occur89,200,204,264, and thereby excluded stationary rest periods in which sharp wave 

ripple replay events occur53,74,80. 

To analyze the content of non-local representations occurring as the animal 

approached the first choice point on each trial (Figure 2.2), we first identified which track 

segment the animal began in on each trial and used data from the time at which the 

animal exited the reward port to the first time at which the animal’s position exited that 

initial track segment. During this period, the animal approached the first choice point in 

the trial (Figure 2.2). Out of this period, we limited analysis to only the times that 

satisfied the decoding confidence and speed thresholds described above. For these 

valid times, we then quantified the total duration of non-local representation. We also 

quantified the duration of representation of the single segment ahead consistent with a 

subsequent Stay path and the duration of representation of any of the other segments 

ahead consistent with a subsequent Switch path, as in Figure 2.2. This enabled us to 

then calculate the proportion of the total valid non-local representation duration that was 

consistent with a non-local Switch path representation. The per-trial proportion was 
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therefore calculated as: valid non-local Switch representation duration, divided by the 

sum of the valid non-local Switch representation duration and the valid non-local Stay 

representation duration. 

A very similar approach was used to analyze the content of non-local 

representations occurring as the animal traversed the final track segment of each trial 

(Figure 2.3). Here, we identified which track segment the animal ended in on each trial 

and used data from the final time at which the animal crossed from another segment 

into this final segment to the time at which the animal entered the chosen reward port. 

During this period, the animal approached the reward port, rather than a bifurcation 

(Figure 2.3). Again, we limited analysis to only the times that satisfied the decoding 

confidence and speed thresholds described above. For these valid times, we then 

quantified the total duration of non-local representation, and what proportion of that total 

non-local duration corresponded to a non-local representation consistent with a Switch 

path behind the animal (rather than the neighboring Stay path within the patch), as in 

Figure 2.3. 

 

Peri-Switch Linear Regressions and Shuffles. Ordinary least squares linear regressions 

were fit to Stay trial data for trials before or after Switch trials (Figure 2.2, Figure 2.3, 

Figure 2.7). Shuffled distributions were obtained within animal by randomly shifting trial 

labels 1000 times, where the label is the number of trials from either the prior or next 

Switch trial. 
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Predicting Stay and Switch Choices from Non-Local Representations. Generalized 

linear models with a logit link function (Figure 2.2, Figure 2.3) were used to predict Stay 

or Switch choices from the proportion of valid non-local representation corresponding to 

Switch paths. Models were fit separately per animal. Each model had one predictor, 

corresponding to the proportion of Switch path representation occurring while the animal 

occupied either the first or final segment of a trial t, the trial before t-1, or the average 

across the two trials t and t-1. Models were five-fold cross validated, and training data 

were balanced by resampling Switch trials. Predictions were binarized with a threshold 

of 0.5 and total accuracy was calculated across folds. 

 

Theta Phase. Neural data from a reference electrode in corpus callosum was filtered 0-

400 Hz and downsampled to 1 kHz. This local field potential signal was then further 

filtered in the theta band from 5-11 Hz. The analytic signal was calculated with a Hilbert 

transform. The instantaneous phases for all valid local and non-local decoded run times 

were assessed separately for periods in which the animal was approaching the first 

choice point in each Stay or Switch trial, or after crossing the final choice point in each 

Stay or Switch trial (Figure 2.7). Phase convention refers to descending phases of 

corpus callosum theta as early phases, 0 to p, and ascending phases as late phases, p 

to 2p. Data were binned for visualization only. Full theta phase distributions for local and 

non-local times were compared with Kuiper’s non-parametric test for continuous circular 

data for each animal. 
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Non-Local Distance. Non-local distance was calculated as the distance between the 

animal’s actual position and the most likely decoded position in each 2 ms bin (see 

spatial decoding methods). Using only high-quality valid running times, as described 

above, we identified the maximum absolute actual-to-decoded distance that occurred 

during the animal’s approach to the first choice point on a trial (Figure 2.4) or during the 

animal’s traversal of the final segment of a trial (Figure 2.4). Data in Figure 2.4 were 

calculated based only on representations that occurred in non-local, unoccupied, track 

segments to limit representations to those either ahead of or behind (Figure 2.4) the 

animal’s trajectory. 

To compare the non-local distance dynamics before and after Switches for each 

animal, we log-transformed the model 𝑦 = 𝑎𝑒/; into linear form and applied ordinary 

least squares regression to estimate log(𝑎) and 𝑏, for both pre- and post-Switch data. Z 

tests were used to statistically compare the pre- and post-Switch parameters (Figure 

2.4). 

Figure 2.4 Switch trial maximum distances across track segments were not 

required to be in a distinct non-local track segment to the animal’s actual position. Data 

occurring while the animal occupied the middle two segments of Switch trials (Figure 

2.4) were calculated based on Switch trials in which exactly four segments were 

occupied. Wilcoxon rank sum tests were used for each animal to statistically compare 

distances observed between different segments. 

 

Confidence Intervals and Statistics. Error bars, unless otherwise stated, correspond to 

95% confidence intervals on the mean. To take a nonparametric approach to 



 86 

determining the statistic, we randomly resampled with replacement from the underlying 

data distribution 1000 times and calculated the statistic’s bootstrap distribution. 

Statistical tests are stated throughout the figure legends and text with sample sizes and 

p values.  
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Figure 2.1 Rats make experience-guided decisions in the Spatial Bandit task 
(A) Track schematic with example reward Contingencies A-C from one behavioral 
epoch. The track contains three Y-shaped “patches,” each with 2 reward ports located 
at the ends of linear segments. Probability of reward at each of 6 identical reward ports 
is indicated as p(R1-6). Ports are colored by patch for figure visualization only. Uncued 
reward contingency changes occur every 60 trials. (B) Example sequence of choices 
from one behavioral session. Vertical black lines indicate contingency changes shown in 
A. Circles indicate chosen port on each trial and are colored by patch. Filled circles 
represent rewarded trials, empty circles represent unrewarded trials. Red triangles 
indicate a patch Switch. (C) Schematic of example Stay (black) and Switch (red) trial 
trajectories. (D) Proportion of trials in which the animal chose a port in the patch with the 
highest average nominal reward probabilities, as a function of trial number within the 
contingency block. Black line and grey shading indicate average across rats and 95% 
CI on the mean. Distribution on 60th trial of blocks is significantly different from chance 
level of 1/3 in each animal (n=168, 87, 78, 131, 87 blocks for animals J, C, S, W, and P, 
respectively, p=2.7e-22, 8.7e-5, 6.4e-10, 2.5e-21, 6.1e-11, binomial test), and 
distribution on 60th trial is also significantly different from values on first trials of blocks 
(p=9.6e-20, 3.9e-4, 2.5e-9, 3.2e-18, 1.5e-11, Z test for proportions) (E) Regression 
coefficients on model-estimated values of Stay locations and Switch locations for the 
prediction of Stay or Switch choice on each trial. All individual coefficients are 
significantly different than zero, indicating that rats rely on reward history from both 
current “Stay” patch and alternative “Switch” patches to make Stay or Switch choices 
(Figure caption continued on the next page.)  
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(Figure caption continued from the previous page.) (for each animal, pConstant=3.8e-25, 
1.6e-111, 5. 6e-98, 1.5e-39, 8.2e-40, pStay=5.6e-17, 7.3e-24, 3.8e-47, 1.5e-39, 8.2e-40, 
pSwitch=1.2e-23, 8.6e-9, 8.9e-30, 4.9e-25, 1.6e-22, from n = 5416, 8572, 9608, 7450, 
4732 Stay trials and n = 344, 398, 583, 467, 488 Switch trials). Grey bars indicate 
averages and coefficient points are colored by subject per legend in D. (F) Relative 
value of Switching versus Staying increases across trials leading up to patch Switch 
choices, peaks on Switch trials, and decreases following patch Switch trials. Switch trial 
values are distinct from Stay trial values in the 20 trials before (p=4.3e-61, 2.1e-44, 
4.5e-134, 6.6e-126, 4.3e-113, Wilcoxon rank sum test) and after (p=8.4e-81, 5.3e-63, 
8.5e-162, 4.0e-149, 1.4e-132) Switch trials in each animal. Individual animal data in 
Figure 2.10. 
  



 89 

 
Figure 2.2 Non-local representations of alternative paths Ahead are enriched 
across trials before and after patch Switching 
(A) Examples of non-local representations of alternative paths ahead on Stay and 
Switch trials. As the animal approaches the choice point, the hippocampus can 
represent the Stay or Switch path ahead. Top: Animal’s actual position (magenta) and 
decoded position from hippocampal spiking (blue, shaded by time) during the light blue-
highlighted period (below) are plotted on the track. Dashed grey line with arrow 
indicates animal’s path and direction on the current trial. Highlighted non-local duration 
is labeled above blue time-shaded heatmap. Top-middle: multiunit spike rate from 
hippocampal tetrodes before, during, and after highlighted non-local representation. 
(Figure caption continued on the next page.)  
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(Figure caption continued from the previous page.) Bottom-middle: Distance from actual 
position to decoded position, with positive values corresponding to in front of the 
animal’s heading, and negative numbers corresponding to behind the animal’s heading. 
Note that blue non-local periods are required to have representations in a different track 
segment from the animal’s actual position. Bottom: Animal speed. (B) Schematic 
defining Stay and Switch non-local activity ahead, analyzed in C-F. Non-local activity 
was analyzed from times in which the animal was running >10 cm/s from the reward 
port to the first choice point in the trial (magenta) by assessing the per-trial proportion of 
time in which non-local activity extended along the path ahead consistent with Switching 
(red) out of all non-local activity times along both the Stay (black) and Switch (red) 
paths. (C) Proportion of all non-local activity that represents paths consistent with 
Switching during the approach of the first choice point across Stay trials preceding and 
following Switch trials in one rat. Left and right x axes separated to reflect patch change. 
Error bars are 95% CIs on the mean. Linear regressions show increasing and 
decreasing proportions across trials before and after patch Switch trials. (D) Left: 
Proportion of all non-local activity that represents paths consistent with Switching during 
the approach of the first choice point across all animals (n=5 rats), normalized per 
animal by subtracting off the average baseline proportion on Stay trials. Error bars are 
95% CIs on the mean. Pre- and post-Switch linear regressions overlaid. Upper right: 
observed slope of pre-Switch regression (black) is significantly different from 0 
(p<0.002) based on 1000 shuffles of the underlying data (grey). Lower right: observed 
slope of post-Switch regression (black) is significantly different from 0 (p<0.002) based 
on 1000 shuffles of the underlying data (grey). Both slopes were individually significant 
in all five animals (Figure 2.7). (E) Proportion of all non-local activity that represents 
paths consistent with Switching during the approach of the first choice point in each 
animal on Stay trials and Switch trials. Error bars are 95% CIs on the mean. The 
proportion on Switch trials is greater than on Stay trials for all animals (p=2.7e-192, 
4.2e-108, 1.0e-100, 2.1e-315, 1.6e-201, Wilcoxon rank sum test, for n=313, 335, 523, 
422, 452 Switch trials, and n=3349, 3803, 5600, 5028, 3294 Stay trials). (F) Cross-
validated accuracy of logistic regressions that predicted Stay or Switch choices based 
on the proportion of all non-local activity that represents paths consistent with Switching 
during the approach of the first choice point. Neural data from each of three trial types: 
previous trial (circle marker), current trial (square marker), or both (triangle marker). 
Error bars are 95% CIs on the proportion. Training data were balanced, so chance level 
was 0.5. Accuracy of model using previous trial neural data is significantly greater than 
chance level in all animals (p=3.2e-63, 1.1e-43, 4.0e-133, 9.7e-131, 3.3e-60, Z test for 
proportions), accuracy from model using current trial neural data is greater than 
accuracy from model using previous trial neural data (p=2.3e-39, 7.0e-27, 6.0e-33, 
2.8e-46, 6.3e-43), and accuracy of model based on both trials is greater than accuracy 
of current trial model (p=1.1e-4, 1.2e-3, 4.3e-39, 4.9e-26, 5.6e-3). 
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Figure 2.3 Non-local representations of alternative paths Behind are also enriched 
across trials before and after patch Switching 
(A) Examples of non-local representations of paths behind in Stay and Switch trials. 
Top: Animal’s actual position (magenta) and decoded position from hippocampal spiking 
(blue, shaded by time) during the blue-highlighted period (below) are plotted on the 
track. Dashed grey line with arrow indicates animal’s path and direction on the current 
trial. Highlighted non-local duration is labeled above blue time-shaded heatmap. Top-
middle: multiunit spike rate from hippocampal tetrodes before, during, and after 
highlighted non-local representation. (Figure caption continued on the next page.)  
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(Figure caption continued from the previous page.) Bottom-middle: Distance from actual 
position to decoded position, with positive values corresponding to in front of the 
animal’s heading, and negative numbers corresponding to behind the animal’s heading. 
Bottom: Animal speed. Note that periods outside the blue shaded region where the 
distance behind is large (e.g., second example) correspond to representations that are 
in the same track segment as the animal at that time rather than an alternative non-local 
segment. (B) Schematic defining Stay and Switch non-local activity behind, analyzed in 
C-F. (C) Proportion of all non-local activity that represents paths consistent with 
Switching during the approach of the reward port across Stay trials preceding and 
following Switch trials in one rat. Left and right x axes separated to reflect patch change. 
Error bars are 95% CIs on the mean. Linear regression lines show increasing and 
decreasing proportions before and after patch Switch trials occur. Individual data for all 
rats shown in Figure 2.7. (D) Left: Proportion of all non-local activity that represents 
paths consistent with Switching during the approach of the reward port across all 
animals (n=5 rats), normalized per animal by subtracting off the average baseline 
proportion on Stay trials. Error bars are 95% CIs on the mean. Pre- and post-Switch 
linear regressions overlaid. Upper right: observed slope of pre-Switch regression (black) 
is significantly different from 0 (p<0.002) based on 1000 shuffles of the underlying data 
(grey). Lower right: observed slope of post-Switch regression (black) is significantly 
different from 0 (p<0.002) based on 1000 shuffles of the underlying data (grey). Both 
slopes were individually significant in all five animals (Figure 2.7). (E) Proportion of all 
non-local activity that represents paths consistent with Switching during the approach of 
the reward port in each animal on Stay trials and Switch trials. Error bars are 95% CIs 
on the mean. Switch trial distributions are significantly greater than in Stay trials for all 
animals (p=5.6e-264, 1.1e-155, 3.2e-300, 1.0e-100, 1.1e-277, Wilcoxon rank sum test, 
for n=292, 344, 525, 424, 443 Switch trials and n=3079, 3660, 6582, 4924, 3001 Stay 
trials). (F) Accuracy of logistic regressions predicting Stay or Switch choices based on 
proportion of all non-local activity that represents paths consistent with Switching during 
the approach of the reward port. Neural data from two trial types: previous trial (circle 
marker), or current trial (square marker). Error bars are 95% CIs on the proportion. 
Training data were balanced, so chance level was 0.5. Accuracy of model using 
previous trial neural data is significantly greater than chance in all animals (p=2.4e-58, 
7.1e-32, 1.2e-56, 1.3e-40, 3.1e-48, Z test for proportions), and current trial model 
accuracy is greater than previous trial model accuracy (p=2.4e-58, 7.1e-32, 1.2e-56, 
1.3e-40, 3.1e-48 ). 
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Figure 2.4 Non-local representations extend further early in patch experience 
(A) Examples of distant non-local representations of paths ahead or behind, in track 
segments distinct from the animal’s current segment. Top: Animal’s actual position 
(magenta) and decoded position from hippocampal spiking (blue, shaded by time) 
during the blue-highlighted period (below) plotted on the track. Dashed grey line with 
arrow indicates animal’s path and direction on the current trial. Highlighted non-local 
duration is labeled above blue time-shaded heatmap. Top-middle: multiunit spike rate 
from hippocampal tetrodes before, during, and after highlighted non-local 
representation. (Figure caption continued on the next page.)  
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(Figure caption continued from the previous page.) Bottom-middle: Distance from actual 
position to decoded position, with positive values corresponding to in front of the 
animal’s heading, and negative numbers corresponding to behind the animal’s heading. 
Bottom: Animal speed. Representations can correspond to distant locations within the 
current patch (left example) as well as in alternative, unoccupied patches (right three 
examples). (B) Schematic showing non-local distance, defined as distance in 
centimeters of the path along the track (green) from the animal’s actual position 
(magenta) to the peak of the decoded posterior (blue). Example schematics correspond 
to representations of locations an example distance ahead of (left) or behind (right) the 
animal’s actual position. (C) Maximum non-local distances represented on trials leading 
up to and following patch Switches for one animal. Data taken from during the period of 
each trial in which the animal approached the first choice point (as in B, left). Left and 
right x axes separated to reflect patch change. Error bars are 95% CIs on the mean. 
Individual animals shown in Figure 2.9. Exponential regression intercepts a and rate 
constants b are significantly larger magnitude for post-patch-change than pre-patch-
change data in all individual animals except one (pa = 1.3e-4, 4.6e-9, 1.1e-11, 3.1e-6, 
0.8, pb = 2.3e-4, 1.1e-8, 3.2e-10, 3.3e-6, 0.9, Z test). (D) Maximum non-local distance 
ahead represented on trials leading up to and following patch Switches, across all 
animals. Data taken from first segment of trials and normalized per animal by 
subtracting off the average across trials. Error bars are 95% CIs on the mean. (E) 
Maximum non-local distance represented for each animal while traversing each of the 
four segments of a Switch trial (segments 1-4 schematized in lower left). Error bars are 
95% CIs on the mean. Non-local distance is significantly greater when each animal is in 
the first segment than the second (p=4.7e-52, 1.0e-55, 6.4e-59, 8.5e-24, 2.1e-42, 
Wilcoxon rank sum test), and is also significantly greater in the final segment than the 
third segment for each animal (p=2.3e-49, 2.4e-56, 3.3e-69, 1.5e-49, 3.0e-70). (F) 
Maximum non-local distance represented on trials leading up to and following patch 
Switches for one animal. Data taken from final segment of each trial, during approach of 
the reward port (as in B, right). Left and right x axes separated to reflect patch change. 
Error bars show 95% CIs on the mean. Individual animals shown in Figure 2.9. 
Exponential regression intercepts a and rate constants b are significantly larger 
magnitude for post-patch-change than pre-patch-change data in all five animals 
individually (pa =8.8e-9, 2.9e-9, 1.4e-7, 3.2e-7, 9.2e-4, pb =5.7e-6, 3.0e-7, 2.3e-5, 4.0e-
5, 3.6e-2, Z test). (G) Maximum non-local distance behind represented on trials leading 
up to and following patch Switches, across all animals. Data taken from final segment of 
trials and normalized per animal by subtracting off the average across trials. Error bars 
are 95% CIs on the mean.  
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Figure 2.5 Behavioral modeling captures enhanced learning opportunities in early 
patch experience 
(A) Left: schematic of Hidden Markov Model with hidden state S and observation O on 
each trial t. Colors correspond to potential nominal reward probabilities. Upper right: 
schematic of Global Model, showing example contingency states S with specific values 
for each port, and the two potential observations O of reward outcomes on each trial at 
the chosen port. Lower right: Example states S in Local Model, in which each port’s 
value is estimated independently. The Global and Local models had matched reward 
distributions, though here we visualize unique example states. (B) Leave-one-out cross-
validated log-likelihood improvement (higher is better) of Global Model versus Local 
Model. Global Model better fit behavior in all animals (p=.0035, .0285, .0006, .0013, 
.0104, t-test on cross-validated log-likelihoods per day). (C) All animals’ normalized 
maximum hippocampal non-local distance represented on trials leading up to and 
following Switch trials, for non-local representations both ahead and behind (as in 
Figure 2.4). Trial-level quantification, rather than sub-trial-level quantification, shown 
here to match trial-level resolution of behavioral model. Error bars are 95% CIs on the 
mean. (D) Global Model variables related to learning opportunities in new patch and 
associated value updating across the maze are enhanced upon patch Switching. Left: 
Entropy over reward states at upcoming reward port shows asymmetrical pattern 
around Switch trials, becoming elevated on and after Switch trials, and decreasing 
across trials thereafter. Patterns were consistent across animals, shown individually in 
Figure 2.10. Right: Absolute value update resulting from each trial’s reward outcome, 
summed across all ports in maze. Degree of value updating is elevated upon patch 
Switching, (Figure caption continued on the next page.)  
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(Figure caption continued from the previous page.) and decreases across trials the 
longer the animal Stays within a patch. Patterns are similar for updates both within the 
current patch and across unoccupied patches (shown individually in Figure 2.10). Error 
bars are 95% CIs on the mean. Patterns were consistent across animals, shown 
individually in Figure 2.10. 
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Supplemental Figure 2.6 Decoding animal position from Hippocampal spiking 
during patch foraging 
(A) Violin plots showing distribution of number of trials spent in a patch before 
Switching, with horizontal dashed line (Figure caption continued on the next page.) 
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(Figure caption continued from the previous page.) at median. Upper and lower dashed 
lines indicate quartiles. Mean trial bout durations are labeled per animal. (B) Nissl-
labeled coronal brain tissue section representative example showing targeting of 
tetrodes to dCA1 of the hippocampus. Black arrows point to a tetrode track in dorsal 
cortex above and a lesion from the tetrode tip in the pyramidal cell layer below. (C) 
Animal head position over the course of one example session, with position data 
colored by the currently-occupied track segment. Black line highlights the animal’s 
trajectory throughout the same ~25s period shown in D. Colored track segments 
correspond to the colored track segments in D. (D) Decoded position from hippocampal 
population spiking tracks the animal’s actual position at a behavioral timescale and can 
sweep ahead or behind the animal to represent non-local positions at a sub-second 
timescale. Dashed lines highlight a small period that is enlarged at right. This period 
shows an example non-local representation (blue vertical bars) where the decoded 
position is in a segment distinct from the animal’s actual position. Top: Actual head 
position in 1D (linearized) is shown in pink and decoded position posterior is shown in 
greyscale. Track segments are aligned on the right y-axis, and segment colors 
correspond to segments in C. Circles at the end of colored segment lines represent 
reward port locations. Note that actual and decoded position are stationary at reward 
port positions, as animal pokes into reward port. Horizontal grey lines correspond to 15 
cm gaps introduced between track segments in linear position space. Top-middle: 
Multiunit spike rate across hippocampal tetrodes. Note fluctuations at roughly 8 Hz theta 
frequency, as expected during running. Bottom-middle: Distance of decoded position 
from animal’s actual position, which can be either ahead (positive values), at (zero cm), 
or behind (negative values) the actual position. Bottom: Animal head speed. (E) 
Confusion matrix showing actual position and decoded position for one rat. Decoded 
position largely tracks animal’s actual position across all track segments. Small amounts 
of off-diagonal density tend to occur at intersections of track segments, corresponding 
to adjacent positions in 2D space, as expected. (F) Boxplots of distribution of distance 
between decoded and actual position across valid decoded run times for each animal. 
Boxes show quartiles, whiskers correspond to the data range, and horizontal lines 
indicate medians, which are also labeled above. 
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Supplemental Figure 2.7 Non-local representations of alternative paths Ahead and 
Behind are enriched across trials before and after patch Switching 
(A) Proportion of all non-local activity that represents paths consistent with Switching on 
Stay trials before and after Switch trial (Figure caption continued on the next page.) 
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(Figure caption continued from the previous page.) for each animal. Data correspond to 
Stay trials when animals were located in the first track segment and approaching the 
choice point, as in Figure 2.2. Error bars are 95% CIs on the mean. Pre- and post-
Switch linear regressions overlaid in black. All slopes are significantly different than 0 
(ppre=0.002, 0.002, .0.014, 0.002, 0.004, ppost=0.002, 0.002, 0.008, 0.006, 0.004). Upper 
right plot: slope of pre-switch linear regression (black) is greater than the 97.5% CI on 
the slopes from 1000 shuffles of the underlying data (grey). Lower right plot: slope of 
post-switch linear regression (black) is less than the 2.5% CI on the slopes from 1000 
shuffles of the underlying data (grey). (B) Same as A, but for non-local activity that 
represents paths consistent with Switching as the animal traverses the final segment of 
each trial and approaches the reward port, as in Figure 2.3. All slopes are significantly 
different than 0 (ppre=0.002, 0.002, 0.004, 0.01, 0.008, ppost=0.002, 0.032, 0.004, 0.002, 
0.002). (C) Non-local representations of paths ahead (solid lines) are concentrated in 
late phases of the theta rhythm, compared to local representations corresponding to the 
current track segment (dashed lines), on both Stay trials (left) and Switch trials (right). 
All animal data in black with 95% CI on the mean in grey band, and individual animal 
data colored per A. Early and late phases are separated with a vertical dotted grey line, 
and labeled in grey text above. Local and non-local distributions are significantly 
different in each animal for Stay trials (p = 4.4e-64, 1.0e-16, 2.5e-175,8.2e-129, 2.9e-
18, Kuiper test) and Switch trials (p = 1.2e-7, 1.4e-11, 3.3e-12, 3.8-19, 9.3e-14). (D) 
Same as C, but for non-local representations of paths behind (solid lines) and local 
representations corresponding to the current track segment (dashed lines). Non-local 
paths behind are concentrated in early phases of theta. Local and non-local distributions 
are significantly different in each animal for Stay trials (p = 2.2e-7, 1.3e-52, 2.9e-202, 
3.5e-23, 1.0e-14, Kuiper test) and Switch trials (p = 8.7e-4, 0.040, 1.3e-16, 0.015, 
0.016). 
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Supplemental Figure 2.8 Non-local representations Ahead and Behind are flexibly 
engaged around Switch trials 
(A) Baseline-subtracted Stay path duration (left) and Switch path duration (right) across 
all animals. Durations are in 2 ms bins and quantify the number of bins where non-local 
representations were present during the approach of the first choice point across trials 
before and after Switch trials. Error bars are 95% CIs on the mean. Switch path 
durations were modulated more than were Stay path durations leading up to and 
following Switch trials. Related to Figure 2.2. Baseline durations per animal ranged 
21.12-25.68 bins for Stay path representations and 14.61-28.03 bins for Switch path 
representations. (B) Same as A, but for non-local representations occurring during 
traversal of the final track segment and approach of the reward port across trials before 
and after Switch trials. Related to Figure 2.3. Baseline durations per animal ranged 
13.99 – 26.65 bins for Stay path representations and 5.7-14.17 bins for Switch path 
representations. (Figure caption continued on the next page.) 
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(Figure caption continued from the previous page.) (C) Baseline-subtracted proportion 
of non-local representations along Switch paths, across all animals. These 
representations were expressed during the approach of the first choice point across 
trials before and after Switch trials. Only non-local representations at least 10 cm from 
the animal are included. Error bars are 95% CIs on the mean. Proportion increases 
before Switch trials and decreases following Switch trials. Pre- and post-switch linear 
regression slopes are significantly different than 0 compared to shuffles, as in Figure 2.7 
(slopepre=0.0073, p=0.002; slopepost=-0.0094, p=0.002). The similarity to Figure 2.2 
demonstrates that our results are not driven by representations very close to the animal. 
(D) Same as C, but for non-local representations occurring during traversal of the final 
track segment and approach of the reward port. Proportion increases before Switch 
trials and decreases following Switch trials. Pre- and post-switch linear regression 
slopes are significantly different than 0 compared to shuffles, as in Figure 2.7 
(slopepre=0.0099, p=0.002; slopepost=-0.011, p=0.002). The similarity to Figure 2.3 
demonstrates that our results are not driven by representations very close to the animal. 
(E) Baseline-subtracted maximum non-local distance occurring during approach of the 
first choice point (left) and traversal of the final track segment and approach of the 
reward port (right), across all animals. Only non-local representations at least 10 cm 
from the animal are included. Error bars are 95% CIs on the mean. Distances are 
especially elevated upon Switching patches and for a couple trials thereafter, and then 
decrease toward baseline levels. The similarity to Figure 2.4 demonstrates that our 
results are not driven by representations very close to the animal. (F) Baseline-
subtracted proportion of non-local representations along Switch paths, across all 
animals. Data correspond to the approach of the first choice point across trials before 
and after Switch trials. Here, non-local representations are only included from trials in 
bouts within a patch lasting at least 10 Stay trials. Error bars are 95% CIs on the mean. 
Proportion increases before Switch trials and decreases following Switch trials. Pre- and 
post-switch linear regression slopes are significantly different than 0 compared to 
shuffles, as in Figure 2.7 (slopepre=0.0033, p=0.002; slopepost=-0.0047, p=0.002). The 
approximately symmetrical pattern around the Switch is similar to that seen in Figure 
2.2, indicating that the results are not only driven by periods where animals Stayed in a 
patch for a small number of trials. (G) Same as F, but for non-local representations 
occurring during traversal of the final track segment and approach of the reward port 
across trials before and after Switch trials. Error bars are 95% CIs on the mean. Pre- 
and post-switch linear regression slopes are significantly different than 0 compared to 
shuffles, as in Figure 2.7 (slopepre=0.0034, p=0.002; slopepost=-0.0036, p=0.002). The 
approximately symmetrical pattern around the Switch is similar to that seen in Figure 
2.3, indicating that the results are not only driven by periods where animals Stayed in a 
patch for a small number of trials. (H) Baseline-subtracted maximum non-local distance 
during the approach of the first choice point (left) and traversal of the final track segment 
and approach of the reward port (right) across all animals. Here, non-local 
representations are only included from trials in bouts within a patch lasting at least 10 
Stay trials. Distances are asymmetric around Switch trials, and are especially enhanced 
upon Switching patches, and then decrease across trials after the Switch. Related to 
Figure 2.4.  
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Supplemental Figure 2.9 Non-local representations of distant locations 
(A) Maximum non-local distance represented on trials leading up to and following patch 
Switches for each animal. (Figure caption continued on the next page.) 
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(Figure caption continued from the previous page.) Data are from the period of each trial 
in which the animal approached the first choice point. Error bars are 95% CIs on the 
mean. Related to Figure 2.4. (B) Maximum non-local distance represented on trials 
leading up to and following patch Switches, during the period of each trial in which the 
animal traversed the final track segment towards the reward port, for each animal. Error 
bars are 95% CIs on the mean. Related to Figure 2.4. (C) Proportion of trials with non-
local representations corresponding to remote, unoccupied patches, out of all trials with 
any non-local representations, for each animal. Left: calculated for non-local 
representations occurring as animals approached first choice point. Right: calculated for 
non-local representations occurring as animals traversed final track segment and 
approached reward port. In both cases, ~10-20% of trials contain representations 
corresponding to locations in remote patches. (D) Non-local representations 
corresponding to locations in remote patches are not biased to represent subsequently 
chosen or immediately previous patches. Top row: proportion of remote patch 
representations occurring during approach of first choice point on Switch trials (left) and 
Stay trials (right) that correspond to subsequently chosen (next) patch. Bottom row: 
proportion of remote patch representations occurring during traversal of final track 
segment and approach of reward port on Switch trials (left) and Stay trials (right) that 
correspond to most recently chosen (prior) patch. Error bars are 95% CIs on the mean. 
Grey dashed lines correspond to an equal (50%) representation of the chosen and non-
chosen patches. (E) Non-local representations in remote patches are approximately 
equally distributed across track segments. Top row: proportion of remote patch 
representations occurring during approach of first choice point on Switch trials (left) and 
Stay trials (right) that correspond to track segments containing reward ports. Bottom 
row: proportion of remote patch representations occurring during traversal of final track 
segment and approach of reward port on Switch trials (left) and Stay trials (right) that 
correspond to track segments containing reward ports. Error bars are 95% CIs on the 
mean. Grey dashed lines correspond to a chance (66.67%) representation of the 4 
segments containing reward ports out of 6 total track segments in remote patches. 
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Supplemental Figure 2.10 Behavioral model reward sensitivity and variables for 
individual animals 
(A) Leave-one-out cross-validated log-likelihood improvement (higher is better) of Full 
Model versus an alternative model. (Figure caption continued on the next page.) 
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(Figure caption continued from the previous page.) In alternative model, 𝛽56 was fixed to 
0 (such that choice predictions ignored the estimate of the current patch value). Full 
Model significantly better fit behavior in all animals but one (p=1e-4, 0.113, 0.002, 0.016, 
0.001, t-test on cross-validated log-likelihoods per day). (B) Leave-one-out cross-
validated log-likelihood improvement (higher is better) of Full Model versus a model 
where 𝛽3,+4 was fixed to 0 (such that choice predictions ignored the estimate of the 
alternative patch values). Full Model significantly better fit behavior in all animals 
(p=0.002, 0.002, 0.002, 0.0002, 0.003, t-test on cross-validated log-likelihoods per day). 
(C) Relative value of Switching and Staying increases leading up to Switch trials and 
decreases afterwards. The value of Staying is the behavioral model-estimated value of 
the upcoming port within the current patch. The value of Switching is the behavioral 
model-estimated value of the greater value patch, where patch value is the average of 
the two ports within. Across-trial dynamics are roughly symmetric around the Switch. 
Error bars are 95% CIs on the mean. Related to Figure 2.1. (D) Entropy over behavioral 
model-estimated value states in the upcoming (chosen) port on each trial, increasing on 
and after patch Switches. Across-trial dynamics are asymmetric around the Switch. 
Error bars are 95% CIs on the mean. Related to Figure 2.5. (E) Value updates on each 
trial increase leading up to and especially on and after Switch trials, then decay across 
trials back to baseline. This pattern is observed across ports in the maze, not only at the 
currently visited port, indicating a period of enhanced learning by value updating upon 
patch Switching. Value updates are calculated as the absolute magnitude of the change 
in value across all ports or a subset of ports as follows. Top: Global value updates 
across all ports in the environment, as in Figure 2.5. Top-middle: Value updates at the 
current port. Bottom-middle: Value updates at ports in the current patch. Bottom: Value 
updates at ports in unoccupied, alternative patches. Error bars are 95% CIs on the 
mean. Related to Figure 2.5. 
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CHAPTER 3: CONCLUSIONS AND IMPLICATIONS 

 

Conclusions 

This work has described neural activity patterns generated in the hippocampus that 

correspond to alternative “non-local” possibilities. While a long and fruitful tradition of 

neuroscientific research has aimed to relate neuronal firing patterns to current external 

stimuli265 and immediate behavior266, the brain also has the remarkable abilities to store 

experiences, construct new knowledge from limited experiences, and later apply these 

to behave adaptively at later times and in distant places. In Chapter 1, we synthesized 

prior evidence that the hippocampus essentially contributes to such functions through 

generative neural activity patterns that reflect alternatives to an animal’s current 

experience. In Chapter 2, we presented evidence that during active navigation 

hippocampal representations of a wide range of alternatives are flexibly generated in 

patterns that match current demands for both experience-guided decision making and 

learning from limited experience. Together, this work suggests that the hippocampus not 

only regularly generates representations that correspond to alternative possibilities, but 

that mechanisms exist in the brain that tailor these representations to meet an animal’s 

changing functional needs. Critically, this work leaves open several lines of investigation 

with the potential to reveal the neural mechanisms underlying these flexibly generated 

neural activity patterns, as well as their possible roles in cognition and behavior. 
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Generative Representations Across Brain States  

A central finding of this work is that the hippocampus regularly represents different 

alternatives across trials of experience particularly during active locomotion. We focused 

on movement times during our foraging task because the natural world often requires – 

sometimes as a matter of survival – that animals make adaptive choices during active 

behavior. For instance, a mouse escaping from a looming predator must make a quick 

choice about which way to navigate towards shelter267. Or, in the case of learning, after 

running by a newly available route38, an animal may later be able to return to use this 

route, having previously updated its internal model of the environment while on the 

move. That said, the hippocampus also generates representations of alternatives during 

rest204, as in sharp wave ripple replay events that are observed during immobility, 

wakeful rest, and sleep76. Thus, a relevant question for future work is whether these 

replay events are engaged in similar or different patterns to those we observed during 

movement. 

 One influential hypothesis, that makes predictions about neural reactivation 

during rest in the spatial bandit task, posits that representations in the hippocampus 

during active behavior are later consolidated during rest217. In the context of our work, 

this two-stage model raises the possibility that the neural activity corresponding to 

specific alternatives represented during running in the spatial bandit task are later 

reactivated during rest, either for use in subsequent behavior, consolidation for longer-

term storage, or both62. Reactivation of reward-related locations would be expected 

based previous work indicating that individual episodes are replayed following 

behavioral experiences268,269, particularly in association with reward experiences74,77,78. 
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Some reports, taking both experimental and computational approaches, further link 

replay with value coding and value learning, for memory maintenance and 

updating53,84,119,120,125,223,270. These lines of research suggest that in our foraging task, 

replay may be biased to represent locations in the environment in association with their 

values. Whether replay does so, and whether replay is also enhanced on trials with 

greater value updating, may further uncover its contribution to value-guided foraging 

and decision making. This is the subject of ongoing work. Additionally, hippocampal 

spatial sequence representations during running are thought to directly relate to later 

replay during rest199,271. Given that we observed dynamic non-local representations 

across individual trials of running throughout our foraging task, this provides an 

opportunity to test whether the content of hippocampal replay events either follows 

along with or systematically diverges from the content we observed on the same trials 

during navigation. Similarly, more- or less-rewarding68 locations may be preferentially 

reactivated during post-behavior sleep, which may in turn predict later biases in foraging 

choices272. 

 

The Coordination of Generative Representations Across Brain Regions 

Another finding from this work is that hippocampal activity corresponding to specific 

locations in the environment can change in conjunction with behaviorally relevant 

variables, as they evolve across trials of experience. Specifically, we found that the 

relative non-local content along different paths changed with the relative value of those 

paths, and that the extent of these non-local representations was greater during periods 

of enhanced value updating about locations across the environment. Our findings 
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indicate that mechanisms exist that regulate non-local representations, in terms of both 

content and extent. 

 While the neural mechanisms underlying these two forms of modulation of non-

local representations are not known, existing literature points to several candidate 

processes that may be involved. An initial clue is that our findings suggest that such 

mechanisms have access to value signals. Neural activity directly related to reward 

value has indeed been reported in the hippocampus228,239, raising the possibility that 

within-hippocampus value coding contributes to the content and extent of non-local 

representations. Evidence for neural value signals in other brain systems that 

communicate with the hippocampus, however, is more abundant. These systems 

include, but are not limited to, the frontal cortex, striatum, and dopaminergic system. 

Although a review of these systems in relation to hippocampal non-local activity is 

beyond the scope of this work, some initial points can be made in relation to our 

experiments. 

 Areas in frontal cortex are of particular interest for the potential neural 

mechanisms underlying the dynamic generation of non-local hippocampal 

representations. Neural activity in prefrontal cortex can represent expected value and is 

modulated by reward273–278. Prefrontal cortical activity is also modulated by hippocampal 

local field potential features associated with non-local representations, including the 

theta rhythm and sharp wave ripples253,279–282. Further, prefrontal cortical activity can 

predict nonlocal hippocampal firing during movement70. Importantly, because prefrontal 

cortex also receives input from the hippocampus283–285, prefrontal cortex may also be a 

site of the later evaluation of paths represented by the hippocampus. And, given that 
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roles in generating and evaluating hippocampal representations of different spatial 

paths are not mutually exclusive, frontal cortex may, speculatively, subserve both. Along 

these lines, prior work showed a cortical-hippocampal-cortical loop between sensory 

cortical activity and non-local hippocampal activity123. 

We found that non-local hippocampal activity preferentially represents different 

paths and locations as the values of those locations evolve across trials of experience. 

Because our task design dissociates value from location by regularly changing the 

reward probabilities associated with different reward ports, monitoring of frontal cortical 

neuronal activity would enable us to test whether it concurrently reflects the values of 

the specific non-local paths represented by the hippocampus. The above reasons and 

others motivated us to simultaneously record from prefrontal cortical brain areas 

alongside the hippocampus in our experiments (and to develop the required technology 

to do so256). Therefore, guided by our computational model of behavior, ongoing work286 

aims to address how value, uncertainty, and other decision variables in prefrontal cortex 

are coordinated with non-local hippocampal representations during learning and 

decision making in our foraging task. Examining whether value- and value updating-

related patterns in the hippocampus are concurrently observed in or coordinated with 

dopamine release in frontal cortex247, as well as in nucleus accumbens185, may further 

elucidate the processes that underlie the dynamic generation of non-local hippocampal 

representations reported in Chapter 2. 

Further motivation to investigate non-local representations in coordination with 

neural activity across brain areas in our experiments comes from critical evidence that 

non-local activity in the hippocampus is internally generated, rather than primarily driven 
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by immediate external stimuli. As described in Chapter 1, non-local representations are 

aligned to the theta rhythm55,287, which is itself internally generated89–92. Sharp wave 

ripples, associated with replay, are also thought to be internally generated76. 

Additionally, while non-local representations associated with both theta and sharp wave 

ripples have been correlated with immediately upcoming behavioral choices98,100–102, 

there are also a variety of reports in which they are not69,84,99,115. Prior work further 

suggests that these internally generated representations can be more or less coupled to 

ongoing behavior depending on the memory demands of the task254. Together, these 

findings provide evidence that generative representations can be expressed without 

immediate sensory or behavioral correlates. Consistent with this, we found that two 

potential path options can be equally likely to be represented through non-local activity 

(and therefore would not discriminate immediately upcoming choice69), while at other 

times in behavior the previously or subsequently taken path dominated non-local 

representations. Thus, because internal representations can be dissociated from 

immediate behavior, one strategy to understand the computations performed by 

hippocampal representations is to monitor the activity of other brain areas or 

neurobiological processes simultaneously. In our work this approach could, for example, 

reveal an increase in the value represented in one brain area upon hippocampal 

reactivation of a just-rewarded location. Studying representational content in one area 

as it relates to that of another area has become possible with technology that enables 

recording of large populations across brain regions256,288,289, and has already been 

applied to reveal coordinated spatial content across the hippocampus and other brain 

areas101,115–117,124. In our data, this approach may help to address how the brain 
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coordinates spatial and value-related information, and how this coordination may 

develop through experience. Indeed, the need for understanding internally generated 

neural activity patterns in the hippocampus and beyond has also been converged upon 

not only from a representational view of the brain, but by nonrepresentational views 

alike290.  

 

The Role of Generative Activity in Experience-Guided Decision Making 

Our results describe relationships between hippocampal population activity and value-

guided behavior during navigation in our foraging task, but our conclusions are limited 

by an absence of causal evidence for these relationships. Previous studies showed that 

the rodent hippocampus is important for memory-guided decision making and 

inference45,46,192, as well as that hippocampal theta rhythmic activity plays a role in 

specific aspects of memory encoding and retreival198,291,292. Recent work also identified 

that the sequential nature of hippocampal firing along the theta rhythm, which is thought 

to give rise to non-local representations, is also critical for behavior in a flexible 

memory-guided navigation task199. To address whether the coordinated firing of place 

cells along the theta rhythm specifically during locomotion is required for learning a 

memory-guided task, we developed a closed-loop manipulation based on the phase of 

the theta rhythm to disrupt hippocampal population coordination during movement via 

the medial septum293. Preliminary results293 suggest a learning deficit in a memory-

guided navigation task. Experiments such as these complement a growing literature on 

closed-loop manipulations of sharp wave ripples during rest, which can be interrupted to 

impair, and lengthened to improve, learning experience-guided behaviors157,158. 
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Together, these observations suggest a direct role of theta- and sharp wave ripple-

associated neural activity in encoding experience for later use. Whether the specific 

representational content of these non-local events on individual trials is causally related 

to behavior, however, is not well understood. Closed-loop experiments that involve 

decoding and manipulating hippocampal spatial representations in real-time294–296, and 

in complex and dynamic environments297, will continue to advance our understanding of 

whether and how the different kinds of non-local events we observed are required for 

flexible experience-guided decision making.  

 

Generative Representations in Natural Behavior 

Our work also highlights the importance of studying brain activity during naturalistic 

behavior. Significant prior work has often investigated hippocampal non-local activity in 

simpler environments, with well learned alternation rules, or with changes that must be 

learned directly rather than inferred through learned structure across trials298. Despite 

important progress using these approaches, animals in the natural world live in 

environments that are more vast, dynamic, and uncertain than those in traditional rodent 

spatial memory tasks186,190. To begin to account for this, our spatial bandit task design 

took inspiration from complex real-world foraging211, borrowed the design of controlled 

blocks of stochastic rewards from decision-making experiments299, and incorporated 

branching maze structures from spatial learning and memory experiments298. While the 

task is by no means comparable to wild foraging environments, it enabled us to ask how 

spatial possibilities are internally selected among to reflect just the most relevant non-

local possibilities across many locations near and far, across many potential choice 
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points, and throughout regularly changing reward experiences that encouraged constant 

adaptation. This in turn enabled us to discover several patterns of modulation of non-

local representations, including representations extending along unchosen alternative 

paths ahead and behind the animal and representations that occasionally jumped 

unexpectedly far across the environment into alternative patches. Perhaps one of the 

more surprising results we observed was the significant increase in non-local extent as 

animals traversed the final track segments of switch trials. This indicates that factors 

above and beyond distances to choice points300, goals98, and novelty can modulate non-

local representations during locomotion. This finding was neither predicted by prior 

work, nor would have been found in a similar probabilistically rewarded yet simpler Y-

maze. Thus, by studying the brain in more complex, naturalistic, and ethologically 

relevant settings, we can make unexpected observations about how the brain rises to 

the challenges of the real world—challenges it has evolved to meet. Indeed, the field of 

hippocampal spatial memory was launched in part by the observation of spatially 

specific firing of hippocampal neurons in freely foraging rodents43,47. Now, equipped with 

larger scale neural and behavioral recording and analysis technologies301–304, future 

studies in naturally behaving animals and humans alike are positioned to advance our 

understanding of the circuit mechanisms underlying generative representations in the 

hippocampus and their roles in cognition and adaptive behavior. 

 

Summary 

Understanding how the hippocampus flexibly generates representations of alternative 

possibilities contributes to our knowledge of how prior experience may be used to 



 116 

update and adaptively apply an internal model of the world to make advantageous 

choices in complex and dynamic environments. In this study we described a 

neurophysiological basis for the systematic generation of a range of alternative 

possibilities that appropriately meet multiple systematically changing cognitive demands 

throughout experience-based decision making and learning. Building from this work and 

others, future investigations of the mechanisms that give rise to and coordinate with 

these neural activity patterns have the opportunity to dissect how the brain’s memory 

and decision systems may interact to support cognition and experience-guided adaptive 

behavior.  
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