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Abstract

The structural basis for highly specific protein-ligand complexes:

I. Apolipoprotein-E and the LDL receptor. II. Engineering the substrate

preferences of alpha-lytic protease.

by

Charles Wilson

Many biological events are predicated upon the highly specific interaction between a

protein and its appropriate ligand. Understanding the energetic factors that drive the

formation of protein complexes is a key step towards the design of novel enzymes or

drugs. This thesis addresses the structural basis for the high specificity of protein-ligand

complexes, focussing on two independent model systems: 1) the interaction of human

apolipoprotein-E (apo-E) with the low density lipoprotein (LDL) receptor, and 2) the

specificity of the enzyme O-lytic protease for particular substrates. X-ray crystallography

has shown the receptor binding domain of apo-E to be an unusually elongated four helix

bundle with several basic residues involved in receptor recognition clustered on a single

helix. This structure, the first determined for a mammalian apolipoprotein, provides an

understanding of the important structure-function relationships for this and related proteins,

and serves as a starting point for rational anti-atherosclerosis drug design. In the process

of solving the structure of apo-E, a method for crystallographic phase refinement based



upon iterative electron density skeletonization was developed and shown to be useful when

using incomplete atomic structures to solve the phase problem. A Monte Carlo dynamics

procedure was developed to simulate protein folding and used to predict the folded

structure of the apolipoprotein-binding domain of the LDL receptor. Work on O-lytic

protease has resulted in the development of a computational method that accurately predicts

the effects of mutagenesis on enzyme substrate specificity. The method employs a library

of side chain rotamers to sample protein conformation space and a free energy force field

that includes solvation effects to calculate relative binding energies. Using this algorithm, a

computer-designed enzyme with altered substrate specificity has been synthesized. In the

future, a newly-developed genetic screen for protease activity (based upon pro-inducer

activation) may be employed to test the predictions of this algorithm. The same

computational method has been applied to the problem of predicting side chain

conformation for homologous proteins with good success.
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Preface

Most biological events are based upon highly specific protein-ligand interactions.

To function properly, enzymes, receptors, gene regulators, and antibodies must recognize

and bind with high affinity to their appropriate target (i.e. the proper substrate, hormone,

operator sequence, or antigen). In many respects, a specific protein-ligand complex can be

thought of in terms of a lock-and-key analogy. While most residues in a protein are not

directly involved in ligand binding, they provide a relatively rigid framework that arranges

a handful of amino acids in a precise orientation with respect to one another to form a

ligand binding site. This positioning of key residues provides for the energetically

favorable hydrogen bonds, salt bridges, or van der Waals interactions that drive complex

formation with the ligand. Understanding the basis for high specificity within a protein

ligand complex clearly requires an intimate knowledge of its three-dimensional structure.

By characterizing and manipulating a number of complexes, it should be possible to

quantitatively measure the contribution of the different interatomic forces that stabilize

ligand binding. Ultimately, with this knowledge one should be able to engineer proteins

that bind new ligands or design new drugs that interact specifically with a desired target

protein.

This thesis addresses the structural basis for the high specificity of protein-ligand

complexes, focussing on two independent model systems: 1) the interaction of human

apolipoprotein-E with the low density lipoprotein (LDL) receptor, and 2) the specificity of

the enzyme o-lytic protease for particular substrates. Work on apolipoprotein-E has led to

the first crystal structure of a mammalian apolipoprotein (the class of proteins responsible

for lipid and cholesterol transport), which will hopefully provide an understanding of the

important structure-function relationships for this and related proteins, and serve as a

starting point for rational anti-atherosclerosis drug design. Work on O-lytic protease has



resulted in the development of a computational method that accurately predicts the effects of

mutagenesis on enzyme substrate specificity. Using this algorithm, the first computer

designed enzyme with altered specificity has been synthesized. In the future, the same

algorithm will hopefully be applied to the engineering of many other enzymes. The

following paragraphs outline and summarize the major points made in each of the

subsequent chapters.

Chapters 1-6 describe structural studies of human apolipoprotein-E and its

interaction with the LDL receptor. While there are several well characterized protein

complexes, the clear physiological importance of this protein-receptor interaction makes it

an obvious target for structural analysis. Apolipoprotein-E (apo-E) is a small protein found

in the blood plasma that directs the receptor-mediated endocytosis of a number of

lipoproteins, including high density lipoprotein (HDL), very low density lipoprotein

(VLDL), and chylomicron remnants (reviewed by Mahley, 1988). In the absence of proper

apo-E binding to cell surface receptors (such as the LDL receptor), lipoproteins accumulate

in the bloodstream in a process that can eventually lead to the formation of atherosclerotic

plaques. Characterization of the interaction between apo-E and the LDL receptor will thus

help further elucidate the mechanism of cholesterol transport and is likely to aid the

development of therapeutic agents for combating atherosclerosis. To this end, a major part

of this thesis describes the crystallization and structure determination by x-ray diffraction of

the LDL receptor-binding domain of human apo-E. Preliminary work towards predicting

the structure of the ligand binding domain of the LDL receptor and the receptor-apo-E

complex is also described.

Chapter one summarizes the biology of lipoproteins as it relates to apo-E and serves

as an expanded introduction for chapter two, a discussion of the crystal structure of the

LDL receptor binding domain of the human protein. This work has shown that the LDL

receptor binding domain is an unusually long four helix bundle, made up by short (22



amino acid) repeats corresponding to amphipathic alpha-helices. A combination of leucine

zipper-type interactions in the hydrophobic core and numerous salt bridges at the protein

surface appear to stabilize the folded conformation. Basic amino acids known to be

important for LDL receptor binding are clustered in a single O-helix, arranged such that

arginine and lysine side chains are largely solvent accessible, free for interaction with the

receptor. The crystal structure suggests that electrostatic interactions (salt bridges) are

likely to play a key role in generating apo-E's high affinity for the LDL receptor.

Chapter three describes the crystal structures of the two common mutant forms of

human apo-E and relates their altered biological functioning to structural changes induced

by single site amino acid substitutions. Apo-E is one of the most polymorphic human

genes that has been characterized and serves as one of the best genetic markers of increased

risk for cardiovascular disease (Davignon, 1988). One frequently-occuring mutation (the

apo-E2 mutant) results in a protein with dramatically reduced LDL receptor binding.

Crystallographic analysis suggests that this mutant induces a large conformational change

which, by disrupting both electrostatic and steric interactions with the receptor, may be

responsible for reduced binding. A second common mutation (apo-E4) leaves receptor

binding intact but significantly alters the lipoprotein binding properties of apo-E, increasing

the relative affinity for VLDL. This effect is surprising since lipoprotein binding is largely

mediated by the C-terminal domain, yet the E4 mutation corresponds to a single amino acid

substitution in the N-terminal domain. The crystal structure of this mutation shows

minimal conformational changes, implying an indirect mechanism for this mutant's

dysfunction. One possibility is that the mutation changes the interaction between the N

and C-terminal domains such that the lipid binding properties of the C-terminal domain are

altered. If this is the case, the crystal structure suggests that inter-domain communication

within a protein can be accomplished in the absence of significant structural changes as

have been observed for allosteric enzymes.



X-ray crystallography remains the best experimental technique for obtaining the

high resolution structural information needed to understand the functioning of

macromolecules. While the rate of x-ray structure determination seems to be constantly

increasing, a crystallography project can very often be thwarted by the lack of heavy atom

derivatives, usually required for finding a solution to the crystallographic phase problem.

Indeed, most of the time and effort spent in solving the structure of apo-E involved the

random screening of approximately 50 heavy metal compounds, searching for a suitable

isomorphous derivative. Any computational method capable of solving the phase problem

in the absence of experimental phase information would thus greatly simplify and accelerate

the process of solving protein crystal structures. After collecting a native data set for

apo-E, it was noticed that an idealized four-helix bundle reproduced some of the important

features of the native diffraction pattern. Chapter four describes efforts to develop an

algorithm capable of using the phase information in such a simplified, partial model as a

starting point for refinement to the true phases. The method developed is based on iterative

skeletonization of electron density maps, and as with solvent flattening techniques,

repeatedly applies constraints to the phases in both real space and reciprocal space

representations of the scattering. Simple test cases using data calculated from helical

proteins suggests that it has a much larger radius of convergence than conventional solvent

flattening and may thus become a generally useful scheme for structure refinement.

In the absence of a crystal structure of the LDL receptor complexed to apo-E, a

predicted structure of the receptor domain implicated in apolipoprotein binding has been

constructed. Chapter five describes a Monte Carlo dynamics procedure developed for the

simulation of protein folding and for predicting protein tertiary structure solely from

primary sequence information. Simulated annealing, using empirical potentials derived

from known protein structures to evaluate alternate conformations, has been applied to the

small disulfide-rich proteins crambin and BPTI (bovine pancreatic trypsin inhibitor) with a

4



fair degree of success. Chapter six describes the application of this algorithm to a

46-amino acid sequence derived from the LDL receptor. Deletion of this peptide

dramatically reduces apo-E binding to the receptor, suggesting that this domain may

directly mediate apolipoprotein binding (Russell, 1989). A series of computer experiments

using the folding algorithm have suggested a structure for the LDL receptor repeat that is

consistent with the limited experimental information obtained from the synthetic refolded

peptide. With the predicted structure of the receptor's binding domain and the crystal

structure of the receptor's ligand, one can start to model the interaction between the two

species and begin to understand the structural basis for high affinity binding.

In the second half of this thesis, chapters 7-9 describe the development of

computational and experimental methods for designing enzymes with altered substrate

specificity. Most enzymes are designed to efficiently utilize only a small number of

compounds as substrates for catalysis. A large body of recent experimental work has

demonstrated that enzyme substrate specificity can be altered dramatically by protein

engineering without destroying catalytic efficiency (reviewed by Wilson, 1991a). Much

effort has been spent on the development of methods that can predict the effects of site

directed mutagenesis on enzyme substrate specificity and thereby allow the rational design

of enzymes with desired altered properties. Pioneering work by Kollman, Warshel, and

others has shown that the effects of protein engineering can be accurately reproduced by the

computational technique of free energy perturbation (Bash, 1987; Warshel, 1988). While

quite impressive in terms of its accuracy, free energy perturbation is an extraordinarily

computer-intensive method and therefore does not lend itself well to enzyme design (given

that thousands of different mutant enzymes may need to be evaluated before one with the

desired activity is discovered). Very rapid computational alternatives to free energy

perturbation seem essential to solve the general problem of enzyme design.



For several reasons, the bacterial enzyme O-lytic protease serves as an ideal model

system for studying and engineering substrate specificity. Contacts between the substrate

and the enzyme in the binding pocket are mediated entirely by side chain atoms rather than

by main chain atoms. As a consequence, site-direct mutagenesis of the binding pocket

residues can be used to dramatically alter the enzyme-substrate interface. A large body of

data for the substrate binding preferences of several binding pocket mutants has been

gathered in the Agard laboratory (Bone, 1989). Kinetic constants for substrate catalysis

have been complemented by extensive structural characterization of the mutant-substrate

complexes. In particular, crystallographic studies of the binding of peptide boronic acids in

the protease active site provide some of the best available models of enzyme-substrate

transition state complexes (Bone, 1987). This data base of experimental observations

provides a rigorous test for any algorithm designed to predict the effects of mutagenesis on

substrate specificity.

Chapter seven describes the development, parameterization, and testing of a

computational method for enzyme design. Using a library of side chain rotamers to sample

conformation space and an empirical free energy force field that takes into account solvation

effects, the relative effect of a substrate binding pocket mutation on the catalytic transition

state binding energy can be rapidly and accurately estimated. The method yields a

surprisingly good agreement between calculated and experimentally-determined relative

binding energies for over forty different enzyme-substrate combinations. Using the

algorithm, an O-lytic protease mutant predicted to be highly active and highly specific for a

non-natural substrate has been designed. Experimental characterization of the mutant

supports the predictions and suggests that the algorithm may be a generally useful tool for

protein engineering.

As a complement to the computational method described above, chapter eight

describes the development of a genetic screen/selection for experimentally isolating



enzymes with dramatically altered substrate specificity. The screen is based on the concept

of pro-inducer conversion — by providing a cell culture with an inactive ‘pro-inducer' for a

reporter gene, individual cells that express an enzyme capable of converting the pro-inducer

to an active form can be detected. The dsdA operon (induced by D-serine) has been co

opted to generate a protease-specific screen. This approach is ideally suited for substrate

specificity studies since proteases are selected on the basis of their ability to cleave a well

defined substrate (a D-serine-containing hexapeptide) at a single site. The screen functions

well with liquid cultures and by optimizing experimental conditions, it should perform with

cells grown on solid media. By applying the screen to evaluate the results of combinatorial

mutagenesis, one may be able to isolate enzymes with specificity for substrates that are not

cleaved by any of the designed mutant proteases (e.g. identifying lysine-specific enzymes).

Using a combination of computer-based methods and genetic screening, it should be

possible to design and isolate highly specific enzymes for special purposes.

Chapter nine describes the application of the same computational method developed

for enzyme design to the problem of predicting side chain conformation in the course of

homology-modelling protein structure. Using a library of rotamers to represent the

conformations available to side chains, this problem is reduced to one of identifying the

correct rotamer at each position within the protein. To accomplish this, an algorithm has

been developed which evaluates all combinations of rotamers within local clusters of amino

acids, and adds the side chain combination with the lowest overall energy to the protein

backbone. Tests with several pairs of homologous proteins are encouraging, suggesting

that in a true modelling exercise, one should be able to predict the position of side chain

atoms to within 1.5 Å of their true positions.
Each chapter contains its own introduction, methods, results, and discussion

sections. Chapters two, five, and seven have been published or are in press (Wilson,



1989; Wilson, 1991b; Wilson, 1991c). Chapters three, four, and nine have been submitted

for publication.
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Chapter 1:

The biology of lipoproteins and apolipoprotein-E



Introduction

Lipids (including triglycerides, fatty acids, phospholipids, and cholesterol) serve

several important biochemical functions and are therefore exogenously required by most

types of cells. Because of their generally poor aqueous solubility, lipids must be

transported to tissues in the form of specialized particles called lipoproteins. All

lipoproteins share a common structure in which a core of non-polar lipids is covered by a

surface monolayer of phospholipids, embedded with lipoprotein-specific proteins

(apolipoproteins). Lipoproteins have been extensively studied in the last thirty years

because of their impact on the progression of atherosclerosis, the major cause of death in

the United States. This chapter summarizes basic lipoprotein biology with particular

emphasis on the role of apolipoprotein-E to their metabolism.

Lipoprotein classes
Lipoproteins are quite heterogeneous and are generally classified into five major

categories on the basis of particle density (chylomicrons, VLDL, IDL, LDL, and HDL).

Because of the radically different densities of lipid (d : 1.0) and protein (d = 1.3), particle

density is a sensitive function of the overall lipid : protein ratio. Whereas the size of the

protein component is relatively constant between lipoproteins, the volume of the lipid core

varies widely and thus determines the overall particle density. The density classification

accurately separates lipoproteins on the basis of their tissue of origin and by the types of

apolipoproteins that they contain on their surface. The key properties of the five major

classes are described below, tracing in order the flow of lipids through the body

(summarized in figure 1.1).

Chylomicrons, produced by the intestine from dietary fat, are the lowest density

lipoproteins (d−1,006) and have the largest lipid cores. The particles are very large
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(diameter > 1000 Å) and therefore scatter light, giving the blood a milky appearance
following a lipid-rich meal. Chylomicrons contain several different apolipoproteins,

including apo-B48, apo-AI, apo-AIV, apo-CI, apo-CII, apo-CIII, and apo-E. The

particles are broken down by lipoprotein lipase to yield chylomicron remnants, a class of

small lipoproteins which are efficiently cleared from the blood by the liver. In the process

of conversion to remnants, the phospholipid monolayer on the surface of chylomicrons is

sluffed off, yielding nascent phospholipid disks which are believed to serve as the

precursors for a fraction of high density lipoproteins (HDL) (Ruys, 1989). Apo-E may

mediate the clearance of remnants from the plasma by binding the LDL receptor-related

protein (LRP) on hepatocytes (Beisiegel, 1989). Triglycerides obtained from chylomicron

remnants, together with cholesterol and additional apolipoproteins, are repackaged by the

liver and secreted into the bloodstream in the form of VLDL (very low density

lipoproteins), the second lowest density class of particles.

Like chylomicrons, VLDL are characterized by a large triglyceride-rich core

(diameter-800 Å) and by a surface containing many different types of apolipoproteins.
Whereas chylomicrons contain apolipoprotein-B48, VLDL carry the alternatively-spliced

full length apolipoprotein-B100, which unlike its shorter derivative is capable of

recognizing the LDL receptor with high affinity. In addition to apo-B, VLDL carry = 20

molecules each of apo-E which direct their cellular uptake (the single molecule of apo-B

does not seem to be in an active receptor-binding conformation in VLDL (Knott, 1986)).

Apo-CII on the VLDL surface serves as an activating cofactor for lipoprotein lipase,

enhancing the release of fatty acids from the lipid core. VLDL catabolism results

transiently in the formation of VLDL remnants and intermediate density lipoproteins (IDL).

Approximately 50% of secreted VLDL are cleared from the plasma by the liver following

lipolysis. The remainder are processed more extensively, continuing to shrink in size,

losing their triglycerides and shedding their apolipoproteins. Several hours after secretion
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into the plasma, VLDL are fully converted into low density lipoproteins (LDL, 1.019 <d 3

1.063), the major cholesterol-carrying lipoprotein fraction in the blood.

The core of an LDL particle (=200 Á wide) is almost exclusively cholesterol and

cholesterol ester while its protein coat contains a single molecule of apo-B100. In contrast

to VLDL, LDL circulates in the bloodstream for several days. Most LDL is cleared from

the plasma by apo-B-mediated binding to the LDL receptor (conversion from VLDL to LDL

apparently induces a conformational change in apo-B which activates receptor binding).

Oxidized or in other ways modified LDL can also be recognized and internalized via the

macrophage scavenger receptor (Brown, 1983). Because this receptor is unregulated,

macrophages are able to overload themselves with cholesterol, ultimately resulting in their

morphogenesis into foam cells. Foam cells catalyze the maturation of atheromas into

atherosclerotic lesions, and the role of the scavenger receptor in the development of

atherosclerosis is thus being studied intensively (Kodama, 1990).

High density lipoproteins (HDL) are the densest, smallest lipoproteins (1.063 <d <

1.21, radius =70-100A). Most HDL are synthesized by hepatic cells although some
fraction is derived from extrahepatic cells and from degraded chylomicrons.

Apolipoprotein-AI forms =70% of the protein component of HDL and its major function

involves stabilization of the particle structure. While apo-E is only a minor component of

HDL, a large fraction (=50%) of circulating apo–E is associated with this class of

lipoprotein. The subclass of HDL which contains apo-E (HDL1) appears to be involved in

reverse cholesterol transport, a process whereby extrahepatic cells target their excess

cholesterol to the liver for excretion (reviewed by Mahley, 1984). Apo-E apparently

mediates the binding of HDL to the liver, perhaps via the LDL receptor-related protein. In

most animals, this pathway is probably the major mechanism for removing excess

cholesterol from tissues. In primates, however, this process is accomplished by the action

of cholesterol ester transport protein (CETP), which catalyzes the transformation:
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(HDL4CE) + (VLDL4TG) — (HDL4TG) + (VLDL4CE)

(CE: cholesterol ester, TG: triglyceride). As a result, cholesterol-laden HDL are able to

return their cholesterol to the LDL-receptor-regulated pool of lipoproteins. Interestingly,

the apo-E-mediated pathway for reverse cholesterol transport seems to be more efficient

and effective than the CETP-dependent pathway that normally operates in man. CETP

deficiency has been observed in a Japanese subpopulation; people lacking this protein show

elevated HDL (enriched for apo-E), decreased LDL, and very few cases of atherosclerosis

(Hoshino, 1989).

Apolipoprotein structure

Apo-E is one of a large family of evolutionarily-related apolipoproteins that also

includes apo-AI, apo-AII, apo-AIV, apo-CI, apo-CII, and apo-CIII (Luo, 1986). The

genes for these proteins are distributed in three clusters in the human genome: apo-AI, apo

CIII and apo-AIV are located on chromosome 11, apo-AII is on chromosome 1, while apo

CI, apo-CII, and apo-E are found on chromosome 19. On the basis of nucleotide

conservation, these genes are postulated to have arisen from a single precursor

apolipoprotein -600 million years ago, at approximately the same time that vertebrates

diverged from invertebrates (Luo, 1986). These proteins share a similiar intron-exon

structure, with the mature domains of most proteins consisting of one small N-terminal

exon and a larger C-terminal exon. All of the apolipoproteins in this family contain 22

amino acid-long internal sequence repeats. The number of repeats varies considerably

between the different proteins; while apo-CI contains only the amino-terminal half of one

repeat, apo-AIV contains 13 repeats. The degree of conservation between repeats within a

protein also differs significantly; the repeats in apo-AIV are virtually identical to one

another whereas those in apo-E are barely detectable. Since they were first observed, the
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apolipoprotein repeats have been predicted to form amphipathic helices (McLachlan, 1977).

Figure 1.2 shows the first repeat from apo-E projected onto a helical wheel. One face of

the helix is highly charged while the other contains only hydrophobic amino acids.

Circular dichroism has shown that most apolipoproteins do have a significant amount of

alpha-helical structure, supporting the amphipathic helix model for the repeats.

Most apolipoproteins are only sparingly soluble in aqueous solution and are found

tightly associated with lipoprotein particles in the plasma. As a consequence, structural

characterization of the apolipoproteins has been quite difficult. Apolipoprotein-E is

somewhat unique in that it exists in solution as a stable tetramer—this property has made

it a useful model system for structural studies. A series of biophysical experiments by

John Wetterau, Lon Aggerbeck, and others has established that apo-E is a two-domain

protein, with a large N-terminal domain and a smaller C-terminal domain separated by a

short, flexible linker (Wetterau, 1988; Aggerbeck, 1988). Proteolysis of apo-E by

thrombin releases 22-kDa and 10-kDa fragments corresponding to these two domains. The

N-terminal fragment, responsible for the LDL receptor-binding properties of apo-E,

behaves as a typical globular protein. Its free energy of stabilization as determined by

guanidinium denaturation is s10 Kcal/mole, a typical value for a protein of its size. This

domain is soluble to high concentrations (>10 mg/ml) and shows no tendency to

oligomerize or aggregate in solution. These properties contrast strongly with those of the

C-terminal fragment, which behaves much more like other apolipoproteins. This domain,

which is responsible for apo-E binding to lipoprotein particles, has low stability in the

absence of lipid, AGunfold = 4 Kcal/mole, and hydrodynamic studies suggest that it

spontaneously forms oligomers in solution and may thus responsible for the tetramerization

of the intact soluble form of apo-E.

The effect of lipid binding on apo-E structure has been examined by several

different methods. Crosslinking studies suggest that the apo-E tetramer dissociates upon
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lipoprotein binding, with the individual apo-E molecules floating freely on the particle

surface (Funahashi, 1989). Whereas the linker region connecting the two domains is

highly sensitive to proteases when apo-E is in solution, it becomes protease-resistant

(suggesting a change in conformation or accessibility) upon lipoprotein binding (L.P.

Aggerbeck, J. R. Wetterau, K.H. Weisgraber; personal communication). Circular

dichroism shows no significant change in total O-helical content upon apo-E binding to

dimyristoyl phosphatidylcholine, arguing against a major structural change within the stable

domains upon lipid binding (Aggerbeck, 1988). It remains possible, however, that a

rearrangement of the O-helices that preserves the total amount of O-helical structure (and is

therefore spectroscopically undetectable) does occur. Apolipophorin-III, an insect

apolipoprotein, has been hypothesized to unfold down its middle upon lipid binding,

thereby exposing hydrophobic amino acids in its core for interaction with the non-polar

lipid surface (Breiter, 1991). By engineering disulfides into the N-terminal domain of

apo-E (which would hinder such a conformational rearrangement), it should be possible to

test whether such gross structural changes are required for lipid binding.

Apolipoprotein receptors
Apo-E is one of the two apolipoproteins known to interact with the receptors

specifically involved in lipoprotein clearance from the blood stream. Apo-B, the other

receptor ligand and one of the largest human proteins sequenced to date (Mr = 513 kD), is

quite hydrophobic and has been impossible to isolate in a stable lipid-free form. In

contrast, apo-E is a fairly small protein (Mr = 34 kD) and is freely soluble in aqueous

solutions to high concentrations. It is a striking paradox how these two proteins are both

capable of binding the LDL receptor (also known as the apo-B,E receptor). While they

show no significant sequence homology to each other, a single peptide of mostly basic

amino acids is shared by both:
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Apo-B: 3359 Arg-Leu-Thr-Arg-Lys-Arg-Gly-Leu-Lys 3367
| || | || || |

Apo-E: 142 Arg - Lys - Leu - Arg - Lys - Arg - Leu-Leu - Arg 150

A series of experiments, including neutralizing antibody epitope mapping (Weisgraber,

1983), site directed mutagenesis (Lalazer, 1988), and binding studies with proteolytic

fragments (Innerarity, 1983), has shown that this region in apo-E is essential for LDL

receptor binding. An intriguing possibility is that while the overall structures of apo-B and

apo-E are fundamentally different, this conserved peptide may exist in a similar

conformation in both proteins and thereby mediate LDL receptor binding. Because of the

large size and insolubility of apo-B, it is unlikely that its structure will be determined

crystallographically in the near future. If receptor binding is due to a common structural

motif, the structure of apo-E (described in chapter two) may serve as a useful model for

understanding the binding properties of both ligands.

Apo-E is known to bind with high affinity to two different receptors, the LDL

receptor and the LDL receptor-related protein. The primary sequence of the LDL receptor

(839 amino acids) indicates several distinct domains made up by multiple internal sequence

repeats (Sudhof, 1985). At the N-terminus, seven copies of a =40-amino acid cysteine

rich motif are joined to form the apolipoprotein-binding domain. Three copies of an

epidermal growth factor precursor motif following these class ‘A’ cysteine-rich repeats

have been identified; their functional role remains unclear. Towards the C-terminus, a

glycosylated linker region joins the repeats to a transmembrane domain (presumed to be a

short O-helix), followed by a short cytoplasmic tail. The major function of the LDL

receptor is to bind apo-B on the surface of LDL, thereby directing the endocytosis of

particle. Once internalized, the lipoprotein particle is targetted for fusion with lyzosomes

which degrade it and release its lipid and cholesterol for utilization by the cell. The number

16



of LDL receptors on the cell surface is tightly regulated to preserve cholesterol

homeostasis. As cells become cholesterol-loaded, receptors are down regulated to decrease

the influx of exogenous cholesterol. Increasing receptor numbers can have a dramatic

effect on circulating cholesterol levels. Mevinolin, one of the most effective cholesterol

lowering drugs, acts by inhibiting the enzyme HMG-CoA reductase, directly leading to an

increase in LDL receptor levels (Alberts, 1980). Increased receptor expression results in

more efficient LDL clearance from the plasma, thereby lowering plasma cholesterol.

Genetic defects in the LDL receptor are responsible for the well-characterized disorder

familial hypercholesterolemia (FH) (Goldstein, 1989). Patients with this disease are unable

to express functional LDL receptors and therefore accumulate large amounts of LDL, DL,

and VLDL remnants. LDL cholesterol levels in homozygous FH patients are dramatically

higher than normal (700 mg/dl vs. 120 mg/dl), and as a result, patients almost always die

of premature atherosclerosis.

As implied by its name, the LDL receptor-related protein (LRP) is a close

homologue of the LDL receptor (Herz, 1988). This 600,000-kDa protein is synthesized

largely in the liver and the brain. It contains 31 copies of the class-A cysteine-rich repeats

and 22 copies of the EGF-precursor. Like the LDL receptor, LRP has high affinity for

calcium. Whereas the LDL receptor binds both apo-B and apo-E with approximately equal

affinity, LRP recognizes apo-E much more effectively than apo-B. It has been postulated

that LRP may be the chylomicron remnant receptor since uptake of these particles by the

liver is known to be apo-E-dependent. The true physiological role of this protein,

however, remains to be experimentally determined.
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Chapter 2:

The three-dimensional structure of the LDL receptor-binding
domain of human apolipoprotein E
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Abstract

Human apolipoprotein E, a blood plasma protein, mediates the transport and uptake

of cholesterol and lipid via its high affinity interaction with different cellular receptors,

including the low density lipoprotein (LDL) receptor. The three-dimensional structure of

the LDL receptor-binding domain of apo-E has been determined at 2.5 angstrom resolution

by x-ray crystallography. The protein forms an unusually elongated (65 Å) four-helix
bundle, with the helices apparently stabilized by a tightly packed hydrophobic core that

includes leucine zipper-type interactions and by numerous salt bridges on the mostly

charged surface. Basic amino acids important for LDL receptor-binding are clustered into a

surface patch on one long helix. This structure provides the basis for understanding the

behavior of naturally occurring mutants that can lead to atherosclerosis.
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Introduction

Lipids, including triglycerides, phospholipids, and cholesterol, are sparingly

soluble in aqueous solution and are thus transported through the body in the form of

lipoprotein particles. Apolipoproteins, the protein components of these particles, take part

in stabilizing lipoproteins and directing their metabolism. Two apolipoproteins,

apolipoprotein-E (apo-E) and apolipoprotein-B (apo-B), bind with high affinity to cell

surface receptors, including the low density lipoprotein (LDL) receptor, and thereby

mediate the cellular uptake of most lipoproteins, namely very low density lipoprotein

(VLDL), low density lipoprotein (LDL), and high density lipoprotein (HDL) (1). Because

plasma cholesterol concentrations and metabolism are unequivocally linked to the

development of atherosclerosis and risk of coronary artery disease, it is of fundamental

importance to characterize the interaction of apo-E and apo-B with the LDL receptor at the

molecular level. As a first step, we have pursued high resolution crystallographic studies

of apo-E.

Apo-E is a 299-residue protein (Mr = 34,200) that appears to be made up of two

independently folded domains (2). Digestion with thrombin produces a 22-kD fragment

(residues 1 to 191) corresponding to the NH2-terminal domain and a 10-kD fragment

(residues 216 to 299) corresponding to the COOH-terminal domain (Figure 2.1) (2).

Extensive characterization of apo-E has revealed that the structural domains also define its

functional domains. While the NH2-terminal region is responsible for the binding of apo-E

to the LDL receptor (3) and binds lipids only weakly (4,5), the COOH-terminal region

mediates the binding of apo-E to the surface of lipoproteins (4,5) but does not bind to the

LDL receptor (3).

Although the NH2-terminal domain is related to other members of the

apolipoprotein gene family (apo-AI, apo-AIV, apo-CI, apo-CII, apo-CIII), it is
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fundamentally different in some respects. All these proteins contain internal sequence

repeats predicted to form amphipathic alpha helices (6,7) and circular dichroism

spectroscopy has shown that they all have a high helical content (8). However, whereas

most apolipoproteins are only marginally stable and form aggregates in solution in the

absence of lipid, the NH2-terminal domain of apo-E exists as a monomer in solution at high

concentrations and its free energy of stabilization (AGunfold =10 kcal/mol) is typical of other

globular soluble proteins (2). By contrast, the COOH-terminal domain of apo-E exhibits

properties more typical of the other soluble apolipoproteins; it forms a tetramer in solution

and displays a relatively low free energy of stabilization (AGunfold =3 to 4 kcal/mol).

The properties of the NH2-terminal domain of apo-E made it an attractive candidate

for crystallographic analysis, and indeed it proved possible to grow high quality crystals

(9). In contrast, the lack of suitable crystals for any other vertebrate apolipoprotein has

made it impossible to perform high-resolution structural studies of these apolipoproteins.

We report here the atomic structure of the 22-kD N-terminal thrombolytic fragment of

human apo-E, based on the interpretation of a 2.5-A electron density map.

Structure determination

Possibly as a result of slight changes in the protein purification procedure we used,

we found it difficult to crystallize the NH2-terminal domain following our previously

reported procedure (9) and therefore searched for new crystallization conditions. Crystals

suitable for x-ray diffraction studies were obtained with the 22-kD-thrombolytic fragment

of human apo-E3 by the hanging drop method; we used 10 mg/ml protein, prepared as

described in (9) with the addition of an ion exchange high performance liquid

chromatography (HPLC) step, 15 percent PEG 400 (BDH), 20 mM sodium acetate-acetic

acid buffer, 0.2 percent B-n-octyl-glucopyranoside (Calbiochem), and 0.1 percent fl

25



mercaptoethanol (final concentrations). Crystallization was induced by raising the pH of

the crystallization reservoir from 4.5 to 5.3 (fully grown crystals were stable up to pH

7.2). The detergent fl-n-octylglucopyranoside was not required for crystal growth but was

helpful in reducing twinning. Using these conditions, we were able to routinely grow

small perfect prisms. Precession photography showed that although the morphology of

these crystals differed significantly from those reported (9), they belonged to the same

space group (P212121) and had approximately the same unit cell dimensions (a=41.3 Å,
b=54.5 Å, c=87.0 Å, o–B–Y-90°).

Data were collected with a RIGAKUAFC5R diffractometer equipped with a

graphite monochromator and a 600 mm detector arm. Early experiments indicated that the

crystals were extremely susceptible to radiation decay. Crystals were rapidly frozen in a

stream of boiling liquid nitrogen and data were collected at -160°C with an MSC low

temperature apparatus (College Station, TX). Freezing resulted in a slight shrinkage of the

unit cell (a-40.7 Å, b=54.0 Å, C=85.4 Å), as has been seen in most other low-temperature

protein crystallography experiments (10). Freezing reduced radiation decay, making it

possible to collect data for up to 2 weeks on a single crystal (Table 2.1).

A Patterson map was calculated from the native data to 4-A resolution. The map
contained a number of strong peaks (corresponding to overlapping interatomic vectors),

which suggested the presence of a four-helix bundle. Standard molecular replacement

techniques (11) with an idealized four-helix bundle as a search model indicated two

possible configurations. Although rigid body refinement of either a four-helix bundle or a

six-helix bundle (made up by two overlapping four-helix bundles) caused a reduction in the

overall R-factor (10 to 4 Å data) to 44 to 48 percent (12), we were unable to identify

portions of the molecule missing from the search model.
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We screened approximately 40 different ionic heavy-atom compounds by

diffractometry, none of which yielded a suitable isomorphous derivative. Although apo-E3

contains a single free cysteine (residue 112), none of the reactive mercurials tested were

successful. However, equilibrating crystals with dimethyl mercury (a small, nonreactive,

nonionic compound) did produce a useful derivative. Heavy atom refinement with the

TCTREF program (13) indicated two high occupancy sites. Two long helices were easily

identified in a map calculated with the heavy atom phases. Density modification (by

solvent flattening) was carried out using the programs of Wang (14) and, while noise in the

map was significantly reduced, the electron density remained too ambiguous to allow

modeling of the structure (Figure 2.2A). To improve the phase estimates, we collected

accurate anomalous data on the mercury derivative for those reflections predicted to have

the strongest anomalous scattering signal (Table 2.1). Combined phase estimates together

with density modification resulted in an easily interpretable map (Figure 2.2B).

A model containing residues 23 to 164 was constructed, and three cycles of

X-PLOR (15) refinement and manual rebuilding reduced the crystallographic R factor for

all data in the 8 to 2.5 Å range to 23.0 percent. The heavy atoms were found to occupy a
hydrophobic pocket on the surface formed by Trp-34 and three neighboring leucines. The

addition of 76 bound solvent molecules and residues 165-166 further reduced the R factor

to 17.7 percent. Individual isotropic B-factors were refined for all atoms in the model.

The electron density was calculated with phases based on the refined model and 2Fo-Fe

coefficients (Figure 2.2C). The rms deviation of bond lengths (0.017 Å) and bond angles

(3.2°) for the refined model are typical of well-determined protein structures. All backbone

dihedral angles (@-V pairs) fall within allowed regions of the Ramachandran map, except

for glycines at 127 and 165. Ninety-two percent of all side chains can be classified as

rotamers in the Ponder and Richards library (16). Most of the non-rotamer side chains are
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glutamate and methionine residues, which are poorly sampled in the Ponder and Richards

data set.

Our final model lacks residues 1 to 22 and 167 to 191. At both ends of the modeled

region, density is well determined but quickly disappears outside the model.

Electrophoresis of the crystallized protein demonstrated that the complete 22-kD fragment

was present, i.e. that the missing regions were not absent as a result of proteolysis. We

believe residues 1 to 22 and 167 to 191 are disordered in the crystal and are not missing

because of systematic phasing errors: (i) Digestion of apo-E with a battery of proteases

shows that amino acids 1 to 20 and 165 to 191 are susceptible to proteolysis and thus likely

to be unstructured (Figure 2.1) (2). (ii) The original SIR-SAS map, which is unbiased by

the model, shows that there is no significant density remaining outside the modeled region.

(iii) A difference map calculated between the bacterially expressed human protein and the

native plasma-derived human protein fails to show a peak corresponding to the additional

N-terminal methionine present in the bacterial protein, even at low resolution. (iv) The R

factor is unlikely to drop to <18 percent with excellent stereochemistry if the missing

residues contribute significantly to the scattering.

Apo-E: an unusually elongated four helix bundle

The NH2-terminal domain of apo-E contains five helices making up >80 percent of

the modeled residues (Figure 2.3). Four of the helices, containing 19, 28, 36, and 35

amino acids each, are arranged to form a 2 by 2 bundle. Four-helix bundles are the most

common tertiary fold in O-helical proteins and are found in at least 18 other protein crystal

structures (17). The average length for bundle helices in these structures is 18 residues,

roughly half the helix length found for apo-E. Comparison to the core of myohemerythrin
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(18), a typical four-helix bundle, indicates that the spacing between helices and the inter

helical angles are similar for the two proteins.

Each helix in the apo-E bundle lies antiparallel to the helices adjacent to it (this up

down topology is found in all other bundles except cytochrome P-450cam (17)). The

connection between the first two helices of the bundle (residues 24 to 42 and 54 to 81) is a

short helix (residues 44 to 53). The turn between helix 2 and 3 of the bundle (residues 82

to 86) is poorly defined in the electron density map and in the refined model. The average

crystallographic B factor for atoms in this loop is >60A2, completely omitting them causes
an insignificant increase in the overall R factor. These residues have been included in the

final model for completeness but may contain errors. Helix 3 (residues 87 to 122) is

kinked at Gly 105 but maintains main chain hydrogen bonding through this region. Helix

4 (residues 130 to 164), containing residues known to be important in LDL receptor

binding, is well ordered throughout.

Internal sequence repeats and apolipoprotein evolution
Apo-E shares a gene structure common to most other apolipoproteins (apo-AI,

apo-AIV, apo-CI, apo-CII, and apo-CIII) (6,7,19). In all of these proteins, the coding

region of the mature peptide is split between exons three and four. Exon 3 includes three

consecutive 11-amino acid repeats while exon 4 contains 1 to 12 copies of a 22-amino acid

repeat (6,7). The protein sequence identity between the apo-E repeats is relatively low

compared with that in other apolipoproteins and is barely detectable in the nucleotide coding

sequence. Figure 2.3 shows a clear structural role for these repeats as the basis for the

long helices in the bundle. Helix 1 and the connecting helix are defined by the first two 11

aa repeats of exon 3. Helix 2 contains the third 11-aa repeat and one 22-aa repeat, while

helices 3 and 4 are each made up of two 22-aa repeats. The apparently disordered COOH

terminal residues (167 to 191) correspond to parts of the fifth and sixth 22-aa repeats.
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Multiple copies of short internal repeats have been detected in several different protein

sequences (for example, the insect protein apolipophorin-III (20), the leucine-rich O2

glycoprotein protein of human serum (21), and the Tau and MAP2 microtubule-binding

proteins (22, 23)). The crystal structure of apo-E provides clear evidence that repeats such

as these can function as structural building blocks within a single domain.

The boundaries between internal repeats appear to have two alternative functions in

the folded structure. At residues 40, 51, 84, and 128, the junctions form turns, placing

neighboring repeats into separate helices. At residues 62, 106, and 150, the junctions

adopt a helical conformation and maintain the two adjacent repeats in a single helix. The

helix built up by the third and fourth 22-amino acid repeats (helix 3) is strongly kinked at

the repeat junction (residues 105 to 106). None of the turns in the structure correspond to

the middle of a repeat. This suggests that, while the ends of the repeats are not limited to a

unique conformation, the cores of the repeats are inherently helical. In a simple model for

the structure and evolution of apolipoproteins, the internal repeats correspond to stable

helices that can pack well with their helical axes antiparallel to one another. Whether

adjacent sequence repeats exist in the same or in separate helices is likely to be determined

by the intervening junction sequences. An understanding of the sequence-dependence of

stability is needed to predict the topology of other apolipoproteins.

As predicted from analysis of apolipoprotein sequences (24), the helices of apo-E

are strongly amphipathic. The four long helices of the bundle are arranged such that their

hydrophobic residues are completely sequestered inside the protein while their hydrophilic

faces are solvent exposed (Figure 2.4). Leucine side chains occurring about every seven

residues appear to stabilize the interfaces between helix 1 and helix 4 and between helix 2

and helix 3 (Figure 2.5). The organization of leucine interactions on adjacent antiparallel

helices is very similar to the leucine-zipper model of Landschulz et al. (25), predicted for
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the dimerization domain of C/EBP-type transcription factors. Although subsequent

experimental work has shown that the Landschulz model is probably not correct for the

transcription factors (26), the crystal structure of apo-E indicates that the original leucine

zipper model is an energetically feasible way of stabilizing pairs of helices.

More than a third of the NH2-terminal domain residues are charged. The crystal

structure includes atomic coordinates for 24 acidic and 24 basic residues. These amino

acids almost completely cover the surface of the bundle (Figure 2.4), and most participate

in either intramolecular or intermolecular salt bridges in the crystal structure. Of the

intramolecular salt bridges, eleven are formed by pairs of amino acids lying in the same

helix. Surprisingly, more than half of these salt bridges are oriented to interact unfavorably

with the macrodipole of the helix to which they belong. Seven salt bridges are formed

between pairs of helices in the bundle. These strong electrostatic interactions may help to

bind the helices together and further stabilize the folded structure. The combination of tight

hydrophobic packing and numerous electrostatic interactions would seem to account for the

high free energy of stabilization for this domain, setting it apart from most other

apolipoproteins.

An electrostatic potential map was calculated for the 22-kD fragment with the

DELPHI program (Figure 2.6) (27). The DELPHI algorithm solves the Poisson

Boltzmann equation with the use of the formal charge distribution indicated by the crystal

structure. Because most charged residues are paired to form salt bridges, the net

electrostatic potential is close to zero for most of the region surrounding the protein. The

only significant feature of this map is a large region of positive potential encompassing the

NH2-terminal half of helix four (residues 136 to 150). The possible role of this

electrostatic feature in LDL receptor binding is discussed below.
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Basis for LDL receptor binding and lipid binding

One of apo-E's major functions is in mediating the cellular uptake of lipoprotein

particles (for review, see ref. 1). Lipoprotein-associated apo-E binds with high affinity to

LDL receptors on the surface of target cells. Upon apolipoprotein binding, these receptors

cluster in clathrin-coated membrane pits, which subsequently pinch off to internalize the

lipoprotein particle. This process eventually results in the degradation of the lipoprotein

particle and the release of its lipids for cellular use. Apo-E also functions in the uptake of

chylomicron remnants by liver cells via an apo-E-specific receptor - possibly LRP, the

LDL-receptor related protein (28).

Low density lipoprotein receptor-binding is localized in the NH2-terminal domain

of apo-E (3). Genetic analysis of point mutations in apo-E, in combination with site

directed mutagenesis and antibody competition studies, have shown that residues 136 to

150 are necessary for this function (3,29). Electron density for all of these residues, found

to lie on helix 4 of the bundle, is well determined. The NH2-terminal portion of helix 4 is

unusually rich in basic residues, including Arg 134, Arg 136, His 140, Arg 142, Lys 143,

Arg 145, Lys 146, Arg 147, and Arg 150. Because most of these amino acids are solvent

exposed and not involved in intramolecular salt bridges, their excess positive charge

combines to produce a large region of positive electrostatic potential extending 15 Å out of

the protein (Figure 2.6). Naturally occurring variants are known for positions 136, 142,

145, and 146 in which the basic amino acid is substituted by a neutral (3,25) or in one case

by an acidic amino acid (30). All of these variants display defective binding to the LDL

receptor (20 to 40 percent of normal binding). Site-directed mutagenesis of other basic

residues in the helix 4 cluster, Lys 143 or Arg 150, also reduces receptor binding to 10 to

50 percent of normal levels (31). The fact that no single substitution results in complete

abolition of binding activity suggests that there are multiple interactions between apo-E and
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the receptor and that the basic residues may cooperate in the binding function. That these

basic residues are not involved in salt bridges within the structure supports the hypothesis

that they are free to interact with the receptor.

The LDL receptor recognizes both apo-E and apo-B, with comparable affinity (32).

While there is essentially no sequence similarity between these two ligands, apo-B contains

a region rich in basic residues that has a similar pattern of charged and neutral amino acids

as that in the receptor-binding helix of apo-E. Several studies have indicated that this

region may play a role in receptor binding (33). It is possible that a positively charged

helix is used by both proteins to specify LDL receptor binding. Because of apo-B's

insolubility and large size (>500-kD), it is unlikely that the structure of this medically

relevant protein will be determined crystallographically in the near future. As such, the

structure of apo-E's receptor-binding helix may provide a useful starting point for

modelling the interaction of this other important ligand with the LDL receptor.

Although the binding of apo-E to lipoprotein particles appears to be mediated by the

C-terminal domain (residues 216 to 299) (4,5), the NH2-terminal domain does associate in

vitro with phospholipid to form discoidal particles (3). In the lipid-bound form apo-E is

able to bind with very high affinity to the LDL receptor (Kd = 1.2 x 10-10M) (34) (recent

work suggests that the lipid-free protein binds with =500-fold lower affinity than the lipid

complexed protein (35)). Several studies had suggested that helices in the N-terminal

domain (especially helix 4) may insert into phospholipid membranes. In support of this,

short synthetic peptides corresponding to helix 4 have been shown to have lipid binding

activity (36). By contrast, the crystal structure does not indicate a special lipid binding role

for helix 4 or any of the other helices. Hydrophobic amino acids in the 136 to 150 region

are all buried and well packed, interacting with the hydrophobic residues of helices 1 and 3.

In addition, the o-helical hydrophobic moments for all of the core helices fall in the same
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range as those for the helices in other four helix bundle proteins, none of which have

significant lipid binding activity.

The lack of hydrophobic patches on the protein surface and the stability of the

globular structure suggest several other possible explanations for lipid binding. For

example, lipid binding might involve a significant conformational change in which the

hydrophobic face of one or more helices become accessible for interaction with non-polar

phospholipid tails. Alternatively, lipid binding could result from the interaction of charged

surface amino acids and phospholipid head groups. Finally, it is possible that the missing

disordered residues (1 to 22, 167 to 191) become structured in the presence of lipid and

mediate lipid binding. Previous biophysical studies have indicated that the 22-kD fragment

of apo-E does not undergo a detectable conformational change on lipid binding (2); a result

that does not support the first hypothesis. Furthermore, we have found that the linker

between the NH2- and COOH-terminal domains becomes less protease-sensitive upon lipid

binding (37). Although these data support a model in which lipids interact with the COOH

terminal region of the 22-kD domain and orders it, further crystallographic and

spectroscopic studies are required to elucidate the mechanism of lipid binding and its role in

activating the binding of apo-E to the LDL receptor.

Genetic variability in apo-E
Three major isoforms of apo-E have been characterized; these are apo-E2, E3, and

E4. Functional differences between these proteins appear to lead to quantitative changes in

both plasma cholesterol and in the likelihood of coronary heart disease (reviewed by

Davignon et al., ref. 38). Apolipoprotein-E3, the protein used for our study, is the most

common isoform. The replacement of arginine by cysteine at position 158 (corresponding

to the most common apo-E2 isoform) results in defective LDL receptor binding (39) and is

strongly linked to type III hyperlipoproteinemia, a genetic disorder associated with
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premature atherosclerosis. The mutation of Cys 112 to Arg (apo-E4) is associated with

increased plasma and LDL cholesterol levels, despite normal LDL receptor binding (39).

In the absence of refined structures for these mutant proteins, we can speculate on the

structural basis for their functional defects.

Arginine 158, site of the E2 mutation, is located near the COOH-terminal end of

helix 4, well removed (>15 Å) from the other residues implicated in LDL receptor binding.

The guanidinium group of Arg 158 does not contribute directly to the large positive

electrostatic potential surrounding the receptor-binding helix. Instead, it forms salt bridges

with the acidic side chains of Glu 96 and Asp 154, and as such may help to stabilize the

pairing of helices 3 and 4. Previous experiments have suggested that the E2 mutation may

induce a significant conformational change that reduces receptor binding (40). The finding

that residue 158 lies far from the basic region of residues 136-150 yet has a dramatic effect

on receptor binding is consistent with this hypothesis.

The Cys 112 to Arg mutant (the apo-E4 isoform) has full LDL receptor binding

(39) but altered lipoprotein binding (strongly favoring VLDL over HDL) (41). This effect

is surprising since the mutation occurs in the NH2-terminal domain, yet lipoprotein binding

is largely mediated by the C-terminal domain. Cys 112 is partially buried between helices 2

and 3, well isolated from the receptor-binding helix (Figure 2.2C). Model building based

on the apo-E3 structure suggests that an arginine at this position could be easily

accommodated by filling the solvent region surrounding the helix pair. In doing so, the

arginine side chain may disrupt a specific interaction between the NH2-terminal domain and

the COOH-terminal domain, altering the structure or accessibility of the lipid binding

determinants directly. Further crystallographic studies of the E2 and E4 isoforms can test

these hypotheses.
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NOTE ADDED IN PROOF. Crystallographic studies of the Locust migratoria protein

apolipophorin III have been reported since the submission of our manuscript (42). The

structure of this protein is similar to that for apo-E, suggesting that the elongated helical

bundle may be a common structural motif for apolipoproteins. We have recently extended

the resolution of the apo-E data to 2.25 Å; coordinates for the newly refined structure will
be deposited with the Protein Data Bank (Brookhaven), code 1LPE.
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TABLE 2.1 Statistics for crystallographic data and refinement. Data were collected at
liquid nitrogen temperatures with a Rigaku AFC5R diffractometer (using a rotating anode
generator operated at 180 mA, 50 kV). The native crystals belong to space group P212121
and had unit cell dimensions a-40.65 Å, b=53.96 Å, c=85.43 Å. Native data represent the
merged observations from three crystals. The isomorphous derivative data was obtained
by diffusing dimethyl mercury into fully grown crystals for 2 weeks. Isomorphous data
were collected from two crystals and anomalous data were collected from a single crystal
(statistics for anomalous data are shown in parentheses).

Native

Resolution (Å) 2.5

Diffraction data
No. of observations 17129
No. of unique reflections 6899
Completeness (percent) 100
<I>/<op- 43.48
Rmerge sk 0.054

Phasing statistics
Heavy atom sites
Isomorphous differences
Anomolous differences
r.m.s. FH/residual f
RCullis #

r.m.S. Ranom *
<figure of merit
<figure of merit following solvent flattening

X-PLOR refinement statistics
Number of protein atoms (non-hydrogens) 1172
Number of water molecules 76

st (overall) 0.177* 'º ass A 0.149
3.85 Å - 3.12 Å 0.171
3.12 Å - 2.74 Å 0.204
2.74 Å - 2.50 Å 0.223

r.m.s. deviations from ideality
bond lengths (Å) 0.017
bond angles (°) 3.2

(CH3)2Hg Derivative

2.5

9957
6880
100

30.42

6474

1.55
0.55

0.41
0.56

(2.8)

(3317)
(1499)
(31)
(51.58)

(1244)
(1.57)
(0.50)
(0.48)
(0.53)
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X | I;(h) - «I(h)- |
*Rmerge 22 Ii(h) - “I(h)- 1 (summations done over all reflections in all crystals).

XX. Ij(h)

f r.m.s. FH/residual = phasing power where FH = r.m.s. heavy atom structure factor

amplitude (calculated) and residual = r.m.s. lack of closure error.

X | FPHcalc
-

FPHobs |
(for centric reflections only, FPH and FP are

X I FPHobs - FP I
* RCullis =

structure factors for the derivative and native protein respectively).

* r.m.s. Ranom = r.m.s. phase-averaged anomalous residual divided by the r.m.S.
-

2 I Fahs - Fraic
observed anomalous difference. Reys■ -tº-tºº".

X | Fobs |
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FIGURE 21. Domain structure of apo-E. Residues 1-191 define the N-terminal domain of

apo-E, known to be important for LDL receptor binding. Solid circles indicate

proteolytically sensitive residues (as determined by digestion with thrombin, elastase,

trypsin, chymotrypsin, S. aureus V8, and subtilisin (2)). The solid bar indicates the region

that is included in the refined crystal structure of the 22-kDa fragment (residues 24–166).

The helices (shaded areas) making up the four-helix bundle are numbered as follows: H1,

residues 24-42; H2, 54-81; H3, 87-122; and H4, 130-164. A connecting helix (He,

residues 44–53) joins helices 1 and 2. Secondary structure assignments were made using

the method of Kundrot and Richards (35). The complete apo-E sequence includes three

very weakly conserved 11-mers (29-39,40-50,51-61) and eight 22-mers (62-83,84

105,106-127,128-149,150-171,172-193,194-215,216-237) (19).
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FIGURE 22. Electron density calculated at various stages of phase refinement. All pictures

show the region surrounding residue Cys 112, site of the mutation in the apo-E4 isoform.

a) Electron density map calculated using SIR phases from the dimethyl mercury derivative,

following extensive solvent flattening. b) Map calculated using SIR + anomalous phases,

also following solvent flattening, c) 2Fo-Fc map calculated using the final Oc phases.
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FIGURE 2,3. Ribbon diagram of the N-terminal domain based on the crystal structure.

Internal sequence repeats are used to color code the O-helices. The three 11-residue repeats

are colored blue and cyan, while the five 22-residue repeats are colored red and yellow.
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FIGURE 24. Stereo view of the refined atomic model of the LDL receptor-binding domain.

Hydrophobic residues (green) line the buried faces of the bundle helices and form a well

packed core. Charged amino acids (red) cover most of the surface.
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FIGURE 2,5. Cross-section through a space-filling representation of the N-terminal domain.

Leucines on helix 1 (30,37,43; yellow) and helix 4 (133,141,148,155; red) are arranged to

form a “zipper” in a manner similar to that predicted by Landschulz et al. (21) for the

C/EBP-type transcription factors.
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FIGURE 26. Electrostatic potential map of apo-E. The DELPHI program (Biosym, San

Diego, CA) was used to calculate an approximate solution to the linearized Poisson

Boltzmann equation. The dielectric of the protein region was set to 2, while the solvent

dielectric was set to 80. An ionic strength of 150 mM was assumed and only formal

protein charges were included in the calculation. Positive (yellow) and negative (red)

contours in the potential are evaluated at +2 and -2 kT/e respectively and are shown

together with a space-filling model of the entire N-terminal domain (blue). Residues in the

receptor-binding region (136-150) are colored cyan.
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Chapter 3:

Structural basis for defective function in common mutants of
human apolipoprotein-E
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Apolipoprotein-E (apo-E), a 34-kDa blood plasma protein, plays a key role in

directing cholesterol and lipid transport through the body. The apo-E gene is polymorphic,

and two common mutant alleles (82 and 84), corresponding to single-site substitutions in

the LDL receptor-binding domain, are associated with significant changes in plasma

cholesterol levels and in the risk for coronary heart diseasel. We have recently determined

the three-dimensional structure of the apo-E receptor-binding domain via x-ray

crystallography”. By directly examining the structural changes that occur for each of these

two common mutants, we hoped to understand the basis for altered apo-E function. We

now report the refined crystal structures of the N-terminal domain of apo-E2 and apo-E4,

determined to 3.0 Å and 2.5 Å resolution respectively. The apo-E2 structure reveals

significant conformational rearrangements that can account for reduced LDL-receptor

binding. No major changes are observed in the apo-E4 structure, suggesting that this

mutation may alter lipoprotein binding by indirect means (for example, by modifying the

interaction between the amino- and carboxy-terminal domains of apo-E).

The high affinity binding of apo-E by cell-surface receptors, including the low

density lipoprotein (LDL) receptor, allows lipoproteins associated with apo-E to be targeted

for endocytosis and intracellular degradation”. Interference with such receptor-mediated

processing can cause lipoproteins to accumulate in the plasma and can ultimately lead to the

formation of atherosclerotic plaques!. The two common point mutants of apo-E were

initially identified by their altered electrophoretic mobility and are termed apo-E2 and

apo-E44. Relative to apo-E3 (the wild-type protein), the most common apo-E2 isoform is

characterized by the substitution Arg-158—Cys”. This mutation (allelic frequency =0.08)

lowers LDL receptor binding to <2% of normal levels, although the protein appears to bind

to lipoproteins with the same affinity and specificity as the wild-type protein". In contrast,

the apo-E4 isoform (allelic frequency =0.15), corresponding to substitution Cys-112-)
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Arg, has normal LDL receptor-binding but markedly altered lipoprotein binding

properties’. While plasma cholesterol and LDL concentrations are lowered in people

expressing the apo-E2 protein, levels are raised in apo-E4 individualsº. Epidemiological

studies suggest that apo-E2 has a protective function against coronary heart disease (CHD),

although a small fraction of apo-E2 homozygotes are predisposed to type III

hyperlipidemia, a form of atherosclerosis?. Ethnic groups enriched for the 84 allele (e.g.

Finns) are also at high risk for CHD, suggesting that the LDL-raising properties of this

mutant may be significant in terms of altering the risk for atherosclerosis!9.

Apo-E appears to be organized as a 22-kDa N-terminal LDL receptor-binding

domain and a 10-kDa C-terminal lipoprotein-binding domain, separated by a short 2-kDa

linker!'. We have previously shown that the LDL receptor-binding domain is an unusually

elongated four-helix bundle”. Figure 3.1 shows a ribbon diagram of this domain and

indicates the sites of the E2 and E4 mutations. Surprisingly, both substitutions are

physically well removed from the cluster of basic residues known to be important for LDL

receptor binding (136-150). The 22-kDa thrombolytic fragment of the apo-E mutants was

isolated as described previously using blood plasma from human donors”. Details for the

crystallization, data collection, and structure refinement for both mutants are summarized in

Table 3.1.

The apo-E2 mutation (Arg-158—Cys) results in significant structural

rearrangements in a large zone around the substituted residue. The rms deviation between

equivalent atoms in the wild-type and mutant structures within 10 Å of the mutation site is
1.6 Å, significantly higher than that for all atoms (<1.0 Å). In the wild-type protein, the
side chain carboxylates of Glu-96 and Asp-154 are paired with the oppositely-charged

guanidinium group of Arg-158. These salt bridges form part of an extended network of

charge interactions that link together helix 3 (87-123) and helix 4 (130-164) of the bundle

(Figure 3.2a). When the positively-charged Arg-158 is substituted by a neutral cysteine,
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this pattern of native salt bridges is completely disrupted. Glu-96 and Asp-154 move away

from their initial positions and pair with a new set of positively-charged residues. To

accommodate this rearrangement, other salt bridges are broken and additional pairs form

(Figure 3.2c). The original set of seven salt bridges is replaced by only two new salt

bridges.

Significant distortions in the peptide backbone of the apo-E2 protein arise as a

result of the mutation. The N-terminal half of helix 3 (residues 87-104) is displaced away

from the remainder of the bundle (Figure 3.2e), and a slight kink in the helix at Gly-105

becomes exaggerated in the mutant protein. This displacement of the helix is accompanied

by a significant disruption of the O-helical geometry of the protein backbone. While the

same pattern of hydrogen-bonding is maintained, several hydrogen-bonds are stretched and

the (p,\■ ) angles of these residues no longer lie in the low-energy region of the

Ramachandran map.

While lacking a structure of the protein complexed to the LDL receptor, we can

speculate on the mechanisms by which receptor binding is disrupted for the E2 mutant.

Site-directed mutagenesis has shown that a number of basic residues in the region 136-150

are required for full receptor binding. Replacement of one of these key residues, Arg-150,

by alanine reduces LDL-receptor binding to one-quarter of normal values. In the apo-E3

structure, Arg-150 is solvent-exposed, presumably accessible for interaction with

complementary acidic residues on the LDL receptor. In the E2 structure, however, this

residue has swung out of the highly-positive region of helix 4 and is paired with Asp-154

(Arg-150 thus serves as an alternate for the replaced Arg-158). This rearrangement
significantly alters the electrostatic potential surrounding the receptor-binding helix (Figure

3.2b,d). The combination of significant electrostatic and steric changes in the receptor

binding region would seem sufficient to fully account for the reduced binding of this

mutant.
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In marked contrast to the apo-E2 mutation, the apo-E4 mutation (Cys-112—Arg)

causes very slight structural changes which are well localized to the site of the substitution

(Figure 3.3). The r.m.s. deviation of backbone atoms between the E3 and E4 structures

(excluding the poorly-defined loop at residues 82-86) is only 0.25 Å, approximately equal
to the expected error calculated by Luzzati analysis of the zonal R-factor!3. Only two

sidechains appear to change conformation as a result of the mutation. Glu-109 swings

down to interact with the positively-charged Arg-112 side chain while Arg-61, normally

partially filling the space above Cys-112, moves out of the way to accommodate the new

arginine side chain.

While wild-type apo-E favors binding to HDL over VLDL, the E4 mutation

reverses this preference. This study of the N-terminal domain of apo-E4 does not indicate

any significant structural changes that could account for altered lipoprotein binding,

suggesting an indirect mechanism for this mutant’s dysfunction. Studies with thrombolytic

fragments of apo-E have shown that lipoprotein binding is mediated by the C-terminal

domain!” (despite the fact that the N-terminal domain is able to bind to artificial

phospholipid disks!?). One possibility is that the E4 mutation changes the interaction

between the two domains, thereby altering the structure or accessibility of the C-terminal

domain. Consistent with this interpretation, the lipid-binding properties of the 22-kDa

fragment isolated from the E4 protein are indistinguishable from those of the wild-type

fragment (unpublished observations). Several other studies have suggested communication

between the two domains of apo-E, effectively linking the lipoprotein-binding and the

receptor-binding functions!6. The apo-E4 structure indicates that interdomain

communication might be mediated in the absence of significant structural changes as have

been observed for allosteric proteins.
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TABLE 3.1. Statistics for data collection and structure refinement. Crystals of the E2 and

E4 mutants were obtained via vapor diffusion by the hanging drop method. Conditions

developed for the native apo-E3 protein? [15% PEG 400 (BDH), 20 mM sodium acetate,

pH 5.3, 0.2% fl-n-octylglucopyranoside (Calbiochem), and 0.1% B-mercaptoethanol]

yielded suitable crystals for the E2 and E4 variants. All proteins crystallized in the

P212121 space group with approximately the same unit cell dimensions, a-40.7 Å, b=54.0
Å, c=85.4 Å. The c-dimension of the E2 mutant (83.91 Å) and the b-dimension of the E4
mutant (53.30 Å) are somewhat smaller than those of the wild-type protein. Data were
collected using a RIGAKU automated four circle diffractometer (AFC5R), equipped with

an MSC cryo-cooling device. A 2.5 Å refined structure of the wild type 22-kDa fragment

provided starting phases for the refinement of both mutants. The structures were refined

using X-PLOR, version 2.0 (employing a combination of simulated annealing molecular

dynamics, B-factor and positional refinement, and manual rebuilding of the structure).

Native

Resolution (Å) 2.5

Diffraction data
Number of unique reflections 6899
<I>/<op- 43.5

X-PLOR refinement statistics
Number of protein atoms (non-hydrogens) 1172
Number of water molecules 76
Rcryst (overall) 0.172
r.m.s. deviations from ideality

bond lengths (Å) 0.017
bond angles (°) 3.2

E2

3.0

2750
32.1

1167

0.195

E4

2.5

6535
26.3

1154
101
0.175

0.016
3.7

0.015
3.1
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Figure 3.1. Ribbon diagram of the LDL receptor binding domain of apo-E. Residues 1-22

and 165-191 appear to be disordered and have not been modelled. Sites of the E4

(Cys-112) and E2 (Arg-158) mutations are indicated. Basic amino acids in the region 136

150 (shaded) are known to be important for LDL receptor binding.
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Figure 3.2. Structure of the apo-E2 mutant. The zone surrounding residue 158 is shown
for the wild-type protein (a) and for the E2 mutant (Arg-158—Cys) (c), Salt bridges
(defined as pairs of oppositely charged atoms separated by less than 5 Å) are indicated as
stippled lines. Electrostatic potential map calculated for the wild-type (b) and apo-E2
mutant (d) proteins. The DELPHI program (Biosym, San Diego, CA) was used to
calculate an approximate solution to the linearized Poisson-Boltzmann equation. The
protein and solvent dielectrics were set to 2 and 80 respectively. The ionic strength was set
to 150 mM (mimicking blood plasma). Only formal protein charges were included in the
calculation. Positive (cyan) and negative (red) contours in the potential are evaluated at +2
and -2 kT per electron respectively. e) Superposition of mainchain atoms for the wild-type
(blue) and apo-E2 (yellow) mutant proteins.

55



Z (112 AFG)

Figure 3.3. Structure of the apo-E4 mutant. Residues surrounding amino acid 112 are

shown for the wild-type (magenta) and apo-E4 mutant proteins (green). Arg-112 in the E4

structure (white) forms a salt bridge with Glu-109, while Arg-61 (covering Cys-112 in the

wild-type protein) swings out to accommodate the larger mutant side chain.
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Chapter 4:

Automated crystallographic phase refinement by iterative
skeletonization
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Abstract

A phase refinement procedure based on iterative skeletonization of electron density

maps is presented. As with traditional solvent flattening methods, refinement alternates

between real space and reciprocal space representations of the scattering density. A

pseudo-atom list derived from the modified skeleton of an initial electron density map

provides calculated structure factor amplitudes and phases. Recombination with the

observed | Fl’s yields a new map which can serve as the starting point for another round of

skeletonization. Tests using partial structures to provide starting crystallographic phases

has shown that this refinement procedure has a significantly larger radius of convergence

than solvent flattening.
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Introduction

Finding a solution to the crystallographic phase problem is generally the rate

limiting step in macromolecular structure determination by x-ray diffraction (Blundell,

1976). All protein structures that have been solved crystallographically have relied upon a

limited number of experimental or computational methods to obtain phase estimates prior to

the building of a complete atomic model. These techniques, including isomorphous

replacement, anomalous scattering, and molecular replacement, often yield poor initial

estimates of the phases, resulting in electron density maps that are difficult to interpret. The

development of techniques capable of improving phases in the absence of a complete

atomic model should dramatically increase the rate of structure determination by x-ray

crystallography and minimize problems such as incorrect chain-tracing that have plagued

several recent structures (Branden, 1990).

The method of density modification (also known as solvent flattening) has been

used in a number of cases to maximize the information available from a single derivative or

from anomalous scattering data (examples include Fury, 1987; Tulinsky, 1988;

Messerschmidt, 1989). Density modification is an iterative procedure consisting of two

distinct steps (Wang, 1985). Initially, an electron density map (calculated using the current

phase estimates) is filtered such that the density of all regions lying outside a molecular

boundary is set to some mean value. Subsequent transformation of the filtered map yields

a new set of crystallographic phases which can be recombined with the initial phases to

produce an electron density map for the next cycle of refinement. While often successful,

density modification has a limited radius of convergence, especially when the solvent

content of a crystal is low (Zhang, 1990)”. In addition, since the procedure always

converges to some solution, it is sometimes impossible to tell whether solvent flattening

has improved the phases or not.
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We have sought to develop new methods for phase refinement that can tolerate

significantly larger errors in the starting phases. Our strategy has been to use the same

cycle of real space—reciprocal space refinement, but to apply considerably stronger

constraints on the real space representation of the scattering. These constraints have been

applied by first skeletonizing the electron density map and then forcing this skeleton to

adopt “protein-like' characteristics. To evaluate our method, we have developed a number

of test cases in which starting phases are derived from a partial atomic model. In the

examples we have considered, our refinement procedure is able to converge to the correct

phase solution, allowing the complete model to be built into the electron density map. In

the same tests, solvent flattening produces a marginal improvement in the phases but leaves

significant biases and errors in the final density map. Ultimately, we hope that this

refinement scheme can be used to extend the application of molecular replacement

techniques to proteins for which there is no close structural homolog, thereby obviating the

requirement for experimental phase information.

Refinement method

Figure 4.1 outlines the key steps to our iterative phase refinement protocol, PRISM

(Phase Refinement by Iterative Skeleton Modification). The procedure uses a set of

experimental structure factors (Fobs) and corresponding initial phase estimates (OO) to start

the refinement. In the test cases we have considered, the oo's are calculated from a partial

model. Starting phases could, in principle, be derived from more conventional sources

such as SIR, MIR, anomalous scattering, or molecular replacement using a more complete

model. From Fobs and 0.0, one can calculate a starting electron density map corresponding

to the asymmetric unit in the unit cell. Each cycle of refinement uses an electron density

map as input and ends with the synthesis of another map based upon (hopefully) improved
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phases. By repeating several cycles of refinement, the phases gradually converge to final

predicted values. The steps in each cycle of refinement are described below.

Step one: The electron density map (calculated on an =1A rectangular grid) is
skeletonized using the MKSKEL program, part of the GRINCH package (Williams, 1982;

adapted for VMS by M. Carson, University of Alabama). This program outputs both a

listing of nodes, corresponding to one-dimensional local maxima in the electron density

map, and a listing of the connections between nodes. The nodes are assumed to represent

pseudoatoms in the structure, with the node connections defining the bonds between them.

Step two: The skeleton output by MKSKEL is automatically modified using the

CONNECT program (available upon request from CW) such that the scattering density

resembles a single chain rather than a group of disconnected atoms or groups of atoms.

This program initially identifies connected graphs of nodes and immediately prunes out the

smallest graphs. Nodes with only a single bond to all other nodes (termed endpoints) are

then identified and used to generate connections between the remaining isolated graphs. To

force connections between graphs, the endpoints are allowed to diffuse through the unit cell

subject to the cost function:

C(i,k) = - X. # + wip(k)
j

where C(i.k) is evaluated for the i-th endpoint at the k-th pixel in the density map, dj is the
distance between the i-th and j-th endpoints, wi is an adjustable weighting parameter, and

p(k) is the electron density of the k-th pixel. The summation over j-endpoints includes all

those which do not belong to the same graph as the i-th endpoint. Minimization of the cost

function forces endpoints to form connections (decreasing diff) while remaining in regions
of high electron density (keeping-p(k) small). wils initially set such that the starting

gradient is as close to zero as possible, thus balancing the two terms. For each endpoint,
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the cost function at all adjacent pixels is evaluated and the endpoint is moved to the

neighboring position with the lowest cost. If the current position has the lowest cost, wi is

dropped, thus removing the bias towards remaining in good electron density and favoring

connection formation. Once a pair of endpoints meet, the two isolated graphs are grouped

into a single larger graph and the pair of endpoints are removed from the minimization.

Minimization is stopped after a fixed number of cycles. Small graphs which remain

unconnected to others are removed from the skeleton. The nodes corresponding to the

connections between graphs are added to the skeleton which is then output as a list of

atoms (all with the same scattering properties).

Step three: The pseudo-atom list output by CONNECT is used to calculate

structure factors (Fe) and phases (0.1) for the next cycle (assuming a carbon scattering

curve for the pseudo-atoms). The Fc are scaled to the observed structure factors (using

zonal scaling).

Step four: A new electron density map is calculated using the updated phases,

0.1's, and modified Fourier coefficients, Fw = 2wFo-Fc (w = Sim's weight; Sim, 1960).

Maps calculated using the Fw coefficients are ideal for this procedure since they include the

true scattering vector at full scale while minimizing the systematic noise directed along 0:1

(see Appendix). Alternative arguments for using these coefficients have been provided,

and appropriate correction factors to account for experimental errors have been derived

(Read, 1986).

To test the above procedure, we used the first fifty residues of myoglobin as the

unknown structure. Fobs and Oobs were calculated using coordinates obtained from the

Protein Data Bank entry 1MBD (Phillips, 1978). The space group and unit cell of

apolipoprotein-E, another all-helical protein, was used for most calculations (P212121,

a=41.26, b=54.51, c=87.09, o-3=}=90°; ref. Wilson, 1991).



Several models were constructed to test different possible biases in the starting

models. The first model contained only Co. atoms for all fifty residues. While this model

has a small fraction of the total scattering density (50 atoms versus 417 in the full

structure), the electron density is well distributed and there are no regions which are

systematically under-represented. A second model included all backbone and C3 atoms for
the first twenty-five residues. While this half-backbone test case includes a higher fraction

of the scattering density (122 atoms), the distribution is highly asymmetric with the entire

C-terminal half missing from the initial map. To test the effect of measurement errors and

coordinate errors on refinement, both the observed structure factors (i.e. those calculated

for the full 50 residue model) and the starting model coordinates were perturbed by the

addition of a Gaussian distribution of random shifts.

The ability of the refinement scheme to converge to the correct electron density map

was estimated by several criteria. Because the refinement is done using calculated

“observed” data, the phase errors can be calculated exactly using the known structure. To

estimate the accuracy of the phases, we have calculated the weighted phase error,

Aq = 2 Fobs loobs—Oc /2 Fobs

where the summation is done over all reflections. The crystallographic R-factor between

the scaled calculated F's and the experimental Fºs,

R = 2 | Fobs - Fc || 2 | Fobs

provides a useful measure of the error in the electron density map in cases in which the

observed phases are not known.

Control experiments

The refinement procedure is based on the assumption that an electron density map

can be accurately represented by the nodes in a skeleton. To confirm this assumption, the
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following test was performed. An electron density map (~1 Å grid spacing) was calculated
for the first fifty residues of myoglobin, and subsequently skeletonized using the

MKSKEL program (Williams, 1982). The nodes in the skeleton were treated as pseudo

atoms and used to obtain new structure factors and phases. Figure 4.2 shows the zonal

R-factor between the correct Fºs (obtained from the Fourier transform of the true electron

density map) and those calculated from the corresponding skeleton. The errors in the

skeleton model are a strong function of the resolution of the initial map used to generate the

skeleton. If the starting map is calculated directly from the atomic coordinates (i.e. with

infinite resolution), the zonal R-factor remains below 25% for all data in the range 10-3 Å,
but rises sharply at higher resolutions. A similar result is found using a 3 Å resolution
starting map. If lower resolution starting maps are used to calculate the skeleton, the zonal

R-factor remains at =25% for data below the resolution of the map but rises to that expected

for a random structure at higher resolutions (Figure 4.2). If the correct map is used as the

input to the PRISM procedure and refined for several cycles, the overall R-factor (10-3.0 Å
data) rises to 30% while the phase error rises to 27°, providing a best case estimate for the

final expected amplitude and phase errors.

Refinement tests with defined partial models

The first test of the refinement procedure used the Co. atom-only model of the

myoglobin fragment as a starting partial model. An initial map calculated at 3Å resolution
using the observed structure factors and Co-based phases is shown in Figure 4.3a. As

described in METHODS, this map was skeletonized using the MKSKEL program

(Williams, 1982; Figure 4.3b), the resulting skeleton was then modified by the CONNECT

program (Figure 4.3c), and a new map was calculated with the modified skeleton providing

new phases and modified structure factors (Figure 4.3c). By iterating this procedure ten
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times, the final refined map shown in Figure 4.3d was produced. Figure 4.4 shows the

change in overall R-factor and phase error during refinement. Whereas the initial phase

error for the Co. model is 58°, refinement lowers this to 33.5°. Direct comparison of the

true electron density map with the final map indicates that refinement restores the majority

of the missing side chain density (allowing the side chains to be easily modelled), as well

as removing the extraneous density lying outside the protein region. The R-factor and

phase error in the final cycle closely approaches that obtained when refining from the true

electron density map. Whereas the directionality of the starting model is ambiguous,

density from the peptide carbonyl oxygens becomes readily apparent in the refined map,

permitting the full atom backbone to be modelled.

To allow a direct comparison between PRISM refinement and conventional density

modification, we have used the B.C. Wang solvent flattening programs (Wang, 1985) with

the backbone-atom model providing a starting phase probability distribution for each

reflection. The solvent fraction was set to 85% and ten cycles of iterative map filtering and

phase recombination were carried out (recalculating the molecular boundary every cycle).

The final recombined phases calculated by solvent flattening have an average phase error of

49.0° (Figure 4.4), only marginally better than the starting phase distribution (phase error =

58.0°). In this test case, at least, PRISM refinement is considerably more effective than the

method of solvent flattening.

A more realistic test of the refinement procedure was constructed using a model

containing only backbone atoms for the first twenty-five residues. Because this model

lacks the majority of the side chain atoms and the entire C-terminal half of the molecule, it

more accurately simulates a potential starting map that one might obtain from molecular

replacement with a fragment search model. Figure 4.5 shows the starting and final maps

for this test case. Similar improvements in the overall R-factor and the phase error are seen

with this half-backbone model (Figure 4.6) as with the Co-only model. The improvement
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is especially dramatic in the C-terminal region (Figure 4.5c,d), with the disordered,

unconnected density becoming continuous and easily interpretable in the final map. The

final phase error in this test (27.2°) is essentially identical to that obtained after several

cycles of refinement with the complete model as a starting structure (26.9°). In contrast,

the solution obtained following extensive solvent flattening had an average phase error of

52.6° (Figure 4.6). Traditional density modification thus only slightly improves the phases

relative to their initial estimates (phase error = 56.6°), and yields a final map that is

significantly noisier than the PRISM-refined map, especially in the C-terminal region.

Understanding the requirements for phase convergence

Several additional tests were performed to simulate potential problems that might be

encountered in a true structure determination. To approximate data collection errors, the

“observed” structure factors were altered by the addition of a Gaussian distribution of

random shifts such that the R-factor between the true data and the modified data was a 7%.

This level of noise, significantly more than one might expect with typical diffraction data,

appeared to have only minor effects on the refinement procedure (slowing it slightly) when

using the half backbone starting model (Table 4.1). Similar effects were observed when

using a half-backbone starting model which had been perturbed by the application of 0.5 Á

random shifts to the atomic coordinates (Table 4.1). While systematic errors are likely to

cause artifacts in the maps, the refinement procedure does not appear to require data free of

random errors or a perfectly accurate partial starting model.

To understand what aspects of the procedure are required for the phases to

converge to the true values, we repeated the half-backbone test several times altering steps

in the refinement protocol. If conventional 2 I Fol - I Fel Fourier coefficients are used in

place of the optimally weighted coefficients (2w I Fol - I Fel), the phases improve only
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marginally after several cycles (Table 4.1). Modification of the skeleton also appears to

play a key role; if the skeleton is not pruned or if connections in the density are not

generated, the phases improve somewhat but the drop in the phase error is not as

significant (Figure 4.7). The resolution of the starting electron density map is important for

proper refinement; a map with less than 3.5 Å resolution does not converge whereas one
calculated at higher than 3.5-A converges easily (Table 4.1).

Discussion

This work describes the development of an automated phase refinement procedure

which we envisage using in combination with traditional molecular replacement to solve the

crystallographic phase problem in the absence of experimental information. To apply this

algorithm to de novo protein structure determination, an initial guess for part of the

structure must first be made. After using molecular replacement techniques to position this

predicted structure in the crystallographic asymmetric unit, the algorithm is designed to

refine an electron density map such that it converges to the true scattering density. Once the

density map has been refined, a full atomic model can be built for subsequent refinement by

conventional techniques. The key step in the successful application of the method is

making a correct guess for the starting partial model. This step could in principle be done

by a combination of protein structure prediction methods and interpretation of the

experimentally-determined Patterson map. A Patterson map, yielding information about the

interatomic vectors in a crystal structure, can be calculated from observed reflection

intensities without additional phase information. By interpreting features in the Patterson

map, one may obtain clues about the amount of secondary structure, the relative orientation

of alpha helices and beta strands, and the spatial relationship between secondary structure

elements (Blundell, 1976). Our method should allow the extension of traditional molecular
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replacement techniques to proteins which do not share homology with any previously

determined proteins.

As with standard density modification (solvent-flattening) techniques, our method

alternates between real space and reciprocal space representations of the scattering density.

Whereas solvent flattening uses the real space constraint that all density lie within a

molecular boundary, our constraint is significantly more restrictive. By skeletonizing the

map and using the nodes in the skeleton as dummy atoms, we immediately enforce

positivity and atomicity on the electron density. The scattering density in a protein crystal

can generally be represented as a single connected chain (Greer, 1985). By modifying the

skeleton such that distinct groups of atoms are connected to one another, we force this

constraint to be satisfied at every cycle in the refinement procedure. Because both the

skeletonization and skeleton modification steps are implemented as computer programs,

these relatively strong constraints on the electron density can be applied with no undue

human bias.

The radius of convergence of any refinement procedure is likely to be a function of

the ratio between the number of variables used to represent the scattering density and the

number of structure factor observations. As this ratio increases, it becomes easier to fall

into incorrect minima in the refinement cost function since errors in the electron density can

be accurately modelled by the excess parameters. The skeleton representation requires

relatively few parameters (the grid coordinates for each of the pseudo-atoms, approximately

equal to the number of true atoms in the structure) but models the scattering density quite

accurately (as shown in Figure 4.2). In contrast, traditional density modification

techniques treat each electron density map pixel within the molecular boundary as a

continuous variable during refinement. Using a 1-A grid (appropriate for 3-A data), a

single atom contributes significant electron density to a 30 surrounding pixels. The

skeletonization procedure thus reduces the effective number of parameters by
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approximately an order of magnitude. This effect alone may help explain the larger

apparent radius of convergence of the PRISM method.

In addition to differences in the real space constraints, application of the reciprocal

space constraints also differs between the solvent flattening and PRISM procedures. In

Wang's implementation of solvent flattening (Wang, 1985), the filtered map phase

probability distribution is multiplied at each cycle by the starting (experimentally

determined) probability distribution to arrive at a new estimate. In contrast, our procedure

ignores all previous estimates and uses only the current electron density map to obtain

phases. Reciprocal space recombination is achieved using modified Fourier coefficients

(2wl Fol-l Fel), yielding a new map that has the full component of the missing density yet

the minimal amount of systematic noise (i.e. errors directed along the Ocalc vector). If

experimental phase information exists, it should be possible to implement a reciprocal space

recombination that uses this in each refinement cycle. The current procedure is appropriate,

however, when the starting phase estimates are based on an incomplete atomic model

which contains significant errors.

Future work using this methodology will incorporate additional constraints in the

refinement procedure. For instance, PRISM refinement could be applied to only the poorly

defined regions in a map derived from a relatively complete molecular replacement model.

At each cycle, new phases would be obtained using the combined real atoms from the

molecular replacement model and the non-overlapping pseudo-atoms from the CONNECT

output. Alternatively, if a heavy atom derivative has been found, its phase information

could be used in a standard recombination scheme to direct the refinement. The addition of

constraints on the phases should extend the radius of convergence of the method and allow

the use of even cruder partial models to start refinement.
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Appendix: Optimal weighting scheme for modified Fourier coefficients

Given phases calculated for a partial structure, our goal is to find optimal Fourier

coefficients that properly weight the contribution of the scattering from the missing atoms.

Model scattering = FC expio'c

Missing scattering = Fn expiom

True scattering = Fo expio'o = Fc expioc + Fm expiom

A standard difference map (using | Fol-l Fc coefficients and Oc phases) can be

decomposed into three components, corresponding to the true missing signal, to systematic

noise (directed along oc), and to random noise (Blundell and Johnson, 1976):

(Fo-FC) expioc - [Fe/(Foº-Fe)] Fm expion (scaled true signal)

+ [Fm2/(Fotºc)] expio. (systematic noise)

+ {FcFm/(Fotºc)] exp i(-on 4 20.) (random noise)
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An optimal map can be obtained by subtracting the best estimate for the systematic noise

(I-Fm’-(Fo-Fe)]) and by scaling the (Fo-Fc) map such that the true scattering is given its

full weight (1 / [FC/(Foº-Fe)]). To estimate the average systematic noise (Sim, 1960):

<!-- - fºr re-aff, ■ pºkes, as - fºr re-affe.

where w = II(X) / I0(X), X = 2FoEc/<AF2-. After subtracting the average noise, scaling

the true signal, and adding the model scattering (to give the complete structure rather than

the difference signal):

I(Fo-FC) expioc - «Fm’->/(Fo-FC) expioc) / [Fe/(Foº-Fe)] + Fc expioc =

I(Fo-FC)(Fo-FC) - Fo’ - Fe2+2FoEcw + FC2) / Fe expioc =

I2wºo - FC) expioc

Thus, a map calculated with weighted coefficients, Fw = 2wlFol - Fel, will provide

the full scattering signal with the correct phase, plus additional random and systematic

noise which has been minimized given that the true phase is unknown.

(2wfo - Fc) expioc = Fm expiom + Fc expioc (true signal at full strength)

+ (Fm.” - «Frn”:')/Fc expioc (minimal systematic noise)

+ Fm exp i(-0m +20%) (random noise)
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Table 4.1: Requirements for phase refinement.

Starting | Starting Final Final
Conditions of the test R-factor | phase | R-factor | phase

error error

Standard refinement 50.5% 60.1° 30.5% 27.20

Using 2Fo-Fc recombination ºt tº 37.0% 42.4°

Not pruning small groups of atoms -- -- 33.9% 36.3°

Not generating connections -- º 34.5% 40.4°

Addition of 7% noise to the data 52.4% + in 34.3%" 33.19

0.5A random shifts of starting model 56.35% 61.9° 33.2% 33.4°

Low resolution (4A) starting map 50.5%f 61.6°f 39.7% 53.4°

The half-backbone atom test (using residues 1-25 backbone + CB atoms to model
the first 50 residues of myoglobin) was carried out using the standard refinement scheme

described in the test. In addition, the refinement was repeated several times with slight

changes in the refinement protocol as described above. *-R-factor calculated with Fo =

error-added data, not error-free data. t-starting parameters calculated after the first cycle

of skeletonization.
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FIGURE 4.1. Overview of the PRISM phase refinement scheme. Details for each step are
described in METHODS.
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FIGURE 4.2. Accuracy of the skeletonization procedure. Structure factors calculated from

the atomic model for the first fifty residues of myoglobin were used to calculate a series of

electron density maps with decreasing resolution. The maps were subsequently

skeletonized using the GRINCH MKSKEL program. The unfiltered output (a list of local

maxima in the density map) was used to calculate new structure factors (each local

maximium was assumed to represent a dummy carbon atom). Figure shows the zonal

R-factor as a function of zonal resolution for each of the maps.
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FIGURE 4.3. Steps in the refinement of a Co-atom-only starting model. a) Starting

electron density map calculated using phases derived from the Co-atom model. b) Skeleton

produced from the map in (a) using the GRINCH MKSKEL program. c) Skeleton

following modification by the CONNECT program. Electron density is calculated using

phases derived from the modified skeleton. d) Electron density calculated after ten cycles

of PRISM refinement.
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FIGURE 4.4. Results for Co-atom-only starting model. Overall R-factor and phase error
calculated as a function of refinement cycle, using the Co-atom model to start refinement of
the myoglobin fragment. Phase error is shown for both the PRISM refinement (open
squares) and the solvent-flattening refinement (solid circles).
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FIGURE 4.5. Starting and final maps using a half-backbone-atom starting model. a)

backbone-atomStarting electron density map calculated using phases derived from the half

model. b) Final electron density map after ten cycles of PRISM refinement, c,d) C

terminal region of the electron density before (c) and after (d) PRISM refinement.
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FIGURE 4.6. Results for half-backbone-atom starting model. Overall R-factor and phase
error as a function of refinement cycle, using the half-backbone atom model to refine the
myoglobin fragment. Phase error is shown for both the PRISM refinement (open squares)
and the solvent-flattening refinement (solid circles).
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FIGURE 4.7. Effects of skeleton modification on refinement. The half backbone atom
model was used to start refinement of the myoglobin fragment. In addition to the standard
protocol (open squares), the refinement was also carried out in tests in which 1)
connections between isolated subgraphs were not generated (open circles), or 2) small
graphs were not pruned out of the skeleton (closed circles).
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Chapter 5:

A computer model to dynamically simulate protein folding:
Studies with crambin
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Abstract

The current work describes a simplified representation of protein structure with

uses in the simulation of protein folding. The model assumes that a protein can be

represented by a freely-rotating rigid chain with a single atom approximating the effect of

each sidechain. Potentials describing the attraction or repulsion between different types of

amino acids are determined directly from the distribution of amino acids in the database of

known protein structures. The optimization technique of simulated annealing has been

used to dynamically sample the conformations available to this simple model, allowing the

protein to evolve from an extended, random coil into a compact globular structure. Many

characteristics expected of true proteins, such as the sequence-dependent formation of

secondary structure, the partitioning of hydrophobic residues, and specific disulfide

pairing, are reproduced by the simulation, suggesting the model may accurately simulate

the folding process.
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Introduction

Despite years of both experimental and theoretical study, predicting the three

dimensional structure of a protein from its primary sequence is still a major unsolved

problem. The need for a solution has increased in recent years with advances in DNA

sequencing technology: the rate at which protein sequences are being determined by

molecular biologists far exceeds the rate at which crystallographers can solve protein

structures. While empirical force fields have been developed which can accurately predict

the conformation of small molecules or subtle changes in folded protein structures (via

molecular mechanics or molecular dynamics), these descriptions have not been useful for

the simulation of protein folding because their highly-dimensioned potential surfaces are

characterized by many local minima. Solving the protein folding problem with these force

fields would require the global optimization of thousands of variables which are non

linearly coupled to each other. Early computer studies by Levitt and Warshell!, Scheraga
et al 2, and Kuntz et al 3 showed the advantages of using simplified protein models. By
limiting the number of structural degrees of freedom to one or two per amino acid, the

conformation space which must be sampled to arrive at the final folded structure is

significantly smaller than that available to a full-atom model of the protein.

Over the last ten years, little new work has been done to explore the potential power

of simplified models like those described in these initial studies. There are several reasons

why this basic approach should be reconsidered. 1) The size of the protein structure

database which is used to develop and test these models has increased significantly. 2)

Several new approaches to multivariate optimization problems, such as simulated annealing

and neural networks, have been developed which may solve the local minimum problem

for simplified models. 3) The speed of computers available for these studies has increased

by several orders of magnitude, allowing a more complete search of conformation space
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(their speed would still have to improve by a factor of >1010 if molecular dynamics on a
full-atom model were used to fold a protein!). Historically, these models fell out of favor

after it was shown that unreasonable, built-in biases in the early models allowed them to

work for specific test proteins”. Hagler and Honig demonstrated that an extremely

simplified model for bovine pancreatic trypsin inhibitor (BPTI), in which the protein

consisted of only glycine and alanine residues, produced a folded structure which was as

correct as that generated by the Levitt-Warshel model. In addition, they showed that many

topologically important features of BPTI, such as the 180° twist in its beta sheet, were not

reproduced by any of the computer folding attempts. They conclude that by assuming

certain properties about the starting conformation and manipulating terms in the force field

used to evaluate different conformations, it is not hard to produce folded structures that

bear some resemblence to a test protein. An important unanswered question, however, is

whether a well-conceived, unbiased simplified model can contain enough structural and

energetic information to truly predict protein structure.

The current work describes a simple representation for the structure and energetics

of a protein. We have tried to avoid the potential problems of unwarrented bias in the

model by relying completely on the statistical preferences observed in the database of

known crystal structures to derive all aspects of the model. Completely random starting

structures are minimized using simulated annealing. In no way is the crystal structure of

our test protein (crambin) used to define the model. Hopefully, therefore, our findings can

be generalized to a large extent to other proteins. Several results indicate that the model is

able to reproduce the characteristics of a folded protein in a sequence-dependent way.

Crambin was chosen as a test protein because its crystal structure is known to high

resolution and it is one of the smallest proteins with significant amounts of secondary

structure. Different aspects of the correct crambin structure can be analyzed and compared

to the results of the folding simulation. The agreement or disagreement between the two
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sets of data can then be used to assess the quality of the model. In a number of ways,

listed below, the folding simulation is able to reproduce the features of the true crambin

structure. 1) Alpha-helices and beta strands develop where they occur naturally in the

crystal structure. 2) The structures produced by the minimization are reasonably similar to

the true structure in terms of their r.m.s. deviation or distance matrix error (to our

knowlege, their average deviation is the lowest ever obtained by the simulated folding of a

protein). 3) The formation of certain disulfides, corresponding to the true disulfides, is

significantly favored over non-native disulfides. The simulation with the true crambin

amino acid sequence and a variety of control experiments using related sequences suggest

that these results are not dependent on fortuitous biases within the model. For instance,

completely different structures result when the crambin sequence is randomized,

maintaining the same amino acid composition. The tendency for secondary structure to

form is largely lost and that which does form is quite different when folding individual

segments of the sequence, as might have been expected from studies with small peptides.

Starting from different random models, simulated annealing produces a collection of

closely related folded structures, indicating the ability of the method to avoid many local

minima during the journey down the potential surface towards the global minimum.

Several properties of the native folded models, such as the tendency for hydrophobic

residues to partition into the interior of the protein, indicate that the folding process

produces 'protein-like' structures. Taken together, these results strongly encourage the use

of simplified models for protein structure, both for the purpose of protein structure

prediction and as a means of studying the energetics and dynamics of protein folding.

While this model certainly does not solve the protein folding problem, it suggests

that a large part of the physics which is important for defining protein structure can be

modelled by united atom residues and simple pairwise potentials.
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Methods

Several models have been used in the simulation of protein folding. Lattice models,

in which each residue is constrained to lie at a lattice point with appropriate connections to

adjacent residues, have been used because it is computationally possible to generate a

significant fraction of the allowed conformations. The energy of a given conformation for

a lattice model is generally calculated as the sum of interactions between adjacent or near

neighbor lattice sites, the value of each interaction determined by the type of interacting

residues. Go and Taketomi represented space as a two-dimensional lattice and were able to

hypothesize a role for short- and long-range forces in the folding transition3. The highly
simplified geometry of such models, however, lacks the basic structural properties of true

proteins and thus compromises the accuracy of the model for the simplicity with which

conformations may be generated.

The models used for simulations in the present work have attempted to maintain a

minimum of structure while preserving the basic geometry of the polymer. All backbone

bond lengths and bond angles were held at ideal values' and the dihedral angle for the
peptide bond was fixed in the trans conformation (180°). The sidechains for residues were

represented as a point whose position was determined by averaging the sidechain centroids

of the residues in 25 proteins in the Brookhaven Protein Data Bank (PDB). The only

variables determining the conformation of each residue are thus the dihedral angles (phi and

psi) defined by the bonds on either side of the alpha-carbon. For the current work,

approximately 100 proteins in the PDB were used to generate probability plots of allowed

phi-psi pairs (see example in Figure 5.1). Contours in the observed phi-psi distributions

were then used directly to produce a set of randomly generated phi-psi pairs for each

residue type. This set of phi-psi values was subsequently used to assign a conformation at

random for each residue. With the exception of proline and glycine, the only significant
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differences between the various residues was the relative populations of the alpha-helix and

beta-sheet regions of their phi-psi probability plots (Table 5.1).

Empirical potentials describing the interaction between each amino acid pair were

derived directly from the distribution of residues observed in known protein structures.

Tanaka and Scheraga’ and Crippen and Viswanadhan" have developed potentials with a
similar basis in somewhat different ways. In the current work, the Co-Co distances of all

residue pairs in 100 PDB proteins were tabulated and used to generate histograms of the

number of occurences versus distance for each amino acid pair. The occurences in the 15

16Å range were used as a reference level since no specific contacts were assumed to occur

at this large separation. The observed distributions of residue-residue distances were

converted into free energies, assuming a Boltzmann distribution.

Potentials calculated in this way should include information about both long- and

short-range packing interactions. The tendency of a residue to be buried can be inferred by

examining the pair potentials for that residue with all other residues. Buried, hydrophobic

residues consistently form many short-range contacts and show favorable interaction

energies with a large number of other residues. Exposed residues on average form fewer

close contacts (and thus have less favorable short-range interaction energies), although

certain pairs may interact quite favorably. These tendencies can be demonstrated by

comparing the pairwise interactions of leucine and lysine with other amino acids (Figure

5.2). Leucine, a commonly buried hydrophobic residue, interacts favorably with most

amino acids at 4-10 Å. Lysine, on the other hand, shows much weaker interactions on

average, despite strong tendencies to contact aspartate and glutamate residues. The

potentials are affected by packing in addition to the general hydrophobic partitioning of

amino acids. Since secondary structures generally associate in well-defined ways, they

alter the potentials by favoring certain pairwise distances between residues. For example,

two alpha-helices often align such that many of the distances from a residue in one helix to
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a residue in the other helix fall in the range of 8-10 Å. Many of the contacts made by beta
strand residues are to residues on adjacent beta-strands and these are typically 4-6A long.
Specific short-range interactions, such as electrostatic attraction or repulsion between

charged sidechains, also perturb the potentials in a sequence-dependent way. The complete

set of potentials is available as supplementary material or as part of the folding program. A

thorough analysis of the potentials should reveal many of the patterns that have been found

by previous surveys of the protein structure database. Our work, however, simply uses

the potentials as an unbiased representation of the packing tendencies without attempting to

explain them.

Since the potentials are based upon alpha carbon distances, they can include lower

resolution structures from the PDB than those calculated by the method of Tanaka and

Scheraga in which the position of all atoms must be well defined to determine if an

interatomic contact has formed. To avoid the effect of near-neighbors along the sequence

altering the distance potential without adding significant information about the conformation

(since near-neighbors are covalently constrained to lie within a certain distance of each

other), only the distances between residues separated by at least four other residues were

included in the histograms. To calculate the energy of a given conformation, the distance

between the i-th residue and all others, j = 1 to i-5 and i+5 to N, were calculated and the

corresponding energies were totalled.

The interaction between the sidechains was initially ignored but early studies

showed that this simplification was unreasonable. Using only alpha-carbon based

potentials, the model peptide tended to pack into a globule much denser than the native

protein. The space that should be occupied by sidechain atoms disappeared as the

backbone potential was optimized. The pairing of two beta-sheets brings many backbone

atoms in close contact with each other while maintaining good separation between the

sidechains. Without explicit sidechains, the initial model brought many residues into this
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potential well without allowing the subsequent addition of sidechains. As such, the model

was modified to include potentials based on sidechain centroid-to-centroid distances.

These potentials were calculated and applied as described above for the backbone

potentials. The addition of these potentials significantly raised the average radius of

gyration for the model protein, bringing it closer to that observed for the true structure.

A representative set of potentials is shown in Figure 5.2. For this and other

potentials, the distribution appears to be the sum of two wells, one centered at 4-6A

(corresponding to residues in 3-conformation) and another at 8-10Å (O-helical residues).

Since conformation appeared to significantly affect the proper choice of a potential, the

model was expanded to include separate potentials for each residue pair and residue

conformation (based on phi-psi value) to determine the energy of a given structure. A

single potential independent of residue type was applied to residue pairs separated by four

residues (i - i+4 and i-i-4 interactions). This potential was determined using the

procedure described above (a histogram of the distance between all i - i+4 residue pairs,

segregated by conformation, was generated and converted into a free energy function of

distance). There are approximately 12,000 residues in the database used for this study and

thus close to 12,000 i - i+4 distances to be measured. If separate potentials for each amino

acid pair were used, there would on average be less than 20 data points in the histogram for

each potential. We therefore combined all i - i+4 distances to produce a single potential

which was used for all amino acid pairs.

Given a way to calculate the energy for any protein conformation, we required a

means for adjusting the backbone angles to minimize the calculated energy. Simulated

annealing is an optimization procedure by which high-energy or highly disordered systems

may be 'cooled' in a controlled way that efficiently produces a system whose energy is

close to that of the global minimum3. It has recently been used as a method for generating

protein structures which satisfy specific interproton distance constraints”. Its ability to
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rapidly sample over a highly convoluted energy surface makes it an attractive candidate as a

protein conformation searching technique. As described by Kirkpatricket al., simulated

annealing can be carried out as a Monte Carlo dynamics procedure in which the

"temperature" of the system monotonically decreases during the course of the simulation10.

In a run, the temperature is initially high such that the conformation of the system is rapidly

changing and sampling a large volume of conformation space. As the run proceeds, the

temperature is lowered slowly to allow the system to fall into a basin of attraction without

becoming locked into the first local minimum reached. The specific heat of the system

provides a good measure of the conformational transitions that are occurring and can be

used to limit the rate of cooling to prevent premature freezing into local minima. The model

described above was incorporated into a Monte Carlo dynamics program, written in

FORTRAN, which was compiled and run on an FPS 264 [available in VAX and FPS

versions, together with all the analysis programs used, upon request from CW]. Simulated

annealing was carried out using a schedule for cooling similar to that suggested by

Kirkpatricket al. for the simulation of computer chip design!0. During the run, a residue

and a new phi-psi pair to replace the current value were chosen at random and the new

conformation and corresponding energy were calculated. A thermal equilibrium was

attempted at each temperature by applying the basic Metropolis algorithm 10. In the

Kirkpatrick annealing schedule, the relative temperature, kT, is lowered by a constant

factor if either 1) 10 moves per site have been accepted since the last temperature change, or

2) 100 moves per site have been attempted without the required number of accepted moves.

The first condition will be satisfied early during the run and allows the system to start at an

arbitrarily high temperature and to rapidly cool down to a temperature at which true

minimization can begin. Later, the second condition is satisfied and is used to signal the

end of the run. The system is considered frozen and the run ended when the second

condition is applied consecutively 3 - 10 times. For the current studies with crambin (46
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residues), each annealled structure required approximately five to thirty minutes of CPU

time on the FPS 264 (corresponding to approximately 1-6 minutes on the Cray X-MP and

1-6 hours on a VAX-780).

Knowledge of the secondary structure may be easily incorporated into the model by

constraining the choice of dihedral angles to values within the region of phi-psi space

corresponding to either alpha helix or to beta sheet. For simulations in which the

secondary structure was considered known, the phi-psi values for alpha-helical residues

were constrained to (-140° 3D3-30°, -80°3′P30°) and those for beta sheet residues were

limited to (-180°-q}<-30°, 30°3P-160°). [The probability of occurrence of phi-psi pairs

was obtained from the observed phi-psi probability plots for each amino acid type.) Since

this constraint limits the possible effects of altering the ordered residues (only a relatively

small change in conformation is allowed), the program was written such that selection of

these residues during the Monte Carlo procedure was slightly disfavored, typically chosen

60% as often as unassigned residues.

The structure of crambin has been solved to 0.945A resolution with an R-value of

0.129, one of the most accurate protein structures ever determined 11,12. The native

protein contains a pair of alpha-helices, labelled here as A1 (residues 7-19) and A2

(residues 23–29), covalently joined to each other by a disulfide between residues 16 and

26. At either end of this helix pair are two short strands of beta sheet, B1 (residues 1-4)

and B2 (residues 32-35), joined by a disulfide between residues 4 and 32 in an antiparallel

sheet. The C-terminus (residues 36–46) has no regular structure although a reverse turn is

defined by residues 41-44. [Secondary structure assignments were taken from the Protein

Data Bank entry of the crambin coordinates (1CRN).] Cys-40 is covalently linked to Cys

3, thus bringing the terminus to lie adjacent to the first beta sheet. In simulations in which

the secondary structure was considered known, the above assignments for helix and sheet

were used.
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Results and Discussion

Does simulated annealing solve the local minimum problem for a

simplified protein model? Simulations using the simplified model described above

were carried out to test the effectiveness of simulated annealing as a conformation searching

technique. Fixed-temperature Monte Carlo simulations were done at several temperatures,

starting from random conformations. The results were compared to a simulated annealing

minimization in which the temperature was lowered periodically by 5% according to the

schedule described above. Twenty structures were produced during each run and average

characteristics for all simulations are shown in Table 5.2. The structures produced by the

simulated annealing run had the lowest average energy and radius of gyration of structures

from any of the simulations. The model peptide tended to fall into a compact structure

while simultaneously avoiding the formation of bad overlaps. The contact maps for the

structures can be averaged and those for some of the simulations are shown in Figure 5.3.

For the non-annealed structures produced at low temperatures, contacts formed early

between the residues at either terminus and the remainder of the peptide. These initial folds

were sufficiently stabilizing that they could not be broken to allow more compact and

lower-energy conformations to be made. At higher temperatures, these non-annealed

structures failed to form many long-range contacts and most contacts occurred between

residues separated by less than six residues. The annealing simulation contact map,

however, showed that extensive contacts could be formed between pairs of helices and

sheets to produce a low energy structure (Figure 5.4).

If the potentials used to calculate the energy of each conformation are an accurate

approximation of the energetics for a true protein, the energy calculated for the native

structure should be a global minimum, lower than all other possible conformations. For all
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models attempted, however, several structures were found with calculated energies lower

than that for the native. There are several possible explanations for this problem. A major

simplifying assumption of our model is that the effect of solvent can be treated implicitly

using potentials between pairs of amino acids, rather than by explicit interactions between

individual residues and water molecules. Since most potentials are favorable in the 5-15A
range, the structures tend to be uniformly compressed to maximize the number of amino

acid contacts that fall into this distance range. The average radius of gyration for all models

was approximately 0.5A smaller than that for the native structure. In several of the
structures produced by annealing, the characteristic TL'-shape of the native crambin

(formed on one face by the helix pair and on the other by the beta-sheet) appear to be

compressed into a "V"-shape. This compression adds several helix-sheet interactions to the

native helix-helix and sheet-sheet contacts, thus lowering the calculated energy relative to

the native conformation. In reality, specific interactions of the solvent with the interface

between the helix-pair and the beta sheet may be more favorable than those formed when

the protein is compressed. Unless solvent is included explicitly, however, there is no

obvious way to prevent this compression without removing the driving force for folding.

Other possible inaccuracies in the potentials that have been used will be discussed later.

There are two basic requirements for any simulated folding process: 1) random

starting conformations should converge to a single minimized structure, and 2) the structure

of the model at its global minimum should be identical to the native, experimentally

observed structure. In practice, these goals are related and they have never been completely

satisfied by a computer model. If random starting structures do not converge, it is unlikely

that the global minimum is one of the structures in the final set. Without the global

minimum defined by the model to test against the native structure, it is impossible to

determine the accuracy of the model. To assess the ability of the annealing procedure to

converge to a single minimum (self-convergence) and the similarity of the final set of
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structures to the native protein, the minimized structures were compared using two

similarity metrics. The most common measure for comparing protein crystal structures,

the r. m.s. deviation obtained by optimally translating and rotating one structure onto

another (RMS), has questionable usefulness when comparing two structures that are

similar to low resolution13. Another common measure, the r.m.s. distance matrix error

(DME), will determine the extent to which a pair of structures have similar patterns of

contacts but ignores any differences in the chirality of the structures14. For instance, a left

handed and a right-handed helix may have a DME deviation approaching zero but a

relatively high RMS deviation. The DME deviation is typically less than the RMS deviation

by 30%. Both metrics were determined for the structures produced by the different

minimization procedures (Table 5.2). Figure 5.5 shows several sample model structures

produced by simulated annealing, together with the crystal structure. One of these

structures (fifth row) is especially interesting: while its general fold appears correct at first

glance, the RMS deviation is quite large (7.5 Å). The DME for this structure, on the other
hand, is only 3.5 Å. Crambin is L-shaped, with the paired alpha-helices and the beta
sheet lying perpendicular to each other. The model structure has the same L-shape but is

inverted. The DME metric, unlike the RMS metric, is able to identify the general

correctness of this fold (correct in the sense that the long-range contacts which energetically

favor this conformation have formed).

To test the first criterion, self-convergence was estimated by calculating the average

deviation between all pairs of structures from a given run. The deviation between

structures produced by simulated annealing averaged 4.21 Å (DME), signficantly less than

that for all of the fixed temperature Monte Carlo simulations (4.94 Å-7.91 Å). To

estimate the ability to converge to the true global minimum, the deviation of the model

structures from the crystal structure was calculated. The average deviation of the annealed

structures from the native protein is 7.58 Å (RMS), 4.76 Å (DME). [The model closest to
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the native structure had a deviation of 4.01 Å (RMS), 3.17 Á (DME).] The deviation

between any single structure and the crystal structure is thus only slightly more than the

deviation between any pair of model structures. It is possible, therefore, that the inability

to produce structures closer to the native is limited by the minimization procedure (a

convergence problem), rather than by the potentials and the model. However, since the

native state is not a global minimum as defined by the potentials, it will be impossible to

obtain the correct structure by a complete search of conformation space. A contact map for

the collection of minimized structures can be generated by averaging the individual contact

maps for each structure. The distance matrix error of the average simulated structure with

the native is 3.76 Å, significantly lower than the average error of any single structure with
the native (4.76 A). This suggests that while every structure differs in some way from the
native, the average tends to fold in a way quite similar to the native. We are currently using

distance geometry methods to rebuild a three-dimensional structure from the average

contact map.

Does minimization produce 'protein-like' conformations? The models

produced by simulated annealing were analyzed in a variety of ways to determine if they are

structurally similar to true proteins and to the crambin structure in particular. Hagler and

Honig, in their critique of early protein-folding models, emphasize the need to examine the

structural details of the model protein to determine the accuracy of the simulation. For the

current work aspects of secondary structure, the hydrophobic effect, and disulfide bond

formation were considered. As an additional test of the folding procedure, the crambin

sequence was randomly shuffled to yield a sequence of identical composition but with no

homology to crambin. Differences between minimized structures produced for the native

and shuffled sequences can then be used to indicate the sequence-dependence of the

modelling.
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Secondary structure

Inspection of the phi-psi plots for amino acids shows that each have different biases

towards alpha-helical or beta-sheet conformation. These biases can be used in a simplistic

way to predict secondary structure for a sequence. Assuming that the choice of phi-psi

value for a residue is independent of all other neighboring residues, the probability of

having a regular structure spanning a window of residues can be calculated as the product

of the probabilities of forming that structure for each residue in the window. [A regular

structure is defined here as a linear set of residues whose phi-psi values are all within the

same region of phi-psi space.] The probability, Pia, that the i-th residue will lie in a type-a

regular structure of length equal to or greater than w, may be calculated as:
i

n+w-1

Pia = X. II pm.”
n=i-w--1 m=n

where pma is the probability that the m-th residue will have a phi-psi value corresponding

to type-a regular structure. [This procedure is similar to the Chou-Fasman secondary

structure algorithm.15, although the pma's which define the probabilities are determined
quite differently.] This method was applied to the crambin sequence over a window of

four residues and identified several regions with slight alpha-helix or beta-sheet tendencies

(Figure 5.6). The tendencies calculated by this method are equivalent to those observed for

the starting structures (the profiles obtained from non-minimized structures were identical

to those in Figure 5.6). When simulated annealing was carried out with no assigned

secondary structure, the observed regular structures occurred in the same regions as in the

native structure and much more frequently than that predicted by the simple method

described above. The tendency to form regular structures during the minimization seems to

be initiated by a bias in the phi-psi values but enhanced during the simulated folding.
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Reasons for the enhancement of secondary structure are unclear. One possibility is that the

formation of secondary structure allows residues to pack in defined ways and thus tends to

increase the number of favorable contacts and lower the total energy. However, there was

a wide range in the amount of regular structure formed in the minimized models (from 0 to

45% of all residues) and no correlation to the number of contacts or to the calculated energy

could be found. Several models with no regular structure were produced with an equal

number of contacts and energy as those models with large amounts of regular structure.

Thus, while regular structures may be enhanced during folding, they cannot be said to be

required for folding. A reasonable explanation for the enhancement of secondary structure

is that the potentials favor certain pairwise distances (4-6A, 8-10A) and that one way (but
not the only way) to produce folded structures with these distances is to form secondary

structure (B-strand pairing creates residue-residue distances of 4-6A, o-helix pairing forms
8-10A contacts).

Prior to minimization, there are several regions that show tendencies towards both

helix and sheet. After minimization, there is little overlap between the two types of

structure, making it much easier to assign secondary structure to the sequence. A variety of

prediction schemes have been developed that use local sequence information to assign

secondary structure for each residue23,16. None of these techniques, however, is more
than 70-80% accurate when tested against a collection of known structures. The inability

of these methods to correctly predict secondary structure has been ascribed to long-range

interactions which influence secondary structure formation but cannot be determined from a

simple survey of the sequence 17. By deleting segments of the sequence and attempting to
fold a partial protein, one can estimate the importance of these long-range effects.

Decapeptides corresponding to regions of the crambin sequence were folded using the

model aand the resulting pattern of secondary structure was compared to that obtained

when the entire protein was folded (Figure 5.7). There are large differences between the

100



secondary structure of a decapeptide in solution and that of a decapeptide in the context of

the protein. These results demonstrate convincingly that the formation of secondary

structure during the simulation requires information from a sequence as large as the protein

itself. Attempting to model tertiary structure may take long-range interactions into account

and thus improve the prediction of secondary structure.

The formation of the correct secondary structure would not be surprising if the

starting conformations had this native structure built into them. The simplified models of

both Levitt-Warshell and Hagler-Honig assume a starting conformation in which the BPTI

peptide is completely extended. Since the folded BPTI structure consists mostly of

extended 3-strands, separated by turns, it is not surprising that the simulations do as well

as they do. In contrast, our model makes no assumptions about the starting structure as

phi-psi values for each residue are chosen at random from a phi-psi probability plot.

Any starting structure forced onto the model is quickly lost because of the randomizing

effect of high temperature in the initial stages of refinement. This can be shown by

comparing simulations in which either a completely alpha-helical structure or a completely

extended (B-strand-like) structure is used as the starting point for refinement. No

significant changes in the observed patterns of secondary structure or the formation of

specific contacts are observed for both simulations.

Do residues pack correctly?

A major problem in the calculation of protein structure involves the interaction with

solvent. Novotny et al. showed that in vacuo molecular mechanics applied to a completely

incorrect starting conformation was able to produce a minimally altered structure with a

potential energy comparable to the true structure18. While their final structure had no bad

van der Waals' contacts or strained covalent interactions, the distribution of polar and non

polar residues at the protein surface and interior was obviously skewed and thus affected
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the electrostatic contribution to the enthalpy when solvent was taken into account. A

correct globular structure should be expected to bury a significant fraction of its

hydrophobic residues and to expose most charged residues. To determine if the model

behaved in this way, an algorithm developed by Ponder and Richards19 was used to define
which residues are buried for each structure produced by the simulation. The Kite-Doolitle

index20 was used to calculate the hydropathy of buried and exposed residues. The average

hydropathy of buried residues was 0.69, significantly higher (indicating greater

hydrophobicity) than that for the non-buried residues (0.10). The tendency to optimize

hydrophobic forces by burying nonpolar residues and excluding highly polar residues

appears to be well satisfied for these structures. The corresponding values for the native

protein, 0.40 for buried residues and 0.33 for exposed residues, indicated less of a

tendency for a hydrophobic core to form in the native protein than in the simulated models.

Crambin has unusual water solubility for a protein and forms crystals which are surpris

ingly non-hydratedl3. The average hydropathy of buried and exposed residues in several

other proteins was calculated to determine if the typical model structure or the native

crambin structure is unusual with respect to partitioning of hydrophobic and hydrophillic

residues. The average difference between buried and exposed residues in basic pancreatic

trypsin inhibitor (5PTI), cobra venom toxin (1CTX), staphylococcal nuclease (2SNS), and

alpha-lytic protease (2ALP) was calculated using the PDB structures for these proteins

(data not shown). The mean difference in hydropathy between buried and exposed

residues for these test proteins was 1.30, significantly higher than that for the both native

and model crambins. It appears that the simulation is attempting to force the formation of a

hydrophobic core for a protein which does not require it. The potentials used for the

simulation may not be appropriate for a protein such as crambin whose structural properties

differ significantly from those of the basis set which originally defined the potentials. The

fact that several structures could be found with a calculated energy lower than that of the
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native may be due to the incorrect choice of potentials for a protein that does not

enormously favor the formation of a hydrophobic core. The stability of crambin may be

due largely to disulfide bond formation rather than optimization of the hydrophobic effect.

The ability of the model to simulate disulfide bond formation will be discussed later.

Formation of specific contacts

The time during the simulation when the final contacts first occur was tabulated for

each structure and used to calculate the average age of each contact. The largest contact

region, that between the beta-sheet strands, was usually formed towards the end of the

simulation. This is not surprising since the two helices to which the strands are attached

must move together before allowing the strands to be closely paired in an antiparallel sheet.

The oldest contacts, as expected, form between residues close to and on opposite sides of

each of the turn regions. These contacts are those mostly likely to be associated with a

change in conformation which will bring large numbers of residues in contact with one

another. The average contact map shows many features of the native, e.g. specific contacts

between the two beta-sheets, helix-helix pairing at well-defined sites, disulfide formation

between the N- and C-termini, etc.. The map is inaccurate in that the position of the

unordered C-terminus is averaged somewhat over several positions. This may be expected

since the lack of assigned secondary structure for the 11 C-terminal residues allows them

considerably more conformational flexibility than for the sequences of assigned secondary

Structure.

Effect of disulfide formation on the folding pathway

The potential for the interaction between two cysteine residues is about twice as

deep as the average potential. One way that inaccuracies in the average contact map could

occur would be if the formation of a disulfide locked the conformation of intervening
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residues and prevented their proper minimization. The formation of native and non-native

disulfides was compared for the 100 structures produced by simulated annealing. The

native protein is cross-linked by disulfides between residues 16–26, 4–32, and 3-40.

Defined in terms of alpha-carbon separation (less than 6A), a native disulfide also exists
between residues 3-32. During the folding simulation, the native disulfides occurred more

often than any of the non-native disulfides although they occurred only 0.32 times on

average. Non-native disulfides occurred much less frequently, an average 0.035 times.

The average age of all disulfide contacts (15.8% of the total simulation length) is slightly

more than the average for all non-disulfide contacts (13.5%). If disulfide formation acts as

a steep local minimum to prevent the continued searching of other conformations, one

would expect the disulfide contacts to be among the last contacts formed, significantly

younger than the non-disulfides.

One way to test the role of disulfides in the simulated folding process is to alter the

cys-cys potential. By substituting the potential for cys-cys residues with one calculated for

all residues (generalized potential), the number of both native (0.138/structure) and non

native disulfides (0.015/structure) was signficantly decreased. 80% of these native

disulfides were due to links between residues 3–32 and 4-32, likely due to the natural

tendency for beta sheets to pair. The cys-cys potential was also replaced by one based on

the distribution of disulfide distances rather than cys-cys distances. Since no disulfide

bonds are formed at 15-16Å alpha carbon separation, this potential was centered at an
arbitrary low level (-20kT) with zero energy for distances outside of the distribution.

Replacing native disulfides (3-40,4-32,16–26) with a disulfide-specific potential effectively

selected for the formation of native disulfides over non-native (0.50 vs. 0.05), although

their number did not increase dramatically. Explicit disulfides did adjust the relative

occurence of certain native contacts, increasing the fraction of structures with contacts in

the A1-A2 and B1-R regions, but did little to change the overall pattern of contact
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formation. Deepening the disulfide potential for native disulfide pairs apparently does not

lead to premature freezing of the conformation as judged by the lack of non-native contacts.

Structures produced by shuffled and degenerate sequences

The structure of a protein is obviously sensitive to its sequence. A model which

generates the same structure regardless of sequence is thus certainly incorrect. A simple

test of the current model is to randomly shuffle the crambin sequence, maintaining

composition, and to repeat the simulation. The shuffled sequence (Figure 5.8) was initially

annealed with no secondary structure assigned. Secondary structure formed in a well

defined way, but the pattern of helices and sheets was completely different from that of the

native sequence. With this secondary structure assigned, the final average contact map is

entirely different from that produced by the native sequence. Even with the correct native

secondary structure assignment, the contact map produced by the shuffled sequence did not

resemble the native sequence-based model. These observations support the hypothesis that

the model using the native sequence is mimicking crambin's structure in a sequence-depen

dent way.

Results for other proteins

Preliminary work has been done to simulate the folding of proteins other than

crambin. Bovine pancreatic trypsin inhibitor has been used as a standard for many protein

folding schemes because of its small size and experimental information on its folding

pathways?!. One of the structures produced by simulated annealing with the current model

has a DME deviation of 4.5 Å from the crystal structure. Levitt and Warshell and Kuntz et
al 3 have used other approaches to simulate the folding of BPTI. The best structures

generated by their methods have a DME deviation of 5.3 Å and 4.7 Å respectively, slightly

worse than that generated by the current model using simulated annealing. While this
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improvement is small, it is important to note the fundamental differences between the

starting assumptions of other models and our own. As mentioned before, the Levitt

Warshel model assumes certain properties of the starting conformation and the energetics

that would force the formation of a BPTI-like structure. Kuntz et al. use a model with

several adjustable parameters which are fitted to optimize the agreement to the BPTI crystal

structure. In addition, they assume that the three disulfides found in the crystal structure

are known constraints before the minimization. In contrast, our model is parameterized

completely by the database of known crystal structures and assumes nothing about the

BPTI structure beyond the sequence of amino acids. It is therefore quite surprising that the

current model appears slightly better than other models which include BPTI-specifc

constraints. The improvement suggests that the specific constraints imposed in these earlier

models can be replaced in a generalizable way by potentials derived from a large database

of observations. Subsequent work shall determine whether the annealing procedure yields

intermediate structures which are similar to those inferred experimentally from data on

disulfide formation. If such intermediate structures exist, one may conclude that the

annealing process is reproducing the dynamics of the folding process, independent of its

ability to converge to the native minimum structure.

Conclusions

A simplified representation of proteins is presented in which the conformation of

the backbone and sidechains is specified by the dihedral angels for each residue. An

empirical energy is calculated using distance-dependent potentials between each pair of

amino acids. These potentials have been derived from the distribution of pairwise distances

observed in known crystal structures. Simulated annealing is used as a refinement
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technique to sample many different conformations and minimize the energy of the model

structure. Several results have been obtained using the crambin sequence to test the model:

1. Starting from random conformations, secondary structure forms in the model peptide

where it occurs in the true structure.

2. The formation of secondary structure is sequence-specific and depends upon the context

of the sequence (i.e. is influenced by long-range interactions).

3. With the secondary structure assigned, alpha-helices and beta-strands associate as they

do in the true structure.

4. Certain pairs of cysteines, corresponding to native disulfides, associate much more

frequently than other cysteine pairs. This pairing is partially driven by the folding

of the rest of the protein, and partially driven by the strong attractive potential

between two cysteines.

5. The empirical potentials favor the formation of a hydrophobic core of residues. This

partitioning is imposed during the crambin simulation, even though the true crambin

structure lacks a hydrophobic core.

One problem with the empirical approach used by this model is that the true energetics

which drive protein folding are deeply embedded in the amino acid pair potentials. One

might ask, for instance, why does a helix form in crambin between residues 22 and 29?

The reason cannot be attributed by this model to particular hydrogen bonds, backbone

conformational preferences, etc., since the simulation depends on the entire collection of

empirical potentials assigned to these and other amino acids. Since, however, minimization

using the empirical potentials successfully predicts a helix in this region, the problem has

been reduced to explaining how specific interactions within the database of structures give

rise to the potentials in the first place.
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Table 5.1: Phi-psi probabilities

Amino Acid Distribution

Alpha Beta Neither
# 7% # 9% # 90

Alanine 567 54.5 312 45.0 162 15.6
Arginine 174 48.5 130 36.2 55 15.3
Asparagine 224 41.1 168 30.8 153 28.1
Aspartate 324 45.2 214 29.8 179 25.0
Cysteine 111 39.1 121 42.6 52 18.3
Glutamine 198 45.8 162 37.5 72 16.7
Glutamate 353 58.8 129 21.5 118 19.7
Glycine 242 21.5 183 16.3 701 62.3
Histidine 103 40.2 85 33.2 68 26.6
Isoleucine 234 39.1 268 44.7 97 16.2
Leucine 420 47.4 318 35.9 148 16.7
Lysine 420 51.7 205 25.2 188 23.1
Methionine 88 47.8 63 34.2 33 17.9
Phenylalanine 187 41.2 183 40.3 84 18.5
Proline 178 35.6 244 48.8 78 15.6
Serine 414 42.9 377 39.0 175 18.1
Threonine 299 39.7 333 44.2 121 16.1
Tryptophan 78 43.1 73 40.3 30 16.6
Tyrosine 148 35.1 211 50.0 63. 14.9
Valine 316 35.7 415 46.8 155 17.5

Phi-psi probability plots were calculated for each amino acid type as described in

METHODS. Phi-psi space was broken into three regions termed alpha (-140°303

30°,-80°3P30°), beta (-180°-q)<-30°,\P-160° or P-30°), or neither (all remaining

areas). These labels are for reference only and do not indicate that all phi-psi pairs within

each region were obtained for a particular secondary structure (i.e. alpha helix or beta

sheet). The table lists the number of occurences and fraction of residues found in each

region of phi-psi space for each amino acid type.
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Table 5.2: Characteristics of fixed temperature and annealed simulations

RMS DME DME DME
Temperature Energy Rad. of gyr Total contacts Native Native Internal Average

(kT) (Å) (Å) (Å) (Å) (Å)

0.5 2531.6 9.68 781.2 8.15 5.34 5.03 4.06

1.0 2507.2 9.90 755.6 7.95 5.54 5.03 4.30

2.0 2528.5 9.65 784.6 8.01 5.36 4.94 4.14

5.0 2529.8 9.77 754.9 7.72 5.16 4.95 3.86

10.0 2509.7 9.99 727.0 8.36 5.51 5.35 4.08

20.0 2690.8 12.24 590.5 8.34 7.01 7.04 5.29

100.0 3357.3 17.47 469.7 12.42 14.28 7.91 13.46

sim. anneal 2349.7 9.15 828.1 7.54 4.76 4.21 3.76

crystal 3192.9 9.70 876.0
--- --- ---- ----

Structure

Monte Carlo dynamics was run at the indicated fixed temperatures. For the

simulated annealing run, the temperature was initially set to 100, and gradually lowered.

RMS native refers to the average RMS deviation of each model structure from the PDB

crystal structure. DME indicates the average distance matrix errors between each model

structure and the crystal structure (native) and between each model structure and every

other structure (internal). The average DME is the distance matrix error calculated by

comparing the contact map of the crystal structure to the average contact map generated

from all the model structures of a given simulation.
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Figure 5.1: Phi-psi probability plot for valine. Phi-psi probability plots were calculated

for each amino acid as described in METHODS. The probability of a residue having a set of

phi-psi values was calculated for each 10° x 10° pixel of phi-psi space. Probability

contours are drawn for the valine plot in intervals of 0.0015 (twice the average value for all

pixels). The regions defined as alpha and beta conformations are enclosed and labelled.
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Figure 5.2: Potential for interaction with leucine and lysine

Upper panel: The sidechain distances from every lysine to every other amino acid

sidechain were calculated for 100 PDB structures and used to produce a distance-dependent

potential for the Lys-X interaction as described in METHODS. Each potential is labelled by

the corresponding one letter code for the amino acid. Negatively charged and other polar

amino acids (D,E,W,S,Y) are strongly attracted to lysine, while positively charged amino

acids (R,R,R) and some hydrophobic amino acids (F.M) are repelled.

Lower panel: As above but for the Leu-X interactions. As expected, the

hydrophobic amino acids (F.W.C.I.L.V.M.) interact favorably with leucine while the

charged amino acids (E.D.H.K,R) interact with it poorly.
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Figure 5.3: Average contact maps for simulations as a function of temperature. Average

contact maps were generated for structures from several of the fixed-temperature (non

annealed) simulations. In a contact map the protein sequence runs from the N- to C.

terminus down the ve■ tical axis and left-to-right alo.s he horizontal axis. Contacts were

defined for each pair of residues whose alpha-carbon atoms were seperated by less than 10
A. The contour levels in the plots indicate the frequency with which contacts between

residues at the intersection of each point occurred among the structures produced by each
simulation.

1 12
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Figure 5.4: Average contact map for the annealed model and the native structure

The average contact map calculated for the 100 structures produced by simulated

annealing with explicit disulfides is shown in the lower triangle while the contact map for

the native structure is shown in the upper triangle. The contours for both contact maps are

based on the distance between alpha carbons for each residue (with the shortest contacts

enclosed by the highest contours).
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Figure 5.5: Several minimized model structures and the native structure

A variety of model structures produced by minimization are shown in the same orientation
as the crystal structure. (a-helix = red, b-strand = blue, reverse turn = green).

First row: The crystal structure (PDB name 1CRN)
Second row: The "best" structure produced by minimization (RMS = 401A, DME =

3.17A). The alignment of helices is nearly perfect (r.m.s. deviation < 1.5A) and
the overall construction of the model is correct, although the beta strands are poorly
packed.

Third row: The starting structure which yielded the best structure on minimization.
Fourth row: The "worst" structure produced by minimization (RMS = 9.59A, DME =

5.13A). The C-terminal 15 residues have packed against the open face of the helix
pair rather than lying next to the beta sheet as they do in the native structure.

Fifth row: An unusual structure produced by minimization. The RMS deviation of the
minimized structure from the native structure (7.5A) would not suggest that the
predicted fold is similar to the true fold. The low DME deviation (3.5A), however,
suggests that the model structure may have a pattern of contacts highly similar to the
native. Inspecting the structures, it is clear that the overall shape and local contacts
in the native structure have been reproduced by the model but that the two helices
have been swapped.
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Figure 5.6: Formation of secondary structure

The occurrence of regular structure, defined as four or more residues in

either alpha-helical or beta-sheet conformation, was tabulated for non-minimized starting

structures (open squares), and for 50 structures produced by simulated annealing with no

assigned secondary structure (solid squares). The formation of helix is limited to those

regions in which significant bias for helix formation exists, corresponding, in fact, to the

helical regions in the native structure (residues 7-19, 23–29). The formation of beta sheet is

significantly enhanced during minimization in regions overlapping the sequences of beta

sheet in the native structure (residues 1-4, 32-35).
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Figure 5.7: Formation of secondary structure by peptide fragments

The effect of sequence context on the formation of secondary structure was

determined by breaking the crambin sequence into a series of non-overlapping

decapeptides. Twenty structures were generated by minimizing each decapeptide as

described in the text. The resulting secondary structure (solid squares) is compared to that

calculated for the intact crambin minimization (open squares). The frequency of helix

formation is significantly increased while beta strands are virtually eliminated.
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Figure 5.8: Results with a shuffled sequence

The above randomly-generated sequence, with the same composition as crambin

but no homology to it, was used to test the sequence dependence of the modelling. The

formation of secondary structure was calculated as described in figure 5.6 (open squares

indicate alpha-helical structure while solid squares indicate beta-sheet structure).
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Chapter 6:

A predicted structure for the apolipoprotein-binding domain of the
LDL receptor
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Introduction

By directing the specific endocytosis of cholesterol-rich apolipoproteins, the low

density lipoprotein (LDL) receptor plays a key role in mediating the cellular uptake of lipid

and cholesterol. The receptor functions by binding with very high affinity (Kd = 10°-10-19

M) to both apolipoprotein-E and apolipoprotein-B, proteins found on the surface of very

low density lipoprotein (VLDL), chylomicron remnants, high density lipoprotein (HDL),

and low density lipoprotein (LDL) (Pitas, 1980). Following binding, the LDL receptor

together with its associated lipoprotein particle is internalized into clathrin-coated vesicles,

allowing the intracellular utilization of the lipoprotein's lipid and cholesterol (reviewed by

Brown, 1980). Interaction of the LDL receptor with its protein ligands thus acts to tightly

regulate the circulating concentrations of various lipoproteins, including LDL. Given the

positive correlation between LDL levels and risk for coronary heart disease, this receptor

ligand interaction is of major clinical relevance. We have thus initiated crystallographic

studies of the LDL receptor-binding domain of human apolipoprotein-E, and have recently

determined the three-dimensional structure of this protein (Wilson, 1991a). We now

describe our efforts to predict the structure of the apolipoprotein-binding domain of the

LDL receptor and to model the interaction between the receptor and one if its major ligands.

The primary sequence of the LDL receptor indicates several different domains,

including seven copies of a short cysteine-rich motif, three copies of an epidermal growth

factor-like domain, a glycosylated linker region, a short transmembrane peptide, and a

cytoplasmic tail (Sudhof, 1985). A series of deletion experiments have shown that the

seven cysteine-rich repeats are directly involved in apolipoprotein binding (Russell, 1989).

Engineered receptors lacking the fifth repeat (amino acids 174-210) display dramatically

reduced apo-E binding, suggesting that the receptor interaction with apo-E is largely

mediated by this domain (Russell, 1989). The fact that deletion of this domain (and of any

•
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of the other cysteine-rich repeats) does not alter the expression or proper folding of the

receptor suggests that the repeats are independently stable and do not rely on significant

contacts or disulfide bridges outside of the repeat to be properly folded. Attempts to

overexpress the extracellular portion of the receptor have been unsuccessful, thus making it

impossible to crystallographically determine the structure of the ligand-binding domain (J.

Diesenhofer, personal communication). In light of this, we hope to use a synthetic peptide

corresponding to the fifth cysteine-rich repeat as a structural model for the apolipoprotein

binding domain of the LDL receptor.

The protein folding problem (predicting tertiary structure from primary sequence

information) is generally recognized as one of the major unsolved computational problems

facing modern biology. In the general case, there is no accurate way to predict the structure

of a protein unless it is evolutionarily related to a protein whose structure is already known.

The LDL receptor cysteine-rich repeat is somewhat unusual, however, in that it is quite

small, containing only ~40 amino acids, and it is most likely stabilized by three internal

disulfide bridges. Using a Monte Carlo dynamics procedure that incorporates simulated

annealing, recent attempts to predict the structure of crambin (a small protein that also

contains three disulfide bridges) were remarkably successful (Wilson, 1989). By applying

the same computational procedure to the LDL receptor peptide sequence, we hoped that it

would be possible to predict aspects of the folded structure. Results of these simulations,

leading to a predicted tertiary structure for the receptor peptide are now described.

Preliminary experimental work with the synthetically-made and refolded peptide support

some of the basic predictions of the model. The complete three-dimensional structure of

the peptide is likely to be determined by x-ray crystallography or NMR in the next two

years, allowing a direct assessment of the accuracy of the protein folding algorithm.

■
-
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Methods

Protein folding algorithm

All attempts to predict the structure of the receptor peptide used the PROSA

(PRotein / Optimization by Simulated Annealing) program, available upon request from

CW (Wilson, 1989). Details of the method have been published previously but are briefly

summarized here for clarity. The algorithm relies upon a simplified model of the protein

chain and uses Monte Carlo dynamics to minimize the total energy of the protein. The

energy for an arbitrary conformation is evaluated with an empirical energy function that is

sensitive to the distance between pairs of amino acids. The protein is represented using a

full atom backbone model with ideal internal geometry. The torsion angle about all peptide

bonds is fixed in the trans conformation (180°). The backbone torsion angles, () and y, are

chosen from a probability-weighted Ramachandran plot, derived for each amino acid using

the (),w) pairs observed in the data base of known structures. Side chains are represented

by a single atom lying at the centroid of the true side chain. Empirical distance-dependent

potentials for all amino acid pairings were derived by analyzing the distribution of amino

acid pairs found in over one hundred protein structures in the Protein Databank (PDB).

Assuming a Boltzmann relationship, these observed probability distributions were

converted into distance-dependent energy functions, normalized assuming zero interaction

energy for pairs of amino acids separated by 15 Å. Starting from a random conformation,
Monte Carlo dynamics is carried out by randomly picking an amino acid in the protein and

replacing its current conformation (backbone (),\!y pair) with a new conformation picked

from the appropriate Ramachandran plot. The corresponding change in energy is used to

determine whether the new conformation is accepted or rejected. Simulated annealing is

employed to efficiently overcome local minima and search for the global energy minimum.

Tests with crambin indicated that the final structures produced by the folding procedure had
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an average r.m.s. deviation relative to the crystal structure of « 5 Å (distance matrix error),

but that some structures were as close as 3.2 Å to the true structure (Wilson, 1989).

Receptorpeptide sequence

The sequence of the receptor peptide, corresponding to amino acids 169-214 in the

human LDL receptor sequence, was obtained from the published data of Sudhof et al.

(1985). The standard repeat, defined by Russel et al. using the multiple copy alignment

(Russell, 1989), spans residues 172–210. Amino acids 169-171 and 211-214 have also

been included in the folding simulations to take into account the interactions of the repeat

with the remainder of the receptor. Alignment of the seven cysteine-rich repeats in the

apolipoprotein-binding domain shows that some positions are highly conserved between

repeats whereas others vary considerably. Knowledge of the positions of conserved

residues was used in the final stages of modelling since invariant amino acids tend to

correspond to buried residues.

Folding simulations

A series of computer folding experiments were carried out, initially using only the

primary sequence information but gradually including additional constraints developed

from previous experiments. At each stage 20-50 structures were generated and average

properties for the structures were calculated. The general strategy of the experiments is

outlined in Figure 6.1. Initially, a secondary structure prediction was made using the

results from the folding simulations in the absence of (p,\■ ) restraints. Using the secondary

structure prediction as a constraint, it was possible to predict the pattern of disulfide bridges

in the folded protein. With both secondary structure and disulfides predicted, a consistent

tertiary fold of the peptide resulted from repeated folding simulations. Using manual

computer modelling, the position of loop residues was finally adjusted to take into account
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knowledge of the conserved residue positions. The conformation of side chain atoms was

predicted using the SDCONFprogram, applied previously to predict side chain positions

when modelling protein structure by homology (Wilson, 1991b). Results for each of the

simulations are summarized below.

Results

Secondary structure prediction

The secondary structure of the peptide was predicted by initially simulating the

folding in the absence of any constraints on (),\V) choice and then analyzing the resultant

structures for helix and 3-strand formation (searching for contiguous blocks of residues

whose backbone conformation all correspond to the same type of regular structure)

(Wilson, 1989). Figure 6.2 shows the resulting secondary structure profile. A very weak

beta-strand signal is found at both the N- and C-termini of the peptide, corresponding to the

linker regions between cysteine-rich repeats. Two alpha-helices appear to form the core of

the peptide. Both the N-terminal helix (residues 178-185) and C-terminal helix (200-209)

are flanked by cysteines. An apparently disordered loop with some weak helical tendencies

separates the pair of helices and contains cysteines 188 and 195. In the second series of

tests, the observed secondary structure preferences were enforced by restricting the choice

of phi-psi pair for those residues with defined helical structure to the appropriate region of

the Ramachandran plot (regions defined as described previously (Wilson, 1989)).

Disulfide formation

The receptor peptide contains six cysteines (residues 176, 183, 188, 195, 201, and

210) and there are thus fifteen different combinations of three-disulfide proteins (1:176

183,188-195,201-210; 2: 176-183,188-201,195-210; 3: 176-183,188-210,195-210; 4:

176-188,183-195,201-210; 5: 176-188,183-201,195-210; 6: 176-188,183-210,195-201;
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7: 176-195,183-188,201-210; 8: 176-195,183-201,188-210; 9: 176-195,183-210,188

201; 10: 176-201,183-188,195-210; 11: 176-201,183-195,188-210; 12: 176-201,183

210,188-195; 13: 176-210,183-188,195-201; 14: 176-210,183-195,188–201; 15: 176

210,183-201,188–195). To determine the pattern of disulfides in the folded peptide, all

possible three-disulfide combinations were tested as follows. In a given simulation, three

distance constraints were introduced to favor the formation of a particular set of three

disulfides. After repeatedly simulating the folding of the protein using these constraints,

the fraction of final folded structures that had the proper set of disulfides formed was

recorded. The formation of a disulfide between a pair of cysteines can be favored by

replacing the standard Cys-Cys empirical potential with an artificial potential that includes a

deep energy well favoring close side chain contact. Once the contact develops, this

favorable interaction is locked in since any change in conformation that tends to separate the

pair of cysteines will increase the energy of the protein and be rejected by the Monte Carlo

procedure.

Table 6.1 shows the statistics for disulfide formation for the different combinations

of distance constraints. Strikingly, only one combination of disulfides appears compatible

with the folded structure: 176-210, 183-188, 195-201. All other combinations of disulfide

constraints failed to produce a single structure out of fifty attempts in which all three

disulfides simultaneously formed. In contrast, the complete set of [176-210, 183-188,

195-201] disulfides formed for a significant fraction of the folded structures produced with

these constraints. The reasons for this bias can be partially understood in terms of the

helical constraints. Both predicted helices are flanked by cysteines at their N- and C

termini (residues 176, 183, 201, 210). Because the intervening residues are forced into a

helical conformation, residues 176 and 183 are always more than 8 A apart while residues
201 and 210 are always at least 10 Å apart. Thus the combinations that include either the
176-183 disulfide or the 201-210 disulfide (1,2,3,4,7) are always prevented from
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forming. In addition, when residues 201 and 210 are constrained to a helical

conformation, they lie on opposite faces of the same helix. It is thus impossible to dock the

second helix parallel or antiparallel to the first and form bridging disulfides across the helix

ends (i.e. preventing the simultaneous formation of the [176-210, 183-201] disulfides or

the [176–201, 183-210] disulfides). This constraint blocks formation of disulfide

combinations 12 and 15. The predicted disulfide pattern differs from that observed in

other small cysteine-rich repeats found in receptors (e.g. EGF, TGF-0). In surveying

disulfide bridging patterns in known structures, Thornton notes that local disulfides (i.e.

those with a short connecting peptide between the pair of cysteines) are preferred but that

often cysteines near the N- and the C-termini are linked to one another (Thornton, 1979).

The predicted disulfide pattern thus conforms well to these trends.

Tertiary structure

Given the helical and disulfide constraints, we proceeded to generate a large family

of folded structures using the PROSA program. Figure 6.3 shows a superposition of the

Co-tracing for a set of proteins that formed with the presumed native pattern of disulfides.

In all structures, the pair of predicted helices cross each other at approximately 60°,

separated by 10-15 A. The lowest energy structure (in terms of the empirical Co-Co.

potential function) is also the structure that has the helices most antiparallel to one another

(helical axes crossing at 52°) and separated by the shortest distance (10.2 Å). The helix
pair in this structure (shown in bold in Figure 6.3) is similiar to the pair observed in

crambin (interhelical angle = 41°, interhelical distance = 9.2 Å), one of the few proteins in
º

which a pair of adjacent alpha-helices are joined by a disulfide bridge. This structure has

been used as a basis for further modelling attempts.

Amino acids 169-175 and 211-214 lie outside the core of the repeat defined by the

disulfides and thus serve as linkers to adjacent cysteine-rich repeats. The four C-terminal
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residues (211-214) usually lie in an extended conformation in the predicted structures,

protruding away from the remainder of the protein (Figure 6.3). The N-terminal extension,

on the other hand, often folds back onto the peptide and in most structures, the side chain

of tyrosine-169 is inserted into the hydrophobic core of the protein. This observation is

surprising since residues 164-171 make up an extended linker between repeats four and

five which does not exist between any other pair of repeats (Sudhof, 1985)—either the

hydrophobic packing in the fifth repeat differs from that found in the other repeats, or the

prediction is incorrect with regard to the conformation of the N-terminal extension. We

also observed that tryptophan-193, which is well conserved in both the LDL receptor and

the LDL receptor-related protein (LRP) repeats (Herz, 1988), was highly exposed in most

model structures, pointing away from the peptide. This conformation seems unlikely given

the hydrophobic nature of the side chain and its high conservation between repeats. In an

effort to improve the prediction, we deleted the three N-terminal residues and rebuilt the

loop connecting the helices such that the tryptophan side chain was directed into the

hydrophobic core, filling the position previously occupied by tyrosine-169. Following

manual rebuilding, the structure was subjected to energy minimization (using the X-PLOR

program (Brunger, 1987)) to optimize the geometry of backbone atoms. In the process of

rebuilding the loop, backbone torsion angles were adjusted but an effort was made to

restrict the (),\V) pairs to the observed regions of the Ramachandran plot.

To produce a complete atomic model of the receptor peptide, amino acid side chains

were constructed using an algorithm that accurately predicts side chain conformation when

modelling protein structure by homology (Wilson, 1991b). This algorithm relies upon a

library of side chain rotamers to sample conformation space and evaluates all combinations

of rotamers within a local cluster using a free energy force field that includes solvation

terms. In previous tests in which side chains were deleted from a known structure and

Subsequently added using the algorithm, the rim.S. deviation of side chain atoms from the
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original crystal structure coordinates was -1.4 Å. This accuracy was not severly reduced

in homology-modelling tests, suggesting that the addition of errors in the backbone

coordinates should not significantly worsen the prediction.

Discussion

Figure 6.4 shows a stereographic view of the final model of the LDL receptor

peptide. The protein consists of two helices, lying at approximately 50° to one another,

connected by a single disulfide at the N-terminus of helix one and the C-terminus of helix

two. The loop connecting the helices is in an extended conformation, stabilized at each end

by a disulfide bridge. The hydrophobic core of the protein contains amino acid side chains

from both helices and a single tryptophan from the extended loop. The N- and C-terminal

residues lying outside the disulfide-bridged core of the protein are in an undefined

conformation in the model, consistent with a role as simple linkers between adjacent

cysteine-rich repeats.

Helix-loop-helix structures are found in many different proteins, including the

DNA-binding helix-turn-helix motif of many repressor structures and the E-F hand motif of

calcium binding proteins. The cysteine-rich repeats of the LDL receptor are known to bind

calcium with high affinity and calcium is required for apolipoprotein binding. We

compared the predicted structure for the receptor peptide to known E-F hands found in

other proteins to determine whether a similiar mechanism for LDL receptor calcium binding

is likely. The E-F hand structure is characterized by a pair of helices that meet at a “T”,

separated by a negatively-charged loop of a-10 residues that chelates the calcium ion

(Richardson, 1988). In both the carp parvalbumin and turkey troponin C crystal structures

(Moews, 1975; Herzberg, 1988), at least four acidic amino acid side chains coordinate the

divalent cation. In contrast, the constraining 176-210 disulfide forces the helices in the
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predicted LDL receptor structure to meet at a “V” (i.e. the second helix packs against the

first at its end rather than in the middle), and the loop joining the helices is significantly

longer than that found in E-F hands. While some sequence features of the predicted

receptor loop match those of the E-F hand loop (e.g. an abundance of asparates, glycines,

and prolines), it does not contain a complete set of four acidic residues to fully coordinate

the calcium ion. It is possible that calcium binding sites are formed by the loop without a

complete set of carboxylates, or that glutamates and asparates elsewhere on the peptide

account for calcium binding.

Given the predicted structure, we can begin to address the following questions: 1)

what is the likely accuracy of the model?, and 2) what does the model suggest in terms of

the interaction of the receptor with apolipoprotein ligands? To answer the first question,

we have analyzed the predicted structure using a number of tests to determine whether it

has the gross structural properties expected for a globular protein. By several criteria used

to evaluate x-ray refined structures (bond length deviations, bond angle deviations, etc.),

the model has good stereochemistry. Backbone torsion angles for all non-glycine residues

except cysteine-188 fall well within the allowed regions of the Ramachandran plot. All

heteroatoms capable of hydrogen-bonding are predicted to either form an intramolecular

hydrogen bond or to be solvent accessible and thus capable of hydrogen-bonding to water.

While these results are encouraging, work by Novonty et al. has shown that

completely incorrect models of proteins can be refined by energy minimization to produce

structures with reasonably good internal geometry (Novotny, 1988). One of the crucial

tests of the accuracy of a model-built structure appears to be the extent to which

hydrophobic and hydrophilic amino acids are properly partitioned between the buried core

and the solvent-accessible surface. Hydrophobic and hydrophilic amino acids are color

coded for identification in Figure 6.4—almost all polar atoms (excluding those in peptide

bonds) are restricted to the surface. In general, the solvent accessibility of each amino acid
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correlates with its hydrophocity (data not shown). Hydrophobic amino acids making up

the core of the receptor peptide (Phe-179, Leu-184, Ile-189, and Trp-193) are not

completely buried. While this observation may suggest problems with the prediction, it is

also possible that a small amount of hydrophobic surface is present in the peptide to allow

the docking of adjacent repeats within the receptor.

Experimental work to refold and characterize a synthetic peptide corresponding to

the fifth cysteine-rich repeat (amino acids 169-214) has been started recently by Elisabeth

Jaffe and Mark Wardell (UCSF/Gladstone Labs). Refolding has been accomplished by a

two-step procedure in which dialysis of the guanidinium chloride-denatured protein into

Tris buffer preceeds disulfide formation and shuffling in a redox-balanced glutathione

buffer. Analysis of the refolded peptide by hydrophobic interaction chromatography and

molecular sizing chromatography has demonstrated that most of the material exists as a

single homogeneous monomeric species. Disulfide mapping of the purified protein (via

N-terminal sequencing of isolated proteolytic fragments) argues unambiguously for the

formation of the [176-210, 195-201] disulfides. From the current data, it is impossible to

conclude if the remaining cysteines [183-188] form a disulfide (although the fact that the

peptide is monomeric argues in favor of it). The predicted model, containing the [176-210,

183-188, 195-201] disulfides, thus agrees completely with the preliminary experimental

data. Future spectroscopic characterization (e.g. circular dichroism, UV fluorescence) of

the synthetic receptor peptide should be able to test other aspects of the prediction in

advance of the complete structure determination by NMR or x-ray crystallography. The

model structure would predict a significant (=40%) o-helical signal present in the CD

spectrum and partial (incomplete) quenching of the tryptophan fluorescence in the folded

peptide.

The predicted peptide structure suggests an obvious mechanism by which

apolipoprotein-E may recognize the LDL receptor. The second helix is unusually rich in

132



acidic amino acids, including Asp-200, Asp-203, Asp-206, Glu-207, and Glu-208. For

the most part, these amino acids are not paired with basic amino acids and are freely solvent

accessible. The distinguishing feature in the electrostatic potential map calculated from the

model (Figure 6.5) is a large region of negative potential surrounding this helix. Manually

docking the predicted receptor peptide with the LDL receptor-binding domain of apo-E, a

series of salt bridges between helix two of the receptor peptide and the basic amino acids in

the receptor-binding helix of apo-E can be proposed (Figure 6.6).

Asp-206 is predicted to lie at the center of the second helix in a triplet of amino

acids that is rigorously conserved between repeats. The relatively conservative substitution

of this amino acid by asparagine is known to virtually abolish apo-E-mediated lipoprotein

binding (Esser, 1988). The energetic contribution of a single receptor-ligand salt bridge is

unlikely to account for this dramatic effect. However, if the mutation results in the net

desolvation of a basic amino acid on the ligand, it could reduce binding dramatically.

Accurate modelling of the receptor-ligand complex may be possible by mutating the acidic

residues in helix two of the receptor to neutral amino acids and searching for compensatory

mutations in the basic region of apo-E. In a series of experiments such as this, it should be

possible to map out the energetically-important interactions that account for high affinity

binding.
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Table 6.1: Disulfide formation in the receptor peptide.

Disulfide constraints # formed # complete |<Rgyration» |<! contacts->
(Å)

[176-183, 188-195, 201-210] 46 0 9.270 800.0

[176-183, 188–201, 195-210] 26 O 9.651 782.5

[176-183, 188-210, 195-201] 45 O 9.596 786.0

[176-188, 183-195, 201-210] 49 0 9.265 825.1

[176-188, 183-201, 195-210] 36 0 10.024 761.9

[176-188, 183-210, 195-201] 49 0 9.521 797.8

[176-195, 183-188, 201-210] 77 0 9.301 806.4

[176-195, 183-201, 188-210) 59 0 9.818 786.8
[176-195, 183-210, 188-201] 52 0 9.615 796.4

[176-201, 183-188, 195-210] 89 O 10.120 761.2

[176-201, 183-195, 188-210] 74 O 9.920 789.2 .."

[176-201, 183-210, 188-195] 82 0 9.883 776.8 * -

[176-210, 183-188, 195-201] 101 6 9.534 789.1 º
[176-210, 183-195, 188-201] 77 0 9.521 805.7 !

[176-210, 183-201, 188-195] 88 0 9.983 776.7

Disulfide constraints were tested as described in the text. Fifty structures were generated

with each constraint condition. # formed: total number of disulfides in all structures that

formed corresponding to the constraints. # complete: number of structures that had the

complete set of disulfides formed. <Rgyration»; average radius of gyration of the final

structures. 34 contacts->: average number of long range contacts per structure. Row in

bold was identified as the most likely disulfide combination on the basis of the number of

structures with the complete set of disulfides formed.
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amino acid sequence

predict secondary structure
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test all disulfide arrangements

Nz
refine with secondary structure and disulfide

constraints

generate a full-atom model, manual
rebuilding, energy minimization

FIGURE 6.1. Prediction scheme for the receptor peptide.
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FIGURE 6.2. Predicted secondary structure. Fraction of structures with secondary

structure formed at each position is plotted as a function of sequence.
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FIGURE 6.3. Superposition of predicted structures. Co-tracing of six structures produced

by the PROSA program using the known secondary structure and disulfide constraints.

The lowest energy backbone structure is shown in bold.
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FIGURE 6.4. Final model for the receptor peptide. Stereo-view of the fully refined model

with hydrophobic amino acids (isoleucine, leucine, valine, phenylalanine, and tryptophan)

colored blue and charged amino acids (arginine, lysine, histidine, aspartate, and glutamate)

colored yellow.
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FIGURE 6.5. Electrostatic potential map for the receptor peptide. The DELPHI program

(Biosym, San Diego, CA) was used to solve the linearized Poisson-Boltzman equation for

the model protein, assuming a solvent dielectric constant of 80 and an ionic strength of 150

mM. +2 and -2 kT/e contours are shown in red and blue respectively. Acidic amino acids

in helix two (magenta) include Asp-200, Asp-203, Asp-206, Glu-207, and Glu-208.

■
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FIGURE 6.6. Predicted docking between the LDL receptor-binding domain of apo-E and

the fifth cysteine-rich repeat of the LDL receptor.
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Chapter 7:

A computational method for the design of enzymes with altered
substrate specificity.



Abstract

A combination of enzyme kinetics and x-ray crystallographic analysis of site

specific mutants has been used to probe the determinants of substrate specificity for the

enzyme O-lytic protease. We now present a generalizable model for understanding the

effects of mutagenesis on enzyme substrate specificity. This algorithm uses a library of

side chain rotamers to sample conformation space within the binding site for the enzyme

substrate complex. The free energy of each conformation is evaluated with a standard

molecular mechanics force field, modified to include a solvation energy term. This rapid

energy calculation based on coarse conformation sampling quite accurately predicts the

relative catalytic efficiency of over forty different o-lytic protease—substrate combinations.

Unlike other computational approaches, with this method it is feasible to evaluate all

possible mutations within the binding site. Using this algorithm, we have successfully

designed a protease which is both highly active and selective for a non-natural substrate.

These encouraging results indicate that it is possible to design altered enzymes solely on the

basis of empirical energy calculations.

2.
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Introduction

Many biological processes are characterized by the formation of a highly specific

macromolecular complex. In an attempt to understand the energetic terms important for

molecular recognition, our laboratory has been studying the interaction between the enzyme

O-lytic protease and its peptide substrates (Bone et al., 1987; Kettner et al., 1988; Bone et

al., 1989a; Bone et al., 1989b; Bone et al., 1990). We have used a wide variety of peptide

substrates to obtain accurate estimates for the binding energy of the reaction transition state.

This functional data has been complemented by crystallographically determined high

resolution structures of enzymes complexed to a parallel set of peptide inhibitors. Site

directed mutagenesis of residues in the substrate binding pocket has provided a large

number of variant enzymes with altered activity. Kinetic and crystallographic

characterization of these mutants has led to a better understanding of the factors important

in determining substrate specificity. In the course of these studies, we have developed a

data base of 42 enzyme-substrate kinetics measurements and structures and Ki data for 18

different enzyme-inhibitor complexes. This large body of data provides a rigorous test of

the accuracy of any algorithm designed to predict the energetic effects of altering a

macromolecular complex.

There is considerable interest in engineering biological molecules to form specific

complexes (e.g. rational drug design, enzyme engineering). Discovering which mutations

to a protein or alterations of functional groups on a drug will enable it to form a tight

complex is a combinatorial problem in which thousands of candidate molecules may need

to be tested. Recently-developed free energy perturbation (FEP) methods should

theoretically be able to accurately calculate the effects of mutagenesis on an enzyme

substrate complex or for a drug binding to its target. A number of test cases have been
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reported in which the components of a complex are slightly altered and the energetic

consequences are successfully predicted by FEP (Warshel et al., 1988; Rao et al., 1987).

While these methods can yield accurate energy estimates for some cases, they are extremely

computationally intensive and thus have limited utility in the more general problem of drug

design or protein engineering.

Here we describe the development and application of an energy-based conformation

search method to the problem of predicting changes in the stability of an enzyme-substrate

complex. Conformation space is broadly sampled using a library of idealized rotamers.

The energy of each rotamer combination is evaluated using a molecular mechanics force

field which contains an additional solvation energy term. Remarkably good agreement is

found between the calculated substrate binding energies and the experimentally-observed

values for O-lytic protease. We have used this algorithm to design a highly active enzyme

with a desired alteration in substrate specificity. This method should thus be a generally

useful tool for both computer-based drug design and for the design of mutant enzymes.

Methods

Figure 7.1 outlines the various steps to our algorithm. To calculate the relative

change in the stability of a macromolecular complex, we individually calculate the free

energy for each of the molecules in the complex and then for the complex itself. All

allowed conformations are evaluated and the corresponding free energies are used to

calculate the overall free energy for each molecule:

AG = AGo - RT ln Xew cagºgo) (1)
i

-
■
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where AGo is the ground state energy, AG; is the energy of the i-th conformation, and the

summation is done over all allowed conformations. The difference between the free energy

of the complex, AGES, and the free energy sum of the free substrate and enzyme, (AGE +

AGS), yields a relative AG for complex formation. Repeating these calculations on a

slightly modified complex gives another energy, AG', and the difference between them

(AAG=AG’-AG) directly determines the energetic cost of the modification.

(a) Rotamer representation of conformation space

The challenge in using such an energetic approach is to develop a practical method

for adequately sampling conformational space. To limit the set of conformations to a

computationally manageable number, we have ignored alternate enzyme and substrate main

chain conformations and fixed the backbone atoms using coordinates from a wild type

enzyme-inhibitor structure. Our representation of side chain conformation space is based

on the recent observations of Ponder and Richards (1987a). By examining a collection of

high resolution protein crystal structures, these authors have shown that the conformations

sampled by amino acid side chains are relatively limited and can be reasonably

approximated as a set of idealized rotamers. These rotamers, specified by the torsion

angles between non-hydrogen side chain atoms, generally correspond to staggered low

energy conformations. Because their work is based on a small set of high resolution

structures, amino acids defined by many torsion angles (e.g. methionine) are relatively

under sampled and thus not all possible rotamers are included in the Ponder-Richards

library. To correct for this, we examined all staggered side chain conformations and added

those with no bad intraresidue contacts to create a new library (thereby introducing another

asparagine rotamer and nine additional methionine rotamers). 95 rotamers are used to

represent the possible conformations of all amino acids except lysine and arginine. The
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complete conformation space of a defined site is given by all of the different rotamer

combinations for the side chains within the site. Our calculations for O-lytic protease have

used a site which contains the P1 substrate residue and those enzyme residues within 4A of
it (a total of four amino acids).

(b) Energy calculation

The free energy for each conformation is calculated as the sum of a non-bonded

term, ENB, and a solvation term, AG solv:

AG = wwbene + wolv4Gsolv (2)

where wVB and wºoly are empirically determined weights for the non-bonded and solvation

terms respectively. The reference state for the force field (conditions under which AG =0)

assumes that 1) the atoms in each molecule are non-interacting with respect to electrostatic,

hydrogen-bonding, or van der Waals terms, and 2) the atoms are completely buried in a

protein-like hydrophobic environment.

The non-bonded contribution is estimated using our implementation of the AMBER

all-atom molecular mechanics force field (Weiner et al., 1984). Since the rotamers

calculated from the standard library have idealized internal geometry, the energy for

distorting bond lengths and bond angles can be neglected. The interactions of hydrogen

atoms are included, using the PROPAK program to calculate their atomic coordinates

(Ponder & Richards, 1987b). For hydroxyl protons whose position is undetermined (e.g.

serine HOG), all staggered rotamers for the proton were evaluated. We have incorporated

the following changes to the standard AMBER force field. Rather than using partial

charges for every atom type, partial charges were assigned only to atoms with an absolute

charge I q | > 0.2er. All polar hydrogens were assigned the same partial charge (+0.31e).

Instead of using a multipole representation for sulfur atoms (nucleus + two electron lone
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pairs), sulfurs were represented as a single neutral atom. Non-bonded interactions were

arbitrarily capped at 100 Kcal/mole and were evaluated between 1) all pairs of rotamer

atoms within a site, and 2) between pairs of fixed and rotamer atoms for fixed atoms that

lay within an 8A box enclosing the site. A distance-dependent dielectric, e = r, was used to
scale electrostatic interactions.

The solvation term was evaluated using an approach based on the method of

Eisenberg and McLachlan (1986). In their formalism, the free energy of transfer for an

atom i is calculated as:

AG i = Aoi Ai (3)

where AG; is the free energy change in bringing atom i from a hydrophobic protein interior

to aqueous solution, Aoi is an atomic solvation parameter, and Ai is the solvent-accessible

surface area of the atom. In the original Eisenberg-McLachlan algorithm, a molecular

surface (as defined by Lee and Richards (1971)) must first be calculated to estimate Aj.

The calculation of a molecular surface is a computationally intensive process which can not

feasibly be done when carrying out a combinatorial rotamer search (in which thousands of

different structures are generated for each site). We have developed an alternative grid

based approach for estimating Ai which increases the speed of the solvation calculation by

several orders of magnitude. As a first step, positions in a body-centered cubic lattice,

spanning the entire site and corresponding to allowed water positions, are calculated. A

water molecule is assumed to occupy a lattice point if it is not within van der Waals contact

distance of any other protein atoms and if it forms a minimum number of hydrogen bonds.

The van der Waals contact radii defined by Shrake and Rupley (1973) are used to define the

protein excluded volume. The solvent accessible surface area for each atom is then

calculated as:
4trº n

A === (4)
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where r is the atom's van der Waals contact radius and n is the number of solvent-occupied

lattice points lying within a shell 3.3—3.6A from the atom (a completely exposed atom has
62 neighboring lattice points occupied). Non-bonded interactions between real atoms and

the lattice solvent molecules are not considered since these are assumed to be accounted for

by the solvation term. For aspartate, glutamate, and arginine side chains, both terminal

heteroatoms are assigned the charged atom (N+/O-) atomic solvation parameter (see

below).

(c) Structural model of the enzyme-substrate complex

Peptide boronic acids form transition state-like complexes with serine proteases and

serve as good structural models for the active complex between substrate and enzyme

(Matthews et al., 1970; Bone et al., 1987). For the o-lytic protease test case, we used the

x-ray crystal structure of the wild-type enzyme complexed to the methoxy-succinyl-alanine

alanine-proline-borovaline peptide inhibitor (PDB name 1P03) as a basis for all

calculations. This is the highest affinity wild-type enzyme-tetrapeptide complex for which

we have structural information (Ki = 6 nM, Bone et al., 1989b). The conformation of the

enzyme and the substrate observed in the complex was used to model the free molecules.

All residues were held fixed except for the amino acids in the S1 pocket of the enzyme

[192, 213, and 217A, chymotrypsin-numbering scheme (James et al., 1978)] and the P1

residue of the substrate. To account for the additional flexibility of the substrate relative to

the enzyme, the C8 atom of the Pi side chain was allowed to swing +5° perpendicular to the
plane defined by the N,Co., and C atoms of the P1 residue. A complete set of rotamers

were then calculated for each C8 position. Different side chain substitutions were made by
generating atomic coordinates for all rotamers at each of the varying sites [using the

Ponder-Richards PROPAK program (1987b)]. All rotamers corresponding to the
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appropriate amino acid at each of the varying sites were then combinatorially evaluated. As

an example, Figure 7.2 shows the rotamers used to sample conformation space for a

representative enzyme-substrate combination. In this figure all rotamers are shown

simultaneously.

(d) Enzyme-substrate kinetics

The relative binding energy between the substrate and the enzyme in the transition

state can be obtained directly from experimental measurements of kcal and KM using the

following formula (Fersht, 1985):

AGFT = -RT ln (#) - RT iné, (5)

Table 7.1 summarizes the kinetics measurements we have determined for O-lytic protease

with substrates of the type succinyl-alanyl-alanyl-prolyl-X-p-nitroanilide (where X = all

twenty naturally occurring amino acids except for proline, tryptophan, arginine, and

lysine). It is important to note that the experimental data contains information from polar,

non-polar, and charged residues and thus provides a stringent test for all aspects of the

energetic model. The following proteases have been included in the data set: wild type,

Met—Alal.92, Met—Ser192, Met—Alaz13, and Val—Ala■ 217A. Each AAG is calculated

relative to the wild type enzyme for the alanine substrate, using the formula:

AAG(i) = -RT ln (#) + RT ln (#) (6)M’ WT+ala

This arbitrary reference state was chosen because alanine is the best substrate for the native

enzyme and has been used as the starting point for other calculations of enzyme-substrate

specificity for O-lytic protease (Caldwell et al., 1990).
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(e) Parameterization

The data set of kinetics measurements was randomly segregated into two groups.

Twenty measurements were used to determine the scale factors in equation 2 which

optimize the correlation between calculated and experimental binding energies (the

parameterization data set). Because the calculated binding energies are a non-linear

function of the free parameters, the scale factors were iteratively adjusted until the

correlation was maximized. These optimized parameters were then used to calculate

binding energies for twenty other enzyme-substrate combinations (the testing data set).

Table 7.2 indicates which measurements formed each data set.

Results

(a) Parameterizing the solvation model

To accurately calculate solvation energies, the atomic solvation parameters (ASPs)

for different atom types were adjusted such that the fit to experimental n-octanol—water

transfer free energies of Fauchere & Pliska (1983) for N-acetyl amino acid amides was

optimized. Figure 7.3 shows a plot of the calculated versus experimental values. The

correlation coefficient between the experimental and calculated transfer free energies gives a

measure of the accuracy of the solvation model. Using five atom types (carbon, neutral

nitrogen, neutral oxygen, charged nitrogen/oxygen, and sulfur), both the molecular surface

approach of Eisenberg and McLachlan (1986), and the grid approach developed here yield

a correlation coefficient of 0.95. This suggests that the errors in A; introduced by the grid
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approach are less significant than the errors inherent to the formalism defined by equation

3. The ASPs for the five atom types listed above were refined to the following values:

Carbon 20+3 cal/mol/A2 N(+)/O(-) -112+13 cal/mol/A2
Nitrogen -40+9 cal/mol/A2 Oxygen -64+11 cal/mol/A2

Sulfur 53+20 cal/mol/A2

All of the enzyme-substrate complexes considered in the data set contain at least one

methionine in the active site. Given that the sulfur atomic solvation parameter is determined

by only two experimental measurements (methionine and cysteine transfer free energies),

we questioned the accuracy of this ASP. Eisenberg and McLachlan note that it is

impossible to determine a reliable ASP for the three different sulfur atom types

(methionine, cysteine, cystine) and in their calculations the cysteine value is ignored. Early

comparison of the calculated and experimental binding energies suggested that a better fit

could be obtained if the hydrophobicity of the methionine sulfur was increased. The ASP

for methionine sulfur atoms was thus increased to 80 cal/mol/A2 and this value was used in

all subsequent calculations.

(b) Optimizing the model

In modelling the effects of mutagenesis on enzyme-substrate specificity, we have

assumed that the enzyme-inhibitor complex is an accurate representation of the transition

state for substrate hydrolysis. Figure 7.4 shows a plot of the experimental binding

energies for boronic acid inhibitors versus the experimental values for the corresponding

substrates. In general there is good agreement, indicating that this basic assumption is

reasonable. The correlation between the two sets of energies (0.87) sets an upper limit on

how well we might expect to calculate substrate binding energies.

153



In principle, the non-bonded and solvation contributions to the energy are already

properly scaled (wwb = wºoly =1) and could be used directly to calculate binding energies.

Table 7.2 shows the results obtained using this assumption. The correlation between all

calculated and experimental binding energies is 0.26 (P - 0.10) and the slope of the best

fit line is 0.013. An analysis of the results clearly shows that the van der Waals

interactions between atoms in close contact with one another are drastically overestimated

for certain complexes. This is not surprising since the rotamers used to model the active

site are fixed and thus unable to accommodate slight bad bumps. The electrostatic terms

also appear to be overweighted, giving unreasonable results. For example, the calculated

difference between serine and alanine substrates binding to the Met192—Ser mutant (-23.5

Kcal/mole) is an order of magnitude greater than the experimentally observed difference

(+1.2 Kcal/mole). The calculated difference in binding energies drops to -0.9 Kcal/mole if

electrostatic terms are ignored.

The above observations suggest that the various components of the force field are

not properly scaled to one another and should be adjusted to take into account the various

assumptions of the model, e.g. that side chains are rigid idealized rotamers, that the protein

backbone is fixed, etc.. Because the ASPs were parameterized using experimental data of

Fauchere and Pliska (1983), the solvation model assumes that the hydrophobicity in the

buried protein is mimicked by n-octanol. Previous studies have indicated that proteins are

somewhat more hydrophobic than n-octanol, (Dorovska-Taran et al., 1982), indicating that

the solvation term may need to be upweighted. The relative weights of the non-bonded

component and the solvation component to the total energy were therefore adjusted to

maximize the correlation between calculated and experimental binding energies for the

parameterization set of data points. Scaling the non-bonded term by 0.031 and the

solvation term by 1.98 yielded an overall correlation of 0.77 (P< 10-8) and a best-fit line

with a slope of 1.06 (results shown in table 7.2).
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As shown in equation 1, the free energy calculated for a molecule contains a

temperature-dependent term representing the entropic contribution of non-ground state

conformations [-RT ln 2 exp(-AAG/RT)]. Equation 1 is valid if the summation over

discreet states is a good approximation of the integral over all possible states. In sampling

a limited number of rotamers, we are poorly estimating the contribution of non-rotamer

conformations and may thus underestimate the partition function. In addition, if

components to the free energy are not properly scaled, the value of the entropic term will be

distorted because the partition function is a non-linear combination of the free energies for

each conformation. For these combined reasons, it seemed likely that additional parameters

could help offset errors in the model and allow a more accurate calculation of the

contribution of non-ground state conformations to the free energy. These parameters were

introduced by scaling the AAGs before calculating the summation in equation 1 and by

applying a compensatory overall scale to properly weight the entropic term. The two

parameters had strongly coupled effects on the correlation coefficient and hence are not

truly independent. After optimization [during which the overall scale factor rose to 5.7 and

the AAG scale factor inside the summation rose to 25], the correlation between calculated

and experimental binding energies increased to 0.88. The significant improvement in the

correlation validates use of the additional parameters as judged by the X2-test. The non

physical nature of these additional scale factors makes their validity for other applications

questionable, although their introduction definitely improves the ability to reproduce

experimental data for the O-lytic protease test system.

An important validation of the true capabilities of this approach are to test the model

on data not used in the parameterization. Using optimized parameters derived from a

subset of twenty kinetics values, the correlation coefficient for the remaining twenty

observations was 0.85 (P< 10-11, data shown in table 7.2). Performance on the complete

data set of 40 measurements also gave a 0.85 correlation coefficient. We repeatedly re
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segregated the data points into new parameterization and testing sets and re-optimized to

determine how sensitive the parameters were to the particular choice of data. The final

parameters generally fell within 5% of those reported above and correlation coefficients

averaged 0.85.

(c) Importance of different aspects of the model in reproducing experimental data

Given a statistically significant correlation between calculated and experimental

values for the binding energies, we can ask what aspects of the algorithm are essential for

accurately reproducing experimental results. Since parameters have been adjusted to

optimize the fit to experimental values, any changes in the force field would be expected to

worsen the correlation. The importance of each part of the algorithm can be assessed by

removing it from the calculation and then noting the drop in the correlation obtained using

the recalculated binding energies. These results are summarized in table 7.3.

We have assumed that conformation space must be broadly sampled (using a

complete search of all rotamer combinations) to accurately estimate the free energy change

for a particular mutation. To test this assumption, we have repeated the calculation using a

single rotamer at each site. When only the most commonly observed rotamer in the rotamer

library is used for each amino acid, the correlation between calculated and experimental

binding energies drops from 0.85 to -0.26. Carrying out the rotamer search is thus a key

part of the algorithm. The temperature dependence of the correlation indicates how the

non-ground state rotamer combinations contribute to the overall AAG. If the temperature is

arbitrarily set to zero, the correlation drops to 0.75. Thus while the ground state (lowest

energy) rotamer combination provides most of the information needed to estimate the

energy of a complex, the entropy term given by the ratio of the partition functions is also

informative and improves the ability to reproduce experiment.
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By omitting the non-bonded or solvation terms from the energy calculation, we can

estimate how important either is in fitting experimental values. When only non-bonded

terms are included, the correlation between calculated and experimental binding energies

drops from 0.85 to -0.09. Using only solvation terms, the correlation drops to 0.36.

Clearly both terms are essential for obtaining a good fit. It is important to note that the non

bonded terms contribute significantly to the correlation, despite the relatively low weight

given to them after optimization (wwb = 0.031).

The AG calculated for complex formation is a function of the energy of the free

enzyme, the free substrate, and of the complex itself. If either the AGS or AGES term is

ignored, the correlation drops dramatically (data shown in table 7.3). If the AGE term is

neglected from the calculation, i.e. if the free energy for the unbound enzyme is assumed to

be constant, the correlation drops significantly to 0.66.

(d) Design of a protease with altered substrate specificity

To rigorously test the algorithm, we have attempted to design a mutant protease

which is both specific and highly active for a substrate not normally hydrolyzed by the wild

type enzyme. All possible single-site mutations within the binding pocket were

computationally evaluated for the ability to cleave substrates with P1 = leucine, since

leucine is a poor substrate for the native enzyme. An enzyme active for leucine substrates

might also be expected to cleave isoleucine substrates since these residues are both

structurally and chemically similar to one another. In fact, the difference in binding energy

for the two substrates, AAGLeu-AAGIle, for the wild type enzyme was calculated to be only

-0.16 Kcal/mole (prior to this work, there were no experimental kinetics data for the wild

type enzyme with isoleucine substrates). We thus screened all possible mutants for those

predicted to prefer leucine over isoleucine substrates by at least 3 Kcal/mole, corresponding
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to a factor of =150 in relative activity. From this subset of mutants, the substitution

Met192—Val was predicted to yield the enzyme most active for leucine. The predicted

binding energy for the leucine substrate (AAG = 0.85 Kcal/mol, relative to the Ala

substrate), is significantly better than that for the isoleucine substrate (AAG = 7.90

Kcal/mol).

The Met192— Wal mutant was made, expressed, and purified using techniques

described previously (Bone et al., 1989a). Figure 7.6 and table 7.4 show the kinetic data

obtained for the wild type and mutant enzymes with either leucine or isoleucine substrates.

As predicted, wild type o-lytic protease slightly prefers leucine over isoleucine substrates

(AAG = -0.42 Kcal/mole) but cleaves both poorly. The kcal/KM value for the designed

Met192— Wal mutant with the leucine substrate has been dramatically increased to 5320 st

'M-1, corresponding to a binding energy of 0.82 Kcal/mole relative to the reference state

(kcal/KM = 21,000 sºlM-1 for the wild type enzyme with the alanine substrate). This free

energy difference is essentially identical to the AAG=0.85 Kcal/mole predicted by the

algorithm. The mutant shows significantly less activity towards the isoleucine substrate

(kcal/KM = 24.0 sºlM-1, AAG(exp) = 4.01 kcal/mole).
While the enzyme is quite selective for leucine over isoleucine (preferring leucine

>200-fold), the isoleucine substrate is significantly more active than predicted. We

examined the ground state rotamer structure for the mutant complex with isoleucine to

understand why the calculated binding energy is so unfavorable. The structure predicts

several bad van der Waals contacts between the C6 methyl group of the P1 side chain and

other atoms in the active site. It appears that these bad contacts could be partially relieved

by a 45° rotation of the methyl group. Because our conformation search is limited to

idealized rotamers, we do not consider this possibility in evaluating the isoleucine

substrate. In addition, the model is based on a rigid backbone which in reality would be
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expected to relax to minimize the bad contacts. These effects could explain why this

algorithm overestimates AAG for bad substrates such as isoleucine.

Discussion

We have applied an energy-based conformation search to estimating the energetic

effects of mutagenesis on the formation of a macromolecular complex. To estimate the

relative free energy, the Ponder and Richards (1987a) side chain rotamer library has be

used to sample conformation space, and a combination of an AMBER molecular mechanics

force field (Weiner et al., 1984) and an additional ASP-based solvation term (Eisenberg &

McLachlan, 1986) have been used to evaluate the energy for each conformation. This

algorithm successfully models the results of a large body of experimental data for O-lytic

protease. In addition, the method has been used to design a mutant protease with high

activity and high selectivity for a non-natural substrate (leucine).

Previous attempts at engineering the components of a macromolecular complex

have been limited by both the accuracy and the speed of existing computational methods for

calculating free energy changes. Empirical, heuristic methods for estimating binding

energies between macromolecular complexes have been described by Naray-Szabo (1989)

and by Novotny et al. (1989). The most widely cited approach, based on free energy

perturbation (FEP), can be used to obtain highly accurate estimates of the AAG for a well

defined mutation in a complex (Warshel et al., 1988; Rao et al., 1987). For example, Bash

et al. (1987) have shown that FEP can successfully predict the effect of replacing the amide

group of a phosphonamidate inhibitor of thermolysin with an ester (substituting -NH- for

-O-)19. For reasons discussed below, however, FEP has somewhat limited utility in the

more general problem of designing mutations which will form a tight complex.
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To estimate energy changes using FEP, a molecular dynamics simulation is carried

out in which the Hamiltonian describing the system is gradually perturbed from the native

state to the mutant state. If the starting and final states are structurally different, the

simulation should be long enough to allow the conformational transition between the two

states to occur (Bash et al., 1987). Since the rotation of medium-sized side chains buried

in a protein has a characteristic time of 108-1012 picoseconds (McCammon & Harvey,

1987), it is impossible to accurately simulate this type of transition by molecular dynamics.

This suggests that if mutagenesis significantly alters the structure of a well-packed complex

(e.g. if a side chain rotation occurs), FEP will be unable to predict the energetic

consequences of the change. Crystallographic studies comparing peptide boronic acids

bound to different o-lytic protease mutants have shown that a mutation at one site can lead

to significant alteration in the surrounding side chain conformations (Bone et al., 1989a).

These changes can have dramatic effects on substrate specificity.

A second problem facing free energy perturbation methods is the amount of

computer time needed to simulate a single mutation. Because the molecular dynamics

simulation must be carried out near equilibrium to obtain accurate results, each AAG

calculation typically requires hours of supercomputer time. In the case of enzyme design or

drug design, thousands of different mutations are potentially worth evaluating. The

inability to rapidly screen through a large number of different complexes may explain why

FEP methods have not yet succeeded in the rational design of novel pharmaceuticals or

altered enzymes.

Recent calculations on the substrate preferences for wild type O-lytic protease

(Caldwell et al., 1990) allow a direct comparison of the accuracy of free energy

perturbation methods and of the algorithm described here. Caldwell et al. have calculated

the transition state binding energies for glycine, valine, and leucine substrates, relative to

the alanine substrate, using free energy perturbation. Their estimates for the glycine and
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valine relative binding energies differ from the experimental values by -0.72 Kcal/mole and

+2.27 Kcal/mole respectively. Our estimates for these binding differences are somewhat

more accurate, with an error of -0.08 Kcal/mole for glycine and -1.80 Kcal/mole for valine.

The free energy perturbation calculation drastically overestimates the difference in binding

of leucine versus alanine substrates (AG(calc) > 20Kcal/mole), whereas our calculation

underestimates the energy difference by 1.38 Kcal/mole. Crystallographic analysis using a

peptide-boroLeu inhibitor, revealed that although structural changes occur upon leucine

binding, the dominant change is simply the rotation of the side chain of Val217A by 120°.

This result underscores the practical difficulties in obtaining reliable values by the FEP

method when conformational alterations are required. While these results clearly favor the

algorithm developed here, it is important to note that the method has been parameterized

using a subset of the O-lytic protease data. Until the algorithm is applied to other

experimental systems, it remains unclear whether it will consistently out perform FEP.

A major goal of this work was to produce an algorithm that was both accurate and

fast enough to be useful in the rational design of enzymes with altered specificity. In the

example of O-lytic protease, there are at least three residues (192,213, and 217A) which are

likely to alter substrate specificity. To test all possible mutations at these sites for a single

substrate (203 = 8000 sequences, or =1113 = 1.4-106 rotamer combinations), one must be

able to automatically screen through each mutant rapidly. The current algorithm calculates a

binding energy for each rotamer combination in approximately 2.2.10-4 sec VAX 8650

CPU time. Complete combinatorial mutagenesis of the binding pocket for a given substrate

thus requires less than three hours.

A remaining question is whether the scale factors obtained for the O-lytic protease

test case are in fact the optimal parameters to use for other systems. All protein backbone

atoms are held fixed in our algorithm; in cases in which the active site actually expands to

accommodate large substrates, we therefore tend to overestimate the van der Waals
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interactions between the substrate and the protein. To compensate for this assumption,

non-bonded terms have been significantly down weighted relative to the original force field

values. The amount that main chain atoms can relax to accommodate bad contacts is

presumably a characteristic of a given site, and thus the plasticity of the O-lytic protease

active site may require a non-bonded weight significantly different from that used for other

proteins. If the active site of another protein is considerably more rigid than the O-lytic

protease active site, for instance, a non-bonded scale factor closer to one may be needed

since the assumption that the backbone remains fixed would be more accurate. Since the

scale factors used to obtain good agreement for the parameterization data set (r = 0.88) also

yield good results for the testing data set (r = 0.85), these parameters appear to be well

determined for the O-lytic protease system. We are in the process of applying the same free

energy force field to the problem of predicting side chain conformation. Quite good results

are obtained using the same set of scale factors determined for the O-lytic protease data,

suggesting that the values used are acceptable for other applications.

The results of this simple rotamer-based conformation search are extremely

encouraging — they suggest that it is feasible to design enzymes with desired catalytic

specificities solely on the basis of computer calculations. A major advantage of the method

described here is its ability to rapidly sample sequence space to select combinations of

mutations which may have altered binding properties. Even higher accuracy in predicting

the effects of mutagenesis on substrate binding energies might be obtained by combining

this coarse conformation searching algorithm with other computational methods that sample

local conformations more finely (e.g. molecular dynamics, free energy perturbation

methods). Future algorithms will attempt to apply a ‘high-resolution’ optimization of local

geometry to those configurations which appear feasible after a ‘low-resolution’ rotamer

search. In addition, by expanding the initial rotamer search to also consider shifts in
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backbone atoms, we hope to more broadly sample the full conformational space that is º

important in determining the effects of mutagenesis on complex formation.
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Table 7.1: Kinetics measurements for o-lytic protease mutants

Protease—Pi—kcal-KM–kaiº■ –Ki

MAV

MAV

MAV

Asn

Cys

Gln

Gly

Leu

Ser

Val

75

0.69

54

2.3

12

1.2

56

12

1.1

13

37

87

120

130

3.4

34

47

3.6

20

5.6

3.4

35

290

31

5.7

5.2

16

3.6

0.77

0.33

0.40

1.1

57

16

21000

34

9600

680

330

4.1

1800

2000

200

790

10000

110000

350000

310000

3000

160

980

340

67

2000

6.4

0.58

0.60

1.3

270

240
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Protease—Pi—kcal–KM—kcalºº■ -Ki
MAV Val 10 29 340 210

MMA Ala 74 4.9 15000 47

MMA Leu 1.3 250 5.1 1400

MMA Met 150 9.0 17000

MMA Val 5.6 20 280 30

SMV Ala 26 4.4 6100

SMV Val

SMV ASn 39 6.3 6100

SMV Cys 190 1.9 99000

SMV Asp 0.29 75 3.8

SMV Gln 31 12 2600

SMV Glu 1.1 94 12

SMV HiS 5.6 3.3 1700

SMV Gly 1.2 20 60

SMV Ile 0.16 5.7 28

SMV Leu 66 3.7 18000

SMV Met 31 4.6 6700

SMV Phe 170 6.4 26000

SMV Ser 7.7 9.5 810

SMV Thr 24 2.2 11000

SMV Tyr 3.2 1.8 1700

SMV Val 93 4.2 22000
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Protease: one-letter codes for the substrate binding pocket amino acids at 192,213, and

217A (e.g. MMV, the wild type enzyme, is Met192, Met213, and Val217A). P1: refers to

X in the indicator substrate succinyl-Ala-Ala-Pro-X-p-nitroanilide or in the boronic acid

inhibitor methoxy-succinyl-alanyl-alanyl-prolyl-boro-X. kcal (sº), KM(mM),

kcal/KM(s'M'): kinetic constants determined from the best-fit lines of Lineweaver-Burke

plots. Ki : inhibition constants (nM) were determined by competition with substrate.

Substrate assays used 0.1–100mM substrate, 0.01–31.0 puM enzyme, in 100mM Tris

HCl, pH 8.0.
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Table 7.2: Comparison of experimental and calculated binding energies

MAV

MAV

MAV

MAV

Asn

Cys

Gln

Gly

Met

Ser

Val

Met

Phe

Val

wNB=w solv=1
P Sul Experi l Simulati PIT

0.00

3.82

0.41

2.05

2.46

5.05

1.46

1.37

1.46

1.91

0.41

-0.95

-1.64

-1.64

1.09

2.05

2.87

1.78

2.46

0.00

–21.20

-1.35

41.46

-0.83

83.10

56.43

–26.43

–22.59

-0.96

-1.47

11.15

6.55

19.36

-1.94

-1.77

42.30

46.90

52.08

optimal
WNB, Wsolv

0.00

0.96

-1.16

3.03

–0.02

2.30

0.62

0.89

0.11

–0.37

-0.48

–0.82

-1.30

-1.49

–0.82

-0.25

1.03

–0.15

0.01

0.00

2.04

–0.89

2.55

2.38

3.67

0.86

1.90

1.05

0.11

-0.36

–0.82

–0.93

–0.75

-0.19

–0.17

2.50

–0.04

0.61

optimal
weights+NGS

:
.

-

º
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P Sul Experi l Simulati PIT

MAV

SMV

SMV

SMV

SMV

SMV

SMV

SMV

SMV

SMV

SMV

SMV

SMV

SMV

SMV

SMV

SMV

Val

Met

Val

Asn

Asp

Cys

Gln

Glu

Gly

His

Ile

Met

Phe

Ser

Tyr

Val

wNB=w solv=1

2.46

0.21

4.85

0.10

2.64

0.71

0.68

5.05

-0.95

1.23

4.37

3.41

1.50

3.82

0.00

0.68

-0.13

1.91

0.41

1.50

0.00

3.25

0.41

72.72

45.40

-0.67

–2.99

–23.76

-15.82

-4.58

-40.02

–37.93

-1.68

5.35

132.05

9.42

6.09

18.11

–26.49

–24.48

20.98

-3.50

optimal
WNB, Wsolv

-0.38

-0.23

1.72

0.02

-0.47

-0.48

0.42

2.73

-1.56

0.74

2.69

–0.18

1.22

2.99

–0.83

-1.26

-1.48

0.51

-0.34

-0.30

–0.82

optimal
weights+NGS

0.31

-0.28

3.25

0.42

0.27

-0.36

1.74

3.84

–0.98

1.35

3.65

2.21

1.76

3.39

–0.85

–0.89

–0.74

1.78

0.74

0.29

–0.19

T

.
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Protease: one-letter codes for the substrate binding pocket amino acids at 192, 213, and

217A (e.g. MMV, the wild type enzyme, is Met192, Met213, and Val217A). Substrate:

refers to X in the indicator substrate succinyl-Ala-Ala-Pro-X-p-nitroanilide. Experimental:

binding energies (Kcal/mole) calculated as described in methods. wwB=wsolv=1:

Calculated values using non-optimized parameters (wwb=wsolv=1). optimal winb,wsolv:

Calculated values using optimized weights (wwb=0.031, wolv=1.98). optimal weights +

NGS: Calculated values using fully optimized parameters (wwb=0.031, wºoly=1.98, scale

for non-ground state energy term = 5.7, scale for AAG = 25.). P/T: Indicates whether the

data point was included in the parameterization set (P) or in the testing set (T).
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Table 7.3: Importance of components to the model

Modification to the model r P(z=z0)

Standard model 0.85
-

Using non-bonded energies only –0.09 <10-8

Using solvation energies only 0.36 <10-3

Using only the ground state rotamer combination 0.75 0.11

Using only the most common library rotamer at -0.26 <10-10

each site

Using only AG(substrate), AG(complex) 0.66 0.02

Using only AG(enzyme), AG(complex) 0.09 <10-6

Using only AG(substrate), AG(enzyme) 0.20 <10-5

Using only AG(complex) 0.23 <10-4

Binding energies were recalculated after slightly modifying the algorithm as described

above. r. linear regression correlation coefficient, calculated between 40 calculated and

experimental binding energies. P(z-z0): significance level of the difference between the

Fisher z-transformations of r and ro (the standard model correlation) (Press et al., 1986).

The significance level indicates the likelihood that the modified model is actually better at

predicting experimental binding energies than the standard model.
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Table 7.4 Activity of a designed protease with leucine and isoleucine substrates

Wild type

Ala 21,000+700 0 O

Leu 4.2+ 0.05 5.05 3.67

Ile 2.0+ 0.04 5.47 (+0.42) 3.83 (+0.16)

Met—3Val192

Leu 5320+210 0.82 0.85
-

Ile 24+0.7 4.01 (+3.20) 7.90(+7.05) º

*

Comparison of kinetic data and calculated vs. experimental binding energies for wild type

and Met—Val192 mutant with either leucine or isoleucine substrates (suc-AAP-X-pnA,

X=Leu or Ile). Experimental data for the Ala and Leu substrates + wild type enzyme have

been reported previously (Bone et al., 1989b). Experimental and theoretical binding 1. ".

energies were calculated relative to the wild type + Ala substrate using equation 5. The

difference between leucine and isoleucine binding for each enzyme is shown in brackets.
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Wild type enzyme + valine inhibitor

J.
Remove the side chains from the P1 site
and the binding pocket

I
|

Separate the substrate from the enzyme

free substrate l l free enzyme complex
Add the P1 rotamer
side chain to the

Add rotamer side
chains to the binding Kº

Add rotamer side
D chains to the binding

pocket + P1 sitesubstrate pocket

Calculate AG(NBS) Calculate AG(NB,E) Calculate AG(NB,ES)

Calculate AG(solv,S) Calculate AG(solv,E) Calculate AG(solv,ES)

l l l
Store AG(i,S) and loop

-back for any more
rotamer combinations

Store AG(i,E) and loop
back for any more |-

rotamer combinations

Store AG(i.ES) and loop
back for any more
rotamer combinations

l l
Calculate the overall Calculate the overall
AG(S) AG(E)

I |

L
Calculate the overall
AG(ES)

J.
Calculate the relative free energy for complex formation:
AAG = AG(ES) - AG(E) - AG(S)

Figure 7.1. Algorithm for calculating relative binding energies. The flow chart shows
the steps in calculating the relative binding energy for an enzyme-substrate complex.
Details are given in METHODS.
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Figure 7.2. Sample rotamer model of o-lytic protease active site. All rotamers
corresponding to the Met192—Ala protease mutant with the phenylalanine substrate bound
are shown simultaneously. The side chain atoms for the enzyme residues 192 (red), 213
(yellow), and 217A (magenta), and the substrate P1 residue (green) are shown.
Conformation space is defined as the set of all rotamer combinations.
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Figure 7.3. Parameterization of the solvation model. Five atomic solvation parameters
(corresponding to carbon, non-charged nitrogen, non-charged oxygen, charged
nitrogen/oxygen, and sulfur) were adjusted to optimize the fit to experimental
n-octanol—water transfer free energies for 20 N-acetyl amino acid amides (Fauchere &
Pliska, 1983). Residue 2 of o-lytic protease (in an extended conformation) was used to
model the backbone of the blocked amino acid. Side chain atoms corresponding to all
possible rotamers were added using the Ponder-Richards PROPAK program (1987b). The
free energy for each rotamer was calculated as described in METHODS with either 1) all
ASPs set to zero (corresponding to an n-octanol environment), 2) ASPs set to the optimal
values (corresponding to an aqueous environment). The free energy of transfer for each
amino acid was calculated as the difference between the Boltzmann-weighted sums over all
rotamers for each of the two states. The experimental values relative to the glycine free
energy are shown as a function of the calculated free energies relative to glycine.
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Figure 7.4. Boronic acid peptides as a model of the transition state. The binding energy

of the boronic acid inhibitors Ala-Ala-Pro-X-boronic acid (calculated as RTln(K)) using

the Kis reported in table 7.1) are plotted as a function of the corresponding binding

energies for the substrates Ala-Ala-Pro-X-p-nitroanilide (calculated as -RTln(kcat/KM)).

Both values are normalized by the subtracting the binding energy calculated for the alanine

inhibitor/substrate.
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Figure 7.6. Kinetics measurements for an engineered protease. Kinetic constants were
determined for both the wild type and Met192— Val mutant for succinyl-alanyl-alanyl
prolyl-X-p-nitroanilide substrates with X = leucine (squares) or isoleucine (circles). For
wild type enzyme only kcal/KM could be accurately measured: with the leucine substrate,
kcal/KM = 4.2+0.05 M-1s-1; with the isoleucine substrate, kcal/KM = 2.0+0.04 M-1s-1. For
the Met—Val192 mutant with the leucine substrate, KM = 16+1.5 mM, kcat = 86+7 s”,
kcal/KM = 5320+210 M-1s-1; for the isoleucine substrate, KM = 26+3 mM, kcat =
0.64+0.07 s”, kcal/KM = 24+0.7 M-1s-1. Results are summarized in table 7.4.
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Chapter 8:

Development of a genetic screen for protease activity based upon
pro-inducer conversion
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Abstract

Genetic analysis of mutant proteins has played a key role in many recent structure—

function studies. The application of this technique to the study of enzymes requires that

altered enzymatic activity be easily detectable in situ. We have developed a screen for

mutant proteases in which proteolytic activity triggers the expression of a reporter enzyme

that can be easily detected using standard chromogenic substrates. Our method is based on

the dsdá [D-serine deaminase] operon of E. coli. Although normally inactive, this operon

can be strongly induced by low concentrations of D-serine or D-serine-containing

dipeptides. A longer peptide containing D-serine at the C-terminus will not act as an

inducer unless a protease is present to cleave it, thereby releasing D-serine or X-D-serine.

Active protease can be detected if the lac Z gene (3-galactosidase) is placed under the

control of the dsdá promoter. Coupling enzymatic activity to the induction of a reporter

gene via pro-inducer conversion may be a generally useful strategy for studies with

enzymes that cannot be readily detected in situ.
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Introduction

Genetic screens and selections are extremely powerful tools for probing the

structural basis of protein function. Site-directed mutagenesis of the lac repressor

(Lehming, 1987) and the trp repressor (Bass, 1988) has led to a much better understanding

of how these proteins bind selectively to their target operator sequences. Both of these

studies were possible because altered repressor activities could be easily detected within a

large library of mutants. Recently there has been much interest in using the serine

proteases as model systems to explore the determinants of enzyme specificity (Estell, 1986;

Wells, 1987; Evnin, 1990). We have focused on o-lytic protease, a small bacterial serine

protease homologous to the trypsin family of mammalian enzymes. By individual mutation

of residues lining the binding pocket, it has been possible to obtain highly active enzymes

with significantly altered patterns of substrate specificity (Bone,1989). An important goal

is to examine the ability of combinatorial binding pocket mutations to create unique enzyme

specificities. To enable these studies, we have sought to create a protease screen/selection

that would allow the same in depth structure-function analysis that has been possible with

the lac and trp repressors (Lehming, 1987; Bass, 1988).

We now describe a sensitive method for screening large libraries of mutant enzymes

on the basis of enzymatic activity towards a well-defined substrate. This screen has been

implemented for our studies of mutant proteases, although in principle it should be possible

to adapt it for studies with other types of hydrolytic enzymes.

Methods

Figure 8.1 shows the general scheme of the genetic screen. The screen functions

by linking the catalytic activity of the enzyme of interest to the induction of a reporter

s
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enzyme that can be easily detected. To accomplish this, a pro-inducer for the reporter

enzyme is synthesized. This pro-inducer is unable to induce reporter enzyme expression

but can be converted by the enzyme of interest into an active form.

To develop a screen for proteases with altered proteolytic activities, we have utilized

the D-Serine deaminase operon (dsdá). McFall and coworkers have thoroughly

characterized the properties of this system in E. coli (see review, McFall, 1987). D-Serine

deaminase is very poorly expressed under normal growth conditions (=35 molecules/cell).

The addition of low levels of D-serine (<1puM), however, significantly enhances expression

of the deaminase. With higher concentrations of D-serine (>101M), expression can be

increased 3000- to 5000-fold and the deaminase then makes up =1% of the total cell

protein. While D-serine and D-serine-containing dipeptides lead to induction of the dsdá

gene, we have shown that longer D-serine-containing peptides will not. To develop a

protease screen, we designed a peptide pro-inducer with the sequence L-Ala-L-Ala-L-Pro

L-Ala-L-Ala-D-Ser. We showed by reverse-phase HPLC (Figure 8.2) that wild-type

O-lytic protease would selectively cleave this peptide to yield the tetrapeptide Ala-Ala-Pro

Ala and the dipeptide L-Ala-D-Ser (tests with the pentapeptide Ala-Ala-Pro-Ala-D-Ser,

showed that O-lytic protease was unable to release D-ser). Using E. coli cells that have the

lac Z gene inserted into the coding region for D-serine deaminase and carry an expression

vector for O-lytic protease, we made expression of 3-galactosidase (which can be easily

detected with chromogenic substrates) dependent upon the presence of an active protease.

There are many advantages to such a screen. The pro-inducer can be easily made

using a solid-phase peptide synthesizer, making it feasible to generate a family of

pro-inducers to assay for different types of protease activity (using the series of Ala-Ala

Pro-X-Ala-D-Ser peptides). D-Serine induces ded A expression at submicromolar

concentrations and therefore only small amounts of pro-inducer need be provided (Heincz,

1984). At substrate concentrations significantly below the KM, the level of reporter gene

■
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induction should be directly related to kcal/KM (and thus a function of AGF, the reaction

transition state stabilization energy). Hexapeptides are chemically stable and cannot be

transported into cells — thus the pro-inducer alone should give a very low background of

induction. D-Serine is actively concentrated inside bacterial cells with a high-affinity KM

for transport (Cosloy, 1973). Therefore, once the pro-inducer is cleaved, the inducer

should be taken up locally and act only on the colony producing the active protease. The

traits of the dsdá operon listed above (high sensitivity, stability of the pro-inducer, active

transport of inducer) are common to several other E. coli operons and could be used in

other adaptations of the screen.

To implement the screen, we required an inducible expression vector for O-lytic

protease and an engineered cell line in which the expression of 3-galactosidase is controlled

by the dsdá operon. Dr. E.M. McFall kindly provided us with cell line EM111-1

(dsdá::Mu d(lac Ap) dsdC*). This cell line has a promoterless lac Z-containing Mu

transposon inserted into the coding region of the dsdá gene. Addition of D-serine to these

cells induces 3-galactosidase expression, as shown by growth on plates containing

5-bromo-4-chloro-3-indolyl-beta-D-galactoside (X-gal). 0.1—1000 puM D-serine causes

the colonies to turn blue, with a graded response covering the entire concentration range.

The E coli. lac Z gene is non-functional, thus fl-galactosidase expression is completely

independent of the lac promoter (i.e. is not induced by IPTG).

We designed an expression vector for o-lytic protease based on the pHSe5 vector

(Muchmore, 1989). This vector has been used for the high level expression of T4

lysozyme mutants and was chosen because protein expression (driven by tandem tac

promoters) can be easily controlled by the addition of IPTG. The pHSe3 vector can be

selected with ampicillin but since the EM111-1 cells are already ampicillin-resistant, we

replaced the plasmid Apº gene with a fragment conferring Kanamycin-resistance (using the

~.
.
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Pharmacia Kan' genblock, inserted into the Pst I sites on pHSe3). The coding region of

lysozyme was removed from this plasmid using the Nde I and Xba I restriction sites, and

replaced by a Mae I— Xba I fragment containing the gene for o-lytic protease (derived

from pl)A30). EM111-1 cells were transformed with plaš0 and protease activity assays

of cell culture supernatants showed that these cells secreted active o'-lytic protease.

Protease activity was shown to be strongly controlled by IPTG (Figure 8.3).

There are convenient restriction sites have been engineered within the protease

coding region to allow the generation of random or site-specific mutants (Silen, 1989). For

this study, we have used the Sty I and Xba I sites to swap fragments containing the coding

region for the substrate binding pocket between different plasmid constructs.

Results

To determine whether active protease could be detected using this scheme,

EM111-1 cells transformed with the protease expression vector were grown in selective

media (L-broth + Kanamycin + Carbenicillin) containing 500 puM pro-inducer Ala-Ala-Pro

Ala-Ala-D-Ser, and 0.0—1.0 mM IPTG (Figure 8.4). Because o-lytic protease is poorly

expressed at higher temperatures (Silen, 1989), cells were incubated at 23° for several

days. Cells grown in media lacking IPTG (therefore not expressing o-lytic protease)

remained white following the addition of X-gal. After several days, the addition of 1.0

mM IPTG (inducing high protease levels) caused the cell culture to turn an intense dark

blue color following X-gal addition. Control EM111-1 cells transformed with the pDA48

plasmid (expressing T4 lysozyme rather than o-lytic protease) showed no signal with or

without the addition of IPTG.
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O-lytic protease was shown by HPLC to release the dipeptide Ala-D-Ser upon

cleavage of the hexapeptide Ala-Ala-Pro-Ala-Ala-D-Ser. Previous studies suggested that

dipeptides do not directly activate the dsdá operon, but that activation occurs as a result of

the release of D-serine following intracellular hydrolysis of the dipeptide (E.M. McFall,

personal communication). We questioned whether amino acids other than alanine at the P1’

position (Ala-Ala-Pro-Ala-X-D-Ser) would improve the screen by either reducing non

Ot-lytic protease-catalyzed peptide cleavage, or by increasing the rate of intracellular

dipeptide hydrolysis. A series of peptides, X=Ala, Gly, Leu, Met, Phe, Asp, or Lys, were

incubated overnight in the presence or absence of purified o-lytic protease and

subsequently added to log-phase EM111-1 cells (not carrying the O-lytic protease

expression vector). As shown in Figure 8.5, ot-lytic protease-independent induction of

fl-galactosidase varies considerably for the different peptides. Alanine and glycine give the

largest non-specific signal, while larger amino acids and charged amino acids give almost

no detectable O-lytic protease-independent induction. The strength of the O-lytic protease

dependent signal also varied considerably between peptides, being optimal for the Met

peptide (Ala-Ala-Pro-Ala-Met-D-Ser). Differences in the size of the signal could be due to

different rates of cleavage by O-lytic protease, or due to differences in the dsdá induction

potential of the resulting dipeptide. Previous studies have suggested that O-lytic protease

shows relatively little substrate specificity at the P1’ position (Delbaere, 1981), arguing for

the latter explanation. It is interesting to note that aminopeptidases synthesized by E. coli

are somewhat Met-specific (since Met must be cleaved from many newly-synthesized

proteins) (Ben-Bassat, 1987); it is therefore not surprising that the Met-D-Serpeptide can

efficiently induce the dsdá operon.

Since protease activity could be easily detected in situ, we tested whether the screen

could distinguish between good and bad substrates for an enzyme. The preferred

substrates for wild type O-lytic protease have been determined using purified enzyme and

'',
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p-nitroanilide tetrapeptide substrates. O-Lytic protease shows strong selectivity for *

substrates at the P1 position (the amino acid on the N-terminal side of the scissile peptide

bond, the fourth residue in our hexapeptide pro-inducers) (Delbaere, 1981). For instance,

kcal/KM for the alanine substrate (Ala-Ala-Pro-Ala-p-nitroanilide) is 21,000 Ms', whereas

that for the phenylalanine substrate (Ala-Ala-Pro-Phe-p-nitroanilide) is only 0.38 Ms.”

(Bone, 1989). We synthesized a pro-inducer in which the alanine at the fourth position

was replaced by a phenylalanine. EM111-1/pDA50 cells were then grown on media

containing either the alanine or the phenylalanine pro-inducer, together with IPTG and

X-gal. As shown in Figure 8.6, cells respond well to the alanine pro-inducer but show

virtually no response to the phenylalanine pro-inducer.

To function as a useful screen, one must be able to select individual cells from the

entire population on the basis of activity. While the current tests in liquid culture

demonstrate that active protease can be detected, it would be impossible to identify ...

individual mutants since active protease from one cell is secreted into solution where it is * -

actively mixed with all other cells. To avoid this problem, cells must be grown on solid

media as individual colonies. Tests of the screen on solid media have been quite variable;

occasionally a strong difference between protease-expressing and non-expressing cells can

detected whereas the same experiment at other times shows no significant signal.

One possible explanation for this result is given by the observation that stationary

phase cells to not induce the dsdá operon in response to D-serine. A 1 ml culture of !, ".

EM111-1 cells was grown for two days under selective conditions in L-broth (23°, shaking

air incubator). 5 pil of the cell culture was removed after two days and diluted by L-broth

to start a new culture. D-serine (500 puM) was simultaneously added to both the old and the

fresh culture. After one day, X-gal was added to the cells and the color change was

recorded. D-serine strongly induced 3-galactosidase expression by the fresh culture, while

the old culture showed non-specific induction and no D-serine-dependent induction.
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Except for cells lying at the periphery, a bacterial colony contains cells which are no longer

actively growing and might therefore be expected to behave like a stationary-phase culture

with regard to dsdá induction. If this is the case, by searching for conditions which allow

dsdá induction in liquid culture stationary phase cells, one may be able to improve the

functioning of the screen with cells on solid media.

Discussion

The above experiments demonstrate that the screen can successfully identify cells

expressing active protease. Following optimatization of the media and growth conditions

on solid agar plates, the screen should be directly applicable to structure—function studies

for O-lytic protease, especially for experiments designed to probe the determinants of

substrate specificity.

The sensitivity of the assay may be easily adjusted by controlling levels of the

reporter substrate or of the pro-inducer. With large amounts of pro-inducer present, barely

active mutants should be distinguished from completely inactive mutants. Conversely,

small amounts of pro-inducer should allow a signal for only the most highly active

enzymes. In addition to D-serine control, the dsdá operon is also regulated by the cyclic

AMP-cAMP binding protein complex (McFall, 1973). In crp■ (cAMP receptor protein) or

cya (adenylate cyclase) cells, the D-serine-based induction of deaminase is somewhat

attenuated. It is possible that this effect can also be used to alter the sensitivity of the

SCTCCI).

The screen can be readily converted into a selection by using an antibiotic

resistance-encoding gene rather than a reporter gene. If Cm■ is used instead of the lac Z

gene, proteolytic activity should give rise to chloramphenicol resistance and cells should
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then survive selection with this antibiotic. Alternatively, it is possible to use the

expression of 3-galactosidase as the basis for a selection by growing EM111-1 /pL)A50

cells on minimal lactose media. Cells which secrete active protease induce lac Z expression

and are thus able to utilize the lactose and grow. Cells without active protease are

carbon-starved and tend to grow much more slowly. Preliminary tests of this selection are

encouraging although the background growth of non-induced cells remains a technical

problem (after several days, a small number of cells seem to lose their lacz phenotype and

start growing at a normal, unrestricted rate).

It should be possible to adapt this scheme for other types of enzymatic activity

using different pro-inducers. For instance, by coupling IPTG to an oligosaccharide, active

glycosidases could be selected on the basis of lac Zinduction. The range of enzymatic

activities which can be screened is currently limited only by the variety of inducible

promoters available in E. coli.
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Ala-Ala-Pro-X-Ala-D-Ser

|3:
Ala-Ala-Pro-X

Ala-D-Ser
*

*
*

FIGURE 8.1. Scheme for the protease screen. A detailed description appears in the text.
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FiGURE S.2. O-lytic protease cleaves the pro-inducer hexapeptide to release a D-Ser- - -

containing dipeptide. Peptide incubated in the absence and presence of purified wild-type
a-lytic protease was applied to a Vydac C.8 HPLC column (0.1% TFA in dh.30. Peptide
was eluted by a linear gradient of 0% — 30% acetonitrile (in 0.1% TFA).
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FIGURE 8.3. 0-lytic protease expression. The expression of O-lytic protease was
measured using the substrate Ala-Pro-Ala-p-nitroanilide for cell cultures grown in the
presence or absence of IPTG.
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FIGURE 8.4 EM l l l -l /pL)A50 cells were grown or rich media cor:aining carbenicillin,
kanamycin. X-gal, with no. 1) or with 500 plv! ALA-pro-inducer (b.c), and with no (a,b)
or with 1 mM (c) IPTG. Control cells incubated with 500 u\1 D-serine (d) clearly induce
B-galatosidase expression. Cells expressing a-lyt.c protease -(PTG) show a clear signal
as compared to non-induced (-IPTG) cells.

FIGURE 8.5. Specific- and non-specific induction of dsda by Ala-Ala-Pro-Ala-X-D-Ser
peptides (X = Ala, Gly, Leu. Met. Phe, Asp, or Lys). 10mM peptides were incubated at
room temperature for 12 hours with or without O-ly tic protease (10 nM) and subsequently
added to log phase EM l l l - cells growing in a sh::sing inct.oator at 23° (final peptide
concentration = 500 u\!) . After 1 day, X-gal was .dded and the color change recorded.

FIGURE 8.6. EM lll-l cells expressing o-lytic protease were grown in L-broth containing
1 mM IPTG, X-gal, and either 500 puM ALA-pro-inducer (a) or PHE-pro-inducer (b).
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Chapter 9:

Modelling side chain conformation for homologous proteins using
an energy-based rotamer search
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Abstract

We have developed a computational method for accurately predicting the

conformation of side chain atoms when building a protein structure from a known

homologous protein. A library of rotamers is used to model the side chains, allowing 5-6

different conformations per residue on average. Local sites of adjacent side chains are

defined throughout the protein, and all combinations of side chain rotamers are evaluated

within each site using a molecular mechanics force field enhanced by the inclusion of a

solvation term. At each site, the lowest energy combination of side chains is identified and

added onto the fixed protein backbone. A series of test cases using the refined x-ray

structure of O-lytic protease has shown that 1) the force field can correctly predict up to

90% of side chain rotamers, 2) the assumption of side chain rotamer geometry is usually a

very good approximation, and 3) the complete combinatorial conformation search is able to

overcome local minima and identify the lowest energy rotamer set for the protein in the

absence of a starting bias to the correct structure. Tests with several pairs of homologous

proteins have shown that the algorithm is quite successful at predicting side chain

conformation even when the protein backbone used to generate side chain positions is

distorted. The average rims, deviation of predicted side chain atoms rises from 0.73 Å
(in a test case with the correct backbone) to only 1.95 Å (in a test case with <35%

homology). The high accuracy of this method suggests that it may be a useful automated

tool for modelling protein structure.
*
*.
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Introduction

Several different approaches have been developed to predict the structure of a pro

tein using its amino acid sequence. The most successful class of prediction techniques uses

the known structure of an homologous protein as a starting point for modeling the

unknown structure (Blundell et al., 1987). As the number of protein crystal structures

grows, it becomes increasingly likely that an unsolved protein will have some homology to

a previously-solved structure. In the future, therefore, it may be possible to predict the

tertiary structure of many proteins using the database of solved structures. The

development of an accurate, homology-based modelling algorithm is thus likely to have

general use in solving the protein folding problem.

There are three major unsolved aspects to the problem of homology-based

modelling: 1) constructing the alignment of a sequence of an unknown protein to the

sequence of a protein whose structure is known, 2) generating the backbone conformation

of loops and other regions which are not conserved between the two proteins, and 3)

predicting the conformation of side chains, in both conserved and non-conserved regions

of the structure. The current work deals only with the last part of this problem —

modelling side chain conformation.

There is no generally accepted method for predicting side chain conformation,

although several approaches have been developed. The methods may be divided into two

broad categories: rule-based methods and conformation searching methods. Rule-based

methods rely on the observation that topologically equivalent side chains in homologous

structures generally adopt the same torsion angles (Summers et al., 1987; Chothia et al.,

1989; Summers & Karplus, 1990). However, there are known cases in which identical

side chains in homologous structures adopt different conformations (Summers et al.,

1987). Conformational searching approaches iteratively change the conformation of one
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side chain at a time and score its conformation subject to a potential energy function (Snow,

1986; Bruccoleri, 1987; Novotny et al., 1988). The method of Schiffer et al. (1990) has

extended upon these methods by including a cycle of energy minimization prior to scoring.

These algorithms are usually limited by the presence of multiple energy minima and so far

Solvation effects have not been taken into account (as a consequence, surface residues are

generally modelled poorly). Furthermore, most conformational search methods developed

to date are non-combinatorial in that they attempt to optimize only a single side chain at a

time. Recent work by Lee and Subbiah (1991) has shown that the core residue

conformation can be more accurately predicted using a Monte Carlo procedure that

simultaneously optimizes the complete set of side chains for a protein.

Our approach is based on the observation by Ponder and Richards (1987) that side

chain conformations can be modelled using a relatively small library of idealized

‘rotamers.’ Instead of considering the full conformational space theoretically accessible to

a side chain, one of a small number of low energy conformations (typically 5-6 per residue

type) can be used to describe the side chain. In trying to model the conformation of side

chains, one need only specify which side chain rotamer will be observed, rather than

independently predict the coordinates of each atom. Because proteins are well packed, the

conformation adopted by one side chain can change the conformations of neighboring

residues. This suggests that a successful side chain prediction algorithm must be

multidimensional—simultaneously considering the combinatorial conformation space of

several adjacent residues.

In previous studies, we have applied the rotamer representation of conformation

space in combination with an approximate free energy force field to calculate the effects of

mutagenesis on enzyme substrate specificity (Wilson et al., 1991). Rotamers were used to

model the three enzyme binding pocket residues and the P1 side chain of the substrate for

mutants of the enzyme O-lytic protease. Surprisingly good agreement between calculated
* *
*
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and experimental binding energies was obtained for a diverse body of enzyme kinetic data

(r-0.85, average energy error = 0.7 Kcal/mol for 42 mutant enzyme-substrate

combinations). Crystallographic studies of the mutant proteases complexed with boronic

acid peptide inhibitors (transition state-like analogs for the substrates) showed that the

lowest energy combination of binding pocket side chain rotamers was generally the same as

the set of rotamers observed in the x-ray structure. This observation suggested that the

rotamer model could be used in a more general way to predict side chain conformation

given a fixed protein backbone.

In developing our algorithm, we have deliberately avoided heuristic rules derived

by examining pairs of known homologous proteins. While some success has been

reported with such methods (Summers & Karplus, 1989), it remains unclear how generally

and reproducibly one can apply these methods for true predictions. In the absence of many

test cases, it is impossible to know which rules contribute to the accuracy of the side chain º
prediction and which are useful only for the test cases which have been studied.

As an alternative, we have used a molecular mechanics-based force field containing º

an additional solvation term to evaluate the suitability of each rotamer combination within a

local site of =5 residues. The energy function, which has been parameterized to reproduce

a large body of small molecule experimental data and enzyme kinetics measurements,

provides all of the decision-making rules for selecting side chain conformations. As such,

the test cases we have considered should mirror results obtained in true modelling 1

suitations in which the correct structure is unknown.

Our algorithm for modelling side chains in an homologous structure presupposes ■
that one knows the sequence alignment between two proteins. We start with a structure

that has peptide backbone atoms included for only the conserved regions of the structure.

Sites are defined iteratively throughout the protein and an attempt is made to optimize the

local side chain packing within each site. All rotamers corresponding to the amino acids º
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within a site are combinatorially tested. An empirical free energy calculation is used to

judge the quality of each possible rotamer combination and identify the lowest energy

structure. Details of the method are described below.

We have verified this procedure using several test cases for which the structures of

pairs of homologous proteins are known. Analysis of the structures before and after appli

cation of the above algorithm suggests that it is remarkably good at predicting side chain

conformation, especially for pairs of proteins with high homology to one another.

Methods

(a) algorithm outline

Figure 9.1 outlines the key steps in the algorithm for modelling side chain

conformations. After generating the starting model (lacking all side chain atoms), the cº

coordinates for all rotamers appropriate to each amino acid type are calculated for all * - -

residues in the model. Rotamer coordinates are generated using the Ponder and Richards |

program for tertiary template calculations, PROPAK. Their standard rotamer library,

containing 111 rotamers for all twenty amino acids, has been used for these calculations.

All rotamers which do not make significant bad contacts with the main chain atoms are

included in our combinatorial searching. After generating the rotamers, the following

procedure is applied (see Figure 9.1): 1. *

1) A site center (one of the amino acids in the model) is chosen at random.

2) The N residues whose side chains are closest to the site center are identified. r

3) For the (N+1) residues in the site, all possible combinations of rotamers are

tested, and for each rotamer combination, an approximate free energy is calcu

lated.
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4) After testing all combinations, the set of side chain rotamers which has the low

est calculated free energy is added to the model.

5) Steps 1-4 are repeated using a different randomly-chosen central amino acid

until all residues in the model have been used as site centers.

6) Steps 1-5 are repeated until the predicted side chain conformations do not

change from one cycle to the next.

For the test cases reported here, each site included 5 residues. Repeated cycles did not

converge for all residues because local sites overlap and in several cases, the rotamer

chosen by the algorithm depended on which other residues were being considered

simultaneously. For all of the test cases, therefore, the procedure was terminated after

having cycled through the entire protein three times. Increasing the size of the sites from 5

to 7 residues improved the results marginally but dramatically increased the computation

time.

Details on the force field used to calculate the energy of each conformation are

described in a previous paper (Wilson et al., 1991). Since rotamers are used for the side

chains, the internal geometry of the atoms is idealized and thus the energetic costs of

altering bond lengths, bond angles, and dihedral angles can be neglected. The force field

consequently has only two terms: 1) non-bonded interactions between atom pairs, and 2)

the change in solvation energy upon exposing atoms to solvent. In our previous

calculations of the effects of mutagenesis on enzyme substrate specificity, both the non

bonded and solvation terms were required to accurately reproduce experimentally

determined binding energies. The optimal weights for the two terms found for the o-lytic

protease calculations have been used for these studies (wVon Bonded=0.031, w$olvation=

1.98). The non-bonded terms (including electrostatics, hydrogen-bonding, and van der

Waals energies) are calculated using the AMBER molecular mechanics force field (with a
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distance-dependent dielectric, e=r, for the electrostatic term) (Weiner et al., 1984). Non

bonded interactions greater than 100 Kcal/mole are truncated at this maximal value.

The effects of solvation are treated using a model similar to that of Eisenberg and

McLachlan (1986). In their formalism, each atom is assigned an atomic solvation parame

ter (ASP); multiplying an atom's solvent accessible surface area by its ASP directly gives

the solvation energy for that atom. We have used the ASP approach but rather than

calculating the precise solvent accessible surface area for each atom (an extremely time

consuming computation), we use a grid method to estimate solvent accessibility. Each grid

point on a 1.0-A body-centered cubic lattice surrounding the macromolecule represents a
pseudo-solvent molecule. For each conformation, a new list of allowed solvent positions

is determined (solvent can be excluded from the grid by van der Waals contacts with non

solvent atoms or by a lack of hydrogen-bonding partners). The number of grid points

surrounding an atom occupied by solvent is proportional to the total atomic accessible

surface area and thus to the solvation energy for the atom. There is no statistically signifi

cant difference between the accuracy of the original Eisenberg-McLachlan method and our

grid-based method, as judged by the ability to fit amino acid transfer free energies (Wilson

et al., 1991).

(b) Building starting models

To evaluate the performance of our side chain modelling algorithm, we constructed

several “homology-built' models using pairs of known protein structures. In each test, one

protein was assumed to be unsolved (the “unknown’) and the other protein served as a

starting point for the modelling (the “template”). An effort was made to select pairs of

structures with a wide range of sequence similarities. The sequence identities between the

pairs we tested (listed in Table 9.1) varied from 30% to 100%. The models were made by

substituting the amino acid side chains of the unknown structure onto the backbone of the

template structure at all unambiguously equivalent positions. To determine which positions

º,
f

•. *
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were structurally equivalent, the crystal structures were first superimposed manually using

computer graphics, then refined automatically by finding all pairs of residues within 2.5 Å
of each other. This alignment was then corrected by hand: in some cases where a loop in

one structure had a similar conformation but was displaced by more than 2.5 Å from the
analogous loop in the other structure, residues were still assigned to be equivalent. Loops

having very different conformations and insertions were omitted from the models.

(c) Model Evaluation

To evaluate the resulting side chain conformations, the backbones of the true and

model structures were superimposed by a least-squares fit method. The r.m.s. deviations

of the side chains and backbones of every residue in the model and true structures were

then computed. We have tabulated both a side chain-average r.m.s. deviation (averaging

the r. m.s. deviation calculated for each residue), and an overall r.m.s. deviation (summed

over all side chain atoms). The average rim.s. deviation (used by Novotny et al., 1988) is

generally smaller than the overall r.m.s. deviation since side chains with fewer atoms tend

to be more accurately modelled and their contribution is more highly weighted in the

average deviation than in the overall deviation.

We also generated a best possible structure using the template structure backbone

and the rotamer library. At each position, the rotamer having the lowest r.m.s. deviation

from the side chain in the true structure was selected. This ‘lowest coordinate error’

structure is the best result we could hope to obtain with the algorithm since we allow only

idealized rotamers for the side chains. To score our model, we determined the fraction of

the side chains that had been assigned to the same rotamer as that in the lowest error

Structure.

To determine whether our procedure actually improves the accuracy of the model,

we also generated structures which had the most common rotamer assigned to each residue.
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The r.m.s. deviation of this unrefined “first guess' model from the true structure gives a

baseline measure against which other models can be compared.

Results

(a) Idealized test case with ot-lytic protease

Before applying the algorithm to homology model building, we first tested the

rotamer approximation and the force field to determine how accurately we could identify the

correct side chain rotamers under the best possible conditions. In the first test case, the

side chains from the structure of o-lytic protease were removed one at a time and then built

back on to the protein backbone. To best isolate possible sources of error, the following

changes were made in the modelling procedure. 1) For each side chain, the rotamer in the

library closest to the observed side chain (in terms of r.m.s. deviation) was replaced by the

true side chain conformation. 2) All symmetry-related atoms within 10A of any protein

atom were included in the energy calculations (since crystal contacts may determine the

conformation of surface side chains) and the two crystallographically-determined sulfate

ions were explicitly included in the calculation. 3) Instead of combinatorially searching all

rotamers at sites throughout the protein, a single residue was searched at a time and after

identifying the lowest-energy conformation, the original true side chain was temporarily

added back to the protein. At the completion of the calculation, the predicted rotamers were

then built onto the structure at each position. The only possible sources of error in this test

case are the crystallographic coordinates for O-lytic protease and the force field used to

estimate the free energy.

Of 142 residues with more than one rotamer (i.e. not glycine or alanine residues),

the crystallographic side chain rotamer was identified as the lowest energy rotamer in 126

■
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cases (89% correct). The overall r.m.s. deviation between the lowest energy structure and

the crystal structure was 0.59 Å (side chain atoms only, see Table 9.2). While the majority

of side chains are modelled correctly, there are certainly a significant number of errors in

this best case model.

Assuming that the incorrect predictions result from errors in the force field used to

evaluate them, we hoped to better understand these problems by analyzing the characteris

tics of the poorly placed side chains. Of the 16 residues which were not correctly

predicted, 12 were exposed and 4 were buried. The bias towards exposed residues is not

unexpected since there are strong packing constraints on buried residues which do not exist

at the surface (especially when only a single side chain is varied at a time). Surprisingly,

all four incorrectly predicted buried residues were polar amino acids, including three

serines and one asparagine (Val 40 was the only hydrophic amino acid among the 16

incorrect residues). For most of the incorrect side chains, both non-bonded and solvation

terms are lower for the incorrect rotamer than for the correct rotamer, suggesting that

adjustments in the weighting between these two terms are unlikely to improve the

prediction.

The incorrect residues include an unusually high number of serines (6) and

asparagines (5), perhaps indicating that uncharged hydrogen bonds may be treated

improperly by the force field. In their work on side chain modelling, Summers and

Karplus (1989) note that the energy surface for the rotation of serine hydroxyls is often

characterized by multiple minima with energies close to that of the global minimum. This

observation would explain the tendency for serine side chains to be poorly predicted.

Often, the incorrectly predicted side chains form a set of hydrogen bonds that differs from

that actually found in the crystal structure. In addition, for several residues both the

predicted and the observed side chains are pointing out into solution and there appears to be

no obvious reason why either conformation is preferred over the other.
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It is possible that incorrectly placed side chains are indicative of errors in the crystal

structure rather than of errors in the force field. For four residues (Asn-62, Asn-118, Asn

162, and Ser-189), the calculated energy difference between the crystal structure side chain

rotamer and the lowest energy rotamer is more than 10 Kcal/mole—it seems unlikely that

force field errors alone could make the crystal-structure side chain conformation appear so

unfavorable. The original O-lytic protease structure (as with most crystal structures) was

refined without considering the interactions of protein hydrogen atoms (Fujinaga et al.,

1985). Bad contacts involving side chain hydrogen atoms are found for the four

incorrectly-predicted crystal structure side chains with large energy errors. Analysis of a

2 I Fol - | Fe I omit map (Fe calculated using the crystal structure with the incorrectly

predicted side chains omitted) shows, however, that these four high energy residues (and

all other misplaced side chains) fit the electron density quite well. In one case (Asn 62),

hydrogen bad contacts could be relieved by a 180° flip of X2, switching the positions of

OD1 and ND2 but not changing the fit to the electron density. For most other residues, the

crystal structure side chain rotamer provides an unambigously better fit to the electron

density than the predicted rotamer. Interestingly, if the four high energy crystal structure

side chains are substituted by the appropriate equivalent library rotamer with ideal

geometry, all but one residue (Asn-162) are now correctly predicted. This observation

strongly suggests that the crystal structure side chains are modelled with the correct rotamer

but that small adjustments in atomic position are required to properly model hydrogen

bonding interactions.

The conformation of many solvent-accessible residues may be determined in the

crystal by contacts with symmetry-related molecules. In a true homology-building

exercise, it will be impossible to model the crystal contacts. To test this possibility, we

carried out the calculation again, this time leaving out symmetry-related molecules and

bound counter-ions. The effect appeared to be negligible as the overall r.m.s. deviation
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increased only slightly to 0.62 Å with no net change in the number of incorrectly modeled
side chains (Table 9.2). In all subsequent tests, symmetry related atoms and bound

sulfates have been ignored.

In the first test case we replaced the rotamer in the library with the lowest r.m.s.

deviation by the true side chain at each site. This was done to remove the possibility that

errors in the results were due to the assumption of idealized rotamer geometry. In the third

test case, we repeated the test using only the standard library rotamers to determine whether

the rotamer approximation would severely hinder the modeling procedure when true side

chains are not known. Using the library rotamers, the overall r.m.s. deviation for side

chain atoms increased from 0.62 Å to 1.21 Å (116 of 142 side chains (82%) were modeled

correctly). The lowest error rotamer structure (calculated using the library rotamers) has an

overall r.m.s. deviation of 0.71 Å; the predicted structure is thus only 0.5 Å worse than the
best structure possible given the constraint to ideal rotamer geometry. Amino acids with

long side chains (lysine, arginine, glutamine) account for more than two thirds of the

residues which were initially predicted but are incorrectly placed after reverting to the

standard rotamer library. This bias is not surprising since the rotamer approximation

should be worst for those amino acids with many torsion angles.

In the above simulations, each residue test was done in the context of an otherwise

correct structure. To test the ability of the algorithm to converge without the correct

neighboring side chains, the above test was repeated with a starting structure that was

completely stripped of side chains. Using the standard algorithm (with sites of five

residues, cycling through the sequence three times, adding the lowest energy rotamer

combination in each case), the number of correct side chains plateaued at 111 residues

(versus 116 residues in the previous test). This result indicates that the combinatorial

conformation search converges well in the absence of a starting bias towards the correct

Structure.
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The general conclusions of the O-lytic protease test cases (summarized in Table 9.2)

are as follows. 1) The force field is able to correctly predict almost 90% of the observed

side chain conformations, with the incorrectly predicted side chains lying largely at the

surface and including a disproportionately high number of serines and asparagines. 2)

Symmetry-related atoms and bound counter-ions do not significantly affect the ability to

predict side chain conformation. 3) Using side chain rotamers rather than the true side

chains prevents the correct prediction of =7% of the residues. 4) By combinatorially

searching local sites throughout the protein, it is possible to accurately predict most side

chains without a starting bias to the correct structure. With no errors in the protein

backbone but no starting information about side chain conformations, the overall r.m.s.

deviation for o-lytic protease side chains falls to 1.31 Å after refinement. Similarly good
results were obtained for a number of other proteins (Table 9.3), indicating the general

utility of the algorithm.

(b) Homology Modeling

With the accuracy of the force field and the rotamer assumption well tested, we

have proceeded to use the algorithm to predict side chain conformations for pairs of

homologous proteins. These homology modeling tests differ from the O-lytic protease test

cases in two respects: 1) the backbone used to calculate side chain rotamers is not exactly

correct (since the template structure backbone differs slightly from the true structure

backbone), and 2) the template peptide backbone is punctuated by gaps where non

homologous regions have not been modelled. Our results are summarized in Table 9.4. In

every case, there is a significant improvement in the accuracy of the model following

application of the algorithm. The ability to correctly predict side chain conformation

decreases as the deviation between the model backbone and true backbone increases. The

improvement, as measured by r.m.s. deviation to the true structure or by the fraction of
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correctly predicted side chains, drops approximately linearly with decreasing sequence

identity (Figure 9.2).

As with the o-lytic crystal structure test case, solvent-accessible residues are signfi

cantly harder to predict than buried residues. Figure 9.3 shows the predicted structure of

hen egg-white lysozyme, with both hydrophobic core residues and some surface residues.

While aromatic residues making up the core are all accurately positioned, exposed residues

are often incorrect. The fraction of buried or solvent accessible residues that are correctly

placed for each test case are listed in Table 9.4. Increased errors at the surface are likely to

be due to a number of phenomena including greater allowed conformational space (since

there are fewer restricting adjacent residues), increased crystallographic errors in the

surface residues, and errors in the force field that effect electrostatic interactions more than

van der Waals interactions (given that hydrophilic residues predominate at the surface).

Previous analysis of protein crystal structures has shown that surface residues have

systematically higher temperature factors than buried residues (Alber et al., 1987),

indicating that their side chain atoms are less well fixed in an energy minimum. This

observation suggests that the energy differences between alternate conformations may be

smaller at the surface and that slight errors in the force field should affect surface residues

more than buried ones.

By comparing the predictions made for the ALP—ALP test and the SGB->ALP

test, we can quantify the errors introduced by using the wrong backbone to predict side

chain conformations. Using the standard iterative procedure to place O-lytic protease side

chains on the backbone of ot—lytic protease, 78% of side chains (111/142) are correctly

predicted. This fraction drops to 63% (76/121) when the backbone of S. griseus protease

B is used instead. The average rim.s. deviation of side chains also increases in going from

the o-lytic protease backbone (0.73 Á) to the S. griseus protease B backbone (1.88 Å).

This increase is higher than that observed for the backbone atoms (0.00 Å for ALP, 0.79 Å

f
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for SGB), suggesting that errors in the backbone positions adversely affect the choice of

side chain rotamer, beyond simply displacing the side chain away from the correct position.

Figure 9.4 shows a representative case in which deviations in the backbone

between a pair of homologous structures directly lead to an incorrect side chain choice.

The backbone atoms of the neighboring residues isoleucine 105 and tyrosine 237 in S.

griseus protease B deviate by only -0.4 Å relative to their equivalents in o-lytic protease
(tryptophan 105 and tyrosine 238). These relatively small deviations alter the direction of

the Co-C3 vectors sufficiently to cause a significant change in the positions of the
calculated rotamers. The r.m.s. deviation of the lowest error rotamers at these positions

from the true side chains rises from 0.2 Å (using the o-lytic backbone) to 1.4 Å (using the
S. griseus protease B backbone). More importantly, the SGB->ALP lowest error rotamer

structure has several bad van der Waals contacts between tryptophan 105 and tyrosine 238,

causing this combination of rotamers to be ignored during the rotamer search. For

instance, the separation between NE1 of tryptophan 105 and CG of tyrosine 238 drops

from the close distance of 3.02 Å in the ALP—ALP lowest error rotamer structure to the

bad contact distance of 2.43 Å in the SGB-ALP structure (Figure 9.4). Whereas the

lowest error rotamers for residues 105 and 238 are identified as the lowest energy

combination in the ALP—ALP test, an alternate set of rotamers is chosen for the

SGB->ALP case. The same is true of Arginine 48A which lies adjacent to this pair of

residues. While it is correctly placed for the ALP—ALP test case, the incorrectly

positioned tyrosine 238 in the SGB->ALP test forces this arginine into an incorrect

position.
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Discussion

This work has shown that a combinatorial rotamer search directed by an approxi

mate free energy calculation can be used to predict side chain conformation in a homology

modelling test. The fraction of properly placed side chains is a function of the similarity

between the pair of homologous structures, dropping from =80% in the case of 100%

identity, to ~60% for those tests with lower homology. By using rigid rotamers to

coarsely sample conformation space and a grid approach to calculate solvent accessibility,

the complete combinatorial search can be carried out extremely quickly. Starting with the

backbone alone, the prediction of side chain conformation for a 200-residue protein can be

completed in less than 5 hours of VAX 8650 CPU time. Our algorithm provides a

significant improvement, both in terms of accuracy and speed, over energy-based side

chain modelling algorithms that have been previously reported (Bruccoleri et al., 1987;

Schiffer et al., 1990). The reasons for this improvement will now be considered.

The CONGEN program of Bruccoleri et al. (1987) uses a grid search over main

chain and side chain torsion angles to model both loops and side chain conformation. The

conformation space of each added side chain is searched individually and evaluated using

the CHARMM force field. This molecular mechanics force field includes terms for cova

lently-linked atom pairs (bond-stretching, bond angle bending, torsion angle rotation) and

for non-bonded pairs (van der Waals' forces, electrostatics, and hydrogen-bonding). After

evaluating all staggered conformations, the lowest energy conformation is saved. This

method can replace side chains onto a structure with the correct backbone with an r.m.s.

deviation of -2.5 Å (averaged over side chains, not including CB atoms).
While conceptually similar to the approach we have described, there are several

major differences between the two methods. In contrast to our program, CONGEN

includes bonded-energies but ignores solvation effects in evaluating side chains. Since our

7.
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approach uses rotamers with idealized internal geometry, there is no need to consider the

bonded terms. Work by Bruccelori and others, however, has shown that the side chain

rotamers preferred by a molecular mechanics force field lacking solvation terms are biased

towards those that have relatively unfavorable solvation energy (Novotny et al., 1988;

Schiffer et al., 1990). By not taking into account solvation effects during the rotamer

search, therefore, the CONGEN approach tends to incorrectly predict the conformation of

polar surface side chains (Novotny et al., 1988).

A second difference between the two methods is in their approach to sampling

conformation space. Whereas the CONGEN program can search an arbitrary number of

rotamers for a single side chain, our algorithm combinatorially tests a limited number of

rotamers at each site for a cluster of adjacent residues. By simultaneously varying several

side chain conformations, energetic barriers to co-operative rearrangements can be

surmounted. In support of this, if our algorithm is applied using sites containing a single

residue rather than five adjacent residues, an additional =10% of the side chains are not

correctly predicted after the first cycle (data not shown).

Schiffer et al. (1990) describe a method for constructing side chains that is closely

related to the CONGEN approach. In this algorithm, staggered side chain conformations

are evaluated using the AMBER force field (Weiner et al., 1984). A zone surrounding each

targetted residue is subject to energy minimization to improve the packing around the

altered side chain. The final minimized energy for each side chain orientation is used to

determine which rotamer is adopted at each site. As with the CONGEN algorithm, this

approach does not take into account solvation effects and does not combinatorially test

adjacent side chains. It does, however, have the significant advantage of allowing side

chains to deviate from their initial idealized rotamer geometry. In cases in which slight bad

contacts exist between the library rotamers (e.g. Figure 9.4), energy minimization should

allow the contacting atoms to relax and thereby yield a more realistic energy estimate.
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Because several hundred thousand cycles of energy minimization must be done to complete

a single cycle of side chain optimization, this approach is extremely computer-intensive. It

has currently been applied to only a subset of the residues in the one test case which has

been reported (bovine—rat trypsin). As presently implemented, this method seems

promising but it may require a significant increase in computer-speed to be generally

practicable.

Recent work by Lee and Subbiah (1991) has applied the technique of simulated

annealing to the problem of predicting side chain conformation. Their algorithm uses a

force field containing only torsional and van der Waals terms to evaluate any given

combination of side chains. Discreet steps of 10° in the side chain torsion angles are taken

to sample different conformations. Rather than defining a limited site within the protein,

the complete set of protein side chains is simultaneously optimized, using an annealing

Monte Carlo procedure to coarsely sample a wide section of conformation space. This

procedure has been applied to a number of test cases in which the correct backbone is used

but all side chain atoms are initially deleted. While good results are obtained for buried

residues (average rims. deviation = 1.25 Å), errors in the surface residues are significantly
higher, causing the average overall rims. deviation of side chain atoms to rise to 1.97 Å.
Results obtained using our algorithm (Table 9.3) indicate that the use of a more complete

force field (including electrostatic and solvation terms) significantly improves upon their

predictions. Whereas buried side chains are predicted with approximately equal accuracy

by either the Lee-Subbiah algorithm or ours, our overall r.m.s. deviations are =25% lower;

indicating a significant improvement for surface residues. A priori, one might have

expected the Lee-Subbiah algorithm to more accurately predict buried side chain

conformation since their method allows a much finer conformation search (36 conformers/

torsion angle versus 5-6 rotamers/side chain with our method). The fact that buried
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residues are predicted equally well by both methods indicates that the assumption of

rotamer geometry for side chains is usually a very good approximation.

We have demonstrated how small errors in the backbone coordinates can force the

incorrect choice of side chain rotamers. By restricting the conformation search using a

rigid backbone, it is currently impossible to overcome these problems. It may be possible

to significantly improve upon our results by carrying out energy minimization or molecular

dynamics on the full structure between the cycles of side chain optimization. If the side

chains are correctly modelled onto the template backbone, relaxation of the structure using

energy minimization or molecular dynamics should allow backbone atoms to move towards

their true coordinates, generating the “unknown' backbone. As the side chain

conformations gradually improve between cycles, the ability to minimize to the correct

backbone should also increase. The potential benefits of this approach may be limited by

the accuracy of the force field used to direct the energy minimization. In most simulations

starting from a crystal structure, energy minimization causes r.m.s. shifts of ~0.5—1.0 Å.

However, for side chain modelling in cases of low homology this level of error is likely to

be small enough to allow an improvement over the current fixed-backbone procedure.
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Table 9.1: Test cases for side chain conformation optimization

model overall I similarity | resol. unk resol. backbone
(template-> || Nunk | Nimpl | Nmod similarity of modeled (Å) timpl (A) | rms dev.
unknown) (%) regions (Å)

(%)

ALP—3ALP 198 198 198 100.0 100.0 1.7 1.7 0.00

LZ1—3LYZ 129 130 129 60.2 60.5 1.5 2.0 0.61

LBP—3LIV 344 || 346 || 344 79.1 79.4 2.4 2.4 0.69

SGB–3ALP 198 185 168 33.4 37.5 1.8 1.7 0.79

PTN—SGT | 223 223 || 204 29.7 35.3 1.7 1.7 0.98

The “unknown' proteins were modeled from the “template” structures. Nunk:

number of residues in the unknown structure. Nimpl; number of residues in the template

structure. Nmod: number of superimposable residues in the unknown and template

structures which were modeled in the predicted structure. Overall similarity: percent

sequence identity between the unknown and template structure determined using the

sequence alignment method of Smith and Smith (1989). Similarity of modeled regions:

percent sequence similarity for superimposable residues between unknown and template

structures. Resol. unk: crystallographic resolution of the unknown structure. Resol. trnpl:

crystallographic resolution of the template structure. Backbone r.m.s.d.; root-mean-square

deviation of backbone coordinates between the unknown and template structures for the

residues modeled.

Structures used (Brookhaven PDB entry names in parentheses): ALP: 0-lytic

protease (2ALP) (Fujinaga et al., 1985); SGB: protease B from S. griseus (3SGB) (Read

et al., 1983); SGT. S. griseus trypsin (1SGT) (Read et al., 1984); PTN: bovine trypsin

(3PTN) (Walter et al., 1982); LYZ; hen egg white lysozyme (6lyz) (Diamond et al., 1974);

y
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LZ1: human lysozyme (1LZ1) (Artymiuket al., 1981); LIV: leucine/isoleucine/valine

binding protein (2LIV) (Sacket al., 1989a); LBP: leucine binding protein (2LBP) (Sacket

al., 1989b).

y
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Table9.2:Resultsoftheo-lyticproteasetestcases sºwithsºReplaceºSizeof./
averager.m.s.overallr.m.s.fractioncorrect therelatrotamerWi

temporarl
------

xtalstructuremoleculesandxtalstructure
?

i.
y

deviation(Å)deviation(Å)
(correct/total)

sidechains?counter-ions?correctrotamer? yesyesyes
1/yes0.26+0.580.590.89(126/142) yesInOyes

1/yes0.27+0.610.620.89(126/142) yesInOInO1/yes0.68+0.851.210.82(116/142)
InOInOInO5/no0.73+0.911.310.76(111
/
142) ResultsformodellingthesidechainsofO-lyticproteaseusingthetruebackboneareshown.Averager.m.s.deviation:

averageroot-mean-squaredeviation
of
non-alaninesidechainsofthepredictedstructurefromthetruestructure(unweighted
bythe numberofatomsineachsidechain).Overallr.m.s.deviation:root-mean-squaredeviation

ofallsidechainatoms.
:



Table 9.3: Predicting side chain conformation using the correct peptide backbone

Lowest error Final overall Final buried Final accessible
Protein rotamer structure | r.m.s. deviation I residue r.m.s. residue r. m.s.

r.m.s. deviation deviation deviation
(% correct) (% correct)

2ALP 0.71 1.31 0.93 (88) 1.56 (67)
1CRN 0.38 1.32 0.82 (88) 1.41 (66)
5PTI 0.67 1.67 1.76 (69) 1.65 (58)
1CTF 0.63 1.49 1.06 (75) 1.60 (34)

Side chains were initially deleted from all proteins and then built on using the

standard algorithm described in the text. Solvent accesibility was calculated using the

method of Lee and Richards as implemented in the program ACCESS by Hundschumather

and Richards. Residues considered buried have less than 20% of their accessible surface

aresase exposed (relative to an extended tripeptide model). Labels correspond to the

Protein Data Bank file containing the starting coordinates: 2ALP-O-lytic protease

(Fujinaga et al., 1985), 1CRN- crambin (Hendrickson and Teeter, 1981), 5PTI- bovine

pancreatic trypsin inhibitor (Walter and Huber, 1983), and 1CTF-L7/L1250S ribosomal

protein (Leijonmarck and Liljas, 1987).
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Table9.4:Homologymodellingresults Structurefirstguessfirstrºlpredictedpredicted
|
L.E.averageL.E.overall
|

fractioncorrectfractioncorrect
I

fraction

averagermsdoverallrmslaveragermsdoverallrms:msdmsdburiedexposedcorrecttotal

ALP—3ALP
|

1.69+1.312.48
||

0.73+0.911.31
||

0.39-E0.44
||
0.710.88(58/66)
||
0.67(52/78)
||
0.78 LZ1–3LYZ
|

1.99-E1.212.58
||

1.44+1.021.90
||

0.91+0.49
||

1.060.78(32/41)
||
0.53(34/64)
||
0.63 LBP—3LIV
|

2.05+1.162.49
|

1.55+1.051.96
||

1.10+0.561.250.78(96/123),0.43(61/143)0.59 SGB->ALP
|

2.29:E1.473.03
||

1.88+1.50
||
2.66
|

1.30+1.07
|

1.730.70(37/53)
|
0.57(39/68)0.63 PTN—SGT

||

2.40+1.603.17
|

1.95+1.60
||
2.68
||

1.44+1.27
|

1.920.81(54/67)
||
0.46(38/83)
|
0.61

Resultsforhomologymodellingtestcases.Abbreviations
fortheproteinsarethesameasinTable
I.

L.E.
-

lowesterrorstructure.
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Homologous protein structure

J.
Delete existing side chains from the
homologous structure, generate

rotamer coordinates

J.

Choose a residue to target k—
N

Identify N nearest neighboring residues

l
Delete existing side chains on the

targetted cluster and add back
rotamers

Sz
Calculate non-bonded + solvation energy

for the current rotamer combination

SE
Are there more rotamer combinations

to evaluate? yes

Jº
Add the combination of side

chain rotamers with the lowest energy

sº

Have all residues been targetted in
this cycle?

FIGURE 9.1. Algorithm for predicting side chain conformation. Each step is descibed in detail

in the text.
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FIGURE 9.2. Accuracy of the side chain prediction as a function of percent homology. The

overall side chain r.m.s. deviation is shown as a function of the percent homology between the

“unknown’ and ‘predicted’ structures for the initial, predicted, and “best rotamer' (lowest r.m.s.

deviation) models.
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FIGURE 9.3. Comparison between the predicted and observed hen eggwhite lysozyme

structures. Side chain and Co. atoms are shown for the predicted (blue) and true (yellow)

structures (Co. atoms colored magenta). Residues in the hydrophobic core lie on the left-hand side

while those on the right are generally somewhat solvent accessible.
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FIGURE 9.4. Errors in the S. griseus protease B — o-lytic protease prediction. The true

(yellow) and predicted (blue) structures for O-lytic protease are shown (using S. griseus

protease B as a backbone template). The ‘best rotamers (those with the lowest r.m.s.

deviation to the true structure) are shown in magenta. Several bad contacts between the

best rotamers for Trp 105 and Tyr 238 (e.g. NE1-105 - CG-238 distance = 2.43 Å, dotted

line) force an alternate set of rotamers to be chosen as the lowest energy conformation. The

misplaced tyrosine 238 ring subsequently forces Arg 48A to adopt an incorrect

conformation. All three residues are correctly positioned when using the true O-lytic

protease backbone to generate the side chain rotamers (not shown).
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