
UC Berkeley
UC Berkeley Previously Published Works

Title
Treatment Effects on Ordinal Outcomes: Causal Estimands and Sharp 
Bounds

Permalink
https://escholarship.org/uc/item/97p0n11z

Authors
Lu, Jiannan
Ding, Peng
Dasgupta, Tirthankar

Publication Date
2018-10-01
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/97p0n11z
https://escholarship.org
http://www.cdlib.org/


Article

Treatment Effects on Ordinal Outcomes: Causal
Estimands and Sharp Bounds

Jiannan Lu
Microsoft Corporation

Peng Ding
University of California-Berkeley

Tirthankar Dasgupta
Rutgers University

Assessing the causal effects of interventions on ordinal outcomes is an impor-

tant objective of many educational and behavioral studies. Under the potential

outcomes framework, we can define causal effects as comparisons between the

potential outcomes under treatment and control. However, unfortunately, the

average causal effect, often the parameter of interest, is difficult to interpret for

ordinal outcomes. To address this challenge, we propose to use two causal

parameters, which are defined as the probabilities that the treatment is bene-

ficial and strictly beneficial for the experimental units. However, although well-

defined for any outcomes and of particular interest for ordinal outcomes, the

two aforementioned parameters depend on the association between the poten-

tial outcomes and are therefore not identifiable from the observed data without

additional assumptions. Echoing recent advances in the econometrics and

biostatistics literature, we present the sharp bounds of the aforementioned

causal parameters for ordinal outcomes, under fixed marginal distributions of

the potential outcomes. Because the causal estimands and their corresponding

sharp bounds are based on the potential outcomes themselves, the proposed

framework can be flexibly incorporated into any chosen models of the potential

outcomes and is directly applicable to randomized experiments, unconfounded

observational studies, and randomized experiments with noncompliance. We

illustrate our methodology via numerical examples and three real-life appli-

cations related to educational and behavioral research.

Keywords: linear programming; monotonicity; noncompliance; partial identification;

potential outcome; stochastic dominance

1. Introduction

In educational, behavioral, and public health research, a scenario frequently
encountered is evaluating causal effects of interventions on ordinal (i.e., ordered
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categorical) outcomes. For example, Oenema, Brug, and Lechner (2001) con-
ducted a randomized controlled trial to access whether Web-based nutrition
education changed personal awareness and intentions (e.g., negative, neutral,
or positive attitudes) toward healthier diets. Hoff (2009) analyzed a data set from
the 1994 General Social Survey (Smith, Marsden, Hout, & Kim, 2013), aiming to
study whether the fact that parents possessing college or higher degrees affected
their offspring’s education level (from “less than high school” to “graduate
degree”). Praet and Desoete (2014) investigated the effect of computer-aided
programs on young children’s proficiency in arithmetic (e.g., 0–10 scaled scores
in reading, writing, and counting). To draw scientifically meaningful conclusions
from such studies, it is imperative that we employ an interpretable and robust
methodology for defining and inferring causal effects.

The potential outcomes framework (Neyman, 1923; Rubin, 1974) permits
defining causal effects as comparisons between the potential outcomes under
treatment and control. The average causal effect, generally the parameter of
interest ever since the seminal work of Neyman (1923), may not be applicable
to ordinal outcomes because average outcomes themselves are not well-defined
substantively (although sometimes they can be well-defined mathematically),
except when there are meaningful distances between outcomes (e.g., standard
test scores). For example, it is difficult to interpret the “average” of “high school”
and “PhD,” or compare it to the average of “bachelor” and “master.” Neverthe-
less, ordinal outcomes appear rather frequently in applied research, and the
generalized linear model literature (cf. Agresti, 2010) has discussed them exten-
sively. However, although the model parameters of the generalized linear models
are useful summaries of the data, they are often not direct measures of the causal
effects of interest (Freedman, 2008). More importantly, statistical inference often
requires correctly specified models, and when the generalized linear model
assumptions are violated, the interpretations of the parameters become obscure.
Mainly focused on the classic average causal effect (and its variants), the
existing causal inference literature does not thoroughly investigate ordinal out-
comes. Exceptions include Rosenbaum (2001), who discussed causal inference
for ordinal outcomes under the monotonicity assumption that the treatment is
beneficial for all units. Cheng (2009), Agresti (2010), and Agresti and Kateri
(2017) discussed various causal parameters under the assumption of indepen-
dent potential outcomes. Volfovsky, Airoldi, and Rubin (2015) exploited a
Bayesian strategy, requiring a full parametric model on the joint values of the
potential outcomes. Diaz, Colantuoni, and Rosenblum (2016) proposed to use a
causal parameter that did not rely on the assumption of the proportional odds
model for ordinal outcomes.

Realizing the conceptual and theoretical gaps in this important topic, in this
article we propose to use two causal parameters for ordinal outcomes, measuring
the probabilities that the treatment is beneficial and strictly beneficial for the
experimental units. The two parameters play important roles in decision and
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policymaking for randomized evaluations with ordinal outcomes. However,
because the two causal parameters depend on the association between the treat-
ment and control potential outcomes, they are generally not identifiable from the
observed data. Instead of imposing assumptions about the underlying distribu-
tions of, or the association between, the potential outcomes, we adopt the partial
identification strategy (cf. Manski, 2003; Richardson, Hudgens, Gilbert, & Fine,
2014) and sharply bound the parameters by using the marginal distributions of
the potential outcomes. We acknowledge concurrent work by Huang, Fang,
Hanley, and Rosenblum (2017) who numerically calculated the sharp bounds
of the parameters and provided their consistent estimators, allowing for poten-
tially complex support restrictions on the marginal distributions of the potential
outcomes. Compared to Huang et al. (2017), one main distinction of our work is
that we focus on the identification perspective. To be specific, echoing several
relevant discussions in the discrete mathematics (Williamson & Downs, 1990)
and econometrics (e.g., Fan & Park, 2009; Kim, 2014; Manski, 1997; Manski &
Pepper, 2009) literature, we present closed-form expressions for the sharp
bounds of the causal parameters.

We believe that the mathematical practice of deriving the closed-form expres-
sions for the sharp bounds has a 2-fold benefit. From a theoretical perspective,
the closed-form expressions enable us to study when we can identify the causal
parameters, that is, the lower and upper bounds collapse. At least in the context of
ordinal outcomes, we believe this is a unique contribution to the existing liter-
ature. From a more practical perspective, because these bounds are defined by the
potential outcomes themselves, they can be incorporated flexibly into any chosen
models of the potential outcomes. Furthermore, they are directly applicable to
randomized experiments, unconfounded observational studies, and randomized
experiments with noncompliance. In randomized experiments, we can identify
the bounds immediately, and additionally, sharpen the bounds by exploiting
covariate information under certain modeling assumptions. In observational
studies, if the treatment assignment is unconfounded given the observed covari-
ates, we can identify the bounds, for example, by the propensity score weighting
(Hirano, Imbens, & Ridder, 2003; Rosenbaum & Rubin, 1983). Furthermore, we
extend the theory to accommodate noncompliance, which often arises in practi-
cal randomized evaluations.

This article proceeds as follows. Section 2 introduces the potential outcomes
framework for causal inference for ordinal outcomes, and proposes two causal
parameters that are natural measures of causal effects and are of practical impor-
tance. Section 3 presents the sharp bounds of the proposed causal parameters.
Section 4 generalizes the bounds to noncompliance. Section 5 discusses statisti-
cal inference of the bounds. Sections 6 and 7 present numerical and real examples
to illustrate the theoretical results. We conclude in Section 8 and give all the
proofs, technical, and computational details in the Online Supplemental Material.
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2. Causal Inference for Ordinal Outcomes

2.1. Potential Outcomes

We consider a study with N units, a binary treatment, and an ordinal outcome
with J categories labeled as 0; . . . ; J ! 1, where 0 and J ! 1 represent the worst
and best categories. Under the stable unit treatment value assumption (Rubin,
1980) that there is only one version of the treatment and no interference among
the units, we define the pair fYið1Þ; Yið0Þg as the potential outcomes of the ith
unit under treatment and control, respectively. Let

pkl ¼ prfYið1Þ ¼ k; Yið0Þ ¼ lg ðk; l ¼ 0; . . . ; J ! 1Þ;

denote the proportion or probability of units whose potential outcome is k under
treatment and l under control. The probability notation “prð%Þ” is either for a
finite population of N units or for a super population, depending on the question
of interest. The probability matrix P ¼ ðpklÞ0&k;l&J!1 summarizes the (uncondi-

tional) joint distribution of the potential outcomes. We denote the row and
column sums of P by

pkþ ¼
XJ!1

l0¼0

pkl0 ; pþl ¼
XJ!1

k0¼0

pk0l ðk; l ¼ 0; 1; . . . ; J ! 1Þ:

The vectors p1 ¼ ð p0þ; . . . ; pJ!1;þÞT and p0 ¼ ðpþ0; . . . ; pþ;J!1ÞT characterize
the marginal distributions of the potential outcomes under treatment and control,
respectively. By definition, the following constraints must hold:

XJ!1

k¼0

pkþ ¼ 1;
XJ!1

l¼0

pþl ¼ 1;
XJ!1

k¼0

XJ!1

l¼0

pkl ¼ 1:

2.2. Causal Parameters for Ordinal Outcomes

We discuss the existing causal parameters for ordinal outcomes and the moti-
vation behind proposing new ones. Any causal parameter is a function of the
probability matrix P. Unfortunately, the average causal effect is difficult to
interpret for ordinal outcomes. Instead, we can use the distributional causal
effects (cf. Ju & Geng, 2010):

Dj ¼ prfYið1Þ ( jg! prfYið0Þ ( jg ¼
X

k(j

pkþ !
X

l(j

pþl ðj ¼ 0; . . . ; J ! 1Þ; ð1Þ

to measure the difference between the marginal distributions of potential out-
comes at different levels of j. Although distributional causal effects are standard
and important measures for ordinal outcomes in practice, it is sometimes difficult
to decide whether the treatment or the control is preferable unless they have the
same sign for all j. In the presence of heterogeneous distributional treatment

effects for different levels of j, we may use
PJ!1

j¼1 o jDj to measure the treatment
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effect, but such a measure depends crucially on the weights o j’s. We illustrate

this point by using the following numerical example.

Example 1: Let p1 ¼ ð1=5; 3=5; 1=5ÞT and p0 ¼ ð2=5; 1=5; 2=5ÞT , with
D0 ¼ 0; D1 ¼ 1=5, and D2 ¼ !1=5. The treatment is beneficial at Level 1, but
not at Level 2. In this case, distributional causal effects do not provide straight-
forward guidance for decision-making.

When Dj ( 0 for all j, Y ð1Þ stochastically dominates Y ð0Þ. When this pattern

appears in real data applications, practitioners often fit a proportional odds model
(Agresti, 2010) and summarize the overall effectiveness of the treatment by a
single odds ratio parameter. Although such summary parameter may be useful in
certain cases, its causal interpretation is unclear. Moreover, when the data do not
present the stochastic dominance pattern as in Example 1, summarizing the
treatment effect by the single odds ratio parameter of a wrong model often gives
misleading conclusions.

Volfovsky et al. (2015) studied the conditional medians:

mj ¼ medfYið1ÞjYið0Þ ¼ jg ð j ¼ 0; . . . ; J ! 1Þ; ð2Þ

which is a set containing all values of k, such that
Pk

k0¼0pk0j ( pþj=2 and
PJ!1

k0¼kpk0j ( pþj=2. By definition, the conditional medians may not be unique,

and they are only well-defined for j with pþj > 0: Moreover, they are not direct

measures of the treatment effect itself.
We propose to use two causal parameters that measure the probabilities that

the treatment is beneficial and strictly beneficial for the experimental units:

t ¼ prfYið1Þ ( Yið0Þg ¼
XX

k(l

pkl; h ¼ prfYið1Þ > Yið0Þg ¼
XX

k>l

pkl : ð3Þ

The causal parameters t and h are measures of causal effects that are well-
defined for any types of outcomes and of particular interest to ordinal outcomes.
To be more specific, they can complement the distributional causal effects and
provide more information about what would happen under treatment versus
control for an ordinal outcome. Similar causal measures appeared in biomedical
(Demidenko, 2016; Gadbury & Iyer, 2000; Huang, Fang, Hanley, & Rosenblum,
2017; Newcombe, 2006a, 2006b; Zhou, 2008) and social sciences (Djebbari &
Smith, 2008; Fan & Park, 2010; Fan, Sherman, & Shum, 2014; Heckman, Smith,
& Clements, 1997). In practice, we suggest using the pair ðt;hÞ as measures of
causal effects on ordinal outcomes. For example, if the sharp null holds, that is,
Yið1Þ ¼ Yið0Þ for all units i, then t ¼ 1 and h ¼ 0. In this case, using only t may
be misleading. Nevertheless, we argue that the parameter t is as important as h.
Because 1! t ¼ prfYið0Þ > Yið1Þg, the value of t determines the probability
that the control is strictly beneficial for the experimental units. Due to the sym-
metry of treatment and control labels, t and h are equally useful for real data
analysis.
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We use the following numerical example to show the values of mj, t, and h.

Example 2: Consider the following probability matrix:

P ¼

 
0 1=6 1=6
0 1=6 0
0 1=3 1=6

!

:

In this case, m0 is not well-defined because pk0 ¼ 0 for all k, m1 is 1, and m2 ¼
f0; 1; 2g by the definition of the conditional median in Equation 2. However, we
have t ¼ 2=3 and h ¼ 1=3; that is, two thirds of the population benefit from the
treatment and one third strictly benefit.

The causal parameters t and h in Equation 3 are well-defined for both finite
populations and super populations. They are functions of the potential outcomes,
which distinguishe them from the parameters in superpopulation models. When
the models are misspecified, the interpretations of the corresponding model
parameters are often obscure. We have already discussed this issue for the pro-
portional odds model. Our causal parameters t and h are closely related to the
relative treatment effect a ¼ prfYið1Þ > Yið0Þg! prfYið1Þ < Yið0Þg previously
studied under the assumption of independent potential outcomes (Agresti, 2010).
This relative treatment effect a and the causal parameters we proposed have a
simple algebraic relationship, that is, a ¼ tþ h! 1. Therefore, our newly pro-
posed causal parameters t and h determine a. Furthermore, these causal para-
meters are also related to the notation of “probability of causation” (Pearl, 2009)
because their direct interpretations are the probabilities or proportions that the
treatment affects the outcome on the individual level. It is for these reasons that
we advocate using t and h as causal effect measures for ordinal outcomes.

3. Sharp Bounds on the Proposed Causal Estimands for Ordinal Outcomes

3.1. Closed-Form Expressions of Sharp Bounds

The definitions of t and h involve the association between the treatment and
control potential outcomes. Because we can never jointly measure the potential
outcomes, the observed data do not provide full information about their associ-
ation, rendering the causal parameters t and h not identifiable. To partially
circumvent this difficulty, we focus on the sharp bounds of t and h, which are
the minimal and maximal values of t and h under the condition that the prob-
ability matrix P ¼ ðpklÞ0&k;l&J!1 is well-defined, as well as the constraints of the

marginal distributions. In other words, the following needs to hold:

XJ!1

l
0¼0

pkl0 ¼ pkþ;
XJ!1

k0¼0

pk0l ¼ pþl; pkl ( 0 ðk; l ¼ 0; . . . ; J ! 1Þ: ð4Þ

The sharp bounds depend only on the marginal distributions of the potential
outcomes. Deriving the bounds is equivalent to solving linear programming
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problems, because the objective functions in Equation 3 and the constraints in
Equation 4 are all linear. Previous literature (Huang et al., 2017) used a numerical
method to solve the linear programming problem for h. Fortunately, as pointed
out by several researchers (Fan and Park, 2009; Williamson and Downs, 1990),
we can derive closed-form solutions of the above linear programming problems,
for both t and h. We first present the sharp bounds of t, which is the foundation
for the remaining of this article.

Proposition 1: The sharp lower and upper bounds of t are

tL ¼ max
0&j&J!1

ðpþj þDjÞ; tU ¼ 1þ min
0&j&J!1

Dj : ð5Þ

The bounds in Equation 5 resemble Fan and Park’s (2010) parallel results for
continuous outcomes, where the maximum and minimum operators are replaced
by supremum and infimum, respectively. As a straightforward validity check, the
inequalities 0 & tL & tU & 1 always hold regardless of the marginal distribu-
tions of the potential outcomes. In particular, by definition in Equation 5, tL (
pþ0 þD0 ¼ pþ0 and tU & 1þD0 ¼ 1. Moreover, the bounds in Proposition 1
are closely related to the distributional causal effects in Equation 1, and therefore,
we can interpret them as the conservative and optimistic estimates of the prob-
ability that the treatment is beneficial to the outcome. Furthermore, the following
corollary demonstrates that the sharp upper bound tU is related to the stochastic
dominance assumption, that is, Dj ( 0 for all j.

Corollary 1: The causal parameter tU ¼ 1; if and only if the marginal prob-
abilities p1 and p0 satisfy the stochastic dominance assumption.

The above corollary implies that for any marginal probabilities satisfying the
stochastic dominance assumption, there exists a lower triangular probability
matrix P that corresponds to a population satisfying the monotonicity assump-
tion, that is, Yið1Þ ( Yið0Þ for all i. Strassen (1965) and Rosenbaum (2001)
demonstrated this result, and Proposition 1 extends the previous result without
imposing the stochastic dominance assumption. Moreover, Proposition 1 also
justifies the use of min0& j&J!1Dj as a measure of the deviation from the stochas-

tic dominance assumption (Scharfstein, Manski, & Anthony, 2004).
To bound h, realizing that h ¼ 1! prfYið0Þ ( Yið1Þg, we can directly derive

the sharp bounds for prfYið0Þ ( Yið1Þg by switching the treatment and control
labels and applying Equation 5.

Proposition 2: The sharp lower and upper bounds of h are

hL ¼ max
0& j&J!1

Dj; hU ¼ 1þ min
0& j&J!1

ðDj ! pjþÞ: ð6Þ

Similar to the sharp bounds for t in Equation 5, the inequalities 0 & hL &
hU & 1 always hold. The bounds in Equations 5 and 6 resemble parallel results
in the econometrics literature (Fan & Park, 2009, 2010; Manski, 1997; Manski &
Pepper, 2000), which largely focused on continuous outcomes. In fact, deriving
the sharp bounds of t and h is related to a classical probability problem posed by
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A. N. Kolmogorov (cf. Nelsen, 2006): How to bound the distribution of the sum (or
difference) of two random variables with fixed marginal distributions? For contin-
uous outcomes, because d ¼ Y ð1Þ ! Y ð0Þ is well-defined, our causal parameters t
and h are determined by the distribution of the causal effect d, the difference
between the treatment and control potential outcomes. Indeed, sharp bounds on
the distribution of d have been obtained by Makarov (1982), Rüschendorf
(1982), Frank, Nelsen, and Schweizer (1987), and Williamson and Downs
(1990), and recently reviewed by Fan, Sherman, and Shum (2014). For
ordinal outcomes, although mathematically valid, the interpretation of
Y ð1Þ ! Y ð0Þ becomes more challenging, at least in many scenarios. For
example, in the context of education, it is difficult to define the “difference”
of PhD and master. In behavioral research, it is unclear how to compare the
improvement from “negative” to “neutral” and from “neutral” to “positive.”

Motivated by the above, in the Online Supplemental Material, for ordinal
outcomes we provide direct proofs of Propositions 1 and 2. Our proofs directly
construct the probability matrices that achieve the lower and upper bounds of t
and h. We believe that our “constructive” approach helps researchers sharply
bound other causal parameters (e.g., mj and a), at least for ordinal outcomes. It is

worth mentioning that the probability matrices attaining the lower and upper
bounds of t and h correspond to negatively associated and positively associated
potential outcomes. They are both “extreme” scenarios. In practice, researchers
may also be interested in the case with independent potential outcomes (Agresti,
2010; Cheng, 2009; Ding & Dasgupta, 2016; Rubin, 1978), that is, pkl ¼ pkþpþl

for all k and l. With independent potential outcomes, we can identify t and h
from the marginal distributions of the potential outcomes.

Proposition 3: With independent potential outcomes,

tI ¼
XX

k(l

pkþpþl; hI ¼
XX

k>l

pkþpþl :

Furthermore, tL & tI & tU and hL & hI & hU .
In cases where negatively associated potential outcomes are unlikely, we can

use tI and hI as the lower bounds of t and h. Below we give two numerical
examples to illustrate Propositions 1 through 3.

Example 3: The marginal probabilities p1¼ ð1=5; 3=5; 1=5ÞT and

p0¼ ð2=5; 1=5; 2=5ÞT do not satisfy the stochastic dominance assumption
because D0 ¼ 0, D1 ¼ 1=5 > 0, and D2 ¼ !1=5 < 0. Propositions 1 and 3
imply that tL ¼ 2=5, tI ¼ 16=25, and tU ¼ 4=5 The probability matrices corre-
sponding to negatively associated, independent, and positively associated poten-
tial outcomes achieving these values are, respectively,

P1 ¼

 
0 1=5 0

1=5 0 2=5
2=5 0 0

!

; P2 ¼

 
2=25 1=25 2=25
6=25 3=25 6=25
2=25 1=25 2=25

!

; P3 ¼

 
1=5 0 0
1=5 1=5 1=5

0 0 1=5

!

: ð7Þ
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Similarly, Propositions 2 and 3 imply hL ¼ 1=5, hI ¼ 9=25, and hU ¼ 3=5. We
omit presenting the matrices attaining these values of h.

Example 4: The marginal probabilities p1¼ ð1=5; 1=5; 3=5ÞT and

p0 ¼ ð3=5; 1=5; 1=5ÞT satisfy the stochastic dominance assumption because
D0 ¼ 0, D1 ¼ 2=5 > 0, and D2 ¼ 2=5 > 0. Propositions 1 and 3 imply
tL ¼ 3=5, tI ¼ 22=25, and tU ¼ 1. The probability matrices corresponding to
negatively associated, independent, and positively associated potential outcomes
achieving these values are, respectively,

P4 ¼

 
0 1=5 0
0 0 1=5

3=5 0 0

!

; P5 ¼

 
3=25 1=25 1=25
3=25 1=25 1=25
9=25 3=25 3=25

!

; P6 ¼

 
1=5 0 0

0 1=5 0
2=5 0 1=5

!

: ð8Þ

Similarly, Propositions 2 and 3 imply hL ¼ 2=5, hI ¼ 3=5, and hU ¼ 4=5. We
omit presenting the matrices attaining these values of h.

As demonstrated in Examples 3 and 4, the bounds of t (or h) generally do not
shrink to a point. However, there are some special cases in which the lower and
upper bounds of t (or h) are identical. The following corollary provides neces-
sary and sufficient conditions for such cases.

Corollary 2: Let K ¼ fk : pkþ > 0g and L ¼ fl : pþl > 0g. The lower and
upper bounds of t are the same, if and only if there does not exist k1; k2 2 K and
l1; l2 2 L, such that:

k2 ( l2 > k1 ( l1 or l2 > k2 ( l1 > k1 : ð9Þ

The lower and upper bounds of h are the same, if and only if there does not exist
k1; k2 2 K and l1; l2 2 L such that:

l2 ( k2 > l1 ( k1 or k2 > l2 ( k1 > l1 : ð10Þ

In the proof of Corollary 2 in the Online Supplemental Material, we provide the
interpretations of the conditions in Equations 9 and 10.

3.2. Covariate Adjustment

With pretreatment covariates, it is possible to further sharpen the bounds of the
causal parameters (Grilli & Mealli, 2008; Jiang & Ding, 2018; Lee, 2009; Long &
Hudgens, 2013; Mealli & Pacini, 2013). Without loss of generality, we focus only
on the bounds of t. Within each level of the pretreatment covariates X ¼ x,

tðxÞ ¼ prfY ð1Þ ( Y ð0ÞjX ¼ xg;

is the conditional probability that the treatment is beneficial. We can obtain the
conditional lower and upper bounds tLðxÞ and tU ðxÞ given the covariate level x,
then average them over the covariate distribution FðxÞ, and finally obtain the
adjusted bounds for t:

t0L ¼
ð
tLðxÞFðdxÞ; t0U ¼

ð
tU ðxÞFðdxÞ: ð11Þ
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Proposition 4: The adjusted bounds are tighter, that is, tL & t0L & t0U & tU .
Proposition 4 holds intuitively because the existence of covariates imposes

more distributional restrictions on the observed data. We use the following
example to illustrate Proposition 4.

Example 5: Consider a population consisting of two subpopulations of equal
sizes, labeled by a binary covariate X. Assume that the potential outcomes of
subpopulations X ¼ 1 and X ¼ 0 are the independent potential outcomes in
Example 3 and 4. Simple algebra gives the following joint distribution, marginal
distributions, and t of the potential outcomes:

P ¼

 
1=10 1=25 3=50
9=50 2=25 7=50
11=50 2=25 1=10

!

; p1 ¼ ð1=5; 2=5; 2=5ÞT ; p0 ¼ ð1=2; 1=5; 3=10ÞT ; t ¼ 19=25:

Without covariate information, Proposition 1 implies tL ¼ 1=2 and tU ¼ 1.
However, if we first obtain the bounds for the two subpopulations and then
average over them, we obtain sharper covariate adjusted bounds t0L ¼ tLð1Þ=2þ
tLð0Þ=2 ¼ 1=2 and t0U ¼ tU ð1Þ=2þ tU ð0Þ=2 ¼ 9=10.

3.3. Identifying the Bounds From Observed Data

Previous subsections discussed the causal parameters t and h and their
bounds. The causal parameters depend on the joint distribution of the potential
outcomes, but the bounds depend only on the marginal distributions of the
potential outcomes. In practice, the observed data provide full information about
only the marginal distributions. Therefore, point estimations of the bounds can be
obtained, although the causal parameters themselves are only partially identified
(cf. Richardson et al., 2014; Romano & Shaikh, 2008, 2010).

For unit i ¼ 1; . . . ;N , let the treatment indicator be Zi and the observed

outcome be Y obs
i ¼ ZiYið1Þ þ ð1! ZiÞYið0Þ. To avoid conceptual complications,

we consider treatment assignments that satisfy the ignorability assumption
(Rosenbaum & Rubin, 1983), that is, ZvfY ð1Þ; Y ð0ÞgjX. The ignorability
assumption holds by the design of randomized experiments and cannot be vali-
dated in observational studies. Under the ignorability assumption, we define the
propensity score as eðXÞ ¼ prðZ ¼ 1jXÞ;which is a constant independent of X in
completely randomized experiments. We can identify the marginal distributions
of the potential outcomes by

prfY ð1Þ ¼ kg ¼ E
Z1ðY obs ¼ kÞ

eðXÞ

" #
; prfY ð0Þ ¼ lg ¼ E

ð1! ZÞ1ðY obs ¼ lÞ
1! eðXÞ

" #
:

By replacing the expectations by their sample analogues, we obtain the moment
estimators for the marginal distributions. We defer more detailed discussion
about statistical inference to Section 5.
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4. Randomized Experiments With Noncompliance

4.1. Causal Effects for Compliers

Noncompliance is an important topic in practice. For instance, in clinical
trials, some patients may not comply with their assigned treatments. Although
noncompliance itself has been extensively investigated in the causal inference
literature (e.g., Angrist, Imbens, & Rubin, 1996), there appears to be very limited
discussions about causal inference of ordinal outcomes in the presence of non-
compliance. To the best of our knowledge, Cheng (2009) discussed various
causal parameters under the assumptions of one-sided noncompliance, and Baker
(2011) generalized her results to two-sided noncompliance; both of them
assumed independent potential outcomes.

Under the stable unit treatment value assumption, for unit i, let fDið1Þ;Dið0Þg
be the potential values of treatment received under treatment and control; the

observed treatment received is therefore Dobs
i ¼ ZiDið1Þ þ ð1! ZiÞDið0Þ.

Angrist, Imbens, and Rubin (1996) proposed to classify the units into four cate-
gories according to the joint values of Dið1Þ and Dið0Þ:

Gi ¼

a; if Dið1Þ ¼ 1;Dið0Þ ¼ 1;
c; if Dið1Þ ¼ 1;Dið0Þ ¼ 0;
d; if Dið1Þ ¼ 0;Dið0Þ ¼ 1;
n; if Dið1Þ ¼ 0;Dið0Þ ¼ 0;

0

BB@ ð12Þ

and referred to the subgroups defined in Equation 12 as always-takers (a), com-
pliers (c), defiers (d), and never-takers (n). Let pg ¼ prðG ¼ gÞ denote the prob-

ability of the stratum g 2 fa; c; d; ng and

gkl ¼ prfY ð1Þ ¼ k; Y ð0Þ ¼ ljG ¼ gg;

be the probability of potential outcome k under treatment and potential outcome l
under control within stratum g. The J ) J probability matrix fgklg0&k;l&J!1

summarizes the joint distribution of the potential outcomes for stratum g. Define

gkþ ¼
XJ!1

l
0¼0

gkl0 ; gþl ¼
XJ!1

k
0¼0

gk0 l ðk; l ¼ 0; 1; . . . ; J ! 1Þ; ð13Þ

the vectors ðg0þ; . . . ; gJ!1;þÞT and ðgþ0; . . . ; gþ;J!1ÞT characterize the marginal
distributions of the potential outcomes under treatment and control. By the law of
total probability,

pkl ¼
X

g

pggkl; pkþ ¼
X

g

pggkþ; pþl ¼
X

g

pggþl : ð14Þ

We define the subgroup causal parameters within stratum g as

tg ¼ prfYið1Þ ( Yið0ÞjG ¼ gg ¼
XX

k(l

gkl; hg ¼ prfYið1Þ > Yið0ÞjG ¼ gg ¼
XX

k>l

gkl :
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Again, these parameters are particularly useful for ordinal outcomes, but are also
applicable to general continuous outcomes.

Following Angrist et al. (1996), we invoke the following “standard” assump-
tions: (1) complete randomization, that is, ZvfDð1Þ;Dð0Þ; Y ð1Þ; Y ð0Þ;Xg, (2)
monotonicity, that is, Dið1Þ ( Dið0Þ for all i, and (3) exclusion restriction, that is,
Dið1Þ ¼ Dið0Þ implies Yið1Þ ¼ Yið0Þ. Monotonicity rules out the defiers with
G ¼ d, and strong monotonicity further rules out the always-takers with G ¼ a.
Exclusion restriction implies that tn ¼ 1, hn ¼ 0, ta ¼ 1, and ha ¼ 0. There-
fore, we discuss only the causal effects for the compliers, that is, tc and hc.

4.2. Bounds on the Causal Effects for Compliers

We focus only on the monotonicity assumption because it is more general than
strong monotonicity. Under monotonicity and exclusion restriction, we identify
the probabilities of always-takers, compliers, and never-takers, that is,
ðpa; pc; pnÞ, and the distributions of the potential outcomes conditional on G
(Angrist et al., 1996; Baker, 2011; Cheng, 2009), that is, the gkþ’s and gþl’s.
Below, we establish the relationships between the causal parameters t and tc and
between h and hc.

Proposition 5: tc ¼ t=pc ! ð1! pcÞ=pc and hc ¼ h=pc.
Therefore, we can plug in the upper and lower bounds of t and h to obtain the

bounds of tc and hc, using the relationships in Proposition 5. However, these
bounds are not sharp, and the following bounds, implied by Propositions 1 and 2,
are narrower.

Corollary 3: The sharp lower and upper bounds of tc are

tc;L ¼ max
0&j&J!1

ðcþj þDc;jÞ; tc;U ¼ 1þ min
0&j&J!1

Dc;j;

and the sharp lower and upper bounds of hc are

hc;L ¼ max
0&j&J!1

Dc;j; hc;U ¼ 1þ min
0&j&J!1

ðDc;j ! cjþÞ:

Similar to Section 3.2, we can use covariates to sharpen the bounds of tc

Within each level of the pretreatment covariates X ¼ x, we define the condi-
tional probabilities that the treatment is beneficial for compliers as

tcðxÞ ¼ prfY ð1Þ ( Y ð0ÞjG ¼ c;X ¼ xg;

and obtain their conditional sharp upper and lower bounds tc;LðxÞ and tc;U ðxÞ.
Because

tc ¼

ð
tcðxÞpcðxÞdFðxÞ
ð
pcðxÞdFðxÞ

;
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the bounds for tc become

t0c;L ¼

ð
tc;LðxÞpcðxÞdFðxÞ
ð
pcðxÞdFðxÞ

; t0c;U ¼

ð
tc;U ðxÞpcðxÞdFðxÞ
ð
pcðxÞdFðxÞ

: ð15Þ

Similar to Proposition 4, the adjusted bounds are tighter, that is, tc;L &
t0c;L & t0c;U & tc;U .

4.3. Using Noncompliance to Sharpen Bounds for the Whole Population

Proposition 5 and Corollary 3 imply two new sets of bounds for t and h, which
are tighter than those in Propositions 1 and 2.

Corollary 4: Under monotonicity and exclusion restriction, we can bound t
from below and above using

t00L ¼ pctc;L þ 1! pc; t00U ¼ pctc;U þ 1! pc;

and bound h from below and above using

h00L ¼ pchc;L ; h00U ¼ pchc;U :

These new bounds above are narrower than those in Propositions 1 and 2 because
they satisfy tL & t00L, tU ¼ t00U , hL ¼ h00L, and hU ( h00U .

There are two reasons that we can obtain tighter bounds. First, we use the
partially observed variable G as a pretreatment variable. Second, the monotoni-
city and exclusion restriction assumptions further restrict the probability struc-
ture of the potential outcomes.

5. Statistical Inference of the Bounds

5.1. Point Estimation

In practice, we need to use the observed data to estimate the marginal prob-
abilities of the potential outcomes and the bounds. To save space for the main
text, we discuss only the bounds of t and tc We describe the point estimation
procedures for the three scenarios mentioned in the previous sections—com-
pletely randomized experiments with or without noncompliance and uncon-
founded observational studies.

First, we consider completely randomized experiments without noncompli-
ance. To estimate the unadjusted bounds, we replace pkþ and pþl in Proposition 1
with their sample analogues

bpkþ ¼ N!1
XN

i¼1

Zi1ðY obs
i ¼ kÞ; bpþl ¼ N!1

XN

i¼1

ð1! ZiÞ1ðY obs
i ¼ lÞ:
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To estimate the covariate adjusted bounds in Equation 11, we first estimate the
marginal probabilities of the potential outcomes of unit i given covariates xi.
Following Imbens and Rubin (2015), for low-dimensional and discrete covariates,
we can still use sample analogues. For high-dimensional and continuous covari-
ates, we can invoke parametric models such as proportional odds models. We then
use the estimates, denoted by bpkþðxiÞ and bpþlðxiÞ, respectively, to estimate the

sharp lower and upper bounds of tðxiÞ, denoted bybtLðxiÞ andbtU ðxiÞ, respectively.
Consequently, the estimated adjusted bounds of t are as follows:

bt 0L ¼ N!1
XN

i¼1

btLðxiÞ; bt 0U ¼ N!1
XN

i¼1

btU ðxiÞ:

Second, we consider unconfounded observational studies. If we have propensity
score estimator beðxiÞ for unit i, then we can estimate the marginal probabilities by:

bpkþ ¼ N!1
XN

i¼1

Zi
1ðY obs

i ¼ kÞ
beðxiÞ

; bpþl ¼ N!1
XN

i¼1

ð1! ZiÞ
1ðY obs

i ¼ lÞ
1! beðxiÞ

;

and then estimate the bounds accordingly.
Third, we consider completely randomized experiments with noncompliance.

Without covariates, we use the expectation maximization (EM) algorithm by Demp-
ster, Laird, and Rubin (1976) to estimate pc, ckþ, and cþl and then estimate the
unadjusted bounds in Corollary 3. For a more detailed description of the EM algo-
rithm, see Baker (2011). With covariates, we need to invoke parametric models for
G (e.g., multinomial logistic model given X) and the marginal probabilities of the
potential outcomes and use the EM algorithm to compute the maximum likelihood
of the model parameters. For more details, see Online Supplemental Material, and
Zhang, Rubin, and Mealli (2009) and Frumento, Mealli, Pacini, and Rubin (2012).
After obtaining the sample analogues of tc;LðxÞ, tc;U ðxÞ, and pcðxÞ, we estimate the
covariate adjusted bounds defined in Equation 15 using a plug-in approach.

5.2. Finite-Sample Bias and Bias Correction

As pointed out by several researchers (e.g., Liu & Brown, 1993; Manski &
Pepper, 2000, 2009), the minimum and maximum operators in the closed-form
expressions of the sharp bounds usually complicate the estimation procedure, by
introducing finite-sample biases to the corresponding plug-in estimators. For
example, even with unbiased estimators of the marginal probabilities (e.g., in
completely randomized experiments), the estimated lower bound is positively
biased. In the existing literature, this non-smoothness-induced bias has been
recognized and discussed by Laber and Murphy (2011), Hirano and Porter
(2012), and Luedtke and Van der Laan (2016), under various settings. However,
fortunately, such biases tend to diminish as the sample size increases, due to the
consistency of the plug-in estimators. More importantly, as pointed out by
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Kreider and Pepper (2007), it is possible to effectively reduce such biases by a
nonparametric bootstrap correction (Efron & Tibshirani, 1994; Parr, 1983). To be
more specific, let t̂L denote the point estimator of tL, and the corresponding bias-
corrected estimator is therefore 2btL ! EBðbtLÞ, where “EB” denotes the expecta-
tion induced by the bootstrap distribution.

The following numerical example demonstrates the magnitude of the bias
associated with the plug-in estimator and the performance of the bias-
correction estimator.

Example 6: Consider a completely randomized experiment without noncom-
pliance. To save space, we focus only on t and its unadjusted lower bound tL in
Equation 5. We choose the sample size N 2 f100; 200; 500g and consider four
different probability matrices. Cases 1 and 2 correspond to matrices P2 and P3 in
Equation 7, that is, the independent and positively associated potential outcomes,
which share the same marginal distribution but do not satisfy the stochastic dom-
inance assumption. Cases 3 and 4 correspond to matrices P5 and P6 in Equation 8,
that is, the independent and positively associated potential outcomes, which share
the same marginal distribution and satisfy the stochastic dominance assumption.
Columns 3 and 4 of Table 1 summarize the true values of t and tL for all four cases.

For each case and fixed sample size, we independently draw 1,000 treatment
assignments from a balanced completely randomized experiment. For each
observed data set, we calculate point estimates of tL using the plug-in estimator
and the bias-correction estimator based on 200 bootstraps. In Columns 5 and 6 of
Table 1, we report the biases of the two point estimators, from which we can draw

TABLE 1.
Numerical Examples

Case N t tL Biasp Biasb

1 100 0.640 .400 .023 .005
1 200 0.640 .400 .016 .004
1 500 0.640 .400 .009 .001
2 100 0.800 .400 .017 !.002
2 200 0.800 .400 .014 .001
2 500 0.800 .400 .007 !.001
3 100 0.880 .600 .037 .010
3 200 0.880 .600 .026 .007
3 500 0.880 .600 .016 .004
4 100 1.000 .600 .036 .009
4 200 1.000 .600 .026 .007
4 500 1.000 .600 .013 .001

Note. The first four columns contain the case label, sample size, and true values of t and tL. The last

two columns contain the biases of the plug-in (labeled “p”) estimator and the bootstrap bias-corrected

(labeled “b”) estimators, calculated by 1,000 repeat samplings and 200 bootstraps for each sample.
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two conclusions. First, for each case, the bias of the plug-in estimator decreases
as the sample size increases. Second, the bias-corrected estimator greatly reduces
(in most cases by over 60%) the bias of the plug-in estimator.

5.3. Confidence Intervals (CIs)

We discuss the construction of CIs for the aforementioned causal parameters
and their unadjusted or covarite adjusted bounds. For illustration, we again use
t as an example. From a practical (e.g., decision-making) perspective, we aim
to construct a CI that covers t at least 100ð1! aÞ% of the times, for prespeci-
fied significance level a. Because the casual parameter is only partially identi-
fiable, it is difficult to do so directly without additional assumptions or
information. A common approach to address this challenge is to instead con-
struct a 100ð1! aÞ% CI for the sharp bounds ½tL; tU +. Because t 2 ½tL; tU +, the
resulted interval automatically guarantees at least 100ð1! aÞ% coverage rate
for t itself.

Similar to the point estimation procedure because both the upper and the
lower bounds involve the maximum and minimum operators, their asymptotic
distributions become nonnormal, rendering the construction of CIs covering the
bounds extremely challenging (Hirano & Porter, 2012). Consequently, in prac-
tice, statisticians (Cheng & Small, 2006; Yang & Small, 2016) often employed
bootstrap methods (e.g., Beran, 1988, 1990; Bickel, Gotze, & Van Zwet, 1997;
Bickel & Sakov, 2008) to construct CIs for partially identified parameters.
Among numerous proposals, the most conceptually straightforward and trans-
parent one is arguably the “standard” bootstrap procedure advocated by Horowitz
and Manski (2000), for which 1! a CI is simply fbtL ! zBðaÞ;btU þ zBðaÞg,
where the threshold value zBðaÞ can be obtained by solving the equation:

PrBfbtL ! zBðaÞ & btL;btU & btU þ zBðaÞg ¼ 1! a:

In the above equation, “PrB” is the probability measure induced by bootstrap.
Recently, several researchers (e.g., Chernozhukov, Lee, & Rosen, 2013; Romano
& Shaikh, 2008, 2010) proposed more delicate methods to construct CIs for
partially identified parameters. Although the theoretical guarantees of the classic
bootstrapped CIs (Horowitz & Manski, 2000) are not completely established,
several researchers (e.g., Fan & Park, 2010; Yang, 2014) have evaluated them via
extensive simulation studies and found that they achieve nominal coverage rates
in many realistic scenarios.

To empirically illustrate the validity of our inferential procedure, in Online
Appendix C, we compare Horowitz and Manski’s (2000) method to a more
theoretically rigorous one, under a wide range of settings. The results suggest
that, at least in our context, Horowitz and Manski’s (2000) bootstrap interval
performs equally well, if not slightly more “conservative.” Therefore, for sim-
plicity in simulations and transparency in applications, we still use bootstrap to
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construct CIs. We provide the code to implement the above construction
approach; more sophisticated users can straightforwardly modify our code and
explore more advanced methods.

6. Simulation Studies

6.1. Without Noncompliance

To save space for the main text, we focus only on t and its sharp bounds in
Proposition 1. For illustration, we first adopt the settings (i.e., sample sizes and
probability matrices) in Example 6. It is worth mentioning that, for Cases 1 and 3
with independent potential outcomes, tL < t < tU . For Cases 2 and 4 with
positively associated potential outcomes, t ¼ tU . In addition, by symmetry
Cases 1 through 4, only consider t > :5.

For each case, we independently draw 1,000 treatment assignments from a
balanced completely randomized experiment. For each observed data set, we
obtain bias-corrected estimates of tL and tU and construct a 95% CI for
½tL; tU + using 200 bootstrapped samples. In Columns 5 through 8 of Table 2,
we report the biases and standard errors of the point estimators btL and bt

U
; in

Column 9, we report the coverage rates of the CIs on the bounds ½tL; tU + and t
itself. We can draw several conclusions from the simulation results. First, the
point estimators have small biases and standard errors. Second, the CIs achieve
reasonable coverage rates for the bounds ½tL; tU +, although always overcover t,
especially in cases with independent potential outcomes.

As mentioned previously, in Online Appendix C, we conduct additional simu-
lation studies to further examine the performance of Horowitz and Manski’s
(2000) bootstrap CI. The simulation results suggest that it achieves nearly nom-
inal coverage rates for the bounds ½tL; tU +, except for certain “edge cases” (e.g.,
when t , tU , 1), and as expected usually overcover t.

6.2. With Noncompliance

To evaluate the finite-sample performances of the estimators and the CIs of the
bounds, we conduct simulation studies under different model specifications. To save
space, we focus only on the parameter tc and consider six simulation cases. Cases 1
through 3 are indexed by the parameter b 2 f1; 1=2; 0g and Cases 4 through 6 by
x 2 f1; 1=2; 0g. We postpone the interpretations of b and x until afterward. For each
case, let the pretreatment covariates X ¼ ð1;X1;X2Þ, where X1*Nð0; 1Þ and
X2*Bernð1=2Þ. For fixed X ¼ x, we generate the variable G from a multinomial
logit model:

pgðxÞ ¼ expðhT
gxÞ=

"X

g0

expðhT
g0xÞ
#
ðg ¼ a; c; nÞ;
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where hc ¼ 0, ha ¼ ð1=2; 1; 0Þ, and hn ¼ ð!1=2; 1; 0Þ. We generate the poten-
tial outcomes from proportional odds models.

1. For always-takers, let Yið1Þ ¼ Yið0Þ, and their marginal distributions be:

logit
X

k& j

akþðxÞ

( )

¼ logit
X

l& j

aþlðxÞ

( )

¼ aa;j ! 2x1;

where aa;0 ¼ !1=2 and aa;1 ¼ 1.

2. For never-takers, let Yið1Þ ¼ Yið0Þ, and their marginal distributions be

logit
X

k& j

nkþðxÞ

( )

¼ logit
X

l& j

nþlðxÞ

( )

¼ an;j;

where aa;0 ¼ !3=2 and aa;1 ¼ 0

3. For compliers let Yið1Þ and Yið0Þ be independent, and the values of the parameters
be ac;0 ¼ !1, ac;1 ¼ 1=2, gc;0 ¼ 1=2, and gc;1 ¼ 2.

a. For Cases 1–3, let the marginal distributions be

TABLE 2.
Simulated Examples Without Noncompliance

Case N t tL tU BiasL seL BiasU seU Coverage1 Coverage2

1 100 0.640 .400 0.800 .005 .056 .001 .067 .989 1.000
1 200 0.640 .400 0.800 .004 .040 !.000 .044 .989 1.000
1 500 0.640 .400 0.800 .001 .025 !.003 .029 .982 1.000
2 100 0.800 .400 0.800 !.002 .063 !.001 .082 .969 0.979
2 200 0.800 .400 0.800 .001 .044 !.000 .057 .966 0.976
2 500 0.800 .400 0.800 !.001 .027 !.002 .035 .968 0.979
3 100 0.880 .600 1.000 .010 .049 .000 .000 .959 1.000
3 200 0.880 .600 1.000 .007 .035 .000 .000 .965 1.000
3 500 0.880 .600 1.000 .004 .022 .000 .000 .969 1.000
4 100 1.000 .600 1.000 .009 .053 .000 .000 .940 1.000
4 200 1.000 .600 1.000 .007 .035 .000 .000 .967 1.000
4 500 1.000 .600 1.000 .001 .021 .000 .000 .983 1.000

Note. The first five columns contain the case number, sample size, and true values of the parameter

and its sharp lower and upper bounds. The next four columns contain the biases and standard errors of

the point estimators of the bounds, and the last two columns contain the coverage properties of the

confidence intervals for the bounds (labeled “coverage1”) and the true parameter itself (labeled

“coverage2”).
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logit

"X

k& j

ckþðxÞ
#
¼ ac;j ! 2bx1; logit

"X

l& j

cþlðxÞ
#
¼ gc;j þ bx1:

b. For Cases 4–6, let the marginals distributions be:

logit

"X

k& j

ckþðxÞ
#
¼ ac;j ! 2x1 ! xx2; logit

"X

l& j

cþlðxÞ
#
¼ gc;j þ x1 þ xx2:

For the above six cases, their true values of tc unadjusted and adjusted
bounds are in Columns 2 through 4 of each subtable of Table 3. For Cases 1
through 3, the parameter b quantifies the association between the covariates
and the potential outcomes. As b decreases, the covariate adjusted bounds
become closer to the unadjusted bounds. For Cases 4 through 6, the parameter
x quantifies the association between the binary covariate X2 and the potential
outcomes of compliers.

TABLE 3.
Simulated Examples With Noncompliance

Unadjusted Bounds

Case tc tc;L tc;U BiasL BiasU Length Coverage

1 .685 .488 0.971 !.003 !.005 .659 .945
2 .770 .553 1.000 !.008 .006 .574 .973
3 .856 .622 1.000 .013 .001 .489 .966
4 .782 .589 1.000 .000 .006 .523 .957
5 .736 .540 1.000 !.003 .003 .593 .975
6 .686 .488 0.970 !.001 !.004 .655 .945

Adjusted bounds

tc t0c;L t0c;U BiasL BiasU Length Coverage

1 .685 .503 0.772 !.001 .003 .466 .968
2 .770 .563 0.935 !.006 .001 .530 .968
3 .856 .622 1.000 .001 .002 .489 .959
4 .782 .602 0.846 !.002 .017 .436 .960
5 .738 .556 0.817 !.001 .004 .447 .965
6 .686 .503 0.772 .008 !.006 .466 .968

Note. In each subtable, the first three columns contain the true values of the causal parameter tc and

its lower and upper bounds, the next two columns contain the biases of the point estimators of the

lower and upper bounds, and the last two columns contain the lengths and coverage rates of the 95%
confidence intervals for the bounds.
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We conduct inference without the binary covariate X2. This does not affect
Cases 1 through 3 because X2 is irrelevant in the data-generating process but does
affect Cases 4 through 6. We purposefully design the data-generating process in
this way to examine the performance of our estimators under correct and incor-
rect model specifications. For each case, we choose the sample size to be 1,000
and independently draw 1,000 treatment assignments from a balanced com-
pletely randomized experiment. For each observed data set, based on based on
100 bootstrapped samples, we first obtain the bias-corrected estimates of tc;L and

tc;U and construct a 95% CI for ½tc;L; tc;U +; we then estimate the bounds t0c;L and

t0c;U and construct a 95% CI for ½t0c;L; t0c;U +.
We report the simulation results in Table 3, in which Columns 4 through 7 of

each subtable include the biases of the point estimators, the average lengths, and
coverage rates of the 95% CIs on the bounds. First, the point estimators of the
bounds have small biases. Second, when the pretreatment covariates are associ-
ated with the potential outcomes, the CIs of the bounds ½tc;L; tc;U + are longer than

those of ½t0c;L; t0c;U + on average. Third, the CIs for the bounds ½tc;L; tc;U + and

½t0c;L; t0c;U + achieve reasonable coverage rates. Fourth, the performance of the

bounds is robust to the missingness of the binary covariate, or, equivalently, a
misspecification of the outcome models.

7. Applications

7.1. A Taste-Testing Experiment Without Noncompliance

We use the taste-testing experiment data in Bradley, Katti, and Coons
(1962) to demonstrate the estimation and inference of the proposed causal
parameters. The outcome of interest Y is ordinal with five categories, from
“terrible” with Y ¼ 0 to “excellent” with Y ¼ 4. We consider only three
treatments C, D, and E, and summarize the data and results in Table 4.
Because negative associated potential outcomes appear unlikely in practice
(Ding & Dasgupta, 2016), that is, the three treatments are not drastically
different (e.g., YiðCÞ ¼ 4 and YiðEÞ ¼ 0), we focus on the interpretations of
the cases with independent and positive correlated potential outcomes, for
example, tI and tU . First, treatment E stochastically dominates treatment C,
and the CIs for ½tI ; tU + and ½hI ;hU + are [0.914, 1.000] and [0.651, 0.997].
The results suggest that treatment E is indeed better than treatment C because
both lower confidence limits are greater than 0.5. Second, although Treat-
ments E and D do not stochastically dominate each other, the CIs for ½tI ; tU +
and ½hI ;hU + are [0.656, 0.982] and [0.510, 0.886], suggesting that Treatment
E is better than Treatment D. Therefore, the proposed causal parameters t
and h are useful for decision-making, especially when the stochastic dom-
inance assumption does not hold.
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7.2. A Sexual Assault Education Program Without Noncompliance

Between September 2011 and February 2013, three universities in Canada
(Windsor, Guelph, and Calgary) conducted the Sexual Assault Resistance Edu-
cation (SARE) trial. The SARE trial investigates whether the enhanced Assess,
Acknowledge, and Act (AAA) program, which consist of numerous activities
(e.g., lectures, discussions, and practices) can help prevent sexual assaults. Four
hundred and fifty-one first-year female students from the above universities
where randomly assigned to the treatment group (Z ¼ 1) with access to AAA,
and 442 were randomly assigned to the control group (Z ¼ 0) with brochures
containing general information on sexual assault. The primary outcome Y is
ordinal with six categories, from “complete rape” with Y ¼ 0 to “no reporting
of any non-consensual sexual contact” with Y ¼ 5.

We summarize the data and results in Table 5. Because both the treatment and
control groups receive useful information on sexual assault prevention, nega-
tively associated potential outcomes seem unlikely. Therefore, we again focus on
independent and positively correlated potential outcomes. The CIs for ½tI ; tU +
and ½hI ;hU + are [0.758, 1.000] and [0.554, 0.999], suggesting that AAA is indeed
beneficial because both lower confidence limits are greater than 0.5. Our findings
corroborate the recommendations by Senn et al. (2015).

TABLE 4.
Analysis of a Taste-Testing Experiment

Data From Bradley et al. (1962)

Outcome Categories

Treatment 0 1 2 3 4 Row Sum

C 14 13 6 7 0 40
D 11 15 3 5 8 42
E 0 2 10 30 2 44

Results for t: Point estimators and confidence intervals (CIs)
btL btI btU CI for ½tL; tU + CI for ½tI ; tU +

E vs. C .765 .946 1.000 [0.667, 1.000] [0.914, 1.000]
E vs. D .630 .782 0.856 [0.503, 0.997] [0.656, 0.982]

Results for h: Point estimators and confidence intervals (CIs)
bhL bhI bhU CI for ½hL;hU + CI for ½hI ;hU +

E vs. C .623 .780 .870 [0.480, 1.000] [0.651, 0.997]
E vs. D .573 .659 .738 [0.413, 0.896] [0.510, 0.886]

Note. CI ¼ confidence interval.
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7.3. A Job Training Program With Noncompliance

In the mid-1990s, Mathematica Policy Research conducted an experiment that
randomly enrolled eligible applicants into the Job Corps program (Lee, 2009;
Schochet et al., 2003). We reanalyzed the data set from 1995 with 13,499 units.
For more detailed descriptions of the data set, see Zhang et al. (2009) and
Frumento et al. (2012). In the following analysis, Z ¼ 1 if an applicant was
enrolled in the program and Z ¼ 0 otherwise; D ¼ 1 if an applicant actually
participated in the program, and D ¼ 0 otherwise. The strong monotonicity
assumption with Dið0Þ ¼ 0 for all i holds by design. Using the hourly wage after
52 weeks of enrollment, we create a three-level ordinal outcome Y as follows:
Y ¼ 0 for zero wage because of unemployment, Y ¼ 1 for low wage (no more
than 4.25 U.S. dollars, 150% of the minimal wage at the time the data were
collected), and Y ¼ 2 for high wage (more than 4.25 U.S. dollars). In the fol-
lowing analysis, we take into account covariates such as gender, age, education,
and marital status.

We report the results in Table 6. Similar as before, we focus on independent
and positively correlated potential outcomes. For both causal parameters tc and
hc, the CIs for the lower and upper bounds become narrower when we take
covariates into account. Similarly as the previous example, we focus on the
interpretations of the cases with independent and positive correlated potential
outcomes. The CIs with or without covariates for ½tI ; tU + suggest that the hourly
wages of more than 70% of participants do not decrease because of the job
training program. Additionally, the CIs with or without covariates for ½hI ;hU +

TABLE 5.
Analysis of the SARE Trial

Data From Senn et al. (2015)

Outcome Categories

0 1 2 3 4 5
Row
Sum

Treatment 23 15 48 67 121 177 451
Control 42 40 62 103 184 11 442

Results for t and h: point estimators and confidence intervals (CIs)
Lower bound Indep. Upper bound CI for [L, U] CI for [I, U]

t .636 .783 1.000 [0.598, 1.000] [0.758, 1.000]
h .368 .604 0.962 [0.311, 1.000] [0.554, 0.999]

Note. SARE ¼ Sexual Assault Resistance Education; CI ¼ confidence interval.
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suggest that the hourly wages of roughly 20% to 30% of participants strictly
increase because of the job training program.

As a final note, we use this example to illustrate Corollary 4. First,
without the noncompliance information, the estimators of the bounds of t
are btL ¼ :558 and btU ¼ :937, with 95% CI [0.541, 0.954]; the estimators of

the bounds of h are bhL ¼ :004 and bhU ¼ :379; with 95% CI [0.000, 0.388].
With the noncompliance information, the estimators of the bounds of t are

bt00L ¼ :683 and bt00U ¼ :937; with 95% CI [0.666, 0.954]; the estimators of

the bounds of h are bh00L ¼ :004 and bh00U ¼ :254, with 95% CI [0.000, 0.262].
Therefore, the noncompliance information in return improves the inferences
of t and h for the whole population.

8. Concluding Remarks

We proposed to use two causal parameters to evaluate treatment effect on
ordinal outcomes, and derived the explicit forms of their sharp bounds by using
only the marginal distributions of the potential outcomes. Although we advocate
the use of parameters t and h to measure treatment effects, we acknowledge that
some other causal parameters may also provide information in practice (e.g.,
Agresti, 2010; Volfovsky, Airoldi, & Rubin, 2015). For general parameters,
although deriving the explicit forms of the bounds may be difficult, we can use
numerical methods. For instance, for another widely used parameter, the relative
treatment effect a ¼ tþ h! 1 (Agresti, 2010), we can use numerical linear
programs to calculate its maximum and minimum values under the constraints
in Equation 4.

TABLE 6.
Analysis of the Job Corps Program

Results for t: point estimators and confidence intervals (CIs)

btc;L btc;I btc;U CI for ½tc;L; tc;U + CI for ½tc;I ; tc;U +

Without covariates .561 .707 .912 [.536, .938] [.687, .934]
With covariates .592 .723 .912 [.570, .932] [.700, .932]

Results for h: point estimators and confidence intervals (CIs)

bhc;L bhc;I bhc;U CI for ½hc;L;hc;U + CI for ½hc;I ;hc;U +

Without covariates .005 .209 .351 [.000, .362] [.199, .363]
With covariates .004 .193 .320 [.000, .331] [.180, .331]

Note. CI ¼ confidence interval.
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Web-based supplementary material for “Treatment

e↵ects on ordinal outcomes: Causal estimands and

sharp bounds”

Jiannan Lu, Peng Ding and Tirthankar Dasgupta

The Supplementary Material consists of three parts. Part A contains all the proofs. Part B

gives the details of the EM algorithm with noncompliance. Part C presents additional simulation

results.

A. Proofs of Lemma, Propositions and Corollaries

A.1. A lemma and its proof

We first state a lemma extending a result in Strassen (1965). This lemma plays a central role in

our later proofs, and is also of independent interest.

Lemma 1. Assume that (x0, . . . , xn�1) and (y0, . . . , yn�1) are nonnegative constants.

(a) If
Pn�1

r=s xr �
Pn�1

r=s yr for all s = 0, . . . , n � 1, there exists an n ⇥ n lower triangular matrix

An = (akl)0k,ln�1 with nonnegative elements such that

n�1X

l0=0

akl0  xk,
n�1X

k0=0

ak0l = yl (k, l = 0, . . . , n� 1). (A.1)

(b) If
Pn�1

r=s xr 
Pn�1

r=s yr for all s = 0, . . . , n� 1, there exists an n⇥ n upper triangular matrix

Bn = (bkl)0k,ln�1 with nonnegative elements such that

n�1X

l0=0

bkl0 = xk,
n�1X

k0=0

bk0l  yl (k, l = 0, . . . , n� 1). (A.2)

1



(c) If
Ps

r=0
xr 

Ps
r=0

yr for all s = 0, . . . , n � 1, there exists an n ⇥ n lower triangular matrix

Cn = (pkl)0k,ln�1 with nonnegative elements such that

n�1X

l0=0

pkl0 = xk,
n�1X

k0=0

pk0l  yl (k, l = 0, . . . , n� 1). (A.3)

(d) If
Ps

r=0
xr �

Ps
r=0

yr for all s = 0, . . . , n� 1, there exists an n⇥ n upper triangular matrix

Dn = (dkl)0k,ln�1 with nonnegative elements such that

n�1X

l0=0

dkl0  xk,
n�1X

k0=0

dk0l = yl (k, l = 0, . . . , n� 1). (A.4)

(e) If we further assume
Pn�1

r=0
yr =

Pn�1

r=0
xr, the above inequalities in (A.1)–(A.4) all reduce to

equalities, i.e., the matrices An, Bn, Cn and Dn have (x0, . . . , xn�1) and (y0, . . . , yn�1) as

their row and column sums.

Note that if all the xi’s are the same as the yi’s, we can simply construct a diagonal matrix

with elements xi’s or yi’s. The following proof deals with general cases.

Proof of Lemma 1(a). We prove by induction. When n = 1, we let A1 = y0 � 0, and Lemma 1(a)

holds because y0  x0. When n � 2, suppose Lemma 1(a) holds for n � 1. In particular, for any

(x1, . . . , xn�1) and (y1, . . . , yn�1) such that
Pn�1

r=s xr �
Pn�1

r=s yr for all s = 1, . . . , n�1, there exists

a lower triangular matrix An�1 = (akl)1k,ln�1 with nonnegative elements such that

n�1X

l0=1

akl0  xk,
n�1X

k0=1

ak0l = yl (k, l = 1, . . . , n� 1). (A.5)

To prove that Lemma 1(a) holds for n, we let

An =

0

B@
a00 0T

a An�1

1

CA ,

where a00 and a = (a10, . . . , an�1,0)T are defined for two separate cases below.

(1) y0 < x0. We let a00 = y0, and ak0 = 0 for all k = 1, . . . , n � 1. Clearly, An has nonnegative

elements, and satisfies the row and column sum conditions in Lemma 1(a) holds;
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(2) y0 � x0. We let a00 = x0, and

ak0 = (y0 � a00)
xk �

Pn�1

l0=1
akl0

Pn�1

k0=1

⇣
xk0 �

Pn�1

l0=1
ak0l0

⌘ � 0 (k = 1, . . . , n� 1). (A.6)

This construction guarantees that the column sums of An are yl’s. Furthermore, because

An�1 satisfies (A.5), we have

n�1X

k0=1

 
xk0 �

n�1X

l0=1

ak0l0

!
=

n�1X

k0=1

xk0 �
n�1X

k0=1

n�1X

l0=1

ak0l0 =
n�1X

k0=1

xk0 �
n�1X

l0=1

n�1X

k0=1

ak0l0

=
n�1X

k0=1

xk0 �
n�1X

k0=1

yk0 � y0 � x0 = y0 � a00 > 0. (A.7)

Formulas (A.6) and (A.7) imply that ak0  xk �
Pn�1

l0=1
akl0 and therefore

Pn�1

l0=0
akl0  xk for

k = 1, . . . , n� 1.

Therefore Lemma 1(a) holds for n, and the proof is complete.

Proof of Lemma 1(b). By applying Lemma 1(a) to (y0, . . . , yn�1) and (x0, . . . , xn�1) , we obtain a

lower triangular matrix gBn = (b̃kl)0k,ln�1 with nonnegative elements such that

n�1X

k0=0

b̃k0l = xk,
n�1X

l0=0

b̃kl0  yk (k, l = 0, . . . , n� 1).

Let Bn =gBn
T

, and the proof is complete.

Proof of Lemma 1(c). By applying Lemma 1(a) to (yn�1, . . . , y0) and (xn�1, . . . , x0) , we obtain a

lower triangular matrix fCn = (p̃kl)0k,ln�1 with nonnegative elements such that

n�1X

k0=0

c̃k0l = xn�l�1,
n�1X

l0=0

c̃kl0  yn�k�1 (k, l = 0, . . . , n� 1).

Let Cn = (c̃n�l�1,n�k�1)0k,ln�1
, and the proof is complete.

Proof of Lemma 1(d). By applying Lemma 1(c) to (y0, . . . , yn�1) and (x0, . . . , xn�1) , we obtain a

3



lower triangular matrix gDn = (d̃kl)0k,ln�1 with nonnegative elements such that

kX

l0=0

d̃kl0 = yk,
n�1X

k0=l

d̃k0l  xk (k, l = 0, . . . , n� 1).

Let Dn = gDn
T

, and the proof is complete.

Proof of Lemma 1(e). In addition to the proof of Lemma 1(a), we further need to show that if
Pn�1

r=0
yr =

Pn�1

r=0
xr, the row sums of the constructed matrix An are xk’s. In the induction of the

proof of Lemma 1(a), if we have constructed matrix An�1, the case with y0 < x0 would not happen.

We consider only the case with y0 � x0. Because the lower triangular matrix An�1 has the column

sums yl’s, and
Pn�1

r=0
yr =

Pn�1

r=0
xr, we have

n�1X

k0=1

 
xk0 �

n�1X

l0=1

ak0l0

!
=

n�1X

k0=1

xk0 �
n�1X

k0=1

yk0 = y0 � x0 = y0 � a00 > 0.

The above formula, coupled with the construction of the first column of An in (A.6), gives ak0 =

xk �
Pn�1

l0=1
akl0 and thus

Pn�1

l0=0
akl0 = xk for all k.

A.2. Proof of Proposition 1

Now we prove the main Proposition 1, and the proofs for other propositions and corollaries are

relatively straightforward.

Proof of Proposition 1. For all j = 0, 1, . . . , J � 1,

⌧ =
XX

k�l

pkl = 1�
XX

k<l

pkl

 1�
X

k<j

X

l�j

pkl = 1�

0

@
J�1X

k=0

X

l�j

pkl �
X

k�j

X

l�j

pkl

1

A (A.8)

 1�

0

@
J�1X

k=0

X

l�j

pkl �
X

k�j

J�1X

l=1

pkl

1

A = 1�

0

@
X

l�j

p+l �
X

k�j

pk+

1

A (A.9)

= 1 +�j ,
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and

⌧ =
XX

k�l

pkl

�
X

k�j

X

lj

pkl =
X

k�j

J�1X

l=0

pkl �
X

k�j

X

l>j

pkl (A.10)

�
X

k�j

J�1X

l=0

pkl �
J�1X

k=0

X

l>j

pkl =
X

k�j

pk+ �
X

l>j

p+l (A.11)

= p+j +�j ,

which implies that ⌧L  ⌧  ⌧U .

We now construct two probability matrices attaining the lower and upper bounds respectively,

using Lemma 1.

We first construct a probability matrix attaining the upper bound ⌧U . Let

j1 = min

⇢
0  j0  J � 1 : �j0 = min

0jJ�1

�j

�

be the minimum index j that attains the minimum value of �j ’s. To attain ⌧U , the equalities in

(A.8) and (A.9) must hold, i.e.,

XX

k<l

pkl =
X

k<j1

X

l�j1

pkl,
X

k�j1

X

l�j1

pkl =
X

k�j1

J�1X

l=1

pkl. (A.12)

If j1 = 0, min0jJ�1�j = �0 = 0, implying that �j =
PJ�1

k=j pk+ �
PJ�1

l=j p+l � 0 for

all j, i.e., the marginal probabilities satisfy the stochastic dominance assumption. According to

Lemma 1(e), there exists a lower triangular probability matrix P with marginal probabilities p1 =

(p0+, . . . , pJ�1,+)
T and p0 = (p+0, . . . , p+,J�1)

T . Correspondingly, ⌧ = 1 +�0 = 1.

If j1 > 0, the constraints in (A.12) force some elements of the probability matrix to be zeros.

To be more specific, the constraints in (A.12) imply that the probability matrix has the following

block structure:

P =

0

B@
Ptl Ptr

0 Pbr

1

CA , (A.13)
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where the j1 ⇥ j1 sub-matrix Ptl on top left and the (J � j1)⇥ (J � j1) sub-matrix Pbr on bottom

right are both lower triangular, and the j1⇥(J�j1) sub-matrix Ptr on top right has no restrictions.

Because �j1  �j for all j = 0, 1, . . . , J � 1, we have

j1�1X

k=j

pk+ �
j1�1X

l=j

p+l (j = 0, . . . , j1 � 1);
jX

k=j1

pk+ 
jX

l=j1

p+l (j = j1, . . . , J � 1).

Given the above two sets of constraints on the marginal probabilities, we construct the probability

matrix P in three steps.

(1) We apply Lemma 1(a) to (p0+, . . . , pj1�1,+) and (p+0, . . . , p+,j1�1) , and obtain a lower trian-

gular matrix Ptl = (pkl)0k,lj1�1
with nonnegative elements such that

j1�1X

l0=0

pkl0  pk+,
j1�1X

k0=0

pk0l = p+l (k, l = 0, . . . , j1 � 1).

(2) We apply Lemma 1(c) to (pj1+, . . . , pJ�1,+) and (p+j1 , . . . , p+,J�1) , and obtain a lower trian-

gular matrix Pbr = (pkl)j1k,lJ�1
with nonnegative elements such that

J�1X

l0=j1

pkl0 = pk+,
J�1X

k0=j1

pk0l  p+l (k, l = j1, . . . , J � 1).

(3) We construct Ptr = (pkl)0kj1�1,j1lJ�1
by letting

pkl =

 
pk+ �

j1�1X

l0=0

pkl0

!0

@p+l �
J�1X

k0=j1

pk0l

1

A � 0 (k = 0, . . . , j1 � 1; l = j1, . . . , J � 1).

The constructed probability matrix P has marginal probabilities p1 = (p0+, . . . , pJ�1,+)
T and

p0 = (p+0, . . . , p+,J�1)
T . What is more, by (A.13) the ⌧ of P is the sum of all the elements in Ptl

and Pbr, which we construct in the above (1) and (2). Therefore, we have

⌧ =
j1�1X

l0=0

p+l0 +
J�1X

k0=j1

pk0+ = 1 +�j1 ,

which implies that the probability matrix P attains ⌧U .
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We then construct a probability matrix attaining the lower bound in ⌧L. Let

j2 = min

⇢
j0 : p+j0 +�j0 = max

0jJ�1

(p+j +�j)

�

be the minimum index j that attains the maximum value of (p+j+�j)’s. To attain ⌧L, the equalities

in (A.10) and (A.11) must hold, i.e.,

XX

k�l

pkl =
X

k�j2

X

lj2

pkl,
X

k�j2

X

l>j2

pkl =
J�1X

k=0

X

l>j2

pkl. (A.14)

If j2 = 0, from (A.14) we know that the elements in the lower triangular part but not in the

first column of the probability matrix P are all zeros, i.e.,

P =

0

B@
p Ptr

pJ�1,0 0T

1

CA , (A.15)

where p = (p0,0, . . . , pJ�2,0)
T , and the (J � 1) ⇥ (J � 1) sub-matrix Ptr on top right is upper

triangular. Because p+0 +�0 � p+j +�j for all j, we have

jX

k=0

pk+ �
jX

l=0

p+,l+1 (j = 0, . . . , J � 2).

Applying Lemma 1(d) to (p0+, . . . , pJ�2,+) and (p+1, . . . , p+,J�1) , we obtain an upper triangular

matrix Ptr = (pkl)0kJ�2,1lJ�1
with nonnegative elements such that

J�1X

l0=1

pkl0  pk+,
J�2X

k0=0

pk0l = p+l (k = 0, . . . , J � 2; l = 1, . . . , J � 1).

To complete the construction, let pJ�1,0 = pJ�1,+, and

pk0 = pk+ �
J�1X

l0=1

pkl0 � 0 (k = 0, . . . , J � 2).

The constructed probability matrix P has marginal probabilities p1 = (p0+, . . . , pJ�1,+)
T and

p0 = (p+0, . . . , p+,J�1)
T . Moreover, by (A.15) the ⌧ of P is the sum of all the elements in the first
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column. Therefore ⌧ = p+0 = p+0 +�0, which implies that P attains ⌧L.

If j2 = J � 1, the proof is similar to the above case with j2 = 0. If 0 < j2 < J � 1, because the

first equality in (A.14) is equivalent to

X

k<j2

X

lk

pkl +
X

k�j2

X

lk

pkl =
X

k�j2

X

lj2

pkl,

the probability matrix P must satisfy the following constraints:

(C1) For all k = 0, . . . , j2 � 1, pkl = 0 for all l = 0, . . . , k.

(C2) For all k = j2 + 1, . . . , J � 1, pkl = 0 for all l = j2 + 1, . . . , k.

Similarly, because the second equality in (A.14) is equivalent to

X

k�j2

X

l>j2

pkl =
X

k�j2

X

l>j2

pkl +
X

k<j2

X

l>j2

pkl,

the probability matrix P must further satisfy the following constraint:

(C3) pkl = 0, for all k = 0, . . . , j2 � 1 and l = j2 + 1, . . . , J � 1.

The constraints in (C1), (C2) and (C3) imply that P must have the following block structure:

P =

0

BBBB@

(0,Ptl) 0

Pbl

0

B@
Pbr

0T

1

CA

1

CCCCA
(A.16)

where the j2 ⇥ j2 sub-matrix Ptl and the (J � j1 � 1)⇥ (J � j1 � 1) sub-matrix Pbr are both upper

triangular, and the (J � j2)⇥ (j2 + 1) sub-matrix Pbl on bottom left has no restrictions.

Because p+j2 +�j2 � p+j +�j for all j, we have

j2�1X

k=j

pk+ 
j2�1X

l=j

p+,l+1 (j = 0, . . . , j2 � 1);
sX

k=j2

pk+ �
sX

l=j2

p+,l+1 (j = j2, . . . , J � 2).

Given the above two sets of constraints for the marginal probabilities, we construct the probability

matrix P in three steps.

8



(1) We apply Lemma 1(b) to (p0+, . . . , pj2�1,+) and (p+1, . . . , p+,j2) , and obtain an upper trian-

gular matrix Ptl = (pkl)0kj2�1,1lj2
with nonnegative elements such that

j2X

l0=1

pkl0 = pk+,
j2�1X

k0=0

pk0l  p+l (k = 0, . . . , j2 � 1; l = 1, . . . , j2).

(2) We apply Lemma 1(d) to (pj2+, . . . , pJ�2,+) and (p+,j2+1, . . . , p+,J�1) , and obtain an upper

triangular matrix Pbr = (pkl)j2kJ�2,j2+1lJ�1
with nonnegative elements such that

J�1X

l0=j2+1

pkl0  pk+,
J�2X

k0=j2

pk0l = p+l (k = j2, . . . , J � 2; l = j2 + 1, . . . , J � 1).

(3) We construct Pbl = (pkl)j2kJ�1,0lj2
by letting

pkl =

0

@pk+ �
J�1X

l0=j2+1

pkl0

1

A
 
p+l �

j2�1X

k0=0

pk0l

!
� 0 (k = j2, . . . , J � 1; l = 0, . . . , j2).

The constructed probability matrix P has marginal probabilities p1 = (p0+, . . . , pJ�1,+)
T and

p0 = (p+0, . . . , p+,J�1)
T . Moreover, by (A.16) the corresponding ⌧ is the sum of all the elements

in Pbl, which we construct in the above (3). Therefore,

⌧ = 1�
j2�1X

k0=0

pk0+ �
J�1X

l0=j2+1

p+l0 =
J�1X

k0=j2

pk0+ �
J�1X

l0=j2+1

p+l0 = p+j2 +�j2 ,

which implies that P attains ⌧L.

A.3. Proofs of other propositions

Proof of Proposition 2. Because ⌘ = 1 � pr {Yi(0) � Yi(1)} , its lower bound is one minus the up-

per bound of pr {Yi(0) � Yi(1)} . By switching the treatment and control labels, we can bound

pr {Yi(0) � Yi(1)} from the above by

pr {Yi(0) � Yi(1)}  1� max
0jJ�1

�j ,

which implies that ⌘L = max0jJ�1�j .
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Similarly, the upper bound of ⌘ equals one minus the lower bound of pr {Yi(0) � Yi(1)} . By

switching the treatment and control labels, we can bound pr {Yi(0) � Yi(1)} from below by

pr {Yi(0) � Yi(1)} � max
0jJ�1

(pj+ ��j) ,

which implies that ⌘U = 1 +min0jJ�1 (�j � pj+) .

Proof of Proposition 3. With independent potential outcomes, the probability matrix P has ele-

ments pkl = pk+p+l for k and l. We obtain ⌧I and ⌘I by their definitions. Obviously, they are

between their lower and upper bounds, i.e., ⌧L  ⌧I  ⌧U and ⌘L  ⌘I  ⌘U .

Proof of Proposition 4. The proof follows Lee (2009). Because any value of ⌧ within the covariate

adjusted bounds [⌧ 0L, ⌧
0
U ] must be compatible with the distributions of {Y (1),X} and {Y (0),X} , it

must also be compatible with the distributions of Y (1) and Y (0) by discarding X. Therefore, any

value of ⌧ within the adjusted bounds [⌧ 0L, ⌧
0
U ] must also be within the unadjusted bounds [⌧L, ⌧U ].

Consequently, the adjusted bounds are tighter, i.e., [⌧ 0L, ⌧
0
U ] ⇢ [⌧L, ⌧U ]. Similar arguments apply to

the covariate adjusted bounds and the unadjusted bounds for ⌧c.

Proof of Proposition 5. Under monotonicity, by the law of total probability, we have

⌧ = ⇡c⌧c + ⇡a⌧a + ⇡n⌧n.

Under exclusion restriction, we have ⌧a = 1 and ⌧n = 1, yielding

⌧ = ⇡c⌧c + 1� ⇡c,

which implies that

⌧c = ⌧/⇡c � (1� ⇡c) /⇡c.

Analogously, we have ⌘ = ⇡c⌘c, which implies that ⌘c = ⌘/⇡c.
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A.4. Proofs of the corollaries

Proof of Corollary 1. By Proposition 1, ⌧ = 1 if and only if min0jJ�1�j = 0. Because �0 = 0,

this is equivalent to �j � 0 for all j, i.e., the stochastic dominance assumption holds.

Proof of Corollary 2. Similar to the proof of Proposition 2, because ⌘ = 1�pr {Yi(0) � Yi(1)} , (9)

immediately implies (10). Therefore, we need only to prove that (9) is the su�cient and necessary

condition that the lower and upper bounds of ⌧ are the same, i.e., ⌧L = ⌧U .

First we prove the necessity of the condition. Assume that it does not hold, i.e., there does

exist k1, k2 2 K and l1, l2 2 L such that (9) holds. In this case we construct two probability

matrices with the same marginal probabilities but di↵erent values of ⌧. The first probability matrix

is P = (pk+p+l)0k,lJ�1
. For the second probability matrix, let ⇠ = min (pk1,+p+,l1 , pk2,+p+,l2) ,

which is a positive constant. We then apply the following matrix operation to the 2⇥ 2 sub-matrix

of the first probability matrix:

0

B@
pk1l1 pk1l2

pk2l1 pk2l2

1

CA �!

0

B@
pk1l1 � ⇠ pk1l2 + ⇠

pk2l1 + ⇠ pk2l2 � ⇠

1

CA

The above operation preserves the marginal probabilities, and the di↵erence of ⌧ between the first

and second probability matrices is ⇠, if k2 � l2 > k1 � l1, and �⇠, if l2 > k2 � l1 > k1.

Second, we prove the su�ciency of the condition. If |K| = 1 or |L| = 1, the probability matrix

degenerates and consequently we have ⌧L = ⌧c,U . If |K| � 2 and |L| � 2, let k⇤ = mink2K k

and k⇤ = maxk2K k be the minimal and maximal indices of nonzero pk+’s, and l⇤ = minl2L l and

l⇤ = maxl2L l the minimal and maximal indices of nonzero p+l’s. A useful fact that we repeatedly

use is that if pk+ = 0, then pkl = 0 for all l. Similarly, if p+l = 0, then pkl = 0 for all k.

Because k⇤, k⇤ and l⇤, l⇤ cannot satisfy (9), we discuss the two following cases based on the

relative locations of the two intervals [k⇤, k⇤] and [l⇤, l⇤] :

1. “Non-overlapping,” i.e., k⇤ � l⇤ or k⇤ < l⇤ :

(a) If k⇤ � l⇤, we prove that pkl = 0 for all k < l. Assume the claim does not hold, then

there exists k0 < l0 such that pk0l0 > 0, then pk0+ > 0 and p+l0 > 0. This implies that

k⇤  k0 < l0  l⇤, contradicting the initial assumption. Therefore, ⌧L = ⌧U = 1.

11



(b) If k⇤ < l⇤, similarly pkl = 0 for all k � l, implying that ⌧L = ⌧U = 0.

2. “Inclusive,” i.e., l⇤ > k⇤ > k⇤ � l⇤ or k⇤ � l⇤ > l⇤ > k⇤ :

(a) If l⇤ > k⇤ > k⇤ � l⇤, and furthermore if there exists l0 2 L such that k⇤ < l0  k⇤,

then l0 6= l⇤ and l0 6= l⇤. Moreover, k⇤, k⇤ and l0, l⇤ satisfy (9), contradicting the initial

assumption. Therefore for all l 2 L, l  k⇤ or l > k⇤. Consequently,

⌧ =
X

k�l

pkl1(k 2 K, l 2 L) =
X

k�l

pkl1(k 2 K, l 2 L, l  k⇤)

=
X

pkl1(k 2 K, l 2 L, l  k⇤) =
X

lk⇤,l2L
p+l

is identifiable, which implies that ⌧L = ⌧U .

(b) If k⇤ � l⇤ > l⇤ > k⇤, similarly as above for all k 2 K, k < l⇤ or k � l⇤. Consequently,

⌧ =
X

k�l

pkl1(k 2 K, l 2 L) =
X

k�l

pkl1(k 2 K, l 2 L, k � l⇤) =
X

k�l⇤,k2K
pk+

is identifiable, which implies that ⌧L = ⌧U .

Proof of Corollary 3. The proof follows directly from Propositions 1 and 2.

Proof of Corollary 4. The closed-form expressions for ⌧ 00c,L, ⌧
00
c,U , ⌘

00
c,L and ⌘00c,U follow directly from

Proposition 5 and Corollary 2. Furthermore, under the monotonicity and exclusion restriction

assumptions, we have

�j = ⇡c�c,j (j = 0, . . . , J � 1).

Therefore, for the upper bound of ⌧ , we have

⌧U = 1� ⇡c + ⇡c(1 + min�c,j) = ⌧ 00U ,

and for the lower bound, we have

⌧L  max(p+j � 1 + ⇡c + ⇡c�c,j) = 1� ⇡c + ⇡cmax(c+j +�c,j) = ⌧ 00L.
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The first step holds because under the strong monotonicity assumption n+j⇡n  ⇡n, and under

the monotonicity assumption a+j⇡a + n+j⇡n  ⇡a + ⇡n. Similar arguments apply to the bounds of

⌘.

B. Details of the EM Algorithm with Noncompliance

Let Xi = xi, Zi = zi, Dobs

i = di and Y obs

i = yi be the values of the pretreatment covariates, treat-

ment assigned, treatment received and observed outcome of the ith unit. We write the likelihood

function as

L (✓) =
Y

i:zi=1,di=1

{⇡a (xi) ayi,+ (xi) + ⇡c (xi) cyi,+ (xi)} ⇥
Y

i:zi=1,di=0

{⇡n (xi)nyi,+ (xi)}

⇥
Y

i:zi=0,di=1

[⇡a (xi) a+,yi (xi)] ⇥
Y

i:zi=0,di=0

{⇡n (xi)n+,yi (n;xi) + ⇡c (xi) c+,yi (xi)} .

Let Gi = gi be the value of the principal stratification variable of the ith unit. By treating it

as missing data, we write the complete-data log-likelihood as:

lC (✓) =
X

i:gi=a,zi=1

[log {⇡a (xi)}+ log {ayi,+ (xi)}] +
X

i:gi=c,zi=1

[log {⇡c (xi)}+ log {cyi,+ (xi)}]

+
X

i:gi=n,zi=1

[log {⇡n (xi)}+ log {nyi,+ (xi)}] +
X

i:gi=a,zi=0

[log {⇡a (xi)}+ log {a+,yi (xi)}]

+
X

i:gi=c,zi=0

[log {⇡c (xi)}+ log {c+,yi (xi)}] +
X

i:gi=n,zi=0

[log {⇡n (xi)}+ log {n+,yi (xi)}] ,

We denote the realizations of (4) and (5) for the ith unit when evaluated at the true parameter

value ✓ as ⇡g (xi) , gk+ (xi) and g+l (xi) , and those when evaluated at the tth iteration of the

parameter estimate ✓(t) as ⇡(t)
g (xi) , g

(t)
k+ (xi) and g(t)

+l (xi) . The EM algorithm proceeds as follows.

Given the current tth iteration of the parameter estimate ✓(t), we obtain the updated (t + 1)th

iteration ✓(t+1) as follows:

1. E-Step: obtain the conditional expectation of the complete-data log-likelihood, given observed

data and the current parameter estimate ✓(t), by finding the (current) conditional probabilities

of the principal stratum g, denoted as ⇡(t)
g,i .
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(a) For all i such that zi = 1 and di = 1, let ⇡(t)
n,i = 0, and

⇡(t)
g,i =

⇡(t)
g (xi) g

(t)
yi,+ (xi)

⇡(t)
a (xi) a

(t)
yi,+ (xi) + ⇡(t)

c (xi) c
(t)
yi,+ (xi)

(g = a, c).

(b) For all i such that zi = 1 and di = 0, let ⇡(t)
a,i = 0, ⇡(t)

c,i = 0, and ⇡(t)
n,i = 1.

(c) For all i such that zi = 0 and di = 1, let ⇡(t)
a,i = 1, ⇡(t)

c,i = 0, and ⇡(t)
n,i = 0.

(d) For all i such that zi = 0 and di = 0, let ⇡(t)
a,i = 0 and

⇡(t)
g,i =

⇡(t)
g (xi) g

(t)
+,yi (xi)

⇡(t)
c (xi) c

(t)
+,yi (xi) + ⇡(t)

n (xi)n
(t)
+,yi (xi)

(g = c, n).

2. M-Step: obtain the updated parameter estimate ✓(t+1), by maximizing the conditional ex-

pectation with respect to ✓. To do this, we adopt the following two-step procedure:

(a) Obtain ✓(t+1)

PS
, the updated estimates of the parameters in the model for the principal

strata, by maximizing the following objective function:

F (✓PS) =
X

i:zi=1,di=1

n
⇡(t)
a,i log ⇡a (xi) + ⇡(t)

c,i log ⇡c (xi)
o

+
X

i:zi=1,di=0

⇡(t)
n,i log ⇡n (xi)

+
X

i:zi=0,di=1

⇡(t)
a,i log ⇡a (xi) +

X

i:zi=0,di=0

n
⇡(t)
c,i log ⇡c (xi) + ⇡(t)

n,i log ⇡n (xi)
o
.

The optimization problem is equivalent to fitting the following weighted multinomial

logistic regression:

i. For i such that zi = 1 and di = 1, create two new observations for the regression:

one always-taker with weight ⇡(t)
a,i and one complier with weight ⇡(t)

c,i .

ii. For i such that zi = 0 and di = 0, create two new observations: one complier with

weight ⇡(t)
c,i and one never-taker with weight ⇡(t)

n,i.

iii. For i such that zi = 1 and di = 0, create one never-taker with weight 1.

iv. For i such that zi = 0 and di = 1, create one always-taker with weight 1.

(b) Similarly, obtain ✓(t+1)

PO
, the updated estimates of the parameters in the model for the

potential outcomes, by fitting weighted proportional odds models:
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i. For g = a, use all i such that zi = 1 and di = 1 with weight ⇡(t)
a,i, and all i such that

zi = 0 and di = 1 with weight 1.

ii. For g = c, use all i such that zi = 1 and di = 1 and all i such that zi = 0 and di = 0

with weight ⇡(t)
c,i .

iii. For g = n, use all i such that zi = 1 and di = 0 with weight 1, and all i such that

zi = 0 and di = 0 with weight ⇡(t)
n,i.

C. Additional Simulation Studies

C.1. The alternative method

We further examine the performances of Horowitz and Manski (2000)’s bootstrap method to con-

struct confidence intervals for partially identified parameters, by comparing it to a more rigorous

approach proposed by Jiang and Ding (2018) as follows:

1. Denote p+j +�j and 1 +�j , the “building blocks” of ⌧L, as Lj and Uj respectively. Obtain

their finite-sample estimates L̂j and Ûj , and let

q̂ = argmax0jJ�1L̂j , r̂ = argmin0jJ�1Ûj

be the minimum indices attaining the maximum value of L̂j ’s, and the minimum value of

Ûj ’s, respectively;

2. Estimate the standard deviations of L̂q̂ and Ûr̂, via standard bootstrap. Denote the resulted

standard errors as �̂q̂ and �̂r̂, respectively;

3. Correspondingly, the (1� ↵) confidence interval for ⌧ is (L̂q̂ �C�̂q̂, Ûr̂ +C�̂r̂), where we the

threshold value C by solving the equation

�

(
C +

Ûr̂ � L̂q̂

max(�̂q̂, �̂r̂)

)
� �(�C) = 1� ↵.

By utilizing the fact that L̂j ’s and Ûj ’s are jointly asymptotically normal, Jiang and Ding (2018)

generalized previous results by Imbens and Manski (2004) and proved that the resulted confidence

interval achieves nominal coverage rate for ⌧.
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C.2. Simulation results

We choose the sample size N = 200, and generate 50 simulation cases (i.e., probability matrices)

by repeating the following procedure 50 times:

1. Let Ur
i.i.d⇠ Unif(0, 1) for all r = 1, . . . , 6;

2. Let the marginal probabilities

p1 = (U1, U2, U3)/
3X

k=1

Uk, p0 = (U4, U5, U6)/
6X

l=4

Ul;

3. Based on p1 and p0 construct a probability matrix corresponding to positively correlated

potential outcomes (i.e., ⌧ = ⌧U ).

It is worth mentioning that, we intentionally use uniform random variables for the marginal proba-

bilities, to “objectively” explore a wide range of potential outcome distributions. Additionally, we

choose the case with positively correlated potential outcomes, because previous simulations suggest

that it appear to be the most challenging.

We only focus on the coverage properties of the confidence intervals by Horowitz and Manski

(2000) and Jiang and Ding (2018), respectively. Following the main text, for each of the 100 prob-

ability matrices, we independently draw 1000 treatment assignments from a balanced completely

randomized experiment, and calculate two interval estimates of the bounds (⌧L, ⌧U ). In Figure 1 we

report the coverage rates of the two confidence intervals, for both the bounds (⌧L, ⌧U ) and the pa-

rameter ⌧ itself. We can draw several conclusions from the simulation results. First, both intervals

achieve nominal coverage rates for the bounds (⌧L, ⌧U ), expect for some “edge cases” (i.e., when

⌧ ⇡ ⌧U ⇡ 1). Second, both intervals (inevitably) over-covers ⌧. Third, for all cases Horowitz and

Manski (2000)’s bootstrapped interval performs equally well compared to Jiang and Ding (2018)’s

interval, if not better. For example, for Case 16 where

p1 = (0.484, 0.134, 0.382), p0 = (0.504, 0.295, 0.201), ⌧L = 0.504, ⌧ = ⌧U = 1,

Horowitz and Manski (2000)’s and Jiang and Ding (2018)’s intervals achieve 0.957 and 0.896 cov-

erage rates for (⌧L, ⌧U ) respectively, and 0.978 and 0.914 for ⌧ respectively.
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(a) Coverage rates for the bounds (⌧L, ⌧U ).
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(b) Coverage rates for the parameter ⌧.

Figure 1: Additional simulation results. In each subfigure, the horizontal axis denotes the simulation case
labels, and the vertical axis denotes the coverage rates for the 95% Horowitz and Manski (2000) interval
(denoted as “H-M interval,” round dot) and the 95% Jiang and Ding (2018) interval (denoted as “J-D
interval,” triangular dot).

References

Horowitz, J. L. and Manski, C. F. (2000). Nonparametric analysis of randomized experiments with

missing covariate and outcome data. J. Am. Statist. Assoc., 95:77–84.

Imbens, G. W. and Manski, C. F. (2004). Confidence intervals for partially identified parameters.

Econometrica, 72:1845–1857.

Jiang, Z. and Ding, P. (2018). Using missing types to improve partial identification with missing

binary outcomes. Ann. App. Stat., in press. arXiv preprint:1610.01198.

Strassen, V. (1965). The existence of probability measures with given marginals. Ann. Math. Stat.,

36:423–439.

17




