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A Hybrid Predictive Control Approach to Trajectory Tracking

for a Fully Actuated Biped

Brendan E. Short and Ricardo G. Sanfelice

Abstract— We model a three-link fully actuated biped as a
hybrid system and propose a prediction-based control algorithm
for global tracking of reference trajectories. The proposed
control strategy consists of a reference system that generates the
desired periodic gait, a virtual system that generates a suitable
reference trajectory using prediction, and a tracking control
law that steers the biped to the virtual trajectory. The proposed
algorithms achieves, in finite time, tracking in two steps. We
present mathematical properties that define the main elements
in the hybrid predictive controller for achieving convergence to
the reference within the first two steps. The results are validated
through numerical simulations.

I. INTRODUCTION

Mechanical systems with impacts have trajectories with

intervals of continuous flow and instants where discrete

changes occurs. These systems are classified by their in-

tertwined continuous and discrete dynamics, which can be

difficult to model using classical methods due to this com-

plex behavior. Controller design for such systems is also

challenging due to discrete jumps at unknown times, for

which conventional control approaches are not applicable.

Modeling systems with impacts as hybrid systems provides

a way to describe the non-smooth behavior, and allows for

the implementation of hybrid controllers. Hybrid controllers

have the advantage of being able to perform discrete tasks

while supplying a continuous input.

A biped is typically modeled as a mechanical system

with impacts that occur at the end of each walking step.

During each step, one leg is planted while the other is

swinging forward towards the next impact. Both feet are

briefly in contact with the surface during the transition into

the next step. There are numerous biped models available in

literature [2],[3],[12],[14],[16], and control strategies based

on trajectory tracking methods [10],[16]. These trajectory

tracking control strategies rely on either pre-computed tra-

jectories [12] or trajectories computed on the fly [11], [15].

In this paper, we pursue a novel approach to trajectory

tracking control for fully actuated bipeds that uses an ad-

ditional “virtual trajectory” generated using prediction of

the dynamics to steer the biped state to a given reference.

The reference is generated based on the desired periodic
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gait defining a hybrid limit cycle. The virtual trajectory is

generated by a hybrid algorithm with state variables that are

reset to values that, according to the prediction of the future

hybrid trajectories of the biped, guarantee tracking of the

given reference trajectory, in finite time. The prediction of

the hybrid trajectories of the biped relies on properties of

solutions established analytically. With the proposed control

strategy, the controller is able to steer the biped to track

reference trajectories by relying only on the measurements

of the limb angles and velocities. We show that convergence

is achieved after the first two steps have occurred, regardless

of the initial conditions of the system of the biped. The

modeling and control design techniques we introduce in this

paper can be extended to other complex systems, such as

bipeds with more joints and variable walking characteristics.

The remainder of this paper is organized as follows.

In Section II we introduce a model of a three-link biped

using the hybrid inclusions framework presented in [1]. In

Section III we propose methods to generate trajectories for

a given periodic gate, and a hybrid control algorithm to

track the generated trajectories in finite time. Simulations

are provided in Section IV to support our claims. Due to

space constraints, some details and proofs are not included,

but will be published elsewhere.

II. HYBRID SYSTEM MODEL OF A BIPED

The three-link biped in Figure 1 is modeled as a hybrid

system to describe the continuous and discrete dynamics

of the system. The movement of the legs and torso during

each step is described by the continuous dynamics of the

model, while the discrete dynamics describe the instanta-

neous change that occurs upon the impact at the end of each

step. At all times, one of the legs is the planted leg while

the other is the swing leg, and they switch roles upon each

step.

A. State Variables, Inputs, and Parameters

To define a mathematical model of the fully actuated biped

system, we introduce the state x, the input u, and parameters

γ as follows. The state component vector x is comprised of

the angle vector θ, which contains the planted leg angle θp,

the swing leg angle θs, and torso angle θt; the velocity vector

ω, which contains the planted leg angular velocity ωp, the

swing leg angular velocity ωs, and the torso angular velocity

ωt. The input u is the input torque, where up is the torque

applied on the planted leg from the ankle, us is the torque

applied on the swing leg from the hip, and ut is the torque

applied on the torso from the hip. The vector of parameters
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Fig. 1. Diagram of the state, input, and parameters of the biped model.
The step angle and torso angle are measured from the same locations as θp
and θt, respectfully.

γ contains the constants that describe the characteristics of

the system, namely, the leg length ℓℓ, the torso length ℓt,

the leg mass mℓ, the hip mass mh, the torso mass mt, the

gravity constant ̺, the step angle φs, the torso angle φt, and

the walking speed v.

B. Hybrid Model of a Biped

A complete hybrid system model of a biped, denoted HP

is defined as

HP















ẋ =

[

ω

α(x, u)

]

=: FP (x, u) (x, u) ∈ CP × R
3

x+ =

[

T (θ)
Ω(x)

]

=: GP (x) x ∈ DP (1)

where x is the state and u is the input. The continuous

dynamics of x = (θ, ω) come from the Lagrangian method

[2]. It follows that

θ̇ = ω (2)

Df (θ)ω̇ + Cf (θ, ω)ω +Gf (θ) = Bu (3)

where Df , Cf , are the Inertial and Coriolis matrices and B

is the actuator relationship matrix. Solving this expression

for ω̇ yields the angular accelerations of each limb, given by

α(x, u) = Df (θ)
−1 (−Cf (θ, ω)ω −Gf (θ) +Bu) (4)

Equations (2) and (3) are used to define the flow map FP

in (1). Impacts or jumps occur when the planted leg has

reached the step angle such that both feet are in contact with

the ground. To determine if the biped has reached the end

of a step, we define the function h as

h(x) := φs − θp ∀x ∈ X . (5)

When h(x) = 0, the angle of the planted leg has reached the

step angle. A step will occur if the change of h is such that

θp is approaching φs, and h is equal zero. Thus, the jump

set DP of HP in (1) is defined as

DP := {x ∈ X : h(x) = 0, 〈∇h(x), FP (x, u)〉 ≤ 0 }

= {x ∈ X : h(x) = 0, ωp ≥ 0 } .
(6)

Where FP (x, u) is the flow mapping defined later in (8). It

follows from 〈∇h(x), FP (x, u)〉 = −ωp that the condition

〈∇h(x), FP (x, u)〉 ≤ 0 holds when the planted leg ap-

proaches the step angle with a nonnegative angular velocity

ωp.The flow set, CP in (1) is a subset of the state space

containing all of the states where the biped is evolving

continuously. It is given by

CP := {x ∈ X : h(x) ≥ 0 } . (7)

Points x such that h(x) = 0 are included to close the flow

set, which, in particular, makes HP well-posed (see [1]).

FP (x, u) :=

[

ω

α(x, u)

]

(8)

The changes of x at jumps are defined by the jump map

GP in (1). Following [2], when a step occurs, GP swaps

the leg angles and velocities so that the swing leg becomes

the planted leg, and the planted leg becomes the swing leg.

A transformation matrix T is defined to swap angle and

velocity variables accordingly. Thus the angles after a step

are mapped according to

θ+ = T (θ) (9)

After a step, the angular velocities are determined by a

contact model that requires the full five degrees of the robot

(instead of three degrees during the swing phase), which

is achieved by including the Cartesian coordinates of the

planted leg [2]. This model produces expressions for the

angular velocities after an impact at x occurs, which are

Ω(x) =





Ωp(x)
Ωs(x)
Ωt(x)



 (10)

where Ωp,Ωs, and Ωt are the angular velocities of the

planted leg, swing leg, and torso, respectively. Equations (9)

and (10) lead to the jump map in (1).

III. HYBRID FEEDBACK CONTROL FOR FINITE TIME

TRACKING

In this section, we propose a hybrid control strategy that

achieves convergence of the state of the biped HP to a

reference trajectory of the desired periodic gait in two steps.

The proposed controller consists of three components: a

reference system Hr, a virtual system Hz , and the physical

system HP , which is the biped itself given in Section 1. Our

hybrid predictive control strategy guarantees that the virtual

system Hz tracks the reference trajectory generated by Hr,

and that the plant HP tracks the virtual trajectory generated

by Hz , in finite time.



A. Basic Properties of Solutions to HP

The reference system Hr generates periodic solutions for

HP to converge to. Using prediction, the virtual system

computes the trajectory that will cause the second step (or

impact) to occur simultaneously with that of the reference.

To design these reference trajectories, we determine solutions

that describe the evolution of the system over the course of

a single step. We refer to these solutions as “single-step”

solutions. The input torques that produce an acceleration

a for a specified state x are determined by a function

(according to (4)) µ, defined as

µ(x, a) = B−1 (Df (θ)a+ Cf (θ, ω)ω +Gf (θ)) (11)

The following lemma demonstrates the process in which

a “single-step” solution is defined for a given set of initial

and final conditions within the state space, and a nonzero

step time.

Lemma 3.1: Given xi ∈ CP , xf ∈ DP , and t+ ∈ R>0,

where

xi =

[

θi
ωi

]

xf =

[

θf
ωf

]

there exist constants B0, B1 given by
[

B0

B1

]

=β(xi, xf , t+) :=

[

β0(xi, xf , t+)
β1(xi, xf , t+)

]

:=

[

−2

t2
+

(3 (θi − θf ) + ωf t+ + 2ωit+)
1

t3
+

(12 (θf − θi − ωit+)− 6t+ (ωf − ωi))

]

(12)

such that the functions

t 7→ φf (t) =

[

θ(t)
ω(t)

]

, t 7→ µf (t) = µ(φf (t), a(t))

(13)

define the state trajectory and control input of a “single step”

solution (φf , µf ) to the flow equation of HP given by ẋ =
FP (x, u), (x, u) ∈ CP × R

3: for each t ∈ [0, t+], where µ

is given in (11), φf and µf in (13) are defined by

θ(t) = θi + ωit+
1

2
B0t

2 −
1

6
B1t

3 (14)

ω(t) = ωi +B0t−
1

2
B1t

2 (15)

a(t) = B0 −B1t (16)

Given a set of parameters γ, the following lemma demon-

strates the methodology for computing the initial and final

states of the hybrid limit cycle.

Lemma 3.2: Given the parameters γ and defining the step

time t+ as

t+ = tstep(γ) :=
2ℓℓ sinφs

v
, (17)

there exist initial and final angular velocities ωi, ωf of the

initial and final limit cycle states, xi and xf , respectively,

which are determined by solving the system of equations

obtained from (14) and (15) with t = t+ and unknown

variables ωi, ωf , where

θi =





−φs

φs

φt



 and θf =





φs

−φs

φt



 ,

assign the initial state components of xi and final state

components xf , respectively. In particular, the unknowns ωi

and ωf are given by

ωi = Ω(xf ) = Ω

([

θf
ωf

])

, (18)

where

ωf = ωi + t+B0 −
1

2
t2+B1 (19)

and

B0 = β0 (GP (xf ) , xf , t+)

B1 = β1 (GP (xf ) , xf , t+) ,

where Ω is defined in (10), β0 and β1 are defined in (12).

Given the system parameters γ and the calculated limb

angular velocities in (18) and (19), we define the initial

and final limit cycle states, denoted x∗

i , x
∗

f , respectively, and

determine the trajectory constants, denoted B∗

0 , B
∗

1 , using

(12), of the single-step solution that defines a limit cycle:

x∗

i =

[

θ∗i
ω∗

i

]

, x∗

f =

[

θ∗f
ω∗

f

]

, B∗ =

[

B∗

0

B∗

1

]

= β(x∗

i , x
∗

f , tstep)

(20)

where

θ∗i =





−φs

φs

φt



 θ∗f =





φs

−φs

φt



 ω∗

i =





ωpi

ωsi

ωti



 ω∗

f =





ωpf

ωsf

ωtf





These expressions for x∗

i and x∗

f can be verified using (14)

and (15) to confirm that, from x∗

i , the resulting limb angles

and velocities at time tstep match those of x∗

f , from where

the jump map GP leads to x∗

i = GP (x
∗

f ).

B. Problem Statement and Control Strategy

With the above construction, we consider the following

control problem:

Problem ⋆: Given a reference trajectory r design an algo-

rithm guaranteeing that every solution to HP converges to

the reference trajectory r.

To solve it we propose the following hybrid control

algorithm, which uses a reference system Hr and a virtual

system Hz for prediction:

Algorithm to Solve Problem ⋆:

At each impact of the biped HP that occurs at the end of

each step:

Step 1) Predict the time to the next impact of the virtual

system, denoted as ∆τ , by computing the next two impacts

of the reference system. Denote the two reference impact

times by tr1 and tr2, respectively. If tr1 is less than half of the

total step time tstep then ∆τ = tr1, otherwise ∆τ = tr2. This

time is called the impact-to-track time, and is computed by



the mapping given in (27).

Step 2) Predict the initial and final limit cycle states. Denoted

as x∗

i and x∗

f , these state values are the beginning and end

states of the desired walking gait. 1

Step 3) Using the state of HP immediately after the step,

and the final limit cycle state x∗

f , compute the trajectory

coefficients B∗

0 , B
∗

1 required to induce a virtual trajectory

that will arrive at the final limit cycle state x∗

f at the impact-

to-track time ∆τ .

Step 4) Store the coefficients B∗

0 , B
∗

1 from Step 3 in the

virtual system to generate a solution that will be tracked by

HP . In between impacts, control HP with a feedback law

that tracks the state of the virtual system.

Hcl κ(x, z) x

r

HP

HrHz

Fig. 2. A diagram illustrating the proposed control strategy. The full closed-
loop hybrid system Hcl consists of the biped HP and the virtual system
Hz , which performs tracking. The reference is generated externally, and
is independent from Hcl. The virtual system tracks the reference system
Hr and the biped tracks the virtual system, resulting in the biped indirectly
tracking the reference system.

C. Generating the Reference Trajectory

We generate the reference trajectory by defining a system

whose solution remains in a hybrid limit cycle, which is

denoted O and defines the desired periodic walking gait that

HP will converge to. This is achieved by defining a hybrid

system Hr, given by a copy of HP with two additional

states used by the control law to produce the trajectory. The

reference state r is defined as

r =





rx
rτ
rB



 (21)

where rx is the biped state, rB is the trajectory coefficient

vector, and rτ is the time elapsed since the beginning of the

current step.

Then given a desired periodic walking gait specified by

x∗

i , x∗

f as the initial and final states, and coefficients B∗

0 , B
∗

1 ,

leading to a hybrid limit cycle O, any initial condition r(0, 0)

1This step does not need to be repeated if the biped characteristics do not
change with time, but for the purpose of robustness, our algorithm performs
this task recurrently.

in it leads to rx in O. Then, Hr is defined as

Hr



































ṙ =





FP (rx, κr(r))
1
0



 (rx, κr(r)) ∈ CP × R
3

r+ =





GP (rx)
0

β(x∗

0 , x
∗

f , tstep)



 rx ∈ DP

(22)

where κr is the control law that produces the signal necessary

to generate the trajectory that remains in O, and is defined

as

κr(r) = µ(rx, (rB0
+ rB1

rτ )))

D. Generating the Virtual Trajectory

The virtual system is essentially a copy of HP with two

additional states used by the control law to produce the

virtual trajectory. It also uses the final limit cycle state x∗

f

to compute trajectories at each impact. The virtual state z is

defined as

z =





zx
zτ
zB



 (23)

where zx is the virtual biped state, zτ is the time elapsed

since the beginning of the current step, and zB is the

trajectory coefficient vector. The flows of Hz are given by

żx = FP (zx, κz(z))
żτ = 1
żB = 0







(zx, κz(z)) ∈ CP × R
3 (24)

where

κz(z) = µ(zx, (zB0
+ zB1

zτ )) (25)

The impacts of Hz occur when the biped state x is in DP ,

and are modeled by the set-valued discrete dynamics

zx
+ = GP (x)

zτ
+ = 0

zB
+ ∈ κB(GP (x), r)







x ∈ DP (26)

where x is the state of the biped modeled by HP , r is the

state of the reference system Hr, and κB is a map that

recomputes the trajectory coefficients using Steps 3 and 4

of the proposed algorithm, and according to the impact-to-

track time in Step 1, ∆τ defined as

∆τ (r) :=







tstep − rτ if rτ <
tstep
2

{tstep − rτ , 2tstep − rτ} if rτ =
tstep
2

2tstep − rτ if rτ >
tstep
2







(27)

This map predicts the impact-to-track time, as described in

Step 1 of the proposed control algorithm in Section III-B,

where tr1 = tstep − rτ and tr2 = 2tstep − rτ . This is done to

ensure that HP does not attempt to converge too rapidly, and

to ensure that the time to the next impact is nonzero. With

the final limit cycle state x∗

f from Lemma 3.2, the initial

virtual biped state zx, and the impact-to-track time in (27),



we are able to compute coefficients that define the trajectory

following Lemma 3.1. These coefficients are determined by

(12) from Lemma 3.1. Then, we define κB as

κB(x, r) = β(x, x∗

f ,∆τ (r)) (28)

which is set valued when rτ =
tstep
2

.

E. Closed-Loop Hybrid System

The closed-loop system resulting from controlling HP

with the virtual system Hz can be written as the following

hybrid system, which we denote by Hcl:

Hcl























































[

ẋ

ż

]

=











FP (x, κ(x, z))




FP (zx, κz(z))
1
0















(x, κ(x, z)) ∈ CP

[

x+

z+

]

∈











GP (x)




GP (x)
0

κB(GP (x), r)















x ∈ DP

(29)

where κ is the control law for HP , which is designed so that

the trajectories of HP track the trajectories of Hz (discussed

in Section IV).

IV. MAIN RESULTS

In this section, we present our main results of the closed-

loop system Hcl. We show that the hybrid predictive control

strategy ensures that HP tracks the reference trajectories.

Moreover, we numerically validate the hybrid model pro-

posed in Section II and the hybrid controller proposed in

Section III through simulations.

A. Nominal Properties

Finite-time 0-tracking is defined as when the error between

the biped state and the reference system trajectory is zero.

The following result shows that the virtual system Hz is able

to guarentee finite-time 0-tracking between the reference Hr

and the plant HP .

Proposition 4.1: For each reference trajectory r gener-

ated from Hr, each initial condition of the virtual system

zx(0, 0) ∈ CP , zτ (0, 0) = 0, zB(0, 0) = β(zx(0, 0), x
∗

f , t1)
for some initial step duration t1 ∈ (0, tstep] of Hz in (26),

where tstep is given in (17), each solution to Hz is bounded,

and its θ and ω components finite-time 0-track the θ and

ω components of the reference system r after two impacts;

that is, the difference between the θ and ω components of the

virtual system and reference system are zero after the second

impact occurs, and remain at zero for all future time.

With the property guaranteed by Proposition 4.1, next we

show that the trajectories of the plant HP converge to those

of the virtual system Hz in finite time. To this end, let

e1 := θ − zxθ
and e2 := ω − zxω

, where θ, ω and zxθ
, zxω

are the angle and velocity components of the biped with state

x and of the virtual biped with state zx, respectively. Using

(29), the resulting error dynamics are then given by

ė1 = θ̇ − żxθ
= ω − zxω

= e2

ė2 = ω̇ − żxω
= α(x, u)− (zB0

+ zB1
zτ )

where α is the acceleration of the plant HP from (4), and

zB0
+ zB1

zτ is the acceleration of the virtual system Hz .

The input u is assigned to the feedback law κ, which is to

be designed. A particular choice of κ to accomplish tracking

between x and z is given by

κ(x, z) = µ(x, zB0
+ zB1

zτ − k1(θ − zxθ
)− k2(ω − zxω

))

where k1, k2 ∈ R
+. Then, with the control input u = κ(x, z),

it follows that

ė1 = e2 ė2 = −k1e1 − k2e2

Theorem 4.2: There exist k1, k2 ∈ R
+ such that for each

initial condition x(0, 0), zx(0, 0) ∈ CP , zτ (0, 0) = 0,

zB(0, 0) = β(zx(0, 0), x
∗

f , t1) for some initial step duration

t1 ∈ (0, tstep] of Hcl in (29), and each reference system

trajectory r generated from Hr, the θ and ω components

of the plant x of Hcl finite-time 0-tracks the θ and ω

components of the virtual system z after one impact; that

is, the θ and ω components of the plant converge to those of

the virtual system after the first impact occurs, and remain

identical for all future time.

B. Simulations

We developed a software package to validate the results

presented in Section IV-A for numerous different initial

conditions and parameters. The package2 also computes

the solutions presented in Section III as both numeric or

symbolic expressions. To evaluate the performance of the

complete hybrid system, we ran simulations with randomized

initial conditions and parameters. Figures 3 and 4 depict a

few of the simulation results. The solid blue line corresponds

to the trajectory of the physical system, the green dashed

line to the virtual system, and the dotted red line to the

reference system. The simulation shown in Figure 3 depicts

the behavior of the system during the first two steps, where

the physical, virtual, and reference systems are initialized

to different initial conditions. This simulation shows the

physical system converging to the virtual system after the

first step, and the physical and virtual system converging to

the reference system during the second step, demonstrating

the closed-loop systems ability to converge with the reference

by the time the second step occurs. The simulatios shown in

Figure 4 has randomized step angle perturbations that emu-

late an uneven walking surface to demonstrate the robustness

guaranteed by our hybrid predictive controller. Perturbations

that cause the step angle to be less than its nominal value

can be related to the biped walking up an incline as the

swing leg would impact earlier than expected, and vice

versa, when the step angle is greater than its nominal value.

2https://github.com/HybridSystemsLab/

HybridThreeLinkBiped

https://github.com/HybridSystemsLab/HybridThreeLinkBiped
https://github.com/HybridSystemsLab/HybridThreeLinkBiped
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Fig. 3. Simulation results showing limb angles (rad) and velocities (rad/sec)
with parameters: ℓℓ = 1, ℓt = 1, mt = 1, mh = 1,mℓ = 1, φs =

0.7, v = 0.6, φt = 0.5, k1 = 2000, k2 = 100. The red dashed line
indicates the reference system, the green dashed line indicates the virtual
system, and the solid blue line indicates the physical system.

The step angle deviations caused by the perturbation angles

result in unknown variations to the anticipated impact times,

which requires the virtual system to adjust the trajectory of

the following step to compensate. The simulations shown

in Figure 4 shows the leg angles and velocities of the

closed-loop system with randomized perturbations applied

to the step angle, showing how the virtual system adjusts

its trajectory to track the reference system when unknown

disturbances are present.

V. CONCLUSION

This paper presents a hybrid predictive control algorithm

to drive a biped to tracking in finite time. The main results are

validated in simulations. The results indicate that the control

algorithm is capable of tracking even under perturbations.

The modeling and proposed hybrid control strategy with

prediction can be applied to other complex systems. Our po-

tential next steps are to include additional joints, implement

obstacle avoidance, accommodate gait variation, and extend

the control strategy to the underactuated case.
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