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a b s t r a c t

We have previously described a phenomenon called the death spiral that is characterized by a rapid
decline in female fecundity 6–15 days prior to death in Drosophila. To carry out destructive physiological
analyses of females in the death spiral would require a method to reliably classify individual females via
the prediction of their age at death. Using cohorts of Drosophila we describe how to use the observed mor-
tality prior to some target day and a female’s fecundity 3 days prior to the target day to determine if the
female is in the death spiral. The method works at all ages and although the method does not result in
perfect classification, with sufficient sample sizes any physiological trait whose means differ between
the groups can be detected.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

There are three important stages of life from the perspective of
evolutionary biology (reviewed in Rose et al., 2006; Shahrestani
et al., 2009). The first is the developmental period, prior to repro-
duction. During this stage, natural selection works with maximum
efficiency to weed out genetic variants that reduce survival before
the onset of reproduction, since any individual that fails to survive
this period will have zero fitness. This does not guarantee survival,
even under optimal conditions, because of mutations, segregation-
al genetic load, and developmental accidents. But it does mean that
this stage of life is the primary beneficiary of natural selection for
enhanced survival.

The aging phase is the period following the onset of reproduc-
tion. The well-developed theory of selection in age-structured pop-
ulations (Charlesworth, 1994) shows that selection becomes
progressively weaker with advancing age. As a result, evolutionary
biology predicts progressively decreasing age-specific fitness com-
ponents, even under ideal conditions, a pattern that is in turn read-
ily ‘‘tunable” by changing the timing of the onset and fall in the
force of natural selection (Rose et al., 2007).

The third and final stage of life, according to evolutionary the-
ory, has been called ‘‘late life” (e.g. Rauser et al., 2006; Rose
et al., 2006). At these advanced ages, age-specific selection is either
weak or absent, such that it does not favor the enhancement of
age-specific survival or fecundity characters. However, this lack
ll rights reserved.

: +1 949 824 2181.
of natural selection is uniform at these later ages, with no late-life
age being selected more or less than any other. Thus evolutionary
theory predicts an approximate plateau in late-life fitness compo-
nents (Charlesworth, 2001; Mueller and Rose, 1996; Rauser et al.,
2006), a pattern that has now been widely observed (Carey et al.,
1992; Curtsinger et al., 1992; Rauser et al., 2006; Rose et al.,
2002; Vaupel et al. 1998).

In a large-scale study of age-specific patterns of female fecun-
dity in Drosophila, we discovered a fourth life-cycle phenomenon
which we call the ‘‘death spiral” (Mueller et al., 2007; Rauser
et al., 2005). For a period of 6–15 days prior to death, the fecundity
of females that are about to die drops at a much faster rate than the
fecundity of similarly aged females that are not about to die. This
result was found by comparing the slopes of the line describing
fecundity vs. age as a function of the prospect of death for individ-
ual females. This decline in fecundity shortly before death was in
turn incorporated into models that accurately describe the age-
specific fecundity of D. melanogaster (Mueller et al., 2007). The
death spiral is detectable across a wide range of adult ages; it
may signal a very general decline in physiological health prior to
death. The death spiral has also been independently documented
in D. melanogaster by other laboratories (Rogina et al., 2007).

Phenomena similar to the death spiral have been observed in
other organisms. Christensen et al. (2008) monitored the physical
and cognitive abilities of 2262 Danish individuals all borne in
1905. Over the course of the study the individuals were between
92 and 100 years of age. They found that the physical and cognitive
scores of a group of individuals that died within two years of the
measurements were significantly lower than the scores of similar
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aged individuals who did not die. Similarly, male medflies will of-
ten be found on their backs prior to death although if the fly can
right itself it continues more or less normal behavior (Papdopoulos
et al., 2002). This supine behavior appears to also be a reliable sig-
nal of impending death.

There are a host of interesting questions about the process of
dying that could be addressed, if it were possible to reliably iden-
tify the females that have entered the death spiral prior to their ac-
tual death. It is reasonable to suppose that, if fecundity is
undergoing a dramatic decline prior to death, then other aspects
of physiology may also be changing dramatically. Since many
physiological assays in Drosophila and other species are destruc-
tive, it will not always be possible to collect this physiological data
immediately prior to the death of a test female. This inability will
limit the study of the process of dying.

What is needed is a technique for determining which females
are in a death spiral at any time. While the differences between
large groups of death spiral and non-death spiral females may be
pronounced, it is not clear whether or not individual females can
be reliably classified as being in a death spiral or not. Here, we de-
velop and test methods for identifying individual females that have
entered the death spiral. We experimentally show that reliable
classification is indeed possible, thus opening the prospect for
effective functional, physiological, and behavioral studies of the
process of dying in individual organisms.
2. Materials and methods

2.1. Experimental population

This study used an outbred laboratory population of Drosophila
melanogaster that had been selected for mid-life reproduction. The
CO1 population employed is one of the five replicate CO popula-
tions derived in 1989 from five corresponding O populations (Rose,
1984). These populations have long been cultured using females
28 days of age (Rose et al., 1992) and had been maintained at pop-
ulation sizes of at least 1000 individuals for at least 170 genera-
tions prior to the present study. Late-life mortality-rate plateaus
and late-life fecundity plateaus have been studied in these CO pop-
ulations (Rauser et al., 2005, 2006; Rose et al., 2002). A large cohort
of flies from the CO1 replicate population was used in each of the
three assays that we analyze here.
Observed death spiral fraction
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Fig. 1. The predicted fraction (from Eq. (1)) of the three CO1 populations that should
be in the death spiral vs. the fraction that actually is in the death spiral. The solid
line represents equality of the predicted and observed values. These fractions were
calculated at ages 11, 21, 31, and 41 days of adult life.
2.2. Culture and assay methods

The flies used in the assays were raised for two generations as
larvae in 5 mL of standard banana-molasses food at 25 �C, constant
light, and densities between 60–80 eggs per 8-dram vial. During
this controlled-density rearing, flies were kept on a two-week gen-
eration time.

For each replicate assay, individual females were housed with
two males in vials containing charcoal-colored medium and 5 mg
of yeast. Fecundity was first measured at age 12 days from egg. As-
says one (‘‘CO1–1”) and two (‘‘CO1–2”) started with 1,111 females
and twice as many males, to insure that all females were mated,
while assay three (‘‘CO1–3”) started with 606 females and twice
as many males. The three replicate assays were temporally stag-
gered to reduce the large amount of work required in measuring
daily fecundity for such a large number of females. Over all three
cohorts, we collected lifetime daily fecundity data for 2,828 fe-
males, with 3,169,101 eggs counted in total.

During the assays, we transferred flies to fresh yeasted vials dai-
ly and counted the number of eggs laid for each female until she
died. Male flies were recombined between vials as they died, to en-
sure a constant supply of mates for females.
2.3. Statistical theory of classification: mortality

Suppose we have a cohort of flies aged t days, which we will call
the ‘‘target age.” At the target age, we would like to separate fe-
males into two groups, those that are in the death spiral and those
that are not in the death spiral. To be more specific, we consider a
female in the death spiral if she is expected to die on day t + 1,
t + 2, . . . , t + m, where the age-increment m is the maximum length
of the death process. Based on our previous estimates of the dura-
tion of the death spiral in Drosophila, v could range from 5 to
14 days, for a female who enters the death spiral at day t.

Since it is more likely that flies well into the death spiral will ex-
hibit altered physiology compared to females that have just begun
the death spiral, we have set m = 5 for the data analysis that follows.
We regard this as a conservative assumption. This assumption also
allows that the female may be in the death spiral for several days
prior to the target day, and her fecundity should reflect this. This
means that some females in our experimental data that have
started their death spiral would be mistakenly classified as non-
death spiral females since they die at an age >t + 5. However, it is
much less likely that a female that would die within 5 days of
the target age would not be classified in the death spiral.

In the absence of any information about female fecundity, we
could still use the survival of flies prior to the target day to esti-
mate the chance of a fly dying over the next 5 days. We expect that
experiments designed to measure the physiology of death spiral fe-
males would collect flies at ages well before a mortality plateau, in
which case survival might be accurately predicted by the Gom-
pertz equation (Gompertz, 1825; Mueller et al., 1995). Under this
model the chance of dying in the 5 days following the target age
(P) would be,

P ¼ 1� ptþ5

pt
ð1Þ

where pt is the chance of surviving to age-t. The probability of sur-
viving to age-t, is given by the Gompertz equations as,

pt ¼ exp
A½1� expðatÞ�

a

� �
; ð2Þ

where A is the age-independent Gompertz parameter and a is the
age-dependent parameter.

We have used Eq. (1) to predict the fraction of the population in
the death spiral for the three CO1 populations (Fig. 1). At young
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ages (small values of P), when the fraction of the population in the
death spiral is small, the predictions from the Gompertz equation
are very accurate. At more advanced ages (large values of P), the
predicted number of deaths at each age tend to be larger than
the observed numbers. We know that the increase in mortality rate
will slow down at advanced ages relative to the Gompertz predic-
tions, and thus the observed over-estimates are expected at old
age. We have also fit the logistic Gompertz (Mueller et al., 2003)
to these data, and that model results in consistent underestimates
(results not shown) of the fraction of females in the death spiral.
Obtaining estimates for the Gompertz equations is easier and re-
quires fewer parameters than the logistic Gompertz. Therefore,
we employ the Gompertz model in the remainder of this article.

2.4. Phenotypic measures of differentiation

In principle, we could use the fecundity of individual females to
determine the slopes of their individual regressions of fecundity on
age. Alternatively, we could simply use the mean fecundity for sev-
eral days prior to the target day to develop a phenotype score for
each individual female. In either case, we expect that the distribu-
tion of these phenotype scores will be different for females that are
in the death spiral vs. those that are not in the death spiral. Sup-
pose we re-scale the data by subtracting the mean and by dividing
by the standard deviation. In this case, the phenotype scores of all
females at age-t can be plotted as shown in Fig. 2. Based on our
previous results, we would expect the mean fecundity and the
slope of female fecundity of spiral females to be below the values
of the non-spiral females. We let the difference in these means
on the standardized scale be d.

In this section we describe results from an investigation of the
CO1–1 population. We did not use the other CO1 populations, since
our interest is to test these methods on data sets that had not been
used to develop the methods. In other words the observations from
CO1–2 and CO1–3 can serve as a form of cross-validation to give an
unbiased assessment of the utility of these techniques. We first
investigated the slope of female fecundity with age. We found that
this phenotype did not produce sufficient separation of the spiral
and non-spiral female populations (data not shown). The sparse
data for each female and the fact that regression requires that
we estimate two parameters (both slope and intercept) probably
all contributed to poor performance.

We then focused on the mean fecundity based on a range, 1–10,
of days prior to the target age. To determine the optimal number of
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Fig. 2. The scaled phenotype of spiral and non-spiral females. The means of the two
distributions differ by d. For a female that has a scaled phenotype score of s, the
probability that a spiral female has a score of s or less is show by the shaded area on
the left. The probability that a non-spiral female has a score of y or greater is shown
by the shaded area on the right.
days prior to the target age to use for the purpose of estimating this
mean accurately, we estimated the standardized difference in the
mean of d for several time intervals prior to the target age, as well
as for several other ages. These standardized differences we calcu-
lated from females of the same age that had been divided into the
two groups: spiral and non-spiral females. Thus, any differences
can not be attributed to age related effects. The results (Fig. 3)
show that, except for the oldest age studied (41 days), we get the
maximum separation (d ffi 0.8) for females about 2–3 days before
the target age. We settled on 3 days as a reasonable guideline for
future work.

We have taken data from the CO1–1 population and computed
the scaled fecundity of spiral and non-spiral females at four differ-
ent ages (Fig. 4). These distributions confirm the previously noted
differences in mean fecundity although there is also clearly overlap
in these distributions.
2.5. Statistical theory of classification: mortality and fecundity

Information from a cohort survival records allows us to predict
with some accuracy how many females should be in the death spir-
al. However, with this information alone the only way to use this
information would be to randomly chose the appropriate number
of females for each group, e.g. those in the death spiral and those
not in the death spiral. Information on female fecundity gives use-
ful information for making more precise predictions about which
females to put in each category. More formally we assume that
at the time of assignment we have a group of N females that have
unique integer identifiers or id numbers G = (1, 2, . . ., N). Our goal is
to separate this collection of N females into two non-overlapping
groups, Gs = {gs 2 (1, 2, . . . , N)} and Gns = {gns 2 (1,2, . . . , N)} where
Gs are the death spiral females and Gns non-spiral females.

Based on our observations of female fecundity the only reason-
able expectation is that females in the death spiral will show re-
duced levels of egg production. Consequently, we next describe a
method for classifying females that does not rely on knowledge
of the probability distribution of female fecundity or even that
the probability distribution is constant.

At any particular age, let the total number of live females be N,
the predicted number of spiral females is, Ns = PN, and the number
of non-spiral females Nns =(1–P)N. For each of the N females, sup-
pose that we rank them based on the total number of eggs laid
prior to the target day such that w1 has the greatest number of eggs
and wN the smallest. Corresponding to this ordered vector of three-
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Fig. 3. The standardized difference in the means of spiral and non-spiral females for
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day fecundities is a vector of female identities for each ordered
fecundity value, Y = {yi 2 G}. The vector Y can be used to identify
the female at each rank position, e.g. the female with the greatest
fecundity has id number y1 the female with the smallest fecundity
has id number yN.

A non-parametric method for assigning females to these groups
would assign females with egg counts w1, w2,. . .,wNns to the non-
spiral group and the remaining females to the spiral group. If we
wanted to improve the success rate of this method we could elim-
inate females in the middle of the distribution. The group member-
ship of females with intermediate values of fecundity is most
difficult to classify, e.g. see Fig. 4. This leads to a generalization
of the previously described method. Let L = round[k(1�P)N] and
U = round[kPN], where round[x] is the integer obtained from
rounding the real number x to the nearest integer. The parameter
k is between 0 and 1. The original method corresponds to k = 1.
When k is less than 1 a fraction of the females in the middle of
the observed egg distribution are being discarded which will pre-
sumably increase the accuracy of classification. Then the non-spir-
al females are those with egg counts, w1, w2, . . ., wL–1 while the
spiral females have egg counts wN�U + 1, . . ., wN or,

Gns ¼ ðy1; y2; . . . ; yL�1Þ ð3aÞ

Gs ¼ ðyN�Uþ1; yN�Uþ2; . . . ; yNÞ ð3bÞ
2.6. Evaluating the success of each method

An important application of these techniques will be the sepa-
ration of females prior to death into two groups: spiral and non-
spiral. These groups can then be subjected to various measure-
ments to determine if mean differences exist between spiral and
non-spiral females. Suppose the two groups do differ and that
the mean of some trait of interest in the spiral females is �Zs and
the mean for the non-spiral females is �Zns: If our methods are un-
able to do any better than simply randomly choosing females, then
we would expect to be unable to detect these mean differences
even if they exist.

Suppose that, as a result of applying one of these methods, the
fraction of females classified as spiral that were in fact classified
correctly is fs. Let fns be the corresponding fraction of correctly clas-
sified non-spiral females. Then the mean of the group of females
that have been classified as spiral by these methods would be
~Zs ¼ fs

�Zs þ ð1� fsÞ�Zns. Likewise the mean for the non-spiral females
would be ~Zns ¼ fns

�Zns þ ð1� fnsÞ�Zs. The mean difference between
the non-spiral and spiral trait values is then,

~Zns � ~Zs ¼ ðfns þ fs � 1Þð�Zns � �ZsÞ ¼ Dð�Zns � �ZsÞ: ð3cÞ

We call D the classification success. If D is 1, the classification has
been perfect. If D is 0, then we have done no better than randomly
guessing group membership.

To study the utility of these methods we examine the accuracy
of these predictions across several variables. These include (i) three
different data sets, CO1–1, CO1–2, and CO1–3, (ii) four different values
of k, 1.0, 0.75, 0.5 and 0.25, (iii) three different cohort sample sizes,
1000, 500, and 100, and (iv) six different adult ages, 20, 25, 30, 35,
40, and 45 days. To accomplish this we have used bootstrap re-
sampling to calculate the relative success of these methods (Efron
and Tibshirani, 1993). For each combination of the four variables
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1000 bootstrap samples were generated to estimate classification
success.

Let a data set be X ¼ ðx1;x2; . . . ; xNÞ, where each element of the
dataset, xi, is a vector valued random variable consisting of an age
at death, and daily egg counts up to the day of death. From this
data set we sample with replacement a bootstrap sample,
X� ¼ ðx�1;x�2; . . . ;x�mÞ, where m = 100, 500, or 1000. Using X* and
Eqs. (3a–b) bootstrap classifications, G�ns and G�s , were determined.
In addition two additional sets of females, ~G�ns and ~G�s , of equal size
to G�ns and G�s were generated by choosing members at random
without replacement from X*.

G�ns was used to compute the fraction of females classified as
non-spiral that were correctly classified, f �ns. In a similar manner
we calculated f �s and for the randomly classified females, ~f �ns and ~f �s .

Classification success was quantified with the statistic,
D� ¼ ðf �s þ f �ns � ~f �s � ~f �nsÞ. Since the expected value of (~f �ns+

~f �s ) is 1,
EðD�Þ is similar to D in equation (3c). The main difference between
D and D* is that it is possible due to chance random samples for
D* < 0.
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Fig. 5. The average classification success for all three datasets at N = 1000. The
different lines refer to the four different values of k, 1.0, 0.75, 0.5, and 0.25.
3. Results

In general we have found that the classification success param-
eters, f �ns and f �s , depends on P. If P is very small then most females
are non-spiral and there is little difference between f �ns and ~f �ns, that
is a random sample is likely to include a large fraction of non-spiral
females. On the other hand when P is small there are few spiral fe-
males and thus most random samples will not include any and we
tend to observe a large difference between f �s and ~f �s .

In Fig. 5 the average value of D* for all three data sets at
N = 1000 are shown. We see that generally predictive success in-
creases with smaller values of k, although at times this advantage
is small (CO1–2, Fig. 5) and is occasionally reversed (age 45 for CO1–

3, Fig. 5). Since the behavior of the three different data sets does not
differ dramatically we focus on the CO1–3 in the next few figures.

The pattern of age-specific change of the average D* does not
change much with sample size (Fig. 6). However, the variance of
D* scales with the sample size (Fig. 7).

We can see all three trends in Fig. 8 which displays the distribu-
tion of D* for the CO1–3 population at age 20. At both densities we
see the mean increase with decreasing values of k (Fig. 8). How-
ever, the variance is clearly greater at N = 100 compared to
N = 1000. Additionally we see that at N = 100 there are a small frac-
tion of samples where D* < 0 (Fig. 8). In these samples guessing re-
sulted in better success than our formal prediction method.
4. Discussion

Practically the use of the methods described here to classify fe-
males would be best used when P was about 0.5. This would result
in about equal numbers of females in both groups and thus the
greatest statistical power to detect phenotypic differences. For
the three populations CO1–1, CO1–2, and CO1–3 the ages at which
P = 0.5 are 35, 40, and 32 days respectively. At these ages the clas-
sification of success ranges from around 0.18 to 0.31 (Fig. 5). This
means that any phenotype that truly differs between the spiral
and non-spiral females could be detected using this classification
scheme although larger sample sizes are needed relative to a tech-
nique that results in perfect classification.

Suppose that it would take a sample size M from the spiral and
M from the non-spiral females to detect a significant difference for
some character, assuming perfect classification. If the classification
success for this sample is D, then we would need a sample of size
of roughly (D)�2M from each female type to detect a significant dif-
ference. As an example, if perfect classification would require only
25 females from each group to detect a significant difference for
some trait, then if our classification success is only 0.2 we would
need a sample of 625 females to detect the same difference. If
the classification success is 0.3 then the sample size needed is 278.

Likewise, if we use a value of k less than 1 then the classification
success should improve and hence we can use a smaller total sam-
ple of females. Of course by setting k < 1 we are reducing our total
sample size to k2M (assuming M in each group). Reducing k below
one will only be beneficial, in the sense of increasing the statistical
power, if the classification success improves by a factor

ffiffiffiffiffiffiffiffi
1=k

p
: As

an example, if the classification success is about 0.2 when using
all the data then it would pay to use only half the data (e.g. set
k = 0.5) if the classification success improved by a factor of 1.41
or to about 0.28.

This previous calculation would seem to suggest that the bene-
fit of using k < 1 would be easiest to achieve when the classification
success is low. However, from the results in Fig. 5 it appears that
when the classification success is low it is less likely that using
k < 1 will substantially improve the classification success. At this
time we would suggest caution using less than the entire data set.

It may be possible to improve these techniques by collecting
additional information. At this time it is not known what other
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traits may decline in the death spiral. It could turn out that some
other trait will give more reliable predictions or that using fecun-
dity with some other trait would increase the classification suc-
cess. Only additional empirical work will help determine if any of
these possibilities exist.

The observation of the dramatic decline in Drosophila female
fecundity has only recently been described (Rauser et al., 2005).
But its confirmation by independent laboratories (e.g. Rogina
et al., 2007) suggests that it is a robust phenomenon. However,
some aspects of the death spiral may not be robust. For instance
Rogina et al. observed that in addition to the decline in fecundity,
all females in their study laid no eggs during the last days before
death. Our study showed a decline in fecundity, but many of our
females continued to lay eggs up to the day before they died (Raus-
er et al., 2005). Since both the Rogina and Rauser studies were very
large, these different observations are likely to be due to differ-
ences in culture techniques or genetic backgrounds of the flies
used, rather than merely statistical sampling error.

It seems unlikely that female fecundity could undergo such a
dramatic decline and other important physiological processes
would be unchanged. Even in Drosophila, there are some behavioral
traits that can be measured without killing individual flies. Thus, it
is possible to measure activity or mating propensity and then wait
until the measured flies die in order to determine their status in
the death spiral. However, other characters, like lipid levels or
RNA expression, require that females be sacrificed prior to death.
For this latter type of assay, the techniques described in this paper
would be useful.

An important concern in human health is the period of disabil-
ity that sometimes occurs prior to death (Crimmins, 2004; Manton
and Gu, 2001; Verbrugge and Jette, 1994). Disability in humans re-
duces quality of life and often requires additional expense from the
health care system (Manton and Gu, 2001). In addition, disability
may predispose individuals to other disorders or initiate a progres-
sive decline proceeding inexorably to death (Verbrugge and Jette,
1994). Gaining a greater understanding of factors that initiate dis-
ability, or ameliorate its effects thus could have great practical
importance.

The death spiral in Drosophila may be viewed as a model of dis-
ability prior to death. With additional research, we could develop a
more complete understanding of the ensemble of physiological
traits involved, the timing of these events prior to death, and
whether these events can be affected by environmental interven-
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tions, such as diet, mating status, or specific types of natural selec-
tion. With greater understanding of the physiological and behav-
ioral characters that are affected by the death spiral in females,
we might also be able to devise ways to study this phenomenon
in males.
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