
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Bridging Safety and Learning in Human-Robot Interaction

Permalink
https://escholarship.org/uc/item/97p6j4qg

Author
Bajcsy, Andrea

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/97p6j4qg
https://escholarship.org
http://www.cdlib.org/

Bridging Safety and Learning in Human-Robot Interaction

by

Andrea V Bajcsy

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering - Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Anca Dragan, Co-chair

Professor Claire Tomlin, Co-chair

Professor Ken Goldberg

Professor Wolfram Burgard

Summer 2022

Bridging Safety and Learning in Human-Robot Interaction

Copyright 2022

by

Andrea V Bajcsy

1

Abstract

Bridging Safety and Learning in Human-Robot Interaction

by

Andrea V Bajcsy

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Anca Dragan, Co-chair

Professor Claire Tomlin, Co-chair

From autonomous cars to systems operating in people’s homes, robots must interact

with humans. What makes this hard is that human behavior–especially when interacting

with other agents–is vastly complex, varying between individuals, environments, and over

time. A modern approach to deal with this problem is to rely on data and machine learning

throughout the design process and deployment to build and refine models of humans.

However, by blindly trusting their data-driven human models, robots might confidently

plan unsafe behaviors around people, resulting in anything from miscoordination to

potentially even dangerous collisions.

This dissertation aims to lay the foundations for formalizing and ensuring safety in human-

robot interaction, particularly when robots learn from and about people. It discusses how

treating robot learning algorithms as dynamical systems driven by human data enables

safe human-robot interaction. We first introduce a Bayesian monitor which infers online

if the robot’s learned human model can evolve to well-explain observed human data. We

then discuss how a novel, control-theoretic problem formulation enables us to formally

quantify what the robot could learn online from human data and how quickly this learning

could be achieved. Coupling these ideas with robot motion planning algorithms, we

demonstrate how robots can safely and automatically adapt their behavior based on how

trustworthy their learned human models are. This thesis ends by taking a step back and

raising the question: “What is the ‘right’ notion of safety when robots interact with people?”

and discusses opportunities for how rethinking our notions of safety can capture more

subtle aspects of human-robot interaction.

i

To maminka and ocko.

ii

Contents

Contents ii

List of Figures v

List of Tables xv

1 Introduction 1
1.1 Thesis Overview and Contributions . 2

2 Background and Preliminaries 6
2.1 Dynamical Systems . 6

2.2 From Optimal Control to Single-Agent Safety 9

2.3 From Dynamic Games to Multi-Agent Safety 23

2.4 Cost Function Design via Inverse Reinforcement Learning 33

2.5 Human Modelling & Behavior Prediction . 39

I Safe Robot Navigation Despite Imperfect Human Models 42

3 Confidence-aware Human Models for Robot Planning 43
3.1 Prior Work . 45

3.2 Problem Setup . 46

3.3 Confidence-Aware Human Motion Prediction 50

3.4 Prediction Examples . 53

3.5 Safe Probabilistic Planning and Tracking . 57

3.6 Connections to Reachability Analysis . 61

3.7 Hardware Demonstration with Real Humans 65

3.8 Conclusion . 69

4 Confidence-aware Game-theoretic Human Models 72
4.1 Related Work . 74

4.2 Background . 74

4.3 Confidence-aware Role Inference for Safe Human-Robot Interaction 77

iii

4.4 Experimental Setup . 79

4.5 Simulated Human-Robot Interaction Results 80

4.6 Evaluation with Real Traffic Data . 84

4.7 Discussion & Conclusion . 85

5 Scalable Multi-Human, Multi-Robot Collision Avoidance 86
5.1 The SCAFFOLD Framework . 87

5.2 Robot Planning and Control . 89

5.3 Human Predictions . 91

5.4 Sequential Trajectory Planning . 95

5.5 Implementation and Experimental Results . 96

5.6 Discussion & Conclusion . 97

6 Robust Human Motion Prediction 99
6.1 Problem Setup . 101

6.2 Background: Robust vs. Intent Prediction . 102

6.3 A Robust-Control Framework for Intent-Driven Human Prediction 104

6.4 Prediction Comparisons . 108

6.5 Implications for Safe Motion Planning . 114

6.6 Conclusion . 115

6.7 Derivation: Continuous-time Distribution Dynamics 115

II Formalizing Safety Analysis of Adaptive Human Models 117

7 Analyzing Human Models that Adapt Online 118
7.1 Related Work . 119

7.2 Problem Formulation & Solution . 120

7.3 Encoding Analysis Questions . 122

7.4 Use Cases of Our Analysis Tool . 123

III Safety for HRI Beyond Collision-Avoidance 133

8 Learning Robot Objectives from Physical Human-Robot Interaction 134
8.1 Prior Work . 137

8.2 Formalizing Physical Human-Robot Interaction 139

8.3 Approximate Solutions for Online Learning 142

8.4 All-at-Once Online Learning . 145

8.5 One-at-a-Time Online Learning . 147

8.6 Optimally Responding to pHRI . 149

8.7 Simulations . 150

8.8 User Studies . 156

iv

8.9 Discussion . 168

8.10 Detailed Derivation: Laplace Approximation & MAP 172

8.11 Conclusion . 174

9 Quantifying Hypothesis Space Misspecification 175
9.1 Related Work . 178

9.2 Problem Formulation and Approach . 180

9.3 Algorithmic Approach: Demonstrations . 185

9.4 Algorithmic Approach: Corrections . 189

9.5 Case Studies . 197

9.6 User Study on Learning from Corrections . 205

9.7 Discussion . 209

9.8 Practical Considerations . 210

9.9 Laplace Approximation in Equation (9.19) . 212

10 Conclusion and Future Work 214

Bibliography 217

v

List of Figures

1.1 Center: By treating robot learning algorithms as dynamical systems driven

by human data, this thesis unites traditionally disparate control-theoretic and

machine learning methods for safe HRI. Sides: This work is grounded through

robot experiments with robotic manipulators and autonomous vehicles. 1

1.2 Thesis overview illustration, contextualizing this thesis in the broader space of

questions concerning safety, learning, and human-robot interaction. 3

2.1 Taxonomy of optimal control problems in discrete and continuous time, as well

their value function computation and representation. 14

2.2 (Top row) Optimal control problem for each variant of the reach and avoid

sets. Inset image shows the level curves of the function ℓ (𝑥) which encodes

ℒ. (Bottom row) Grey region is the reachable set computed for initial time

𝑡. Optimal control trajectories are shown for two candidate initial conditions.

Depending on if we were computing a set or a tube, we evaluate if the trajectory

meets the constraint criterion at just the end of the trajectory, or over the entire

length. 21

2.3 Visualization of how the safety-preserving optimal control (shown in yellow)

from a BRT can be used to ensure safe robot navigation (steering robot away

from collision with the chair) only at the boundary of the safe set (shown in red). 22

2.4 The demonstrator (orange dot) demonstrates a trajectory, �𝐷 , by moving through

a space. The observer seeks to discover what objective function the demonstra-

tor is optimizing to produce this trajectory. 34

3.1 When planning around humans, accurate predictions of human motion (visu-

alized here pink and blue, representing high and low probability respectively)

are an essential prerequisite for safety. Unfortunately, these approaches may

fail to explain all observed motion at runtime (e.g. human avoids unmod-

eled spill on the ground), leading to inaccurate predictions, and potentially,

collisions (left). Our method addresses this by updating its predictive model

confidence in real time (right), leading to more conservative motion planning in

circumstances when predictions are known to be suspect. 43

vi

3.2 Snapshots of pedestrian trajectory and probabilistic model predictions. Top

row: Pedestrian moves from the bottom right to a goal marked as a red circle.

Middle row: Pedestrian changes course to avoid a spill on the floor. Bottom

row: Pedestrian moves to one known goal, then to another, then to a third

which the robot has not modeled. The first two columns show predictions

for low and high model confidence; the third column shows the predictions

using our Bayesian model confidence. For all pedestrian videos, see: https:
//youtu.be/lh_E9rW-MJo . 55

3.3 Snapshots of Dubins car and probabilistic predictions. Top row: Car moves

straight ahead toward one of two known goals (red arrows), staying in its lane.

Middle row: Car suddenly swerves to the left to avoid a pothole. Bottom

row: Car turns to the right, away from the only known goal. The left and

center columns show results for low and high confidence predictors, respec-

tively, and the right column shows our approach using Bayesian inferred model

confidence. For all Dubins car videos, see: https://youtu.be/sAJKNnP42fQ . 56

3.4 Scenario from the middle row of Fig. 3.2 visualized with robot’s trajectory.

When 𝛽 is low and the robot is not confident, it makes large deviations from

its path to accommodate the human. When 𝛽 is high, the robot refuses to

change course and comes dangerously close to the human. With inferred model

confidence, the robot balances safety and efficiency with a slight deviation

around the human. 60

3.5 The human (black dot) is moving west towards a goal. Visualized are the pre-

dicted state distributions for one second into the future when using low, high,

and Bayesian model confidence. Higher-saturation indicates higher likelihood

of occupancy. The dashed circle represents the pedestrian’s 1 second forward

reachable set. 61

3.6 Visualization of the states with probability greater than or equal to the collision

threshold, 𝑃
th

= 0.01. The human’s forward reachable set includes the set of

states assigned probability greater than 𝑃
th

. We show these “high probabil-

ity” predicted states for predictors with fixed low and high 𝛽, as well as our

Bayesian-inferred 𝛽. 62

3.7 The human (black dot) is walking towards the known goal (red dot) but has to

avoid an unmodeled coffee spill on the ground. Here we show the snapshots of

the predictions at various future times (columns) as the human walks around in

real time (rows). The visualized states have probability greater than or equal to

𝑃
th
= 0.01. Each panel displays the human prediction under low confidence (in

yellow), high confidence (in dark purple), and Bayesian confidence (colored as

per the most likely 𝛽 value), as well as the forward reachable set. The human’s

actual trajectory is shown in red. 64

3.8 Predicting with fixed-𝛽 (in this case, 𝛽 = 20) can yield highly inaccurate predic-

tions (and worse, confidently inaccurate ones). The subsequent motion plans

may not be safe; here, poor prediction quality leads to a collision. 65

https://youtu.be/lh_E9rW-MJo
https://youtu.be/lh_E9rW-MJo
https://youtu.be/sAJKNnP42fQ

vii

3.9 Inferring 𝛽 leads to predicted state distributions whose entropy increases when-

ever the utility model 𝑄𝐻 fails to explain observed human motion. The result-

ing predictions are more robust to modeling errors, resulting in safer motion

plans. Here, the quadcopter successfully avoids the pedestrian even when she

turns unexpectedly. 66

3.10 Safety and efficiency metrics in a complete environment and one with an un-

modeled obstacle. 68

3.11 Safety results for the unmodeled goal scenario. 69

3.12 Efficiency results for the unmodeled goal scenario. 69

4.1 Robot car (white) merges into a round-about with a nearby human-driven car

(orange). (left) Human accommodates for robot, but robot is overly conserva-

tive and protects against the full backwards reachable tube (BRT). (center) Our

Bayesian BRT infers how the human is influenced by the robot and shrinks the

set of unsafe states. (right) When the human does not behave according to the

model, the robot detects this and automatically reverts to the full BRT. 73

4.2 Robot car interacts with a simulated human follower. Our Bayes BRT infers

that the human is game-theoretic and tends to cooperate; it reduces the size of

the unsafe set (filled blue) accordingly. A 2-D slice of the full 5-D unsafe set

is visualized in the 𝑝𝑥
𝑟𝑒𝑙

and 𝑝
𝑦

𝑟𝑒𝑙
dimensions with all other states held fixed at

the current values. Dotted gray line is the robot’s trajectory when using the

full BRT (filled gray). Note that the full BRT results in the robot executing

unnecessary safety maneuver in (a) and aborting merging in (b). 82

4.3 (a) Failure to detect model mismatch results in collision. The �-only BRT

(filled blue) is smaller than the least-conservative BRT (pink outline, defined

in Section 4.6), meaning safety is no longer guaranteed. Dotted blue line is

robot trajectory using our Bayes BRT, avoiding collision. (b) Failure to use an

interactive human model results in the robot avoiding the human even when

they try to cooperate. 83

4.4 (left) Our method is not overly-conservative compared to the least-restrictive

BRT. (right) Our method decreases safety violations vs. the full BRT. 85

5.1 Hardware demonstration of real-time multi-agent planning while maintaining

safety with respect to internal dynamics, external disturbances, and intentional

humans. The planned trajectories from the quadcopters are visualized, and

the tracking error bound is shown as a box around each quadcopter. The

probabilistic distribution over the future motion of the humans are shown in

pink in front of each human. 87

5.2 The SCAFFOLD Framework . 88

5.3 FaSTrack Block . 90

viii

5.4 Top-down view of FaSTrack applied to a 6D quadcopter navigating a static

environment. Note the simple planned trajectory (changing color over time)

and the tracking error bound (TEB) around the quadcopter. This TEB is a

6D set that has been projected down to the position dimensions. Because we

assuem the quadcopter moves independently in (𝑥, 𝑦, 𝑧), this projection looks

like a box, making collision-checking very straightforward. 90

5.5 Human Prediction Block . 93

5.6 Our environment now has a human (red square). The robot models the human

as likely to move north. Visualized on top of the human is the distribution of

future states (pink is high, blue is low probability). Since the human is walking

north and matching the model, the robot’s predictions are confident that the

human will continue northward and remain collision-free. 93

5.7 Birds-eye Robot Operating System (ROS) visualization of hardware demon-

stration from Fig. 9.1. (a) Two humans (red and blue) start moving towards

their respective goals (also red and blue). Robot in lower right-hand corner

has first priority, and robot in upper left-hand corner has second. The time-

varying predictions of each human’s future motion are visualized. (b) Robots

plan trajectories to their goals based on the predictions, priority order, and

are guaranteed to stay within the tracking error bound (shown in blue). (c)

When the humans begin to interact in an unmodeled way by moving around

each other, the future predictions become more uncertain. (d) The robots ad-

just their plans to be more conservative–note the upper-left robot waiting as

the blue human moves past. (c) When the humans pass each other and the

uncertainty decreases, the robots complete their trajectories. 95

5.8 Simulation of 5 dynamic robots navigating in a scene with 10 humans. The

simulated humans according to a potential field, which results in unmodeled

interaction effects. However, SCAFFOLD enables each robot to still reach its

goal safely. 98

6.1 When intent-driven human models are misspecified in Bayesian predictors,

robots confidently plan unsafe motions (top). Our approach (bottom) trusts

the intent-driven model only to remove completely unlikely human actions,

resulting in safer robot plans despite a misspecified model. (not depicted

here) When planning using the worst-case predictor, the robot has to leave the

environment entirely to avoid the predicted human state. 100

6.2 Effect of the belief and the 𝛿-threshold on the admissible set of controls (shown

in upper-left inset) and the overall predictions (shown in pink) for 3 seconds

into the future. 107

6.3 (left) Initial set in 𝑥-space (in grey). Likely control distribution for 𝛿 = 0.01

shown projected in ℎ𝑥 − ℎ𝑦 plane. Comparisons of the resulting joint state

if the human moves directly towards 𝑔1 (in red) versus towards 𝑔2 (in blue).

(right) 4 seconds BA-FRS and its projection into 𝑥H-space. 108

ix

6.4 Comparisons of Bayesian and BA-FRS predictions for static vs. time-varying

human intent. Dashed lines are the full FRS. Predictions are for 2 seconds

for the static parameter and 1.8 seconds for time-varying. For the Bayesian

predictor, we choose 𝜖 to capture the (1 − 𝛿)most likely states. 109

6.5 Comparison of the intent-driven Bayesian, our BA-FRS, and the full FRS pre-

dictions for three scenarios. In the first row the human moves towards one of

the modelled goals. In the middle the human moves towards an unmodelled

goal. In the last row the human is moving towards a modelled goal (𝑔2) but

they take a suboptimal path under our model because they are avoiding an

unmodelled obstacle on the ground (shown in grey circle). The belief over 𝑔1 is

visualized over time in the lower-left inset plot. 111

6.6 Simulated human moves to modelled 𝑔1 but with varied optimality from 𝜎 = 0

(optimal) to 𝜋 (random). Both predictors use a fixed 𝜎 = 𝜋/4. 112

6.7 (top) Simulated human moves to one of 7 unmodelled goals in an optimal trajec-

tory. Results are in increasing misspecification of the goal. (bottom) Simulated

human moves to modelled goal 𝑔2 but has their straight-line path obstructed

by an unmodelled obstacle. Results from 7 unmodelled obstacles are shown in

increasing deviation from the straight trajectory. 113

7.1 (left) Robot safeguards against both hypotheses, straight and left, for entire

planning horizon, (center) A heuristically chosen branch time for the contin-

gency planner doesn’t allow the robot to observe enough human data, leading

it to collision, (right) Contingency planner branches at the max TTL computed

via our method, enabling a safe but efficient plan. 125

7.2 (left) Minimum TTL that the human is being unmodelled as a function of the

prior. Mean and standard deviation shown in red. (right) Minimum TTL as

a function of 𝑥H with a uniform prior. Occupancy map of the bookstore

environment (in Fig. 7.4) shown with modelled human goal is red circle and

the min TTL for each initial (x,y) state is shown in a color ranging from blue

(TTL=0.9s) to red (TTL=2.72s). 127

7.3 Legible and deceptive behaviors as synthesized by our analysis tool–shown in

bright red or bright blue. The optimal policy for each goal is shown in grey.

The estimate of the goal over time for the legible and deceptive behaviors is

contrasted with the optimal policy in the inset figures. 130

7.4 (left) Heatmap of reachable reward weights (x-axis) and their 𝑇𝑇𝐿 (color val-

ues ranging from dark blue: 𝑇𝑇𝐿 = 0.0𝑠 to yellow: 𝑇𝑇𝐿 = 4.7𝑠) starting from

a specific initialization (y-axis). (right) Bookstore environment with faded

human-figure denoting the human’s initial position: red path is optimal be-

havior for mainly goal-driven human, blue path is for a human who wants to

stay far from obstacles. 131

x

8.1 (Top) When physical human interactions are treated as disturbances people

have to repeatedly push the robot to physically change its behavior. (Bottom)

Robots that recognize that physical interactions may be corrections can learn

from these interactions and change their underlying behavior to align with the

human’s preferences. 136

8.2 Visualization of one iteration of our proposed algorithm for online learning

from pHRI. Here a point robot is moving in a 2D environment with two obsta-

cles,𝑂1 and𝑂2. The robot initially plans to follow a straight line trajectory from

start to goal (�𝑡𝑟 , black dotted line). But the human wants the robot to move

farther away from the obstacles: the human pushes the robot, and the robot

uses the human’s applied force to deform its initial trajectory into a human

preferred trajectory (�𝑡
ℎ
, solid black line). Given that �𝑡

ℎ
is better aligned with

the human’s objective than �𝑡𝑟 , we compute an online update of � and replan a

new trajectory �𝑡+1

𝑟 (orange dotted line). Notice that the new trajectory moves

the robot farther from the nearby obstacle 𝑂1 and the future obstacle 𝑂2. 147

8.3 Comparison of the offline QMDP solution and our online Learning approxi-

mation for a pick-and-place task. The robot is attempting to carry the cup to

the table. Originally the robot is confident it should move in a straight line

(black), but the user actually wants the cup to be carried closer to the ground

(blue, dashed). Here the human physically interacts to guide the robot back to

their desired trajectory (circles) when the robot’s error is too high. 151

8.4 Robot learning and regret for the task from Fig. 8.3. The true human objective

is � = 1. The offline QMDP solution learns more about the human’s objective

than our online Learning approximation. However, both QMDP and Learning

lead to significantly less regret than the Impedance baseline. The regret for

QMDP is the lowest because here human corrects the robot at one less timestep. 152

8.5 Responding to physical interaction by deforming the robot’s trajectory. We

propagate the human’s interaction along the robot’s trajectory to get �ℎ , the

human’s intended trajectory. We then set �ℎ as the robot’s trajectory. Here 𝑁

is the number of number of interactions: we show the robot’s trajectory after

1, 3, 5, and 7 deformations. Importantly, when using deformations the robot

never learns about task, but only updates its trajectory in the direction of the

human’s applied force. 153

8.6 Responding to physical interactions using our proposed learning approach.

As before, we propagate the human’s interaction along the robot’s current

trajectory to get �ℎ , the human’s intended trajectory. But now we go one step

further: we compare �ℎ to �𝑟 to update our estimate of the human’s objective

�. The robot then moves in the direction of the optimal trajectory for �. Under

this approach the robot learns to avoid the laptop after 𝑁 = 4 corrections, and

autonomously tracks the human’s preferred trajectory (blue, dashed). 154

xi

8.7 Comparison of Deforming and Learning across our simulations in Figs. 8.5 and

8.6. When robots only deform their trajectory in the direction of the human’s

applied force, humans must exert more effort and make more corrections to

guide the robot’s trajectory to their desired behavior. By contrast, Learning

from these deformations enables the robot to correct not only the next few

timesteps, but also to replan the remainder of the trajectory based on the

human’s correction. 154

8.8 Comparing All-at-Once and One-at-a-Time learning with an optimal simulated

human. This human wants the robot to carry the coffee closer to table level, and

provides physical corrections that exactly match their preferences. The human

corrects the robot’s behavior over the first few timesteps (arrows) and the robot

autonomously follows the human’s desired trajectory after these corrections.

The robot’s behavior is the same for All-at-Once and One-at-a-Time learning. . 155

8.9 All-at-Once and One-at-a-Time learning with an optimal simulated human. The

true objective is 𝑡𝑎𝑏𝑙𝑒 = 0.5, ℎ𝑢𝑚𝑎𝑛 = 0. Both All-at-Once and One-at-a-Time

converge to the true objective: no unintentional corrections occur. 155

8.10 Comparing All-at-Once and One-at-a-Time learning with a noisy simulated

human. This noisy human wants the robot to move closer to the table, but

accidentally provides biased corrections that also move the cup closer to the

human. Ellipses show the robot’s position at each timestep with 95% confidence

over 100 simulations. The human unintentionally pulls the robot closer to their

body at the start of the task, and with the All-at-Once approach they struggle

to undo these mistakes in the second half of the task. 156

8.11 All-at-Once and One-at-a-Time learning with a noisy simulated human. The

shaded regions give the standard error of the mean. With All-at-Once, the

robot initially learns that the human feature is important, and the person must

undo that unintended learning. One-at-at-Time learning reduces the unin-

tended effects of the human’s noisy corrections; the robot converges towards

the human’s desired trajectory more rapidly. 157

8.12 Simulations depicting the robot trajectories for each of the three tasks in our first

user study (Learning vs. Impedance). The black path represents the robot’s

initial trajectory, and the blue path represents the human’s desired trajectory. . 157

8.13 During the first user study participants interacted with a robot that maintained

a fixed objective (Impedance, grey) and a robot that learned from their physical

interactions to update its objective (Learning, orange). 158

8.14 Objective results from our first user study. We explored whether robots should

learn from physical interactions (Learning vs Impedance). Learning from pHRI

decreased participant effort and interaction time across all experimental tasks

(the total trajectory time was 15s). An asterisk (*) means 𝑝 < .0001. 159

xii

8.15 (Left) Average cost for each task and the cost of the desired trajectory. Robots

that always follow the human’s desired trajectory minimize cost. An asterisk (*)

means 𝑝 < 0.0001. (Right) Plot of sample participant data from the laptop task:

the desired trajectory is in blue, the trajectory with the Impedance condition is

in gray, and the Learning condition trajectory is in orange. 159

8.16 Simulations depicting the robot trajectories for both of the two tasks in our

second user study (One-at-a-Time vs. All-at-Once). The black path represents

the robot’s original trajectory, and the blue path represents the human’s desired

trajectory. Note that the robot now has multiple features, making it possible

for the human to accidentally correct one or both features. 162

8.17 How accurately the robot learned when using All-at-Once or One-at-a-Time.

(Left) The final learned � with One-at-a-Time is more aligned with the ideal

� on the Table+Cup task where the human had to correct multiple features.

Looking at the individual feature errors: (Center) while the final cup feature

was closer to ideal for One-at-a-Time on both tasks, (Right) All-at-Once learned

a more accurate estimate of Table when the human only needed to teach a single

feature. But we notice an interaction effect here: although One-at-a-Time got

the Table wrong on the single feature task, it outperformed All-at-Once across

the board when the human needed to adjust multiple features. 164

8.18 One-at-a-Time showed more consistent alignment between the learned objec-

tive, �̂𝑡 , and the ideal objective, �, when compared to All-at-Once. Contrasting

(a) and (b), these results suggest that when the human needs to correct multiple

aspects of the robot’s behavior One-at-a-Time enables more accurate learning.

We anticipate that most real-world tasks will require corrections of multiple

features. 167

8.19 How frequently participants made mistakes and had to undo their corrections.

(Left) Humans working with One-at-a-Time made fewer corrections that caused

the robot to learn the opposite of what they intended. This result was consistent

across both tasks. (Right) These objective findings match our subjective Likert

scale data. Participants thought the One-at-a-Time robot was less likely to learn

the wrong thing and need an additional undoing action. 168

9.1 A household robotics scenario where the person physically interacts with the

robot. The person prefers the robot to keep cups closer to the table, but account-

ing for the table (outside of collisions) is not in the robot’s hypothesis space

for what the person might care about. Thus, the robot’s internal situational

confidence, 𝛽, about what the human input means is low for all hypotheses �. . 176

9.2 (Left) Visual example of a full human-provided demonstration x. (Right) Visual

example of a human physical correction 𝑢𝑡
𝐻

onto the robot’s current trajectory x. 185

xiii

9.3 Three examples of demonstrations and the inferred posterior belief after each

one of them. The robot infers the right � = [0, 1, 0] from the two well-explained

demonstrations, but, unlike the perfect simulated demonstration in 9.3(a), the

noisy one in 9.3(b) cannot reach the highest 𝛽 and has as overall more spread-out

probability distribution with a lower peak value. Lastly, the perfect simulated

demonstration that is poorly explained in 9.3(c) results in a posterior that is

spread-out over all �s and the lowest 𝛽s , consistent with the robot not being

able to tell what the human’s objective was. 187

9.4 Graphical model formulation (a) and modifications to it ((b) and (c)) for real-

time tractability. 188

9.5 Empirical estimates for 𝑃(�̂� | 𝐸) and their corresponding chi-squared (𝜒2
) fits. . 193

9.6 Examples of physical corrections (interaction points shown in blue) and the re-

sulting behavior for the fixed 𝛽 method (top) and estimated 𝛽 method (bottom).

When the corrections are well explained, both methods learn the correct weight ˆ
� = 1.0. In the case of poorly-explained corrections, our method infers low

�̂� and manages to reduce unintended learning, whereas the fixed 𝛽 method

produces incorrect oscillatory behavior. 195

9.7 (Left) Human demonstrations avoiding the laptop. (Right) Upper distribution

is the posterior belief for the highlighted blue demonstration. Since the robot

has the laptop feature in its hypothesis space, this demonstration induces a

high 𝛽 on the correct � = [0, 0, 1]. Below, when considering all the demonstra-

tions, the inference procedure converges to a slightly lower 𝛽 value due to the

suboptimality of some of the demonstrations in the dataset. 199

9.8 (Left) Human demonstrations avoiding the user’s body. (Right) Upper distri-

bution is the posterior belief 𝑏(𝛽, �) for the highlighted demonstration. Since

the robot’s model does not include distance to the user’s body, none of the

robot’s hypotheses can explain the demonstration, as reflected in the higher

probabilities on low 𝛽s for all �s. After performing inference on all the demon-

strations, the distribution in the lower right plot shows even more probability

mass on the lowest situational confidence values. 200

9.9 (Left) Human demonstrations avoiding the user’s body. The blue cluster is

correlated with the feature describing distance from the laptop. The orange

cluster is uncorrelated. (Right) The top distribution is the posterior belief

𝑏(𝛽, �) for the highlighted blue correlated demonstration. Notice that the

hypothesis that puts all weight on avoiding the laptop � = [0, 0, 1] dominates

the distribution. Meanwhile, the posterior belief for the highlighted orange

demonstration indicates low situational confidence in all hypotheses. The

bottom distribution shows that when combining all demonstrations, the robot

continues to have low situational confidence although the laptop hypothesis

has slightly higher 𝛽. 201

xiv

9.10 (Left) Human demonstrations keeping the cup in the end-effector close to the

table. (Right) Because it is difficult for the person to give a good demonstration,

the top posterior does not have a clearly defined peak for one particular hy-

pothesis, although several �s are favored. In the bottom distribution, we notice

that when presented with all 12 demonstrations, the robot can more clearly

infer the correct hypothesis for the distance to the table, � = [0, 1, 0]. 202

9.11 𝛽 values are significantly larger for well-explained actions than for poorly-

explained ones. Feature updates are non-negligible even during poorly-explained

actions, which leads to significant unintended learning for fixed-𝛽 methods. . . 205

9.12 Comparison of regret and length of �̂ learning path through weight space over

time (lower is better). 207

xv

List of Tables

2.1 Terminology equivalence between the controls and AI communities. 7

2.2 Difference between optimization, optimal control, and game theory. 24

2.3 Key dynamic game terminology and the conditions under which the terms apply. 24

2.4 Categories of human models used for behavior prediction. 39

4.1 Results for the round-about and highway; each row is averaged across 20 inter-

actions. CR: collision rate; SOR: safety override rate; RIP: reward improvement

%. 81

4.2 Results without 𝛽 but with game-theoretic model. 83

4.3 Results with 𝛽 but no game-theoretic model. 84

7.1 Autonomous driving experiment results shown averaged across initial condi-

tions and ground-truth human goals. Mean efficiency and safety metrics are

reported in each row and standard deviation in parenthesis. 125

8.1 Subjective ratings collected from a 7-point Likert scale survey. Participants

answered each question once after working with the Impedance condition, and

once after the Learning condition. The four question scales are shown on the

left. Imped is short for Impedance, Learn is short for Learning, and LSM stands

for Likert scale mean. Higher LSM values are better (more understanding, less

effort, more predictable, more collaborative). ANOVA results are on the far right.161

8.2 Likert scale questions from our user study comparing All-at-Once and One-at-

a-Time. Questions were grouped into four categories: success in accomplishing

the task (succ), whether the robot’s update was what the human wanted (cor-

rect update), how often the human needing to undo corrections because of

unintended learning (undoing), and how easy it was to undo a mistake (undo

ease). 169

9.1 Results of ANOVA on subjective metrics collected from a 7-point Likert-scale

survey. 208

xvi

Acknowledgments

When I was leaving to start my PhD, my dad hugged me goodbye and told me, “The

perseverant get PhDs.” When I look back at the past six years of graduate school, it

is clear to me that being perseverant is straightforward—sometimes even easy—when

surrounded by a community of inspiring and supportive people.

First, I would like to thank my co-advisors, Anca Dragan and Claire Tomlin.

I am incredibly lucky that Anca took a chance on me and let me be one of her first PhD

students. Anca was instrumental in showing me how to wade through the uncertainty of

research and academia. One of the very first things she taught me was how to identify

a research project’s “key insight”, a lesson that I take with me to every new project. Her

unbounded enthusiasm and desire to deeply understand why a method works have been

a constant source of energy in my PhD. I am also grateful for our shared love of graphic

design and for Anca taking me to an Edward Tufte lecture in San Francisco during my

first year. I still think fondly of that lecture when making figures for a talk or paper.

To Claire, I owe my love of dynamical systems and, of course, Hamilton-Jacobi reach-

ability. Claire’s 221A: Linear Systems Theory course was one of the first classes I took at

Berkeley and, despite being thoroughly overwhelmed, I immediately loved it. I proceeded

to take her entire controls course series. Claire’s intellectual curiosity and optimism in

the face of hard research challenges has always been infectious. Even on days when I

would enter our research meetings dejected, I would always leave feeling reassured and

capable of persisting. Unfortunately, succinctly summarizing all the ways in which Anca

and Claire have shaped me as a researcher, mentor, and teacher in just a few sentences is

futile. All I can hope to do is help others in the ways that they helped me.

I would also like to thank my thesis committee and the many faculty who supported me

professionally: thank you to Ben Recht, George Pappas, Ken Goldberg, Marcia O’Malley,

Marco Pavone, Maya Cakmak, Shankar Sastry, and Wolfram Burgard for your invaluable

guidance.

I have been fortunate to be a part of not one, but two amazing lab groups: the InterACT

Lab and the Hybrid Systems Lab. The InterACT lab was my first home, and although

it has grown and change a lot throughout the years, it has always preserved a sense of

joy, community, and lightheartedness. In particular, thank you to Andreea Bobu and Ellis

Ratner for commiserating about the pains of robot experiments and always being there to

brainstorm another harebrained research idea. The Hybrid Systems Lab was my second

home, and it has always been full of inspiring people. In particular, I want to thank the

quadcopter gang, Jaime Fisac, Sylvia Herbert, and David Fridovich-Keil, for making even

the most tiring robot experiments insanely fun. I have never laughed so hard when trying

to debug why 𝑃(𝑥𝑡
𝐻
| 𝑥0

𝐻
) = −100, 000, 000. I also want to thank Somil Bansal for teaching

me the ins-and-outs of reachability, discussing robotics while eating plenty of Zampanos,

and for agreeing that all humans should move at 6 m/s.

I have also been fortunate to collaborate with inspiring researchers outside of the

InterACT and Hybrid Systems labs. Thank you to Boris Ivanovic, Edward Schmerling, and

xvii

Karen Leung1 for bringing so much laughter, meme-culture, and exciting conversations

to my NVIDIA internship. I also want to thank Dylan Losey for working with me on my

very first PhD project and never failing to have something goofy to say. Last but not least,

thank you to Thomas (Ran) Tian for giving me the opportunity to collaborate with you;

you are an absolute joy to work with! I also want to thank the junior students—Anand

Siththaranjan, Eli Bronstein, Regina Wang, Sampada Deglurkar, and Steven Wang—for

trusting in me as a mentor.

I am so lucky to have an amazing group of friends with whom I travel, commiserate, and

(most importantly) grab some boba with. Thank you to Amelia Bateman, Anna Rubakhina,

Anusha Nagabandi, Carolyn Matl, Eric Mazumdar, Esther Rolf, Gautam Gunjala, Nick

Antipa, Stan Smith, Tselil Schramm, Tynan McAuley, Tyler Westenbroek, Matt Lentz, and

Matt Matl.

I also owe a huge thanks to my partner, Melvin, whose positive outlook on life and

tendency towards excellence is truly inspiring. I am continuously amazed at his unwa-

vering support in me, through the easy times and the tough ones. His cooking skills have

also never waivered, and I’m so lucky that I can count on him to whip up the perfect meal

to lift my spirits. I am also so grateful for my dog Cheerio, for never failing to make me

laugh with her goofy antics.

Last but not least, I want to thank my parents, my brother, my grandparents, aunts,

uncles, and cousins. I would not be the person I am today without each and every one of

you. In particular, I want to say thank you to my mom and dad. I am truly lucky to have

your steadfast support no matter what I do in life. Dakujem.

1
I’m still looking forward to the day we travel to Australia together and eat waaay too much.

1

Chapter 1

Introduction

𝑢H

human model evolution

robot action

𝑢R

𝜃

𝜃′human data

analysis

H

(control theory)

(machine learning)

R

Figure 1.1: Center: By treating robot learning algorithms as dynamical systems driven by human data, this

thesis unites traditionally disparate control-theoretic and machine learning methods for safe HRI. Sides:

This work is grounded through robot experiments with robotic manipulators and autonomous vehicles.

From autonomous cars driving driving around cities to assistive robots helping out in

the home, robots need to interact with people. Interaction requires robots to learn from and

about people: where will a pedestrian walk to? How does a person want their valuables

cleaned up in the home? How can an autonomous vehicle safely get to its destination

while making the passenger feel comfortable? To build models of people, robots are

increasingly relying on data and machine learning throughout the design process and

during deployment. For example, using a learned human model trained on a huge dataset

of human driving behavior, an autonomous car can predict likely maneuvers another car

could do by simply observing a brief history of the human’s actions.

Unfortunately, there is a fundamental and persistent challenge with human-robot in-

teraction: human behavior is vastly complex, varying between individuals, environments,

and over time. This means that when robots are deployed, they will encounter human

behaviors that are unexpected and that they never saw during their design or training. For

example, an autonomous car driving in San Francisco may encounter a pedestrian playing

soccer on the side of the road, or a human who decides to intentionally block oncoming

traffic. By blindly trusting their data-driven human models, robots can confidently plan

unsafe behaviors, resulting in anything from miscoordination to head-on collisions. This

exposes an underlying tension in human-robot interaction: robots need to learn about

people in order to effectively interact with them, but these robots also need to be safe. In

CHAPTER 1. INTRODUCTION 2

this thesis, we focus on precisely this tension, and outline some promising steps towards

ensuring safety in human-robot interaction, particularly when robots are learning from and

about people.

This dissertation is rooted in ideas from control theory—specifically reachability

analysis—which mathematically characterizes how dynamical systems evolve and reach

desired states. Classic physics-based reachability analysis has enabled robots like drones

to avoid collision with obstacles, efficiently reach desired goals, and be robust to external

disturbances like wind. Upon closer inspection, we can see that human-robot interaction

has parallel objectives: robots should avoid colliding with people, efficiently learn a user’s

desired goals and preferences, and be robust to adversarial human feedback. However,

now the robot’s decisions, beliefs about the human’s intent, and understanding of the task

are all affected by the human behavior the robot observes. In other words, when robots

interact with people, it is not just physical state that evolves, but also the robot’s learning.

This leads us to the core idea of this dissertation:

safe interaction requires treating robot learning algorithms as dynamical systems whose

evolution is “controlled” by human data.

This control-theoretic perspective on the interplay between machine learning and human-

robot interaction advances safety in traditional collision-avoidance scenarios and also

unlocks novel research directions on safety related to robot learning capability, alignment

with human values, and ability to optimize for human preferences (center, Fig. 1.1). We

will demonstrate how to develop novel frameworks for analyzing how data-driven human

models will evolve and derive theoretically rigorous and practical robot algorithms for

safe interaction with people. Importantly, throughout this dissertation we will evaluate

our novel methods through robotic hardware experiments with real human participants.

1.1 Thesis Overview and Contributions
This thesis focuses on ensuring safety for a class of human-robot interactions: robots

learning online about human behavior in order to avoid collisions with people. In Chap-

ter 2 we will introduce the necessary mathematical background to grasp the ideas in this

dissertation. Specifically, we summarize key concepts from dynamical systems, optimal

control, game theory, single-agent and multi-agent safety analysis, inverse reinforcement

learning, and human motion prediction. The following chapters outline the key contribu-

tions on unifying safety and learning in human-robot interaction contexts like autonomous

driving, drone navigation, ground robots, and assistive manipulators. See Fig. 1.2 for a

visual representation of how this thesis fits into the broader context of problems at the

intersection of safety, learning, and human-robot interaction.

Part I: Safe Robot Navigation Despite Imperfect Human Models. One of the most diffi-

cult challenges in robot navigation is to account for the behavior of humans. Commonly,

CHAPTER 1. INTRODUCTION 3

physical collaboration

collision-avoidance

complex models

low-dim. models

Human-Robot
Interaction

Learning

Safety online safety analysis

offline safety analysis

Part II

Part III

Part I

Figure 1.2: Thesis overview illustration, contextualizing this thesis in the broader space of questions con-

cerning safety, learning, and human-robot interaction.

practitioners employ predictive models to reason about where humans will move. Though

there has been much recent work in building predictive models, no model is ever perfect:

a human can always move unexpectedly, in a way that is not predicted or not assigned

sufficient probability. In such cases, the robot may plan trajectories that appear safe but,

in fact, lead to collision. Chapter 3 proposes that rather than trust a model’s predictions

blindly, the robot should use the model’s current predictive accuracy to inform the degree

of confidence in its future predictions. This model confidence inference allows us to gen-

erate probabilistic motion predictions that exploit modeled structure when the structure

successfully explains human motion, and degrade gracefully whenever the human moves

unexpectedly. We accomplish this by maintaining a Bayesian belief over a single param-

eter that governs the variance of our human motion model. We couple this prediction

algorithm with a recently proposed robust motion planner and controller to guide the con-

struction of robot trajectories that are, to a good approximation, collision-free with a high,

user-specified probability. In Chapter 4 we extend confidence-awareness to game-theoretic

human models, enabling robots like autonomous cars to smoothly shift between collabo-

rative interaction models, and safeguarding against worst-case adversarial human driving

behavior when the interaction model degrades. Evaluations in simulated human-robot

scenarios and ablation studies demonstrate that imbuing safety monitors with confidence-

aware game-theoretic models enables both safe and efficient human-robot interaction.

Unfortunately, modelling interaction effects (with games or otherwise) comes at a large

computational cost, so it is often desirable to make simplifying assumptions at the expense

of model fidelity. Chapter 5 introduces how model confidence-awareness enables multi-

CHAPTER 1. INTRODUCTION 4

human, multi-robot planning algorithms to be assuredly deployed at scale by reasoning

about observed behavior as deviation from simplified, tractable models (e.g., pairwise

predictions). Finally, Chapter 6 proposes a different, but complementary, approach to

“robustifying” predictive human models. We combine ideas from robust control and

intent-driven human modelling to formulate a novel human motion predictor which pro-

vides robustness against miss-calibrated stochastic human models. Our approach predicts

the human states by trusting the intent-driven model to decide only which human actions

are completely unlikely. We then safeguard against all likely enough actions, much like

a robust control predictor. We demonstrate in simulation and hardware how robots can

behave safely around people without being overly conservative, even when relying on

poorly calibrated human models.

Part II: Formalizing Safety Analysis of Adaptive Human Models. Predictive human

models often need to adapt their parameters online from human data. For example, in

Part I, the inferred model confidence parameter adapts the conservativness of the human

predictions. This raises previously ignored safety-related questions for robots relying

on these models such as what the model could learn online and how quickly could it

learn it. For instance, when will the robot have a confident estimate in a nearby human’s

goal? Or, what parameter initializations guarantee that the robot can learn the human’s

preferences in a finite number of observations? To answer such analysis questions, Chapter

7 introduces the idea of modelling the robot’s learning algorithm as a dynamical system

where the state is the current model parameter estimate and the control is the human

data the robot observes. This enables us to leverage tools from reachability analysis and

optimal control to compute the set of hypotheses the robot could learn in finite time, as

well as the worst and best-case times it takes to learn them. We demonstrate the utility

of our analysis tool in four human-robot domains, including autonomous driving and

indoor navigation.

Part III: Safety for Human-Robot Interaction Beyond Collision-Avoidance. In this

final part, we move away from the navigation domain and ask “How can we formalize

safety in physical human-robot interaction?” First, in Chapter 8 we recognize that physical

human-robot interaction (pHRI) is often intentional – the human intervenes on purpose

because the robot is not doing the task correctly. In this work, we argue that when pHRI

is intentional it is also informative: the robot can leverage interactions to learn how it

should complete the rest of its current task even after the person lets go. We formalize

pHRI as a dynamical system, where the human has in mind an objective function they

want the robot to optimize, but the robot does not get direct access to the parameters of

this objective – they are internal to the human. Within our proposed framework human

interactions become observations about the true objective. We introduce approximations

to learn from and respond to pHRI in real-time. We recognize that not all human cor-

rections are perfect: often users interact with the robot noisily, and so we improve the

efficiency of robot learning from pHRI by reducing unintended learning. Finally, we

CHAPTER 1. INTRODUCTION 5

conduct simulations and user studies on a robotic manipulator to compare our proposed

approach to the state-of-the-art. Our results indicate that learning from pHRI leads to bet-

ter task performance and improved human satisfaction. This research (and related prior

work) lays the groundwork for how robots can use human input—like demonstrations

or corrections—to learn intended objectives. However, these techniques assume that the

human’s desired objective already exists within the robot’s hypothesis space. In reality,

this assumption is often inaccurate: there will always be situations where the person

might care about aspects of the task that the robot does not know about. Without this

knowledge, the robot cannot infer the correct objective. Hence, when the robot’s hypoth-

esis space is misspecified, even methods that keep track of uncertainty over the objective

fail because they reason about which hypothesis might be correct, and not whether any

of the hypotheses are correct. This is a new type of safety concern, since the robot may

behave in incorrect ways due to its inability to learn the intended objective. For example,

we discovered that after consistently misinterpreting user feedback during a household

cleaning task, the robot erroneously learns to move coffee mugs at an angle, resulting in

spilled coffee and miscoordination. In Chapter 9, we posit that the robot should reason

explicitly about how well it can explain human inputs given its hypothesis space and

use that situational confidence to inform how it should incorporate human input. We

demonstrate our method on a 7 degree-of-freedom robot manipulator in learning from

two important types of human input: demonstrations of manipulation tasks, and physical

corrections during the robot’s task execution.

6

Chapter 2

Background and Preliminaries

2.1 Dynamical Systems
In this dissertation, we are concerned with how robots can safely interact with hu-

mans. Autonomous cars will coordinate with human-driven cars and pedestrians, assistive

robotic manipulators will collaborate with end-users to perform daily living tasks, and

autonomous quadrotors will fly through neighborhoods to deliver packages to peoples’

homes. Understanding how humans and robots interact requires studying how these

systems evolve over time. Where will a pedestrian walk to in the next five seconds? How

should a robotic manipulator grab a cup from the shelf and hand it to the person?

In order to start tackling these questions, we need a unifying mathematical language

to describe the evolution of autonomous systems over time (whether they be human

or robotic). Dynamical systems theory is one such unifying framework. This branch of

mathematics enables us to model, analyze, and predict the behavior of complex systems

whose state evolves as a function of time. By state, we mean a minimum required set of

variables that capture core properties of our system; e.g., the state of a person walking

around a room should at least include their 𝑥- and 𝑦-position in the room. In the context

human-robot interaction, our systems of interest will also evolve as a function of control

inputs. These control inputs can be anything from high-level discrete decisions (e.g., at an

intersection, a driver can choose to turn Left, Right, go Straight, or Stop), to lower-level

continuous signals (e.g., commanding a robot’s wrist actuator to rotate by 30
◦

for three

seconds). The choice of discrete or continuous representations of the control inputs, state-

space, or time are all design decisions that an engineer must choose carefully given their

application domain.

In this chapter, we will begin with dynamical systems that are continuous in time, state,

and control, and later provide an overview of the other variants, such as discrete-time

systems. We will also primarily focus on deterministic dynamical systems models, but we

will briefly touch on stochastic dynamical systems models that are widespread in artificial

intelligence (AI), reinforcement learning (RL), and human motion prediction.

CHAPTER 2. BACKGROUND AND PRELIMINARIES 7

Aside on Terminology. The controls and artificial intelligence (AI) communities

have long been interested in a similar problem: the design of autonomous systems.

Despite a common interest, due to their distinct histories, the control theory and AI

communities have evolved separate terminology for the same concepts. In this thesis, we

draw upon ideas from both communities, and will use the terminology interchangeably.

For clarity, below is a small table summarizing equivalent terms.

Control Theory AI
System Environment

Dynamics (𝑓) Transition (𝑇 or 𝑃)

State (𝑥) State (𝑠)

Control input (𝑢) Action (𝑎)

Control law (u(·)) Policy (𝜋(·))
Output (𝑦) Observation (𝑂 or 𝑧)

Cost (𝐽 or 𝐶) Reward (𝑅)

Minimize (cost) Maximize (reward)

Table 2.1: Terminology equivalence between the controls and AI communities.

2.1.1 Continuous-Time Dynamical Systems
Let’s make these ideas about systems more mathematically concrete. Consider a

dynamical system whose continuous state is 𝑥 ∈ R𝑛 and whose evolution is governed by

the ordinary differential equation (ODE):

¤𝑥 = 𝑓 (𝑥, 𝑢) (2.1)

where the control input is 𝑢 ∈ 𝒰 ⊆ R𝑚 and the flow field is 𝑓 : R𝑛 × 𝒰 → R𝑛 . We often

assume that the control set 𝒰 is compact, since in practice our systems can only exert

bounded control effort1. Our model in (2.1) can readily account for multiple agents via

state augmentation and the addition of multiple control inputs. In the case of 𝑘 agents,

our dynamics will take the form:

¤𝑥 = 𝑓 (𝑥, 𝑢1, . . . , 𝑢𝑘) (2.2)

where the augmented state is 𝑥 ∈ R
∑𝑘
𝑖=1

𝑛𝑖
, where 𝑛𝑖 is the dimension of the 𝑖th agent’s

state space.

1
In general, the dynamics can be dependent on time. However, in this dissertation the dynamics 𝑓 will

be time-invariant, allowing us to drop the explicit time dependence

CHAPTER 2. BACKGROUND AND PRELIMINARIES 8

When studying (2.1), a question naturally appears: can we always solve this ODE? In

other words, is the concept of a “state trajectory” (which would be the solution to this

ODE) well-defined? It turns out that if we ensure that our flow field, 𝑓 : R𝑛 × 𝒰 → R𝑛 ,

abides by some key properties, then the answer to this question will be yes! Specifically, it

can be shown that if the flow field is uniformly continuous in its arguments, and Lipschitz

continuous in 𝑥 for all control inputs 𝑢 ∈ 𝒰 , then there exists a unique solution to our

system dynamics for a given control signal u(·) : [𝑡0,∞) → 𝒰 . Mathematically, these two

conditions are met by the resultant state trajectory:

¤x(𝑡) = 𝑓 (x(𝑡), u(𝑡)) 𝑎.𝑒. 𝑡 ≥ 𝑡0 (2.3)

x(0) = 𝑥0 (2.4)

Aside on Notation. State and control inputs are functions of time, thus the most

precise notation would be 𝑥(𝑡) ∈ R𝑛 , 𝑢(𝑡) ∈ 𝒰 . However, when the dependence on

time is clear, we will often drop the explicit dependence on 𝑡 to simplify notation.

A state trajectory in continuous-time will be denoted as x(·) ∈ X𝑇𝑡 , and a control

trajectory (or signal) u(·) ∈ U𝑇𝑡 , indicating that these trajectories go from time 𝑡 to 𝑇.

To denote a specific state or control along a trajectory, we index it in time: x(𝑡), u(𝑡). If

we want to clearly denote a state trajectory which begins from a particular initial state

𝑥 at time 𝑡 and under a particular control signal u ∈ U𝑇𝑡 we will write xu
𝑥,𝑡(·) ∈ X𝑇𝑡

2.1.2 Discrete-Time Dynamical Systems
Thus far, we discussed continuous-time dynamical systems. However, discrete-time

systems are widely used in the AI, robotics, and reinforcement learning communities. Let

the discrete-time dynamics be represented by:

𝑥𝑡+1 = 𝑓 (𝑥𝑡 , 𝑢𝑡), 𝑡 ∈ N. (2.5)

Here, 𝑥𝑡 ∈ R𝑛 and 𝑢𝑡 ∈ 𝒰 are the state and control inputs indexed at the discrete time

𝑡, and 𝑓 is map from the current state and control to next state. Often times, we may

have access to a continuous-time dynamics model, but need to discretize it to perform

computations on a computer. A common method for discrete-time approximations is a

first-order Euler approximation:

𝑓 (𝑥𝑡 , 𝑢𝑡) := 𝑥𝑡 + 𝛿𝑡 𝑓 (𝑥𝑡 , 𝑢𝑡) (2.6)

where 𝛿𝑡 is a time-step. Higher order discretizations may also be used to improve the

accuracy of the approximation at the expense of computation speed.

Aside on Notation. When we want to denote a discrete-time trajectory (also known

as a sequence) from time 𝑡 = 0 to 𝑇, we will use x := [𝑥0, . . . 𝑥𝑇] or 𝑥0:𝑇
to denote

the state trajectory and u := [𝑢0, . . . 𝑢𝑇] or 𝑢0:𝑇
to denote the control trajectory.

Sometimes we will want to denote a sequence of states and controls. We use the

notation � := {(𝑥0, 𝑢0), . . . , (𝑥𝑇−1, 𝑢𝑇−1)} for the state-action trajectory.

CHAPTER 2. BACKGROUND AND PRELIMINARIES 9

2.1.3 Stochastic Discrete-Time Dynamical Systems
So far, we have discussed deterministic dynamics models. However, stochastic dy-

namics models are core to many robotics and human-robot interaction problems. In this

subsection, we restrict ourselves to discussing the discrete-time stochastic control systems,

also known as Markov Decision Processes (MDPs). This is a popular modelling tool in the

AI, reinforcement learning, and human modelling community. Modelling the dynamics

as stochastic means that executing a control 𝑢𝑡 from a state 𝑥𝑡 does not always result in

the same next state 𝑥𝑡+1
. Concretely, let 𝑋 𝑡+1 ⊆ R𝑛 be a random variable representing the

next state. Given a current state 𝑥𝑡 and a current control input 𝑢𝑡 , the evolution of the

dynamical system can be described by the probability distribution:

𝑃(𝑋 𝑡+1 | 𝑥𝑡 , 𝑢𝑡). (2.7)

In the MDP and Reinforcement Learning communities, (2.7) is often called the transition

function. Note that this model is Markovian, meaning that the next state depends only on

the current state and not on the full state history. This enables us to easily reason about

state probabilities at any time in the future. Just like in 2.1.1, if we are given a discrete-time

control sequence, 𝑢0:𝑡
, we may want to know the likelihood of any future state at time

𝑡 ∈ {0, 1, . . . 𝑇}, i.e., we want to obtain a distribution over 𝑋 𝑡+1
. Using our stochastic

dynamics, we can write:

𝑃(𝑋 𝑡+1 = 𝑥𝑡+1 | 𝑥0, 𝑢0:𝑡) =
∫
R𝑛
. . .

∫
R𝑛

𝑡∏
𝜏=0

𝑃(𝑥𝜏+1 | 𝑥𝜏 , 𝑢𝜏)𝑑𝑥1 . . . 𝑑𝑥𝑡 (2.8)

which quantifies the probability of the system ending up at a particular state 𝑥 at future

time 𝑡 + 1.

2.2 From Optimal Control to Single-Agent Safety
In the previous section, we understood how to mathematically model a dynamical

system that evolves as a function of its control inputs. But how should an autonomous

system choose its control inputs? What even constitutes a “good” control input?

Optimal control addresses exactly this problem: automatically obtaining control inputs

which are optimal under a given decision-making objective. For example, figuring out

the acceleration profile (control input) which smoothly but efficiently moves a car through

an intersection (decision-making objective) is an optimal control problem. In this section,

we will formalize the optimal decision-making problem for a single agent (like a robot),

discuss variants of posing and solving optimal control problems, and show how a special

class of optimal control problems allow us to synthesize provably-safe controllers for

robots acting in isolation.

CHAPTER 2. BACKGROUND AND PRELIMINARIES 10

2.2.1 Formalizing the Optimal Control Problem
Consider a deterministic, continuous-time dynamical system like that in (2.1), evolving

over the time interval [0, 𝑇]. Mathematically, the optimal control problem consists of

minimizing a cost function (also called objective function, or utility function) subject to the

dynamics and control constraints. Let the cumulative cost we seek to minimize over the

time interval [𝑡 , 𝑇]where 0 ≤ 𝑡 ≤ 𝑇 be:

𝐽(𝑥, u(·), 𝑡) :=

∫ 𝑇

𝑡

𝑐(𝑥(𝜏), 𝑢(𝜏))𝑑𝜏 + ℓ (𝑥(𝑇)) (2.9)

where 𝑐(·, ·) is the instantaneous cost of being at state 𝑥 and applying control𝑢 (for example,

how much fuel is being used), and ℓ (·) is the terminal cost of ending up at a state 𝑥 at time𝑇

(for example, distance to goal). The cumulative cost function 𝐽 : R𝑛 ×(⋃𝑡∈[0,𝑇]U
𝑇
𝑡 × 𝑡) → R

takes as input a starting state, a control signal, and also the starting time, 𝑡, and outputs

the cost accumulated over the time horizon [𝑡 , 𝑇].
We seek to find a control signal u(·) ∈ U𝑇𝑡 which minimizes this cumulative cost:

𝑉(𝑥, 𝑡) := inf

u(·)∈U𝑇𝑡
𝐽(𝑥, u(·), 𝑡)

s.t. ¤𝑥(𝜏) = 𝑓 (𝑥(𝜏), 𝑢(𝜏)), ∀𝜏 ∈ [𝑡 , 𝑇]
𝑢(𝜏) ∈ 𝒰

(2.10)

while ensuring that the system evolves according to the dynamics and respecting control

bounds, 𝒰 . We can keep track of the best possible cost we can achieve over this time

interval from 𝑡 to 𝑇 through the value function, 𝑉(𝑥, 𝑡).
If we had a discrete-time system like in (2.5), the optimal control problem would look

similar, barring a few changes. The cost function would now be:

𝐽𝑡(𝑥, u) :=

𝑇−1∑
𝜏=𝑡

𝑐(𝑥𝜏 , 𝑢𝜏) + ℓ (𝑥𝑇) (2.11)

and the optimal control problem is

𝑉 𝑡(𝑥) := min

u
𝐽𝑡(𝑥, u)

s.t. 𝑥𝜏+1 = 𝑓 (𝑥𝜏 , 𝑢𝜏), ∀𝜏 ∈ {𝑡 , . . . , 𝑇 − 1}
𝑢𝜏 ∈ 𝒰

(2.12)

where 𝑉 𝑡(𝑥) is the value of the discrete-time optimal control problem.

For the rest of this section, we will focus on the continuous-time optimal control

problem, but highlight key differences between that and the discrete-time formulation

when relevant.

CHAPTER 2. BACKGROUND AND PRELIMINARIES 11

2.2.2 Solving the Optimal Control Problem
Now that we have posed our desired optimal control problem in (2.10), how do we

actually solve it? The optimization and control communities have established a huge

suite of methods for solving optimal control problems, but the two most foundational

approaches are the calculus of variations and dynamic programming.

Calculus of variations. The key idea behind this approach is to carefully transform

the constrained optimization problem into an unconstrained one and then pose a set

of necessary conditions that an optimal control trajectory must satisfy. Intuitively, this

process begins by moving each constraint (e.g., the dynamics) into the objective function

and associating each with a Lagrange multiplier. Next, we need to know the necessary

conditions that any optimal control trajectory and the Lagrange multipliers must satisfy.

Luckily for us, Pontryagin’s maximum principle precisely states this series of first-order

necessary condition that any optimal control trajectory and the Lagrange multipliers must

satisfy [168]. The big advantage of the calculus of variations approach is that once we

obtain this set of necessary conditions, we can leverage a myriad of (often very efficient)

computational tools developed by the optimization community to solve for the control

trajectory. Unfortunately, the solution obtained by this method is not guaranteed to be

globally optimal (most of the time it is only locally optimal) unless the optimal control

problem is convex in the decision variable and the duality gap is zero.

Dynamic programming. The key idea of this approach is to reason recursively about the

optimal control problem backwards in time. Unlike the calculus of variations approach,

this approach guarantees a globally optimal solution at the expense of significantly higher

computational costs. The reason for this globally optimal solution is the construction of

the Hamilton-Jacobi-Bellman (HJB) partial differential equation (PDE). In discrete-time,

this equation is called the Bellman equation or Bellman backup, and is popular in both

the control, AI, and reinforcement learning communities. These equations capture the

necessary and sufficient conditions that the optimal control problem’s value function must

satisfy. Solving the HJB-PDE (or the Bellman equation) backwards in time ensures that

the solution over the entire control trajectory is globally optimal.

2.2.3 Dynamic Programming: From Continuous to Discrete Time
From guaranteeing safe robot operation to modelling human behavior, the principle

of dynamic programming is foundational to the majority of approaches discussed in this

dissertation. The idea of dynamic programming, introduced by Richard Bellman in the

1950s, solves optimal control problems by leveraging the principle of optimality:

Principle of Optimality [30]. An optimal policy has the property that what-

ever the initial state and initial decisions are, the remaining decisions must

constitute and optimal policy with regard to the state resulting from the first

decision.

CHAPTER 2. BACKGROUND AND PRELIMINARIES 12

In other words, assume you are given an optimal sequence of controls and the correspond-

ing optimal state trajectory. If you start at any state along that optimal state trajectory, then

the remaining sub-trajectory is also optimal. The implication of this is that we can solve

optimal control problems by combining optimal solutions of smaller sub-problems.

2.2.4 The Hamilton-Jacobi-Bellman PDE
Let’s understand the principle of optimality in the context of continuous-time optimal

control problems. Recall the value function we defined earlier starting from state 𝑥 at time

𝑡:

𝑉(𝑥, 𝑡) = inf

u(·)∈U𝑇𝑡

∫ 𝑇

𝑡

𝑐(𝑥(𝜏), 𝑢(𝜏))𝑑𝜏 + ℓ (𝑥(𝑇)). (2.13)

The principle of optimality tells us that we can divide the computation of this value

function in time by creating two sub-problems: solving for the optimal control signal for

𝜏 ∈ [𝑡 , 𝑡 + 𝛿) and for 𝜏 ∈ [𝑡 + 𝛿, 𝑇]:

𝑉(𝑥, 𝑡) = inf

u(·)∈U𝑡+𝛿𝑡

∫ 𝑡+𝛿

𝑡

𝑐(𝑥(𝜏), 𝑢(𝜏))𝑑𝜏 + inf

u(·)∈U𝑇
𝑡+𝛿

∫ 𝑇

𝑡+𝛿
𝑐(𝑥(𝜏), 𝑢(𝜏))𝑑𝜏 + ℓ (𝑥(𝑇)). (2.14)

Note that the starting state within the integral

∫ 𝑇

𝑡+𝛿 must be 𝑥(𝑡 + 𝛿), the dynamically-

feasible state we reach at time 𝑡 + 𝛿 after applying the control signal u(·) over the time

horizon [𝑡 , 𝑡+ 𝛿]. We can go one step further and insert the value function at the future state

𝑥(𝑡 + 𝛿) and future time 𝑡 + 𝛿 into the right-hand side of (2.14) because of the definition of

the value function in (2.13). We know that𝑉(𝑥(𝑡+𝛿), 𝑡+𝛿) captures the best we could ever

hope to do starting from 𝑥(𝑡 + 𝛿) and evolving along that future sub-trajectory! In other

words, the value function is the solution to the second sub-problem we posed. Inserting

it into (2.14), we obtain:

𝑉(𝑥, 𝑡) = inf

u(·)∈U𝑡+𝛿𝑡

∫ 𝑡+𝛿

𝑡

𝑐(𝑥(𝜏), 𝑢(𝜏))𝑑𝜏 +𝑉(𝑥(𝑡 + 𝛿), 𝑡 + 𝛿). (2.15)

Last but not least, at the final time 𝜏 = 𝑇, the value at the final state and time is simply

equal to the terminal cost, 𝑉(𝑥, 𝑇) = ℓ (𝑥(𝑇)).
But why does reformulating the value function to look like (2.15) even matter? Well,

now that we have reduced the problem to only optimizing our control signal over the

smaller time-horizon of [𝑡 , 𝑡 + 𝛿], we can more easily think about what happens when

𝛿→ 0. In other words, how does the value at the current state and time change when we

make small changes in our decisions?

For now, assume that 𝑉 is everywhere differentiable. Let’s go through an informal

derivation of how our value changes when 𝛿 > 0 but is very small. In this scenario, the

value function from (2.15) can be written as

𝑉(𝑥, 𝑡) ≈ min

𝑢∈𝒰

{
𝑐(𝑥, 𝑢)𝛿 +𝑉(𝑥(𝑡 + 𝛿), 𝑡 + 𝛿)

}
. (2.16)

CHAPTER 2. BACKGROUND AND PRELIMINARIES 13

Expanding𝑉(𝑥(𝑡 + 𝛿), 𝑡 + 𝛿) via the Taylor’s series expansion around the current state and

time, (𝑥(𝑡), 𝑡), we get:

𝑉(𝑥(𝑡+𝛿), 𝑡+𝛿) ≈ 𝑉(𝑥(𝑡), 𝑡)+𝜕𝑉(𝑥(𝑡), 𝑡)
𝜕𝑡

(𝑡+𝛿−𝑡)+∇𝑥𝑉(𝑥(𝑡), 𝑡)·(𝑥(𝑡+𝛿)−𝑥(𝑡))+h.o.t, (2.17)

where the change in state can be approximated via the dynamics: 𝑥(𝑡+𝛿)−𝑥(𝑡) ≈ 𝑓 (𝑥, 𝑢)𝛿.

Ignoring the higher order terms, we obtain:

𝑉(𝑥(𝑡 + 𝛿), 𝑡 + 𝛿) ≈ 𝑉(𝑥(𝑡), 𝑡) + 𝜕𝑉(𝑥(𝑡), 𝑡)
𝜕𝑡

𝛿 + ∇𝑥𝑉(𝑥(𝑡), 𝑡) · 𝑓 (𝑥(𝑡), 𝑢(𝑡))𝛿. (2.18)

Plugging this approximation to 𝑉(𝑥(𝑡 + 𝛿), 𝑡 + 𝛿) into our original equation and moving

the terms that do not depend on control outside of the minimization, we obtain:

𝑉(𝑥, 𝑡) ≈ min

𝑢∈𝒰

{
𝑐(𝑥, 𝑢)𝛿 +𝑉(𝑥, 𝑡) + 𝜕𝑉(𝑥, 𝑡)

𝜕𝑡
𝛿 + ∇𝑥𝑉(𝑥, 𝑡) · 𝑓 (𝑥, 𝑢)𝛿

}
(2.19)

= 𝑉(𝑥, 𝑡) + 𝜕𝑉(𝑥, 𝑡)
𝜕𝑡

𝛿 +min

𝑢∈𝒰

{
𝑐(𝑥, 𝑢)𝛿 + ∇𝑥𝑉(𝑥, 𝑡) · 𝑓 (𝑥, 𝑢)𝛿

}
. (2.20)

Cancelling out the redundant terms on both sides, we obtain:

0 =
𝜕𝑉(𝑥, 𝑡)

𝜕𝑡
𝛿 +min

𝑢∈𝒰

{
𝑐(𝑥, 𝑢)𝛿 + ∇𝑥𝑉(𝑥, 𝑡) · 𝑓 (𝑥, 𝑢)𝛿

}
(2.21)

≈ 𝜕𝑉(𝑥, 𝑡)
𝜕𝑡

+min

𝑢∈𝒰

{
𝑐(𝑥, 𝑢) + ∇𝑥𝑉(𝑥, 𝑡) · 𝑓 (𝑥, 𝑢)

}
(divide by 𝛿 > 0) (2.22)

With this, we have obtained the Hamilton-Jacobi-Bellman partial differential equation:

𝜕𝑉(𝑥, 𝑡)
𝜕𝑡

+min

𝑢∈𝒰

{
𝑐(𝑥, 𝑢) + ∇𝑥𝑉(𝑥, 𝑡) · 𝑓 (𝑥, 𝑢)

}
= 0 (2.23)

𝑉(𝑥, 𝑇) = ℓ (𝑥). (2.24)

with the terminal condition 𝑉(𝑥, 𝑇) = ℓ (𝑥). We can solve this final-value PDE backwards

in time starting from the terminal time 𝑇 to obtain the value function 𝑉(𝑥, 𝑡) for any state

and time. Then, we can obtain the optimal control at any given state and time via

𝑢∗(𝑥, 𝑡) = arg min

𝑢∈𝒰

{
𝑐(𝑥, 𝑢) + ∇𝑥𝑉(𝑥, 𝑡) · 𝑓 (𝑥, 𝑢)

}
. (2.25)

Just like when we were studying the dynamics ODE in 2.1.1 and asking “does a solution

to this ODE even exist?”, we can ask the same question of the HJB-PDE. Traditionally, the

solution to this PDE only existed if we assumed that the value function was differentiable

everywhere (we assumed this earlier in our intuitive derivation). However, this is too

stringent of a requirement for the majority of optimal control problems we will seek to

CHAPTER 2. BACKGROUND AND PRELIMINARIES 14

solve; for example, our system trajectories themselves only have to satisfy the dynamics

ODE almost everywhere in time. Fortunately, mathematicians Crandall and Lions [57]

introduced a novel solution concept for the HJB-PDE called the viscosity solution which

states that at all non-differentiable points,𝑉 must satisfy a relaxed condition which bounds

the value function from above and below with continuously differentiable functions.

Aside on solving the HJB-PDE. Solving the HJB-PDE for the optimal value function

(and corresponding optimal control) is not trivial. In certain conditions, like in the

event that the running cost 𝑐(·, ·) and the terminal cost ℓ (·) are quadratic in state, and

the dynamics are linear (i.e., ¤𝑥 = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)), we can obtain the value function

and optimal control in closed-form. This enables us to efficiently compute a very

high-fidelity value function, since we do not have to discretize state, time, or control.

However, for most dynamical systems and cost functions, we will need to numerically

integrate the HJB-PDE. One approach is to discretize time and state, inducing a tabular

or grid-based representation of𝑉 , causing the computational complexity of solving the

HJB-PDE to scale exponentially in the state dimensionality. This is referred to as the

curse of dimensionality and is the topic of extensive study (see [25] for an overview

of recent advances). An alternative is to approximate the value function directly. There

is a wealth of such techniques, including neural PDE solvers [163, 63, 181, 105, 24],

sum-of-squares (SOS) techniques [131], or zonotope approximations [227, 82, 119].

For a taxonomy of how the value function is computed under different methods and

conditions, see Fig. 2.1.

inf
𝒖 ⋅ ∈𝕌𝑡

𝑇
න
𝑡

𝑇

𝑐(𝑥 𝜏 , 𝑢 𝜏 𝑑𝜏 + ℓ(𝑥(𝑇))

𝑠. 𝑡. ሶ𝑥 = 𝑓(𝑥, 𝑢)

𝜏
𝑝𝑥

𝑝𝑦

𝑥0
𝒙, 𝒖 𝒙𝑇

Discrete-time (“AI”)

Continuous-time (“Control”)

min
𝒖

𝜏=𝑡

𝑇−1

𝑐(𝑥𝜏, 𝑢𝜏) + ℓ(𝑥(𝑇))

𝑠. 𝑡. 𝑥𝑡+1 = ሚ𝑓(𝑥𝑡, 𝑢𝑡)

𝜏
𝑝𝑥

𝑝𝑦

𝑥0
𝒙 ⋅ , 𝒖(⋅) 𝒙(𝑇)

𝜏
𝑝𝑥

𝑝𝑦

𝑥0
𝒙 ⋅ , 𝒖(⋅) 𝒙(𝑇)

𝜕𝑉(𝑥, 𝑡)

𝜕𝑡
+min

𝑢∈𝒰
𝑐 𝑥, 𝑢 + ∇𝑥𝑉 𝑥, 𝑡 ⋅ 𝑓(𝑥, 𝑢) = 0

𝑉 𝑥, 𝑇 = ℓ(𝑥)

𝛿𝑡

𝑉𝑡 𝑥 = min
𝑢∈𝒰

𝑐 𝑥𝑡 , 𝑢𝑡 + 𝑉𝑡+1(ሚ𝑓(𝑥𝑡 , 𝑢𝑡))

𝑉𝑇(𝑥) = ℓ(𝑥)

Discrete-time LQR

𝜏
𝑝𝑥

𝑝𝑦𝒙, 𝒖

HJB-PDEBellman Eqn.

Continuous-time LQR

𝑢𝑡,∗ = −𝐾𝑡𝑥𝑡
𝑉𝑡(𝑥) = 𝑥𝑇 𝑃𝑡𝑥

𝑢∗(𝑡) = −𝐾 𝑡 𝑥(𝑡)

𝑉 𝑥, 𝑡 = 𝑥𝑇𝑃(𝑡)𝑥

𝜏
𝑝𝑥

𝑝𝑦
𝑥0

𝒙 ⋅ , 𝒖(⋅) 𝒙(𝑇)

𝜏
𝑝𝑥

𝑝𝑦𝒙, 𝒖 disc.
state

𝜏
𝑝𝑥

𝑝𝑦𝒙, 𝒖

𝜏
𝑝𝑥

𝑝𝑦𝒙, 𝒖

disc.
state &

time

PDE solver
𝛿𝑡 comes from
CFL condition

Tabular/Grid-based V
(only for low-dim. sys.)

Closed-form V
(rare conditions)

Compute Method

Closed-form V
(rare conditions)

Tabular/Grid-based V
(only for low-dim. sys.)

(Function) Approximated V
(LPs, SOS, NN-based, zonotopes, ellipsoids, ..)

(Function) Approximated V
(DDP, LPs, NN-based..)

𝑝𝑥

𝑝𝑦

𝜏
𝑝𝑥

𝑝𝑦𝒙, 𝒖

𝑝𝑥

𝑝𝑦

𝑉𝜃
𝑡(𝑥)

𝜏
𝑝𝑥

𝑝𝑦𝒙(⋅), 𝒖(⋅)

𝑉𝜃(𝑥, 𝑡)

Figure 2.1: Taxonomy of optimal control problems in discrete and continuous time, as well their value

function computation and representation.

CHAPTER 2. BACKGROUND AND PRELIMINARIES 15

2.2.5 The Bellman Equation
So far we have seen a dynamic programming solution to the continuous-time optimal

control problem. However, discrete-time optimal control problems are very popular in

the AI, robotics, and reinforcement learning communities.

Recall the value function of the discrete-time optimal control problem from (2.12):

𝑉 𝑡(𝑥) := min

u

𝑇−1∑
𝜏=𝑡

𝑐(𝑥𝜏 , 𝑢𝜏) + ℓ (𝑥𝑇). (2.26)

We know that at the final time, the value will be 𝑉𝑇(𝑥) = ℓ (𝑥𝑇). Then, starting at some

time 0 ≤ 𝑡 < 𝑇, we can apply the principle of optimality and the definition of the value

function, splitting up the optimization problem into two subproblems:

𝑉 𝑡(𝑥) = min

𝑢𝑡∈𝒰

{
𝑐(𝑥𝑡 , 𝑢𝑡) + min

u:=[𝑢𝑡+1...𝑢𝑇−1]

𝑇−1∑
𝜏=𝑡+1

𝑐(𝑥𝜏 , 𝑢𝜏) + ℓ (𝑥𝑇)
}

(2.27)

= min

𝑢𝑡∈𝒰

{
𝑐(𝑥𝑡 , 𝑢𝑡) +𝑉 𝑡+1(𝑥𝑡+1)

}
. (2.28)

With this, we have obtained the Bellman equation [30]:

𝑉 𝑡(𝑥) = min

𝑢𝑡∈𝒰

{
𝑐(𝑥𝑡 , 𝑢𝑡) +𝑉 𝑡+1(𝑥𝑡+1)

}
(2.29)

𝑉𝑇(𝑥) = ℓ (𝑥). (2.30)

The HJB-PDE in (2.24) can be thought of as the continuous-time equivalent of the discrete-

time Bellman equation. However, unlike in continuous-time, dynamic programming

in discrete time yields a value function “backup” instead of a PDE. See Fig. 2.1 for a

comparison of the continuous and discrete-time solutions to deterministic optimal control

problems, and how they are computed under different conditions and methods.

The Bellman equation is also very popular for solving optimal control problems with

stochastic dynamics. At its core, this optimal control problem seeks to minimize the expected

cost:

𝑉 𝑡(𝑥) := min

u
Ex∼𝑃(x|𝑥𝑡 ,u)

[𝑇−1∑
𝜏=𝑡

𝑐(𝑥𝜏 , 𝑢𝜏) + ℓ (𝑥𝑇)
]

(2.31)

where 𝑃(x | 𝑥𝑡 , u) is the probability of the system entering a sequence of states x starting

from state 𝑥𝑡 and executing the control sequence u.

The corresponding discrete-time Bellman equation is:

𝑉 𝑡(𝑥) = min

𝑢𝑡∈𝒰

{
𝑐(𝑥𝑡 , 𝑢𝑡) +

∫
R𝑛
𝑃(𝑥𝑡+1 | 𝑥𝑡 , 𝑢𝑡)𝑉 𝑡+1(𝑥𝑡+1)𝑑𝑥𝑡+1

}
. (2.32)

See [31] for a more in-depth treatment of the discrete-time value function, continuous-time

value function, and their connections.

CHAPTER 2. BACKGROUND AND PRELIMINARIES 16

2.2.6 Hamilton-Jacobi Reachability & Single-Agent Safety
We now have a handle on how to solve general optimal control problems for a single

agent, like a robot. However, right now the optimal control problems we have posed

minimize cost and constrain that the system evolves via the dynamics. What if we wanted

to guarantee that the system abides by some state constraints? For example, what if we

want to come up with an optimal control which guarantees that our robot never hits an

obstacle? Or, an optimal control trajectory which guarantees that the robot reaches its

goal? Answering these questions and synthesizing the corresponding control trajectories

are core to safety analysis. It is important to note that these safety specifications are treated

as hard constraints in the optimization, instead of being part of the objective which can be

traded off (e.g., like efficiency, fuel-consumption, etc.).

While there are a myriad of approaches for verifying the safety and performance

of dynamical systems, this dissertation is rooted in Hamilton-Jacobi (HJ) reachability

analysis which is built upon the optimal control and dynamic programming tools we have

discussed thus far. In fact, in this section we will discuss how these safety questions (about

guaranteeing obstacle avoidance or goal-reaching) can be posed and solved as a special

type of optimal control problem.

Reach Problems (i.e., goal satisfaction)

Let’s start our journey into reachability by studying reach problems. This class of

problems are concerned with determining if there exists a control signal that can drive

a system to a desired state. For example, imagine you are an autonomous vehicle (AV)

designer and you are tasked with developing how an AV should park itself into a user’s

garage. If the AV starts in the driveway, does there exist a control signal that guides it

into the garage? What if the autonomous vehicle started at an odd angle and then tried

to maneuver into the garage? Does there exist a control signal that can still steer it into

the garage successfully? Hamilon-Jacobi reachability gives us not only a binary answer to

these questions, but it also produces the optimal control signal in the event that the binary

answer to these questions is “yes, we can control our system to the desired goal”.

Backwards Reachable Set. The backwards reachable set (BRS) of a dynamical system is the

set of states from which if the system begins, then it can reach a given target set (e.g., the

robot’s goal) at the final time. Mathematically, let’s define the target set to be ℒ ⊆ R𝑛 . The

BRS is the set of states 𝑥 ∈ R𝑛 from which the system can be driven into ℒ exactly at the

end of the time horizon.

𝒱𝐵𝑅𝑆(𝑡) = {𝑥 : ∃u(·) ∈ U𝑇𝑡 , xu
𝑥,𝑡(𝑇) ∈ ℒ}. (2.33)

But how do we actually obtain this set? It turns out that we can transform this goal

satisfaction problem into an optimal control problem via the level set method. Intuitively,

we will design a specific type of optimal control objective which captures how close our

system is to satisfying our goal-reaching constraint. By measuring how close the system is

CHAPTER 2. BACKGROUND AND PRELIMINARIES 17

to reaching the goal, our optimal control problem can find whether there exists a control

signal which minimizes the distance between the system starting from some initial state

and the goal; in other words, if our system can achieve goal satisfaction.

Specifically, we define a Lipschitz function ℓ (𝑥) such that our target set ℒ is equal to

the sub-zero level set of this function: 𝑥 ∈ ℒ ⇐⇒ ℓ (𝑥) ≤ 0. We can always find such

a function ℓ to encode the target set by simply choosing the signed distance to the set

boundary. Now we can modify our optimal control objective to be:

𝐽(𝑥, u(·), 𝑡) = ℓ (xu
𝑥,𝑡(𝑇)) (2.34)

where the controller only cares about how close the final state is to the target (as measured

by ℓ (·)). The overall optimal control problem is now:

𝑉(𝑥, 𝑡) := inf

u(·)∈U𝑇𝑡
𝐽(𝑥, u(·), 𝑡) ≡ ℓ (xu

𝑥,𝑡(𝑇))

s.t. ¤𝑥(𝜏) = 𝑓 (𝑥(𝜏), 𝑢(𝜏)), ∀𝜏 ∈ [𝑡 , 𝑇]
𝑢(𝜏) ∈ 𝒰

(2.35)

It is now clear to see how this is just a modified version of the original optimal control

objective from (2.9) where 𝑐(𝑥(𝑡), 𝑢(𝑡)) = 0 and the terminal cost ℓ (·) encodes the distance

to our target set ℒ.

Now that we are back in optimal control land, we already have the tools necessary to

solve this problem! In fact, we can use the machinery from 2.2.3 and solve the HJB-PDE to

obtain the value function for this optimal control problem. Since any control trajectories

that are able to drive the system into the target set will be assigned a negative value by

ℓ , we know that all states whose value is ≤ 0 must be part of our BRS. Consequently, the

BRS can be obtained from the value function via:

𝒱𝐵𝑅𝑆(𝑡) = {𝑥 : 𝑉(𝑥, 𝑡) ≤ 0}. (2.36)

What if we want to obtain the optimal control trajectory which takes us from a start state

𝑥 ∈ 𝒱𝐵𝑅𝑆(𝑡) to the target set? With access to the value function, this is also straightforward:

𝑢∗(𝑥, 𝑡) = arg min

𝑢∈𝒰
∇𝑥𝑉(𝑥, 𝑡) · 𝑓 (𝑥, 𝑢) (2.37)

Backwards Reachable Tube. We can also pose a slightly different, but related question:

what are the set of states 𝑥 ∈ R𝑛 from which the system can be driven into ℒ at any time

during the time horizon? In the reachability literature, this set is called a backwards reachable

tube (BRT). Recall that the BRS demands that the system trajectory enters the target set ℒ
exactly at the final time. This means that if a system trajectory enters the goal and then

leaves it before the final time, then it has failed to satisfy the constraint. The nice aspect of

BRTs is that trajectories which enter the target set ℒ at some early time and then leave it

CHAPTER 2. BACKGROUND AND PRELIMINARIES 18

are still considered to have satisfied the goal-reaching constraint. Mathematically, the set

of states which satisfy this property are:

𝒱𝐵𝑅𝑇(𝑡) = {𝑥 : ∃u(·) ∈ U𝑇𝑡 , ∃𝜏 ∈ [𝑡 , 𝑇], xu
𝑥,𝑡(𝜏) ∈ ℒ}. (2.38)

To convert this into our optimal control framework, we need to add an extra minimization

over time to “keep track” of the event that a trajectory has entered into the target set at

some time. If a trajectory does enter the target set (and therefore is assigned a negative

value at that state and time by ℓ), then the minimization will preserve that negative value

for that system trajectory over the entire optimization horizon even if the trajectory leaves

the target and starts being assigned positive values by ℓ . Mathematically, this optimization

problem is:

𝑉(𝑥, 𝑡) := inf

u(·)∈U𝑇𝑡
min

𝜏∈[𝑡 ,𝑇]
ℓ (xu

𝑥,𝑡(𝜏))

s.t. ¤𝑥(𝜏) = 𝑓 (𝑥(𝜏), 𝑢(𝜏)), ∀𝜏 ∈ [𝑡 , 𝑇]
𝑢(𝜏) ∈ 𝒰

(2.39)

Note that now our cost function no longer satisfies the typical form from (2.10) since the

optimal control signal is finding the minimum of a function over the time horizon (instead

of the integral). Fortunately, we can still use the principle of dynamic programming to

compute the optimal value function. After applying the dynamic programming principle,

we can obtain the following final-value Hamilton-Jacobi Variational Inequality (HJB-VI):

min

{
ℓ (𝑥) −𝑉(𝑥, 𝑡), 𝜕𝑉(𝑥, 𝑡)

𝜕𝑡
+min

𝑢∈𝒰

{
∇𝑥𝑉(𝑥, 𝑡) · 𝑓 (𝑥, 𝑢)

}}
= 0 (2.40)

𝑉(𝑥, 𝑇) = ℓ (𝑥). (2.41)

Finally, the BRT can be extracted from the value function, which is the viscosity solution

to (2.41):

𝒱𝐵𝑅𝑇(𝑡) = {𝑥 : 𝑉(𝑥, 𝑡) ≤ 0} (2.42)

Forward Reachability. The final variant of a reach problem that we may be interested in

is computing something called a forward reachable set (FRS) or forward reachable tube (FRT).

The FRS captures the set of all states that a system can reach from a set of initial states at

exactly time 𝑇. The FRT captures the set of all states that a system can reach from a set of

initial states at within the time horizon [𝑡 , 𝑇]. These are formally defined as:

𝒱𝐹𝑅𝑆(𝑡) := {𝑦 : ∃u(·) ∈ U𝑇𝑡 , 𝑥0 ∈ ℒ , xu
𝑥0 ,𝑡
(𝑇) = 𝑦} (2.43)

𝒱𝐹𝑅𝑇(𝑡) := {𝑦 : ∃u(·) ∈ U𝑇𝑡 , 𝑥0 ∈ ℒ , ∃𝜏 ∈ [𝑡 , 𝑇], xu
𝑥0 ,𝑡
(𝜏) = 𝑦}. (2.44)

While in the backwards reachability setting we had ℒ represent a desired set of states we

wanted to reach, here, ℒ represents the set of initial states our system starts from.

CHAPTER 2. BACKGROUND AND PRELIMINARIES 19

The FRS can be solved for in a similar fashion as the BRS, except we need to solve an

initial-value PDE instead of a final-value one:

𝜕𝑉(𝑥, 𝑡)
𝜕𝑡

+min

𝑢∈𝒰

{
∇𝑥𝑉(𝑥, 𝑡) · 𝑓 (𝑥, 𝑢)

}
= 0 (2.45)

𝑉(𝑥, 0) = ℓ (𝑥). (2.46)

Note that the only change is that the value function is initialized at the initial time zero,

and is set to encode the initial states our system starts from. After solving this initial-value

HJB-PDE for the value function, we can obtain the FRS as the subzero level set of the value

function:

𝒱𝐹𝑅𝑆(𝑡) = {𝑥 : 𝑉(𝑥, 𝑡) ≤ 0}. (2.47)

The FRT can be computed in a nearly identical fashion, except we solve the initial-value

version of the HJB-VI from (2.41). Obtaining the value function from this problem, we can

once again obtain the FRT,𝒱𝐹𝑅𝑇 , via the subzero level set of the value function.

Avoid Problems (i.e., safety satisfaction)

Conceptually, we can think of avoid problems as the inverse of reach problems. Here,

we want to determine if there exists a control signal which can always steer the system

away from an undesirable set of states. Let’s go back to our AV designer example. Instead

of parking into the garage, you are now faced with designing how an AV should exit the

garage without hitting the trashcans nearby. If the AV starts really close to the trashcans,

can it still avoid colliding into them? Or is collision inevitable? In the following sub-

sections, we will formalize these questions (and their answers) mathematically. In fact,

we will discover that not much mathematical machinery needs to change from the reach

problems to solve avoid problems!

Backwards Avoid Sets and Tubes. The backwards avoid set, also known as the avoid

backwards reachable set (BRS), of a dynamical system is very similar to the backwards

reachable set from earlier. However, here, the avoid BRS is the set of states from which if

the system begins, it is doomed to enter into the undesirable set of states. Mathematically,

we will use the same notion of a target set to be ℒ ⊆ R𝑛 , however this is now capturing

the set of states we seek to avoid. The avoid BRS is the set of states 𝑥 ∈ R𝑛 from which the

system is doomed to enter ℒ at exactly at the end of the time horizon.

𝒱𝐵𝑅𝑆(𝑡) = {𝑥 : ∀u(·) ∈ U𝑇𝑡 , xu
𝑥,𝑡(𝑇) ∈ ℒ}. (2.48)

Note that the only difference between this equation and the previous one in (2.33) is the

change from ∃u(·) to ∀u(·). The change to “for all” control signals captures how no matter

what the system does control-wise, it is doomed to enter the undesirable states ℒ in 𝑇

seconds. We can also make the same change to the definition of our backwards avoid tube,

or avoid backwards reachable tube (BRT). Here the avoid BRT captures the set of initial states

CHAPTER 2. BACKGROUND AND PRELIMINARIES 20

from which if the system begins, it is doomed to enter the undesirable statesℒ at any time

during 𝜏 ∈ [𝑡 , 𝑇]:
𝒱𝐵𝑅𝑇(𝑡) = {𝑥 : ∀u(·) ∈ U𝑇𝑡 , ∃𝜏 ∈ [𝑡 , 𝑇], xu

𝑥,𝑡(𝜏) ∈ ℒ}. (2.49)

Converting this into our optimal control framework, we only need to make one small

change to (2.35) and (2.39): changing the infu(·) to supu(·). What’s the intuition behind this

change? Recall that we were using the level set method, where we constructed a function

ℓ which measures how close our system is to reaching a set of states ℒ. If the system is

inside ℒ, it obtains a negative value, if it is on the boundary it obtains zero value, and if

it is outside, it obtains a positive value. Before, when the system was trying to reach ℒ,

the control objective was to minimize the cost ℓ . However, now that ℒ encodes states that

we want to avoid, the control is trying to maximize the objective ℓ , thereby staying outside

of the undesirable region. However, if all control signals achieve a negative cost, then we

know that entering into the undesirable region is unavoidable.

To obtain the avoid BRS, we solve the HJB-PDE from (2.24); for the avoid BRT, we solve

the HJB-VI (2.41). The only change in the formulation is the replacement of the min𝑢 to

max𝑢 . For example, the HJB-PDE which will help us compute the avoid BRS is:

𝜕𝑉(𝑥, 𝑡)
𝜕𝑡

+max

𝑢∈𝒰

{
𝑐(𝑥, 𝑢) + ∇𝑥𝑉(𝑥, 𝑡) · 𝑓 (𝑥, 𝑢)

}
= 0 (2.50)

𝑉(𝑥, 𝑇) = ℓ (𝑥). (2.51)

To obtain the avoid sets themselves, 𝒱𝐵𝑅𝑆 and 𝒱𝐵𝑅𝑇 , we can take the value function

computed by solving the corresponding PDEs, and obtain the subzero level set of the

value functions.

How can we use these avoid sets in practice? Let’s consider the avoid BRT. Recall that

it captures the set of states from which, if our system starts, it is doomed to enter into the

undesirable set of states at some time 𝜏 ∈ [𝑡 , 𝑇]. In addition to this, the complement of this

set,𝒱c
𝐵𝑅𝑇

, is the set of guaranteed safe initial conditions for our system. In other words, as

long as the system starts outside of the avoid BRT, then a controller exists to steer it away

from the undesirable states. Specifically, for any 𝜏 ∈ [𝑡 , 𝑇], this safe controller is:

𝑢∗(𝑥, 𝑡) = arg max

𝑢∈𝒰
∇𝑥𝑉(𝑥, 𝑡) · 𝑓 (𝑥, 𝑢) (2.52)

where𝑉(·, ·) is the value function computed by solving the avoid BRT’s HJB-VI. Intuitively,

using this optimal control will have the system “try its hardest” to avoid entering the unsafe

states.

For a summary of these many variants of reachability problems, their corresponding

optimal control problems, and their solutions, please refer to Fig. 2.2.

2.2.7 Practical Notes
Least-restrictive, safety-preserving controller. So far, we have been working under the

assumption that the robot needs to use the safety-preserving control law (2.52) at all

CHAPTER 2. BACKGROUND AND PRELIMINARIES 21

ℒ ℒ ℒ ℒ

ℒ ℒ ℒ

inf
𝐮 ⋅ ∈𝕌𝑡

𝑇
ℓ(𝐱𝑥,𝑡

𝐮 (𝑇)) inf
𝐮 ⋅ ∈𝕌𝑡

𝑇
min
𝜏∈[𝑡,𝑇]

ℓ(𝐱𝑥,𝑡
𝐮 (𝜏)) sup

𝐮 ⋅ ∈𝕌𝑡
𝑇
ℓ(𝐱𝑥,𝑡

𝐮 (𝑇)) sup
𝐮 ⋅ ∈𝕌𝑡

𝑇
min
𝜏∈[𝑡,𝑇]

ℓ(𝐱𝑥,𝑡
𝐮 (𝜏))

Reach BRS Reach BRT Avoid BRS Avoid BRT

𝒱𝐵𝑅𝑆

𝐮∗(⋅)
𝐮∗(⋅)

O
pt

im
al

 c
on

tr
ol

 p
ro

bl
em

S
ol

u
ti

on

𝐮∗(⋅)
𝐮∗(⋅)

ℒ

𝒱𝐵𝑅𝑇

𝒱𝐵𝑅𝑆 𝒱𝐵𝑅𝑇

ℒ

inf
𝐮 ⋅ ∈𝕌𝑡

𝑇
ℓ(𝐱𝑥,𝑡

𝐮 (𝑇))

FRS

ℒ

𝒱𝐹𝑅𝑆

ℒ

inf
𝐮 ⋅ ∈𝕌𝑡

𝑇
min
𝜏∈[𝑡,𝑇]

ℓ(𝐱𝑥,𝑡
𝐮 (𝜏))

FRT

ℒ

𝒱𝐹𝑅𝑇

ℓ 𝑥

𝟎

−

+

ℓ 𝑥

𝟎

−

+

ℓ 𝑥

𝟎

−

+

ℓ 𝑥

𝟎

−

+ ℓ 𝑥

𝟎

−

+ ℓ 𝑥

𝟎

−

+

Figure 2.2: (Top row) Optimal control problem for each variant of the reach and avoid sets. Inset image

shows the level curves of the function ℓ (𝑥) which encodes ℒ. (Bottom row) Grey region is the reachable

set computed for initial time 𝑡. Optimal control trajectories are shown for two candidate initial conditions.

Depending on if we were computing a set or a tube, we evaluate if the trajectory meets the constraint

criterion at just the end of the trajectory, or over the entire length.

states 𝑥 and all times, 𝜏 ∈ [𝑡 , 𝑇]. While this will surely keep the system away from the

undesirable states, the robot’s only behavior will be avoidance. Can we use a different

control law that is not avoidance-based (e.g., goal-seeking, minimum-energy, etc.) and

use the safety-preserving control law only only when necessary?

Let Π(·) : 𝒪 → 𝒰 be any mapping from states (where 𝒪 is a state space, possibly

different from R𝑛) to controls. For example, the autonomous vehicle shown in Fig. 2.3

uses a deep neural network Π(𝑜) which takes in a monocular camera image 𝑜 ∈ 𝒪 and

generates a speed and turn rate for the vehicle to navigate towards a desired room. Often

times, Π will do an effective job of moving the robot towards the goal while avoiding

collision with nearby obstacles, like the tables and chairs. However, Π has not been

verified and is error-prone. For example, sometimes it decides to turn too aggressively,

risking crashing the vehicle with a nearby chair leg. How do we leverage the benefits of

the neural-network controller Π while ensuring it never collides?

Luckily, reachability can help us mitigate this problem. If we know where the obstacles

are in the scene, then we can encodes them in our set of undesireable states,ℒ, and compute

the corresponding avoid BRT,𝒱𝐵𝑅𝑇 , and optimal safety-preserving controller 𝑢∗(𝑥, 𝑡).
Given all these components, our safety controller can be used in a least-restrictive

fashion:

𝑢(𝑡) =
{
Π(𝑜), if 𝑥 ∈ 𝒱c

𝐵𝑅𝑇

𝑢∗(𝑥, 𝑡), otherwise

(2.53)

where 𝑢∗(𝑥, 𝑡) is the optimal safe controller as defined (2.52).

CHAPTER 2. BACKGROUND AND PRELIMINARIES 22

Figure 2.3: Visualization of how the safety-preserving optimal control (shown in yellow) from a BRT can be

used to ensure safe robot navigation (steering robot away from collision with the chair) only at the boundary

of the safe set (shown in red).

Where does ℒ come from and what if we have to recompute our avoid set? So far

we have assumed that we have access to ℒ a priori, before the system is deployed. In

some settings, this may make sense. For example, in the goal-reaching setting where an

autonomous vehicle wants to park in the garage, it could be reasonable to assume that

the end-user tells the autonomous car company where they live, and where their garage

is, what dimensions it has, etc. Then, developing a controller to steer the car into the

garage a priori is more straightforward for the AV engineer. However, in other cases it is

difficult to know the precise shape of ℒ before the robot is deployed. For example, the AV

designer may not know a priori where the trash cans may be on a given day. Sometimes

the trash cans are kept inside the garage, other times they are left on the street, other times

they are blown into the driveway. If the AV engineer wants to encode the states occupied

by the trashcans and develop a safety-preserving controller before the robot is deployed,

this is incredibly challenging. Thus, it is necessary to (1) sense the undesireable states at

runtime, (2) update the representation of ℒ, and (3) (re-)compute the safety-preserving

control given the new information.

Handling a priori unknown, undesirable statesℒ is a challenge beyond the scope of this

dissertation. However, it has been studied in the broader autonomy community. A variety

of mechanisms have been proposed to provide safety guarantees for systems using limited-

range sensors to construct ℒ incrementally [124, 130, 189, 114]. Although interesting

results have emerged from these studies, the safety guarantees are provided by imposing

specific assumptions on the sensor and/or the planner that are rather restrictive for a

CHAPTER 2. BACKGROUND AND PRELIMINARIES 23

variety of real-world autonomous systems and sensors used for navigational purposes. In

contrast, rather than proposing a specific planning and sensing paradigm that guarantees

safety, we would like to design a safety framework that is compatible with a broad class

of sensors, planners, and dynamics.

There are two main challenges with providing such a framework. The first challenge

relates to ensuring safety with respect to unknown parts of the environment and exter-

nal disturbances while minimally interfering with goal-driven behavior. Second, real-time

safety assurances need to be provided as new environment information is acquired, which

requires approximations that are both computationally efficient and not overly conserva-

tive. Moreover, this safety analysis should be applicable to a wide variety of real-world

sensors, planners, and vehicles.

In [16], we proposed a safety framework that can overcome these challenges for au-

tonomous vehicles operating in a priori unknown static environments under the assump-

tion that the sensors work perfectly within their ranges. Erroneous and noisy sensors can

make safety analysis significantly more challenging and we defer this to future work. Our

framework is based on Hamilton Jacobi (HJ) reachability analysis [155, 158] and provides

not only the set of states from which the dynamical system can always remain collision-

free, but also provides an optimal controller that guarantees the system will never violate

the state constraints. In particular, we treat the unknown environment at any given time

as an obstacle and use HJ reachability to compute the backward reachable tube (BRT), i.e.

the set of states from which the vehicle can enter the unknown and potentially unsafe

part of the environment, despite the best control effort. The complement of the BRT

therefore represents the safe set for the vehicle. With this computation, we also obtain the

corresponding least restrictive safety controller, which does not interfere with the planner

unless the safety of the vehicle is at risk. Use of HJ reachability analysis in our framework

thus allows us to overcome the first challenge—our framework can be applied to general

nonlinear vehicles, sensors, and planners.

In general, due to the computationally expensive nature of HJ computations, this ap-

proach has not been leveraged in settings where the environment is not known beforehand

and rather is sensed at run-time. To overcome this challenge, we propose a novel, real-time

algorithm to compute the BRT. Our algorithm only locally updates the BRT in light of new

environment information, which significantly alleviates the computational burden of HJ

reachability while still maintaining the safety guarantees at all times. For more details on

this work, please see [16].

2.3 From Dynamic Games to Multi-Agent Safety
So far, we have formalized optimal control and safety for robots operating in static en-

vironments. However, in reality, many robots will plan in the presence of other agents. For

example, autonomous cars will navigate around other autonomous vehicles and human-

driven cars; home robots will operate around people; factory robots will collaborate with

CHAPTER 2. BACKGROUND AND PRELIMINARIES 24

human workers. However, so far our optimal control paradigm only allows for a sin-

gle agent to be involved in decision-making. What if there are multiple agents making

decisions and interacting? How is do we mathematically model this kind of interactive

decision-making?

Cost Function Single-agent Multi-Agent
Static Optimization Game Theory

Time-evolution Optimal Control Differential (cont.-time) / Dynamic (disc.-time) Game

Table 2.2: Difference between optimization, optimal control, and game theory.

Dynamic game theory provides a framework for modelling and analyzing interaction

in multi-agent dynamical systems. Intuitively, it can be thought of as the multi-agent

extension to single-agent optimal control we have discussed so far. Dynamic game theory

provides a set of mathematical tools for quantifying “optimal” decisions for each agent

under various behavioral and informational assumptions. Note that dynamic games (also

known as “difference games”) typically refers to games subject to discrete-time dynamics

equations. In this background section, we will begin with dynamic games only, but

later introduce differential games (which are continuous-time games subject to differential

equation dynamics) for the purpose of safety analysis. See Table 2.2 for a terminology

comparison of games under various conditions.

In this section, we will also restrict our discussion to a particular type of game: Stackel-

berg games [218]. In these games, one agent takes the role of the leader and the other takes

the role of the follower. The leader moves first, and the follower responds to the leader’s

decision. We will also summarize both the open-loop and feedback variants of Stackelberg

games, which will be the most relevant for this dissertation. See Table 2.3 for a brief sum-

mary of relevant game-theory terminology. For an extensive treatment on information

patterns in games, equilibrium concepts, and the continuous and discrete-time variants,

please see [28].

𝐽𝐴 ≠ −𝐽𝐵 general-sumCost for agent A and B
𝐽𝐴 = −𝐽𝐵 zero-sum

Access to only 𝑥0
open-loop (OL)State information

Access to any 𝑥𝑡 feedback

Simultaneous Nash equilibriumOrder of play
Leader-follower Stackelberg equilibrium

Table 2.3: Key dynamic game terminology and the conditions under which the terms apply.

2.3.1 General-Sum Dynamic Games
Multi-Agent System Model. Since we have multiple agents, now our state 𝑥will represent

the joint state of all agents. In this section we will consider two agents, A and B, with joint

CHAPTER 2. BACKGROUND AND PRELIMINARIES 25

state:

𝑥 := [𝑥𝐴 , 𝑥𝐵]⊤. (2.54)

Both agents have their own control inputs, 𝑢𝑖 ∈ 𝒰𝑖 𝑖 ∈ {𝐴, 𝐵}, that affect the evolution of

the joint dynamical system:

𝑥𝑡+1 = 𝑓 (𝑥𝑡 , 𝑢𝑡𝐴 , 𝑢
𝑡
𝐵). (2.55)

Agent Cost Functions. Since we have multiple agents, we can model each of them as

having their own decision-making objectives. For the purposes of this section, both

agents are interested in minimizing their respective cost functions, 𝐽𝑖 , which depend on

the joint state and the actions of both agents. This is formally known as the general-sum

game setting. However, as we will see later when establishing connections with safety

analysis, sometimes it is beneficial to model the agents as sharing the same cost function

where one agent is trying to minimize this cost and the other is trying to maximize.

Let’s define the (discrete-time) cost function for each agent over time horizon {0, . . . , 𝑇}
as:

𝐽𝐴(𝑥0, u𝐴 , u𝐵) :=

𝑇−1∑
𝜏=0

𝑐𝐴(𝑥𝜏 , 𝑢𝜏𝐴 , 𝑢
𝜏
𝐵) + ℓ𝐴(𝑥

𝑇) (2.56)

𝐽𝐵(𝑥0, u𝐴 , u𝐵) :=

𝑇−1∑
𝜏=0

𝑐𝐵(𝑥𝜏 , 𝑢𝜏𝐴 , 𝑢
𝜏
𝐵) + ℓ𝐵(𝑥

𝑇) (2.57)

where the control sequences for each agent are u𝐴 ∈ A𝑇−1

0
and u𝐵 ∈ B𝑇−1

0
.

Open-loop Stackelberg game. In open-loop dynamic games, both agents must plan their

entire control sequences, given only the initial condition. In other words, this models an agent

as determining their control sequence at the initial time, then “closing their eyes”, and

following it for the rest of the time horizon, without accounting for how the actual system

state may evolve during control execution. More formally, a two-agent, general-sum

open-loop (OL) Stackelberg game is:

min

u𝐴∈A𝑇−1

0

𝐽𝐴(𝑥0, u𝐴 , u∗𝐵(𝑥
0, u𝐴))

s.t. 𝑥𝜏+1 = 𝑓 (𝑥𝜏 , 𝑢𝜏𝐴 , 𝑢
𝜏
𝐵), ∀𝜏 ∈ {0, . . . , 𝑇 − 1}

u∗𝐵(𝑥
0, u𝐴) = arg min

u𝐵∈B𝑇−1

0

𝐽𝐵(𝑥0, u𝐴 , u𝐵)

s.t. 𝑥𝜏+1 = 𝑓 (𝑥𝜏 , 𝑢𝜏𝐴 , 𝑢
𝜏
𝐵), ∀𝜏 ∈ {0, . . . , 𝑇 − 1}

(2.58)

Notice here how agent A optimizes over an entire control sequence u𝐴 using only the

current state and a best-response predictive model of how agent B will play their entire

control sequence, u∗
𝐵
.

CHAPTER 2. BACKGROUND AND PRELIMINARIES 26

We can explicitly define the value of this OL Stackelberg game starting from 𝑥0
for

agent A and agent B as:

𝑉0

𝐴(𝑥
0) = min

u𝐴∈A𝑇−1

0

𝐽𝐴(𝑥0, u𝐴 , u∗𝐵(𝑥
0, u𝐴)) (2.59)

where u∗𝐵(𝑥
0, u𝐴) = arg min

u𝐵
𝐽𝐵(𝑥0, u𝐴 , u𝐵)

𝑉0

𝐵(𝑥
0) = min

u𝐵∈B𝑇−1

0

𝐽𝐵(𝑥0, u∗𝐴(𝑥
0), u𝐵) (2.60)

where u∗𝐴(𝑥
0) = arg min

u𝐴
𝐽𝐴(𝑥0, u𝐴 , u∗𝐵(𝑥

0, u𝐴))

Lets get a high-level understanding for one way to solve for these value functions. First,

lets store the cumulative cost of agent B’s objective for each possible agent A control

sequence, u𝐴. With this, we can search for the optimal control sequence for agent B as a

function of the initial condition and agent A’s control sequence: u∗
𝐵
(𝑥0, u𝐴). Intuitively, this is a

model how agent B can best respond to agent A’s control sequence. Agent A can now use

this model to plan their own optimal control sequence u∗
𝐴
(𝑥0), which is only a function

of the initial condition, since agent A has a perfect model of how agent B will respond

to all of their control sequences. We finally can obtain the optimal value of the game for

each agent starting from 𝑥0
by maximizing over their respective control sequences and

plugging the models of how the other agent will behave.

Aside on OL Stackelberg computation. It is straightforward to imagine computing

the above for short time horizons and (small) discrete state and control spaces. For

example, imagine 𝑡 ∈ {0, 1, 2, 3} and 𝒰𝑖 = {Up,Down, Left,Right}. Let the joint

state be 2-dimensional, representing the stacked discrete x-position of agent A and agent

B: 𝑥 ∈ 𝒳 := {[−5,−5], [−5,−4] . . . , [5, 5]} where |𝒳| = 11 × 11 = 121. Because the

time horizon is short, we can feasibly enumerate all control sequences u𝐴 ∈ A2

0
and

u𝐵 ∈ B2

0
(where the size of A2

0
and B2

0
is 4

3 = 64 each). We can then store a large table

for each (𝑥0, u𝐴 , u𝐵) tuple, where each entry contains the cost 𝐽𝐴 or 𝐽𝐵 of the overall

joint system evolution. Here, the entire table storing 𝐽𝑖(𝑥0, u𝐴 , u𝐵), 𝑖 ∈ {𝐴, 𝐵} will be

size 121 × 64 × 64 = 495, 616. Then we can choose the maximizing control sequences

for each agent as defined above. However, as the time horizon 𝑇 gets bigger and in

the case that state and controls are continuous, we can no longer rely on a tabular,

exhaustive way to solve this. Instead, we can turn to quasi-Newton methods such as

L-BFGS [187, 9] or reformulate the bilevel optimization problem as a local, single-

level optimization problem via the Karush-Kuhn-Tucker (KKT) stationarity conditions

[194].

Feedback Stackelberg game. In feedback dynamic games, both agents plan a control

policy, which enables them to act optimally at any future joint state. In other words, this

models the agents as able to accurately perceive the system state by always “having their

CHAPTER 2. BACKGROUND AND PRELIMINARIES 27

eyes open”, and constantly reacting to how the actual system state evolves during control

execution.

To capture this reactivity in state and time, feedback Stackelberg games are naturally

defined and solved recursively [93]. Let the values at the final time for a discrete-time,

two-agent, general-sum feedback Stackelberg game be:

𝑉𝑇
𝐴 (𝑥

𝑇) = ℓ𝐴(𝑥𝑇) (2.61)

𝑉𝑇
𝐵 (𝑥

𝑇) = ℓ𝐵(𝑥𝑇). (2.62)

To make our notation simpler, let’s define a new function called the 𝑄-value, also called

the state-action value function. Intuitively, this function will capture the immediate cost of

taking a control action from the current state plus the best possible future cost, assuming optimal

play. For example, the𝑄-value function for agent B is a map𝑄𝑖 : R𝑛×𝒰𝐴×𝒰𝐵 → Rwhich

captures the immediate cost of agent A choosing 𝑢𝐴 and agent B choosing 𝑢𝐵 from state 𝑥

plus the best cost for the rest of the time horizon. Mathematically, we can write out each

agent’s 𝑄-value function in the feedback Stackelberg game at any time 𝑡 ∈ {0, . . . , 𝑇 − 1}
recursively:

𝑄𝑡
𝐵(𝑥

𝑡 , 𝑢𝑡𝐴 , 𝑢
𝑡
𝐵) := 𝑐𝐵(𝑥𝑡 , 𝑢𝑡𝐴 , 𝑢

𝑡
𝐵) +𝑉

𝑡+1

𝐵 (𝑥
𝑡+1) (2.63)

𝑄𝑡
𝐴(𝑥

𝑡 , 𝑢𝑡𝐴) := 𝑐𝐴(𝑥𝑡 , 𝑢𝑡𝐴 ,𝝅
𝑡
𝐵(𝑥

𝑡 , 𝑢𝑡𝐴)) +𝑉
𝑡+1

𝐴 (𝑥
𝑡+1) (2.64)

where 𝝅𝑡𝐵(𝑥
𝑡 , 𝑢𝑡𝐴) = arg min

𝑢𝑡
𝐵

𝑄𝑡
𝐵(𝑥

𝑡 , 𝑢𝑡𝐴 , 𝑢
𝑡
𝐵).

Note that the 𝑄-value function for agent A does not depend on agent B’s control. This is

because agent A is the leader in the Stackelberg game, and is assumed to have access to the

best-response of agent B, 𝜋𝑡
𝐵

for each control that agent A may choose, 𝑢𝑡
𝐴

.

Finally, the value at any time 𝑡 ∈ {0, . . . , 𝑇 −1} for agent A and agent B can be obtained

via optimizing the Q-function at that time:

𝑉 𝑡
𝐴(𝑥

𝑡) = min

𝑢𝑡
𝐴
∈𝒰𝐴

𝑄𝑡
𝐴(𝑥

𝑡 , 𝑢𝑡𝐴) (2.65)

𝑉 𝑡
𝐵(𝑥

𝑡) = min

𝑢𝑡
𝐵
∈𝒰𝐵

𝑄𝑡
𝐵(𝑥

𝑡 ,𝝅𝑡𝐴(𝑥
𝑡), 𝑢𝑡𝐵) (2.66)

where 𝝅𝑡𝐴(𝑥
𝑡) = arg min

𝑢𝑡
𝐴

𝑄𝑡
𝐴(𝑥

𝑡 , 𝑢𝑡𝐴)

Aside on feedback Stackelberg computation. It should be apparent that the solution

to the feedback Stackelberg game is a dynamic programming solution. This presents a

significant computational challenge, since it suffers from the curse of dimensionality.

Specifically, for discrete state, action, and time, its computational complexity is𝑂(|𝒳|×
|𝒰𝐴 | × |𝒰𝐵 | × 𝑇).

CHAPTER 2. BACKGROUND AND PRELIMINARIES 28

2.3.2 Zero-Sum Differential Games
So far we have discussed a setting where each agent has their own objective that they are

trying to minimize. However, there are other models we could use instead. For example,

the agents could share the same objective 𝐽𝐴 = 𝐽𝐵. Both agents could be minimizing this

objective (i.e. cooperative dynamic game) or one agent could be minimizing while the

other maximizing (i.e. adversarial dynamic game or zero-sum game). It turns out that the

adversarial game models are crucial to traditional multi-agent safety methods! This is

because they allow us to obtain robust controls for our robots, that enable our systems to

achieve desirable properties despite a worst-case adversary.

Let’s first mathematically define these zero-sum games. Let the joint state consisting of

agent A and agent B’s state be 𝑥 as defined in (2.54). The continuous-time2 joint dynamics

are:

¤𝑥 = 𝑓 (𝑥, 𝑢𝐴 , 𝑢𝐵) (2.67)

In zero-sum settings, both agents are concerned with the same cost function:

𝐽(𝑥, u𝐴(·), u𝐵(·), 𝑡) :=

∫ 𝑇

𝑡

𝑐(𝑥(𝜏), 𝑢𝐴(𝜏), 𝑢𝐵(𝜏))𝑑𝜏 + ℓ (𝑥(𝑇)) (2.68)

However, one agent is interested in minimizing while the other agent is interested in

maximizing the cost. Formally, we can write this as:

𝑉(𝑥, 𝑡) := inf

u𝐴(·)∈A𝑇𝑡
sup

u𝐵(·)∈B𝑇𝑡

𝐽(𝑥, u𝐴(·), u𝐵(·), 𝑡)

s.t. ¤𝑥(𝜏) = 𝑓 (𝑥(𝜏), 𝑢𝐴(𝜏), 𝑢𝐵(𝜏)), ∀𝜏 ∈ [𝑡 , 𝑇]
𝑢𝐴(𝜏) ∈ 𝒰𝐴 , 𝑢𝐵(𝜏) ∈ 𝒰𝐵

(2.69)

where agent A seeks to minimize and agent B seeks to maximize the cost.

As posed right now, (2.69) describes an open-loop zero-sum game since the agent A

must declare an entire control signal only given access to the initial state. Furthermore,

it is a Stackelberg game because agent A is the leader and optimizing an entire control

signal, while agent B is the follower who responds optimally to agent A with their own

control signal. While this formulation may seem reasonable at first, it is actually incredibly

pessimistic from the perspective of agent A. Agent A is in an incredibly difficult position,

since they cannot adapt their control once the system begins evolving. In contrast, agent

B has all the key information about how agent A will behave, enabling it to make an

optimally adversarial decision during the optimization.

Could we come up with a less pessimistic formulation? What about a formulation that

allows agent A to adapt their decisions as the system state evolves? In other words, can

2
We switch to continuous-time notation here to make this subsection consistent with the formulation

used in the zero-sum differential games used in HJ reachability, which is traditionally defined in continuous-

time. However, discrete-time equivalents for this formulation are straightforward to write out.

CHAPTER 2. BACKGROUND AND PRELIMINARIES 29

we come up with a feedback variant of this zero-sum Stackelberg game? To do this, we

actually need to modify how much information agent B has about agent A at any given

time. Specifically, we will assume that agent B uses only non-anticipative strategies [216,

68]. Formally, the set of non-anticipative strategies 𝔅𝑇
𝑡 for agent B is a collection of maps

𝖇 : A𝑇𝑡 → B𝑇𝑡 such that agent B’s strategy 𝖇[u𝐴] depends on u𝐴. That is:

𝖇 ∈ 𝔅𝑇
𝑡 := {𝖇 : A𝑇𝑡 → B𝑇𝑡 : ∀𝑠 ∈ [𝑡 , 𝑇],∀u𝐴(·), û𝐴(·) ∈ A𝑇𝑡 ,
(u𝐴(𝜏) = û𝐴(𝜏) a.e. 𝜏 ∈ [𝑡 , 𝑠]) ⇒ (𝖇[u𝐴](𝜏) = 𝖇[u𝐴](𝜏) a.e. 𝜏 ∈ [𝑡 , 𝑠])}.

(2.70)

The intuition for this definition is that agent B ’s strategy (𝖇[u𝐴]) cannot start adapting

to a change in agent A’s control (u𝐴) until such a change begins. Take a closer look at

(2.70) to observe how this is captured mathematically. If two controls from agent A are

identical, then agent B has to respond identically. In other words, agent B cannot respond

differently to two agent A controls until they actually become different. Nevertheless,

agent B still has instantaneous informational advantage, since at any time 𝑡 it can still “see”

agent A’s choice of control and adapt its own accordingly (since 𝖇[u𝐴] is a function of u𝐴).

Rewriting our differential game with this restriction on agent B’s control strategy, we

obtain a the following feedback, zero-sum differential game:

𝑉(𝑥, 𝑡) := sup

𝖇∈𝔅𝑇
𝑡

inf

u𝐴(·)∈A𝑇𝑡
𝐽(𝑥, u𝐴(·), 𝖇[u𝐴](·), 𝑡)

s.t. ¤𝑥(𝜏) = 𝑓 (𝑥(𝜏), 𝑢𝐴(𝜏), 𝑢𝐵(𝜏)), ∀𝜏 ∈ [𝑡 , 𝑇]
𝑢𝐴(𝜏) ∈ 𝒰𝐴 , 𝑢𝐵(𝜏) ∈ 𝒰𝐵

(2.71)

where agent B first chooses a strategy from the set of non-anticipative strategies and then

agent A chooses its own control signal.

Aside on discrete-time equivalent of (2.71). At first, defining non-anticipative

strategies can seem overly complicated. However, it is necessary to properly capture

the notion of state-feedback when writing out the overall dynamic game where each

player gets to choose continuous control signals. In discrete-time however, we can

skirt around this definition by taking advantage of the discrete and sequential nature

of decision-making. Specifically, we can write the discrete-time equivalent of (2.71) as:

𝑉 𝑡(𝑥) := min

𝑢𝑡
𝐴

max

𝑢𝑡
𝐵

. . .min

𝑢𝑇−1

𝐴

max

𝑢𝑇−1

𝐵

𝐽𝑡(𝑥, u𝐴 , u𝐵)

s.t. 𝑥𝜏+1 = 𝑓 (𝑥𝜏 , 𝑢𝜏𝐴 , 𝑢
𝜏
𝐵), ∀𝜏 ∈ {𝑡 , . . . , 𝑇 − 1}

(2.72)

where the interleaved decisions of agent A and B capture both the feedback and “turn-

taking” Stackelberg nature of the game.

CHAPTER 2. BACKGROUND AND PRELIMINARIES 30

2.3.3 The Hamilton-Jacobi-Isaacs PDE & Multi-Agent Safety
Can we somehow solve for the optimal value function in (2.71)? It turns out that if we

apply our knowledge of dynamic programming, we can follow a similar proof as earlier

and show that the value function is the unique viscosity solution to the Hamilton-Jacobi-

Isaacs (HJI) partial differential equation (PDE):

𝜕𝑉(𝑥, 𝑡)
𝜕𝑡

+ min

𝑢𝐴∈𝒰𝐴

max

𝑢𝐵∈𝒰𝐵

{
𝑐(𝑥, 𝑢𝐴 , 𝑢𝐵) + ∇𝑥𝑉(𝑥, 𝑡) · 𝑓 (𝑥, 𝑢𝐴 , 𝑢𝐵)

}
= 0 (2.73)

𝑉(𝑥, 𝑇) = ℓ (𝑥).

Given the value function, the optimal actions for each agent are:

𝑢∗𝐴(𝑥, 𝑡) = arg min

𝑢𝐴∈𝒰𝐴

max

𝑢𝐵∈𝒰𝐵

{
𝑐(𝑥, 𝑢𝐴 , 𝑢𝐵) + ∇𝑥𝑉(𝑥, 𝑡) · 𝑓 (𝑥, 𝑢𝐴 , 𝑢𝐵)

}
(2.74)

𝑢∗𝐵(𝑥, 𝑡) = min

𝑢𝐴∈𝒰𝐴

arg max

𝑢𝐵∈𝒰𝐵

{
𝑐(𝑥, 𝑢𝐴 , 𝑢𝐵) + ∇𝑥𝑉(𝑥, 𝑡) · 𝑓 (𝑥, 𝑢𝐴 , 𝑢𝐵)

}
(2.75)

Aside on Bellman vs. Isaacs terminology. Note that while before we referred to

the equation as the Hamilton-Jacobi-Bellman equation, we refer to this variant as the

Hamilton-Jacobi-Isaacs equation in honor of Rufus Isaacs. Isaacs pioneered pursuit-

evasion games, proposing the principle of optimality for dynamic games in the 1950’s

at the same time as Richard Bellman proposed it for optimal control problems.

Multi-Agent Safety via HJ Reachability

We now have a handle on how to solve zero-sum games between two agents. What

if we wanted to guarantee that the joint system abides by some state constraints? For

example, what if we want to come up with an optimal control which guarantees that our

robot never collides with the other agent, despite the other agent’s best efforts to crash? Or,

an optimal control trajectory which guarantees that the robot reaches its goal despite the

adversary attempting to prevent this? Just like when we studied safety analsyis for single-

agent systems, we can use the tools from game theory and the HJI-PDE to formalize safety

analysis of multi-agent systems. Specifically, let’s write down the multi-agent variant of

HJ reachability analysis.

Reach Problems (i.e., goal satisfaction)

We are going to start by considering reach problems again. Consider a shared autonomy

system where the human controls a ground vehicle robot via a joystick and the robot can

also input its own controls. Imagine that the robot wants to reach a goal location in a room,

like its charging dock. A worst-case scenario would be that the human is trying to actively

prevent the robot from reaching the goal. What set of initial states can we guaruntee that

CHAPTER 2. BACKGROUND AND PRELIMINARIES 31

the robot can reach the goal despite the human’s best efforts to steer the robot away from

the goal? HJ reachability can answer this question for us yet again.

Mathematically, we will use the same notion of a target set ℒ ⊆ R𝑛 , however this is

now defined in the joint state-space of the two agents. In our zero-sum setting, ℒ defines

the set of states that agent A wants to reach and agent B wants to prevent agent A from

reaching.

The multi-agent variant of a backwards reachable set (BRS) and a backwards reachable tube

(BRT) are defined:

𝒱𝐵𝑅𝑆(𝑡) = {𝑥 : ∃u𝐴(·) ∈ A𝑇𝑡 ,∀u𝐵(·) ∈ B𝑇𝑡 xu𝐴 ,u𝐵
𝑥,𝑡 (𝑇) ∈ ℒ} (2.76)

𝒱𝐵𝑅𝑇(𝑡) = {𝑥 : ∃u𝐴(·) ∈ A𝑇𝑡 ,∀u𝐵(·) ∈ B𝑇𝑡 , ∃𝜏 ∈ [𝑡 , 𝑇]x
u𝐴 ,u𝐵
𝑥,𝑡 (𝜏) ∈ ℒ}. (2.77)

Intuitively, this is saying that if the system begins inside the BRS/BRT, 𝑥 ∈ 𝒱, then there

exists a control signal that agent A can apply so it can get to the target set despite agent

B’s best-effort to prevent this.

Once again, we will define a Lipschitz function ℓ (𝑥) such that our target set ℒ is equal

to the sub-zero level set of this function: 𝑥 ∈ ℒ ⇐⇒ ℓ (𝑥) ≤ 0. The zero-sum game

objective will be:

𝐽(𝑥, u𝐴(·), u𝐵(·), 𝑡) = ℓ (xu𝐴 ,u𝐵
𝑥,𝑡 (𝑇)). (2.78)

We can now modify our game formulation similarly to how we did in the single-agent

optimal control setting and define the multi-agent BRS or BRT value functions:

BRS Value Function:
𝑉(𝑥, 𝑡) = sup

𝖇∈𝔅𝑇
𝑡

inf

u𝐴(·)∈A𝑇𝑡
ℓ (xu𝐴 ,u𝐵

𝑥,𝑡 (𝑇)) (2.79)

BRT Value Function:
𝑉(𝑥, 𝑡) = sup

𝖇∈𝔅𝑇
𝑡

inf

u𝐴(·)∈A𝑇𝑡
min

𝜏∈[𝑡 ,𝑇]
ℓ (xu𝐴 ,u𝐵

𝑥,𝑡 (𝜏)). (2.80)

Then we can solve for these value functions via their corresponding HJI equation

variants. Solving the following HJI-PDE allows us obtain the BRS value function:

𝜕𝑉(𝑥, 𝑡)
𝜕𝑡

+ min

𝑢𝐴∈𝒰𝐴

max

𝑢𝐵∈𝒰𝐵

{
∇𝑥𝑉(𝑥, 𝑡) · 𝑓 (𝑥, 𝑢𝐴 , 𝑢𝐵)

}
= 0

𝑉(𝑥, 𝑇) = ℓ (𝑥),
(2.81)

and the HJI Variational Inequality’s (VI) solution will be the BRT value function:

min

{
ℓ (𝑥) −𝑉(𝑥, 𝑡), 𝜕𝑉(𝑥, 𝑡)

𝜕𝑡
+ min

𝑢𝐴∈𝒰𝐴

max

𝑢𝐵∈𝒰𝐵

{
∇𝑥𝑉(𝑥, 𝑡) · 𝑓 (𝑥, 𝑢𝐴 , 𝑢𝐵)

}}
= 0

𝑉(𝑥, 𝑇) = ℓ (𝑥).
(2.82)

CHAPTER 2. BACKGROUND AND PRELIMINARIES 32

Note that the only difference between equation (2.81) and (2.24), and (2.82) and (2.41) is

the inclusion of agent B’s control input in the optimization.

Finally, the desired BRS or BRT can be extracted from the relevant value function by

extracting the sub-zero level set:

𝒱(𝑡) = {𝑥 : 𝑉(𝑥, 𝑡) ≤ 0}. (2.83)

Avoid Problems (i.e., safety satisfaction)

Another incredibly important class of problems for safety analysis are avoid problems.

Here we are concerned with the backwards avoid set, also known as the avoid backwards

reachable set (BRS), of a multi-agent dynamical system which is very similar to the single-

agent variant. Recall that the avoid BRS is the set of states from which if joint system begins,

it is doomed to enter into the undesirable set of states. Once again, our target set isℒ ⊆ R𝑛 ,

however this is now capturing the set of joint states we seek to avoid. For example, assume

that the state of each agent is their xy-position, 𝑥𝑖 ∈ R2, 𝑖 ∈ {𝐴, 𝐵}. If we were solving a

collision-avoidance problem, then we could define ℒ := {𝑥 : | |𝑥𝐴 − 𝑥𝐵 | |2
2
≤ 𝜖} ⊆ R4

. This

means the undesirable states are where agent A and agent B are closer than a radius of√
𝜖. The avoid BRS and BRTs can be defined as:

𝒱𝐵𝑅𝑆(𝑡) = {𝑥 : ∀u𝐴(·) ∈ A𝑇𝑡 , ∃u𝐵(·) ∈ B𝑇𝑡 , xu𝐴 ,u𝐵
𝑥,𝑡 (𝑇) ∈ ℒ}

𝒱𝐵𝑅𝑇(𝑡) = {𝑥 : ∀u𝐴(·) ∈ A𝑇𝑡 , ∃u𝐵(·) ∈ B𝑇𝑡 , ∃𝜏 ∈ [𝑡 , 𝑇], xu𝐴 ,u𝐵
𝑥,𝑡 (𝜏) ∈ ℒ}.

(2.84)

It turns out that capturing these sets via our zero-sum game is quite straightforward.

Instead of modelling agent A as trying to minimize ℓ (·) (and therefore try to enter ℒ)

and agent B as maximizing ℓ , we will flip the agent’s objectives. Agent A now wants to

maximize ℓ (·) (and therefore try to stay outside of the undesirable states ℒ), while agent B

is trying to minimize the value and drive the system towards the undesirable states. This

switch in roles is easy to see mathematically:

Avoid BRS Value Function:
𝑉(𝑥, 𝑡) = inf

𝖇∈𝔅𝑇
𝑡

sup

u𝐴(·)∈A𝑇𝑡

ℓ (xu𝐴 ,u𝐵
𝑥,𝑡 (𝑇)) (2.85)

Avoid BRT Value Function:
𝑉(𝑥, 𝑡) = inf

𝖇∈𝔅𝑇
𝑡

sup

u𝐴(·)∈A𝑇𝑡

min

𝜏∈[𝑡 ,𝑇]
ℓ (xu𝐴 ,u𝐵

𝑥,𝑡 (𝜏)). (2.86)

To solve for these value functions, we can simply modify (2.81) and (2.82) by making agent

A do max𝑢𝐴 and agent B do min𝑢𝐵 . Like before, the desired multi-agent avoid BRS and

BRT’s can be extracted from the relevant value functions via the sub-zero level set.

Aside on zero-sum safety models for human-robot interaction. This zero-sum

assumption is good from a safety perspective because the guarantees and controllers we

CHAPTER 2. BACKGROUND AND PRELIMINARIES 33

get out of this protect us against the worst-case. For example, if agent A is a plane’s

control system and agent B is a model of a wind disturbance, this worst-case model

provides us strong safety guarantees against the highest possible winds that could shake

our plane. However, when robots interact with people, this built-in adversarial assump-

tion is often too pessimistic in practice. Humans aren’t always optimal adversaries,

nor seek to compete with the robot in a zero-sum fashion. Unfortunately, if robots

are deployed with these worst-case safety controllers and guarantees, it leads to overly

conservative robot behavior. However, if we relax this worst-case modelling assump-

tion about human behavior, we risk compromising the quality of our safety analysis in

the (unlikely but possible) event that the human is a true adversary. Addressing this

fundamental safety challenge is core to this dissertation.

2.4 Cost Function Design via Inverse Reinforcement
Learning

When posing our optimal control problems or dynamic games, we have so far assumed

that we know how to specify good cost functions, 𝐽, that capture all aspects of the behavior

we care about. While it is true that sometimes we can design these effectively (e.g., find a

control signal which minimizes fuel consumption), in other scenarios designing a “good”

cost function is more challenging. For example, in our multi-agent scenario where agent

A is the robot and agent B is a human, how do we know what agent B cares about? How

should we accurately specify their cost, 𝐽𝐵? Or, consider designing an optimal controller

for an autonomous car. There are so many aspects that a passenger in the vehicle may

care about, from comfort to safety to efficiency. How can we possibly design 𝐽 to capture

all these unique aspects that the passenger will care about?

Let’s think about how to tackle these questions. Before designing the cost function for

the autonomous car that is driving a passenger around, consider letting the human drive

the car around the neighborhood. By observing the human drive the car, we can glean

insights onto how they like to drive: we can see that they always drive at low speeds,

make smooth but efficient turns, and keep large safety margins between themselves and

nearby obstacles or agents. The key idea here is

observations of an agent’s behavior leak information about their objectives.

This idea of inferring the objectives from observations of agent behavior is formally called

Inverse Optimal Control (IOC) [109] or Inverse Reinforcement Learning (IRL) [162]. IOC and

IRL are two foundational inverse-problem frameworks from the control and machine

learning communities, respectively. Conceptually, both approaches have the same goal:

infer the objective of an agent by observing demonstrations (i.e., state and control trajec-

tories) of the agent’s behavior. However, there are slight technical differences between

IOC and IRL: IOC assumes that the agent’s behavior is generated by a stabilizing control

CHAPTER 2. BACKGROUND AND PRELIMINARIES 34

law, while IRL assumes that the agent behaves optimally under their true objective. For a

historical perspective on these variants of IOC/IRL, please see [1].

Since these foundational works, there have been many variants of the IRL problem

formulation. In this dissertation, Maximum Entropy IRL [237] is a core method used

throughout, so we will re-derive this variant of IRL as background. Note that we will use

the AI notation of maximizing reward 𝑅 in contrast to minimizing cost 𝐽 like we have been

doing so far.

2.4.1 Maximum Entropy IRL
Imagine that your friend demonstrates a behavior to you, like walking around an

office room. Just by observing their trajectory (Fig. 2.4), can you infer how they chose that

particular motion?

Figure 2.4: The demonstrator (orange dot) demonstrates a trajectory, �𝐷 , by moving through a space. The

observer seeks to discover what objective function the demonstrator is optimizing to produce this trajectory.

This is the typical Inverse Reinforcement Learning (IRL) problem, which seeks to

explain an observed demonstration by uncovering the demonstrator’s unknown objective

function. Unfortunately, however, this is an ill-posed problem; many different objective

functions can produce the same behavior and many different behaviors can be explained

by the same objective function. Furthermore, demonstrations are often noisy.

Maximum Entropy IRL [237] addresses these issues by treating the demonstrations

as observations drawn from some distribution that models the demonstrator as being

approximately optimal. There are many candidate distributions, however, so the question

remains: how do we choose the “best” one?

As we will derive here, the principle of maximum entropy allows us to find a distri-

bution across trajectories that ensures we are not favoring any trajectories other than the

ones that are similar to the demonstrated one. This also helps to resolve the ambiguity over

objective functions inherent to the IRL formulation.

CHAPTER 2. BACKGROUND AND PRELIMINARIES 35

2.4.2 Matching Feature Counts
First, let’s formalize how we measure relevant properties of the demonstrator’s be-

havior. Let a trajectory � ∈ Ξ with horizon 𝑇 be a sequence of states and actions:

� = {(𝑥1, 𝑢1), (𝑥2, 𝑢2), . . . (𝑥𝑇 , 𝑢𝑇)}. Define a function, 𝑓 : Ξ → R𝑘 , that maps trajecto-

ries to a vector of real values. These real values, called features, can represent quantities

that the agent might care about when producing its behavior; for example the agent’s

distance to obstacles, the speed of their movement, distance to other agents, etc.

Following prior work in IRL [3], we want to find distribution over observations (trajec-

tories in this case), 𝑃(�), that matches the empirical feature values in expectation

E�∼𝑃(�)[𝑓 (�)] = 𝑓𝐷

where � ∈ Ξ is a trajectory and 𝑓𝐷 are the feature values of the demonstration. These can

be empirically computed from a set of demonstrated trajectories 𝐷 = {�1, �2, . . . , �𝑚}

𝑓𝐷 =
1

|𝐷 |
∑
�∈𝐷

𝑓 (�)

Aside on matching the demonstration’s feature counts. Why do we want the

feature expectations to match those of the demonstrated trajectories? Abbeel and Ng

[3] shed light on why this is a good constraint to have. Let 𝑟(𝑥𝑡 , 𝑢𝑡) = �⊤ 𝑓 (𝑥𝑡 , 𝑢𝑡)
be the reward of being in state 𝑥𝑡 and executing 𝑢𝑡 at time 𝑡 and � be a weight on

the features of the state and action. Now, the expected return of executing a trajectory

� = {(𝑥1, 𝑢1), (𝑥2, 𝑢2), . . . (𝑥𝑇 , 𝑢𝑇)} sampled from our distribution 𝑃(�) is:

E�∼𝑃(�)

[
𝑇∑
𝑡=0

𝑟(𝑥𝑡 , 𝑢𝑡)
]
= E�∼𝑃(�)

[
𝑇∑
𝑡=0

�⊤ 𝑓 (𝑥𝑡 , 𝑢𝑡)
]

= �⊤E�∼𝑃(�)

[
𝑇∑
𝑡=0

𝑓 (𝑥𝑡 , 𝑢𝑡)
]

= �⊤E�∼𝑃(�) [𝑓 (�)]
where 𝑓 (�) is the sum of features of the state-action pairs encountered along the

trajectory. We now see that the expected return of executing a trajectory can be

written as a weighted feature expectation, �⊤E�∼𝑃(�)[𝑓 (�)]. This means that if we

have distributions that induce matching feature expectations, then they also produce

trajectories that have matching returns in expectation!

2.4.3 Resolving Ambiguity via the Principle of Maximum Entropy
We want to make as few possible assumptions about the demonstrated trajectory while

still matching the feature expectations. Recall that high entropy means high uncertainty.

Thus, the key idea of Maximum Entropy IRL is that

CHAPTER 2. BACKGROUND AND PRELIMINARIES 36

finding the distribution that maximizes entropy over trajectories (subject to matching

demonstrated feature values in expectation), we avoid favoring any particular trajectory

other than ones that satisfy the feature constraints [237].

Note that the idea of matching feature counts applies beyond just the Maximum Entropy

IRL variant. However, what MaxEnt does is it takes a probabilistic viewpoint on the IRL

problem and uses the principle of maximum entropy to resolve ambiguity in choosing a

distribution over decisions.

2.4.4 Maximum Entropy IRL Derivation
Let’s formulate this key idea as an optimization problem. As we said before, we want

to find the distribution that maximizes the entropy subject to the feature expectations

constraint, and the constraint that the distribution is a valid probability distribution

maximize

𝑃

∫
−𝑃(�) log𝑃(�)𝑑�

subject to E�∼𝑃(�)[𝑓 (�)] =
∫

𝑃(�) 𝑓 (�)𝑑� = 𝑓𝐷 ,∫
𝑃(�)𝑑� = 1,

𝑃(�) ≥ 0,∀� ∈ Ξ

(2.87)

For simplicity, we will first ignore the inequality constraint in Equation 2.87. We will

later show that the solution trivially satisfies this constraint. Therefore, we form the

Lagrangian, using multipliers � and � as:

ℒ(𝑃,�, �) =
∫
−𝑃(�) log𝑃(�)𝑑� + �⊤

(∫
𝑃(�) 𝑓 (�)𝑑� − 𝑓𝐷

)
+ �

(∫
𝑃(�)𝑑� − 1

)
=

∫
−

(
𝑃(�) log𝑃(�) + �⊤𝑃(�) 𝑓 (�) + �𝑃(�)

)
𝑑� − �⊤ 𝑓𝐷 − �.

Notice how the Lagrangian is a functional (i.e. a function of a function). Therefore to solve

for the maximum of this functional, we will employ calculus of variations. Specifically, by

applying the Euler-Lagrange equation

𝜕 𝐹

𝜕 𝑃
(�, 𝑃(�), 𝑃′(�)) − 𝑑

𝑑 �
𝜕 𝐹

𝜕 𝑃′
(�, 𝑃(�), 𝑃′(�)) = 0, (2.88)

we can find the function 𝑃★
: Ξ→ [0, 1] that optimizes our functional 𝐹, which in general

may be a function of the vector �, the function 𝑃, and the derivative of that function 𝑃′

with respect to �. Looking back at our Lagrangian, let’s define:

𝐹(�, 𝑃(�), 𝑃′(�)) = −𝑃(�) log𝑃(�) + �⊤𝑃(�) 𝑓 (�) + �𝑃(�)

CHAPTER 2. BACKGROUND AND PRELIMINARIES 37

We can see that our Lagrangian ℒ is a function of � and distribution 𝑃(�) but does not

depend on the first derivative 𝑃′(�):

ℒ(𝑃,�, �) =
∫

𝐹(�, 𝑃(�), 𝑃′(�))𝑑� − �⊤ 𝑓𝐷 − �

Since the �⊤ 𝑓𝐷 and � are constants, then their subtraction simply shifts the function, but

the optimum of the Lagrangian will remain unchanged. So without loss of generality we

can let �⊤ 𝑓𝐷 = 0, � = 0.

Finally, the full optimization problem we would like to solve is

(𝑃★,�★, �★) = arg min

�,�
arg max

𝑃
ℒ(𝑃,�, �).

Solving for 𝑃★

Using Equation 2.88, we can take the partial derivative with respect to 𝑃, set it equal

to zero, and solve for 𝑃★
.

𝜕𝐹

𝜕𝑃
(�, 𝑃(�), 𝑃′(�)) = 0

First we take the partial derivative
𝜕𝐹
𝜕𝑃 (�, 𝑃(�), 𝑃

′(�)) and then rearrange terms:

− log𝑃(�) − 1 + �⊤ 𝑓 (�) + � = 0 =⇒ log𝑃(�) = �⊤ 𝑓 (�) + � − 1

Finally, we solve for 𝑃★
:

𝑃★(�) = 𝑒�
⊤ 𝑓 (�)+�−1

Now we can substitute our solution back into the Lagrangian to get

ℒ(𝑃∗,�, �) =
∫
−

(
𝑒�
⊤ 𝑓 (�)+�−1

)
log

(
𝑒�
⊤ 𝑓 (�)+�−1

)
+

�⊤
(
𝑒�
⊤ 𝑓 (�)+�−1

)
𝑓 (�) + �

(
𝑒�
⊤ 𝑓 (�)+�−1

)
𝑑� − �⊤ 𝑓𝐷 − �

=

∫
−�⊤ 𝑓 (�)

(
𝑒�
⊤ 𝑓 (�)+�−1

)
+ 𝑒�⊤ 𝑓 (�)+�−1 − �𝑒�

⊤ 𝑓 (�)+�−1

+ �⊤ 𝑓 (�)𝑒�⊤ 𝑓 (�)+�−1 + �𝑒�
⊤ 𝑓 (�)+�−1𝑑� − �⊤ 𝑓𝐷 − �

=

∫
𝑒�
⊤ 𝑓 (�)+�−1𝑑� − �⊤ 𝑓𝐷 − �

Solving for �★

After finding𝑃★
, the dual function is 𝑔(�, �) = ℒ(𝑃★,�, �)with dual problem min�,� 𝑔(�, �).

To find �★ we follow a similar procedure

𝜕ℒ
𝜕�

= 0 =⇒ 𝑒�−1

∫
𝑒�
⊤ 𝑓 (�)𝑑� − 1 = 0 =⇒ 𝑒−� =

∫
𝑒�
⊤ 𝑓 (�)−1𝑑�

CHAPTER 2. BACKGROUND AND PRELIMINARIES 38

Solving for �, we get

�★ = − log

(∫
𝑒�
⊤ 𝑓 (�)−1

)
Since we are interested in the probability distribution that maximizes this optimization

problem, we can plug �★ into 𝑃★(�)

𝑃★(�) = 𝑒�
⊤ 𝑓 (�)−log(

∫
𝑒�
⊤ 𝑓 (�)−1𝑑�)−1

=
𝑒�
⊤ 𝑓 (�)−1∫

𝑒�
⊤ 𝑓 (�̃)−1𝑑�̃

We can now view our resulting probability distribution as parameterized by �, where

𝑃★(�;�) = 𝑒�
⊤ 𝑓 (�)∫

𝑒�
⊤ 𝑓 (�̃)𝑑�̃

Note that this solution satisfies the inequality constraint we had in Equation 2.87.

Solving for �★

Above, we kept � as a parameter under our distribution. The role of � is to weight

the various feature values of �. Given an observation of the demonstrator’s trajectory, �𝐷 ,

we want to choose � so that it maximizes the likelihood of the observed trajectory in our

distribution. To find an estimate of the � that maximizes this likelihood, we can solve

�★ = arg max

�
log𝑃(�𝐷 ;�) = arg max

�
�⊤ 𝑓 (�𝐷) − log

(∫
𝑒�
⊤ 𝑓 (�)𝑑�

)
Let 𝑀 = �⊤ 𝑓 (�𝐷) − log

(∫
𝑒�
⊤ 𝑓 (�̃)𝑑�̃

)
. To find optimal �, take the gradient of the objective

w.r.t. �

∇�𝑀 = 𝑓 (�𝐷) −
1∫

𝑒�
⊤ 𝑓 (�̃)𝑑�̃

∫
𝑓 (�)𝑒�⊤ 𝑓 (�)𝑑�

= 𝑓 (�𝐷) −
∫

𝑓 (�) 𝑒
�⊤ 𝑓 (�)𝑑�∫
𝑒�
⊤ 𝑓 (�̃)𝑑�̃

= 𝑓 (�𝐷) −
∫

𝑓 (�)𝑃(�;�)𝑑�

= 𝑓 (�𝐷) − E�∼𝑃(�;�)[𝑓 (�)]
This now gives us an intuitive gradient update rule, where we want to minimize the

difference between the demonstrated feature values and the expected feature values under

the estimated distribution. We can solve for � by gradient descent, with the update rule

�𝑖+1 = �𝑖 + 𝛼
(
𝑓 (�𝐷) − E�∼𝑃(�;�)[𝑓 (�)]

)

CHAPTER 2. BACKGROUND AND PRELIMINARIES 39

2.5 Human Modelling & Behavior Prediction
So far, we have been talking fairly abstractly about two agents interacting. However,

the core of this dissertation is interested in scenarios where one agent is a robot and the

other is a human. How does our modelling and control framework change when a human

is one of the agents?

Fortunately, dynamical systems models still apply: we can still describe the evolution

of the human and robot state via a function 𝑓 that admits control inputs. But, how do we

know what control inputs the human will choose when interacting with the robot? In other

words, can we predict how the human will interact with the robot? Human behavior and

motion prediction is an ever-expanding subdomain of robotics. For an incredibly helpful

and in-depth survey, see [183]. Inspired by [183], we will break down the approaches

to human modelling and behavior prediction into four categories: robust, physics-based,

pattern-based, and planning-based models (see Table 2.4). This dissertation primarily

utilizes the robust and planning-based models, however many of the core issues about

human model misspecification and its effect on safe robot decision-making applies more

broadly to any of the predictive human models summarized here.

Robust predict all or worst-case behavior (e.g., FRS, multi-agent BRS/BRT)

Physics assume simple u(·) and simulate with 𝑓 (e.g., velocity-obstacles)

Pattern learn predictor conditioned on history (e.g., GMMs, GPs, HMMs, NNs)

Planning model human as optimizing an objective (e.g., MDPs, opt. ctrl / games)

Table 2.4: Categories of human models used for behavior prediction.

Robust. When safety is of the utmost concern, using robust predictors can be desirable.

For example, predicting any dynamically-feasible state the human could reach via the

FRS enables the robot to avoid all potential collisions. In practice this unfortunately

leads to overly conservative robot behavior. Not only does it assume that the human

could go anywhere, but this also does not inherently account for the robot’s ability to take

safety maneuvers in response to the human behavior. Addressing the former issue (of

modelling the human as able to go anywhere) is an active area of study [67, 14]. The

later issue is something that game-theory and the BRS can help us handle. The multi-

agent BRS accounts for how the robot can take evasive maneuvers to avoid an adversarial,

collision-seeking human. While this is less conservative because now robot can react,

it still models the human as an adversary who is willing to exert full control authority

to antagonize the robot, which is still too pessimistic of a model for many human-robot

interaction settings. Reducing conservatism of the human predictions while maintaining

robustness is an active area of research, and one of the main subjects of this thesis.

Physics-based. These approaches use a physics-based dynamics model of the human

and assume access to a simple control scheme. Together, these two enable the forward

simulation of state trajectories. For example, a simple control scheme could be to assume

CHAPTER 2. BACKGROUND AND PRELIMINARIES 40

the agent will continue moving with a constant velocity or constant acceleration. One

such simple but foundational method is the reciprocal velocity obstacle [215]. However,

the main challenge here is that these models typically only apply to low-dimensional

systems and potentially fail to capture longer-horizon human reasoning (e.g., goal-driven

behavior) or cooperative / adversarial multi-agent behavior.

Pattern-based. Popularized by the machine learning and computer vision communities,

pattern-based methods leverage the availability of large datasets of human behavior (e.g.,

human driving data). These approaches fit different function approximators (such as

neural networks (NNs) [188] or Gaussian Mixture Models (GMMs) [127]) to predict future

state and action trajectories of the human conditioned on past snippets of behavior. These

are particularly popular in industry, with AV companies like Waymo releasing an ever

increasing quantity of pattern-based predictor variants [44, 232, 212]. An open challenge

with these methods is their poor sample efficiency and their lack of robustness to out-of-

distribution inputs and tail events.

Planning-based. Planning-based methods model the human as a rational actor, minimiz-

ing their internal objective function via an optimization or planning procedure. Unfor-

tunately, the assumption that humans are perfect optimizers is quite strict. Instead, an

alternative model captures human decision-making as noisily-optimal. In other words,

these planning-based models capture that people will most often make decisions that

maximize their objective. These rationality-based models have roots in econometrics and

mathematical psychology, but have now been widely used throughout robotics to model

how people behave in various contexts. One such model used throughout this disserta-

tion is the Boltzmann-rational model3 of human behavior [21, 237]. If the human is deciding

on an entire control trajectory, u𝐻 , then the Boltmann-rational model [237] assigns expo-

nentially more probability to the human executing u𝐻 if it is assigned high utility by the

function 𝐸:

𝑃(u𝐻 | 𝑥) =
𝑒𝐸(𝑥,u𝐻)∫

U𝑇−1

0

𝑒𝐸(𝑥,ũ)𝑑ũ
. (2.89)

In general, 𝐸 can take many forms, but perhaps the easiest form to understand is the

cumulative reward along the human’s trajectory: 𝐸(𝑥, u𝐻) :=
∑𝑇−1

𝑡=0
𝑟(𝑥𝑡 , 𝑢𝑡

𝐻
)+ℓ (𝑥𝑇). Alter-

natively, if we seek to model the one-step, noisily-optimal human decision-making [173],

we can use the state-action value 𝑄 to obtain:

𝑃(𝑢𝐻 | 𝑥) =
𝑒𝑄(𝑥,𝑢𝐻)∫

𝒰𝐻
𝑒𝑄(𝑥,𝑢)𝑑𝑢

. (2.90)

Note that the models above do not capture how the human’s controls 𝑢𝐻 depend on the

robot’s controls. Thankfully, game-theoretic models are also studied as part of planning-

based models, and extensions of the above equations which account for the human reaction

3
This model can be thought of as a special case of Luce’s choice rule [149].

CHAPTER 2. BACKGROUND AND PRELIMINARIES 41

to the robot actions are straightforward to formulate. These predictive models exhibit more

stable behavior when faced with out-of-distribution data [205], but they are still highly

sensitive to the right model design (e.g., model of the human’s cost function, choice of

information-pattern between the human and robot, etc.).

42

Part I

Safe Robot Navigation Despite Imperfect
Human Models

Part I focuses on safe robot navigation around humans when the robot’s predictive

human model may be misspecified. Though there has been much recent work in building

predictive human models, no model is ever perfect: a person can always move unexpect-

edly, in a way that is not predicted or not assigned sufficient probability. Even if robot

is maintaining uncertainty over various aspects of the human’s behavior, a misspecified

hypothesis space will not allow a robot to correctly update its human model because no

aspect of the model can explain the human’s behavior. In such cases, the robot may plan

trajectories that appear safe but, in fact, lead to collision. The core idea in Part I is: rather

than trust a model’s predictions blindly, the robot should use the model’s current predic-

tive accuracy to inform the degree of confidence in its future predictions. In this line of

work, we propose confidence-aware human models for safe robot planning. We quantify the

notion of confidence-awareness by enabling the robot to infer online if it’s human model

could ever evolve to well-explain the observed human data. Coupling this idea with mo-

tion planning algorithms, we enable robots like autonomous cars, quadcopters, and small

ground robots to automatically adapt their behavior around people from conservative to

efficient based on estimated model confidence.

43

Chapter 3

Confidence-aware Human Models for
Robot Planning

This chapter is based on the papers “Confidence-aware motion prediction for real-time collision

avoidance” [77] and “Probabilistically Safe Robot Planning with Confidence-Based Human Pre-

dictions” [74], written in collaboration with Jaime Fisac, David Fridovich-Keil, Sylvia Herbert,

Steven Wang, Claire Tomlin, and Anca Dragan.

Figure 3.1: When planning around humans, accurate predictions of human motion (visualized here pink

and blue, representing high and low probability respectively) are an essential prerequisite for safety. Unfor-

tunately, these approaches may fail to explain all observed motion at runtime (e.g. human avoids unmodeled

spill on the ground), leading to inaccurate predictions, and potentially, collisions (left). Our method ad-

dresses this by updating its predictive model confidence in real time (right), leading to more conservative

motion planning in circumstances when predictions are known to be suspect.

Motion planning serves a key role in robotics, enabling robots to automatically compute

trajectories that achieve the specified objectives while avoiding unwanted collisions. In

many situations of practical interest, such as autonomous driving and UAV navigation, it

is important that motion planning account not just for the current state of the environment,

but also for its predicted future state. Often, certain objects in the environment may move

in active, complex patterns that cannot be readily predicted using straightforward physics

CHAPTER 3. CONFIDENCE-AWARE HUMAN MODELS FOR ROBOT PLANNING 44

models; we shall refer to such complex moving objects as agents. Examples of agents

considered in this work include pedestrians and human-driven vehicles. Predicting the

future state of these agents is generally a difficult problem. Some of the key challenges in-

clude unclear and varying intents of other agents, mismatches between dynamics models

and reality, incomplete sensor information, and interaction effects.

One popular approach to addressing the challenge of a priori unknown agent intent

is to use rule-based or data-driven algorithms to predict individual trajectories for each

agent, as in [190]. Alternatively, [238], [23], and [120] explicitly predict an agent’s full state

distribution over time; this representation may be better suited to capturing uncertainty

in an agent’s dynamics and the environment itself. [220] and [73] pose the prediction

problem game-theoretically to model coupled human-robot interaction effects explicitly.

Unfortunately, a significant problem still remains: if an agent suddenly moves in a

way that is not predicted, or not assigned sufficient probability, the robot may not react

appropriately. For example, in Fig. 3.1 a pedestrian is walking around an obstacle which

the robot, a quadcopter, cannot detect. To the robot, such behavior may be assigned

very low probability, which could lead the robot to plan a dangerous trajectory. In this

particular example, this inaccuracy caused the quadcopter to collide with the pedestrian

(Fig. 3.1, left).

To prepare for this eventuality, we introduce the idea of confidence-aware prediction. We

argue that, in addition to predicting the future state of an agent, it is also crucial for a

robot to assess the quality of the mechanism by which it is generating those predictions.

That is, a robot should reason about how confident it is in its predictions of other agents

before attempting to plan future motion. For computational efficiency, the quadcopter

uses a simplified model of pedestrian dynamics and decision making. Thus equipped, it

generates a time-varying probability distribution over the future state of the pedestrian,

and plans trajectories to a pre-specified goal that maintain a low probability of collision.

Fig. 3.1 (right) illustrates how this approach works in practice. The quadcopter maintains

a Bayesian belief over its prediction confidence. As soon as the pedestrian moves in a

way that was assigned low probability by the predictive model, the quadcopter adjusts

its belief about the accuracy of that model. Consequently, it is less certain about what

the pedestrian will do in the future. This leads the quadcopter’s onboard motion planner,

which attempts to find efficient trajectories with low probability of collision, to generate

more cautious—and perhaps less efficient—motion plans.

In order to improve the robustness of generated motion plans, we employ the recent

FaSTrack framework from [95] for fast and safe motion planning and tracking. FaSTrack

quantifies the maximum possible tracking error between a high-order dynamical model of

the physical robot and the (potentially lower-order) dynamical model used by its motion

planner. Solving an offline Hamilton-Jacobi reachability problem yields a guaranteed

tracking error bound and the corresponding safety controller. These may be used by an

out-of-the-box real-time motion planning algorithm to facilitate motion plans with strong

runtime collision-avoidance guarantees.

The remainder of this work is organized as follows. Section 3.1 places this work

CHAPTER 3. CONFIDENCE-AWARE HUMAN MODELS FOR ROBOT PLANNING 45

in the context of existing literature in human motion modeling and prediction, as well

as robust motion planning. Section 3.2 frames the prediction and planning problems

more formally, and introduces a running example used throughout the work. Section 3.3

presents our main contribution: confidence-aware predictions. Section 3.4 showcases

confidence-aware predictions in operation in several examples. Section 3.5 describes

the application of the robust motion planning framework from FaSTrack to this setting,

in which predictions are probabilistic. Section 3.6 explores a connection between our

approach and reachability theory. Section 3.7.1 presents experimental results from a

hardware demonstration. Finally, Section 3.8 concludes with a discussion of some of the

limitations of our work and how they might be addressed in specific applications, as well

as suggestions for future research.

3.1 Prior Work

3.1.1 Human Modeling and Prediction
One common approach for predicting human actions is to collect data from real-world

scenarios and train a machine learning model via supervised learning. Such techniques

use the human’s current state, and potentially her prior state and action history, to predict

future actions directly. [8], [62], [123], [133], and [94] demonstrate the effectiveness of this

approach for inference and planning around human arm motion. Additionally, [94] focus

on multi-step tasks like assembly, and [190] and [67] address the prediction problem for

human drivers.

Rather than predicting actions directly, an alternative is for the robot to model the

human as a rational agent seeking to maximize an unknown objective function. The

human’s actions up to a particular time may be viewed as Bayesian evidence from which

the robot may infer the parameters of that objective. Assuming that the human seeks to

maximize this objective in the future, the robot can predict her future movements, e.g.

[162], [21], [238], and [13]. In this paper, we build on this work by introducing a principled

online technique for estimating confidence in such a learned model of human motion.

3.1.2 Safe Robot Motion Planning
Once armed with a predictive model of the human motion, the robot may leverage

motion planning methods that plan around uncertain moving obstacles and generate

real-time dynamically feasible and safe trajectories.

To avoid moving obstacles in real time, robots typically employ reactive and/or path-

based methods. Reactive methods directly map sensor readings into control, with no

memory involved, e.g. [29]. Path-based methods such as rapidly-exploring random trees

from [110] and A* from [92] find simple kinematic paths through space and, if necessary,

time. These path-based methods of planning are advantageous in terms of efficiency, yet,

CHAPTER 3. CONFIDENCE-AWARE HUMAN MODELS FOR ROBOT PLANNING 46

while they have in some cases been combined with probabilistically moving obstacles as

in [10, 238], they do not consider the endogenous dynamics of the robot or exogenous

disturbances such as wind. As a result, the robot may deviate from the planned path

and potentially collide with obstacles. It is common for these plans to try to avoid

obstacles by a heuristic margin of error. [95, 78] propose FaSTrack, a recent algorithm that

provides a guaranteed tracking error margin and corresponding error-feedback controller

for dynamic systems tracking a generic planner in the presence of bounded external

disturbance. Our work builds upon FaSTrack to create an algorithm that can safely and

dynamically navigate around uncertain moving obstacles in real time.

3.2 Problem Setup
We consider a single mobile robot operating in a shared space with a single human

agent (e.g. a pedestrian or human-driven car). For simplicity, we presume that the robot

has full knowledge of its own state and that of the human, although both would require

online estimation in practice. As we present each formal component of this problem, we

will provide a concrete illustration using a running example in which a quadcopter is

navigating around a pedestrian.

3.2.1 Dynamical System Models and Safety
We will model the motion of both the human and the robot as the evolution of two

dynamical systems. Let the state of the human be 𝑥𝐻 ∈ R𝑛𝐻 , where 𝑛𝐻 is the dimension

of the human state space. We similarly define the robot’s state, for planning purposes, as

𝑥𝑅 ∈ R𝑛𝑅 . In general, these states could represent the positions and velocities of a mobile

robot and a human in a shared environment, the kinematic configurations of a human

and a robotic manipulator in a common workspace, or the positions, orientations, and

velocities of human-driven and autonomous vehicles in an intersection. We express the

evolution of these states over time as a family of ordinary differential equations:

¤𝑥𝐻 = 𝑓𝐻(𝑥𝐻 , 𝑢𝐻) , ¤𝑥𝑅 = 𝑓𝑅(𝑥𝑅 , 𝑢𝑅) (3.1)

where 𝑢𝐻 ∈ R𝑚𝐻
and 𝑢𝑅 ∈ R𝑚𝑅

are the control actions of the human and robot, respectively.

Running example: We introduce a running example for illustration purposes throughout the

paper. In this example we consider a small quadcopter that needs to fly to goal location 𝑔𝑅 ∈ R3

in a room where a pedestrian is walking. For the purposes of planning, the quadcopter’s 3D state

is given by its position in space 𝑥𝑅 = [𝑝𝑥 , 𝑝𝑦 , 𝑝𝑧], with velocity controls assumed decoupled in

each spatial direction, up to 𝑣𝑅 = 0.25 m/s. The human can only move by walking and therefore

her state is given by planar coordinates 𝑥𝐻 = [ℎ𝑥 , ℎ𝑦] evolving as ¤𝑥𝐻 = [𝑣𝐻 cos 𝑢𝐻 , 𝑣𝐻 sin 𝑢𝐻].
Intuitively, we model the human as moving with a fixed speed and controlling her heading angle.

At any given time, the human is assumed to either move at a leisurely walking speed (𝑣𝐻 ≈ 1 m/s)

or remain still (𝑣𝐻 ≈ 0).

CHAPTER 3. CONFIDENCE-AWARE HUMAN MODELS FOR ROBOT PLANNING 47

Ultimately, the robot needs to plan and execute an efficient trajectory to a pre-specified

goal state (𝑔𝑅), without colliding with the human. We define the keep-out set 𝒦 ⊂
R𝑛𝐻 × R𝑛𝑅 as the set of joint robot-human states to be avoided (for example, because they

imply physical collisions). To avoid reaching this set, the robot must reason about the

human’s future motion when constructing its own motion plan.

Running example: In our quadcopter-avoiding-pedestrian example,𝒦 consists of joint robot-

human states in which the quadcopter is flying within a square of side length 𝑙 = 0.3 m centered

around the human’s location, while at any altitude, as well as any joint states in which the robot is

outside the environment bounds defined as a box with a square base of side 𝐿 = 3.66 m and height

𝐻 = 2 m, regardless of the human’s state.

3.2.2 Robust Robot Control
Provided an objective and a dynamics model, the robot must generate a motion plan

which avoids the keep-out set 𝒦 . Unfortunately, this safety requirement is difficult to

meet during operation for two main reasons:

1. Model mismatch. The dynamical system model 𝑓𝑅 will never be a perfect representa-

tion of the real robot. This mismatch could lead to unintended collision.

2. Disturbances. Even with a perfect dynamics model, there may be unobserved, ex-

ternal “disturbance” inputs such as wind or friction. Without accounting for these

disturbances, the system is not guaranteed to avoid𝒦 , even if the planned trajectory

is pointwise collision-free.

To account for modelling error and external disturbances, we could in principle de-

sign a higher fidelity dynamical model directly in a robust motion planning framework.

Unfortunately, however, real-time trajectory optimization in high dimensions can be com-

putationally burdensome, particularly when we also require some notion of robustness to

external disturbance. Ideally we would like to enjoy the computational benefits of plan-

ning with a lower-fidelity model while enforcing the safety constraints induced by the

higher-fidelity model. To characterize this model mismatch, we consider a higher fidelity

and typically higher-order dynamical representation of the robot, with state representa-

tion 𝑠𝑅 ∈ R𝑛𝑆 . This dynamical model will also explicitly account for external disturbances

as unknown bounded inputs, distinct from control inputs. In order to map between this

higher fidelity “tracking” state 𝑠𝑅 and the lower fidelity “planning” state 𝑥𝑅, we shall

assume a known projection operator 𝜋 : R𝑛𝑆 → R𝑛𝑅 . Fortunately, we can plan in the

lower-dimensional state space at runtime, and guarantee robust collision avoidance via

an offline reachability analysis that quantifies the effects of model mismatch and external

disturbance. This framework, called FaSTrack and first proposed by [95], is described in

further detail in Section 3.5.

Running example: We model our quadcopter with the following flight dynamics (in the

near-hover regime, at zero yaw with respect to a global coordinate frame):

CHAPTER 3. CONFIDENCE-AWARE HUMAN MODELS FOR ROBOT PLANNING 48

¤𝑝𝑥
¤𝑝𝑦
¤𝑝𝑧

 =

𝑣𝑥
𝑣𝑦
𝑣𝑧

 ,

¤𝑣𝑥
¤𝑣𝑦
¤𝑣𝑧

 =

𝑎𝑔 tan 𝑢�
−𝑎𝑔 tan 𝑢𝜙
𝑢𝑇 − 𝑎𝑔

 , (3.2)

where [𝑝𝑥 , 𝑝𝑦 , 𝑝𝑧] is the quadcopter’s position in space and [𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧] is its velocity expressed in

the fixed global frame. We model its control inputs as thrust acceleration 𝑢𝑇 and attitude angles

(roll 𝑢𝜙 and pitch 𝑢�), and denote the acceleration due to gravity as 𝑎𝑔 . The quadcopter’s motion

planner generates nominal kinematic trajectories in the lower-dimensional [𝑝𝑥 , 𝑝𝑦 , 𝑝𝑧] position

state space. Therefore we have a linear projection map 𝜋(𝑠𝑅) = [𝐼3, 03]𝑠𝑅, that is, 𝑥𝑅 retains the

position variables in 𝑠𝑅 and discards the velocities.

3.2.3 Predictive Human Model
In order to predict the human’s future motion, the robot uses its internal model of

human dynamics, 𝑓𝐻 . Under this modeling assumption, the human’s future trajectory

depends upon the choice of control input over time, 𝑢𝐻(·). Extensive work in econometrics

and cognitive science, such as [217, 149, 21], has shown that human behavior—that is, 𝑢𝐻—

can be well modeled by utility-driven optimization. Thus, the robot models the human

as optimizing a reward function, 𝑟𝐻(𝑥𝐻 , 𝑢𝐻 ;�), that depends on the human’s state and

action, as well as a set of parameters �. This reward function could be a linear combination

of features as in many inverse optimal control implementations (where the goal or feature

weighting � must be learned, either online or offline), or more generally learned through

function approximators such as deep neural networks, where � are the trained weights as

in [70].

We assume that the robot has a suitable human reward function 𝑟𝐻 , either learned

offline from prior human demonstrations or otherwise encoded by the system designers.

Thus endowed with 𝑟𝐻 , the robot can model the human’s choice of control action as

a probability distribution over actions conditioned on state. Under maximum-entropy

assumptions ([237]) inspired by noisy-rationality decision-making models ([21]), the robot

models the human as more likely to choose (discrete) actions 𝑢𝐻 with high expected utility,

in this case the state-action value (or 𝑄-value):

𝑃(𝑢𝐻 | 𝑥𝐻 ; 𝛽, �) = 𝑒𝛽𝑄𝐻(𝑥𝐻 ,𝑢𝐻 ;�)∑
�̃� 𝑒

𝛽𝑄𝐻(𝑥𝐻 ,�̃�;�) . (3.3)

We use a temporally- and spatially-discretized version of human dynamics, 𝑓𝐻 . These

discrete-time dynamics may be found by integrating 𝑓𝐻 over a fixed time step of Δ𝑡 with

fixed control 𝑢𝐻 over the interval. Section ?? provides further details on this discretization.

Running example: The quadcopter’s model of the human assumes the human intends

to reach some target location 𝑔𝐻 ∈ R2
in a straight line. The human’s reward function is

given by the distance traveled over time step Δ𝑡, i.e. 𝑟𝐻(𝑥𝐻 , 𝑢𝐻 ; 𝑔𝐻) = −𝑣𝐻Δ𝑡 , and human

trajectories are constrained to terminate at 𝑔𝐻 . The state-action value, parameterized by � = 𝑔𝐻 ,

CHAPTER 3. CONFIDENCE-AWARE HUMAN MODELS FOR ROBOT PLANNING 49

captures the optimal cost of reaching 𝑔𝐻 from 𝑥𝐻 when initially applying 𝑢𝐻 for a duration Δ𝑡:

𝑄𝐻(𝑥𝐻 , 𝑢𝐻 ; 𝑔𝐻) = −𝑣𝐻Δ𝑡 − ∥𝑥𝐻 + 𝑣𝐻Δ𝑡[cos 𝑢𝐻 , sin 𝑢𝐻]⊤ − 𝑔𝐻 ∥2.
Often, the coefficient 𝛽 is termed the rationality coefficient, since it quantifies the degree

to which the robot expects the human’s choice of control to align with its model of utility.

For example, taking 𝛽 ↓ 0 yields a model of a human who appears “irrational,” choosing

actions uniformly at random and completely ignoring the modeled utility. At the other

extreme, taking 𝛽 ↑ ∞ corresponds to a “perfectly rational” human, whose actions exactly

optimize the modeled reward function. As we will see in Section ??, 𝛽 can also be viewed

as a measure of the robot’s confidence in the predictive accuracy of 𝑄𝐻 .

Note that 𝑄𝐻(𝑥𝐻 , 𝑢𝐻 ;�) only depends on the human state and action and not on the

robot’s. Thus far, we have intentionally neglected discussion of human-robot interaction

effects. These effects are notoriously difficult to model, and the community has devoted a

significant effort to building and validating a variety of models, e.g. [214], [187]. In that

spirit, we could have chosen to model human actions 𝑢𝐻 as dependent upon robot state

𝑥𝑅 in (3.3), and likewise defined 𝑄𝐻 to depend upon 𝑥𝑅. This extended formulation is

sufficiently general as to encompass all possible (Markov) interaction models. However, in

this work we explicitly do not model these interactions; indeed, one of the most important

virtues of our approach is its robustness to precisely these sorts of modeling errors.

3.2.4 Probabilistically Safe Motion Planning
Ideally, the robot’s motion planner should generate trajectories that reach a desired

goal state efficiently, while maintaining safety. More specifically, in this context “safety”

indicates that the physical system will never enter the keep-out set 𝒦 during operation,

despite human motion and external disturbances. That is, we would like to guarantee that

(𝜋(𝑠𝑅), 𝑥𝐻) ∉ 𝒦 for all time.

To make this type of strong, deterministic, a priori safety guarantee requires the robot

to avoid the set of all human states 𝑥𝐻 which could possibly be occupied at a particular

time, i.e. the human’s forward reachable set. If the robot can find trajectories that are safe

for any possible human trajectory then there is no need to predict the human’s next action.

Unfortunately, the forward reachable set of the human often encompasses such a large

volume of the workspace that it is impossible for the robot to find a guaranteed safe

trajectory to the goal state. This motivates refining our notion of prediction: rather than

reasoning about all the places where the human could be, the robot can instead reason

about how likely the human is to be at each location. This probabilistic reasoning provides

a guide for planning robot trajectories with a quantitative degree of safety assurance.

Our probabilistic model of human control input (3.3) coupled with dynamics model 𝑓𝐻
allows us to compute a probability distribution over human states for every future time.

By relaxing our conception of safety to consider only collisions which might occur with

sufficient probability 𝑃
th

, we dramatically reduce the effective volume of this set of future

states to avoid. In practice, 𝑃
th

should be chosen carefully by a system designer in order

to trade off overall collision probability with conservativeness in motion planning.

CHAPTER 3. CONFIDENCE-AWARE HUMAN MODELS FOR ROBOT PLANNING 50

The proposed approach in this paper follows two central steps to provide a quantifiable,

high-confidence collision avoidance guarantee for the robot’s motion around the human.

In Section 3.3 we present our proposed Bayesian framework for reasoning about the

uncertainty inherent in a model’s prediction of human behavior. Based on this inference,

we demonstrate how to generate a real-time probabilistic prediction of the human’s motion

over time. Next, in Section 3.5 we extend a state-of-the-art, provably safe, real-time robotic

motion planner to incorporate our time-varying probabilistic human prediction.

3.3 Confidence-Aware Human Motion Prediction
Any approach to human motion prediction short of computing a full forward reachable

set must, explicitly or implicitly, reflect a model of human decision-making. In this work,

we make that model explicit by assuming that the human chooses control actions in a

Markovian fashion according to the probability distribution (3.3). Other work in the liter-

ature, such as [190], aims to learn a generative probabilistic model for human trajectories;

implicitly, this training procedure distills a model of human decision making. Whether

explicit or implicit, these models are by nature imperfect and liable to make inaccurate

predictions eventually. One benefit of using an explicit model of human decision making,

such as (3.3), is that we may reason directly and succinctly about its performance online.

In particular, the entropy of the human control distribution in (3.3) is a decreasing

function of the parameter 𝛽. High values of 𝛽 place more probability mass on high-utility

control actions 𝑢𝐻 , whereas low values of 𝛽 spread the probability mass more evenly

between different control inputs, regardless of their modeled utility 𝑄𝐻 . Therefore, 𝛽
naturally quantifies how well the human’s motion is expected to agree with the notion of

optimality encoded in 𝑄𝐻 . The commonly used term “rationality coefficient", however,

seems to imply that discrepancies between the two indicate a failure on the human’s part

to make the “correct" decisions, as encoded by the modeled utility. Instead, we argue

that these inevitable disagreements are primarily a result of the model’s inability to fully

capture the human’s behavior. Thus, instead of conceiving of 𝛽 as a rationality measure,

we believe that 𝛽 can be given a more pragmatic interpretation related to the accuracy with

which the robot’s model of the human is able to explain the human’s motion. Consistently,

in this paper, we refer to 𝛽 as model confidence.

An important related observation following from this interpretation of 𝛽 is that the pre-

dictive accuracy of a human model is likely to change over time. For example, the human

may change their mind unexpectedly, or react suddenly to some aspect of the environment

that the robot is unaware of. Therefore, we shall model 𝛽 as an unobserved, time-varying

parameter. Estimating it in real-time provides us with a direct, quantitative summary of

the degree to which the utility model 𝑄𝐻 explains the human’s current motion. To do

this, we maintain a Bayesian belief about the possible values of 𝛽. Initially, we begin with

a uniform prior over 𝛽 and over time this distribution evolves given measurements of the

human’s state and actions.

CHAPTER 3. CONFIDENCE-AWARE HUMAN MODELS FOR ROBOT PLANNING 51

3.3.1 Real-time Inference of Model Confidence
We reason about the model confidence 𝛽 as a hidden state in a hidden Markov model

(HMM) framework. The robot starts with a prior belief 𝑏0

− over the initial value of 𝛽. In

this work, we use a uniform prior, although that is not strictly necessary. At each discrete

time step 𝑘 ∈ {0, 1, 2, . . . }, it will have some belief about model confidence 𝑏𝑘−(𝛽). 1 After

observing a human action 𝑢𝑘
𝐻

, the robot will update its belief to 𝑏𝑘+ by applying Bayes’

rule.

The hidden state may evolve between subsequent time steps, accounting for the im-

portant fact that the predictive accuracy of the human model may change over time as

unmodeled factors in the human’s behavior become more or less relevant. Since by defini-

tion we do not have access to a model of these factors, we use a naive “𝜖-static” transition

model: at each time 𝑘, 𝛽 may, with some probability 𝜖, be re-sampled from the initial

distribution 𝑏0

−, and otherwise retains its previous value. We define the belief over the

next value of 𝛽 (denoted by 𝛽′) as an expectation of the conditional probability 𝑃(𝛽′ | 𝛽),
i.e. 𝑏𝑘−(𝛽′) := E𝛽∼𝑏𝑘−1

+
[𝑃(𝛽′ | 𝛽)]. Concretely, this expectation may be computed as

𝑏𝑘−(𝛽′) = (1 − 𝜖)𝑏𝑘−1

+ (𝛽′) + 𝜖𝑏0

−(𝛽′) . (3.4)

By measuring the evolution of the human’s state 𝑥𝐻 over time, we assume that, at

every time step 𝑘, the robot is able to observe the human’s control input 𝑢𝑘
𝐻

. This observed

control may be used as evidence to update the robot’s belief 𝑏𝑘− about 𝛽 over time via a

Bayesian update:

𝑏𝑘+(𝛽) =
𝑃(𝑢𝑘

𝐻
| 𝑥𝑘

𝐻
; 𝛽, �)𝑏𝑘−(𝛽)∑

�̃� 𝑃(𝑢𝑘𝐻 | 𝑥
𝑘
𝐻

; �̃�, �)𝑏𝑘−(�̃�)
, (3.5)

with 𝑏𝑘+(𝛽) := 𝑃(𝛽 | 𝑥0:𝑘
𝐻
, 𝑢0:𝑘

𝐻
) for 𝑘 ∈ {0, 1, ...}, and 𝑃(𝑢𝑘

𝐻
| 𝑥𝑘

𝐻
; 𝛽, �) given by (3.3).

It is critical to be able to perform this update rapidly to facilitate real-time operation;

this would be difficult in the original continuous hypothesis space 𝛽 ∈ [0,∞), or even

in a large discrete set. Fortunately, our software examples in Section 3.4 and hardware

demonstration in Section 3.7.1 suggest that maintaining a Bayesian belief over a relatively

small set of 𝑁𝛽 = 5 discrete values of 𝛽 distributed on a log scale achieves significant

improvement relative to using a fixed value.

The “𝜖-static” transition model leads to the desirable consequence that old observa-

tions of the human’s actions have a smaller influence on the current model confidence

distribution than recent observations. In fact, if no new observations are made, suc-

cessively applying time updates asymptotically contracts the belief towards the initial

distribution, that is, 𝑏𝑘−(·) → 𝑏0

−(·). The choice of parameter 𝜖 effectively controls the rate

of this contraction, with higher 𝜖 leading to more rapid contraction.

1
To avoid confusion between discrete and continuous time, we shall use superscripts to denote discrete

time steps (e.g. 𝑥𝑘
𝐻

) and parentheticals to denote continuous time (e.g. 𝑥𝐻(𝑡)).

CHAPTER 3. CONFIDENCE-AWARE HUMAN MODELS FOR ROBOT PLANNING 52

3.3.2 Human motion prediction
Equipped with a belief over 𝛽 at time step 𝑘, we are now able to propagate the human’s

state distribution forward to any future time via the well-known Kolmogorov forward

equations, recursively. In particular, suppose that we know the probability that the

human is in each state 𝑥�
𝐻

at some future time step �. We know that (according to our

utility model) the probability of the human choosing control 𝑢�
𝐻

in state 𝑥�
𝐻

is given by (3.3).

Accounting for the otherwise deterministic dynamics model 𝑓𝐻 , we obtain the following

expression for the human’s state distribution at the following time step � + 1:

𝑃(𝑥�+1

𝐻 ; 𝛽, �) =
∑
𝑥�
𝐻
,𝑢�
𝐻

𝑃(𝑥�+1

𝐻 | 𝑥�𝐻 , 𝑢
�
𝐻 ; 𝛽, �) · (3.6)

𝑃(𝑢�𝐻 | 𝑥
�
𝐻 ; 𝛽, �)𝑃(𝑥�𝐻 ; 𝛽, �) ,

for a particular choice of 𝛽. Marginalizing over 𝛽 according to our belief at the current

step time 𝑘, we obtain the overall occupancy probability distribution at each future time

step �:

𝑃(𝑥�𝐻 ;�) = E𝛽∼𝑏𝑘𝑃(𝑥�𝐻 ; 𝛽, �) . (3.7)

Note that (3.6) is expressed more generally than is strictly required. Indeed, because

the only randomness in dynamics model 𝑓𝐻 originates from the human’s choice of control

input 𝑢𝐻 , we have 𝑃(𝑥�+1

𝐻
| 𝑥�

𝐻
, 𝑢�

𝐻
; 𝛽, �) = 1{𝑥�+1

𝐻
= 𝑓𝐻(𝑥�𝐻 , 𝑢

�
𝐻
)}.

3.3.3 Model Confidence with Auxiliary Parameter Identification
Thus far, we have tacitly assumed that the only unknown parameter in the human

utility model (3.3) is the model confidence, 𝛽. However, often one or more of the auxiliary

parameters � are also unknown. These auxiliary parameters could encode one or more

human goal states or intents, or other characteristics of the human’s utility, such as her

preference for avoiding parts of the environment. Further, much like model confidence,

they may change over time.

In principle, it is possible to maintain a Bayesian belief over 𝛽 and � jointly. The

Bayesian update for the hidden state (𝛽, �) is then given by

𝑏𝑘+(𝛽, �) =
𝑃(𝑢𝑘

𝐻
| 𝑥𝑘

𝐻
; 𝛽, �)𝑏𝑘−(𝛽, �)∑

�̃�,�̃ 𝑃(𝑢𝑘𝐻 | 𝑥
𝑘
𝐻

; �̃�, �̃)𝑏𝑘−(�̃�, �̃)
, (3.8)

with 𝑏𝑘+(𝛽, �) := 𝑃(𝛽, � | 𝑥0:𝑘
𝐻
, 𝑢0:𝑘

𝐻
) the running posterior and 𝑏𝑘−(𝛽, �) := 𝑃(𝛽, � | 𝑥0:𝑘−1

𝐻
, 𝑢0:𝑘−1

𝐻
)

the prior at time step 𝑘.

This approach can be practical for parameters taking finitely many values from a

small, discrete set, e.g. possible distinct modes for a human driver (distracted, cautious,

CHAPTER 3. CONFIDENCE-AWARE HUMAN MODELS FOR ROBOT PLANNING 53

aggressive). However, for certain scenarios or approaches it may not be practical to

maintain a full Bayesian belief on the parameters�. In such cases, it is reasonable to replace

the belief over � with a point estimate �̄, such as the maximum likelihood estimator or

the mean, and substitute that estimate into (3.6). Depending on the complexity of the

resulting maximum likelihood estimation problem, it may or may not be computationally

feasible to update the parameter estimate �̄ at each time step. Fortunately, even when

it is computationally expensive to estimate �̄, we can leverage our model confidence as

an indicator of when re-estimating these parameters may be most useful. That is, when

model confidence degrades that may indicate poor estimates of �̄.

3.4 Prediction Examples
We illustrate these inference steps with two sets of examples: our running pedestrian

example and a simple model of a car.

3.4.1 Pedestrian model (running example)
So far, we have presented a running example of a quadcopter avoiding a human. We

use a deliberately simple, purely kinematic model of continuous-time human motion:

¤𝑥𝐻 =

[¤ℎ𝑥
¤ℎ𝑦

]
=

[
𝑣𝐻 cos 𝑢𝐻
𝑣𝐻 sin 𝑢𝐻

]
. (3.9)

However, as discussed in Section 3.2.3, the proposed prediction method operates in

discrete time (and space). The discrete dynamics corresponding to (3.9) are given by

𝑥𝑘+1

𝐻 − 𝑥𝑘𝐻 ≡ 𝑥𝐻(𝑡 + Δ𝑡) − 𝑥𝐻(𝑡) (3.10)

=

[
𝑣𝐻Δ𝑡 cos 𝑢𝐻(𝑡)
𝑣𝐻Δ𝑡 sin 𝑢𝐻(𝑡)

]
,

for a time discretization of Δ𝑡.

3.4.2 Dubins car model
To emphasize the generality of our method, we present similar results for a different

application domain: autonomous driving. We will model a human-driven vehicle as a

dynamical system whose state 𝑥𝐻 evolves as

¤𝑥𝐻 =

¤ℎ𝑥
¤ℎ𝑦
¤ℎ𝜙

 =

𝑣𝐻 cos ℎ𝜙
𝑣𝐻 sin ℎ𝜙

𝑢𝐻

 . (3.11)

CHAPTER 3. CONFIDENCE-AWARE HUMAN MODELS FOR ROBOT PLANNING 54

Observe that, while (3.11) appears very similar to (3.9), in this Dubins car example the

angle of motion is a state, not a control input.

We discretize these dynamics by integrating (3.11) from 𝑡 to 𝑡+Δ𝑡, assuming a constant

control input 𝑢𝐻 :

𝑥𝑘+1

𝐻 − 𝑥𝑘𝐻 ≡ 𝑥𝐻(𝑡 + Δ𝑡) − 𝑥𝐻(𝑡) = (3.12)
𝑣𝐻
𝑢𝐻(𝑡)

(
sin

(
ℎ𝜙(𝑡) + 𝑢𝐻(𝑡)Δ𝑡

)
− sin(ℎ𝜙(𝑡))

)
− 𝑣𝐻
𝑢𝐻(𝑡)

(
cos

(
ℎ𝜙(𝑡) + 𝑢𝐻(𝑡)Δ𝑡

)
− cos(ℎ𝜙(𝑡))

)
𝑢𝐻Δ𝑡

For a specific goal position 𝑔 = [𝑔𝑥 , 𝑔𝑦], the 𝑄-value corresponding to state-action

pair (𝑥𝐻 , 𝑢𝐻) and reward function 𝑟𝐻(𝑥𝐻 , 𝑢𝐻) = −𝑣𝐻Δ𝑡 (until the goal is reached) may be

found by solving a shortest path problem offline.

3.4.3 Accurate Model
First, we consider a scenario in which the robot has full knowledge of the human’s

goal, and the human moves along the shortest path from a start location to this known

goal state. Thus, human motion is well-explained by 𝑄𝐻 .

The first row of Fig. 3.2 illustrates the probability distributions our method predicts

for the pedestrian’s future state at different times. Initially, the predictions generated by

our Bayesian confidence-inference approach (right) appear similar to those generated by

the low model confidence predictor (left). However, our method rapidly discovers that

𝑄𝐻 is an accurate description of the pedestrian’s motion and generates predictions that

match the high model confidence predictor (center). The data used in this example was

collected by tracking the motion of a real person walking in a motion capture arena. See

Section 3.7.1 for further details.

Likewise, the first row of Fig. 3.3 shows similar results for a human-driven Dubins

car model (in simulation) at an intersection. Here, traffic laws provide a strong prior on

the human’s potential goal states. As shown, our method of Bayesian model confidence

inference quickly infers the correct goal and learns that the human driver is acting in

accordance with its model 𝑄𝐻 . The resulting predictions are substantially similar to the

high-𝛽 predictor. The data used in this example was simulated by controlling a Dubins

car model along a pre-specified trajectory.

3.4.4 Unmodeled Obstacle
Often, robots do not have fully specified models of the environment. Here, we showcase

the resilience of our approach to unmodeled obstacles which the human must avoid. In

this scenario, the human has the same start and goal as in the accurate model case, except

that there is an obstacle along the way. The robot is unaware of this obstacle, however,

CHAPTER 3. CONFIDENCE-AWARE HUMAN MODELS FOR ROBOT PLANNING 55

Figure 3.2: Snapshots of pedestrian trajectory and probabilistic model predictions. Top row: Pedestrian

moves from the bottom right to a goal marked as a red circle. Middle row: Pedestrian changes course to

avoid a spill on the floor. Bottom row: Pedestrian moves to one known goal, then to another, then to a

third which the robot has not modeled. The first two columns show predictions for low and high model

confidence; the third column shows the predictions using our Bayesian model confidence. For all pedestrian

videos, see: https://youtu.be/lh_E9rW-MJo

which means that in its vicinity the human’s motion is not well-explained by𝑄𝐻 , and 𝑏(𝛽)
ought to place more probability mass on higher values of 𝛽.

The second rows of Fig. 3.2 and Fig. 3.3 illustrate this type of situation for the pedestrian

https://youtu.be/lh_E9rW-MJo

CHAPTER 3. CONFIDENCE-AWARE HUMAN MODELS FOR ROBOT PLANNING 56

Figure 3.3: Snapshots of Dubins car and probabilistic predictions. Top row: Car moves straight ahead

toward one of two known goals (red arrows), staying in its lane. Middle row: Car suddenly swerves to

the left to avoid a pothole. Bottom row: Car turns to the right, away from the only known goal. The

left and center columns show results for low and high confidence predictors, respectively, and the right

column shows our approach using Bayesian inferred model confidence. For all Dubins car videos, see:

https://youtu.be/sAJKNnP42fQ

and Dubins car, respectively. In Fig. 3.2, the pedestrian walks to an a priori known goal

location and avoids an unmodeled spill on the ground. Analogously, in Fig. 3.3 the car

swerves to avoid a large pothole. By inferring model confidence online, our approach

generates higher-variance predictions of future state, but only in the vicinity of these

unmodeled obstacles. At other times throughout the episode when 𝑄𝐻 is more accurate,

our approach produces predictions more in line with the high model confidence predictor.

https://youtu.be/sAJKNnP42fQ

CHAPTER 3. CONFIDENCE-AWARE HUMAN MODELS FOR ROBOT PLANNING 57

3.4.5 Unmodeled Goal
In most realistic human-robot encounters, even if the robot does have an accurate

environment map and observes all obstacles, it is unlikely for it to be aware of all human

goals. We test our approach’s resilience to unknown human goals by constructing a

scenario in which the human moves between both known and unknown goals.

The third row of Fig. 3.2 illustrates this situation for the pedestrian example. Here, the

pedestrian first moves to one known goal position, then to another, and finally back to

the start which was not a modelled goal location. The first two legs of this trajectory are

consistent with the robot’s model of goal-oriented motion, though accurate prediction does

require the predictor to infer which goal the pedestrian is walking toward. However, when

the pedestrian returns to the start, her motion appears inconsistent with 𝑄𝐻 , skewing the

robot’s belief over 𝛽 toward zero.

Similarly, in the third row of Fig. 3.3 we consider a situation in which a car makes an

unexpected turn onto an unmapped access road. As soon as the driver initiates the turn,

our predictor rapidly learns to distrust its internal model 𝑄𝐻 and shift its belief over 𝛽
upward.

3.5 Safe Probabilistic Planning and Tracking
Given probabilistic predictions of the human’s future motion, the robot must plan

efficient trajectories which avoid collision with high probability. In order to reason robustly

about this probability of future collision, we must account for potential tracking errors

incurred by the real system as it follows planned trajectories. To this end, we build

on the recent FaSTrack framework of [95], which provides control-theoretic robust safety

certificates in the presence of deterministic obstacles, and extend it to achieve approximate

probabilistic collision-avoidance.

3.5.1 Background: Fast Planning, Safe Tracking
Recall that 𝑥𝑅 is the robot’s state for the purposes of motion planning, and that 𝑠𝑅

encodes a higher-fidelity, potentially higher-dimensional notion of state (with associated

dynamics). The recently proposed FaSTrack framework from [95] uses Hamilton-Jacobi

reachability analysis to quantify the worst-case tracking performance of the 𝑠𝑅-system

as it follows trajectories generated by the 𝑥𝑅-system. For further reading on reachability

analysis refer to [69], [158], and [25]. A byproduct of this FaSTrack analysis is an error

feedback controller that the 𝑠𝑅 system can use to achieve this worst-case tracking error. The

tracking error bound may be given to one of many off-the-shelf real-time motion planning

algorithms operating in 𝑥𝑅-space in order to guarantee real-time collision-avoidance by

the 𝑠𝑅-system.

Formally, FaSTrack precomputes an optimal tracking controller, as well as a corre-

sponding compact setℰ in the robot’s planning state space, such that

(
𝜋(𝑠𝑅(𝑡)) − 𝑥𝑅,ref

(𝑡)
)
∈ ℰ

CHAPTER 3. CONFIDENCE-AWARE HUMAN MODELS FOR ROBOT PLANNING 58

for any reference trajectory proposed by the lower-fidelity planner. This bound ℰ is a tra-

jectory tracking certificate that can be passed to an online planning algorithm for real-time

safety verification: the dynamical robot is guaranteed to always be somewhere within the

bound relative to the current planned reference point 𝑥𝑅,ref
(𝑡). This tracking error bound

may sometimes be expressed analytically; otherwise, it may be computed numerically

offline using level set methods, e.g. [157]. Equipped with ℰ, the planner can generate safe

plans online by ensuring that the entire tracking error bound around the nominal state

remains collision-free throughout the trajectory. Efficiently checking these ℰ-augmented

trajectories for collisions with known obstacles is critical for real-time performance. Note

that the planner only needs to know ℰ (which is computed offline) and otherwise requires

no explicit understanding of the high-fidelity model.

Running example: Since dynamics (3.2) are decoupled in the three spatial directions, the

bound ℰ computed by FaSTrack is an axis-aligned box of dimensions ℰ𝑥 × ℰ𝑦 × ℰ𝑧 . For further

details refer to [78].

3.5.2 Robust Tracking, Probabilistic Safety
Unfortunately, planning algorithms for collision checking against deterministic ob-

stacles cannot be readily applied to our problem. Instead, a trajectory’s collision check

should return the probability that it might lead to a collision. Based on this probability,

the planning algorithm can discriminate between trajectories that are sufficiently safe and

those that are not.

As discussed in Section 3.2.4, a safe online motion planner invoked at time 𝑡 should

continually check the probability that, at any future time 𝜏, (𝜋(𝑠𝑅(𝜏)), 𝑥𝐻(𝜏)) ∈ 𝒦 . The

tracking error bound guarantee from FaSTrack allows us to conduct worst-case analysis on

collisions given a human state 𝑥𝐻 . Concretely, if no point in the Minkowski sum {𝑥𝑅 + ℰ}
is in the collision set with 𝑥𝐻 , we can guarantee that the robot is not in collision with the

human.

The probability of a collision event for any point 𝑥𝑅(𝜏) along a candidate trajectory is

then

𝑃
coll

(
𝑥𝑅(𝜏)

)
:= 𝑃

(
(𝑥𝑅 , 𝑥𝐻) ∈ 𝒦

)
. (3.13)

Assuming worst-case tracking error bound ℰ, this quantity can be upper-bounded by

the total probability that 𝑥𝐻(𝜏) will be in collision with any of the possible robot states

�̃�𝑅 ∈ {𝑥𝑅(𝜏) + ℰ}. For each robot planning state 𝑥𝑅 ∈ R𝑛𝑅 we define the set of human

states in potential collision with the robot:

ℋℰ(𝑥𝑅) := {�̃�𝐻 ∈ R𝑛𝐻 : (3.14)

∃�̃�𝑅 ∈ {𝑥𝑅 + ℰ}, (�̃�𝑅 , �̃�𝐻) ∈ 𝒦} .
Running example: Given 𝒦 and ℰ, ℋℰ(𝑥𝑅) is the set of human positions within the

rectangle of dimensions (𝑙 + ℰ𝑥) × (𝑙 + ℰ𝑦) centered on [𝑝𝑥 , 𝑝𝑦]. A human anywhere in this

rectangle could be in collision with the quadcopter.

CHAPTER 3. CONFIDENCE-AWARE HUMAN MODELS FOR ROBOT PLANNING 59

The following result follows directly from the definition of the tracking error bound

and a union bound.

Proposition 1. The probability of a robot with worst case tracking error ℰ colliding with the

human at any trajectory point 𝑥𝑅(𝜏) is bounded above by the probability mass of 𝑥𝐻(𝜏) contained

withinℋℰ(𝑥𝑅(𝜏)).
We shall consider discrete-time motion plans. The probability of collision along any

such trajectory from current time step 𝑘 to final step 𝑘 + 𝐾 is upper-bounded by:

𝑃𝑘:𝑘+𝐾
coll

≤ 𝑃𝑘:𝑘+𝐾
coll

:= 1 −
𝑘+𝐾∏
�=𝑘

𝑃
(
𝑥�𝐻 ∉ ℋℰ(𝑥�𝑅) | 𝑥

�
𝐻 ∉ ℋℰ(𝑥𝑠𝑅), 𝑘 ≤ 𝑠 < �

)
. (3.15)

Evaluating the right hand side of (3.15) exactly requires reasoning about the joint

distribution of human states over all time steps and its conditional relationship on whether

collision has yet occurred. This is equivalent to maintaining a probability distribution over

the exponentially large space of trajectories 𝑥𝑘:𝑘+𝐾
𝐻

that the human might follow. As motion

planning occurs in real-time, we shall resort to a heuristic approximation of (3.15).

One approach to approximating (3.15) is to assume that the event 𝑥�1

𝐻
∉ ℋℰ(𝑥�1

𝑅
) is

independent of 𝑥�2

𝐻
∉ ℋℰ(𝑥�2

𝑅
),∀�1 ≠ �2. This independence assumption is equivalent

to removing the conditioning in (3.15). Unfortunately, this approximation is excessively

pessimistic; if there is no collision at time step �, then collision is also unlikely at time step

� + 1 because both human and robot trajectories are continuous. In fact, for sufficiently

small time discretization Δ𝑡 and nonzero collision probabilities at each time step, the

total collision probability resulting from an independence assumption would approach 1

exponentially fast in the number of time steps 𝐾.

We shall refine this approximation by finding a tight lower bound on the right hand

side of (3.15). Because collision events are correlated in time, we first consider replacing

each conditional probability 𝑃
(
𝑥�
𝐻

∉ ℋℰ(𝑥�𝑅) | 𝑥
𝑠
𝐻

∉ ℋℰ(𝑥𝑠𝑅), 𝑘 ≤ 𝑠 < �
)

by 1 for all

� ∈ {𝑘 + 1, . . . , 𝑘 + 𝐾}. This effectively lower bounds 𝑃𝑘:𝑘+𝐾
coll

by the worst case probability

of collision at the current time step 𝑘:

𝑃𝑘:𝑘+𝐾
coll

≥ 1 − 𝑃
(
𝑥𝑘𝐻 ∉ ℋℰ(𝑥𝑘𝑅)

)
(3.16)

= 𝑃
(
𝑥𝑘𝐻 ∈ ℋℰ(𝑥

𝑘
𝑅)

)
.

This bound is extremely loose in general, because it completely ignores the possibility

of future collision. However, note that probabilities in the product in (3.15) may be

conditioned in any particular order (not necessarily chronological). This commutativity

allows us to generate 𝐾 − 𝑘 + 1 lower bounds of the form 𝑃𝑘:𝑘+𝐾
coll

≥ 𝑃
(
𝑥�
𝐻
∈ ℋℰ(𝑥�𝑅)

)
for

� ∈ {𝑘, . . . , 𝑘+𝐾}. Taking the tightest of all of these bounds, we can obtain an informative,

yet quickly computable, approximator for the sought probability:

𝑃𝑘:𝑘+𝐾
coll

≥ max

�∈{𝑘:𝑘+𝐾}
𝑃
(
𝑥�𝐻 ∈ ℋℰ(𝑥

�
𝑅)

)
≈ 𝑃𝑘:𝑘+𝐾

coll
(3.17)

CHAPTER 3. CONFIDENCE-AWARE HUMAN MODELS FOR ROBOT PLANNING 60

Figure 3.4: Scenario from the middle row of Fig. 3.2 visualized with robot’s trajectory. When 𝛽 is low and

the robot is not confident, it makes large deviations from its path to accommodate the human. When 𝛽 is

high, the robot refuses to change course and comes dangerously close to the human. With inferred model

confidence, the robot balances safety and efficiency with a slight deviation around the human.

To summarize, the left inequality in (3.17) lower-bounds 𝑃𝑘:𝑘+𝐾
coll

with the greatest

marginal collision probability at any point in the trajectory. On the right side of (3.17),

we take this greatest marginal collision probability as an approximator of the actual prob-

ability of collision over the entire trajectory. In effect, we shall approximate 𝑃𝑘:𝑘+𝐾
coll

with

a tight lower bound of an upper bound. While this type of approximation may err on the

side of optimism, we note that both the robot’s ability to replan over time and the fact that

the left side of (3.17) is an upper bound on total trajectory collision probability mitigate this

potentially underestimated risk.

3.5.3 Safe Online Planning under Uncertain Human Predictions
This approximation of collision probability allows the robot to discriminate between

valid and invalid candidate trajectories during motion planning. Using the prediction

methodology proposed in Section 3.3, we may quickly generate, at every time 𝑡, the

marginal probabilities in (3.17) at each future time � ∈ {𝑘, . . . , 𝑘 + 𝐾}, based on past

observations at times 0, . . . , 𝑘. The planner then computes the instantaneous probability

of collision 𝑃
(
𝑥�
𝐻
∈ ℋℰ(𝑥�𝑅)

)
by integrating 𝑃

(
𝑥𝜏
𝐻
| 𝑥0:𝑘

𝐻

)
over ℋℰ(𝑥�𝑅), and rejects the

candidate point 𝑥�
𝑅

if this probability exceeds 𝑃
th

.

Note that for graph-based planners that consider candidate trajectories by generating

a graph of time-stamped states, rejecting a candidate edge from this graph is equivalent

to rejecting all further trajectories that would contain that edge. This early rejection rule is

consistent with the proposed approximation (3.17) of 𝑃𝑘:𝑘+𝐾
coll

while preventing unnecessary

exploration of candidate trajectories that would ultimately be deemed unsafe.

Throughout operation, the robot follows each planned trajectory using the error feed-

CHAPTER 3. CONFIDENCE-AWARE HUMAN MODELS FOR ROBOT PLANNING 61

back controller provided by FaSTrack, which ensures that the robot’s high-fidelity state

representation 𝑠𝑅 and the lower-fidelity state used for planning, 𝑥𝑅, differ by no more

than the tracking error bound ℰ. This planning and tracking procedure continues until

the robot reaches its desired goal state.

Running example: Our quadcopter is now required to navigate to a target position shown in

Fig. 3.4 without colliding with the human. Our proposed algorithm successfully avoids collisions

at all times, replanning to leave greater separation from the human whenever her motion departs

from the model. In contrast, robot planning with fixed model confidence is either overly conservative

at the expense of time and performance or overly aggressive at the expense of safety.

3.6 Connections to Reachability Analysis

Figure 3.5: The human (black dot) is moving west towards a goal. Visualized are the predicted state

distributions for one second into the future when using low, high, and Bayesian model confidence. Higher-

saturation indicates higher likelihood of occupancy. The dashed circle represents the pedestrian’s 1 second

forward reachable set.

In this section, we present an alternative, complementary analysis of the overall safety

properties of the proposed approach to prediction and motion planning. This discussion

is grounded in the language of reachability theory and worst-case analysis of human

motion.

3.6.1 Forward Reachable Set
Throughout this section, we frequently refer to the human’s time-indexed forward

reachable set. We define this set formally below.

Definition 1. (Forward Reachable Set) For a dynamical system ¤𝑥 = 𝑓 (𝑥, 𝑢) with state trajectories

given by the function �
(
𝑥(0), 𝑡 , 𝑢(·)

)
=: 𝑥(𝑡), the forward reachable set FRS(𝑥, 𝑡) of a state 𝑥 after

CHAPTER 3. CONFIDENCE-AWARE HUMAN MODELS FOR ROBOT PLANNING 62

Figure 3.6: Visualization of the states with probability greater than or equal to the collision threshold,

𝑃th = 0.01. The human’s forward reachable set includes the set of states assigned probability greater than

𝑃th. We show these “high probability” predicted states for predictors with fixed low and high 𝛽, as well as

our Bayesian-inferred 𝛽.

time 𝑡 has elapsed is

FRS(𝑥, 𝑡) := {𝑥′ : ∃𝑢(·), 𝑥′ = �(𝑥, 𝑡, 𝑢(·))} .

That is, a state 𝑥′ is in the forward reachable set of 𝑥 after time 𝑡 if it is reachable via some

applied control signal 𝑢(·).

Remark 1. (Recovery of FRS) For 𝑃th = 0 and any finite 𝛽, the set of states assigned probability

greater than 𝑃th is identical to the forward reachable set, up to discretization errors. This is

visualized for low, high, and Bayesian model confidence in Fig. 3.5.

3.6.2 A Sufficient Condition for the Safety of Individual Trajectories
In Section 3.5.2, we construct an approximation to the probability of collision along a

trajectory, which we use during motion planning to avoid potentially dangerous states.

To make this guarantee of collision-avoidance for a motion plan even stronger, it would

suffice to ensure that the robot never comes too close to the human’s forward reachable

set. More precisely, a planned trajectory is safe if {𝑥𝑅(𝑡) + ℰ} ∩ FRS(𝑥𝐻 , 𝑡) = ∅, for every

state 𝑥𝑅(𝑡) along a motion plan generated when the human was at state 𝑥𝐻 . The proof of

this statement follows directly from the properties of the tracking error bound ℰ described

in Section 3.5.

While this condition may seem appealing, it is in fact highly restrictive. The require-

ment of avoiding the full forward reachable set is not always possible in confined spaces;

indeed, this was our original motivation for wanting to predict human motion (see Sec-

tion 3.2.4). However, despite this shortcoming, the logic behind this sufficient condition

for safety provides insight into the effectiveness of our framework.

CHAPTER 3. CONFIDENCE-AWARE HUMAN MODELS FOR ROBOT PLANNING 63

3.6.3 Recovering the Forward Reachable Set
Though it will not constitute a formal safety guarantee, we analyze the empirical safety

properties of our approach by examining how our predicted state distributions over time

relate to forward reachable sets. During operation, our belief over model confidence 𝛽
evolves to match the degree to which the utility model𝑄𝐻 explains recent human motion.

The “time constant” governing the speed of this evolution may be tuned by the system

designer to be arbitrarily fast by choosing the parameter 𝜖 to be small, as discussed in

Section 3.3.1. Thus, we may safely assume that 𝑏(𝛽) places high probability mass on small

values of 𝛽 as soon as the robot observes human motion which is not well explained by

𝑄𝐻 .

Fig. 3.6 shows the sets of states with “high enough” (> 𝑃
th

) predicted probability mass

overlaid on the human’s forward reachable set at time 𝑡, which is a circle of radius 𝑣𝐻𝑡

centered on 𝑥𝐻 for the dynamics in our running example. When 𝛽 is high (10), we observe

that virtually all of the probability mass is concentrated in a small number of states in the

direction of motion predicted by our utility model. When 𝛽 is low (0.05) we observe that

the set of states assigned probability above our collision threshold 𝑃
th

occupies a much

larger fraction of the reachable set. A typical belief 𝑏(𝛽) recorded at a moment when the

human was roughly moving according to 𝑄𝐻 yields an intermediate set of states.

Fig. 3.7 illustrates the evolution of these sets of states over time, for the unmodeled ob-

stacle example of Section 3.7.1 in which a pedestrian avoids a spill. Each row corresponds

to the predicted state distribution at a particular point in time. Within a row, each column

shows the reachable set and the set of states assigned occupancy probability greater than

𝑃
th

= 0.01. The color of each set of states corresponds to the value of 𝛽 used by the low

confidence and high confidence predictors, and the maximum a posteriori value of 𝛽 for the

Bayesian confidence predictor. The human’s known goal state is marked by a red dot.

Interestingly, as the Bayesian model confidence decreases—which occurs when the

pedestrian turns to avoid the spill at 𝑡 ≈ 6 s—the predicted state distribution assigns high

probability to a relatively large set of states, but unlike the low-𝛽 predictor that set of states

is oriented toward the known goal. Of course, had 𝑏(𝛽) placed even more probability mass

on lower values of 𝛽 then the Bayesian confidence predictor would converge to the low

confidence one.

Additionally, we observe that, within each row as the prediction horizon increases,

the area contained within the forward reachable set increases and the fraction of that area

contained within the predicted sets decreases. This phenomenon is a direct consequence

of our choice of threshold 𝑃
th

. Had we chosen a smaller threshold value, a larger fraction

of the forward reachable set would have been occupied by the lower-𝛽 predictors.

This observation may be viewed prescriptively. Recalling the sufficient condition for

safety of planned trajectories from Section 3.6.2, if the robot replans every 𝑇
replan

seconds,

we may interpret the fraction of FRS(·, 𝑡 + 𝑇
replan
) assigned occupancy probability greater

than 𝑃
th

by the low confidence predictor as a rough indicator of the safety of an individual

motion plan, robust to worst-case human movement. As this fraction tends toward unity,

CHAPTER 3. CONFIDENCE-AWARE HUMAN MODELS FOR ROBOT PLANNING 64

Figure 3.7: The human (black dot) is walking towards the known goal (red dot) but has to avoid an

unmodeled coffee spill on the ground. Here we show the snapshots of the predictions at various future

times (columns) as the human walks around in real time (rows). The visualized states have probability

greater than or equal to 𝑃th = 0.01. Each panel displays the human prediction under low confidence (in

yellow), high confidence (in dark purple), and Bayesian confidence (colored as per the most likely 𝛽 value),

as well as the forward reachable set. The human’s actual trajectory is shown in red.

CHAPTER 3. CONFIDENCE-AWARE HUMAN MODELS FOR ROBOT PLANNING 65

Figure 3.8: Predicting with fixed-𝛽 (in this case, 𝛽 = 20) can yield highly inaccurate predictions (and worse,

confidently inaccurate ones). The subsequent motion plans may not be safe; here, poor prediction quality

leads to a collision.

the robot is more and more likely to be safe. However, for any 𝑃
th

> 0, this fraction

approaches zero for 𝑇
replan

↑ ∞. This immediately suggests that, if we wish to replan

every 𝑇
replan

seconds, we can achieve a particular level of safety as measured by this

fraction by choosing an appropriate threshold 𝑃
th

.

In summary, confidence-aware predictions rapidly place high probability mass on

low values of 𝛽 whenever human motion is not well-explained by utility model 𝑄𝐻 .

Whenever this happens, the resulting predictions encompass a larger fraction of the

forward reachable set, and in the limit that 𝑃
th
↓ 0 we recover the forward reachable

set exactly. The larger this fraction, the more closely our approach satisfies the sufficient

condition for safety presented in Section 3.6.2.

3.7 Hardware Demonstration with Real Humans
We implemented confidence-aware human motion prediction (Section 3.3) and inte-

grated it into a real-time, safe probabilistic motion planner (Section 3.5), all within the

Robot Operating System (ROS) software framework of [169]. To demonstrate the efficacy

of our methods, we tested our work for the quadcopter-avoiding-pedestrian example used

for illustration throughout this paper. Human trajectories were recorded as (𝑥, 𝑦)positions

on the ground plane at roughly 235 Hz by an OptiTrack infrared motion capture system,

and we used a Crazyflie 2.0 micro-quadcopter, also tracked by the OptiTrack system.2

2
We note that in a more realistic setting, we would require alternative methods for state estimation

using other sensors, such as lidar and/or camera(s). A video recording may be found at https://youtu.
be/2ZRGxWknENg.

https://youtu.be/2ZRGxWknENg
https://youtu.be/2ZRGxWknENg

CHAPTER 3. CONFIDENCE-AWARE HUMAN MODELS FOR ROBOT PLANNING 66

Figure 3.9: Inferring 𝛽 leads to predicted state distributions whose entropy increases whenever the utility

model 𝑄𝐻 fails to explain observed human motion. The resulting predictions are more robust to modeling

errors, resulting in safer motion plans. Here, the quadcopter successfully avoids the pedestrian even when

she turns unexpectedly.

Fig. 3.4 illustrates the unmodeled obstacle case from Section 3.7.1, in which the pedes-

trian turns to avoid a spill on the ground. Using a low model confidence results in motion

plans that suddenly and excessively deviate from the ideal straight-line path when the

pedestrian turns to avoid the spill. By contrast, the high confidence predictor consistently

predicts that the pedestrian will walk in a straight line to the goal even when they turn; this

almost leads to collision, as shown detail in Fig. 3.8. Our proposed approach for Bayesian

model confidence initially assigns high confidence and predicts that the pedestrian will

walk straight to the goal, but when they turn to avoid the spill, the predictions become

less confident. This causes the quadcopter to make a minor course correction, shown in

further detail in Fig 3.9.

3.7.1 Evaluation with Real Human Trajectories
To demonstrate the characteristic behavior of our approach, we created three different

environment setups and collected a total of 48 human walking trajectories (walked by 16

different people). The trajectories are measured as (𝑥, 𝑦) positions on the ground plane at

roughly 235 Hz by an OptiTrack infrared motion capture system.3

Environments. In the first environment there are no obstacles and the robot is aware of

the human’s goal. The second environment is identical to the first, except that the human

3
We note that in a more realistic setting, we would need to utilize alternative methods for state estimation

such as lidar measurements.

CHAPTER 3. CONFIDENCE-AWARE HUMAN MODELS FOR ROBOT PLANNING 67

must avoid a coffee spill that the robot is unaware of. In the third environment, the human

walks in a triangular pattern from her start position to two known goals and back.

Evaluated Methods. For each human trajectory, we compare the performance of

our adaptive 𝛽 inference method with two baselines using fixed 𝛽 ∈ {0.05, 10}. When

𝛽 = 0.05, the robot is unsure of its model of the human’s motion. This low-confidence

method cannot trust its own predictions about the human’s future trajectory. On the other

hand, the 𝛽 = 10 high-confidence method remains confident in its predictions even when

the human deviates from them. These two baselines exist at opposite ends of a spectrum.

Comparing our adaptive inference method to these baselines provides useful intuition for

the relative performance of all three methods in common failure modes (see Fig. 3.4).

Metrics. We measure the performance of our adaptive 𝛽 inference approach in both of

these cases by simulating a quadcopter moving through the environment to a pre-specified

goal position while replaying the recorded human trajectory. We simulate near-hover

quadcopter dynamics with the FaSTrack optimal controller applied at 100 Hz. For each

simulation, we record the minimum distance in the ground plane between the human and

the quadcopter as a proxy for the overall safety of the system. The quadcopter’s travel

time serves to measure its overall efficiency.

In each environment, we compute the safety metric for all 16 human trajectories when

applying each of the three human motion prediction methods and display the corre-

sponding box and whisker plots side by side. To compare the efficiency of our approach

to the baselines we compute the difference between the trajectory completion time of our

approach, 𝑇
infer

, and that of the low and high confidence baselines, {𝑇
lo
, 𝑇

hi
}. If the result-

ing boxplots are below zero, then 𝛽 inference results in faster robot trajectories than the

baselines on a per-human trajectory basis.4

Complete Model. First, we designed an example environment where the robot’s model

is complete and the human motion appears to be rational. In this scenario, humans would

walk in a straight line from their start location to their goal which was known by the robot

a priori.

When the robot has high confidence in its model, the human’s direct motion towards

the goal appears highly rational and results in both safe (Fig. 3.10, top left) and efficient

plans (Fig. 3.10, bottom left). We see a similar behavior for the robot that adapts its

confidence: although initially the robot is uncertain about how well the human’s motion

matches its model, the direct behavior of the human leads to the robot to believe that it

has high model confidence. Thus, the 𝛽 inference robot produces overall safe and efficient

plans. Although we expect that the low-confidence model would lead to less efficient plans

but comparably safe plans, we see that the low-confidence robot performs comparably in

terms of both safety and efficiency.

Ultimately, this example demonstrates that when the robot’s model is rich enough to

4
The upper and lower bounds of the box in each boxplot are the 75

th
and 25

th
percentiles. The horizontal

red line is the median, and the notches show the bootstrapped 95% confidence interval for the population

mean.

CHAPTER 3. CONFIDENCE-AWARE HUMAN MODELS FOR ROBOT PLANNING 68

Figure 3.10: Safety and efficiency metrics in a complete environment and one with an unmodeled obstacle.

capture the environment and behavior of the human, inferring model confidence does not

hinder the robot from producing safe and efficient plans.

Unmodeled Obstacle. Often, robots do not have fully specified models of the en-

vironment. In this scenario, the human has the same start and goal as in the complete

model case except that there is a coffee spill in her path. This coffee spill on the ground is

unmodeled by the robot, making the human’s motion appear less rational.

When the human is navigating around the unmodeled coffee spill, the robot that

continuously updates its model confidence and replans with the updated predictions

almost always maintains a safe distance (Fig. 3.10, top right). In comparison, the fixed-𝛽
models that have either high-confidence or low-confidence approach the human more

closely. This increase in the minimum distance between the human and the robot during

execution time indicates that continuous 𝛽 inference can lead to safer robot plans.

For the efficiency metric, a robot that uses 𝛽 inference is able to get to the goal faster

than a robot that assumes a high or a low confidence in its human model (Fig. 3.10, bottom

right). This is particularly interesting as overall we see that enabling the robot to reason

about its model confidence can lead to safer and more efficient plans.

Unmodeled Goal. In most realistic human-robot encounters, even if the robot does

have an accurate environment map and observes all obstacles, it is unlikely for it to be

aware of all human goals. We test our approach’s resilience to unknown human goals by

constructing a scenario in which the human moves between both known and unknown

goals. The human first moves to two known goal positions, then back to the start. The

first two legs of this trajectory are consistent with the robot’s model of goal-oriented

motion. However, when the human returns to the start, she appears irrational to the

robot. Fig. 3.11 and 3.12 summarize the performance of the inferred-𝛽, high-confidence,

and low-confidence methods in this scenario. All three methods perform similarly with

respect to the minimum distance safety metric in Fig. 3.11. However, Fig. 3.12 suggests

CHAPTER 3. CONFIDENCE-AWARE HUMAN MODELS FOR ROBOT PLANNING 69

Figure 3.11: Safety results for the unmodeled goal scenario.

Figure 3.12: Efficiency results for the unmodeled goal scenario.

that the inferred-𝛽 method is several seconds faster than both fixed-𝛽 approaches. This

indicates that, without sacrificing safety, our inferred-𝛽 approach allows the safe motion

planner to find more efficient robot trajectories.

3.8 Conclusion
When robots operate in complex environments in concert with other agents, safety

often depends upon the robot’s ability to predict the agents’ future actions. While this

prediction problem may be tractable in some cases, it can be extremely difficult for agents

like people who act with intent. In this paper, we introduce the idea of confidence-aware

prediction as a natural coping mechanism for predicting the future actions of intent-driven

agents. Our approach uses each measurement of the human’s state to reason about the

accuracy of its internal model of human decision making. This reasoning about model

CHAPTER 3. CONFIDENCE-AWARE HUMAN MODELS FOR ROBOT PLANNING 70

confidence is expressed compactly as a Bayesian filter over the possible values of a single

parameter, 𝛽, which controls the entropy of the robot’s model of the human’s choice of

action. In effect, whenever the human’s motion is not well-explained by this model, the

robot predicts that the human could occupy a larger volume of the state space.

We couple this notion of confidence-aware prediction with a reachability-based ro-

bust motion planning algorithm, FaSTrack, which quantifies the robot’s ability to track a

planned reference trajectory. Using this maximum tracking error allows us to bound an

approximation of the probability of collision along planned trajectories. Additionally, we

present a deeper connection between confidence-aware prediction and forward reachable

sets, which provides an alternative explanation of the safety of our approach. We demon-

strate the proposed methodology on a ROS-based quadcopter testbed in a motion capture

arena.

3.8.1 Limitations
There are several important limitations of this work, which we discuss below.

State Discretization. As presented, our approach to prediction requires a discrete rep-

resentation of the human’s state space. This can be tractable for the relatively simple

dynamical models of human motion we consider in this work. Fortunately, one of the

strongest attributes of confidence-aware prediction is that it affords a certain degree of

robustness to modeling errors by design. Still, our approach is effectively limited to

low-order dynamical models.

FaSTrack Complexity. FaSTrack provides a strong safety guarantee vis-à-vis the maxi-

mum tracking error that could ever exist between a higher-fidelity dynamical model of

the robot and a lower-order one used for motion planning. Unfortunately, the computa-

tional complexity of finding this maximum tracking error and the corresponding safety

controller scales exponentially with the dimension of the high-fidelity model. In some

cases, these dynamics are decomposable and analytic solutions exist, e.g. [78, 50], and in

other cases conservative approximations may be effective, e.g. [47, 179].

Boltzmann Distributional Assumption. We model the human’s choice of control input

at each time step as an independent, random draw from a Boltzmann distribution (3.3).

This distributional assumption is motivated from the literature in cognitive science and

econometrics and is increasingly common in robotics, yet it may not be accurate in all

cases. Maintaining an up-to-date model confidence belief 𝑏(𝛽) can certainly mitigate this

inaccuracy, but only at the cost of making excessively conservative predictions.

Safety Certification. Our analysis in Section 3.6 makes connections to forward reacha-

bility in an effort to understand the safety properties of our system. As shown, when-

ever our confidence-aware prediction method detects poor model performance it quickly

yields predictions that approximate the human’s forward reachable set. Although this

approximation is not perfect, and hence we cannot provide a strong safety certificate, the

CHAPTER 3. CONFIDENCE-AWARE HUMAN MODELS FOR ROBOT PLANNING 71

connection to reachability is in some sense prescriptive. That is, it can be used to guide

the choice of collision probability threshold 𝑃
th

and replanning frequency. However, even

if we could provide a strong guarantee of collision-avoidance for a particular motion plan,

that would not, in general, guarantee that future motion plans would be recursively safe.

This recursive property is much more general and, unsurprisingly, more difficult to satisfy.

3.8.2 Future Directions
Future work will aim to address each of these shortcomings. We are also interested

in extending our methodology for the multi-robot, multi-human setting; our preliminary

results are reported in [15]. Additionally, we believe that our model confidence inference

approach could be integrated with other commonly-used probabilistic prediction methods

besides the Boltzmann utility model. Finally, we are excited to test our work in hardware

in other application spaces, such as manipulation and driving.

72

Chapter 4

Confidence-aware Game-theoretic
Human Models

This chapter is based on the paper “Safety Assurances for Human-Robot Interaction via Confidence-

aware Game-theoretic Human Models” [211] written in collaboration with Ran Tian, Liting Sun,

Masayoshi Tomizuka, and Anca Dragan.

In this section we focus on maintaining safety in highly dynamic human-robot inter-

actions, such as when an autonomous car merges into a roundabout with an oncoming

human-driven vehicle (Fig. 4.1). While planning approaches incorporate safety con-

straints in diverse ways [193], safety monitors have emerged as a desirable additional layer

of safety. These methods allow the planner to guide the robot, but compute when immi-

nent collisions would happen and take over control to steer the robot away from danger.

Crucial to these safety monitors is a method for detecting imminent collisions. Typi-

cally, this is based on worst-case reasoning. A predominant approach, backwards reachability

analysis [158, 134], treats the human-robot interaction as a zero-sum collision-avoidance

game, protecting the robot against any controls the human might execute. This leads to

safety monitors that do maintain safety, but inhibit the robot’s ability to make progress by

intervening excessively.

We thus seek a way of making safety monitors less conservative, while still being

effective at their primary job—maintaining safety. What makes this challenging is that

the moment the zero-sum game assumption is replaced with any human behavior model,

the model might be wrong, leading to loss of safety. Our idea is to mediate this issue in

two ways: 1) still use a zero-sum collision avoidance game, but instead of allowing the

human any controls, we use a human model to restrict set of controls we safeguard against,

eliminating those that the model deems very improbable; and 2) detect online how well the

model explains the human, and use this to adapt the restriction; at the extreme, when the

model is completely wrong, our monitor should go back to protecting against any human

controls.

Two questions still remain: what human model to use, and how to detect when it is

CHAPTER 4. CONFIDENCE-AWARE GAME-THEORETIC HUMAN MODELS 73

Figure 4.1: Robot car (white) merges into a round-about with a nearby human-driven car (orange). (left)

Human accommodates for robot, but robot is overly conservative and protects against the full backwards

reachable tube (BRT). (center) Our Bayesian BRT infers how the human is influenced by the robot and

shrinks the set of unsafe states. (right) When the human does not behave according to the model, the robot

detects this and automatically reverts to the full BRT.

wrong. While models that treat the human as acting in isolation and ignoring the robot

are popular [238, 112, 182], they are still very conservative: if the planner tries to merge in

front of the human, the safety monitor based on these “human-in-isolation” models would

intervene to prevent it, because it has no confidence in the human reacting to the robot and

making space—also known as the “frozen robot” problem [214]. For this reason, prior

work in planning has introduced models based on general-sum games between the human

and robot, which account for the human’s influence on the robot, but also for the robot’s

influence on the human [187, 164, 165, 194, 73, 210]. We propose to use such models in

safety monitoring too, as a way to restrict the set of controls that the robot safeguards

against. In our method, the robot performs backwards reachability analysis but does not

worry about human controls that are outside of the bounds of what the general sum game

deems likely.

While this reduces the conservatism, no model is perfect and relying solely on the

human model might remove controls that the human actually ends up executing. To

detect if the model’s predictive performance is degrading and increase conservatism when

it does, our approach uses online observations of human behavior to assess the quality of

the model and adapt the control bound restriction. Building on prior work in safe planning

[74], we achieve automatic adaptation by treating human behavior as observations of the

human’s rationality level in the general-sum game. When the human starts executing

less-probable controls, the model treats this behavior as more noisy, and deems more

future human controls to be likely to occur than before. In turn, this propagates to a larger

human control bound in our backwards reachability analysis and a more conservative

safety monitor.

CHAPTER 4. CONFIDENCE-AWARE GAME-THEORETIC HUMAN MODELS 74

We test our approach in simulated interactions, as well as on real human driving data.

Our results suggest that it can effectively enable robots to modulate the conservatism of

their safety monitors, ultimately leading to more efficient (i.e., higher reward) behaviors

that still maintain safety.

4.1 Related Work
Safety for robots operating around humans. Forward reachability methods have been

used to compute the set of states where other agents could be in the future [7, 143], after

which the robot plans to avoid this set. While safe, these methods often lead to overly-

conservative robot behaviors especially in close-proximity interactive scenarios. Prior

work used empirical [67] and “human-in-isolation” models [14] to obtain restrictions on

human controls and, ultimately, their forward reachable set. However, these methods

do not inherently account for the robot’s ability to take safety maneuvers in response

to the human behavior, introducing additional conservatism. In contrast, backwards

reachability methods are grounded in zero-sum dynamic games [158, 134] which encode

the robot’s ability to enact safety controls. While generally less conservative than full

forward reachability, this approach still often suffers from falsely flagging safe states as

unsafe because of the full control authority and adversarial nature of the human model.

Recent work has attempted to reduce this conservatism by restricting the set of human

controls during safety analysis through data-driven human trajectory forecasts [196, 138].

However, this approach blindly trusts the data-driven forecasts and cannot detect model

errors; when the quality of the data-driven forecasts degrade, so do the predicted set of

human controls, ultimately compromising the safety monitor.

Structured human decision-making models. “Human-in-isolation” models—whereby

the human is treated as behaving independently of how other agents nearby behave— have

been widely studied and applied in the navigation domain [238, 112, 182]. Recent work

has developed model confidence monitors for this class of models [74, 34], enabling robots

to detect if and when their human models are misspecified. Unlike human-in-isolation

models, theory of mind models capture how humans account for the behavior of others

when choosing their actions [20, 41, 81, 202, 209]. Recent work has shown the effectiveness

of using such models—specifically, general-sum Stackelberg games [218]—in the context

of autonomous driving[187, 194, 73]. In our work, we leverage such game-theoretic human

models and introduce a confidence-aware monitor for this modelling paradigm.

4.2 Background
Hamilton-Jacobi reachability. Our method is based on Hamilton-Jacobi (HJ) reachabil-

ity analysis [158, 155], a mathematical formalism for quantifying the performance and

safety of multi-agent dynamical systems. It has been successfully utilized in a range of

CHAPTER 4. CONFIDENCE-AWARE GAME-THEORETIC HUMAN MODELS 75

safety-critical applications such as multi-vehicle planning [51, 61], multi-player reach-

avoid games [98, 155], and autonomous driving under occlusions [231] due to its ability to

handle general nonlinear dynamics, flexibility to represent unsafe sets of arbitrary shapes,

and ability to synthesize safety-preserving robot controllers.

In this work, we use reachability analysis to compute a backward reachable tube (BRT),

𝒱(𝜏), given an unsafe set of states ℒ (e.g., all states where the human and robot are in

collision). Intuitively,𝒱(𝜏) is the set of states from which if system trajectories start, they

are guaranteed to enter into the unsafe set of states within a time horizon of 𝜏 despite the

robot’s best effort to avoid the unsafe set.

Let the dynamics of the human-robot system evolve via ¤𝑥 = 𝑓 (𝑥, 𝑢H, 𝑢R) where 𝑓 is

assumed to be uniformly continuous in time and Lipschitz continuous in 𝑥 for fixed 𝑢H

and 𝑢R. Here, 𝑥 := [𝑥H, 𝑥R]⊤ ∈ 𝒳 is the joint state1 of the human and robot, and 𝑢H ∈ 𝒰H

and 𝑢R ∈ 𝒰R are the human’s and robot’s inputs, respectively. We assume that the state

of both agents can be accurately sensed at all times 2.

To ensure robustness to the possible—including worst-case—behaviors of the human

agent, the computation of the BRT is formulated as a zero-sum differential game between

the robot and human. The optimal value of this game can be obtained by solving the final-

value Hamilton-Jacobi-Isaacs Variational-Inequality (HJI-VI) via dynamic programming:

min

{𝜕𝑉(𝑥, 𝜏)
𝜕𝜏

+ 𝐻
(
𝑥, 𝜏,∇𝑉(𝑥, 𝜏)

)
, ℓ (𝑥) −𝑉(𝑥, 𝜏)

}
= 0,

𝑉(𝑥, 0) = ℓ (𝑥), 𝜏 ∈ [−𝑇, 0], (4.1)

where∇𝑉(𝑥, 𝜏) is the spatial derivative of the value function and ℓ (𝑥) is the implicit surface

function encoding the set of unsafe states: ℒ = {𝑥 : ℓ (𝑥) ≤ 0}. The Hamiltonian𝐻 encodes

the effect of the dynamics, robot, and human control on the resulting value and is defined

as:

𝐻(𝑥, 𝜏,∇𝑉(𝑥, 𝜏))= max

𝑢R∈𝒰R

min

𝑢H∈𝒰H

∇𝑉(𝑥, 𝜏)⊤𝑓 (𝑥, 𝑢H, 𝑢R). (4.2)

After computing the value function𝑉(𝑥, 𝜏) backwards in time over 𝜏 ∈ [−𝑇, 0], we can

obtain the BRT at any time 𝜏 by looking at the sub-zero level set of the value function:

𝒱(𝜏) := {𝑥 : 𝑉(𝑥, 𝜏) ≤ 0}. (4.3)

This encodes the set of initial (joint) states from which there does not exist a dynamically-

feasible safety control for the robot to perform to avoid the human. HJ reachability also

synthesizes the robot’s optimal safety-preserving control:

𝑢∗
R
(𝑥, 𝜏) = arg max

𝑢R∈𝒰R

min

𝑢H∈𝒰H

∇𝑉(𝑥, 𝜏)⊤ 𝑓 (𝑥, 𝑢H, 𝑢R), (4.4)

1
Other state-space representations can be used. In Section 4.4 we use the relative state between the

human and robot to reduce state dimensionality.

2
State estimation error can be accounted for by incorporating additional margin proportional to the

estimation uncertainty into the BRT computation.

CHAPTER 4. CONFIDENCE-AWARE GAME-THEORETIC HUMAN MODELS 76

which can be used in a least-restrictive fashion by only being applied at the boundary of

the unsafe set [25].

Note that in (4.2), the agents are traditionally modelled as optimizing with respect

to all of their dynamically-feasible control inputs, 𝒰i, 𝑖 ∈ {H,R}, resulting in an overly

conservative BRT. In this work, we aim to reduce the conservatism (i.e., size of 𝒱(𝜏)) of

this safety monitor by detecting emergent leader-follower roles in human-robot interaction

and restricting the human’s controls𝒰H accordingly.

General-sum Stackelberg games. We model humans as acting according to a discrete-

time, general-sum Stackelberg game [218] with the robot wherein each agent takes on the

role of being either a “leader” or a “follower”. A “leader” maximizes their reward over

time subject to the “follower” who must plan their trajectory in response. Intuitively, the

leader aims to influence the follower and the follower tends to accommodate the leader.

This modelling paradigm is well-suited to capture dynamic interactions such as merging

or lane-changing and, unlike zero-sum games, can encode unique high-level objectives

for each agent.

Let the human’s discrete-time control trajectory over the time horizon 𝑇 be denoted by

uH = [𝑢0

H
, . . . , 𝑢𝑇

H
]⊤ and the robot’s discrete-time control trajectory be uR = [𝑢0

R
, . . . , 𝑢𝑇

R
]⊤.

Instead of assuming the human is a perfectly rational player, we model them a noisily-

optimal player; this is well-suited for human models obtained via inverse reinforcement

learning [237, 221, 135] and naturally accounts for model inaccuracies and noisy human be-

havior. In an open-loop Stackelberg game, a noisily-optimal follower human chooses their

control trajectory from a distribution conditioned on the leader robot’s control trajectory:

𝑃(uH | 𝑥0, uR; 𝛽) = 1

𝑍1

𝑒𝛽𝑅H(𝑥0 ,uH ,uR), (4.5)

where 𝑍1 :=
∫

uH

𝑒𝛽𝑅H(𝑥0 ,uH ,uR)𝑑uH is the partition function when the human is a fol-

lower and the human’s cumulative reward is 𝑅H(𝑥0, uH, uR) :=
∑𝑇

𝜏=0
𝑟H(𝑥𝜏 , 𝑢𝜏

H
, 𝑢𝜏

R
)where

𝑟H(·, ·, ·) is the instantaneous reward.

However, in reality, the human could assume the role of either a leader or follower

during an interaction with the robot. Specifically, a human who assumes the role of a

leader will draw their control trajectory from the distribution:

𝑃(uH | 𝑥0

; 𝛽) = 1

𝑍2

𝑒𝛽𝑅H(𝑥0 ,uH ,u∗
R
(𝑥0 ,uH)), (4.6)

where 𝑍2 :=
∫

uH

𝑒𝛽𝑅H(𝑥0 ,uH ,u∗
R
(𝑥0 ,uH))𝑑uH is the partition function and u∗

R
(𝑥0, uH) is the robot

follower’s best response to the human’s control trajectory uH and is defined as:

u∗
R
(𝑥0, uH) = max

uR

𝑅R(𝑥0, uR, uH),

s.t. 𝑥𝜏+1 = 𝑓 (𝑥𝜏 , 𝑢𝜏
R
, 𝑢𝜏

H
), 𝜏 ∈ {0, . . . , 𝑇},

(4.7)

CHAPTER 4. CONFIDENCE-AWARE GAME-THEORETIC HUMAN MODELS 77

where the robot’s running reward is denoted by 𝑅R(𝑥0, uR, uH) :=
∑𝑇

𝜏=0
𝑟R(𝑥𝜏 , 𝑢𝜏

R
, 𝑢𝜏

H
).

Finally, the parameter 𝛽 ∈ [0,∞) encodes the human’s rationality and governs how

optimally the human behaves according to their objective; as 𝛽 → 0, the human appears

“irrational”, choosing their trajectory uniformly at random and ignoring any modeled

structure, while 𝛽→∞models the human as a perfect optimizer of the game.

4.3 Confidence-aware Role Inference for Safe
Human-Robot Interaction

We propose that robots estimate the degree to which humans abide by general-sum

interaction models and adapt their safety monitors accordingly. By reducing the unsafe

states proportional to the observed influence between the human and robot, the robot can

smoothly shift between less conservative safety monitors when the human’s behavior is

well-explained by the general-sum model, and the full worst-case safety monitor when

the human model degrades.

Role-parameterized human model. We treat the role of the human in the general-sum

game as well as their apparent rationality as hidden states. Let � ∈ {follow, lead} be a

discrete latent variable which encodes the role of the human as either a follower or leader.

To assess if the observed human behavior matches our general-sum model, we follow prior

work on “human-in-isolation” models in reinterpreting the human’s rationality parameter

𝛽 as an indicator of model confidence [74, 34]. However, to infer both the role of the human

as well as the degree to which the human is playing a general-sum game at all, we let the

robot jointly infer (�, 𝛽) given observations.

Online, after observing the current joint state 𝑥0
, the robot solves two open-loop

general-sum Stackelberg games where the human swaps roles. Our final stochastic human

model is:

𝑃(uH | 𝑥0, uR;�, 𝛽)=
{
𝑃(uH | 𝑥0, uR; 𝛽), � = follow

𝑃(uH | 𝑥0
; 𝛽), � = lead

(4.8)

where each sub-model is computed via solving (4.6) and (4.5).

Remark: Computing the partition function in either of the two models from (4.8) re-

quires integrating over the space of possible trajectories, Π, which is infinite. Furthermore,

due to the nested optimization in the partition function when the human is a leader, ap-

proximation techniques based on Laplace approximation are not applicable. Instead, a

finite choice set (Π̃ ⊂ Π) sampled from a background distribution is often exploited [70,

224]. In our experiments, we use a simple generative model based on second order poly-

nomials to synthesize the human-driven car’s likely acceleration and steering profiles at

each time step to construct Π̃.

Confidence-aware role inference. At each time step, the robot maintains a joint belief

over the leader-follower roles and model confidence. Let the time horizon over which we

CHAPTER 4. CONFIDENCE-AWARE GAME-THEORETIC HUMAN MODELS 78

observe trajectory snippets to be𝑇 seconds and the current time to be denoted by 0. Starting

from the past state �̂�, the robot observes its executed trajectory uR := [𝑢−𝑇
R
, . . . , 𝑢0

R
]⊤ over

the time interval [−𝑇, 0] and the human’s behavior uH over the same interval. Using these

and the model (4.8), the robot updates its belief about (�, 𝛽) via a Bayesian update:

𝑏′(�, 𝛽 | �̂� , uH, uR) ∝ 𝑃(uH | �̂� , uR;�, 𝛽)𝑏(�, 𝛽). (4.9)

Since we will use the belief to modify the set of unsafe states, the update should be

very fast. In theory, 𝛽 ∈ [0,∞) is a continuous random variable, posing computational

challenges when solving (4.9). Following [74], we maintain a belief over a relatively small

set of discrete 𝛽 values (see Section 4.5).

Online update of the safety monitor. To modulate the conservatism of the BRT, we will

look to the current belief over the human’s role and the model confidence to weight the

likelihood of future human control trajectories. Specifically, we marginalize over (�, 𝛽)
according to the current belief 𝑏(�, 𝛽) to obtain a distribution over human trajectories

starting from the current state 𝑥0
:

𝑃(uH | 𝑥0, uR) = E�,𝛽∼𝑏(�,𝛽)
[
𝑃(uH | 𝑥0, uR;�, 𝛽)

]
. (4.10)

This model enables us to determine which future control profiles the robot can expect to

see from the human in response to the robot’s own motion plan. To leverage our modelled

structure and reduce conservatism, we prune away human control trajectories that are

sufficiently unlikely under the marginal distribution; let this set beUH(uR) := {uH : 𝑃(uH |
𝑥0, uR) > 𝜖}, where 𝜖 is a hyperparameter that controls how many unlikely trajectories get

pruned.

Finally, we must transform the set of likely control trajectories into instantaneous

control bounds to compute the unsafe set. For simplicity, we have the robot safeguard

against the maximum and minimum controls3 the human could execute during any of the

likely trajectories in UH(uR). Although this approach introduces some conservatism into

the estimated human control bounds (and the resulting unsafe states), it does provide an

additional layer of robustness to the exact way in which people execute their local motions.

Our results in Section 4.5 additionally indicate useful reduction in the size of the unsafe

sets for a variety of scenarios. Let the restricted set of human controls be

𝒰H :=
[
𝑢

H
(uR), 𝑢H(uR)

]
,

where

𝑢
H
(uR) = min

𝜏∈{0,...,𝑇}
UH(uR), 𝑢H(uR) = max

𝜏∈{0,...,𝑇}
UH(uR)

are the lower and upper control bounds respectively.

The final set of restricted human controls 𝒰H is ultimately used in the computation

of the BRT when evaluating the Hamiltonian in Eq. (4.2). By solving the HJI-VI with

3
A more computationally costly time-varying restriction is also possible.

CHAPTER 4. CONFIDENCE-AWARE GAME-THEORETIC HUMAN MODELS 79

these restricted human control bounds, obtaining the corresponding value function, and

computing the unsafe states via the sub-zero level set from (4.3), we finally obtain the

restricted Bayesian BRT,𝒱(𝜏). Note that this set of unsafe states is recomputed4 after each

belief update, since the belief affects the human’s control bounds used in the reachability

computation and influences the size and shape of𝒱(𝜏).
Ultimately, as the robot’s confidence-aware role estimate evolves, the robot automat-

ically shifts between unsafe sets of various sizes. When the observed human motion

can be well-described by the general-sum game, the marginalized set of human control

profiles will place larger probability mass on those trajectories which are optimal under

that model (e.g., if the human is confidently estimated to be a follower, then trajectories

where the human slows down to let the robot pass). This in turn shrinks the estimated

human control bounds used during the BRT computation since the likely maximum and

minimum controls are structured according to the general-sum game and not according

to what is dynamically feasible for the human to execute.

However, as the human’s behavior deviates from the modelled structure, the robot’s

model confidence will be low for all human roles; as all the probability mass concen-

trates on low values of 𝛽, the marginalized distribution from (4.10) approaches a uniform

distribution over all trajectories (irrespective of the leader-follower structure). This au-

tomatically enlarges the human’s control bounds (and the resulting BRT) since the distri-

bution indicates that the likely control trajectories could exhibit any dynamically-feasible

behavior.

4.4 Experimental Setup
Human-robot system dynamics. In our simulation experiments, we consider a dynamical

system that encodes the relative dynamics between the robot car and the human-driven

car in a pairwise interaction [134, 138]. The human-driven car is modelled as an extended

unicycle model and the robot car is modelled with a high-fidelity bicycle model [171].

The state of the relative system is 𝑥
rel

=
[
𝑝𝑥

rel
, 𝑝

𝑦

rel
,𝜓

rel
, 𝑣R, 𝑣H

]⊤
, where 𝑝𝑥

rel
, 𝑝

𝑦

rel
are the

𝑥 and 𝑦-coordinate of the human-driven car in the coordinate frame centered at the

geometric center of the robot car with 𝑥-axis aligned with the heading of the self-driving

car, 𝜓
rel

denotes the relative heading between the two cars, and 𝑣R (resp., 𝑣H) denotes

the speed of the robot car (resp., human-driven car). Let 𝑢R =
[
𝑎R, 𝛿 𝑓

]
be the robot’s

control input where 𝑎R is the acceleration and 𝛿 𝑓 is the front wheel rotation and 𝑢H =[
𝑎H, 𝜔H

]
denote the human’s control input where 𝑎H is the acceleration and 𝜔H is angular

speed. The evolution of the relative system is governed by the differential equation ¤𝑥
rel

=

𝑓
rel

(
𝑥

rel
, 𝑢R, 𝑢H

)
where: ¤𝑝𝑥

rel
=

𝑣R𝑝
𝑦

rel

𝑙𝑟
sin(𝛽𝑟)+𝑣H cos(𝜓

rel
)−𝑣R cos(𝛽𝑟), ¤𝑝𝑦

rel
= −𝑣R𝑝

𝑥
rel

𝑙𝑟
sin(𝛽𝑟)+

4
In practice, we pre-computed a bank of BRTs using various control bounds and query the BRT associated

with𝒰H online.

CHAPTER 4. CONFIDENCE-AWARE GAME-THEORETIC HUMAN MODELS 80

𝑣H sin(𝜓
rel
) − 𝑣R sin(𝛽𝑟), ¤𝜓rel

= 𝜔H − 𝑣R

𝑙𝑟
sin(𝛽𝑟), ¤𝑣R = 𝑎R, and ¤𝑣H = 𝑎H. Here, 𝑙 𝑓 (resp.,

𝑙𝑟) denotes the front (resp., rear) axle length of the robot car and 𝛽𝑟 is computed via

𝛽𝑟 = tan
−1(𝑙𝑟

𝑙𝑟+𝑙 𝑓 tan(𝛿 𝑓)).
Human reward function. We model the human’s reward function as a linear combination

of predefined features [162], including the human’s: 1) speed: desire to reach the speed

limit; 2) comfort: preference for smooth motions; 3) reference path deviation: tendency to

follow a reference path (e.g., center lane) in structured roads; 4) progress: desire to reach

their goal state; 5) safety: collision-avoidance objective. The weights on these features are

obtained by inverse reinforcement learning [237] on a human driving data set [230]. More

details can be found in [205].

Hyper-parameters. The horizon for solving the HJI-VI from (4.1) and the general-sum

games (4.6) and (4.5) is 𝑇 = 2[s] with a sampling period of Δ𝑡 = 0.2[s]. We discretize

the confidence parameter into 𝛽 ∈ {0.1, 1, 20}, and set the threshold for rejecting unlikely

human trajectories to 𝜖 = 0.001. 5

Robot planner. The robot plans via model-predictive control [40] and leverages a game-

theoretic predictive model of the human behavior as in [187, 73, 194]. At each time step, the

robot computes an open-loop control trajectory u∗
R

by solving: maxuR
EuH

[
𝑅R(𝑥0, uR, uH) |

𝑃(uH | 𝑥0, uR)
]

where the conditional expectation is taken over game-theoretic human

trajectories following (4.5) with a fixed rationality. The robot applies the first control in

the trajectory and re-plans at the next time in a receding-horizon fashion. Note that as per

prior work in game-theoretic planning, the human is assumed to have a fixed follower role

in the interaction at all times. While this introduces some modelling error, it nevertheless

enables interesting robot behaviors and is an example of how not all motion planners will

be perfect, underscoring the need for monitoring safety of the actual human-robot system.

Safety controller. Given a BRT, the robot employs a switching control strategy to avoid

unsafe situations [25]; this strategy is agnostic to the upstream robot planner which may

be arbitrarily complex. Specifically, when the human-driven car reaches the boundary of

the BRT, the planner controls are overridden by the safety controller from (4.4).

4.5 Simulated Human-Robot Interaction Results
We first investigate two core aspects of our proposed method and the overall human-

robot system: (a) the ability of our Bayesian BRT to modulate its size based on the

confidence-aware game-theoretic model given a range of simulated human behavior, (b)

the effect of our safety method on overall robot behavior. We additionally perform two

ablation studies to assess the value of incorporating both model confidence and influence

models into safety monitors.

5
In principle, 𝜖 < 1

|Π̃| so the Bayesian BRT safeguards against worst-case human behaviors when the

model cannot explain the data.

CHAPTER 4. CONFIDENCE-AWARE GAME-THEORETIC HUMAN MODELS 81

Round-about Merging Scenario
Full BRT Bayes BRT

Human type CR SOR CR SOR RIP(Full)

modeled 0 23.3 0 4.7 27.75 ± 4.03
noisy 0 29.8 0 7.3 18.26 ± 3.96
unmodeled 0 42.1 0 41.7 0.06 ± 0.19

Highway Scenario
Full BRT Bayes BRT

Human type CR SOR CR SOR RIP(Full)

modeled 0 28.3 0 9.2 24.26 ± 6.16
noisy 0 43.2 0 17.4 14.83 ± 4.22
unmodeled 0 64.8 0 62.3 0.13 ± 0.08

Table 4.1: Results for the round-about and highway; each row is averaged across 20 interactions. CR:

collision rate; SOR: safety override rate; RIP: reward improvement %.

Simulated humans. We simulate three types of humans: (modeled) a rational Stackelberg

human, (noisy) a suboptimal Stackelberg human, and (unmodeled) a non-Stackelberg hu-

man driving with constant controls (e.g., distracted driver). The Stackelberg human’s role

(leader or follower) is randomly assigned.

Metrics. We evaluate the safety performance, conservatism, and overall reward of the

robot’s motion plan when relying on various safety monitors. We measure: 1) collision

rate (CR): average number interactions in which the human and robot collide; 2) safety

override rate (SOR): average number of time steps during a finite-horizon trajectory when

the safety controller is activated; 3) reward improvement percent (RIP): the percent reward

increase in the robot’s executed trajectory when it uses our Bayesian BRT as compared to

using a baseline BRT method (where the appropriate baseline depends on our case study).

Mathematically, for any baseline safety method 𝑖,

RIP(𝑖) :=
𝑅R(𝑥0, uR

Bayes, uH

Bayes) − 𝑅R(𝑥0, uR

𝑖 , uH

𝑖)
|𝑅R(𝑥0, uR

𝑖 , uH

𝑖)|
,

where 𝑥0
is the initial condition of the simulation, uR

Bayes
is the robot’s executed control

when using our Bayesian BRT, uR

𝑖
is the robot’s executed trajectory when using the baseline

BRT, and uH

𝑖 , uH

Bayes
denote the corresponding human trajectories.

4.5.1 On the utility of the Bayesian BRT vs. full BRT
We first compare the performance of our Bayesian BRT to the full BRT (where the unsafe

sets are computed with respect to all dynamically-feasible human controls) for each type of

CHAPTER 4. CONFIDENCE-AWARE GAME-THEORETIC HUMAN MODELS 82

Figure 4.2: Robot car interacts with a simulated human follower. Our Bayes BRT infers that the human is

game-theoretic and tends to cooperate; it reduces the size of the unsafe set (filled blue) accordingly. A 2-D

slice of the full 5-D unsafe set is visualized in the 𝑝𝑥
𝑟𝑒𝑙

and 𝑝
𝑦

𝑟𝑒𝑙
dimensions with all other states held fixed at

the current values. Dotted gray line is the robot’s trajectory when using the full BRT (filled gray). Note that

the full BRT results in the robot executing unnecessary safety maneuver in (a) and aborting merging in (b).

simulated human. We compute our metrics in two traffic scenarios, round-about merging

and highway lane-change, across 20 interactions for each test. Our findings for both

scenarios are summarized in Tab. 4.1 and snapshots of the full BRT and our Bayesian BRT

are visualized in Fig. 4.2.

Results from both scenarios indicate that when the true simulated human behaves ac-

cording to the general-sum Stackelberg game, our Bayesian BRT can detect this modelled

structure and reduce the conservatism of the safety guarantee (e.g., in the round-about,

resulting in ∼20% less safety controller activations than the full BRT) while preserving

collision-free human-robot interaction. Furthermore, the overall reward of the robot’s ex-

ecuted trajectory is increased by 27.75% when compared to the trajectory the robot would

execute if it was relying on the overly-conservative full BRT as its safety monitor. Impor-

tantly, as the simulated human behavior becomes increasingly misspecified, we also see

the Bayesian BRT increasing in conservatism—ultimately approaching comparable per-

formance across all metrics to the full BRT when the distracted human driver (unmodeled)

behaves in a completely non-game-theoretic way.

4.5.2 Ablation Study 1: On the value of model confidence
To investigate the effect of model confidence in our method, we implement a version

of our Bayesian BRT without model confidence but with the general-sum model; we

call this method �-only Bayesian BRT. We stress-test this model’s utility in the round-

CHAPTER 4. CONFIDENCE-AWARE GAME-THEORETIC HUMAN MODELS 83

about scenario when the robot interacts with a non-game-theoretic distracted human

(unmodeled). As Tab. 4.2 indicates, trusting the model completely leads to a high collision

percentage; this is because the estimated control bounds do not adequately capture the

true human controls (see visualization in left of Fig. 4.3). Additionally, analyzing the

reward improvement percent that our Bayesian BRT achieves when compared to the �-

only Bayesian BRT, we see a 9.18% improvement since the robot detects misspecification

early and takes evasive maneuvers.

�-only Bayesian BRT

Human type CR SOR RIP(�-only)

unmodeled 25 11.3 9.18±2.9

Table 4.2: Results without 𝛽 but with game-theoretic model.

(a) (b)

Figure 4.3: (a) Failure to detect model mismatch results in collision. The �-only BRT (filled blue) is smaller

than the least-conservative BRT (pink outline, defined in Section 4.6), meaning safety is no longer guaranteed.

Dotted blue line is robot trajectory using our Bayes BRT, avoiding collision. (b) Failure to use an interactive

human model results in the robot avoiding the human even when they try to cooperate.

4.5.3 Ablation Study 2: On the value of game-theoretic models
To understand the utility of general-sum game-theoretic models in our safety monitor,

we implement a version of our Bayesian BRT with a human-in-isolation model but with

CHAPTER 4. CONFIDENCE-AWARE GAME-THEORETIC HUMAN MODELS 84

model confidence (as in [74]): we call this method 𝛽-no game Bayesian BRT. We stress-

test this method against a simulated human which behaves rationally according to the

game-theoretic interaction model. Results are shown in Tab. 4.3. Because the underlying

human model in 𝛽-no game Bayesian BRT assumes that people are not influenced by the

robot, then the model confidence is always low in highly dynamic interactions with the

human (see right of Fig. 4.3). This results in the safety monitor relying on the full set of

human controls and, although the robot never collides, it activates its safety monitor near

identically as often as the full BRT interacting with a modeled human from Tab. 4.1. Our

Bayesian BRT improves the robot’s reward by ∼29% over the 𝛽-no game Bayesian BRT since

the robot can confidently execute its plan without the safety monitor intervening.

𝛽-no game Bayes BRT

Human type CR SOR RIP(𝛽-no game)

modeled 0 24.7 29.18 ± 3.63

Table 4.3: Results with 𝛽 but no game-theoretic model.

4.6 Evaluation with Real Traffic Data
We investigate how the full BRT and our Bayesian BRT perform ex post facto on recorded

human traffic data. We extract 200 pair-wise interactions from [230] and for each interac-

tion we assign one car as the robot car (the other as the human), and run our approach

of constructing the Bayesian BRT while replaying the two cars’ recorded trajectories. We

compare our method to two baselines: (1) the full BRT and (2) the least-conservative BRT,

𝒱∗(𝜏), which is obtained by restricting the human’s control set in the HJI-VI to be the

maximum and minimum controls observed in a 𝑇-length snippet of the ground-truth hu-

man trajectory starting at the current timestep. Theoretically, this is the least conservative

unsafe set that can be obtained via our approach.

At each timestep, we measure the over-conservatism percentage of a given BRT𝒱 𝑖(𝜏), 𝑖 ∈
{Full, Bayes}, by comparing the area of𝒱 𝑖(𝜏) to the least-conservative BRT𝒱∗(𝜏). Mathe-

matically, this is
𝒜(𝒱 𝑖(𝜏))−𝒜(𝒱∗(𝜏))

𝒜(𝒱∗(𝜏)) , where the function𝒜maps a set of states to its geometric

area. We also measure the BRT violation percentage: the percentage of interactions flagged

as unsafe by a given BRT method. Note that once the BRT is breached, trajectory replay

stops.

Our findings are summarized in 4.4, showing the average over-conservatism per-

centage and average BRT violation percentage for each traffic scenario. Both the over-

conservatism and the BRT violation percentage of our Bayesian BRT are significantly

reduced compared to the full BRT. This suggests that human driving is closer, from a

safety perspective, to our method than to the traditional full BRT approach. However,

humans are still violating the constraints our method would impose, meaning there is still

CHAPTER 4. CONFIDENCE-AWARE GAME-THEORETIC HUMAN MODELS 85

room to improve efficiency while preserving the same safety levels as humans. Finally,

note that the Bayesian BRT’s over-conservatism percentage is positive, indicating that our

method is more conservative than the least-conservative BRT, preserving the quality of

our safety monitor.

(a) (b)

Figure 4.4: (left) Our method is not overly-conservative compared to the least-restrictive BRT. (right) Our

method decreases safety violations vs. the full BRT.

4.7 Discussion & Conclusion
We proposed that robot safety monitors be imbued with confidence-aware game-

theoretic models. By restricting the set of feasible human controls based on how much the

human follows the game-theoretic model, the robot can automatically interpolate between

smaller unsafe sets consistent with the human model and the full worst-case unsafe set.

Our traffic data experiments revealed that even the least-conservative BRT is more

conservative than real drivers; this is due to our control bound construction and the

zero-sum nature of the reachability game. We are excited for future work on new safety

methods which reflect human notions of safety. Further, as in [134], designing robot

planners which are aware of the safety monitor is an interesting future direction.

86

Chapter 5

Scalable Multi-Human, Multi-Robot
Collision Avoidance

This chapter is based on the paper “A scalable framework for real-time multi-robot, multi-human

collision avoidance” [15] written in collaboration with Sylvia Herbert, David Fridovich-Keil, Jaime

Fisac, Sampada Deglurkar, Anca Dragan, and Claire Tomlin.

As robotic systems are increasingly used for applications such as drone delivery ser-

vices, semi-automated warehouses, and autonomous cars, safe and efficient robotic navi-

gation around multiple humans is crucial. Consider the example in Fig. 5.1, inspired by a

drone delivery scenario, where two quadcopters must plan a safe trajectory around two

humans who are walking through the environment. We would like to guarantee that the

robots will reach their goals without ever colliding with each other, any of the humans, or

the static surroundings.1

This safe motion planning problem faces three main challenges: (1) controlling the non-

linear robot dynamics subject to external disturbances (e.g. wind), (2) planning around

multiple humans in real time, and (3) avoiding conflicts with other robots’ plans. Extensive

prior work from control theory, motion planning, and cognitive science has enabled com-

putational tools for rigorous safety analysis, faster motion planners for nonlinear systems,

and predictive models of human agents. Individually, these problems are difficult—

computing robust control policies, coupled robot plans, and joint predictions of multiple

human agents are all computationally demanding at best and intractable at worst [158, 49].

Recent work, however, has made progress in provably-safe real-time motion planning [95,

154, 200], real-time probabilistic prediction of a human agent’s motion [74, 238], and ro-

bust sequential trajectory planning for multi-robot systems [26, 48]. It remains a challenge

to synthesize these into a real-time planning system, primarily due to the difficulty of

joint planning and prediction for multiple robots and humans. There has been some work

1
Note that our laboratory setting uses a motion capture system for sensing and state estimation—

robustness with respect to sensor uncertainty is an important component that is beyond the scope of this

paper.

CHAPTER 5. SCALABLE MULTI-HUMAN, MULTI-ROBOT COLLISION AVOIDANCE87

Figure 5.1: Hardware demonstration of real-time multi-agent planning while maintaining safety with

respect to internal dynamics, external disturbances, and intentional humans. The planned trajectories from

the quadcopters are visualized, and the tracking error bound is shown as a box around each quadcopter.

The probabilistic distribution over the future motion of the humans are shown in pink in front of each

human.

combining subsets of this problem [118, 214, 126], but the full setup of real-time and robust

multi-robot navigation around multiple humans remains underexplored.

Our main contributions in this paper are tractable approaches to joint planning and

prediction, while still ensuring efficient, probabilistically-safe motion planning. We use

the reachability-based FaSTrack framework [95] for real-time robust motion planning. To

ensure real-time feasibility, robots predict human motion using a simple model neglecting

future interaction effects. Because this model will be a simplification of true human mo-

tion, we use confidence-aware predictions [74] that become more conservative whenever

humans deviate from the assumed model. Finally, groups of robots plan sequentially

according to a pre-specified priority ordering [51], which serves to reduce the complexity

of the joint planning problem while maintaining safety with respect to each other. We

demonstrate our framework in hardware, and provide a large-scale simulation to showcase

scalability.

5.1 The SCAFFOLD Framework
Fig. 5.2 illustrates our overall planning framework, called SCAFFOLD. We introduce

the components of the framework by incrementally addressing the three main challenges

identified above.

CHAPTER 5. SCALABLE MULTI-HUMAN, MULTI-ROBOT COLLISION AVOIDANCE88

Human i-1
Prediction Block

Sensor

Static
Obstacles

Environment

Human States

Human i
PredictionHuman i

Prediction Block

Human i+1
Prediction Block

Human Predictions Obstacle Maps

Static Environment Map

Human i
Obstacle Map

Human i-1
Prediction

Human i+1
Obstacle Map

Human i-1
Obstacle Map

Human i+1
Prediction Sequential Trajectory

Planning

Robot i
FaSTrack Block

Robot i+1
FaSTrack Block

Robot i-1  
FaSTrack Block

trajectory i-1

trajectory i

trajectories 0:i-2

Robot Planning and Control

Figure 5.2: The SCAFFOLD Framework

We first present the robot planning and control block (Section 5.2), which is instan-

tiated for each robot. Each robot uses a robust controller (e.g. the reachability-based

controller of [95]) to track motion plans within a precomputed error margin that accounts

for modeled dynamics and external disturbances. In order to generate safe motion plans,

each robot will ensure that output trajectories are collision-checked with a set of obstacle

maps, using the tracking error margin.

These obstacle maps include an a priori known set of static obstacles, as well as predic-

tions of the future motion of any humans, which are generated by the human predictions
block (Section 5.3). By generating these predictions, each robot is able to remain proba-

bilistically safe with respect to the humans. To ensure tractability for multiple humans,

we generate predictions using simplified interaction models, and subsequently adapt

them following a real-time Bayesian approach such as [74]. We leverage the property

that individual predictions automatically become more uncertain whenever their accu-

racy degrades, and use this to enable our tractable predictions to be robust to unmodeled

interaction effects.

Finally, to guarantee safety with respect to other robots, we carry out sequential trajec-
tory planning (Section 5.4) by adapting the cooperative multi-agent planning scheme [26]

to function in real time with the robust trajectories from the planning and control block.

The robots generate plans according to a pre-specified priority ordering. Each robot plans

to avoid the most recently generated trajectories from robots of higher priority, i.e. robot

𝑖 must generate a plan that is safe with respect to the planned trajectories from robots

𝑗 , 𝑗 < 𝑖. This removes the computational complexity of planning in the joint state space of

all robots at once.

CHAPTER 5. SCALABLE MULTI-HUMAN, MULTI-ROBOT COLLISION AVOIDANCE89

5.2 Robot Planning and Control
In this section we begin with the canonical problem of planning through a static envi-

ronment. Efficient algorithms such as A
∗
or rapidly-exploring random trees (RRT) [92, 110]

excel at this task. These algorithms readily extend to environments with deterministically-

moving obstacles by collision-checking in both time and space.

We now introduce robot dynamics and allow the environment to have external distur-

bances such as wind. Kinematic planners such as A
∗
and RRT do not consider these factors

when creating plans. In practice, however, these planners are often used to generate an

initial trajectory, which may then be smoothed and tracked using a feedback controller

such as a linear quadratic regulator (LQR). During execution, the mismatch between the

planning model and the physical system can result in tracking error, which may cause

the robot to deviate far enough from its plan to collide with an obstacle. To reduce the

chance of collision, one can augment the robot by a heuristic error buffer; this induces a

“safety bubble” around the robot used when collision checking. However, heuristically

generating this buffer will not guarantee safety.

Several recent approaches address efficient planning while considering model dynam-

ics and maintaining robustness with respect to external disturbances. Majumdar and

Tedrake [154] use motion primitives with safety funnels, while Raković [172] utilizes

robust model-predictive control, and Singh et. al. [199] leverage contraction theory.

In this paper, we use FaSTrack [95, 78], a modular framework that computes a tracking

error bound (TEB) via offline reachability analysis. This TEB can be thought of as a rigorous

counterpart of the error-buffer concept introduced above. More concretely, the TEB is the

set of states capturing the maximum relative distance (i.e. maximum tracking error) that

may occur between the physical robot and the current state of the planned trajectory. We

compute the TEB by formulating the tracking task as a pursuit-evasion game between

the planning algorithm and the physical robot. We then solve this differential game

using Hamilton-Jacobi reachability analysis. To ensure robustness, we assume (a) worst-

case behavior of the planning algorithm (i.e. being as difficult as possible to track),

and (b) that the robot is experiencing worst-case, bounded external disturbances. The

computation of the TEB also provides a corresponding error-feedback controller for the

robot to always remain inside the TEB. Thus, FaSTrack wraps efficient motion planners,

and adds robustness to modeled system dynamics and external disturbances through

the precomputed TEB and error-feedback controller. Fig. 5.4 shows a top-down view

of a quadcopter using a kinematic planner (A
∗
) to navigate around static obstacles. By

employing the error-feedback controller, the quadcopter is guaranteed to remain within

the TEB (shown in blue) as it traverses the A
∗

path.

5.2.1 FaSTrack Block
Requirements: To use FaSTrack, one needs a high-fidelity dynamical model of the

system used for reference tracking, and a (potentially simpler) dynamic or kinematic

CHAPTER 5. SCALABLE MULTI-HUMAN, MULTI-ROBOT COLLISION AVOIDANCE90

Generating
Occupancy Grid

Update
Parameters

Motion
Prediction

Infer Human
Action

Model Confidence,
Predicted Human Goal

Human
Action

Human State

Human i
Prediction

Obstacle
Maps

Tracking Model

Planning Model

Tracking State

Planning State
Next

Planning
State

Tracking Control

FaSTrack
Controller

Planning Block

Figure 5.3: FaSTrack Block

Figure 5.4: Top-down view of FaSTrack applied to a 6D quadcopter navigating a static environment. Note

the simple planned trajectory (changing color over time) and the tracking error bound (TEB) around the

quadcopter. This TEB is a 6D set that has been projected down to the position dimensions. Because we

assuem the quadcopter moves independently in (𝑥, 𝑦, 𝑧), this projection looks like a box, making collision-

checking very straightforward.

model used by the planning algorithm. Using the relative dynamics between the tracking

model and the planning model, the TEB and safety controller may be computed using

Hamilton-Jacobi reachability analysis [95], sum-of-squares optimization [200], or approx-

imate dynamic programming [179].

Implementation: Fig. 5.3 describes the online algorithm for FaSTrack after the offline

precomputation of the TEB and safety controller. We initialize the planning block to start

within the TEB centered on the robot’s current state. The planner then uses any desired

CHAPTER 5. SCALABLE MULTI-HUMAN, MULTI-ROBOT COLLISION AVOIDANCE91

planning algorithm (e.g. A
∗
, or model predictive control) to find a trajectory from this

initial state to a desired goal state. When collision-checking, the planning algorithm must

ensure that the tube defined by the Minkowski sum of the TEB and the planned trajectory

does not overlap any obstacles in the obstacle map.

The planning block provides the current planned reference state to the FaSTrack
controller, which determines the relative state between the tracking model (robot) and

planned reference (motion plan). The controller then applies the corresponding optimal,

safe tracking control via an efficient look-up table.

5.2.2 FaSTrack in the SCAFFOLD Framework
In the robot planning and control section of Fig. 5.2, each robot uses FaSTrack for

robust planning and control. FaSTrack guarantees that each robot remains within its

TEB-augmented trajectory.

5.3 Human Predictions
Section 5.2 introduced methods for the fast and safe navigation of a single robot in an en-

vironment with deterministic, moving obstacles. However, moving obstacles—especially

human beings—are not always best modeled as deterministic. For such “obstacles,” robots

can employ probabilistic predictive models to produce a distribution of states the human

may occupy in the future. The quality of these predictions and the methods used to plan

around them determine the overall safety of the system. Generating accurate real-time

predictions for multiple humans (and, more generally, uncertain agents) is an open prob-

lem. Part of the challenge arises from the combinatorial explosion of interaction effects as

the number of agents increases. Any simplifying assumptions, such as neglecting inter-

action effects, will inevitably cause predictions to become inaccurate. Such inaccuracies

could threaten the safety of plans that rely on these predictions.

Our goal is to compute real-time motion plans that are based on up-to-date predictions

of all humans in the environment, and at the same time maintain safety when these pre-

dictions become inaccurate. The confidence-aware prediction approach of [74] provides a

convenient mechanism for adapting prediction uncertainty online to reflect the degree to

which humans’ actions match an internal model. This automatic uncertainty adjustment

allows us to simplify or even neglect interaction effects between humans, because uncer-

tain predictions will automatically result in more conservative plans when the observed

behavior departs from internal modeling assumptions.

5.3.1 Human Prediction Block
Requirements: In order to make any sort of collision-avoidance guarantees, we require

a prediction algorithm that produces distributions over future states, and rapidly adjusts

CHAPTER 5. SCALABLE MULTI-HUMAN, MULTI-ROBOT COLLISION AVOIDANCE92

those predictions such that the actual trajectories followed by humans lie within the

prediction envelope. There are many approaches to probabilistic trajectory prediction

in the literature, e.g. [62, 94, 238, 133]. These methods could be used to produce a

probabilistic prediction of the 𝑖-th human’s state 𝑥𝑖 ∈ R𝑛𝑖 at future times 𝜏, conditioned on

observations2 𝑧: 𝑃(𝑥𝜏
𝑖
| 𝑧0:𝑡). These observations are random variables and depend upon

the full state of all robots and humans 𝑥 until the current time 𝑡. However, by default these

distributions will not necessarily capture the true trajectories of each human, especially

when the models do not explicitly account for interaction effects. Fisac et. al. [74] provide

an efficient mechanism for updating the uncertainty (e.g., the variance) of distributions

𝑃(𝑥𝜏
𝑖
|𝑧0:𝑡) to satisfy this safety requirement.

Implementation: Fig. 5.5 illustrates the human prediction block. We use a maximum-

entropy model as in [74, 70, 237], in which the dynamics of the 𝑖-th human are affected

by actions 𝑢𝑡
𝑖

drawn from a Boltzmann probability distribution. This time-dependent

distribution over actions implies a distribution over future states. Given a sensed state 𝑥𝑡
𝑖

of human 𝑖 at time 𝑡, we invert the dynamics model to infer the human’s action, 𝑢𝑡
𝑖
. Given

this action, we perform a Bayesian update on the distribution of two parameters: �𝑖 , which

describes the objective of the human (e.g. the set of candidate goal locations), and 𝛽𝑖 , which

governs the variance of the predicted action distributions. 𝛽𝑖 can be interpreted as a natural

indicator of model confidence, quantifying the model’s ability to capture humans’ current

behavior [74]. Were we to model actions with a different distribution, e.g. a Gaussian

process, the corresponding parameters could be learned from prior data [237, 238, 70],

or inferred online [186, 74] using standard inverse optimal control (inverse reinforcement

learning) techniques.

Once distributional parameters are updated, we produce a prediction over the future

actions of human 𝑖 through the following Boltzmann distribution:

𝑃(𝑢𝑡𝑖 | 𝑥
𝑡
; 𝛽𝑖 , �𝑖) ∝ 𝑒𝛽𝑖𝑄𝑖(𝑥𝑡 ,𝑢𝑡𝑖 ;�𝑖) . (5.1)

This model treats each human as more likely to choose actions with high expected utility as

measured by the (state-action) Q-value associated to a certain reward function, 𝑟𝑖(𝑥, 𝑢𝑖 ;�𝑖).
In general, this value function may depend upon the joint state 𝑥 and the human’s own

action 𝑢𝑖 , as well as the parameters �𝑖 , 𝛽𝑖 . Finally, combining (5.1) with a dynamics model,

these predicted actions may be used to generate a distribution over future states. In

practice, we represent this distribution as a discrete occupancy grid. One such grid is

visualized in Fig. 5.6.

By reasoning about each human’s model confidence as a hidden state [74], our frame-

work dynamically adapts predictions to the evolving accuracy of the models encoded

in the set of state-action functions, {𝑄𝑖}. Uncertain predictions will force the planner

to be more cautious whenever the actions of the humans occur with low probability as

measured by (5.1).

2
For simplicity, we will later assume complete state observability: 𝑧𝑡 = 𝑥𝑡 .

CHAPTER 5. SCALABLE MULTI-HUMAN, MULTI-ROBOT COLLISION AVOIDANCE93

Generating
Occupancy Grid

Update
Parameters

Motion
Prediction

Infer Human
Action

Model Confidence,
Predicted Human Goal

Human
Action

Human State

Human i
Prediction

Obstacle
Maps

Tracking Model

Planning Model

Tracking State

Planning State
Next

Planning
State

Tracking Control

FaSTrack
Controller

Planning Block

Figure 5.5: Human Prediction Block

Figure 5.6: Our environment now has a human (red square). The robot models the human as likely to

move north. Visualized on top of the human is the distribution of future states (pink is high, blue is

low probability). Since the human is walking north and matching the model, the robot’s predictions are

confident that the human will continue northward and remain collision-free.

CHAPTER 5. SCALABLE MULTI-HUMAN, MULTI-ROBOT COLLISION AVOIDANCE94

5.3.2 Human Prediction in the SCAFFOLD Framework
The predicted future motion of the humans is generated as a probability mass function,

represented as time-indexed set of occupancy grids. These distributions are interpreted

as an obstacle map by the FaSTrack block. During planning, a state is considered to be

unsafe if the total probability mass contained within the TEB centered at that state exceeds

a preset threshold, 𝑃
th

. As in [74], we consider a trajectory to be unsafe if the maximum

marginal collision probability at any individual state along it exceeds 𝑃
th

.

When there are multiple humans, their state at any future time 𝜏 will generally be

characterized by a joint probability distribution 𝑃(𝑥𝜏
1
, ..., 𝑥𝜏

𝑁
).

Let 𝑥𝜏
𝑅

be the planned state of a robot at time 𝜏. We write coll(𝑥𝜏
𝑅
, 𝑥𝜏

𝑖
) to denote the

overlap of the TEB centered at 𝑥𝜏
𝑅

with the 𝑖th human at state 𝑥𝜏
𝑖
. Thus, we may formalize

the probability of collision with at least one human as:

𝑃
(
coll(𝑥𝜏𝑅 , {𝑥

𝜏
𝑖 }
𝑁
𝑖=1
)
)
= (5.2)

1 −
𝑁∏
𝑖=1

𝑃
(
¬coll(𝑥𝜏𝑅 , 𝑥

𝜏
𝑖) | ¬coll(𝑥𝜏𝑅 , {𝑥

𝜏
𝑗 }
𝑖−1

𝑗=1
)
)
,

Intuitively, (5.2) states that the probability that the robot is in collision at 𝑠𝜏 is one

minus the probability that the robot is not in collision. We compute the second term by

taking the product over the probability that the robot is not in collision with each human,

given that the robot is not in collision with all previously accounted for humans. Unfortu-

nately, it is generally intractable to compute the terms in the product in (5.2). Fortunately,

tractable approximations can be computed by storing only the marginal predicted distri-

bution of each human at every future time step 𝜏, and assuming independence between

humans. This way, each robot need only operate with 𝑁 occupancy grids. The resulting

computation is:

𝑃
(
coll(𝑥𝜏𝑅 , {𝑥

𝜏
𝑖 }
𝑁
𝑖=1
)
)
≈ 1 −

𝑁∏
𝑖=1

(
1 − 𝑃

(
coll(𝑥𝜏𝑅 , 𝑥

𝜏
𝑖)
))

. (5.3)

Here we take the product over the probability that the robot is not in collision with

each human (one minus probability of collision), and then again take the complement

to compute the probability of collision with any human. Note that when the predictive

model neglects future interactions between multiple humans, (5.2) reduces to (5.3). If

model confidence analysis [74] is used in conjunction with such models, we hypothesize

that each marginal distribution will naturally become more uncertain when interaction

effects are significant.

Once a collision probability is exactly or approximately computed, the planner can

reject plans for which, at any time 𝜏 > 𝑡, the probability of collision from (5.3) exceeds 𝑃
th

.

Thus, we are able to generate computationally tractable predictions that result in 𝑃
th

-safe

planned trajectories for the physical robot.

CHAPTER 5. SCALABLE MULTI-HUMAN, MULTI-ROBOT COLLISION AVOIDANCE95

a b c d e

Figure 5.7: Birds-eye Robot Operating System (ROS) visualization of hardware demonstration from Fig. 9.1.

(a) Two humans (red and blue) start moving towards their respective goals (also red and blue). Robot in

lower right-hand corner has first priority, and robot in upper left-hand corner has second. The time-varying

predictions of each human’s future motion are visualized. (b) Robots plan trajectories to their goals based

on the predictions, priority order, and are guaranteed to stay within the tracking error bound (shown in

blue). (c) When the humans begin to interact in an unmodeled way by moving around each other, the

future predictions become more uncertain. (d) The robots adjust their plans to be more conservative–note

the upper-left robot waiting as the blue human moves past. (c) When the humans pass each other and the

uncertainty decreases, the robots complete their trajectories.

.

5.4 Sequential Trajectory Planning
Thus far, we have shown how our framework allows a single robot to navigate in

real-time through an environment with multiple humans while maintaining safety (at

a probability of approximately 𝑃
th

-safe) and accounting for internal dynamics, external

disturbances, and humans. However, in many applications (such as autonomous driving),

the environment may also be occupied by other robots.

Finding the optimal set of trajectories for all robots in the environment would require

solving the planning problem over the joint state space of all robots. This very quickly

becomes computationally intractable with increasing numbers of robots. Approaches for

multi-robot trajectory planning often assume that the other vehicles operate with specific

control strategies such as those involving induced velocity obstacles [223, 71, 45, 215]

and involving virtual structures or potential fields to maintain collision [166, 56, 234].

These assumptions greatly reduce the dimensionality of the problem, but may not hold

in general.

Rather than assuming specific control strategies of other robots, each robot could

generate predictions over the future motion of all other robots. Successful results of this

type typically assume that the vehicles operate with very simple dynamics, such as single

integrator dynamics [235], differentially flat systems [141], linear systems [5].

However, when robots can communicate with each other, methods for centralized

and/or cooperative multi-agent planning allow for techniques for scalability [137, 213,

161]. One such method is sequential trajectory planning (STP) [51], which coordinates

robust multi-agent planning using a sequential priority ordering. Priority ordering is

commonly used in many multi-agent scenarios, particularly for aerospace applications.

CHAPTER 5. SCALABLE MULTI-HUMAN, MULTI-ROBOT COLLISION AVOIDANCE96

In this work, we merge STP with FaSTrack to produce real-time planning for multi-agent

systems.

5.4.1 Sequential Trajectory Planning
Requirements: To apply STP, robots must be able to communicate trajectories and TEBs

over a network.

Implementation: STP addresses the computational complexity of coupled motion

planning by assigning a priority order to the robots and allowing higher-priority robots

to ignore the planned trajectories of lower-priority robots. The first-priority robot uses

the FaSTrack block to plan a (time-dependent) trajectory through the environment while

avoiding the obstacle maps. This trajectory is shared across the network with all lower-

priority robots. The 𝑖-th robot augments the trajectories from robots 0 : 𝑖 − 1 by their

respective TEBs, and treats them as time-varying obstacles. The 𝑖-th robot determines a

safe trajectory that avoids these time-varying tubes as well as the predicted state distribu-

tions of humans, and publishes this trajectory for robots 𝑖 + 1 : 𝑛. This process continues

until all robots have computed their trajectory. Each robot replans as quickly as it is able;

in our experiments, this was between 50–300 ms.

5.4.2 Sequential Trajectory Planning in the SCAFFOLD Framework
By combining this method with FaSTrack for fast individual planning, the sequential

nature of STP does not significantly affect overall planning time. In our implementation

all computations are done on a centralized computer using the Robot Operating System

(ROS), however this method can easily be performed in a decentralized manner. Note that

STP does depend upon reliable, low-latency communication between the robots. If there

are communication delays, techniques such as [60] may be used to augment each robot’s

TEB by a term relating to time delay.

5.5 Implementation and Experimental Results
We demonstrate SCAFFOLD’s feasibility in hardware with two robots and two humans,

and its scalability in simulation with five robots and ten humans.

5.5.1 Hardware Demonstration
We implemented the SCAFFOLD framework in C++ and Python, using Robot Operat-

ing System (ROS) [169]. All computations for our hardware demonstration were done on

a laptop computer (specs: 31.3 GB of memory, 216.4 GB disk, Intel Core i7 @ 2.70GHz x

8). As shown in Fig. 5.1, we used Crazyflie 2.0 quadcopters as our robots, and two human

volunteers. The position and orientation of robots and humans were measured at roughly

CHAPTER 5. SCALABLE MULTI-HUMAN, MULTI-ROBOT COLLISION AVOIDANCE97

235 Hz by an OptiTrack infrared motion capture system. The humans were instructed

to move towards different places in the lab, while the quadcopters planned collision-

free trajectories in three dimensions (𝑥, 𝑦, 𝑧) using a time-varying implementation of A
∗
.

The quadcopters tracked these trajectories using the precomputed FaSTrack controller

designed for a 6D near-hover quadcopter model tracking a 3D point [78]. Human motion

was predicted 2 s into the future. Fig. 5.7 shows several snapshots of this scene over

time. Note that the humans must move around each other to reach their goals—this is an

unmodeled interaction affect. The predictions become less certain during this interaction,

and the quadcopters plan more conservatively, giving the humans a wider berth. The full

video of the hardware demonstration can be viewed in our video submission.

5.5.2 SCAFFOLD Framework Simulation Analysis
Due to the relatively small size of our motion capture arena, we demonstrate scalability

of the SCAFFOLD framework through a large-scale simulation. In this simulation, pedes-

trians are crossing through a 25×20m
2

region of the UC Berkeley campus. We simulate the

pedestrians’ motion using potential fields [84], which “pull” each pedestrian toward his or

her own goal and “push” them away from other pedestrians and robots. These interaction

effects between humans and robots are not incorporated into the state-action functions

{𝑄𝑖}, and lead to increased model uncertainty (i.e., higher estimates of 𝛽𝑖) during such

interactions. The fleet of robots must reach their respective goals while maintaining safety

with respect to their internal dynamics, humans, and each other. We ran our simulation

on a desktop workstation with an Intel i7 Processor and 12 CPUs operating at 3.3 GHz.3

Our simulation took 98 seconds for all robots to reach their respective goals. Predictions

over human motion took 0.15 ± 0.06 seconds to compute for each human. This compu-

tation can be done in parallel. Each robot took 0.23 ± 0.16 seconds to determine a plan.

There was no significant difference in planning time between robots of varying priority.

Robots used time-varying A
∗
on a 2-dimensional grid with 1.5 m resolution, and collision

checks were performed at 0.1 m along each trajectory segment. The resolution for human

predictions was 0.25 m and human motion was predicted 2 s into the future.

5.6 Discussion & Conclusion
In this paper, we compose several techniques for robust and efficient planning together

in a framework designed for fast multi-robot planning in environments with uncertain

moving obstacles, such as humans. Each robot generates real-time motion plans while

maintaining safety with respect to external disturbances and modeled dynamics via the

FaSTrack framework. To maintain safety with respect to humans, robots sense humans’

3
The computation appears to be dominated by the prediction step, which we have not yet invested effort

in optimizing.

CHAPTER 5. SCALABLE MULTI-HUMAN, MULTI-ROBOT COLLISION AVOIDANCE98

Figure 5.8: Simulation of 5 dynamic robots navigating in a scene with 10 humans. The simulated humans

according to a potential field, which results in unmodeled interaction effects. However, SCAFFOLD enables

each robot to still reach its goal safely.

states and form probabilistic, adaptive predictions over their future trajectories. For effi-

ciency, we model these humans’ motions as independent, and to maintain robustness, we

adapt prediction model confidence online. Finally, to remain safe with respect to other

robots, we introduce multi-robot cooperation through STP, which relieves the computa-

tional complexity of planning in the joint state space of all robots by instead allowing

robots to plan sequentially according to a fixed priority ordering.

We demonstrate our framework in hardware with two quadcopters navigating around

two humans. We also present a larger simulation of five quadcopters and ten humans.

To further demonstrate our framework’s robustness, we are interested in exploring

(a) non-grid based methods of planning and prediction, (b) the incorporation of sensor

uncertainty, (c) optimization for timing and communication delays, and (d) recursive

feasibility in planning. We are also interested in testing more sophisticated predictive

models for humans, and other low-level motion planners.

99

Chapter 6

Robust Human Motion Prediction

This chapter is based on the paper “A robust control framework for human motion prediction” [14]

written in collaboration with Somil Bansal, Ellis Ratner, Claire Tomlin, and Anca Dragan.

Robots such as autonomous vehicles and assistive manipulators are increasingly oper-

ating in dynamic environments and close physical proximity to people. In such scenarios,

it is important that robots not only account for the current state of the humans nearby, but

also predict their future state to plan safe and efficient trajectories.

To maximally preserve safety, a robust optimal control perspective models the human

as taking any action (with equal likelihood) from a set of controls. The predictor combines

this control set with a conservative human dynamics model to compute a full forward

reachable set, or the set of all states that the human could reach from their current state

[158, 67]. This approach allows the robot to produce safe predictions when very little is

understood about human decision-making.

A complementary perspective is that there is structure to human decision-making:

humans have intentions, and make decisions in pursuit of these intentions. For example,

consider an indoor home environment where people often move towards chairs, tables,

or doorways. Predictors synthesized from this perspective, called intent-driven predictors,

build data-driven models of human actions given intent [13, 174, 238, 117, 42], and have

been successful in a variety of domains including manipulation [8, 62, 123], autonomous

driving [191], and navigation [151, 178] (see [183] for a survey). Since human behavior

varies between people and over time, these decision-making models are often parame-

terized and predictors maintain a belief distribution over the model parameters [72, 132].

This provides a direct and succinct way for the robot to use online data to update its

human model [238, 23, 120, 13].

However, a key challenge remains with such intent-driven predictors. To update the

belief over model parameters and to generate predictions, intent-driven predictors rely on

priors and on likelihood models which describe the probability of observing a data point

as a function of the model parameters. Although these two components enable data and

prior knowledge to improve the human model online, likelihood models are difficult to

specify and the priors may be incorrect.

CHAPTER 6. ROBUST HUMAN MOTION PREDICTION 100

Figure 6.1: When intent-driven human models are misspecified in Bayesian predictors, robots confidently

plan unsafe motions (top). Our approach (bottom) trusts the intent-driven model only to remove completely

unlikely human actions, resulting in safer robot plans despite a misspecified model. (not depicted here)

When planning using the worst-case predictor, the robot has to leave the environment entirely to avoid the

predicted human state.

In this work we seek an approach which bridges robust control and intent-driven

predictors: a predictor which is more robust to misspecified models and priors, but still

able to leverage human data online to safely reduce conservatism. Our key idea is to

compute a restricted forward reachable set by trusting the intent-driven model to tell us only

what is completely unlikely. However, unlike intent-driven predictors, we will not rely on

the exact probability of each action under our model during prediction. Rather, we use the

decision-making model and the belief to divide the set of human actions in two disjoint sets

of likely and unlikely actions. We then predict human motion by treating all sufficiently

likely actions as equally probable, much like in the full forward reachable set. Using this

restricted control set results in a prediction problem which can be readily formalized and

solved through existing robust control methods and tools [157, 52]. We utilize Hamilton-

Jacobi (HJ) reachability analysis [158, 150] which is a method for guaranteeing safety

for continuous-time, nonlinear dynamical systems. Finally, to properly restrict the set

of human controls based on the intent-driven model and belief over model parameters,

we augment the state space with the belief. Since the belief encodes the likelihood of

human actions given the history of human actions, this explicit belief tracking allows us

CHAPTER 6. ROBUST HUMAN MOTION PREDICTION 101

to compute the likely actions at any future state.

To summarize, our key contributions are:

• a robust control framework for human motion prediction which provides robustness

against misspecified models and model parameter priors;

• a comparison of our approach to forward reachable set and stochastic predictors

for static and time-varying human intent models and in three pedestrian scenarios

where the belief over the human intent changes online;

• a demonstration of our prediction approach in hardware.

6.1 Problem Setup
We consider a robot operating in a shared workspace with a human. The robot needs

to predict the human’s motion1 and plan a collision-free path around the human to reach

the goal as efficiently and safely as possible. To describe the motion of the robot and the

human, we model both as dynamical systems. Let the state of the human and the robot

be 𝑥H ∈ R𝑛H
and 𝑥R ∈ R𝑛R

respectively. The evolution of these states over time can be

described by ordinary differential equations

¤𝑥H = 𝑓H(𝑥H, 𝑢H), ¤𝑥R = 𝑓R(𝑥R, 𝑢R), (6.1)

where the human and robot’s controls are 𝑢H ∈ R𝑚H
and 𝑢R ∈ R𝑚R

respectively.

The robot’s goal is to plan a control trajectory 𝑢R(𝑡), 𝑡 ∈ [0, �̄�] such that it does not

collide with the human or any (known) static obstacles, and reaches its goal 𝑔R by �̄�. In

this work, we will solve this planning problem in a receding horizon fashion. However,

the future states of the human are not known a priori, and thus the robot must predict

future human motion in order to plan collision-free trajectories.

Throughout this paper, we will focus on contrasting the intent-driven and full for-

ward reachable set predictor with our novel predictor. However, all prediction schemes

ultimately produce a set of sufficiently likely states (forward in time until the prediction

horizon, 𝑁) that the robot uses for collision checking. We define the set of likely human

states at some future time, 𝑡 + 𝜏 as: 𝒦 𝑡(𝜏), ∀𝜏 ∈ [0, 𝑁].
Running example: We now introduce a running example for illustration purposes throughout

the paper. Consider a mobile robot that needs to navigate to a goal position 𝑔R ∈ R2
in a room

where a person is walking. Since the human is a pedestrian in this scenario, we use a planar

human model with state 𝑥H = [ℎ𝑥 , ℎ𝑦] and dynamics ¤𝑥𝐻 = [𝑣𝐻𝑐𝑜𝑠(𝑢H), 𝑣𝐻 𝑠𝑖𝑛(𝑢H)]. We

model the human as moving at a fixed speed 𝑣𝐻 ≈ 0.6𝑚/𝑠 and controlling their heading angle

𝑢H ∈ [−𝜋,𝜋]. Our mobile robot is modeled as a 3D system with state given by its position and

heading 𝑥R = [𝑠𝑥 , 𝑠𝑦 , 𝜙], and speed and angular speed as the control 𝑢R = [𝑣𝑅 , 𝜔], and dynamics

1
We assume that the robot and human states can be accurately sensed.

CHAPTER 6. ROBUST HUMAN MOTION PREDICTION 102

¤𝑥𝑅 = [𝑣𝑅 cos 𝜙, 𝑣𝑅 sin 𝜙, 𝜔]. The robot control inputs are constrained between [0, 0.6]𝑚/𝑠 and

[−1.1, 1.1]𝑟𝑎𝑑/𝑠 respectively.

6.2 Background: Robust vs. Intent Prediction
In this work, we aim to unify ideas from the robust control with the intent-driven

prediction so we start with a brief background on both. In each section, we refer interested

readers to more comprehensive resources on each approach.

6.2.1 Robust Control Prediction
The most conservative prediction of human motion is the set of all states the human

could reach in a time horizon. Let 𝑡 be the current real time and 𝜏 ∈ [0, 𝑁] be a future

time used by the predictor. Also, let �(𝑥0

H
, 𝜏, 𝑢H(·)) := 𝑥𝜏

H
denote the human state starting

from the current state 𝑥0

H
:= 𝑥𝑡

H
at time 0 and applying control 𝑢H for a duration of 𝜏. The

full Forward Reachable Set (FRS) is defined as:

𝒦 𝑡
𝐹𝑅𝑆(𝜏) := {𝑥𝜏

H
: ∃𝑢H(·), 𝑥𝜏

H
= �(𝑥0

H
, 𝜏, 𝑢H(·))} (6.2)

In other words, if the human is in state 𝑥0

H
, then they are predicted to reach any state 𝑥𝜏

H

in 𝜏 time if that state is reachable through some control signal 𝑢H(·).
In general there are many techniques for computing these sets [52, 67, 157], but in

this work we use Hamilton-Jacobi (HJ) reachability analysis [150, 158]. In HJ reachability,

the computation of the FRS is formulated as a dynamic programming problem which

ultimately requires solving for the value function 𝑉(𝜏, 𝑥H) in the following initial value

Hamilton Jacobi-Bellman PDE (HJB-PDE):

𝜕𝑉(𝜏, 𝑥H)
𝜕𝜏

+max

𝑢H∈
∇𝑥H

𝑉(𝜏, 𝑥H) · 𝑓 (𝑥H, 𝑢H) = 0

𝑉(0, 𝑥H) = (𝑥H),
(6.3)

where 𝜏 ≥ 0. The function (𝑥H) is the implicit surface function representing the initial

set of states that the human occupies ℒ = {𝑥H : (𝑥H) ≤ 0}. Note that this equation is

the continuous-time analogue of the discrete-time Bellman equation. The maximization

over the human’s control, 𝑢H ∈, encodes the effect of the human dynamics and control on

the value, which lies in the set of all possible controls. Note that since this optimization

considers all controls, the predictions will include all possible states the human could

reach, thereby resulting in the safe but oftentimes overly conservative predictions. Once

the value function 𝑉(𝜏, 𝑥H) is computed, the FRS predictions are given by the sub-zero

level set 𝒦 𝑡
𝐹𝑅𝑆
(𝜏) = {𝑥H : 𝑉(𝜏, 𝑥H) ≤ 0}. For more details on the HJB-PDE, please refer to

[158].

CHAPTER 6. ROBUST HUMAN MOTION PREDICTION 103

6.2.2 Intent-driven Bayesian Prediction
Unlike the robust predictor, the intent-driven Bayesian predictor couples a structured

model of how the human chooses their actions with the dynamics model. In general,

constructing a human decision-making model for a robotic application is a particularly

difficult modeling challenge and many approaches exist in the literature (see [183]). In

this work, we consider stochastic control policies that are parameterized by a discrete

random variable �𝑡 where Λ is the set of all values that �𝑡 can take. The human’s control

policy can be described by the probability density function 𝑢𝑡
H
∼ 𝑝(𝑢𝑡

H
| 𝑥𝑡

H
;�𝑡). Here,

�𝑡 can represent many different aspects of human decision-making, including what goal

locations they are moving towards [238] or even the kind of visual cues they pay attention

to in a scene [117]. We refer to these aspects of human decision-making as the human’s

intent. Furthermore, we use the superscript 𝑡 on the parameter to denote that the value of

the human parameter can be time-varying. This allows the human model to encode how

the human’s intent changes over time; for example, if a person changes the goal they are

moving towards in a room.

In general, the specific choice of parameterization is often highly problem specific and

can be hand-designed or learned from prior data [238, 70]. Regardless of the specific

parameterization, in practice, the true value of �𝑡 is frequently unknown beforehand and

instead can be estimated from the measurements of the true human behavior. Thus, at

any time 𝑡, the robot additionally maintains a belief distribution 𝑏𝑡(�𝑡) over the model

parameters, which allows it to estimate the human’s intent online via a Bayesian update:

𝑏𝑡+(�𝑡 | 𝑢𝑡H, 𝑥
𝑡
H
) =

𝑃(𝑢𝑡
H
| 𝑥𝑡

H
;�𝑡)𝑏𝑡(�𝑡)∑

�̄∈Λ 𝑃(𝑢𝑡H | 𝑥
𝑡
H

; �̄)𝑏𝑡(�̄)
(6.4)

Running example: The robot has uncertainty about the human’s goal location. Let the

human parameter �𝑡 ∈ Θ = {𝑔1, 𝑔2} take two values which indicates which goal location the

human moving towards. The human decision-making model at any state and for a particular goal

is given by a Gaussian distribution over the heading angle with mean pointing in the goal direction

and a variance representing uncertainty in the human action:

𝑝(𝑢𝑡
H
| 𝑥𝑡

H
;�𝑡) =

{
𝒩(�1, 𝜎2

1
), if �𝑡 = 𝑔1

𝒩(�2, 𝜎2

2
), if �𝑡 = 𝑔2

, (6.5)

where �𝑖 = tan
−1

(𝑔𝑖(𝑦)−ℎ𝑡𝑦
𝑔𝑖(𝑥)−ℎ𝑡𝑥

)
and 𝜎𝑖 = 𝜋/4 for 𝑖 ∈ {1, 2}. Here, (𝑔𝑖(𝑥), 𝑔𝑖(𝑦)) represents the

position of goal 𝑔𝑖 .

At prediction time, the stochastic nature of the human decision-making model and

the belief over the parameters is naturally converted into state distributions (instead of

deterministic sets) forward in time. Note that typically, these predictors use a temporally

and spatially discretized form of the dynamics by integrating 𝑓H over a fixed time interval

𝛿𝑡. Controls are often discretized too and assumed to be held fixed during 𝛿𝑡. This results

CHAPTER 6. ROBUST HUMAN MOTION PREDICTION 104

in the predictor maintaining and updating discrete distributions over the human state

space. Given the current real time 𝑡, we will denote a future time discrete timestep by

𝑘 ∈ {0, 1, . . . , 𝐻𝛿𝑡 }.
Suppose the current state of the human at the start of the prediction horizon is 𝑥0

H
:= 𝑥𝑡

H

and the current belief is 𝑏0(�0) := 𝑏𝑡(�𝑡). Assume the human is at 𝑥𝑘
H

at some future time

𝑘. Combining the dynamics and human policy, the human’s state distribution at the next

timestep 𝑘 + 1 is

𝑃(𝑥𝑘+1

H
| 𝑥𝑘

H
;�𝑘) =

∑
𝑢𝑘

H

𝑃(𝑥𝑘+1

H
| 𝑥𝑘

H
, 𝑢𝑘

H
)𝑃(𝑢𝑘

H
| 𝑥𝑘

H
;�𝑘).

This equation can be applied recursively to compute 𝑃(𝑥𝑘+1

H
| 𝑥0

H
;�0:𝑘) starting from 𝑘 = 0.

Marginalizing over all sequences of values that the human parameter � could take, 𝒮𝑘 ,
where |𝒮𝑘 | = |� |𝑘 , we get the overall distribution over the human state at future time step

𝑘 + 1: 𝑃(𝑥𝑘+1

H
| 𝑥0

H
).

Here, the probability of the parameter sequence has to be set in the model and is generally

defined by 2:

𝑃(�0:𝑘 | 𝑥0

H
) =

(𝑘∏
𝑚=1

𝑃(�𝑚 | �𝑚−1)
)
𝑏0(�0)

.

Importantly, at planning time, the robot must decide which predicted states are suffi-

ciently likely to warrant avoiding. A strict notion of safety requires the robot to avoid all

states whose probability is > 0. While safe (and equivalent to the full FRS), this choice

of states does not leverage the data encoded through the belief or the human decision-

making model. To reduce the volume of this set in a way commensurate with human

decision-making, choosing a nonzero probability threshold is desirable and reveals a sig-

nificantly smaller set of states that aligns with the model. Thus, the ultimate predicted set

of human states that the robot must avoid at planning time is:

𝒦 𝑡
𝜖 (𝑘) = {𝑥𝑘H : 𝑃(𝑥𝑘

H
| 𝑥0

H
) > 𝜖},∀𝑘 ∈ {0, . . . , 𝑁

𝛿𝑡
} (6.6)

where 𝜖 ≥ 0 is a safety threshold and a design parameter.

6.3 A Robust-Control Framework for Intent-Driven
Human Prediction

Our key idea in this paper is to compute a restricted forward reachable set by trusting the

intent-driven model to infer only what is completely unlikely. After using the intent-driven

2
In the case of static latent parameters, the summation simplifies to 𝑃(𝑥𝑘+1

H
| 𝑥0

H
) = ∑

�∈Λ 𝑃(𝑥𝑘+1

H
|

𝑥0

H
;�)𝑏0(�).

CHAPTER 6. ROBUST HUMAN MOTION PREDICTION 105

model to prune away sufficiently unlikely actions, our robust predictor will safeguard

against all sufficiently likely actions equally, much like in the full forward reachable set.

The main question becomes how to perform this control-set pruning in a principled way

over the prediction horizon.

One simple way of choosing this set is as follows. At the beginning of the prediction

horizon, let the human state be 𝑥0

H
:= 𝑥𝑡

H
and the current belief be 𝑏0

:= 𝑏𝑡 . We can

form a new distribution over the human’s controls at the first time step by marginalizing

out the latent model parameters, given the initial belief we have over those parameters:

𝑝(𝑢H | 𝑥H) =
∑

�∈Λ 𝑝(𝑢H | 𝑥H;�)𝑏0(�). Then, we can choose the set of human actions

to be those for which this marginalized initial likelihood is above a threshold: 𝒰(𝑥H) =
{𝑢H : 𝑝(𝑢H | 𝑥H) ≥ 𝛿}. This leads to a set of reachable states for 𝑡 = 1. To obtain the set

of states at 𝑡 = 2, it is tempting to follow the same process, restricting the set of future

actions based on 𝑏0
. Unfortunately, this would (accidentally) model that the human is

“resampling” their intent from this initial distribution independently at every step. It

would disregard that a human’s second action will be consistent with their first, with the

intent only changing according to the dynamics of �. Thus, we must enforce that the

human control from a state 𝑥H at 𝑡 = 2 is not only consistent with the initial belief, but

also with the control that took them to state 𝑥H.

To properly restrict the set of feasible controls over the prediction horizon, we need to

take into account how the likelihood of any future control depends on the past sequence

of human controls. The belief precisely encodes this likelihood given the past sequence of

human controls through the Bayesian update from Eq. 6.4. Thus, our predictor explicitly

tracks the updated belief as it makes predictions, rather than just the updated state, and

restricts future actions based on future beliefs (see left of Fig. 6.3 for intuitive depiction).

Let this joint state space be denoted by 𝑥𝑡 :=
[
𝑥𝑡

H
𝑏𝑡(�𝑡 = �1) . . . 𝑏𝑡(�𝑡 = �|Λ|)

]
.

When predicting using this state space, to simultaneously predict the possible future

beliefs over �𝑡 and corresponding likely human states, we consider the joint dynamics:

¤𝑥𝑡 =
[
¤𝑥𝑡
𝐻
¤𝑏𝑡(�𝑡 = �1) . . . ¤𝑏𝑡(�𝑡 = �|Λ|)

]
, (6.7)

where ¤𝑥𝑡 := 𝑓 (𝑥𝑡 , 𝑢𝑡
H
). The continuous evolution of the belief 𝑏𝑡(�𝑡) can be described by:

¤𝑏𝑡(�𝑡) = 𝛾
(
𝑏𝑡+(�𝑡 | 𝑢𝑡H, 𝑥

𝑡
H
) − 𝑏𝑡(�𝑡)

)
+

(
𝑏𝑡(�𝑡)

)
(6.8)

for any specific value of �𝑡 . Here, the function (·) represents the intrinsic changes in the

human intent, whereas the other component captures the Bayesian change in 𝑏𝑡(�𝑡) due to

the observation 𝑢𝑡
H

. Note that the time derivative in (6.8) is pointwise in the space of all �’s.

Typically, the Bayesian update is performed in discrete time when the new observations

are received. However, to unify this with continuous-time robust controls tools, in this

work, we reason about continuous changes in 𝑏𝑡(�𝑡). Intuitively, to relate the continuous-

time Bayesian update to the discrete-time version, 𝛾 in (6.8) can be thought of as the

observation frequency. Indeed, as 𝛾 ↑ ∞, i.e., observations are received continuously,

CHAPTER 6. ROBUST HUMAN MOTION PREDICTION 106

𝑏𝑡(�𝑡) instantaneously changes to 𝑏𝑡+(�𝑡 | 𝑢𝑡H, 𝑥
𝑡
H
). On the other hand, as 𝛾 ↓ 0, i.e., no

observation are received, the Bayesian update does not play a role in the dynamics of

𝑏𝑡(�𝑡). For a detailed derivation of continuous dynamics, we refer the interested readers

to Sec. 6.7.

Now that we are able to track the evolution of the robot’s belief and the human’s

physical states, we can prune unlikely human actions by combining the intent-driven

model and the predicted belief over the human model parameters. For some future time

𝜏 ∈ [0, 𝑁], the marginalized human action distribution at joint state 𝑥𝜏 is given by

𝑝(𝑢𝜏
H
| 𝑥𝜏) =

∑
�∈Λ

𝑝(𝑢𝜏
H
| 𝑥𝜏

H
;�)𝑏𝜏(�). (6.9)

Very importantly, note that this set is joint state dependent, and therefore belief -

dependent. This allows us to prune away the sufficiently unlikely actions by removing

actions which are not assigned sufficient probability under the future predicted belief

(and not just the initial belief):

𝑢𝜏
H
∈ 𝒰H(𝑧𝜏), 𝒰H(𝑧𝜏) = {𝑢𝜏

H
: 𝑝(𝑢𝜏

H
| 𝑥𝜏) ≥ 𝛿} (6.10)

where 𝑝(𝑢H | 𝑥) is computed as in Eq. (6.9) and 𝛿 is a threshold that partitions the actions

into likely and unlikely.

Running example: Consider the case when the intrinsic behavior of the human does not

change over time, i.e., (𝑏𝑡(�𝑡)) = 0, meaning the human has a fixed goal they are moving to.

Since � takes only two possible values, the joint state space is three dimensional. In particular,

𝑥 =
[
ℎ𝑥 ℎ𝑦 𝑝1

]
, where 𝑝1 := 𝑏𝑡(�𝑡 = 𝑔1) and 𝑏𝑡(�𝑡 = 𝑔2) is given by

(
1 − 𝑏𝑡(�𝑡 = 𝑔1)

)
so

we do not need to explicitly maintain it as a state. The state-dependent control distribution is

𝑝(𝑢H | 𝑥) = 𝑝1𝒩(�1, 𝜎2

1
) + (1 − 𝑝1)𝒩(�2, 𝜎2

2
) and can be used to compute the set of allowable

controls for different values of 𝛿 via Eq. (6.10). Note Fig. 6.2 where the top-left inset figures

show the allowable controls for 𝑥 = (0, 0) and two different belief states 𝑏0(� = 𝑔1) = 0.5 and

𝑏0(� = 𝑔1) = 0.9 for three different 𝛿 thresholds.

6.3.1 Using HJ-Reachability for Prediction
Using a control set rather than a distribution results in a prediction problem which

can be readily solved using the HJB-PDE formulation in Section 6.2.1. At any real time 𝑡,

given the current state of the human and the current belief over the model parameters, we

can construct the joint state at the beginning of the prediction horizon 𝑥0
:= 𝑥𝑡 . Using this

initial state and the thresholded control policy from (6.9), we are interested in computing

the following set:

FRS(𝜏) := {𝑥𝜏 : ∃𝑢H(·) ∈ 𝒰H(𝑥), 𝑥𝜏 = �(𝑥0, 𝜏, 𝑢H(·))}, (6.11)

where 𝜏 ∈ [0, 𝑁]. Intuitively, FRS(𝜏) represents all possible states of the joint system, i.e.,

all possible human states and beliefs over �, that are reachable under the dynamics in

CHAPTER 6. ROBUST HUMAN MOTION PREDICTION 107

Figure 6.2: Effect of the belief and the 𝛿-threshold on the admissible set of controls (shown in upper-left

inset) and the overall predictions (shown in pink) for 3 seconds into the future.

(6.7) for some sequence of human actions. We refer to this set as the Belief Augmented

Forward Reachable Set (BA-FRS) from here on. Much like the computation of the full

forward reachable set from Sec. 6.2.1, we can leverage the same tools from HJ-Reachability

to compute the BA-FRS where 𝑥H is replaced with 𝑥 and instead of optimizing over all

controls , we use the restricted set of controls (𝑥) instead.

After solving the dynamic programming problem to obtain the BA-FRS from (6.11),

our predictions include not only the physical locations of the human but also the corre-

sponding future beliefs. However, for motion planning, the robot needs to collision-check

against a set of physical states the human could occupy. We obtain this set by projecting

FRS(𝜏) on the human state space via𝒦 𝑡
𝛿(𝜏) =

⋃
𝑥𝜏∈FRS(𝜏)Π(𝑥𝜏), ∀𝜏 ∈ [0, 𝑁]where Π(𝑥) is

the physical state component of 𝑥.

Running example: Our starting set of states, ℒ, is a small ball at the joint starting state

𝑧0 = [0, 0, 0.5], shown in grey in Fig. 6.3. Consider how the state and belief can change in a small

(𝛿𝑡 = 0.4668) timestep after observing the person moving towards goal 1 via 𝑢H = 𝜋/4. Since

this action is highly likely under the model where � = 𝑔1, then the next joint state will have the

person not only moved physically in that direction, but the posterior will have increased probability

CHAPTER 6. ROBUST HUMAN MOTION PREDICTION 108

Figure 6.3: (left) Initial set in 𝑥-space (in grey). Likely control distribution for 𝛿 = 0.01 shown projected

in ℎ𝑥 − ℎ𝑦 plane. Comparisons of the resulting joint state if the human moves directly towards 𝑔1 (in red)

versus towards 𝑔2 (in blue). (right) 4 seconds BA-FRS and its projection into 𝑥H-space.

mass on 𝑏(� = 𝑔1). Similarly, this probability decreases if the human moves to 𝑔2. After solving

for 𝑉(𝜏, 𝑥) via (6.3), we take the sub-zero level set to retrieve the joint state predictions (Fig. 6.3,

right), and the predictions𝒦 𝑡
𝛿 after projecting onto the human’s state space.

In summary, to predict the human’s motion, our predictor optimizes the initial value

HJB-PDE from (6.3) but instead of optimizing over all controls, our formulation modifies

Eq. (6.3) to maximize over the restricted set 𝑢H ∈ (𝑧) which changes based on human

state, time, and belief. Ultimately, the proposed prediction framework is a less conservative

FRS, but a more conservative intent-driven predictor. This has two advantages: (1) when

the intent-driven model is correct, it computes an under-approximation of the full FRS to

reduce conservatism in a principled way, and (2) when the model is incorrect, we can be

more robust to such inaccuracies since the predictions no longer rely on the exact action

probabilities. We discuss this further in Sec. 6.4.

6.4 Prediction Comparisons
We now compare our predictor with the intent-driven Bayesian predictor and the full

FRS when (1) the human intent is static, (2) the human intent is time-varying, and (3) the

human moves in unmodelled ways over time.

CHAPTER 6. ROBUST HUMAN MOTION PREDICTION 109

Figure 6.4: Comparisons of Bayesian and BA-FRS predictions for static vs. time-varying human intent.

Dashed lines are the full FRS. Predictions are for 2 seconds for the static parameter and 1.8 seconds for

time-varying. For the Bayesian predictor, we choose 𝜖 to capture the (1 − 𝛿)most likely states.

6.4.1 Static parameter
One simple but common predictive model of human behavior assumes that the hu-

man’s intent (and thus model parameter �) is static. In our running example, this means

the person has a fixed goal location they are moving towards and they will not change

their mind. Mathematically, in the intent-driven Bayesian predictor, this is represented

via the � transition distribution 𝑃(�𝑘+1 | �𝑘) = 1{�𝑘+1=�𝑘} where 1 represents the indicator

function. In the BA-FRS predictor it means 𝑘(𝑏𝑡(�𝑡)) = 0 in the distribution dynamics.

In the left block images in Fig. 6.4, we see a snapshot of predictions generated by the

intent-driven predictor and the BA-FRS forward in time for 2 seconds (𝑁 = 18). The full

forward reachable set is visualized as a series of concentric dashed grey circles. The top

row represents a uniform belief over the two goals, while the bottom row represents a high

belief on goal 1 (𝑔1). As expected, both the intent-driven predictor and the BA-FRS are

far less conservative than the full FRS. Furthermore, the set of sufficiently likely states

predicted by the intent-driven Bayesian predictor is always contained within the BA-FRS.

Consequently, when the belief over � is confident that the human is moving towards 𝑔1

(see bottom row of Fig. 6.4), then the BA-FRS allows us to compute an approximation of

the stochastic predictor.

CHAPTER 6. ROBUST HUMAN MOTION PREDICTION 110

6.4.2 Time-varying parameter
A more complex model of human intent allows it to vary over time. To encode this

time-varying intent in the predictor, we need a model of how the human chooses the next

value of �𝑡 . In our running example, let a simple model for how the person changes their

behavior to be:

𝑃(�𝑘+1 | �𝑘) =
{
𝛼 + (1 − 𝛼) · Δ(�𝑘) if �𝑘+1 = �𝑘

(1 − 𝛼) · Δ(�𝑘+1) if �𝑘+1 ≠ �𝑘
(6.12)

where 𝛼 is a known model parameterwhich governs how likely the person is to change

their intent and Δ is a known discrete distribution over the model parameters. This model

encodes that if the person was moving towards �𝑘 = 𝑔1 at the previous timestep 𝑘, they are

likely to continue to walk to 𝑔1 at the next timestep with probability 𝛼+(1−𝛼) ·Δ(�𝑘 = 𝑔1),
or they can switch to �𝑘+1 = 𝑔2 at the next timestep with probability (1− 𝛼) ·Δ(�𝑘+1 = 𝑔2).
In the BA-FRS predictor, this time-varying intent model is encoded via the distribution

dynamics: 𝑘(𝑏𝑡(�𝑡)) = 𝛼𝑏𝑡(�𝑡) + (1 − 𝛼) · Δ(�𝑡) − 𝑏𝑡(�𝑡).
In the right block of images in Fig. 6.4, we see a snapshot of predictions when the

latent parameter is time-varying forward in time for 1.8 seconds (𝐻 = 11). Note that

when the parameter is time-varying, the computational complexity of the intent-driven

Bayes predictor exponentially increases in the size of the prediction horizon, |Λ|𝑁 , due

to the necessity of tracking all sequences of values that � can take over time. In practice,

prediction was computationally prohibitive for horizons greater than 1.8 seconds. In

contrast, the BA-FRS computation grows linearly in the length of the prediction horizon,

but exponentially in the number of parameter values due to the addition of the belief

in the state. Thus, for time-varying parameters which take a few values and for longer

prediction horizons, our prediction method can be particularly suitable for getting an

approximation of Bayes predictor at a lower computational complexity.

When � is static, then the intent-driven predictor with a high belief over 𝑔1 deems

moving directly towards 𝑔2 to be highly unlikely. However, when � is time-varying, the

human can “switch” which goal they are moving towards, thereby making states in the

direction of 𝑔2 somewhat likely as well. For the BA-FRS, even though directly moving

towards 𝑔2 is unlikely under the intent-driven model and belief, the BA-FRS realizes that

moving away from 𝑔1 is still likely enough. Consequently, the predicted BA-FRS mass moves

in the direction of 𝑔2 over time, in the case of both static and time-varying �, allowing us

to be robust to suboptimal human trajectories as discussed in the next section.

6.4.3 Online updates & robustness to misspecified models
Ultimately, both the intent-driven Bayesian predictor and the BA-FRS will update the

belief over the human parameters online based on how the person moves. Here we

simulate three scenarios–one where the person takes a path well-modelled by the intent-

driven model and two where the person behaves in an unmodelled way–and discuss how

our framework ensures robustness in situations like these.

CHAPTER 6. ROBUST HUMAN MOTION PREDICTION 111

Figure 6.5: Comparison of the intent-driven Bayesian, our BA-FRS, and the full FRS predictions for three

scenarios. In the first row the human moves towards one of the modelled goals. In the middle the human

moves towards an unmodelled goal. In the last row the human is moving towards a modelled goal (𝑔2)

but they take a suboptimal path under our model because they are avoiding an unmodelled obstacle on the

ground (shown in grey circle). The belief over 𝑔1 is visualized over time in the lower-left inset plot.

In all examples, the predictors begin with a uniform prior over the two goals, use

a static model of human intent, and the BA-FRS uses a 𝛿 = 0.02. In the top row of

Fig. 6.5 the human has a fixed intent to move towards the upper goal 1 (𝑔1). In this

scenario, the intent-driven model is correctly specified and as the person moves towards

𝑔1, the belief over 𝑔1 increases and the Bayesian predictions focus towards this goal. Our

CHAPTER 6. ROBUST HUMAN MOTION PREDICTION 112

Figure 6.6: Simulated human moves to modelled 𝑔1 but with varied optimality from 𝜎 = 0 (optimal) to 𝜋
(random). Both predictors use a fixed 𝜎 = 𝜋/4.

BA-FRS performs similarly since it too performs the belief update over time. However,

since the BA-FRS explicitly tracks the evolution of the belief in the future during prediction,

the sets include more states even in the direction of 𝑔2. This is because the predictions

are safeguarding against slightly suboptimal actions which are still likely enough under

the model and would lead to the belief over 𝑔1 decreasing in the future. Nevertheless,

the BA-FRS takes up significantly less volume than the full FRS, thereby reducing overall

conservativism.

The second and third rows demonstrate two human behaviors that are unmodelled

– a scenario where the human is actually walking towards a third unmodelled goal in

between 𝑔1 and 𝑔2 and a scenario where the human takes a seemingly suboptimal path

to 𝑔2 due to an unmodelled obstacle. In the later scenario, the belief over 𝑔1 sharply

increases as the person moves around the unknown obstacle. This results in the Bayesian

predictor being overly optimistic, and it places most probability mass on states that are in

the direction of 𝑔1. In contrast, our predictor remains cautiously conservative because (1)

it is safeguarding against the slightly suboptimal but still sufficiently likely actions and (2)

it is evolving the belief during the prediction horizon. In fact, the true sequence of human

states and actions lies within the predictions of the BA-FRS, ensuring that a robot which

relies on these predictions will in fact avoid the states that the human eventually occupies.

We discuss the middle scenario in greater detail in Sec. 6.5.

We conducted a series of additional experiments with simulated human trajectories to

CHAPTER 6. ROBUST HUMAN MOTION PREDICTION 113

Figure 6.7: (top) Simulated human moves to one of 7 unmodelled goals in an optimal trajectory. Results are in

increasing misspecification of the goal. (bottom) Simulated human moves to modelled goal 𝑔2 but has their

straight-line path obstructed by an unmodelled obstacle. Results from 7 unmodelled obstacles are shown in

increasing deviation from the straight trajectory.

systematically analyze the three misspecification types: (1) accurate goal but inaccurate

optimality level, (2) unmodelled goal, (3) accurate goal but unmodelled obstacle. We

compare different predictors for prediction accuracy and conservatism. A predictor is

considered accurate at a particular time step if the true future human states lies within the

predictions for the entire prediction horizon. Conservatism is measured by computing

the percent volume of the full FRS that the predicted states occupy. Both the accuracy

and conservatism metrics are computed at each time step and averaged over the horizon

[0, �̄�]. Note that the full FRS always achieves 100% accuracy but also 100% conservatism.

These metrics provide us a proxy for the prediction’s effect on the safety and efficiency

of the robot’s plan; ideally, a predictor should have high accuracy and low conservatism

over the entire human trajectory. In all experiments, the Bayesian and BA-FRS predictors

modelled two goals and used a fixed 𝜎 = 𝜋/4 in the action model described in the running

example from 6.2.2 and 𝛿 = 0.02.

For (1), the human was simulated as moving towards modelled goal 𝑔1 by sampling

an action 𝑢(𝑥) ∼ 𝒩(�1, 𝜎2). To capture a range of human behavior from completely

optimal to completely random, we simulated five levels of 𝜎 (depicted in Fig. 6.6). We

sampled 7 random initial human states for each 𝜎 and averaged results over these trials.

Fig. 6.6 shows box plots of our metrics for Bayesian and BA-FRS. Although the BA-FRS is

about twice as conservative as Bayesian, it maintains a high prediction accuracy across all

optimality levels, while still being far less conservative than the full FRS (BA-FRS is ≈ 45%

of the full FRS).

For (2) and (3) we fixed the human’s initial condition but varied the unmodelled goal or

CHAPTER 6. ROBUST HUMAN MOTION PREDICTION 114

unmodelled obstacle. For unmodelled goals, we randomly sampled 7 unmodelled goals

which were diversely spread in the (x,y)-plane. The true (unknown) human trajectory

is a straight line to the unmodelled goal starting from the initial position. Fig. 6.7 (top)

shows plots of the accuracy and conservatism for each of the unmodelled goals, sorted

from the “most” modelled (e.g. an unmodelled goal which is nearby a modelled goal) to

“least” modelled. For unmodelled obstacles, the simulated human always moved towards

𝑔2, but their straight-line path was always obstructed by an unmodelled obstacle, forcing

them to take a trajectory around the obstacle. We simulated 7 of these trajectories around

various circular and rectangular-shaped obstacles. Fig. 6.7 (bottom) shows the results

sorted from least deviation from straight-line trajectory to the goal to most deviation.

The more irrational the human “appears” (either due to an unmodelled goal or taking

a suboptimal path to the goal), the more the drop in accuracy of the Bayesian predictor,

as it overrelies on the intent model to explain the human’s behavior. In contrast, since

BA-FRS only uses the human model to filter likely and unlikely actions, it maintains a

relatively higher accuracy.

6.5 Implications for Safe Motion Planning
Consider the scenario where the actual human goal is midway between the modelled

goals 𝑔1 and 𝑔2 (see 𝑔3 label in Fig. 6.1 and middle row of Fig. 6.5), but the true human

goal is not explicitly modelled in the intent-driven model. We will use this example in

simulation and in hardware to demonstrate the challenges with over-relying on a mis-

specified intent-driven model. Our hardware experiments are performed on a TurtleBot

2 navigating around a human pedestrian. We measured human positions at 200Hz using

a VICON motion capture system and used on-board odometry sensors for the robot state

measurement. The robot is modelled via the dynamics in Sec. 6.1, its goal 𝑔R is behind the

initial state of the human (green circle in Fig. 6.1) and it uses a spline-based planner [219]

to plan six-second trajectories in a receding-horizon fashion.

When the robot uses the full FRS for human motion prediction (see Fig. 6.5 for vi-

sualizations of the predictions over time), the robot plans a trajectory which deviates

significantly from the ideal straight line path towards its goal and in fact forces the robot

to leave the testbed3. In contrast, the Bayesian predictor consistently predicts that that

pedestrian will walk towards one of the goals and fails to assign sufficient probability to

the true human states because of its over reliance on the model. Ultimately, this leads to

a collision between the human and the robot (top row Fig. 6.1). Our proposed approach

does not rely heavily on the exact action probabilities, and infers that the straight line

trajectory is likely enough under the pedestrian model. As a result, the robot makes a

course correction early on to reach its goal without colliding with the pedestrian (bottom

row Fig. 6.1).

3
Hardware demonstration videos: https://youtu.be/uZi-zIi1S6A

https://youtu.be/uZi-zIi1S6A

CHAPTER 6. ROBUST HUMAN MOTION PREDICTION 115

6.6 Conclusion
When robots operate around humans, they often employ intent-driven models to

reason about human behavior. Even though powerful, such predictors can make poor

predictions when the intent-driven model is misspecified. This in turn will likely cause

unsafe robot behavior. In this work, we formulated human motion prediction as a ro-

bust control problem over the set of only sufficiently likely actions, offering a bridge

between conservative full forward reachable set predictors and intent-driven predictors.

We demonstrated that the proposed framework provides more robust predictions when

the prior is incorrect or human behavior model is misspecified, and can perform these

predictions in continuous time and state using the tools developed for reachability analy-

sis. In the future, we will scale it to higher dimensions with multiple humans, perform a

user study to gauge the impact of our predictor on a humans’ comfort in close navigation

scenarios, and integrate it with online model confidence estimation approaches.

6.7 Derivation: Continuous-time Distribution Dynamics
Assume that every 𝑇 seconds4 we are guaranteed to receive a measurement, 𝑢H. Let

the current time be denoted by 𝑡 and the current belief over the latent parameter � be 𝑏𝑡(�).
During the time interval [𝑡 , 𝑡 + 𝑇] we will receive a single measurement with probability

1. For simplicity, we assume that the arrival time of the measurement is uniformly

distributed in the interval [𝑡 , 𝑡 + 𝑇]. However, depending on the measurement model, a

similar derivation can be performed for other arrival time distributions as well. We want

to understand how the belief 𝑏𝑡(�) can change in an arbitrarily small timestep, 𝛿𝑡, along

[𝑡 , 𝑡 + 𝑇]. As this timestep goes to zero, we will be able to recover the continuous-time

dynamics of 𝑏𝑡(�). Let 𝐸 be a discrete random variable which takes values capturing the

event that we receive a measurement within the time interval [𝑡 , 𝑡 + 𝛿𝑡]. The probability

distribution of 𝐸 can be written out as:

𝐸 =

{
𝑒1 = measurement, with probability

𝛿𝑡
𝑇

𝑒2 = no measurement, with probability 1 − 𝛿𝑡
𝑇

When a measurement is received, a Bayesian update on the belief is performed as per

(6.4). When a measurement is not received, the only change in the belief is intrinsic. Let

the function (𝑏𝑡(�)) represent the intrinsic changes in the human behavior. Using the law

of total probability:

𝑏𝑡+𝛿𝑡(�) = 𝑃(𝑒1)𝑃𝑡+𝛿𝑡(� | 𝑥, 𝑒1) + 𝑃(𝑒2)𝑃𝑡+𝛿𝑡(� | 𝑥, 𝑒2)

=

(
𝛿𝑡
𝑇

)
𝑏𝑡+(� | 𝑢, 𝑥) +

(
1 − 𝛿𝑡

𝑇

) (
𝑏𝑡(�) + 𝛿𝑡 · (𝑏𝑡(�))

)
.

4
Here, 𝑇 can represent the publishing rate of the motion capture or estimator which computes the

current human state (and then observation).

CHAPTER 6. ROBUST HUMAN MOTION PREDICTION 116

Rearranging some terms, we get:

𝑏𝑡+𝛿𝑡(�) − 𝑏𝑡(�) =
(
𝛿𝑡
𝑇

) (
𝑏𝑡+(� | 𝑢, 𝑥) − 𝑏𝑡(�)

)
+ 𝛿𝑡 · (𝑏𝑡(�)) + h.o.t,

where h.o.t includes all the terms with 𝛿𝑡2 in them. Taking the limit as 𝛿𝑡 → 0 we get

the time-derivative of 𝑏𝑡(�): ¤𝑏𝑡(�) = 1

𝑇

(
𝑏𝑡+(� | 𝑢, 𝑥) − 𝑏𝑡(�)

)
+ (𝑏𝑡(�)). Note that the higher

order terms disappear when we take the limit of 𝛿𝑡 → 0. We now have a form for our

dynamics when our belief can change both because of a new measurement and because of

the intrinsic dynamics of the human. If we let 𝛾 = 1/𝑇 then we get the form in Equation

(6.8):

¤𝑏𝑡(�) = 𝛾
(
𝑏𝑡+(� | 𝑢, 𝑥) − 𝑏𝑡(�)

)
+ (𝑏𝑡(�)). (6.13)

117

Part II

Formalizing Safety Analysis of Adaptive
Human Models

Because humans vary in their intentions and preferences, robots must adapt their

human models while interacting with people. For example, at an intersection, an au-

tonomous car needs to infer if an oncoming human driver wants go forward or turn so it

can safely make an unprotected left turn. However, an outstanding safety challenge with

such online learning in human-robot interaction is quantifying how a human model may

change in light of new data and how long will this change take? Here, the autonomous

car should understand “When in the future will I know the human driver’s intent?” so it

can safely execute the unprotected left turn. The key idea in Part II is to model the robot’s

learning algorithm as a dynamical system, where the state contains the estimate of the human

model’s parameters, and the control is the human data the robot observes. Determining how a

human model may change reduces to answering when and what states our new dynami-

cal system can reach. Such reachability analysis can be formulated as an optimal control

problem whose solution captures (1) which human data “steer” the learning system into

desired states and (2) the time to learn desired human model parameters starting from an

initialization. We demonstrate the utility of our analysis framework in four human-robot

domains, including autonomous driving and indoor navigation.

118

Chapter 7

Analyzing Human Models that Adapt
Online

This chapter is based on the paper “Analyzing Human Models that Adapt Online” [17] written in

collaboration with Anand Siththaranjan, Claire Tomlin, and Anca Dragan.

Robots rely on predictive models of human behavior in order to plan safe and efficient

motions around people. Because people vary in their intentions, preferences, and styles of

behavior, these models must adapt online upon observing a specific person. For instance,

a robot may use Bayesian inference to update its belief about the location a pedestrian

is walking to [238, 100, 117], or use online gradient descent to update parameters corre-

sponding to a human’s proxemics preferences [19, 33] or parameters of a neural network

which predicts how a human reaches for objects [53].

Enabling robots to adapt their human models online is necessary and beneficial, but it

also raises safety challenges. The human model can now change significantly in light of

new data–the human state/actions–that the robot observes. What the model parameters

change to and how quickly they change depends both on the robot’s learning algorithm

and how the human actually behaves. Some parameter initializations will be conducive

to better learning. Some human behaviors may be ambiguous under the model and result

in slower learning. These all have significant implications for the safety and efficiency of

the robot’s decision-making.

Adaptive models thus raise several questions. First, what is the worst-case time it can

take the robot to learn the correct model parameters (whatever they may be)? With this,

the robot can, for instance, make contingency plans that safeguard against all intents until

this worst-case time but then branch on the true parameter value afterwards. In contrast,

what is the best-case time to learn? Here, a robot can, for example, gain insights about

which locations in a room make learning from nearby humans so challenging that even

in the best-case it still takes too long to estimate the human’s intent. Relatedly, we can

also ask what observations lead to the fastest or slowest learning, thereby producing legible

or deceptive motions. Finally, what initialization should the robot use, so that we can

CHAPTER 7. ANALYZING HUMAN MODELS THAT ADAPT ONLINE 119

guarantee that the robot learns the correct parameters– regardless of what they might

be–in a finite number of observations? These questions amount to knowing what the robot

can learn and in how much time, and thus far have been implicitly raised but received little

attention.

In this work, our key idea is that we can answer these analysis questions by posing them

as reachability queries. To achieve this, we model the robot’s learning algorithm as a dynamical

system, where the state is the current parameter estimate, and the control is the human data the

robot observes. Answering what model parameters can the robot learn and in how much

time reduces to answering when and what states our dynamical system can reach.

In our formulation, a designer can instantiate a parameterized model of the human

(e.g. human driving a car may drive straight or take a left turn at an intersection), an

online learning algorithm initialization (e.g. a uniform prior over the human taking a left

or driving straight in a Bayesian learning setup), and a desired level of confidence in a

particular hypothesis (e.g. acquire high probability on the human taking a left turn), and

finally a measurement frequency with which the robot receives data about the human

(e.g. human observations are acquired at 10 Hz).

With the components from above, answering analysis questions amounts to solving an

optimal control problem whose solution determines which human observations “steer”

the learning system into desired states. To determine what our robot could possibly

learn, we start our dynamical system with the current estimate of the parameter and solve

forward in time for the set of hypotheses that are reachable in finite time and observations.

We can also compute the minimum (or maximum) time to learn a parameter by solving

an optimal control problem backwards in time for the earliest time at which there exists a

sequence of data points that steer the learning system to the desired parameter.

We demonstrate a variety of use cases for our analysis tool, answering these questions

for an autonomous car operating at an intersection near a human-driven vehicle with

unknown intention, and a navigation task in a bookstore environment around a human

with unknown goals or proxemics preferences. While in this paper we focus on low-

dimensional parametrizations (e.g. unknown human goal), we are encouraged by this

first-of-its kind tool for analyzing adaptive human models and are excited to explore

approximate DP applications that can extend our tool to higher dimensions.

7.1 Related Work

Learning from human data. Learning from human data has become increasingly popular

in robotics, enabling robots to effectively predict human motion like walking or reaching

[238, 117, 102, 177], to learn human preferences from physical interaction [19, 33], or to

estimate the fidelity of a predictive model [74, 77]. While research on analyzing algorithms

and verifying models already learned offline from human data has garnered some interest

[37, 185], to date there has not been research analyzing what models could learn.

CHAPTER 7. ANALYZING HUMAN MODELS THAT ADAPT ONLINE 120

Analysis of learning algorithms. The advent of modern machine learning has spurred

a resurgence of interest in analyzing learning algorithms. While there is a long history

of relating ODEs to optimization methods [159], recently, control theoretic tools such as

control Lyapunov functions and reachability analysis have been used to prove convergence

and safety properties of gradient-based learning methods [222, 129, 195], POMDPs [4],

and neural networks [180]. While related, our work focuses not only on analyzing learning

algorithms which use human data but also leverages control tools which have not yet been

studied in learning contexts and have the ability to compute time-to-reach properties.

Verification & control of dynamical systems. The control theory and formal methods

communities have a rich history of verifying the behavior of dynamical systems. In contrast

to the above learning algorithm analyses, these approaches not only focus on convergence

and safety, but also on properties such as minimum time-to-reach [226], robustness to

disturbances [25], and controller synthesis [150]. This research lays the foundation for our

work wherein we model learning from human data as a dynamical system and we answer

analysis queries via solving optimal control problems.

7.2 Problem Formulation & Solution

7.2.1 States & Dynamics
The robot observes data in the form of state-action pairs (𝑥H, 𝑢H). Let the human’s

discrete-time dynamics be:

𝑥𝑡+Δ𝑡
H

= 𝑓H(𝑥𝑡
H
, 𝑢𝑡

H
) (7.1)

where 𝑥H ∈ 𝒳 and 𝑢H ∈ 𝒰 . Additionally, Δ𝑡 represents the frequency with which our

robot observes data about the human (e.g. frequency of the state estimator).

Let � ∈ Θ denote the unknown human model parameter where Θ is a discrete set of

values that � can take on. This parameter could denote a variety of unknown aspects

governing human behavior, from how passive or aggressive a person drives [186], what

locations in a room they are moving towards [238], how optimally the person behaves

[77], or even the kind of visual cues they pay attention to in a scene [117].

The robot uses an online learning algorithm to estimate the human’s intent given a

sequence of observations over time. Our key idea in this work is to view the robot’s

learning algorithm as a dynamical system where the parameter estimate is treated as state

and the human’s data is control input. Let �̂ be the learning algorithm’s estimate. This

could be, for example, a point estimate of � or the belief 𝑏(�).
Let the discrete-time dynamics of a learning algorithm be

�̂𝑡+Δ𝑡 = 𝑓𝐿(�̂𝑡 , 𝑥𝑡
H
, 𝑢𝑡

H
) (7.2)

where 𝑓𝐿 : ℰ × 𝒳 ×𝒰 → ℰ is a single update of �̂ given (𝑥𝑡
H
, 𝑢𝑡

H
) and �̂ ∈ ℰ is the space

of estimates (e.g. ℰ = Θ for a point-estimator or ℰ = [0, 1]|Θ |−1
for the full belief).

CHAPTER 7. ANALYZING HUMAN MODELS THAT ADAPT ONLINE 121

To capture the joint evolution between the learning algorithm’s estimate of the human’s

intent parameter and the human’s possible behavior, we consider the joint state: 𝑥 :=

[𝑥H, �̂]⊤ ∈ 𝒵 = 𝒳 × ℰ . The human data – the actions the human takes – evolve both the

physical human dynamics and the learning dynamics. Thus, we would like to analyze the

joint dynamical system

𝑥𝑡+Δ𝑡 = 𝑓 (𝑥𝑡 , 𝑢𝑡
H
) :=

[
𝑓H(𝑥𝑡

H
, 𝑢𝑡

H
)

𝑓𝐿(�̂𝑡 , 𝑥𝑡
H
, 𝑢𝑡

H
)

]
. (7.3)

Note that this should not be confused with the robot being able to control the human’s

actions. This joint system representation allows us to answer reachablility questions about

which estimates are “learnable” under different restrictions on the type of data the human

could produce.

7.2.2 Solution Method
Equipped with our joint dynamics which describe the evolution of the human’s state

and the learning algorithm, we can now formulate an optimal control problem whose

solution captures which human observations “steer” the learning system into desired

states. We build on our framework from [27, 14] and adapt it for analyzing general

discrete-time algorithms that learn online from human data.

We define the discrete-time optimal control problem and its associated value function

as

𝑉(𝑥) B min

uH

min

𝑡∈{0,Δ𝑡 ,...,𝑇}
𝑙(�𝑡(𝑥, uH)) (7.4)

where uH = [𝑢0

H
, . . . , 𝑢𝑇−1

H
]⊤ is a sequence of controls over the time horizon and �𝑡(𝑥, uH)

is the joint state achieved by applying uH. Here, the function 𝑙(·) encodes the distance

between the current system state and the desired values of the parameters we seek to esti-

mate. Different analysis questions simply become different instantiations of this function,

as we describe in Sec. 7.3. Intuitively, this value function captures the closest our system

ever gets to the target states as measured by the signed distance function 𝑙.

This minimum-payoff optimal control problem can be solved via the principle of dy-

namic programming [158]. Specifically, for a finite horizon 𝑡 ∈ {0,Δ𝑡 , . . . , 𝑇}, the discrete-

time time-dependent terminal-value Hamilton-Jacobi-Bellman variational inequality [155,

75] is:

𝑉 𝑡(𝑥) = min

{
𝑙(𝑥), min

𝑢H∈𝒰 𝑡
𝑉 𝑡+Δ𝑡(𝑓 (𝑥, 𝑢H))

}
,

𝑉𝑇(𝑥) = 𝑙(𝑥), ∀𝑥 ∈ 𝒵 (7.5)

where 𝒰 𝑡
is the set of allowable actions–and therefore data–the human can generate

(described in detail in Sec. 7.3). Intuitively, this value function definition can be thought of

CHAPTER 7. ANALYZING HUMAN MODELS THAT ADAPT ONLINE 122

as analogous to the discrete-time Bellman equation with discount factor 𝛾 = 1, no running

cost, and only terminal cost 𝑙(·).
Given this time-dependent value function and a candidate initial condition of the joint

state 𝑥0
, we can extract two important quantities. First, the optimal control at 𝑥 is:

𝑢𝑡
H
(𝑥) = arg min

𝑢H∈𝒰 𝑡
𝑉 𝑡+Δ𝑡(𝑓 (𝑥, 𝑢H)). (7.6)

Secondly, we define the time-to-learn (TTL) as the earliest time when our system will

reaches the target parameters we seek to learn starting from 𝑥0
. More formally, this TTL:

𝑇𝑇𝐿 = min{𝑡 : 𝑉𝑇−𝑡(𝑥0) ≤ 0}. (7.7)

7.3 Encoding Analysis Questions
We can now turn our attention to mathematically encoding the analysis questions

we are interested in answering. The key components that enable us to encode analysis

questions in Eq. (7.5) are (1) the target set of states ℒ which is encoded via 𝑙(·), (2) the

set of human actions, 𝒰 𝑡
, and (3) the strategy of the human (if they are minimizing or

maximizing value).

Time-to-learn (TTL) queries. Computing the best and worse-case time to learn (TTL)

depends not only on the learning algorithm, but also on the value of the parameter we

are trying to estimate and the type of data the robot could observe. For simplicity, we first

consider computing the 𝑇𝑇𝐿 for a specific parameter value, �∗, and later discuss how to

integrate multiple 𝑇𝑇𝐿 estimates.

We can mathematically embed the objective of learning �∗ in a target set defined in

joint state space: for example,ℒ = {𝑥 : 𝑥H ∈ 𝒳 , | |�̂−�∗ | | ≤ 𝜖}. Intuitively, these target sets

encode that we want our parameter estimate to be close to the true value, but we do not

care where the human ends up in physical state-space as long as we have estimated the

parameter well. Definingℒ to be a closed set in𝒵 allows us define a function 𝑙(𝑥) : 𝒵 → R
such that ℒ = {𝑥 : 𝑙(𝑥) ≤ 0}. For example, the signed distance function to ℒ satisfies this

property. This function 𝑙(𝑧) serves as the cost function for our optimal control problem

from (7.4).

Next, how quickly the robot learns also depends on the possible data about the human

the robot observes. Since the observed data is the human behavior, we must define the set

of controls𝒰 𝑡
that the human could possibly generate at each time step. In general this set

can be chosen in a variety of ways. One of the most straightforward sets is to assume that

the robot could observe the human taking any action, i.e. 𝒰 𝑡 = 𝒰 . Allowing the human

to take any action–and therefore produce any data–leads to very a conservative worst-case

TTL, since it allows for the human to abandon any true intent and act purely adversarially.

While type of analysis may be desirable in some scenarios, a potentially more realistic set of

observations could be𝒰 𝑡 = {𝑢H : 𝑃(𝑢H | 𝑥H;�∗) ≥ 𝛿}where 𝑃(𝑢H | 𝑥H;�∗) encodes a state

CHAPTER 7. ANALYZING HUMAN MODELS THAT ADAPT ONLINE 123

and intent-conditioned action distribution. By varying 𝛿 ∈ [0, 1], the human is allowed to

generate more or less sub-optimal data with respect to the intent-driven model.

Finally, the human’s strategy in the control problem determines if we obtain best or

worst-case learning estimates.

Best-case TTL (min). Since our target setℒ encodes the true human intent parameter that

the robot wishes to learn, modelling the human as minimizing the value which is propa-

gated from 𝑙 in Eq. 7.5 encodes a cooperative human. That is, the human is generating

data in an attempt to help the robot learn their true intent parameter. This enables us to

extract the best-case 𝑇𝑇𝐿�∗ via Eq. (7.7). When interested in the best-case time to learn any

�∗ ∈ Θ, we can obtain a conservative best-case 𝑇𝑇𝐿 via max�∗∈Θ 𝑇𝑇𝐿�∗ .

Worst-case TTL (max). Alternatively, by modelling the human as maximizing the value,

we can easily encode adversarial behavior where the human is trying to prevent the robot

from learning their true � for as long as possible. This enables us to extract the worst-case

𝑇𝑇𝐿�∗ via Eq. (7.7). Similarly to above, we obtain an upper-bound on learning any �∗ ∈ Θ
by computing max�∗∈Θ 𝑇𝑇𝐿�∗ .

7.3.1 Reachable parameter queries.
Computing the set of forward reachable parameters given an initial estimate follows a

similar setup as the 𝑇𝑇𝐿 queries. The main difference comes from ℒ, which now encodes

the initial joint state. For example, ℒ = {𝑥 : 𝑥H = 𝑥0

H
, �̂ = �̂0}. Now, the sub-zero level set

of 𝑉 in Eq. (7.5), encodes the set of states our system can reach in 𝑇 time starting from ℒ.

7.4 Use Cases of Our Analysis Tool
We now demonstrate a variety of use cases for our tool, ranging from autonomous

driving to gradient-based learning.

7.4.1 Synthesizing Safe & Efficient Contingency Planners
Motion planners for autonomous vehicles often face uncertainty in how human-driven

vehicles will behave. Consider the scenario where an autonomous vehicle is attempting to

turn left at an unsignalized four-way intersection and there is a human-driven vehicle in

the opposing lane (see Fig. 7.1). The autonomous vehicle has uncertainty about whether

the human will turn left or go straight (goal 1 and goal 2, respectively)– the outcome of

which significantly impacts the autonomous car’s ultimate maneuver. This is therefore

a prediction problem in which the model’s parameter represents the human’s maneuver

goal: 𝑔 := � and 𝑔 ∈ Θ = {𝑔1, 𝑔2}.
A safe solution to this problem computes a plan for the autonomous vehicle which safe-

guards against both events during the entire planning horizon, i.e. avoids collisions with

CHAPTER 7. ANALYZING HUMAN MODELS THAT ADAPT ONLINE 124

the straight and left-turn trajectory. While safe, this approach often yields conservative

and inefficient motions (left Fig. 7.1).

Alternatively, recent methods have proposed contingency planning [91]. In contingency

planning, the robot generates a plan which safeguards against all events for a short horizon

which is less than the entire planning horizon: 𝑡𝑏 < 𝑁 . After 𝑡𝑏 , the motion planner

generates |Θ | contingency plans, each of which safeguards against only a single event.

The premise of contingency planning is that the robot will know by 𝑡𝑏 which branch to

choose, and will no longer need to safeguard against all events. The contingency plan is

thus only safe if the robot gains enough certainty to choose which plan to use by the the

branching time. If the branching time is too short, then when it comes time for the robot

to choose a contingency plan, the robot will still have uncertainty over the human’s goal.

The robot could now be in a position where no plan exists which safeguards against all

events that are still likely (center, Fig. 7.1).

In [91], the contingency planning problem is posed as a nonlinear constrained opti-

mization problem which jointly optimizes over the shared segment and the contingency

plans while weighting each contingency plan proportional to the belief in that event

occurring

arg min

xR ,uR

𝐽𝑠ℎ𝑎𝑟𝑒(𝑥0:𝑡𝑏
R
) +

∑
𝑔∈Θ

𝑏(𝑔)𝐽𝑐𝑜𝑛𝑡(𝑥𝑡𝑏+1:𝑁
R

, 𝑔)

s.t. 𝑥𝑡+1

R
= 𝑓R(𝑥𝑡

R
, 𝑢𝑡

R
), ∀𝑡 ∈ [0, 𝑁]

(7.8)

where xR ∈ R𝑛R×𝑁
denotes a vector containing the robot’s planned state trajectory. Here,

the robot’s dynamics 𝑓R are modelled by a 3D Dubins’ car where the linear and angular

velocity are control inputs and the state is the position and heading. The cost functions

𝐽𝑠ℎ𝑎𝑟𝑒 and 𝐽𝑐𝑜𝑛𝑡 encode costs for colliding with static obstacles, reaching the robot’s goal,

and large changes in acceleration. Additionally, 𝐽𝑠ℎ𝑎𝑟𝑒 penalizes collisions with all of the

possible outcomes, while 𝐽𝑐𝑜𝑛𝑡 penalizes collisions with the human’s predicted trajectory

towards only the relevant goal, 𝑔𝑖 . A critical design parameter when it comes to the safety

of such a motion planning scheme is the choice of branching time, 𝑡𝑏 .

Unfortunately, knowing the future time at which the robot will have certainty about

the human’s intent is in general challenging. This is where we leverage our analysis

framework: we can use it to compute the worst-case time it will take the robot to gain

certainty in the human intent.

Human Dynamics and Intent Model. Let the human-driven vehicle be modelled as a 3D

Dubins’ car with planar position and heading as state and discrete-time dynamics as

𝑥𝑡+Δ𝑡
H

= 𝑥𝑡
H
+ Δ𝑡

𝑣 𝑐𝑜𝑠(𝜙)
𝑣 𝑐𝑜𝑠(𝜙)
𝑢H

 (7.9)

where the human’s control is angular velocity, 𝑢H ∈ {−3.5, 0, 3.5} 𝑟𝑎𝑑/𝑠 and is driving

with a fixed speed 𝑣 = 6 𝑚/𝑠. The human is modelled as choosing actions via the

CHAPTER 7. ANALYZING HUMAN MODELS THAT ADAPT ONLINE 125

Figure 7.1: (left) Robot safeguards against both hypotheses, straight and left, for entire planning horizon,

(center) A heuristically chosen branch time for the contingency planner doesn’t allow the robot to observe

enough human data, leading it to collision, (right) Contingency planner branches at the max TTL computed

via our method, enabling a safe but efficient plan.

Prior Efficiency (dist to robot’s goal) Safety (min dist between cars)

Safeguard Both n/a 6.88 m (1.14) 0.73 m (0.95)

Correct 5.13 m (1.89) 0.19 m (0.21)

Incorrect 5.13 m (1.89) -1.55 m (0.99)Heuristic (0.3265 s)

Uniform 6.10 m (0.79) -0.76 m (1.19)

Correct 2.33 m (2.29) 0.58 m (0.77)

Incorrect 5.25 m (2.88) 0.54 m (0.88)Max TTL (ours)

Uniform 3.42 m (3.13) 0.55 m (0.77)

Table 7.1: Autonomous driving experiment results shown averaged across initial conditions and ground-

truth human goals. Mean efficiency and safety metrics are reported in each row and standard deviation in

parenthesis.

noisily-rational model [21]: 𝑃(𝑢H | 𝑥H, 𝑔) ∝ 𝑒𝑄(𝑥H ,𝑢H;𝑔)
where 𝑄(𝑥H, 𝑢H; 𝑔) encodes the

state-action value for the human’s driving goal.

Robot Learning Algorithm. The robot learns the human intent by maintaining and

updating a Bayesian belief over 𝑔. Since 𝑔 is discrete, the robot can only maintain |Θ |−1 = 1

probabilities. Without loss of generality, let the robot update 𝑏(𝑔 = 𝑔1) B �̂. The learning

dynamics 𝑓𝐿 in Eq. (7.2) are

𝑓𝐿(𝑏𝑡(𝑔1), 𝑥𝑡
H
, 𝑢𝑡

H
) :=

1

𝑍
𝑃(𝑢𝑡

H
| 𝑥𝑡

H
, 𝑔1)𝑏𝑡(𝑔1) (7.10)

CHAPTER 7. ANALYZING HUMAN MODELS THAT ADAPT ONLINE 126

where 𝑍 is the normalizer.

Joint State & Dynamics. The joint state is 𝑥 = [𝑥H, 𝑏(𝑔1)]⊤ and the joint dynamics are the

stacked dynamics equations from above. We use Δ𝑡 = 0.0891𝑠 in all simulations.

Target Set. To determine the maximum time it will take our robot to estimate that the

human is going forward (𝑔1) or left (𝑔2), we define two target sets in our joint state space:

ℒ𝑔1
= {𝑥 : 𝑥H ∈ 𝒳 , 𝑏(𝑔1) ≥ 0.9} (7.11)

ℒ𝑔2
= {𝑥 : 𝑥H ∈ 𝒳 , 1 − 𝑏(𝑔1) ≥ 0.9} (7.12)

Each of these sets encodes that the robot must be at least 90% confident in the human

driving forwards or turning left.

Computing the Worst-Case Time-to-Learn (TTL). Here, we model the human as ad-

versarial and therefore use a max in the inner value function update from Eq. (7.5). To

ensure that while the person is being adversarial, they have to eventually complete their

maneuver, we restrict the set of controls to 𝒰 𝑡 = {𝑢H : 𝑃(𝑢H | 𝑥H, 𝑔
∗) ≥ 0.27} where 𝑔∗

is equal to the human intent which is being analyzed. Over a horizon of 𝑇 = 1.7820𝑠, we

perform two value function computations via Eq. (7.5) and compute worst-case TTL for

𝑔1 and 𝑔2 by searching backwards in time for the earliest time at which the human’s initial

state and the robot’s initial prior appears in the sub-zero level set of 𝑉 𝑡(𝑥) (as in Eq. (7.7))

to obtain 𝑇𝑇𝐿𝑔1
and 𝑇𝑇𝐿𝑔2

. Finally, to determine the final safe branching time, we want

to safeguard against the hypothesis which takes the longest to estimate confidently. Thus,

let 𝑡𝑏 = max{𝑇𝑇𝐿𝑔1
, 𝑇𝑇𝐿𝑔2

}.
Results. We ran a series of simulations comparing the safe motion planner, a heuristically-

chosen branching time (comparable to [91]), and our maximum TTL branching time

contingency planners. For all planners, we varied the initial velocity of the human and

robot cars (stopped, moving slowly, or moving quickly) as well as the two possible goals

the simulated human was actually moving to. For the contingency planners, we also varied

the prior to correctly biased to the human’s true goal, incorrectly biased, or uniform.

Table 7.1 summarizes the average efficiency and safety metrics over each of these trials.

Here, the heuristically-chosen branching time branches too early – this does not allow the

robot to collect enough observations about the human’s behavior for the robot to make a

confident but safe maneuver, which results in collisions when the robot begins with either

a uniform or incorrect prior over the human goals. In contrast, the maximum worst-case

TTL safeguards against both events for a longer time horizon during which the robot

collects enough observations to make safe and efficiently goal-driven plans even with a

uniform or incorrect prior. Note that the heuristic branching time serves to demonstrate

how choosing an uninformed 𝑡𝑏 can lead to safety violations. However, our analysis tool

should be thought of as complementary to [91] wherein we can synthesize an informed

𝑡𝑏 .

CHAPTER 7. ANALYZING HUMAN MODELS THAT ADAPT ONLINE 127

(a) (b)

Figure 7.2: (left) Minimum TTL that the human is being unmodelled as a function of the prior. Mean and

standard deviation shown in red. (right) Minimum TTL as a function of 𝑥H with a uniform prior. Occupancy

map of the bookstore environment (in Fig. 7.4) shown with modelled human goal is red circle and the min

TTL for each initial (x,y) state is shown in a color ranging from blue (TTL=0.9s) to red (TTL=2.72s).

7.4.2 Analyzing Confidence-Aware Predictors
Next, we consider predictors that introspect on their model confidence, and use our

tool to analyze how long it takes such a predictor to detect that its model cannot explain

the observed human behavior. We focus on intent-driven predictors, which model human

actions as noisily-optimal with respect to cumulative reward, 𝑃(𝑢H | 𝑥H; 𝛽) ∝ 𝑒𝛽𝑄(𝑥H ,𝑢H)

[21, 237]. Here, the parameter 𝛽 models how optimally the human behaves: high values

of 𝛽 model near-optimal behavior, whereas 𝛽 = 0 removes the influence of the modelled

reward on the human’s behavior entirely. Recent work [74, 77, 15] proposed that rather

than fixing 𝛽, the robot should estimate it. Upon observing human actions that are poorly

explained by the reward function, low values of 𝛽 (signaling low model confidence) will

be the most likely, and our predictor will make higher-variance predictions, accounting

for its inability to explain the human’s behavior.

As the human deviates from the model’s assumptions and the predictor makes higher

variance predictions, the robot must stay further away from the human to avoid colliding

with the now larger set of sufficiently likely states. This begs the question: when the

human doesn’t actually optimize the modeled reward, how long will it take the predictor

to adapt its 𝛽 and detect that its model confidence is low?

CHAPTER 7. ANALYZING HUMAN MODELS THAT ADAPT ONLINE 128

Here, let the unknown parameter be 𝛽 B � with 𝛽 ∈ Θ = {0, 1}, signaling low and

high model confidence respectively.

Human Dynamics and Intent Model. Let the human be modelled by a simple planar

pedestrian model: 𝑥𝑡+Δ𝑡
H

= 𝑥𝑡
H
+ Δ𝑡[𝑣𝐻 cos(𝑢H), 𝑣𝐻 sin(𝑢H),]⊤ where the human’s control

is their heading, 𝑢H ∈ {−𝜋, . . . ,𝜋} and the human is walking at a leisurely speed (𝑣 =

0.6 𝑚/𝑠) or is stopped (𝑣 = 0). The human’s reward function encourages motion towards

the door (shown in red) in the indoor environment (top-down occupancy map shown on

right of Fig. 7.2).

Robot Learning Algorithm. The robot maintains and updates a Bayesian belief over

the confidence parameter 𝛽. Without loss of generality, let the robot explicitly update

𝑏(𝛽 = 0) B �̂. Thus, 𝑓𝐿 is identical to (7.10) but with 𝑏(𝛽 = 0).
Joint State & Dynamics. The joint state is 𝑥 = [𝑥H, 𝑏(𝛽 = 0)]⊤ and the joint dynamics are

the stacked physical and learning dynamics from above. Finally, we use Δ𝑡 = 0.4545 𝑠.

Target Set. We are primarily interested in determining how long it will take our robot

to estimate that our model cannot explain the human’s behavior (𝛽 = 0). Thus, we are

interested in answering “From the prior over the model confidence, what is the fastest our

robot could learn that the person is behaving in an unmodelled way?” Our corresponding

target set encoding this question is ℒ𝛽=0 = {𝑥 : 𝑥H ∈ 𝒳 , 𝑏(𝛽 = 0) ≥ 0.9} where 𝜖 = 0.9 is

our desired confidence.

Computing the Best-Case Time-to-Learn (TTL). We seek to compute fastest time to

learn we have low confidence in our model, since this is the lower bound on reaction

time to unmodelled data. Thus, we use min over 𝒰 𝑡
in the optimization from (7.5) and

we optimize over all data the human could generate, since in the worst case the human

is not behaving according to the specified reward function at all. In the following two

analyses, the human navigates in a bookstore environment [aws2020environments] whose

occupancy map is shown in right of Fig. 7.2 and 3D model is shown in Fig. 7.4.

Results: Best-case TTL as function of prior. We first analyzed the min TTL a low

model confidence as a function of the prior. After computing one backwards reachability

computation, we extracted the TTL for 121 initial 𝑥H states and 8 levels of the prior. The

mean and standard deviation across all initial conditions shown in the left Fig. 7.2. This

analysis reveals the added difficulty for the robot to detect its model is wrong if it begins

with an optimistic prior.

Results: Best-case TTL as function of initial human state. Right of Fig. 7.2 shows how

the best-case TTL varies as function of the initial 𝑥H in a complex environment. Here we

fix a uniform prior over the model confidence and use the same value function computed

from above to query for the 𝑇𝑇𝐿 for 1,010 initial human states. Interestingly, this analysis

demonstrates that the best-case 𝑇𝑇𝐿 is largely impacted by the constraints of the physical

environment. If the human begins in the open-space near the door, learning that they do

not want to move to the door is easy since the human can directly move away from the

door to indicate this mismatch. However, if the human begins in a heavily constrained part

CHAPTER 7. ANALYZING HUMAN MODELS THAT ADAPT ONLINE 129

of the environment such as the lower right-hand corner, all collision-free actions appear

ambiguous under the robot’s likelihood model; that is, moving left or up could either

indicate the human intends to move to the door or they intend to move in a completely

different direction.

A few interesting takeaways for designers of robot motion planners which rely on

confidence-aware models include: (1) if the robot does not re-plan faster than this best-

case TTL then the robot will not be able to react quickly enough to the human’s unmodelled

behavior and (2) the robot should remain more cautious around the human in constrained

parts of the environment due to the increased learning uncertainty.

7.4.3 Generating Legible & Deceptive Behaviors
So far we demonstrated how to compute the worst and best-case learning times. We

now showcase how our analysis tool can also synthesize the behavior which led to the

fastest or slowest learning by our (robot) observer.

We use the same planar pedestrian model from 7.4.2. In our running example, the

human is walking around a living room (occupancy map shown in Fig. 7.3) and the robot

has uncertainty about which location the human is navigating to. Let the uncertain human

model parameter be 𝑔 := � and 𝑔 ∈ Θ = {𝑔1, 𝑔2}. The robot uses a noisily-rational model

as above, parameterized by 𝑔, and learns via a Bayesian update.

We perform four reachability computations, two of which have a high-confidence in 𝑔1

target set as in (7.11) and two of which have a high-confidence in 𝑔2 target set (like (7.12)).

However, for each pair of reachability computations, we perform one computation where

the human is minimizing the value (i.e. helping robot learning) and the other where the

human is maximizing the value (i.e. trying to slow down robot learning). In all examples,

the human chooses from𝒰 𝑡 = {: 𝑃(|, 𝑔∗) > 0.15} where 𝑔∗ the goal being analyzed. The

resulting four value functions are used via Eq. (7.6) to extract the optimal sequence of

human data which lead to best and worst-case learning times for 𝑔1, 𝑔2.

Fig. 7.3 visualizes the optimal controls in the bright colored trajectory corresponding to

the human’s true goal. We contrast this with the optimal only-goal-driven policy in grey.

Inset plots show 𝑏(𝑔1) over time and the target confidence level plotted as a dashed line.

To increase the probability on 𝑔1 as fast as possible, the human moving to 𝑔1 signals this

by quickly moving to their left (instead of moving forward as in the optimal path). This

is in line with prior work on legibility [64], but a potential advantage of our formulation

is that the objective of minimizing 𝑇𝑇𝐿 is task-oriented. While prior work encouraged

agents to be legible along the entire trajectory, here the agent is directly minimizing the

time to convey the goal, so that the observer can react as quickly as possible. Interestingly,

to be deceptive, the human zig-zags to confuse the observer for the longest.

CHAPTER 7. ANALYZING HUMAN MODELS THAT ADAPT ONLINE 130

opt TTL=1.03 s
min TTL=1.03 s

opt TTL=2.05 s
min TTL=1.03 s

opt TTL=1.03 s
max TTL=5.13 s

opt TTL=2.05 s
max TTL=3.08 s

Human going to g1 Human going to g2

Le
gi
bl
e
M
ot
io
n

D
ec
ep
tiv
e
M
ot
io
n

Figure 7.3: Legible and deceptive behaviors as synthesized by our analysis tool–shown in bright red or

bright blue. The optimal policy for each goal is shown in grey. The estimate of the goal over time for the

legible and deceptive behaviors is contrasted with the optimal policy in the inset figures.

7.4.4 Online Gradient-based Learning from People
Online gradient-based learning algorithms are also useful in many HRI domains [19,

33, 160, 229]. In this case study, we use our analysis tool to determine a parameter initial-

ization which allows the online gradient algorithm to adapt the fastest to any true human

CHAPTER 7. ANALYZING HUMAN MODELS THAT ADAPT ONLINE 131

obs-avoidance

goal-seeking

Minimum TTL True Parameter from Initialization

Figure 7.4: (left) Heatmap of reachable reward weights (x-axis) and their 𝑇𝑇𝐿 (color values ranging from

dark blue: 𝑇𝑇𝐿 = 0.0𝑠 to yellow: 𝑇𝑇𝐿 = 4.7𝑠) starting from a specific initialization (y-axis). (right) Bookstore

environment with faded human-figure denoting the human’s initial position: red path is optimal behavior

for mainly goal-driven human, blue path is for a human who wants to stay far from obstacles.

intent. As above, the robot is learning a nearby human’s reward function by observing

their behavior. The human’s reward function is modelled as a linear combination of fea-

tures: 𝑟(𝑥H, 𝑢H;�) = �⊤�(𝑥H, 𝑢H). Here, � = [1 − 𝑤, 𝑤]⊤ and �(𝑥H, 𝑢H) ∈ R2
, encoding

the distance between the human and their goal and the distance between the human

and obstacles. Adjusting 𝑤 trades off the human’s goal-driven and obstacle-avoidance

preferences.

The robot learns about the human’s reward via online gradient descent. Thus, the 𝑓𝐿
from Eq. (7.2) are:

𝑓𝐿(�̂𝑡 , 𝑥𝑡
H
, 𝑢𝑡

H
) := �̂𝑡 + 𝛼∇�̂𝐹(𝑥𝑡H, 𝑢

𝑡
H
, �̂𝑡) (7.13)

Maximizing the likelihood of the observed (𝑥𝑡
H
, 𝑢𝑡

H
) pair under the maximum entropy

distribution [237], we derive a gradient-based update:

𝐹(𝑥𝑡
H
, 𝑢𝑡

H
, �𝑡) := 𝑄(𝑥𝑡

H
, 𝑢𝑡

H
;�𝑡) − E𝑢∼𝑃(𝑢 |𝑥𝑡

H
;�𝑡)

[
𝑄(𝑥𝑡

H
, 𝑢;�𝑡)

]
(7.14)

Note: this is the state-action equivalent of learning offline from demonstrations [237].

In this analysis, we solve a forward reachability problem where we start our system in the

target set ℒ = {𝑥 : 𝑥H = 𝑥0

H
, �̂ = �̂0} where 𝑥0

H
is the current physical state of the human

and �̂0
is a candidate initialization. We compute the set of �’s for which there exists a

sequence of observations which evolve the joint system to that �-state in finite time. Here,

Δ𝑡 = 0.2469 𝑠 and the total time horizon for which we evolve our system is 𝑇 = 7.1605 𝑠.

Fig. 7.4 shows the reachable �∗ = [1 −𝑤∗, 𝑤∗]’s starting from a given �0 = [1 −𝑤0, 𝑤0].
Colors in the heatmap represent the earliest time at which the robot can learn a �∗ starting

from a each initialization. Interestingly, if the robot begins with 𝑤0 = 0.9 (i.e. human

is primarily obstacle-averse) it takes ∼ 4.7 𝑠 to learn that the person is actually primarily

goal-seeking (𝑤∗ = 0.1). In contrast, initializing with 𝑤0 = 0.25 allows the robot to learn

any other parameter in < 2.2 𝑠. Intuitively, this discrepancy in how quickly the robot can

CHAPTER 7. ANALYZING HUMAN MODELS THAT ADAPT ONLINE 132

learn from an initialization is because of the structure of the environment which in turn

affects the gradient update. Since here the person begins in a part of the environment

where their direct path is obstructed by obstacles (right Fig. 7.4), they must navigate

around the obstacles before they get to the goal. The evidence of the person moving away

from obstacles makes it difficult to disambiguate if they truly are goal-driven or obstacle-

averse. Thus, initializations which bias our estimator towards believing that people are

obstacle-averse is a poor choice if we want our robot to learn any other �∗ quickly.

Closing Remarks. In this work, we leveraged tools from reachability analysis to analyze

human models which adapt online. By treating these models as dynamical systems where

the estimate is state and the human data is control, we obtain the best and worst-case time

to learn, extract the optimal measurements which enable learning, and synthesize good

model parameter initializations.

133

Part III

Safety for HRI Beyond
Collision-Avoidance

Thus far, this thesis has focused on traditional collision-avoidance notions of safety.

However, close collaboration with people demands more than just collision-avoidance,

raising the question: what is the right notion of safety? This need is highlighted in the robot

learning from physical human interactions domain: after consistently misinterpreting

human feedback during a household cleaning task, the robot erroneously learns to move

coffee mugs at an angle, resulting in spilled coffee and miscoordination. Part III first

lays the groundwork for how robots can learn online from intentional physical human

corrections. We then introduce a variant of confidence-aware robot learning for the

physical HRI domain, where the robot explicitly reasons about how well it can explain

human corrections (or demonstrations) give it’s hypothesis space. We demonstrate how

this reduces incorrect robot learning when the robot’s hypothesis space is not aligned

with the human’s during reward learning. This section is an exciting first step towards

the large problem domain of formalizing safety in HRI beyond collision-avoidance.

134

Chapter 8

Learning Robot Objectives from Physical
Human-Robot Interaction

This chapter is based on the paper “Physical Interaction as Communication: Learning Robot

Objectives Online from Human Corrections” [148] written in collaboration with Dylan Losey,

Marcia O’Malley, and Anca Dragan.

Physical interaction is a natural means for collaboration and communication between

humans and robots. From compliant designs to reliable prediction algorithms, recent

advances in robotics have enabled humans and robots to work in close physical proximity.

Despite this progress, seamless physical interaction—where robots are as responsive,

intelligent, and fluid as their human counterparts—remains an open problem.

One key challenge is determining how robots should respond to direct physical contact.

Fast and safe responses to external forces are generally necessary, and have been studied

extensively within the field of physical human-robot interaction (pHRI). A traditional

controls approach is to treat the human’s interaction force as a perturbation to be rejected

or ignored. Here the robot assumes that it is an expert agent and follows its own prede-

fined trajectory regardless of the human’s actions [59]. Alternatively, the robot can treat

the human as the expert, so that the human guides the passive robot throughout their

preferred trajectory. Whenever the robot detects an interaction it stops moving and be-

comes transparent, enabling the human to easily adjust the robot’s state [101]. Impedance

control—the most prevalent paradigm for pHRI [87, 97]—combines aspects of the previ-

ous two control strategies. Here the robot tracks a predefined trajectory, but when the

human interacts the robot complies with the human’s applied force. Under this approach

the human can intuitively alter the robot’s state while also receiving force feedback from

the robot.

In each of these different response strategies for pHRI the robot returns to its pre-

planned trajectory as soon as the human stops interacting. In other words, the robot

remains confident that its original trajectory is the correct way to complete the task. Since

this robot trajectory is optimal with respect to some underlying objective function, these

CHAPTER 8. LEARNING ROBOT OBJECTIVES FROM PHYSICAL HUMAN-ROBOT

INTERACTION 135

response paradigms effectively maintain a fixed objective function during pHRI. Hence,

the human’s interactions do not change the robot’s understanding of the task; instead,

external forces are simply disturbances which should be reacted to, rather than information

which should be reasoned about.

In this work we assert that physical human interactions are often intentional, and

occur because the robot is doing something that the human believes is incorrect. The

fact that the human is physically intervening to fix the robot’s behavior implies that the

robot’s trajectory—and therefore the underlying objective function used to produce this

trajectory—is wrong. Under our framework we consider the forces that the human applies

as observations about the true objective function that the robot should be optimizing,

which is known to the human but not by the robot. Accordingly, human interactions

should no longer be thought of as only disturbances that perturb the robot from its pre-

planned trajectory, but rather as corrections that teach the robot about the desired behavior

during the task.

This insight enables us to formalize the robot’s response to pHRI as an instance of

a partially observable dynamical system, where the robot is unsure of its true objective

function, and human interactions provide information about that objective. Solving this

system defines the optimal way for the robot to respond to pHRI. We derive an approxima-

tion of the solution to this system that works in real-time for continuous state and action

spaces, enabling robot arms to react to pHRI online and adjust how they complete the

current task. Due to the necessity of fast and reactive schemes, we also derive an online

gradient-descent solution that adapts inverse reinforcement learning approaches to the

pHRI domain. We find that this solution works well in some settings, while in others

user corrections are noisy and result in unintended learning. We alleviate this problem

by introducing a restriction to our update rule focused on extracting only what the person

intends to correct, rather than assuming that every aspect of their correction is intentional.

Finally, we compare our approximations to a full solution, and experimentally test our

proposed learning method in user studies with a robotic manipulator.

We make the following contributions1:

Formalizing pHRI as implicitly communicating objectives. We formalize reacting to

physical human-robot interaction as a dynamical system, where the robot optimizes an

objective function with an unknown parameter �, and human interventions serve as

observations about the true value of �. As posed, this problem is an instance of a Partially

Observable Markov Decision Process (POMDP).

Learning online from pHRI and safely controlling the robot. Responding to pHRI

requires learning about the objective in real-time (the estimation problem), as well as

adapting the robot’s motion in real-time (the control problem). We derive an approxi-

mation that enables both by moving from the action or policy level to the trajectory level,

bypassing the need for dynamic programming or POMDP solvers, and instead relying on

1
Note that parts of this work have been published at the Conference on Robotic Learning [19] and the

Conference on Human-Robot Interaction [18].

CHAPTER 8. LEARNING ROBOT OBJECTIVES FROM PHYSICAL HUMAN-ROBOT

INTERACTION 136

(a) Robot that treats physical interactions as dis-

turbances.

(b) Robot that treats physical interactions as in-

tentional and informative.

Figure 8.1: (Top) When physical human interactions are treated as disturbances people have to repeatedly

push the robot to physically change its behavior. (Bottom) Robots that recognize that physical interactions

may be corrections can learn from these interactions and change their underlying behavior to align with the

human’s preferences.

local optimization. Working at the trajectory level we derive an online gradient descent

learning rule which updates the robot’s estimate of the true objective � as a function of

the human’s interaction force.

Responding to unintended human corrections. In practice, the human’s physical interac-

tions are noisy and imperfect, particularly when trying to correct high degree-of-freedom

(DoF) robotic arms. Because these corrections do not isolate exactly what the human is

trying to change, responding to all aspects of pHRI can result in unintended learning. We

therefore introduce a restriction to our online learning rule that only updates the robot’s

estimate over aspects of the task that the person was most likely trying to correct.

Analyzing approximate solutions. In a series of controlled human-robot simulations

we compare the performance of our online learning algorithm to the gold standard:

computing an optimal offline solution to the pHRI formalism. We also consider two

baselines: deforming the robot’s original trajectory in the direction of human forces, and

reacting to human forces with only impedance control. We find that our online learning

method outperforms the deformation and impedance control baselines, and that the

difference in performance between our online learning method and the more complete

offline solution is negligible.

Conducting user studies on a 7-DoF robot. We conduct two user studies with the JACO2

(Kinova) robotic arm to assess how online learning from physical interactions affects the

robot’s objective performance and the user’s subjective feedback. During these studies

the robot begins with an incorrect objective function and participants must physically

CHAPTER 8. LEARNING ROBOT OBJECTIVES FROM PHYSICAL HUMAN-ROBOT

INTERACTION 137

intervene mid-task to teach the robot to execute the remainder of the task correctly. In our

first study we find that participants are able to physically teach the to perform the task

correctly, and that participants prefer robots that learn from pHRI. In our second study we

test how learning from all aspects of the human’s interaction compares to our restriction,

where the robot only learns about the single feature most correlated with the human’s

correction.

Overall, this work demonstrates how we can leverage the implicit communication

which is present during physical interactions. Learning from implicit human communi-

cation applies not only to pHRI, but conceivably also to other kinds of actions that people

take.

8.1 Prior Work
In this work, we enable robots to leverage physical interaction with a human during

task execution to learn a human’s objective function. We also account for imperfections in

the way that people physically interact to correct robot behavior. Prior work has separately

addressed (a) control strategies for reacting to pHRI without learning the human’s objec-

tive and (b) learning the human’s objective offline from kinesthetic demonstrations. An

exception is work on shared autonomy, which learns the human’s objective in real-time,

but only when that objective is parameterized by the human’s goal position. Finally, we

discuss related work on algorithmic teaching, which describes how humans can optimally

teach robots as well as how humans practically teach robots.

Controllers for pHRI. Recent review articles on control for physical human-robot inter-

action [87, 59] group these controllers into three categories: impedance control, reactive

strategies, and shared control. When selecting a controller for pHRI, ensuring the hu-

man’s safety is crucial. Impedance control, as originally proposed by [97], achieves human

safety by making robots compliant during interactions; for instance, the robot behaves like

a spring-damper centered at the desired trajectory. But the robot can react to human

contacts in other ways besides—or in addition to—rendering a desired impedance. [88]

suggest a variety of alternatives: the robot could stop moving, switch to a low-impedance

mode, move in the direction of the human’s applied force, or re-time its desired trajectory.

More relevant here are works on shared control, where the robot has an objective

function, and uses that objective function to select optimal control feedback during pHRI

[101, 156, 147]. In [140] the authors formulate pHRI with game theory. The robot has an

objective function which depends on the error from a pre-defined trajectory, the human’s

effort, and the robot’s effort. During the task the robot learns the relative weights of these

terms from human interactions, resulting in a shared controller that becomes less stiff

when the human exerts more force. Rather than only learning the correct robot stiffness—

as in [140]—our work more generally learns the correct robot behavior. We note that each

of these control methods [97, 88, 101, 156, 140, 147] enables the robot to safely respond to

CHAPTER 8. LEARNING ROBOT OBJECTIVES FROM PHYSICAL HUMAN-ROBOT

INTERACTION 138

human interactions in real-time. However, once the human stops interacting, the robot

resumes performing its task in the same way as it had planned before human interactions.

Learning Human Objectives Offline. Inverse reinforcement learning (IRL), also known

as inverse optimal control, explicitly learns the human’s objective function from demon-

strations [3, 109, 162, 167]. IRL is an instance of supervised learning where the human

shows the robot the correct way to perform the task, and the robot infers the human’s ob-

jective offline from one or more demonstrations. Demonstrations can be provided through

pHRI, where the human kinesthetically guides the passive robot along their desired tra-

jectory [70, 108]. In practice, the human’s actual demonstrations may not be optimal with

respect to their objective, and [173, 237] address IRL from approximately optimal or noisy

demonstrations.

Most relevant to our research are IRL approaches that learn from corrections to the

robot’s trajectory rather than complete demonstrations [99, 113, 175]. Within these works,

the human corrects some aspect of the demonstrated trajectory during the current iteration,

and the robot improves its trajectory the next time it performs the task. By contrast, we use

human interactions to update the robot’s behavior during the current task. Our solution

for real-time learning is analogous to online Maximum Margin Planning [175] or coactive

learning [99, 197], but we derive this solution as an approximately optimal response to

pHRI. Moreover, we also show how this learning method can be adjusted to accommodate

unintentional human corrections.

As we move towards online learning, we also point out research where the robot

learns a discrete set of candidate reward functions offline, and then changes between

these options based on the human’s real-time physical corrections [228]. We view this

work as a simplified instance of our approach, where the robot has sufficient domain

knowledge to limit the continuous space of rewards to a few discrete choices.

Learning Human Goals Online. Prior work on shared autonomy has explored how

robots can learn the human’s objective online from the human’s actions. [65, 102] consider

human-robot collaboration and teleoperation applications, in which the robot observes the

human’s inputs, and then infers the human’s desired goal position during the current task.

Other works on shared autonomy have extended this framework to learn the human’s

adaptability [165] or trust [46] so that the robot can reason about how its actions may

alter the human’s goal. In all of these prior works the robot is moving through free-

space and the human’s preferred goal is the only aspect of the true objective which is

unknown. We build on this prior work by considering general objective parameters; this

requires a more complex—i.e., non-analytic and difficult to compute—observation model,

along with additional approximations to achieve online performance.

Although not part of shared autonomy, we also point out research where the robot’s

trajectory changes online due to physical human interactions. In some works—such as

[153, 201]—the robot alters its trajectory to avoid physical human interaction. More related

to our approach are works where the robot embraces physical corrections to adapt its

behavior. For example, in [146, 116, 115, 145] the robot maintains a parameterized desired

CHAPTER 8. LEARNING ROBOT OBJECTIVES FROM PHYSICAL HUMAN-ROBOT

INTERACTION 139

trajectory or dynamical system, and updates the parameters in real-time to minimize the

error between the resultant trajectory and the human’s corrections. These works directly

update the robot’s desired trajectory based on corrections; by contrast, we learn a reward

function from human corrections, which can—in turn—be used to generate dynamical

systems or desired trajectories. Learning a reward function is advantageous here because

it enables the robot to generalize what it has learned within the task, e.g., because the

human has corrected the robot closer to one table, the robot will move closer to a second

table as well.

Humans Teaching Robots. Recent works on algorithmic teaching, also referred to as

machine teaching, can be used to find the optimal way to teach a learning agent [22,

83, 236]. Within our setting the human teaches the robot their objective function via

corrections, but actual end-users are imperfect teachers. Algorithmic teaching addresses

this issue by improving the human’s demonstrations for IRL [39]. Here the robot learner

provides advice to the human teacher, guiding them into making better corrections. By

contrast, we focus on developing learning algorithms that match how everyday end-users

approach the task of teaching [207, 208, 106]. Put another way, we do not want to optimize

the human’s corrections, but rather develop learning algorithms that account for imperfect

teachers. Most relevant is [6], which shows how humans can kinesthetically correct the

robot’s waypoints offline to better match their desired trajectory. We similarly investigate

interfaces that make it easier for people to teach robots, but in the context of applying

physical forces to correct an existing robot trajectory.

8.2 Formalizing Physical Human-Robot Interaction
Consider a robot performing a task autonomously and in close proximity to a human

end-user. The human observes this robot and can physically interact with the robot to

alter its behavior. Returning to our running example from Fig. 8.1, imagine a robotic

manipulator that is carrying a coffee mug from the top of a cabinet down to a table while

the human sits nearby. Importantly, the robot is either not doing this task correctly (e.g.,

the robot is carrying the cup at such an angle that coffee will spill) or the robot is not doing

the task according to the human’s personal preferences (e.g., the robot is carrying the coffee

too far above the table). In both of these cases the human is incentivized to physically

interact with the robot and correct its behavior: but how should the robot respond? Here

we formalize pHRI as a dynamical system where the robot does not know the correct

objective function that the human wants it to optimize and the human’s interactions are

informative about this objective. Importantly, this formalism defines what it means for a

robot to respond in the right or optimal way to physical human interactions. Furthermore,

certain strategies for responding to pHRI can be justified as approximate solutions to this

formalism.

Notation. Let 𝑥 be the robot’s state, 𝑢𝑟 be the robot’s action, and 𝑢ℎ be the human’s action.

CHAPTER 8. LEARNING ROBOT OBJECTIVES FROM PHYSICAL HUMAN-ROBOT

INTERACTION 140

Returning to our motivating example, 𝑥 ∈ R𝑛 encodes the manipulator’s joint positions

and velocities, 𝑢𝑟 ∈ R𝑚 are the robot’s commanded joint torques, and 𝑢ℎ ∈ R𝑚 are the

joint torques resulting from the wrench applied by the human. The robot transitions to

the next state based on its deterministic dynamics ¤𝑥 = 𝑓 (𝑥, 𝑢𝑟 + 𝑢ℎ). Notice that both the

robot’s and human’s action influence the robot’s motion. In what follows we will work in

discrete time, where a superscript 𝑡 denotes the current timestep. For instance, 𝑥𝑡 is the

state at time 𝑡.

Objective. We model the human as having a particular reward function in mind that

represents how they would like the current task to be performed. We write this reward

function as a linear combination of task-related features [3, 237]:

𝑟(𝑥, 𝑢𝑟 , 𝑢ℎ ;�) = � · 𝜙(𝑥, 𝑢𝑟 , 𝑢ℎ) − �∥𝑢ℎ ∥2. (8.1)

In the above, 𝜙 ∈ [0, 1]𝑁 is a normalized vector of 𝑁 features, � is a positive constant, and

� ∈ R𝑁 is a parameter vector that determines the relative weight of each feature. Here

� encapsulates the true objective: if an agent knows exactly how to weight all the aspects

of the task, then it can compute how to perform the task optimally. The first term in

Equation (8.1) is the task-related reward, while the second term penalizes human effort.

Intuitively, the human wants the robot to complete the task according to their objective

�—e.g., prioritizing keeping the coffee upright, or moving closer to the table—without

any human intervention2.

With this formalism the robot should take actions 𝑢𝑟 to maximize the reward in Equa-

tion (8.1) across every timestep. This is challenging, however, because the robot does not

know the true objective parameters �: only the human knows �. Different end-users have

different objectives, which can change from task-to-task and even day-to-day. We thus

think of � as a hidden part of the state known only by the human. If the robot did know

�, then pHRI would reduce to an instance of a Markov decision process (MDP), where

the states are 𝑥, the actions are 𝑢𝑟 , the reward is (8.1), and the robot understands what it

means to complete its task optimally. But since the actual robot is uncertain about �, we

must reason over this uncertainty during pHRI.

POMDP. We formalize pHRI as an instance of a partially observable Markov decision

process (POMDP) where the true objective � is a hidden part of the state, and the robot

receives observations about � through the human actions 𝑢ℎ . Formally, a POMDP is a

tuple ⟨𝑆,𝑈, 𝑍, 𝑇, 𝑂, 𝑟, 𝛾⟩ where:

• 𝑆 is the set of states, where 𝑠 = (𝑥, �), so that the system state contains the robot state

𝑥 and parameter �

• 𝑈 is the set of the robot actions 𝑢𝑟

2
We recognize that ∥𝑢ℎ ∥2 could also be thought of as a feature in 𝜙 with weight �; however, we have

explicitly listed this term to emphasize that the robot should not rely on human guidance.

CHAPTER 8. LEARNING ROBOT OBJECTIVES FROM PHYSICAL HUMAN-ROBOT

INTERACTION 141

• 𝑍 is the set of observations (i.e. human actions 𝑢ℎ)

• 𝑇(𝑠𝑡 , 𝑢𝑡𝑟 + 𝑢𝑡ℎ , 𝑠
𝑡+1) is the transition distribution determined by the robot’s dynamics

(� is constant)

• 𝑂(𝑠𝑡+1, 𝑢𝑡𝑟 , 𝑧
𝑡+1) is the observation distribution

• 𝑟(𝑠𝑡 , 𝑢𝑡𝑟 , 𝑢𝑡ℎ) is the reward function from (8.1)

• 𝛾 is the discount factor

In the above POMDP the robot cannot directly observe the system state 𝑠, and instead

maintains a belief over 𝑠, where 𝑏(𝑠) is the probability of the system being in state 𝑠.

Within our pHRI setting we assume that the robot knows its state 𝑥 (e.g., position and

velocity), so that the belief over 𝑠 reduces to 𝑏(�), the robot’s belief over �. The robot

does not know the human’s true objective parameter �, but updates its belief over � by

observing the human’s physical interactions 𝑢ℎ .

Solving this POMDP yields the robot’s optimal response to pHRI during the task3. We

point out that this POMDP is atypical, however, because the observations 𝑢ℎ additionally

affect the robot’s reward 𝑟, similar to [102], and alter the robot’s state 𝑥 via the transition

distribution𝑇. Because the human’s actions can change both the state and reward, solving

this POMDP suggests that the robot should anticipate future human actions, and choose

control inputs 𝑢𝑟 that account for the predicted human inputs 𝑢ℎ , similar to [96].

Observation Model. Assuming that human interactions are meaningful, the robot should

leverage the human’s actions 𝑢ℎ to update its belief over �. In order to associate the

human interactions 𝑢ℎ with the objective parameter �, the robot uses an observation

model: 𝑃(𝑢ℎ | 𝑥, 𝑢𝑟 ;�). If we were to treat the human’s actions as random disturbances,

then we would select a uniform probability distribution for 𝑃(𝑢ℎ | 𝑥, 𝑢𝑟 ;�). By contrast,

here we model the human as intentionally interacting to correct the robot’s behavior; more

specifically, let us model the human as correcting the robot to approximately maximize

their reward. We assume the human selects an action 𝑢ℎ that, when combined with the

robot’s action 𝑢𝑟 , leads to a high Q-value (state-action value) assuming the robot will behave

optimally after the current timestep, i.e., assuming that the robot learns the true �:

𝑃(𝑢𝑡
ℎ
| 𝑥𝑡 , 𝑢𝑡𝑟 ;�) =

𝑒𝑄(𝑥
𝑡 ,𝑢𝑡𝑟+𝑢𝑡ℎ ;�)∫

𝑒𝑄(𝑥𝑡 ,𝑢
𝑡
𝑟+�̃�ℎ ;�)𝑑�̃�ℎ

(8.2)

Our choice of Equation (8.2) stems from maximum entropy assumptions [237], as well as

the Bolzmann distributions used in cognitive science models of human behavior [21].

3
The most general formulation for pHRI is that of a cooperative inverse reinforcement learning (CIRL)

game [89], which, when solved, yields the optimal human and robot policies.

CHAPTER 8. LEARNING ROBOT OBJECTIVES FROM PHYSICAL HUMAN-ROBOT

INTERACTION 142

8.3 Approximate Solutions for Online Learning
Although we have demonstrated that pHRI is an instance of a POMDP, solving

POMDPs exactly is at best computationally expensive and at worst intractable [107].

POMDP solvers have made significant progress [198, 203]; however, it still remains diffi-

cult to compute online solutions for continuous state, action, and observation spaces. For

instance, when evaluated on a toy problem (𝑆 = R4
, 𝑂 = R8

), recent developments do

not obtain exact solutions within one second [206]. The lack of efficient POMDP solvers

for large, continuous state, action, and observation spaces is particularly challenging here

since (a) the dimension of our state space 𝑆 is twice the number of robot DoF, 2𝑛, plus the

number of task-related features, 𝑁 , and (b) we are interested in real-time solutions that

enable the robot to learn and act while the human is interacting (i.e. we need millisecond-

to-second solutions). Accordingly, in this section we introduce three approximations to

our pHRI formalism that enable online solutions. First, we separate finding the optimal

robot policy from estimating the human’s objective. Next, we simplify the observation

model and use a maximum a posteriori (MAP) estimate of � as opposed to the full belief

over �. Finally, when finding the optimal robot policy and estimating �, we move from

policies to trajectories. These approximations show how our solution is derived from the

complete POMDP formalism outlined in the last section, but now enable the robot to learn

and react in real-time with continuous state, action, and belief spaces.

QMDP. We first assume that � will become fully observable to the robot at the next

timestep. Given this assumption, our POMDP reduces to a QMDP [142]; QMDPs have

been used by [102] to approximate a POMDP with uncertainty over the human’s goal. The

QMDP separates into two distinct subproblems: (a) finding the robot’s optimal policy given

the current belief 𝑏(�) over the human’s objective:

𝑄(𝑥, 𝑢𝑟 , 𝑏) =
∫

𝑏(�)𝑄(𝑥, 𝑢𝑟 , �)𝑑� (8.3)

where 𝑢∗𝑟 = arg max𝑢𝑟 𝑄(𝑥, 𝑢𝑟 , 𝑏) evaluated at every state yields the optimal policy, and (b)

updating the belief 𝑏(�) over the human’s objective � given a new observation:

𝑏𝑡+1(�) =
𝑃(𝑢𝑡

ℎ
| 𝑥𝑡 , 𝑢𝑡𝑟 ;�)𝑏𝑡(�)∫

𝑃(𝑢𝑡
ℎ
| 𝑥𝑡 , 𝑢𝑡𝑟 ; �̃)𝑏𝑡(�̃)𝑑�̃

(8.4)

where 𝑃(𝑢𝑡
ℎ
| 𝑥𝑡 , 𝑢𝑡𝑟 ;�) is the observation model in Equation (8.2), and 𝑏𝑡(�) = 𝑃(� |

𝑥0:𝑡 , 𝑢0:𝑡
𝑟 , 𝑢

0:𝑡
ℎ
) for 𝑡 ∈ {0, 1, . . .}.

Intuitively, under this QMDP the robot is always exploiting the information it currently

has, and never actively tries to explore for new information. A robot using the policy from

Equation (8.3) does not anticipate any human actions 𝑢ℎ , and so the robot solves for its

optimal policy as if it were completing the task in isolation. Recall that we previously

pointed out that physical human interactions can influence the robot’s state. In practice,

CHAPTER 8. LEARNING ROBOT OBJECTIVES FROM PHYSICAL HUMAN-ROBOT

INTERACTION 143

however, we do not necessarily want to account for these actions when planning—the

robot should not rely on the human to move the robot. Due to our QMPD approximation

the robot never relies on the human for guidance: but when the human does interact, the

robot leverages 𝑢ℎ to learn about � in Equation (8.4). In summary, the robot only considers

𝑢ℎ for its information value.

MAP of �. Ideally, the robot would maintain a full belief 𝑏(�) over �. Since the human’s

objective � ∈ R𝑁 is continuous, potentially high-dimensional, and our observation model

is non-Gaussian, we approximate 𝑏 with the maximum a posteriori estimate. We will let �̂
be the robot’s MAP estimate of �.

Planning and Control. Indeed, even if we had 𝑏(�), solving (8.3) in continuous state,

action, and belief spaces is still intractable for real-time implementations. Let us focus on

the challenge of finding the robot’s optimal policy given the current MAP estimate �̂. We

move from computing policies to planning trajectories, so that—rather than evaluating

(8.3) at every timestep—we plan an optimal trajectory from start to goal, and then track

that trajectory using a safe controller.

At every timestep 𝑡, we first replan a trajectory � = 𝑥0:𝑇 ∈ Ξ which optimizes the task-

related reward from Equation (8.1) over the 𝑇-step planning horizon. If our features 𝜙
only depend on the state 𝑥, then the cumulative task-related reward becomes:

𝑅(�;�) = � · Φ(�) =
∑
𝑥𝑡∈�

� · 𝜙(𝑥𝑡) (8.5)

Here Φ(�) is the total feature count along trajectory �. Using the cumulative reward

function in Equation (8.5), the robot finds the optimal trajectory �𝑡𝑟 from its current estimate

�̂𝑡 :
�𝑡𝑟 = arg max

�∈Ξ
�̂𝑡 · Φ(�) (8.6)

We can solve Equation (8.6) for the optimal trajectory using trajectory optimization tools

[192, 111]. Whenever �̂ is updated from pHRI during task execution, the robot’s trajectory

will be replanned using that new estimate to match the the learned objective.

To track the robot’s planned trajectory we leverage impedance control. Impedance

control—as originally proposed by [97]—is the most popular controller for pHRI [87], and

ensures that the robot responds compliantly to human corrections [58]. Let 𝑥𝑡 = (𝑞𝑡 , ¤𝑞𝑡),
where 𝑞𝑡 is the robot’s current configuration, and 𝑞𝑡𝑟 ∈ �𝑡𝑟 is the desired configuration at

timestep t. After feedback linearization [204], the equation of motion of a robot arm under

impedance control becomes:

𝑀𝑟(¥𝑞𝑡 − ¥𝑞𝑡𝑟) + 𝐵𝑟(¤𝑞𝑡 − ¤𝑞𝑡𝑟) + 𝐾𝑟(𝑞𝑡 − 𝑞𝑡𝑟) = 𝑢𝑡ℎ (8.7)

Here 𝑀𝑟 , 𝐵𝑟 , and 𝐾𝑟 are the desired inertia, damping, and stiffness rendered by the robot.

These parameters determine what impedance the human perceives: for instance, lower 𝐾𝑟

CHAPTER 8. LEARNING ROBOT OBJECTIVES FROM PHYSICAL HUMAN-ROBOT

INTERACTION 144

makes the robot appear more compliant. In our experiments, we implement a simplified

impedance controller without feedback linearization:

𝑢𝑡𝑟 = 𝐵𝑟(¤𝑞𝑡𝑟 − ¤𝑞𝑡) + 𝐾𝑟(𝑞𝑡𝑟 − 𝑞𝑡) (8.8)

This control input drives the robot towards its desired state 𝑥𝑡 ∈ �𝑡𝑟 , and evaluating

Equation (8.8) over all states yields the robot’s policy. To summarize, we first solve the

trajectory optimization problem from Equation (8.6) to get the current robot trajectory �𝑡𝑟 ,
and then compliantly track that trajectory using Equation (8.8). Notice that if the robot

never updates �̂ then �𝑡𝑟 = �𝑡−1

𝑟 , and this approach reduces to using impedance control to

track an unchanging robot trajectory.

Intended Trajectories. Next we address the second QMDP subproblem: updating the

MAP estimate �̂ after each new observation. First we must find an observation model

which we can compute in real-time. Similar to solving for our optimal policy with Equation

(8.3), evaluating our observation model from Equation (8.2) for a given � is challenging

because it requires that we determine the 𝑄-value associated with that �. Previously

we avoided this issue by moving from policies to trajectories. We will utilize the same

simplification here to find a feasible observation model based on the human’s intended

trajectory.

Instead of attempting to directly relate 𝑢ℎ to �, as in our original observation model, we

propose an intermediate step: interpret each human action 𝑢ℎ via an intended trajectory,

�ℎ , which the human would prefer for the robot to execute. We leverage trajectory

deformations [146] to get the intended trajectory �ℎ from the robots planned trajectory

�𝑟 and the humans physical interaction 𝑢ℎ . Following [146], we propagate the human’s

interaction force along the robot’s trajectory:

�ℎ = �𝑟 + �𝐴−1𝑈ℎ (8.9)

where � > 0 scales the magnitude of the deformation. The symmetric positive definite

matrix 𝐴 defines a norm on the Hilbert space of trajectories and dictates the shape of the

deformation [66]. The input vector is 𝑈ℎ = 𝑢ℎ at the current time, and 𝑈ℎ = 0 at all other

times. During experiments we use the velocity norm for 𝐴 [66], but other options are

possible.

Our deformed trajectory minimizes the distance from the previous trajectory while

keeping the end-points the same and moving the corrected point to its new configuration

[66]. Whereas using the Euclidean norm to measure distance would return the same

trajectory as before with the current waypoint teleported to where the user corrected it,

using a band-diagonal norm 𝐴 (e.g., the velocity norm) serves to couple each waypoint

along the trajectory to the one before it and the one after it. This formalizes the effect

proposed by elastic strips by [36] and elastic bands by [170].

Now rather than evaluating the𝑄-value of 𝑢ℎ+𝑢𝑟 given �, like we did in Equation (8.2),

we can compare the human’s intended trajectory �ℎ to the robot’s original trajectory �𝑟 and

CHAPTER 8. LEARNING ROBOT OBJECTIVES FROM PHYSICAL HUMAN-ROBOT

INTERACTION 145

relate these differences to �. We assume that the human provides a intended trajectory �ℎ
that approximately maximizes their cumulative task-related reward from Equation (8.5)

while remaining close to �𝑟 :

𝑃(�ℎ | �𝑟 ;�) ≈
𝑒𝑅(�ℎ ;�)−�∥�ℎ−�𝑟 ∥

2∫
𝑒𝑅(�̃ℎ ;�)−�∥�̃ℎ−�𝑟 ∥2𝑑�̃ℎ

(8.10)

Moving forward we treat𝑃(�ℎ | �𝑟 ;�) as our observation model. Note that this observation

model is analogous to Equation (8.2) but in trajectory space. In other words, Equation (8.10)

yields a distribution over intended trajectories given � and the current robot trajectory.

Here the correspondence between the human’s effort ∥𝑢ℎ ∥2 and the change in trajectories

∥�ℎ − �𝑟 ∥2 stems from the deformation in Equation (8.9). In conclusion, we can leverage

our simplified observation model (8.10) to tractably reason about the meaning behind the

human’s physical interaction.

8.4 All-at-Once Online Learning
So far we have determined how to choose the robot’s actions given �̂, the current MAP

estimate of the human’s objective. We have also derived a tractable observation model.

Next, we apply this observation model to update �̂ based on human interactions. By using

online gradient descent we arrive at an update rule for �̂ which adjusts the weights of all

the features based on a single human correction. We refer to this method as all-at-once

learning. We also relate all-at-once learning to prior works on online Maximium Margin

Planning (MMP) and Coactive Learning.

Gradient Descent. If we assume that the observations are conditionally independent4,

then the maximum a posteriori (MAP) estimate at timestep 𝑡 + 1 is:

�̂𝑡+1 = arg max

�
𝑃(�0

ℎ
, . . . , �𝑡

ℎ
| �0

𝑟 , . . . , �
𝑡
𝑟 , �)𝑃(�)

= arg max

�

𝑡∑
𝜏=0

ln𝑃(�𝜏
ℎ
| �𝜏𝑟 , �) + ln𝑃(�) (8.11)

where 𝑃(�𝜏
ℎ
| �𝜏𝑟 ;�) is our observation model from Equation (8.10). To use this model we

need to compute the normalizer, which requires integrating over the space of all possible

human-preferred trajectories. We instead leverage Laplace’s method to approximate the

normalizer. Taking a second-order Taylor series expansion of 𝑅(�ℎ , �)−�∥�ℎ −�𝑟 ∥2 about

�𝑟 , the robot’s estimate of the optimal trajectory, we obtain a Gaussian integral that we can

4
Recent work by [139] extends our approach to cases where the interactions are not conditionally

independent, i.e., multiple corrections are interconnected.

CHAPTER 8. LEARNING ROBOT OBJECTIVES FROM PHYSICAL HUMAN-ROBOT

INTERACTION 146

evaluate:

𝑃(�ℎ | �𝑟 , �) ≈
(
𝑒𝑅(�ℎ ,�)−𝑅(�𝑟 ,�)−�| |�ℎ−�𝑟 | |

2

)
·
√

det{−∇2

� 𝑓 (�𝑟)} ·
1√
(2𝜋)𝑛

(8.12)

where 𝑓 (�) := 𝑅(�, �)−�∥�−�𝑟 ∥2 and −∇2

� 𝑓 (�𝑟) is the negative Hessian with respect to �.

Since we have assumed that the human’s intended trajectory �ℎ is an improvement over

the robot’s trajectory �𝑟 , then it must be the case that 𝑅(�ℎ , �) > 𝑅(�𝑟 , �). Let �̂0
be the

robot’s initial estimate of �, such that the robot has a prior:

𝑃(�) = 1

(2𝜋𝛼)1/2
𝑒−

1

2𝛼 ∥�−�̂0∥2
(8.13)

where 𝛼 is a positive constant.

Substituting our normalized observation model from Equation (8.12) and the prior

from Equation (8.13) back into Equation (8.11), the MAP estimate �̂𝑡+1
is the solution to:

arg max

�

𝑡∑
𝜏=0

(
𝑅(�𝜏

ℎ
, �) − 𝑅(�𝜏𝑟 , �)

)
− 1

2𝛼
∥� − �̂0∥2 (8.14)

In Equation (8.14) the �∥�ℎ − �𝑟 ∥2 terms have dropped out because this penalty for

human effort does not explicitly depend on �. For a detailed derivation on the Laplace

approximation and the MAP estimate, please see Section 8.10. Intuitively, our estimation

problem (8.14) states that we are searching for the objective � that maximally separates the

reward associated with �ℎ and �𝑟 , while also regulating the size of the change in �.

We solve Equation (8.14) by taking the gradient with respect to � and then setting the

result equal to zero. Substituting in our cumulative reward function from Equation (8.5),

we obtain the all-at-once update rule:

�̂𝑡+1 = �̂0 + 𝛼
𝑡∑

𝜏=0

(
Φ(�𝜏

ℎ
) −Φ(�𝜏𝑟)

)
= �̂𝑡 + 𝛼

(
Φ(�𝑡

ℎ
) −Φ(�𝑡𝑟)

)
(8.15)

Given the current MAP estimate �̂𝑡 , the robot’s trajectory �𝑡𝑟 , and the human’s intended

trajectory �𝑡
ℎ
, we determine an approximate MAP estimate at timestep 𝑡 + 1 by comparing

the feature counts. Note that the update rule in (8.15) is actually the online gradient

descent algorithm [35] applied to our normalized observation model (8.12).

Interpretation. The all-at-once update rule (8.15) has a simple interpretation: if any feature

has a higher value along the human’s intended trajectory than the robot’s trajectory,

the robot should increase the weight of that feature. Returning to our example, if the

human’s preferred trajectory �ℎ moves the coffee closer to the table than the robot’s

CHAPTER 8. LEARNING ROBOT OBJECTIVES FROM PHYSICAL HUMAN-ROBOT

INTERACTION 147

Figure 8.2: Visualization of one iteration of our proposed algorithm for online learning from pHRI. Here

a point robot is moving in a 2D environment with two obstacles, 𝑂1 and 𝑂2. The robot initially plans to

follow a straight line trajectory from start to goal (�𝑡𝑟 , black dotted line). But the human wants the robot to

move farther away from the obstacles: the human pushes the robot, and the robot uses the human’s applied

force to deform its initial trajectory into a human preferred trajectory (�𝑡
ℎ
, solid black line). Given that �𝑡

ℎ

is better aligned with the human’s objective than �𝑡𝑟 , we compute an online update of � and replan a new

trajectory �𝑡+1

𝑟 (orange dotted line). Notice that the new trajectory moves the robot farther from the nearby

obstacle 𝑂1 and the future obstacle 𝑂2.

original trajectory �𝑟 , the weights in �̂ for distance-to-table will increase. This enables the

robot to learn in real-time from corrections.

Interestingly, our all-at-once update rule is a special case of the update rules from

two related IRL works. Equation (8.15) is the same as the Preference Perceptron for

coactive learning—introduced in [shivaswamy2015] and applied for manipulation tasks

by [99]—if �ℎ was the robot’s original trajectory �𝑟 with a single corrected waypoint.

Similarly, Equation (8.15) is analogous to online Maximum Margin Planning without the

loss function if the correction �ℎ was treated as a new demonstration [175]. These findings

also align with work from [54], who show that other IRL methods can be interpreted as

a MAP estimate. What is unique in our work is that we demonstrate how the online

gradient-descent update rule in Equation (8.15) results from a POMDP with hidden state

� where physical human interactions are interpreted as intended trajectories.

8.5 One-at-a-Time Online Learning
We derived an update rule to learn the human’s objective from their physical interac-

tions with the robot. This all-at-once approach changes the weight of all the features that

the human adjusts during their correction. In practice, however, the human’s interactions

(and their intended trajectory) may result in unintended corrections which mistakenly alter

features the human meant to leave untouched. For example, when the human’s action

CHAPTER 8. LEARNING ROBOT OBJECTIVES FROM PHYSICAL HUMAN-ROBOT

INTERACTION 148

intentionally causes �ℎ to move closer to the table, the same correction may accidentally

also change the orientation of the coffee. In order to address unintended corrections, we

here assume that the human’s intended trajectory �ℎ should change only a single feature.

We explain how to determine which feature the human is trying to change, and then

modify the update rule from Equation (8.15) to obtain one-at-a-time learning.

Intended Feature Difference. Let us define the change in features at time 𝑡 as ΔΦ𝑡 =

Φ(�𝑡
ℎ
)−Φ(�𝑡𝑟) ∈ R𝑁 , where �𝑡

ℎ
is the human’s intended trajectory, �𝑡𝑟 is the robot’s trajectory,

and 𝑁 is the number of features. Given our assumption that the human intends to change

just one feature at a single timepoint, ΔΦ𝑡
should have only a single non-zero entry;

however, because human corrections are imperfect [6, 106] this not always the case. We

introduce the intended feature difference, ΔΦ𝑡
ℎ
, where only the feature the human wants to

update is non-zero. At each timestep the robot must infer ΔΦ𝑡
ℎ

from ΔΦ𝑡
. Note that this

one-at-a-time approach does not mean that only a single feature changes during the entire

task: the user can adjust a different feature at each timestep.

Without loss of generality, assume the human is trying to change the 𝑖-th entry of the

robot’s MAP estimate �̂ during the current timestep 𝑡. The ideal human correction of �𝑡𝑟
should accordingly change the feature count in the direction:

𝐽𝑖 =
𝜕Φ(�𝑡𝑟)
𝜕�̂𝑡

𝑖

(8.16)

Recall that �𝑡𝑟 is optimal with respect to the current estimate �̂𝑡 , and so changing �̂𝑡 will

alter Φ(�𝑡𝑟). Put another way, if the human is an optimal corrector, and their interaction

was meant to alter just the weight on the 𝑖-th feature, then we would expect them to correct

the current robot trajectory �𝑡𝑟 such that they produce a feature difference ΔΦ𝑡
exactly in

the direction of the vector 𝐽𝑖 from Equation (8.16).

Because the human is imperfect, they will not exactly match Equation (8.16). Instead,

we model the human as making corrections ΔΦ𝑡
in the direction of 𝐽𝑖 . This yields an

observation model from which the robot can find the likelihood of observing a specific

feature difference ΔΦ𝑡
given that the human is attempting to update the 𝑖-th feature:

𝑃(ΔΦ | 𝑖) ∝ 𝑒 |𝐽𝑖 ·ΔΦ| (8.17)

Recalling that the robot observes the feature difference ΔΦ𝑡 = Φ(�𝑡
ℎ
) − Φ(�𝑡𝑟), then we

estimate which feature the human most likely wants to change using:

𝑖∗ = arg max

𝑖
𝑃(Φ(�𝑡

ℎ
) −Φ(�𝑡𝑟) | 𝑖)

= arg max

𝑖

��𝐽𝑖 · (Φ(�𝑡ℎ) −Φ(�𝑡𝑟)) �� (8.18)

Once the robot solves for the most likely feature the human wants to change, 𝑖∗, it can now

find the human’s intended feature difference ΔΦ𝑡
ℎ
. Recall that, if the human wanted to only

CHAPTER 8. LEARNING ROBOT OBJECTIVES FROM PHYSICAL HUMAN-ROBOT

INTERACTION 149

update feature 𝑖∗, their intended feature difference would ideally be in the direction 𝐽𝑖∗ .

Thus, we choose ΔΦ𝑡
ℎ
∝ 𝐽𝑖∗ as our intended feature difference.

Update Rule. We make two simplifications to derive a one-at-a-time update rule. Both

simplifications stem from the difficulty of evaluating the partial derivative from Equation

(8.16) in real-time. Indeed, rather than computing this partial derivative, we approximate

𝐽𝑖 as proportional to the vector (0, . . . , 1, . . . , 0), where the 𝑖-th entry is non-zero. Intuitively,

we are here assuming that when the 𝑖-th weight in �̂ changes, it predominately induces a

change in the 𝑖-th feature along the resulting optimal trajectory.

Given this assumption, computing the intended feature difference ΔΦ𝑡
ℎ
∝ 𝐽𝑖∗ reduces

to projecting the observed feature difference ΔΦ𝑡
induced by the human’s action 𝑢ℎ onto

the 𝑖∗-th axis:

ΔΦ𝑡
ℎ
= (0, . . . ,ΔΦ𝑡

𝑖∗ , . . . , 0) (8.19)

This fulfills our original requirement for the intended feature difference ΔΦ𝑡
ℎ

to only have

one non-zero entry. Moreover, once we substitute our simplification of 𝐽𝑖 back into our

feature estimation problem (8.18), we get a simple yet intuitive heuristic for finding 𝑖∗:
only the feature which the user has changed the most during their correction should be

updated. Our one-at-a-time update rule is therefore similar to the gradient update from

Equation (8.15), but with a single feature weight update using Equation (8.19):

�̂𝑡+1 = �̂𝑡 + 𝛼ΔΦ𝑡
ℎ

(8.20)

Instead of updating the estimated weights associated with all the features like in Equation

(8.15), we now only update the MAP estimate for the feature which has the largest change

in feature count. Overall, isolating a single feature at every timestep is meant to mitigate

the effects of unintended learning from noisy physical interactions5.

8.6 Optimally Responding to pHRI
Before introducing all-at-once and one-at-a-time learning, we showed how approxi-

mate solutions to pHRI involve (a) safely tracking the optimal trajectory and (b) updating

the MAP estimate based on human interactions. Now that we have derived update rules

for �̂, we will circle back and present our algorithm for learning from pHRI. We also

include practical considerations for implementation.

Algorithm. We have formalized pHRI as an instance of a POMDP and then approximated

that POMDP as a QMDP. To solve this QMDP we must both find the robot’s optimal policy

and update the MAP estimate of � at every timestep 𝑡. First, we approximate the robot’s

optimal policy by solving a trajectory optimization problem in Equation (8.6) for �𝑡𝑟 and

then tracking �𝑡𝑟 with an impedance controller (8.8). Second, we update the MAP estimate

5
We note that all the features are normalized to have the same sensitivity.

CHAPTER 8. LEARNING ROBOT OBJECTIVES FROM PHYSICAL HUMAN-ROBOT

INTERACTION 150

Algorithm 1 Online Learning from pHRI

Given: initial weights �̂0
and features 𝜙 ∈ [0, 1]𝑁

Initialize: �0

𝑟 ← arg max� �̂0 · Φ(�)
for 𝑡 = 0 to 𝑇 do

𝑢𝑡𝑟 = 𝐵𝑟(¤𝑞𝑡𝑟 − ¤𝑞𝑡) + 𝐾𝑟(𝑞𝑡𝑟 − 𝑞𝑡) ⊲ (8.8)

�𝑡
ℎ
← �𝑡𝑟 + �𝐴−1𝑈 𝑡

ℎ
⊲ (8.9)

�̂𝑡+1← �̂𝑡 + 𝛼
(
Φ(�𝑡

ℎ
) −Φ(�𝑡𝑟)

)
⊲ (8.15) or (8.20)

�𝑡+1

𝑟 ← arg max� �̂𝑡+1 · Φ(�) ⊲ (8.6)

end for

�̂𝑡 by interpreting each human correction as an intended trajectory—which we obtain

by deforming the robot’s original trajectory using Equation (8.9)—and next we perform

either all-at-once (8.15) or one-at-a-time (8.20) online updates to obtain �̂𝑡+1
. At the next

timestep 𝑡 + 1 the robot replans its optimal trajectory under �̂𝑡+1
and the process repeats.

An overview is provided in Algorithm 1.

Implementation. In practice, Algorithm 1 uses impedance control to track a trajectory

that is replanned after pHRI. We note, however, that this approach ultimately derives from

formulating pHRI as a POMDP. One possible variation on this algorithm is—instead of

replanning �𝑡𝑟 from start to goal—replanning �𝑡𝑟 from the robot’s current state 𝑥𝑡 to the goal.

The advantage of this variation is that it saves us the time of recomputing the trajectory

before our current state (which the robot does not need to know). However, in our

implementation we always replan from start to goal. This is because constantly setting 𝑥𝑡

along the desired trajectory prevents the human from experiencing any impedance during

interactions (i.e., the robot never resists the human’s interactions). Without any haptic

feedback from the robot, the end-user cannot easily infer the current robot’s trajectory,

and so the human does not know whether additional corrections are necessary [101].

A second consideration deals with the robot’s feature space. Throughout this work we

assume that the robot knows the relevant features 𝜙, which are provided by the robot

designer or user [11]. Alternatively, the robot could use techniques like feature selection

[86] to filter a set of available features, or the features could be learned by the robot [136].

8.7 Simulations
To compare our real-time learning approach with optimal offline solutions and current

online baselines, as well as to test both all-at-once and one-at-a-time learning, we conduct

human-robot interaction simulations in a controlled environment. Here the robot is

performing a pick-and-place task: the robot is carrying a cup of coffee for the simulated

human. The simulated human physically interacts with the robot to correct its behavior.

CHAPTER 8. LEARNING ROBOT OBJECTIVES FROM PHYSICAL HUMAN-ROBOT

INTERACTION 151

Figure 8.3: Comparison of the offline QMDP solution and our online Learning approximation for a pick-

and-place task. The robot is attempting to carry the cup to the table. Originally the robot is confident it

should move in a straight line (black), but the user actually wants the cup to be carried closer to the ground

(blue, dashed). Here the human physically interacts to guide the robot back to their desired trajectory

(circles) when the robot’s error is too high.

Setup. We perform three separate simulated experiments. In each, the robot is moving

within a planar world from a fixed start position to a fixed goal position. We here use a

2-DoF point robot for simplicity, while noting that we will use a 7-DoF robotic manipulator

during our user studies. The robot’s state is 𝑥 ∈ R2
, the robot’s action is 𝑢𝑟 ∈ R2

, and the

human’s action is 𝑢ℎ ∈ R2
; both the state and action spaces are continuous. We assume

that the robot knows the relevant features 𝜙, but the robot does not know the human’s

objective �. The robot initially believes that “velocity” (i.e., trajectory length) is the only

important feature, and so the robot tries to move in a straight line from start to goal.

Learning vs. QMDP vs. No Learning. To learn in real-time, we introduced several

approximations on top of separating estimation from control (QMDP). Here we want

to assess how much these approximations reduce the robot’s performance. We first

compare our approximate real-time solution described in Algorithm 1 to the complete

QMDP solution [142]. As a baseline, we have also included just using impedance control

[87], where no learning takes places from the humans interactions. Thus, the three

tested approaches are Impedance, QMDP, and Learning. The simulated task is depicted

in Fig. 8.3. The two features are “velocity” and “table,” and the human wants the robot

to carry their coffee closer to table level (� = 1). During each timestep, if the robot’s

position error from the human’s desired trajectory exceeds a predefined threshold, then

the human physically corrects the robot by guiding it to their desired trajectory. Recall

that our Learning method uses a MAP estimate of the human’s objective, but the full

QMDP solution maintains a belief 𝑏 over �. For QMDP simulations, we discretize the

belief space—such that � ∈ {0, 1}—and the robot starts with a prior 𝑏0(� = 1) = 0.1. Using

CHAPTER 8. LEARNING ROBOT OBJECTIVES FROM PHYSICAL HUMAN-ROBOT

INTERACTION 152

Figure 8.4: Robot learning and regret for the task from Fig. 8.3. The true human objective is � = 1. The

offline QMDP solution learns more about the human’s objective than our online Learning approximation.

However, both QMDP and Learning lead to significantly less regret than the Impedance baseline. The regret

for QMDP is the lowest because here human corrects the robot at one less timestep.

a planar environment and a discretized belief space enables us to actually compare the full

QMDP solution to our approximation, since the QMDP becomes prohibitively expensive

in high dimensions with continuous state, action, and belief spaces.

We expect the full QMDP solution to outperform our Learning approximation. From

Fig. 8.4, we observe that the robot learns � faster when using the QMDP, and that the robot

completes the task with less regret. Both QMDP and Learning outperform Impedance,

where the robot does not learn from pHRI. We note that here the simulated human

behaves differently than our observation model (8.2): rather than maximizing their 𝑄-

value, the human is guiding the robot along their desired trajectory. When the simulated

human does follow our observation model, we obtain very similar results: the normalized

regret becomes 0.55 for QMDP and 0.62 for Learning. To ensure that the learning rate is

consistent between the QMDP and Learning methods, we selected 𝛼 such that �̂1
equalled

𝑏1(� = 1) when the simulated human followed our observation model (8.2). From these

simulations we conclude that the Learning approximation for online performance is worse

than the full QMDP solution, but the difference between these methods is negligible when

compared to Impedance.

Learning vs. Deforming. As part of our approximations we assumed that the human’s

interaction implies an intended trajectory. Here we want to see whether learning from

the intended trajectory—as in Algorithm 1—is more optimal than simply setting that

intended trajectory as the robot’s trajectory. We compare two real-time learning methods:

our Learning approach, and the trajectory deformation method from [146], which we refer

to as Deforming. The task used in these simulations is shown in Figs 8.5 and 8.6. Again,

the robot is carrying a cup of coffee, but here the human would prefer for the robot to

avoid carrying this coffee over their laptop. Thus, the two features are “velocity” and

CHAPTER 8. LEARNING ROBOT OBJECTIVES FROM PHYSICAL HUMAN-ROBOT

INTERACTION 153

Figure 8.5: Responding to physical interaction by deforming the robot’s trajectory. We propagate the

human’s interaction along the robot’s trajectory to get �ℎ , the human’s intended trajectory. We then set �ℎ
as the robot’s trajectory. Here 𝑁 is the number of number of interactions: we show the robot’s trajectory

after 1, 3, 5, and 7 deformations. Importantly, when using deformations the robot never learns about task,

but only updates its trajectory in the direction of the human’s applied force.

“laptop.” As before, the simulated human corrects the robot by guiding it back to their

desired trajectory when the tracking error exceeds a predefined limit. In Deforming the

robot does not learn about the human’s objective, but instead propagates the human’s

corrections along the rest of the robot’s trajectory. By contrast, in Learning we treat these

trajectory deformations as the human’s intended trajectory, which is then leveraged in our

online update rule. Learning and Deforming can both be applied to change the robot’s

desired trajectory in real-time in response to pHRI, and Deforming is the same as treating

the intended trajectory as the robot’s trajectory.

In Figs. 8.5 and 8.6 we show the robot’s trajectory after 𝑁 human corrections. Notice

that Deformations result in local changes which aggregate over time, while—when we

learn from these deformations—Learning replans the entire trajectory. Our findings are

summarized in Fig 8.7: it takes fewer corrections to track the human’s desired trajectory

with Learning, and the human also expends more effort with Learning. To make the

comparison consistent, here we used the same propagation method from (8.9) to get the

Deformations and the intended trajectory for Learning. Based on our results, we conclude

that Learning leads to more efficient online performance than Deformations alone, and,

in particular, Learning requires less human effort to complete the task correctly.

All-at-Once vs. One-at-a-Time. Previously we simulated tasks with only two features,

and so a single feature weight was sufficient to capture the human’s preference (� ∈ R).

In other words, either the all-at-once update or the one-at-a-time update could have been

used for Learning. Now we compare All-at-Once (8.15) and One-at-a-Time (8.20) learning

in a task with three features (� ∈ R2
). This task is illustrated in Figs. 8.8 and 8.10. The

human end-user trades off between the length of the robot’s trajectory (velocity), the

CHAPTER 8. LEARNING ROBOT OBJECTIVES FROM PHYSICAL HUMAN-ROBOT

INTERACTION 154

Figure 8.6: Responding to physical interactions using our proposed learning approach. As before, we

propagate the human’s interaction along the robot’s current trajectory to get �ℎ , the human’s intended

trajectory. But now we go one step further: we compare �ℎ to �𝑟 to update our estimate of the human’s

objective �. The robot then moves in the direction of the optimal trajectory for �. Under this approach the

robot learns to avoid the laptop after 𝑁 = 4 corrections, and autonomously tracks the human’s preferred

trajectory (blue, dashed).

Figure 8.7: Comparison of Deforming and Learning across our simulations in Figs. 8.5 and 8.6. When robots

only deform their trajectory in the direction of the human’s applied force, humans must exert more effort

and make more corrections to guide the robot’s trajectory to their desired behavior. By contrast, Learning

from these deformations enables the robot to correct not only the next few timesteps, but also to replan the

remainder of the trajectory based on the human’s correction.

coffee’s height above the table (table), and the robot’s distance from the person (human).

Like before, the weight associated with “velocity” is fixed, and the human’s true objective

is � = [0.5, 0], where 0.5 is the weight associated with table and 0 is the weight associated

with human. Initially the robot believes that �0 = [0, 0], and therefore the robot is unaware

that it should move closer to the table.

We utilize two different simulated humans: (a) an optimal human, who exactly guides

CHAPTER 8. LEARNING ROBOT OBJECTIVES FROM PHYSICAL HUMAN-ROBOT

INTERACTION 155

Figure 8.8: Comparing All-at-Once and One-at-a-Time learning with an optimal simulated human. This

human wants the robot to carry the coffee closer to table level, and provides physical corrections that exactly

match their preferences. The human corrects the robot’s behavior over the first few timesteps (arrows) and

the robot autonomously follows the human’s desired trajectory after these corrections. The robot’s behavior

is the same for All-at-Once and One-at-a-Time learning.

Figure 8.9: All-at-Once and One-at-a-Time learning with an optimal simulated human. The true objective is

𝑡𝑎𝑏𝑙𝑒 = 0.5, ℎ𝑢𝑚𝑎𝑛 = 0. Both All-at-Once and One-at-a-Time converge to the true objective: no unintentional

corrections occur.

the robot towards their desired trajectory, and (b) a noisy human, who imperfectly corrects

the robot’s trajectory. Like in our previous simulations, the human intervenes to correct the

robot when the robot’s error with respect to their desired trajectory exceeds an acceptable

margin of error: let us now refer to this as the optimal human. By contrast, the noisy

human takes actions sampled from a Gaussian distribution which is centered at the optimal

human’s action. This distribution is biased in the direction of the human such that the

noisy human tends to accidentally pull the robot closer to their body when correcting the

CHAPTER 8. LEARNING ROBOT OBJECTIVES FROM PHYSICAL HUMAN-ROBOT

INTERACTION 156

Figure 8.10: Comparing All-at-Once and One-at-a-Time learning with a noisy simulated human. This noisy

human wants the robot to move closer to the table, but accidentally provides biased corrections that also

move the cup closer to the human. Ellipses show the robot’s position at each timestep with 95% confidence

over 100 simulations. The human unintentionally pulls the robot closer to their body at the start of the task,

and with the All-at-Once approach they struggle to undo these mistakes in the second half of the task.

table feature. Due to this noise and bias, the noisy human may unintentionally correct the

human feature.

Our final simulation compares All-at-Once and One-at-a-Time learning for optimal

and noisy humans. The results for an optimal human are shown in Figs. 8.8 and 8.9,

while the results for the noisy human are depicted in Figs. 8.10 and 8.11. We find that

the performance of All-at-Once and One-at-a-Time are identical when the human acts

optimally: the robot accurately learns the importance of table, and does not change the

weight of human. When the person acts noisily, however, One-at-a-Time learning causes

better performance. More specifically, the noisy user corrected the All-at-Once robot

during an average of 5.24 timesteps, but only corrected the One-at-a-Time robot 3.56

timesteps. Inspecting Fig. 8.11, we observe that the noisy human unintentionally taught

the human feature at the beginning of the task, and had to exert additional effort undoing

this mistake on All-at-Once robots. We conclude that there is a benefit to One-at-a-Time

learning when the human behaves noisily, since updating only one feature per timestep

mitigates accidental learning.

8.8 User Studies
To evaluate the benefits of using physical interaction to communicate we conducted

two user studies with a 7-DoF robotic arm (JACO2, Kinova). In the first study, we tested

whether learning from pHRI is useful when humans interact, and compared our online

learning approach to a state-of-the-art response that treated interactions as disturbances

CHAPTER 8. LEARNING ROBOT OBJECTIVES FROM PHYSICAL HUMAN-ROBOT

INTERACTION 157

Figure 8.11: All-at-Once and One-at-a-Time learning with a noisy simulated human. The shaded regions

give the standard error of the mean. With All-at-Once, the robot initially learns that the human feature

is important, and the person must undo that unintended learning. One-at-at-Time learning reduces the

unintended effects of the human’s noisy corrections; the robot converges towards the human’s desired

trajectory more rapidly.

(a) Task 1: Keep the cup upright (b) Task 2: Carry closer to the table (c) Task 3: Avoid the region above

a laptop

Figure 8.12: Simulations depicting the robot trajectories for each of the three tasks in our first user study

(Learning vs. Impedance). The black path represents the robot’s initial trajectory, and the blue path

represents the human’s desired trajectory.

(Learning vs. Impedance). In the second study, we tested how the robot should learn from

end-users, and compared one-at-a-time learning to all-at-once learning (One-at-a-Time

vs. All-at-Once). During both studies the participants and the robot worked in close

physical proximity. In all experimental tasks, the robot began with the wrong objective

function, and participants were instructed to physically interact with the robot to correct

CHAPTER 8. LEARNING ROBOT OBJECTIVES FROM PHYSICAL HUMAN-ROBOT

INTERACTION 158

Figure 8.13: During the first user study participants interacted with a robot that maintained a fixed objective

(Impedance, grey) and a robot that learned from their physical interactions to update its objective (Learning,

orange).

its behavior6.

8.8.1 Learning vs. Impedance
We have argued that pHRI is a means for humans to correct the robot’s behavior. In

our first user study, we compare a robot that treats human interactions as intentional (and

learns from them) to a robot that assumes all human interactions are disturbances (and

ignores them).

Independent Variables. We manipulated the pHRI strategy with two levels: Learning

and Impedance. The Learning robot used our proposed method (Algorithm 1) to react

to physical corrections and re-plan a new trajectory during the task. By contrast, the

Impedance robot used impedance control (our method without updating �̂) to react

to physical interactions and then return to the originally planned trajectory. Because

impedance control is currently the most common strategy for responding to pHRI [87],

we treated Impedance as the state-of-the-art.

Dependent Measures. We measured the robot’s objective performance with respect to

the human’s actual objective. One challenge in designing our experiment was that each

participant might have a different internal objective � for any given task depending on

their experiences and preferences. Since we did not have direct access to every person’s

internal preferences, we defined the true objective � ourselves, and conveyed the objective

to participants by demonstrating the desired optimal robot behavior. We instructed par-

ticipants to correct the robot to achieve this behavior with as little interaction as possible.

6
For video footage of the experiment, see: https://youtu.be/I2YHT3giwcY

https://youtu.be/I2YHT3giwcY

CHAPTER 8. LEARNING ROBOT OBJECTIVES FROM PHYSICAL HUMAN-ROBOT

INTERACTION 159

Figure 8.14: Objective results from our first user study. We explored whether robots should learn from

physical interactions (Learning vs Impedance). Learning from pHRI decreased participant effort and

interaction time across all experimental tasks (the total trajectory time was 15s). An asterisk (*) means

𝑝 < .0001.

Figure 8.15: (Left) Average cost for each task and the cost of the desired trajectory. Robots that always follow

the human’s desired trajectory minimize cost. An asterisk (*) means 𝑝 < 0.0001. (Right) Plot of sample

participant data from the laptop task: the desired trajectory is in blue, the trajectory with the Impedance

condition is in gray, and the Learning condition trajectory is in orange.

To understand how users perceived the robot, we also asked subjects to complete a 7-point

Likert scale survey for both pHRI strategies: the questions from this survey are shown in

Table 8.1.

Hypotheses.

H1. Learning will decrease interaction time, effort, and cumulative trajectory cost.

CHAPTER 8. LEARNING ROBOT OBJECTIVES FROM PHYSICAL HUMAN-ROBOT

INTERACTION 160

H2. Learning users will believe the robot understood their preferences, feel that in-

teracting with the robot was easier, and perceive the robot as more predictable and

collaborative.

Tasks. We designed three household manipulation tasks for the robot to perform in a

shared workspace, in addition to one familiarization task. The robot’s objective function

consisted of two features: “velocity” and a task-specific feature, where Φ(�) ∈ [0, 1].
Because one feature weight was sufficient to capture these tasks (i.e., � ∈ R) both the

all-at-once and one-at-a-time learning approached were here identical. For each task, the

robot carried a cup from a start pose to a goal pose with an initially incorrect objective,

forcing participants to correct its behavior during the task.

In the familiarization task the robot’s original trajectory moved too close to the human.

Participants had to physically interact with the robot to make the robot keep the cup

farther away from their body. In Task 1 the robot carried a cup directly from start to goal,

but did not realize that it needed to keep this cup upright. Participants had to intervene

to prevent the cup from spilling. In Task 2 the robot carried the cup too high in the air,

risking breaking that cup if it were to slip. Participants had to correct the robot to keep the

cup closer to the table. Finally, in Task 3 the robot moved the cup over a laptop to reach its

final goal pose, and participants physically guided the robot away from this laptop region.

We include a depiction of our three experimental tasks in Fig. 8.12.

Participants. We employed a within-subjects design and counterbalanced the order of

the pHRI strategy conditions. Ten total members of the UC Berkeley community (5 male,

5 female, age range 18-34) provided informed consent according to the approved IRB

protocol and participated in the study. All participants had technical backgrounds. None

of the participants had prior experience interacting with the robot used in our experiments.

Procedure. For each pHRI strategy participants performed the familiarization task, fol-

lowed by the three experimental tasks, and then filled out our user survey. They attempted

every task twice during each pHRI strategy for robustness (we recorded the attempt num-

ber for our analysis). Since we artificially set the true objective �, we showed participants

both the original and desired robot trajectory before the task started to make sure that they

understood this objective and got a sense of the corrections they would need to make.

Results – Objective. We conducted a repeated measures ANOVA with pHRI strategy

(Impedance or Learning) and trial number (first attempt or second attempt) as factors.

We applied this ANOVA to three objective metrics: total participant effort, interaction

time, and cost7. Fig. 8.14 shows the results for human effort and interaction time, and

Fig. 8.15 shows the results for cost. Learning resulted in significantly less interaction force

(𝐹(1, 116) = 86.29, 𝑝 < 0.0001) interaction time (𝐹(1, 116) = 75.52, 𝑝 < 0.0001), and task

cost (𝐹(1, 116) = 21.85, 𝑝 < 0.0001). Interestingly, while trial number did not significantly

7
For simplicity, we only measured the value of the feature that needed to be modified in each task, and

computed the absolute difference from the feature value of the optimal trajectory.

CHAPTER 8. LEARNING ROBOT OBJECTIVES FROM PHYSICAL HUMAN-ROBOT

INTERACTION 161

Questions Cronbach’s 𝛼 Imped LSM Learn LSM F(1,9) p-value

un
de

rs
ta

nd
in

g

By the end, the robot understood how I wanted it to do the task.

0.94 1.70 5.10 118.56 <.0001
Even by the end, the robot still did not know how I wanted it to do the task.

The robot learned from my corrections.

The robot did not understand what I was trying to accomplish.

eff
or

t

I had to keep correcting the robot.

0.98 1.25 5.10 85.25 <.0001
The robot required minimal correction.

pr
ed

ic
t

It was easy to anticipate how the robot will respond to my corrections. 0.8 4.90 4.70 0.06 0.82

The robot’s response to my corrections was surprising. 0.8 3.10 3.70 0.89 0.37

co
lla

b

The robot worked with me to complete the task.

0.98 1.80 4.80 55.86 <.0001
The robot did not collaborate with me to complete the task.

Table 8.1: Subjective ratings collected from a 7-point Likert scale survey. Participants answered each question

once after working with the Impedance condition, and once after the Learning condition. The four question

scales are shown on the left. Imped is short for Impedance, Learn is short for Learning, and LSM stands for

Likert scale mean. Higher LSM values are better (more understanding, less effort, more predictable, more

collaborative). ANOVA results are on the far right.

affect participant’s performance with either method, attempting the task a second time

yielded a marginal improvement for the impedance strategy but not for the learning

strategy. This may suggest that it is easier for users to familiarize themselves with the

impedance strategy.

Overall, our results support H1. Using interaction forces to learn about the objective �
here enabled the robot to better complete its tasks with less human effort when compared

to a state-of-the-art impedance controller.

Results – Subjective. Table 8.1 shows the results of our participant survey. We tested the

reliability of four scales, and found the understanding, effort, and collaboration scales to

be reliable. Thus, we grouped each of these scales into a combined score, and ran a one-

way repeated measures ANOVA on each resulting score. We found that the robot using

our Learning method was perceived as significantly (𝑝 < 0.0001) more understanding,

less difficult to interact with, and more collaborative than the Impedance approach.

By contrast, we found no significant difference between our Learning method and the

baseline Impedance method in terms of predictability. Participant comments suggest that

while the robot quickly adapted to their corrections when Learning (e.g. “the robot seemed

to quickly figure out what I cared about and kept doing it on its own"), determining what

the robot was doing during Learning was less intuitive (e.g. “if I pushed it hard enough

sometimes it would seem to fall into another mode, and then do things correctly").

We conclude that H2 was partially supported: although users did not perceive Learn-

ing to be more predictable than Impedance, participants believed that the Learning robot

understood their preferences better, took less effort to interact with, and was a more

collaborative partner.

Summary. Robots that treat pHRI as a source of information (rather than as a disturbance)

CHAPTER 8. LEARNING ROBOT OBJECTIVES FROM PHYSICAL HUMAN-ROBOT

INTERACTION 162

are capable of online, in-task learning. Learning from pHRI resulted in better objective

and subjective performance than a traditional Impedance approach. We found that the

Learning robot better matched the human’s preferred behavior with less human effort and

interaction time, and participants perceived the Learning robot as easier to understand

and collaborate with. However, participants did not think that the Learning robot was

more predictable than the Impedance robot.

(a) Task 1: Correct one feature, the distance to

table (table)

(b) Task 2: Correct two features, the cup orien-

tation (cup) and the distance to table (table)

Figure 8.16: Simulations depicting the robot trajectories for both of the two tasks in our second user study

(One-at-a-Time vs. All-at-Once). The black path represents the robot’s original trajectory, and the blue path

represents the human’s desired trajectory. Note that the robot now has multiple features, making it possible

for the human to accidentally correct one or both features.

8.8.2 One-at-a-Time vs. All-at-Once
We have found that learning from pHRI is beneficial; now we want to determine how

the robot should learn. In our second user study we focused on objective functions which

encode multiple task-related features. In these scenarios it is difficult for the robot to

determine which aspects of the task the person meant to correct during pHRI, and which

features were changed unintentionally.

Independent Variables. We used a 2-by-2 factorial design and manipulated the learning

strategy with two levels (All-at-Once and One-at-a-Time), as well as the number of feature

weights that need correction (one feature weight and all the feature weights). Within the All-

at-Once learning strategy the robot always updated all the feature weights after a single

human interaction using the gradient update from Equation (8.15). In the One-at-a-Time

condition the robot chose the one feature that changed the most using Equation (8.18),

CHAPTER 8. LEARNING ROBOT OBJECTIVES FROM PHYSICAL HUMAN-ROBOT

INTERACTION 163

and then updated its feature weight according to Equation (8.20). Both learning strategies

leveraged Algorithm 1, but with different update rules. By comparing these two versions

of our approach we explore how robots should respond to noisy and imperfect human

interactions.

Dependent Measures – Objective. Within this user study the robot carried a cup across

a table. To analyze the objective performance of our two learning strategies, we split the

objective measures into four categories:

Final Learned Reward: These metrics measure how closely the learned reward matched the

optimal reward by the end of the task (timestep𝑇). We measured the dot product between

the optimal and final reward vector: DotFinal = � · �̂𝑇 . We also analyzed the regret of the

final learned reward, which is the weighted feature difference between the ideal trajectory

and the learned trajectory:

RegretFinal = � · Φ(��) − � · Φ(��̂𝑇)

Lastly, we measured the individual feature differences (table and cup) between the ideal

and final learned trajectories:

TableDiffFinal = |Φ𝑡𝑎𝑏𝑙𝑒(��) −Φ𝑡𝑎𝑏𝑙𝑒(��̂𝑇)|

CupDiffFinal = |Φ𝑐𝑢𝑝(��) −Φ𝑐𝑢𝑝(��̂𝑇)|

Learning Process: Measures about the learning process, i.e., � = {�̂0, �̂1, . . . , �̂𝑇}, included

the average dot product between the true reward and the estimated reward over time:

DotAvg =
1

𝑇

𝑇∑
𝑖=0

� · �̂𝑖

We also measured the length of the �̃ path through weight space for both cup (�̃𝑐𝑢𝑝)
and table (�̃𝑡𝑎𝑏𝑙𝑒) weights. Finally, we computed the number of times the cup and table

weights were updated in the opposite direction of the optimal � (denoted by CupAway

and TableAway).

Executed Trajectory: For the actual trajectory that the robot executed, �𝑎𝑐𝑡 , we measured the

regret

Regret = � · Φ(��) − � · Φ(�𝑎𝑐𝑡)
and the individual table and cup feature differences between the ideal and actual trajectory

TableDiff = |Φ𝑡𝑎𝑏𝑙𝑒(��) −Φ𝑡𝑎𝑏𝑙𝑒(�𝑎𝑐𝑡)|

CupDiff = |Φ𝑐𝑢𝑝(��) −Φ𝑐𝑢𝑝(�𝑎𝑐𝑡)|

Interaction: Interaction measures on the forces applied by the human included the total

interaction force, IactForce =

∑𝑇
𝑡=0
| |𝑢𝑡

ℎ
| |1, and the total interaction time.

CHAPTER 8. LEARNING ROBOT OBJECTIVES FROM PHYSICAL HUMAN-ROBOT

INTERACTION 164

Figure 8.17: How accurately the robot learned when using All-at-Once or One-at-a-Time. (Left) The final

learned � with One-at-a-Time is more aligned with the ideal � on the Table+Cup task where the human had

to correct multiple features. Looking at the individual feature errors: (Center) while the final cup feature

was closer to ideal for One-at-a-Time on both tasks, (Right) All-at-Once learned a more accurate estimate

of Table when the human only needed to teach a single feature. But we notice an interaction effect here:

although One-at-a-Time got the Table wrong on the single feature task, it outperformed All-at-Once across

the board when the human needed to adjust multiple features.

Dependent Measures – Subjective. After each of the four conditions we administered a

7-point Likert scale survey about the participant’s interaction experience (see Table 8.2 for

the list of questions). We separated our survey items into four scales: success in teaching

the robot about the task (succ), correctness of update (correct update), needing to undo

corrections because the robot learned something wrong (undoing), and ease of undoing

(undo ease).

Hypotheses.

H3. One-at-a-Time learning will increase the final learned reward, enable a better

learning process, result in lower regret for the executed trajectory, and lead to less

interaction effort and time as compared to All-at-Once.

H4. Participants will perceive the robot as more successful at accomplishing the task,

better at learning, less likely to need undoing, and easier to correct if it did learn

something wrong in the One-at-a-Time condition.

Tasks. We designed two household manipulation tasks for the robot arm to perform

within a shared workspace. A depiction of the these experimental tasks is shown in

Fig. 8.16. The robot’s objective function consisted of three features: “velocity," (the trajec-

tory length), “table” (the distance from the table), and “cup" (the orientation of the cup).

We purposely selected features that were easy for participants to interpret so that they

CHAPTER 8. LEARNING ROBOT OBJECTIVES FROM PHYSICAL HUMAN-ROBOT

INTERACTION 165

intuitively understood how to correct the robot. For each experimental task the robot car-

ried a cup from a start pose to end pose with an initially incorrect objective. Task 1 focused

on participants having to correct a single aspect of the objective, while Task 2 required them

to correct all parts of the objective.

In Task 1 the robot’s objective had only one feature weight incorrect. The robot’s default

trajectory took a cup from the participant and put it down on the table, but carried the

cup too far above the table (see top of Fig. 8.16). In Task 2 all the feature weights started out

incorrect in the robot’s objective. The robot again took a cup from the participant and put

it down on the table, but this time it initially grasped the cup at the wrong angle, and was

also carrying the cup too high above the table (see bottom of Fig. 8.16).

Participants. We used a within-subjects design and counterbalanced the order of the

conditions during experiments. In total, twelve members of the UC Berkeley community

(4 male, 7 female, 1 non-binary trans-masculine, age range 18-30) provided informed

written consent according to the approved IRB protocol before participating in this study.

Eleven of the participants had technical backgrounds, and one did not. None of the

participants had prior experience interacting with the robot used in our experiments.

Procedure. Before the start of the experiment participants performed a familiarization task

to become more comfortable teaching the 7-DoF JACO2 robot with physical corrections.

We here used the second task from our first experiment, where the robot carried a cup at

an angle, and the human must correct the cup’s orientation. During this familiarization

task the robot’s objective contained only one feature weight (cup). Afterwards, for each

experimental task, the participants were shown the robot’s initial trajectory as well as their

desired trajectory. They were also told what aspects of the task the robot is aware of (cup

orientation and distance to table), as well as which learning strategy they were interacting

with (One-at-a-Time or All-at-Once). Participants were told the difference between the

two learning strategies in order to minimize in-task learning effects. Importantly, we did

not tell participants to teach the robot in any specific way (like one aspect as a time); we

only informed participants about how the robot reasons over their corrections.

Results – Objective. Here we summarize the results for each of our objective dependent

measures.

Final Learned Reward. We ran a factorial repeated-measures ANOVA with learning strategy

and number of features as factors—and user ID as a random effect—for each of our

objective metrics. Fig. 8.17 summarizes our findings about the final learned weights �̂𝑇

for both learning strategies.

For the final dot product with the true reward �, we found a significant main effect

of the learning strategy (𝐹(1, 81) = 29.86, 𝑝 < .0001), but also an interaction effect with

the number of features (𝐹(1, 81) = 13.07, 𝑝 < .01). The post-hoc analysis with Tukey HSD

revealed that One-at-a-Time led to a higher dot product on Task 2 (𝑝 < .0001), but there

was no significant difference on Task 1 (where One-at-a-Time led to slightly higher dot

product).

CHAPTER 8. LEARNING ROBOT OBJECTIVES FROM PHYSICAL HUMAN-ROBOT

INTERACTION 166

We next looked at the final regret, i.e., the difference between the cost of the final learned

trajectory and the cost of the ideal trajectory. For this metric we found an interaction effect,

suggesting that One-at-a-Time led to lower regret for Task 2 but not for Task 1. Looking

separately at the feature values for table and cup, we found that One-at-a-Time led to a

significantly lower difference for the cup feature across the board (𝐹(1, 81) = 11.30, 𝑝 < .01,

no interaction effect), but that One-at-a-Time only improved the difference for the table

on Task 2 (𝑝 < .0001). Surprisingly, One-at-a-Time significantly increased the difference

when the human only needed to correct a single feature (𝑝 < .001).

Overall, we see that One-at-a-Time results in better final learning when the human

needs to correct multiple features (Task 2). When the human only wants to correct a single

feature (Task 1) the results are mixed: One-at-a-Time led to a significantly better result for

the cup orientation, but a significantly worse result for the table distance.

Learning Process. For the average dot product between the estimated and true reward

over time, our analysis revealed almost identical outcomes as those reported for the final

reward (see Fig. 8.18). Higher values of 𝐷𝑜𝑡𝐴𝑣𝑔 indicate the robot’s estimate �̂ is in the

direction of the true parameters �. Differences in 𝐷𝑜𝑡𝐴𝑣𝑔 were negligible during Task 1,

but One-at-a-Time outperformed All-at-Once during Task 2.

Next, we found that One-at-a-Time resulted in significantly fewer updates in the wrong

direction for the cup weight (𝐹(1, 81) = 44.91, 𝑝 < .0001) and for the table weight (𝐹(1, 81) =
22.02, 𝑝 < .0001), with no interaction effect in either case. Fig. 8.19 highlights these findings

and their connection to the subjective user responses from Table 8.2 that are related to

undoing.

Finally, looking at the length of the learned path �̃ through the space of feature

weights, we found a main effect of learning strategy (𝐹(1, 81) = 26.82, 𝑝 < .0001), but also

an interaction effect (𝐹(1, 81) = 6.55, 𝑝 = .01). The post-hoc analysis with Tukey HSD

revealed that for Task 1 our One-at-a-Time approach resulted in a significantly shorter

path through weight space (𝑝 < .0001). The path was also shorter during Task 2, but this

difference was not significant. The effect was mainly due to the One-at-a-Time method

resulting in a shorter path for the cup weight on Task 1, as revealed by the post-hoc

analysis (𝑝 < .0001).

Overall, we see that the quality of the learning process was significantly higher for the

One-at-a-Time strategy across both tasks. When one aspect (Task 1) or all aspects (Task

2) of the objective were wrong, One-at-a-Time led to fewer weight updates in the wrong

direction, and resulted in the learned reward over time being closer to the true reward.

The Executed Trajectory. We found no significant main effect of the learning strategy on

the regret of the executed trajectory: the two strategies lead to relatively similar actual

trajectories with respect to regret. Both regret as well as the feature differences from ideal

for cup and table showed significant interaction effects.

Interaction Metrics. We found no significant effects on interaction time or force.

Objective Results – Summary. Taken together these results indicate that One-at-a-Time

leads to a better overall learning process. On the more complex task where all the features

CHAPTER 8. LEARNING ROBOT OBJECTIVES FROM PHYSICAL HUMAN-ROBOT

INTERACTION 167

(a) DotAvg measures the alignment between the

learned �̂𝑡 and the true �. In the task with only

one wrong feature weight, there was no signifi-

cant difference between the two methods in av-

erage dot product over time.

(b) In contrast to (a), when two feature weights

are wrong One-at-a-Time outperformed All-at-

Once. The dip in DotAvg for All-at-Once in-

dicates that participants accidentally taught the

robot the wrong thing and needed to undo their

corrections.

Figure 8.18: One-at-a-Time showed more consistent alignment between the learned objective, �̂𝑡 , and the

ideal objective, �, when compared to All-at-Once. Contrasting (a) and (b), these results suggest that when

the human needs to correct multiple aspects of the robot’s behavior One-at-a-Time enables more accurate

learning. We anticipate that most real-world tasks will require corrections of multiple features.

must be corrected (Task 2), One-at-a-Time also leads to a better final learned reward. For

the simpler task where only one feature must be corrected (Task 1), One-at-a-Time enables

users to better avoid accidentally changing the initially correct weight (cup), but One-at-

a-Time is not as good as the All-at-Once method at enabling users to properly correct

the initially incorrect weight (table). Accordingly, our objective results partially support

H3. Although updating one feature weight at a time does not improve task performance

when only one aspect of the objective is wrong, reasoning about one feature weight at a

time leads to significantly better learning and task performance when all aspects of the

objective are wrong.

Results – Subjective. We ran a repeated measures ANOVA on the results of our participant

survey. After testing the reliability of our four scales (see Table 8.2), we found that the

correct update and undoing scales were reliable, and so we grouped these into a combined

score. The success (succ) scale had only a single question, and so grouping was not

applicable here. Finally, we analyzed the two questions related to undoing ease (undo

ease) individually because this specific scale was not reliable.

For the correct update scale we found a significant effect of learning strategy (𝐹(1, 33) =

CHAPTER 8. LEARNING ROBOT OBJECTIVES FROM PHYSICAL HUMAN-ROBOT

INTERACTION 168

Figure 8.19: How frequently participants made mistakes and had to undo their corrections. (Left) Humans

working with One-at-a-Time made fewer corrections that caused the robot to learn the opposite of what

they intended. This result was consistent across both tasks. (Right) These objective findings match our

subjective Likert scale data. Participants thought the One-at-a-Time robot was less likely to learn the wrong

thing and need an additional undoing action.

5.09, 𝑝 = 0.031), showing that participants perceived One-at-a-Time as better at updating

the robot’s objective according to their corrections. The undoing scale also showed a

significant effect of learning strategy (𝐹(1, 33) = 10.35, 𝑝 < 0.01), where One-at-a-Time was

perceived as less likely to learn the wrong thing, which would then force the participants

to undo their corrections. For both success and undoing ease scales we analyzed the

questions Q1, Q9, and Q10 individually and found no significant effect of learning strategy.

Subjective Results – Summary. The subjective data echoes some of our objective data

results. Participants perceived that the robot with One-at-a-Time was better at correcting

what they intended, and required less undoing due to unintended learning. We conclude

that H4 was partially supported.

8.9 Discussion
In this work we recognize that when humans physically interact with and correct a

robot’s behavior their corrections become a source of information. This insight enables

us to formulate pHRI as a partially observable dynamical system: the robot is unsure

of its true objective function, and human interactions become observations about that

latent objective. Solving this dynamical system results in robots that respond to pHRI in

CHAPTER 8. LEARNING ROBOT OBJECTIVES FROM PHYSICAL HUMAN-ROBOT

INTERACTION 169

Likert Questions Cronbach’s 𝛼

su
cc

Q1: I successfully taught the robot how to do the task. –

co
rr

ec
tu

pd
at

e

Q2: The robot correctly updated its understanding about aspects of

the task that I did want to change.

.84

Q3: The robot wrongly updated its understanding about aspects of

the task I did NOT want to change.

Q4: The robot understood which aspects of the task I wanted to

change, and how to change them.

Q5: The robot misinterpreted my corrections.

un
do

in
g

Q6: I had to try to undo corrections that I gave to the robot, because

it learned the wrong thing.

.93

Q7: Sometimes my corrections were just meant to fix the effect of

previous corrections I gave.

Q8: I had to re-teach the robot about an aspect of the task that it

started off knowing well.

un
do

ea
se Q9: When the robot learned something wrong, it was difficult for

me to undo that.

.66

Q10: It was easy to re-correct the robot whenever it misunderstood

a previous correction of mine.

Table 8.2: Likert scale questions from our user study comparing All-at-Once and One-at-a-Time. Questions

were grouped into four categories: success in accomplishing the task (succ), whether the robot’s update

was what the human wanted (correct update), how often the human needing to undo corrections because

of unintended learning (undoing), and how easy it was to undo a mistake (undo ease).

CHAPTER 8. LEARNING ROBOT OBJECTIVES FROM PHYSICAL HUMAN-ROBOT

INTERACTION 170

the optimal way. These robots update their understanding of the task after each human

interaction, and then change how they complete the rest of the current task based on this

new understanding.

Approximations. Directly applying our formalism to find the robot’s optimal response

to pHRI is generally not tractable in high-dimensional and continuous state and action

spaces. We therefore derive an online approximation for robot learning and control.

We first leverage the QMDP approximation [142] to separate the learning problem from

the control problem, and then move from the policy level to the trajectory level. This

results in two local optimization problems. In the first, the robot solves for an optimal

trajectory given its MAP estimate of the task objective, and then tracks that trajectory using

impedance control [97]. The second optimization problem occurs at timesteps when the

human interacts: here the robot updates its estimate of the correct objective using online

gradient descent [35]; this update rule is a special case of Coactive Learning [99, 197] and

Maximum Margin Planning [175]. Although we can practically think of the proposed

algorithm as using impedance control to track a trajectory that is replanned after physical

interactions, this approach ultimately derives from formulating pHRI as an instance of a

POMDP.

Interestingly, this derivation enables us to interpret other state-of-the-art responses to

pHRI as simplifications of our approximation. For example, if the robot never updates

its estimate of the correct objective function (i.e., the robot never learns from pHRI), then

our online approximation reduces to impedance control. Alternatively, if we treat the

intended trajectory induced by the human’s correction as the robot’s trajectory (but do not

update the robot’s objective), then our approximation reduces to deforming the desired

trajectory [146]. We compared our online approximation to both of these simplifications—

impedance control and deformations—as well as to a more complete QMPD solution.

During offline simulations we found that the performance loss between our learning

method and the QMPD policy was negligible, but our method outperformed impedance

control and trajectory deformations. During user studies with a 7-DoF robot, our learning

approach resulted in decreased interaction time, effort, and cumulative trajectory cost

when compared to an impedance controller. We also found that users believed the learning

robot better understood their preferences, resulted in less interaction effort, and was more

a collaborative partner than the impedance robot.

Unintended Corrections. While we assert that the human’s physical interactions are often

intentional, we also recognize that physical interactions are inherently noisy and imperfect.

When correcting a high DoF robot the human may adjust aspects of the robot’s behavior

that they did not intend to. If the robot treats every aspect of the human’s correction

as intentional this can result in unintended learning, which the human must then undo

with additional corrections. In order to mitigate the effects of unintended corrections, and

make the process of correcting robots through pHRI more intuitive for the end-user, we

introduce a restriction to our online learning rule. More specifically, we assume that the

robot should only learn about one aspect of the task from each human correction. During

CHAPTER 8. LEARNING ROBOT OBJECTIVES FROM PHYSICAL HUMAN-ROBOT

INTERACTION 171

offline simulations we showed that this One-at-a-Time learning approach outperformed

All-at-Once when the simulated user acted noisily: with All-at-Once, the noisy human

unintentionally changed aspects of the robot’s task which were already correct, but with

Once-at-a-Time these unintended corrections were avoided.

Next, we performed a user study to compare our One-at-a-Time and All-at-Once learn-

ing strategies. Here the robot could reason over multiple features during two tasks: one

task required correcting a single feature, and the other task required correcting multiple

features of the robot’s objective. For the multiple feature task learning about one feature

at a time was objectively superior: it led to a better final learning outcome, took a shorter

path to the optimum, and had fewer incorrect inferences and human undoing along the

way. But the results were not as clear for the single feature task: One-at-a-Time reduced

unintended learning on the weights that were initially correct, but it hindered learning

for the initially incorrect weights. Overall, study participants subjectively preferred One-

at-a-Time to All-at-Once: they thought One-at-a-Time was better at learning the intended

aspects of their corrections and required less undoing.

Based on these results, we hypothesize that the superior objective performance of

One-at-a-Time was due to the increased complexity of the teaching task. It appears that

only learning a single aspect at a time is more useful when the teaching task becomes

more complex and requires that the human alter multiple parts of the robot’s objective.

When the teaching task is simple, however, and only requires one aspect of the objective

to change, it is not yet clear whether One-at-a-Time is a better learning strategy.

Limitations. Our work is a step towards understanding how robots should respond to

pHRI. When selecting the approximations for online learning, as well as the method for

inferring which feature to update in One-at-a-Time, we opt for approximations that are

consistent to those in the existing literature. Future work and hardware advances may

remove the need for some of the approximations we have leveraged.

Throughout our paper we assumed that the robot had access to the necessary task-

related features. Moreover, during our user studies the robot’s objective contained only

two or three total features, and these features were intuitive to the human (e.g., “distance-

to-person"). In practice objective functions will have larger features sets and may include

task-related features that are non-intuitive to the human: additional work is needed to

investigate how well our learning strategies perform in these cases.

Finally, solutions that can handle dynamical aspects—like preferences about the timing

of the robot’s trajectory—would require a different approach for inferring the intended

human trajectory. Here it may actually be necessary to return from the trajectory space to

the policy space.

CHAPTER 8. LEARNING ROBOT OBJECTIVES FROM PHYSICAL HUMAN-ROBOT

INTERACTION 172

8.10 Detailed Derivation: Laplace Approximation & MAP
Recall our observation model from (8.10):

𝑃(�ℎ | �𝑟 , �) =
𝑒𝑅(�ℎ ,�)−�| |�ℎ−�𝑟 | |

2∫
𝑒𝑅(�,�)−�| |�−�𝑟 | |2𝑑�

. (8.21)

The key challenge with using this observation model is computing the denominator,

since computing an integral over the space of all trajectories is computationally intractable.

Thus, we are interested in approximating the denominator. To do this, we will perform a

Laplace approximation[152], which locally models the distribution as a Gaussian which

then allows us to obtain a solution for the integral in closed form.

Let’s just focus on the denominator:∫
𝑒𝑅(�,�)−�| |�−�𝑟 | |

2

𝑑� (8.22)

Step 1. “Quadraticize” the exponent. Recall that for a function 𝑓 : R𝑛 → R𝑚 , the 2nd

order TSE around 𝑎 ∈ R𝑛 is:

𝑓 (𝑥) ≈ 𝑓 (𝑎) + ∇𝑥 𝑓 (𝑎)⊤(𝑥 − 𝑎) +
1

2

(𝑥 − 𝑎)⊤∇2

𝑥 𝑓 (𝑎)(𝑥 − 𝑎)

For notational simplicity, let our function of interest (i.e. the objective function) be:

𝑓 (�) := 𝑅(�, �) − �| |� − �𝑟 | |2

For our approximation, we will assume that the robot’s planned trajectory �𝑟 ∈ R𝑛 is locally

optimal. We will do a TSE around �𝑟 to obtain:

𝑓 (�) ≈ 𝑅(�𝑟 , �) + ∇� 𝑓 (�𝑟)⊤(� − �𝑟) +
1

2

(� − �𝑟)⊤∇2

� 𝑓 (�𝑟)(� − �𝑟) (8.23)

= 𝑅(�𝑟 , �) +
1

2

(� − �𝑟)⊤∇2

� 𝑓 (�𝑟)(� − �𝑟) (∇� 𝑓 (�𝑟) = 0 at optimum) (8.24)

= 𝑅(�𝑟 , �) −
(
− 1

2

(� − �𝑟)⊤∇2

� 𝑓 (�𝑟)(� − �𝑟)
)

(match Gaussian form) (8.25)

Step 2. Approximate the denominator. We will now approximate the denominator as an

unnormalized Gaussian, using our 2nd order TSE:∫
𝑒𝑅(�,�)−�| |�−�𝑟 | |

2

𝑑� ≈
∫

𝑒
𝑅(�𝑟 ,�)−

(
− 1

2
(�−�𝑟)⊤∇2

� 𝑓 (�𝑟)(�−�𝑟)
)
𝑑� (8.26)

= 𝑒𝑅(�𝑟 ,�)
∫

𝑒
−
(
− 1

2
(�−�𝑟)⊤∇2

� 𝑓 (�𝑟)(�−�𝑟)
)
𝑑� (8.27)

= 𝑒𝑅(�𝑟 ,�)
√
(2𝜋)𝑛√

det{−∇2

� 𝑓 (�𝑟)}
(apply Gaussian integral soln.) (8.28)

CHAPTER 8. LEARNING ROBOT OBJECTIVES FROM PHYSICAL HUMAN-ROBOT

INTERACTION 173

where 𝑛 is the dimension of the trajectory.

Step 3. Plug into original probability distribution. Going back to our original probability

distribution, we now can obtain an approximate, but simpler closed-form solution:

𝑃(�ℎ | �𝑟 , �) =
𝑒𝑅(�ℎ ,�)−�| |�ℎ−�𝑟 | |

2∫
𝑒𝑅(�,�)−�| |�−�𝑟 | |2𝑑�

(8.29)

≈ 𝑒𝑅(�ℎ ,�)−�| |�ℎ−�𝑟 | |
2

𝑒𝑅(�𝑟 ,�)
√
(2𝜋)𝑛√

det{−∇2

� 𝑓 (�𝑟)}

(8.30)

=

(
𝑒𝑅(�ℎ ,�)−𝑅(�𝑟 ,�)−�| |�ℎ−�𝑟 | |

2

)
·
√

det{−∇2

� 𝑓 (�𝑟)} ·
1√
(2𝜋)𝑛

(8.31)

Step 4. Simplifying the MAP estimate. Ultimately, we seek to use this probability distri-

bution to obtain the maximum a posteriori (MAP) estimate. For simplicity of exposition,

assume we have just one observation. Our MAP estimate can be simplified using our

approximated observation model:

�̂ = arg max

�
𝑃(�ℎ | �𝑟 , �)𝑃(�) (8.32)

= arg max

�
ln𝑃(�ℎ | �𝑟 , �) + ln𝑃(�) (log likelihood) (8.33)

≈ arg max

�
𝑅(�ℎ , �) − 𝑅(�𝑟 , �) − �| |�ℎ − �𝑟 | |2+ (8.34)

ln

√
det{−∇2

� 𝑓 (�𝑟)} + ln

1√
(2𝜋)𝑛

+ ln𝑃(�) (plug in approx. & simplify) (8.35)

= arg max

�
𝑅(�ℎ , �) − 𝑅(�𝑟 , �) +

1

2

ln det{−∇2

� 𝑓 (�𝑟)} + ln𝑃(�) (remove constant terms)

(8.36)

= arg max

�
�⊤

(
Φ(�ℎ) −Φ(�𝑟)

)
+ 1

2

ln det{−∇2

� 𝑓 (�𝑟)} + ln𝑃(�) (plug in (8.5)) (8.37)

Two things worth noting:

• If 𝑓 (�) is quadratic8 in �, then we know that the hessian ∇2

� 𝑓 will be constant w.r.t �.

• While we wrote 𝑓 as a function of � for notational simplicity throughout, 𝑓 in fact

depends on both the trajectory �, and the reward parameter �. This means that

in theory the Hessian term (even if constant w.r.t. �) still could contribute to the

maximization of � when computing the MAP.

8
In our case where 𝑓 (�) = �⊤Φ(�) − �| |� − �𝑟 | |2, we need Φ(�) to be quadratic in �.

CHAPTER 8. LEARNING ROBOT OBJECTIVES FROM PHYSICAL HUMAN-ROBOT

INTERACTION 174

In this derivation, we make the simplifying assumptions that (1) the objective 𝑓 is

quadratic9 in �, and (2) the first term, �⊤
(
Φ(�ℎ) − Φ(�𝑟)

)
, which looks at the differ-

ence in rewards along the original robot trajectory and the induced human trajectory, will

dominate10 the second term involving the Hessian and drop it from the optimization as a

final approximation. Thus, we arrive at:

�̂ = arg max

�
𝑃(�ℎ | �𝑟 , �)𝑃(�) ≈ arg max

�
�⊤

(
Φ(�ℎ) −Φ(�𝑟)

)
+ ln𝑃(�) (8.38)

This derivation is straightforward to adapt to the scenario where the MAP inference

utilizes multiple observations.

8.11 Conclusion
In this work we present an online, in-task response to pHRI that treats human interac-

tions as intentional. We first formulate the problem of responding to pHRI as a partially

observable dynamical system, where solving this system defines the optimal way for the

robot to react. Unfortunately, this formalism is not directly applicable because we require

online solutions in high-dimensional and continuous state, action, and belief spaces. We

therefore derive an approximate solution for real-time learning and control. During offline

simulations we compared our approximate learning method to a complete solution and

state-of-the-art baselines, which are actually simplifications of our approach. We perform

two separate user studies on a 7-DoF robot arm to determine (a) whether learning from

pHRI is useful and (b) how the robot should learn from physical human interactions.

While these simulations and user studies indicate the benefits of our approach, we rec-

ognize that this work is only a first step towards leveraging the implicit communication

present during human-robot interactions.

9
This is similar to the approximation made by Dragan and Srinivasa in [65].

10
This requires the second derivatives of Φ(�) to be small, which may not always hold. For an alternative

algorithm for computing the MAP where the Hessian is preserved, see [135].

175

Chapter 9

Quantifying Hypothesis Space
Misspecification

This chapter is based on the paper “Quantifying Hypothesis Space Misspecification in Learning

from Human-Robot Demonstrations and Physical Corrections” [34] written in collaboration with

Andreea Bobu, Jaime Fisac, Sampada Deglurkar, and Anca Dragan.

Autonomous systems are increasingly interfacing and collaborating with humans in

a variety of contexts, such as semi-autonomous driving, automated control schemes on

airplanes, or household robots working in close proximity with people. While the improv-

ing capabilities of robotic systems are opening the door to new application domains, the

substantially greater complexity and interactivity of these settings makes it challenging

for system designers to account for all relevant operating conditions and requirements

ahead of time. For example, a household robot designer may not know how an end-user

would like the robot to interact with the personal possessions in the user’s home.

In situations like these, it can be beneficial for the robot to utilize human input as

guidance on the desired behavior. In fact, human input has enabled researchers and

engineers to program advanced behaviors that would have otherwise been extremely

challenging to specify. Helicopter acrobatics [2], aggressive automated car maneuvers

[121], and indoor navigation [128] are three cases that exemplify the benefit of using

human input for guiding robot behavior.

In order to utilize human input, system designers typically equip robots with a rep-

resentation of possible objectives that the human could care about. These representations

can range from quadratic cost models[122] to complex temporal logic specifications [79]

to neural networks [70]. However, anticipating all motivations for human input and spec-

ifying a complete model is challenging. Consider Fig. 9.1 where a human is attempting to

change the robot’s behavior in order to make it consistently stay close to the table, but the

robot’s model of what the human might care about does not include distances to the table.

By choosing a class of functions, the system designer implicitly assumes that what the

human wants (and is giving input about) can be represented via a member of that class.

CHAPTER 9. QUANTIFYING HYPOTHESIS SPACE MISSPECIFICATION 176

Figure 9.1: A household robotics scenario where the person physically interacts with the robot. The person

prefers the robot to keep cups closer to the table, but accounting for the table (outside of collisions) is not

in the robot’s hypothesis space for what the person might care about. Thus, the robot’s internal situational

confidence, 𝛽, about what the human input means is low for all hypotheses �.

Unfortunately, when this assumption breaks, the system can misinterpret human guid-

ance, perform unexpected or undesired behavior, and degrade in overall performance.

Two approaches to mitigating this problem could be to either start with a more complex

objective space or to continuously increase its complexity given more data. Unfortunately,

even complex models are not guaranteed to encompass all possibilities and re-computing

the best objective space based on human data faces the threat of overfitting to the most

recent observations. In contrast, we argue the robot should be able to understand when it

cannot understand the input. For example, if the end-user in the home is trying to guide

the robot to handle fragile objects with care but the system does not posses a model of

fragility, the robot should deduce that this input cannot be well explained by any of its

given hypotheses.

In this work, we formalize how autonomous systems can explicitly reason about how

well they can explain given human inputs. To do this, we observe that if a human

input appears unlikely with respect to all possible hypotheses, then the robot’s model is

misspecified. We build on previous work centered around this observation to propose

a Bayesian inference framework focused on inferring both model parameters, and their

corresponding situational confidence. If the robot is in situations like Fig. 9.1 where none

of the hypotheses explain the human’s input well, then the situational confidence will

be low for all hypotheses, indicating that the robot’s model is not sufficiently rich to

understand the human’s input. However, when the robot’s model is well specified, our

framework does not impede the robot from inferring the correct task objectives — in fact,

the situational confidence will be high, providing an indicator of how well the system can

understand the objective.

We illustrate the utility of situational confidence estimation in quantifying objective

space misspecification for two types of human input: demonstrations and corrections.

CHAPTER 9. QUANTIFYING HYPOTHESIS SPACE MISSPECIFICATION 177

Our contributions in this work are:

1. we introduce a general framework for quantifying objective space misspecification

when the human and the robot are acting on the same dynamical system;

2. we showcase the framework for learning from demonstrations using user demon-

stration data for an arm motion planning task;

3. we showcase the framework for learning from physical corrections by deriving an

algorithm for online (close to real-time) inference and testing it in a user study.

We note that this work is an extension of [33], which was originally presented at the

Conference on Robot Learning, 2018. We build on this work by introducing a general

framework for quantifying objective space misspecification, and instantiating it in a new

type of human input: learning from demonstrations. Not only are demonstrations the

most widely used type of input for learning objective functions, but the applicability across

two input types suggests that the approach could be adapted more broadly to more types

of human feedback.

The remainder of this paper is organized as follows: Section 9.1 places this work in the

context of existing literature on robots learning from humans and model confidence esti-

mation. Section 9.2 frames the confidence estimation problem more formally for scenarios

where the human and robot operate on the same dynamical system. Section 9.3 directly

instantiates the framework in Section 9.2 for the case of learning from demonstrations.

Section 9.4 presents a derivation of approximations of the general formalism for tractable

online inference from human corrections. Section 9.5 showcases our proposed approach

in several case studies where the robot’s hypothesis space cannot or only partially explain

the human’s input. Section 9.6 presents the results of a user study of our approach as

applied to a 7-DoF robotic manipulator learning from human participants. Section 9.7

concludes with a discussion of some of the limitations of our work, as well as suggestions

for future research directions.

Overall, we think that the ability to detect misspecification when learning objectives

from human input will become increasingly important as robotics capability advances

and we will want end-users to customize how the robot behaves. Our work takes a

step in this direction by enabling robots to detect when none of the hypotheses they

have explain the user input, and our experiments show promising results. Of course,

there are still limitations to this. One limitation is in the experiments themselves, which

are only for motion planning tasks with low-dimensional hypothesis spaces. A more

fundamental limitation is that there will still be cases when the person wants something

outside the robot’s hypothesis space, but the robot can nonetheless explain their current

input relatively well with what it has access to, thus confusing misspecification for slight

noise in the human input. This will especially be the case as the hypothesis space is more

expressive, and can only be solved by the robot receiving a lot more human input: each

might be explainable by some hypothesis, but eventually no hypothesis can explain all

CHAPTER 9. QUANTIFYING HYPOTHESIS SPACE MISSPECIFICATION 178

input. More work is needed in studying how to query for diverse human input, as well

as how to convey what the robot has learned back to the person, and in general how to

have a true collaborative interaction to detect and resolve misspecification in the objective

space.

9.1 Related Work
We group prior work into three main categories: enabling robots to learn from human

input, doing so while leveraging uncertainty, and estimating model confidence.

9.1.1 Robots learning from humans
The programming of robots through direct human interaction is a well-established

paradigm. Human input can be given to the robot in a variety of forms, from teleoperation

of the robot by a user to kinesthetic teaching [11].

In such interaction paradigms, the robot aims to infer a cost function or policy that best

describes the examples that it has received. New avenues of research focus on learning

such robot objectives from human input through demonstrations [3, 167], teleoperation

data [102], corrections [99, 19], comparisons [55], examples of what constitutes a goal [80],

or even specified proxy objectives [89]. In this paper, we focus on learning from two of

such types of human input – demonstrations and physical corrections – although we stress

that the principles outlined in our formalism are more general and could be applied to

the other interaction modes mentioned.

One approach to learning behaviors from human inputs is inverse reinforcement learn-

ing (IRL). In classical IRL, the robot receives complete optimal demonstrations of how to

perform a task, and the robot learns the human’s cost function from these observations

[109, 162, 167]. In this paradigm, it is typically assumed that the expert is trying to opti-

mize an unknown cost function. The robot uses the observations of the human’s behavior

to recover the underlying objective.

Another useful form of human input are corrections: here, the robot performs the task

according to how it was programmed and the user corrects aspects of the task to better

match their preferences. From these sparse interactions, the robot also performs cost

function inference to improve performance during the next task iteration [197, 175, 113].

Examples of learning from corrections have been explored in offline [99],[85] and online

settings [19, 18, 43, 12].

Although powerful, the aforementioned IRL works assume that the human expert

provides optimal demonstrations, which is often an unrealistic assumption. Real human

input, especially during interaction with high degree-of-freedom systems like robotic

manipulators, is noisy and sub-optimal. Second, much of the corrections literature has

focused on estimates of the human’s objectives. However, in practice, even the most

CHAPTER 9. QUANTIFYING HYPOTHESIS SPACE MISSPECIFICATION 179

likely estimate might not be a very likely one. Thus, in both domains, we stress that it is

important to maintain the uncertainty over the estimated objectives.

9.1.2 Uncertainty in robot learning
Rather than estimating a single objective, some learning methods maintain an entire

probability distribution over what the objective might be [38, 90, 144, 173]. This not only

enables the robot to leverage a prior, but also to then generate its behavior in a way that

is mindful of the entire distribution, rather than just using the the maximum likelihood

estimator.

Bayesian IRL [173] treats demonstrations as evidence about the objective, and does

a Bayesian belief update on a prior distribution. Inverse Reward Desing [90] treats the

objective a designer specified for a particular set of environments (a “proxy” objective) as

evidence about the true desired objective, again obtaining a full distribution over what

the designer might actually want. The intuition is that this observed proxy objective (that

may be misspecified) incentivizes behavior that is approximately optimal with respect to

the true objective.

Lastly, specifically for input as physical corrections, [144] reasons over the uncertainty

of the estimated human preferences through the means of a Kalman filter. The method

maintains a mean estimate and a covariance of this estimate as a measure of confidence.

These are used in planning the robot’s trajectory such that it optimizes for features it is

confident about, while avoiding features it is uncertain about.

Although they maintain a full distribution, these works still assume that what the

human wants is in the robot’s objective space. We argue that this is not necessarily a

realistic assumption, and later showcase some consequences that arise when it is not true.

When the robot’s hypothesis space is misspecified, even when maintaining uncertainty

over the objective, state-of-the-art methods interpret human input as evidence about which

hypothesis is correct, rather than considering whether any hypothesis is correct. In this

work, we focus on the latter.

9.1.3 Situational confidence estimation
Some recent works are studying how to enable robots to understand that their models

cannot explain human input well [233, 74, 77]. The authors in [74, 77] employ a noisily-

optimal model of human pedestrian motion when the human and the robot operate on

separate dynamical systems (and have separate objective functions). The paper introduces

the notion of model confidence estimation and uses the apparent likelihood of the human’s

choice of actions to adjust the confidence in predictions about their behavior.

This work draws inspiration from the notion of model confidence estimation, gener-

alizing it to the setting of inferring what the robot’s objective ought to be. Instead of

focusing on misspecification of a discrete set of physical goal locations for pedestrian

navigation, here we study misspecification of a relatively complex set of possible robot

CHAPTER 9. QUANTIFYING HYPOTHESIS SPACE MISSPECIFICATION 180

objectives in motion planning tasks. As a result of focusing on robot objectives, we also

study a different form of human input – that is, input in the context of operating on the

same dynamical system, such as full task demonstrations and physical corrections.

9.2 Problem Formulation and Approach
We consider a robot 𝑅 operating in the presence of a human 𝐻 whom it seeks to assist

in the execution of some task. In the most general setting, the robot and the human are

both able to affect the evolution of the state 𝑥 ∈ R𝑛 over time through their respective

control inputs:

𝑥𝑡+1 = 𝑓
(
𝑥𝑡 , 𝑢𝑡𝑅 , 𝑢

𝑡
𝐻

)
, (9.1)

with 𝑢𝑅 ∈ 𝒰𝑅 and 𝑢𝐻 ∈ 𝒰𝐻 , where𝒰𝑖 (𝑖 ∈ {𝐻, 𝑅}) are compact sets. We assume that the

human has some consistent preference ordering between different state trajectories and

input signals, which could in principle be expressed through a cost function of the form

𝐶∗(x, u𝑅 , u𝐻) (9.2)

where the state trajectory is x = [𝑥0, 𝑥1, . . . , 𝑥𝑇]∈ R𝑛(𝑇+1)
, the robot’s control input is u𝑅 =

[𝑢0

𝑅
, 𝑢1

𝑅
, . . . , 𝑢𝑇

𝑅
]∈ R𝑛(𝑇+1)

, and the human’s is u𝐻 = [𝑢0

𝐻
, 𝑢1

𝐻
, . . . , 𝑢𝑇

𝐻
]∈ R𝑛(𝑇+1)

.1 Note that

this hypothesized cost function 𝐶∗ can be quite general, encoding an arbitrary preference

ordering. However, the robot does not in general have access to the human’s preferences

𝐶∗, and must instead attempt to infer and represent them tractably.

In order to do this, the robot can typically reason over a parametrized approximation of

the cost function, which introduces an inductive bias, making inference tractable at the cost

of limiting expressiveness: in some cases, the chosen set of parametric functions may fail

to encode preferences that would explain the human’s behavior with sufficient accuracy.

In this work, we will denote by 𝐶� the cost function induced by parameters � ∈ Θ, and

the robot seeks to estimate the human’s preferred � from her control inputs u𝐻 .

In a general setting, since the state trajectory x is determined not only by the human’s

actions u𝐻 but also the robot’s u𝑅, the human would need to reason about how the robot

will respond to her decisions. This requires analyzing the interaction in a game-theoretic

framework [89, 76], which will not be the object of this work. Instead, we focus on common

interaction scenarios in which the robot can approximately assume that the human does

not explicitly account for the coupled mutual influence between both agents’ decisions.

This happens frequently if the human is either providing a demonstration for the robot or

intervening to correct the robot’s default behavior. In these settings, the typical assumption

is that the human has all necessary information about the robot’s control input u𝑅 before

deciding on her own u𝐻 .

1
For deterministic dynamics (9.1), having 𝑥0 , u

𝑅
and u𝐻 is enough to fully specify the entire state

trajectory x. In this case, the cost function could be rewritten as 𝐶∗(𝑥0 , u𝑅 , u𝐻) by implicitly encoding (9.1).

For clarity, we use the more general form in (9.2) and make the dependence explicit where needed.

CHAPTER 9. QUANTIFYING HYPOTHESIS SPACE MISSPECIFICATION 181

Thus, given observations of the human input u𝐻 from an initial state 𝑥0
, the robot

needs to draw inferences on the cost parameter �:

𝑃(� | 𝑥0, u𝑅 , u𝐻) =
𝑃(u𝐻 | 𝑥0, u𝑅;�)𝑃(�)∫

�̄
𝑃(u𝐻 | 𝑥0, u𝑅; �̄)𝑃(�̄)𝑑�̄

, (9.3)

where 𝑃(u𝐻 | 𝑥0, u𝑅;�) characterizes how the robot expects the human’s input to be

informed by her preferences, conditioned on the initial state and the robot’s expected

controls.

For example, if the human were assumed to act optimally, this model would place all

probability on the set of optimal states and actions with respect to the cost 𝐶�. Of course,

this would be an unreasonably strong assumption given that the robot’s parametrized

cost constitutes a best effort to approximate the human’s preferences. Instead, a useful

modeling choice can be to characterize the human as being more likely to take actions that

are well-aligned with her preferences.

One such model is inspired by the Boltzmann energy-based model satisfying the max-

imum entropy principle [103]. Following its adaptations as a model of human decision-

making in [217, 21, 19], we model the human as a noisily-optimal agent that tends to

choose control inputs that approximately minimize the modeled cost:

𝑃(u𝐻 | 𝑥0, u𝑅;�, 𝛽) = 𝑒−𝛽𝐶�

(
x(·;𝑥0 ,u𝑅 ,u𝐻),u𝑅 ,u𝐻

)∫
ū𝐻
𝑒−𝛽𝐶�

(
x(·;𝑥0 ,u𝑅 ,ū𝐻),u𝑅 ,ū𝐻

)
𝑑ū𝐻

. (9.4)

In this model, the inverse temperature coefficient 𝛽 ∈ [0,∞) determines the degree to

which the robot expects to observe human actions that are consistent with the cost model.

The goal is to detect when the robot does not have a rich enough hypothesis space,

i.e. when 𝐶∗ lies far outside of any 𝐶�. We call this problem objective space misspecification.

Rather than only interpreting human input as evidence about which hypothesis is correct,

we additionally focus on considering whether any hypothesis is correct. It is thus crucial

that the robot can quantify the extent to which any parameter value � ∈ Θ can correctly

explain the observed human input.

9.2.1 Situational confidence estimation
The key to our approach goes back to the inverse temperature parameter 𝛽 in (9.4).

Typically, 𝛽 is a fixed term, encoding the degree to which the robot expects to observe

human actions that are optimal. Setting it to 0 models a randomly-acting human, while

setting it to ∞ models a perfectly optimal human. However, the possibility of objective

space misspecification brings fixing 𝛽 into question: when the space is correctly specified,

we would expect the human actions to indeed be somewhat close to optimal; but when

the space is misspecified, we should expect the actions to be far from optimal for any �. Thus,

CHAPTER 9. QUANTIFYING HYPOTHESIS SPACE MISSPECIFICATION 182

rather than treating 𝛽 as a fixed term, we build on the work in [74, 77] and explicitly reason

over 𝛽 as an additional inference parameter along with �. Since 𝛽 directly impacts the

entropy of the human’s decision model, it can be used as an effective and computationally

efficient measure of the robot’s confidence in its parametric interpretation of the human’s

preference: we say that the robot is assessing its situational confidence for the inference task

at hand.

Thus, the robot maintains a joint Bayesian belief 𝑏(�, 𝛽). For each new measurement

of u𝐻 given 𝑥0, u𝑅, this belief is updated as:

𝑏′(�, 𝛽) =
𝑃(u𝐻 | 𝑥0, u𝑅;�, 𝛽)𝑏(�, 𝛽)∫

�̄,�̄�
𝑃(u𝐻 | 𝑥0, u𝑅; �̄, �̄�)𝑏(�̄, �̄�)𝑑�̄𝑑�̄�

, (9.5)

where 𝑏′(�, 𝛽) = 𝑃(�, 𝛽 | 𝑥0, u𝑅 , u𝐻).
This inference can be seen as analogous to performing Bayesian Inverse Reinforcement

Learning [173] with the Maximum Entropy Inverse Optimal Control [maxent] observation

model, where we maintain the full belief instead of just the maximum likelihood estimate,

and we explicitly reason over the additional scaling parameter 𝛽. By actively performing

inference over 𝛽, the robot can gain insight into the reliability of its human model in light

of new evidence.

Context-dependent usage of situational confidence

How this insight should be used is dependent on the context of the robot’s operation.

Here, we provide some examples of how situational confidence can be integrated into

various human-robot interaction scenarios and robot motion planners.

In collaborative settings where the human and robot are accomplishing a task together

(e.g. manipulating an object together), it may be desirable for the robot to stop and

ask for clarification from the human whenever sufficient probability mass indicates low

confidence:

∀� ∈ Θ, arg max

𝛽
𝑏′(𝛽 | �) < 𝜖 . (9.6)

That is, for a predefined threshold 𝜖, if all hypotheses have the most mass on 𝛽s lower

than 𝜖, the robot can raise a flag.

In assistive applications, where the robot is carrying out a task in close physical prox-

imity to the human, the robot may receive intermittent human input to correct it’s task

performance. In such scenarios, it may be appropriate for the robot to simply dismiss

human corrections that it cannot explain in terms of modeled preference parameters and

carry on with its pre-defined task. That is, when a human input results in a 𝑏′(�, 𝛽) that

satisfies (9.6), the input gets discarded.

Situational confidence could also be leveraged by robot motion planners that excel

at decision making under uncertainty. Here, the robot may use its joint posterior belief

CHAPTER 9. QUANTIFYING HYPOTHESIS SPACE MISSPECIFICATION 183

𝑏′(�, 𝛽) to make goal-driven decisions in the presence of the human. To this end, the cou-

pling between the inference problem and the robot’s planning problem can be viewed as

a partially observable Markov decision process (POMDP), where the hidden parts of the

state are the cost parameter � and the situational confidence 𝛽, the robot receives observa-

tions about them via human actions u𝐻 , it takes actions u𝑅, and it optimizes an unknown

parametrized cost 𝐶�. Our problem is, thus, akin to identifying misspecification in the

state space of the POMDP. However, inference and planning in such spaces requires solv-

ing the full POMDP, which is computationally intractable for large, real-world problems

[107].

Alternative, less computationally demanding motion planning approaches are also

amenable to our framework, where the robot plans to minimize the expected cost for the

human given its current belief, by marginalizing over 𝛽:

min

u𝑅
E
�∼𝑏

[
𝐶�(x, u𝑅 , u𝐻)

]
, (9.7)

for an expected human input u𝐻 that will typically be 0 if the robot is attempting to suc-

cessfully perform the task without the need for active human intervention. To understand

the implication (9.7) has as a function of the inference over 𝛽, we need to understand

the posterior belief marginalized over 𝛽 that we are taking the expectation over. At one

extreme, if for all �s the conditional distribution 𝑏′(𝛽 | �) puts all probability mass on

𝛽 = 0 (i.e. input poorly explained), since 𝑃(u𝐻 | 𝑥0, u𝑅;�, 𝛽 = 0) is the same for all �s,

the robot will obtain a posterior for � that is equal to the prior. The optimization above

becomes the same as optimizing using the robot’s prior, i.e. the robot ignores the human

input. At the other extreme, if there is one � that perfectly explains the input and all others

do not, the posterior will put all probability mass on that �, and the robot will switch to

optimizing it.

The objective expectation may also be appropriately weighted by the robot’s situational

confidence for each �:

min

u𝑅
E

�,𝛽∼𝑏

[
𝛽𝐶�(x, u𝑅 , u𝐻)

]
, (9.8)

which leads to the robot prioritizing those components of the task about which it is most

certain.

In Sections 9.3 and 9.4 we discuss some of these possibilities in the context of learning

from demonstrations and corrections.

9.2.2 Cost representation through basis functions
One way to approximate the infinite-dimensional space of possible cost functions using

a finite number of parameters is the use of a finite family of basis functions Φ𝑖[162]. This

family can be seen as a truncation of an infinite collection of basis functions spanning the

full function space. Parametric approximations 𝐶� of the cost function 𝐶∗ then have the

CHAPTER 9. QUANTIFYING HYPOTHESIS SPACE MISSPECIFICATION 184

form

𝐶�(x, u𝑅 , u𝐻) =
𝑑∑
𝑖=1

�𝑖Φ𝑖(x, u𝑅 , u𝐻) = �𝑇Φ(x, u𝑅 , u𝐻) . (9.9)

Consistent with classical utility theories [217], we further assume that the human’s pref-

erences can be approximated through a cumulative return over time, rewriting (9.9) as

𝐶�(x, u𝑅 , u𝐻) =
𝑑∑
𝑖=1

�𝑖
𝑇∑
𝑡=0

𝜙𝑖(𝑥𝑡 , 𝑢𝑡𝑅 , 𝑢
𝑡
𝐻) , (9.10)

where 𝜙𝑖 : R𝑛 ×𝒰 ×𝒰 → R are fixed, pre-specified, bounded real-valued basis functions,

� is the unknown parameter that the robot is trying to fit according to the human’s

preferences, and 𝑑 is the dimensionality of its domain Θ.

In the domains presented in Sections 9.3 and 9.4, the functions 𝜙𝑖 output feature

values that encode key aspects of a task—for example distance between the robot body

and obstacles in the environment, speed of the motion, or characteristics of a motion

planning task. In general, the 𝜙𝑖 can either be hand-engineered by a system designer or

more generally learned through data-driven approaches [70].

It is important to stress that the misspecification issue we are trying to mitigate is quite

general and does not exclusively affect objectives based on hand-crafted features: any

model could ultimately fail to capture the underlying motivation of some human actions.

While it may certainly be possible, and desirable, to continually increase the complexity

of the robot’s model to capture a richer space of objectives, there will still be a need to

account for the presence of yet-unlearned components of the true objective. In this sense,

our work is complementary to open-world objective modeling efforts.

Note that, using a cost model in the form of (9.10), the observation model (9.4) becomes

overparametrized, since for any (�, 𝛽) pair with � ∈ Θ and 𝛽 ∈ [0,∞), one can always find

a different �′ = 𝑐� with an associated 𝛽′ = 𝛽/𝑐 leading to the same probability distribution

over human choices. This is equivalent to using an unrestricted Θ and 𝛽 = ∥�∥. Due to

this overparametrization, the absolute value of 𝛽 does not have a universal meaning, and

restricting � to have a fixed norm is necessary in order to make comparisons between the

𝛽 values associated to different � hypotheses. We thus restrict our Θ to the set of vectors

with unit norm.

Consider the case where the human provides input for a cost function in the robot’s

objective space. This results in the robot inferring high probability on the corresponding

� vector on the unit sphere with a high magnitude 𝛽. However, if the cost that the human

cares about and provides input for is outside the robot’s hypothesis space, the robot will

infer low probability on all � vectors in the unit sphere, with low magnitude 𝛽s.

We now proceed by describing the explicit algorithmic approaches to inferring situa-

tional confidence in the learning from demonstrations and corrections domains.

CHAPTER 9. QUANTIFYING HYPOTHESIS SPACE MISSPECIFICATION 185

Figure 9.2: (Left) Visual example of a full human-provided demonstration x. (Right) Visual example of a

human physical correction 𝑢𝑡
𝐻

onto the robot’s current trajectory x.

9.3 Algorithmic Approach: Demonstrations

9.3.1 Formulation
In learning from demonstrations, the human directly controls the state trajectory x

through her input u𝐻 , which enables her to offer the robot a demonstration of how to

perform the task. Fig. 9.2 (left) is an example of such a demonstration.

During the demonstration, the robot is often put in gravity compensation mode or is

teleoperated, to grant the person full control over the desired trajectory. As such, in this

setting, the cost function 𝐶� does not depend on the robot controls u𝑅. Additionally, since

the person is primarily concerned with the robot’s states and not with the (robot or human)

actions required to reach those states, we model the human’s internal preferences as only

dependant on the state trajectory x. Accordingly, the cost function in (9.10) becomes:

𝐶�(x) = �𝑇Φ(x). (9.11)

The cost does not have a direct dependence on the actions, but it has an indirect one, as x
depends on u𝑅 and u𝐻 .

In our problem formulation, we would like the robot to explicitly reason about how

well it can explain the demonstration given its human model. Thus, we can adapt the

model in (9.4) to use this new cost function2,

𝑃(x | �, 𝛽) = 𝑒−𝛽�
𝑇Φ(x)∫

x̄ 𝑒
−𝛽�𝑇Φ(x̄)𝑑x̄

, (9.12)

then perform the Bayesian update in (9.5)

𝑏′(�, 𝛽) =
𝑃(x | �, 𝛽)𝑏(�, 𝛽)∫

�̄,�̄�
𝑃(x | �̄, �̄�)𝑏(�̄, �̄�)𝑑�̄𝑑�̄�

. (9.13)

Given 𝑏′(�, 𝛽), we now can use any of (9.6), (9.7) or (9.8). Next, we discuss making inference

with (9.12) and (9.13) tractable.

2
For deterministic (9.1), 𝑃(u𝐻 | 𝑥0 , u𝑅;�, 𝛽) is equivalent to 𝑃(x | �, 𝛽).

CHAPTER 9. QUANTIFYING HYPOTHESIS SPACE MISSPECIFICATION 186

9.3.2 Approximation
Although the proposed formalism enables us to capture if the robot’s hypothesis space

cannot explain the human’s input, it is non-trivial to implement tractably for continuous 𝛽
and �, and large state and action spaces. Concretely, notice that equations and (9.12) and

(9.13) constitute a doubly-intractable system with denominators that cannot be computed

exactly. For this reason, we employ several approximations in order to demonstrate

the benefits of estimating situational confidence. Note that we do not consider these a

contribution of our work: we choose the simplest approximations that facilitate tractability.

There are many methods for approximate inference of � studied in the literature that could

be used for the joint (�, 𝛽) spaces as well, from Metropolis Hastings [90, 184], to acquiring

an MLE only via importance sampling of the partition function [70] or via a Laplace

approximation [135].

To approximate the intractable integral in (9.12), we sampled a set𝒳 of 1500 trajectories.

We sampled costs according to (9.11) given by random unit norm �s, then optimized them

with an off-the-shelf trajectory optimizer. We used TrajOpt [192], which is based on

sequential quadratic programming and uses convex-convex collision checking. This way,

we obtain dynamically feasible trajectories that optimize for different features in varying

proportions. While this sampling strategy cannot be justified theoretically, it works well

in practice: the resulting optimized trajectories are a heuristic for sampling diverse and

interesting trajectories in the environment. Future work will address this shortcoming by

either providing theoretical guarantees or using importance sampling instead.

For the second approximation to (9.13), we discretized the space of � ∈ Θ and 𝛽 ∈ ℬ
into sets Θ𝐷 and ℬ𝐷 , which leaves us with a finite, easy to compute posterior. For more

practical details on specific discretization schemes, see Appendix 9.8.1.

Using the above discretization3, we can now perform tractable inference from demon-

strations 𝒟 to obtain a discrete posterior 𝑏(�, 𝛽). Algorithm 2 summarizes the full pro-

cedure: given Θ𝐷 ,ℬ𝐷 ,𝒳, and 𝒟, our method iteratively updates the belief using (9.12)

and (9.13), resulting in the posterior 𝑏(�, 𝛽). Lacking any a-priori information, we chose

a uniform prior but our method will work with any prior. We next present examples for

what this posterior looks like in different scenarios.

9.3.3 Examples
To provide intuition for how situational confidence can indicate when a robot’s hypoth-

esis space is misspecified, we illustrate some examples with a robot manipulator learning

3
In situations where the designer might want high fidelity inference over a large space of � vectors,

reasoning over a heavily discretized space would be more computationally expensive. However, longer

offline computation is possible in our learning-from-demonstrations scenario as the inference happens

offline, after providing the robot with human demonstrations. Alternatively, we could use Monte Carlo

sampling approaches, similar to [90, 173].

CHAPTER 9. QUANTIFYING HYPOTHESIS SPACE MISSPECIFICATION 187

Algorithm 2 Learning from Demonstrations (Offline)

Require: Discretized sets Θ𝐷 ,ℬ𝐷 ,𝒳, set of demonstrations𝒟.

Ensure: Posterior belief 𝑏(�, 𝛽) inferred from𝒟.

𝑏(�, 𝛽) ← 𝑈𝑛𝑖 𝑓 𝑜𝑟𝑚(�, 𝛽).
for x in𝒟 do

for all � ∈ Θ𝐷 , 𝛽 ∈ ℬ𝐷 do
𝑃(x | �, 𝛽) = 𝑒−𝛽�

𝑇Φ(x)∑
x̄∈𝒳 𝑒

−𝛽�𝑇Φ(x̄) as per (9.12).

𝑏(�, 𝛽) ← 𝑃(x|�,𝛽)𝑏(�,𝛽)∑
�̄∈Θ,�̄�∈ℬ 𝑃(x|�̄,�̄�)𝑏(�̄,�̄�)

as per (9.13).

end for
end for

(a) (Left) Simulated perfect

demonstration with the objective

to keep the cup close to the table.

(Right) Posterior belief resulted

from this demonstration. Notice

that a perfect demonstration leads

to a high probability on the correct

� and high values for 𝛽.

(b) (Left) Noisy human demon-

stration with the objective to keep

the cup close to the table. (Right)

Posterior belief resulted from this

demonstration. Notice that a noisy

but well-explained demonstration

leads to a high probability on the

correct � and moderately high val-

ues for 𝛽. However, the noise in

the demonstration significantly re-

duces the probability at the distri-

butional peak.

(c) (Left) Simulated perfect

demonstration with the objective

to keep the cup away from the

human’s body. (Right) Posterior

belief resulted from this demon-

stration. Notice that, since this

demonstration is poorly explained

(the robot is not reasoning about

distance from the human), the

posterior belief is spread out

approximately uniformly over all

�s and the lowest 𝛽 values. This

indicates that the robot cannot

tell what the demonstration was

intended for.

Figure 9.3: Three examples of demonstrations and the inferred posterior belief after each one of them.

The robot infers the right � = [0, 1, 0] from the two well-explained demonstrations, but, unlike the perfect

simulated demonstration in 9.3(a), the noisy one in 9.3(b) cannot reach the highest 𝛽 and has as overall more

spread-out probability distribution with a lower peak value. Lastly, the perfect simulated demonstration

that is poorly explained in 9.3(c) results in a posterior that is spread-out over all �s and the lowest 𝛽s ,

consistent with the robot not being able to tell what the human’s objective was.

from a human demonstrator. These examples help prepare the setup we will present in

our actual experiments in Section 9.5.

The robot manipulator is performing a household task of moving cups from a shelf

CHAPTER 9. QUANTIFYING HYPOTHESIS SPACE MISSPECIFICATION 188

(a) In the true graph-

ical model, 𝑢𝐻 is an

observation of � and

the situational confi-

dence 𝛽.

(b) We use the proxy variable Φ

to first estimate 𝛽 efficiently.

(c) We interpret the estimate �̂� as an in-

direct observation of the unobserved 𝐸,

which we then use for the � estimate.

Figure 9.4: Graphical model formulation (a) and modifications to it ((b) and (c)) for real-time tractability.

onto the kitchen table. The robot needs to learn from the person’s demonstrations how to

best perform this task. For this purpose, the person physically guides the robot through

one or a few demonstrations of moving the cup down to the table, from which the robot

infers the hidden objective function.

In these examples, the robot’s hypothesis space includes three features: efficiency (E)

as sum of squared velocities over the trajectory, keeping the cup close to the table (T), and

keeping the cup away from the laptop (L) depicted in black.

Formally, we can represent these three feature mappings as:

Φ(x) =

∑𝑇
𝑖=1
((𝑥 𝑖 − 𝑥 𝑖−1)/Δ𝑡)2∑𝑇

𝑖=0
| |𝑥 𝑖 − 𝑥

table
| |2∑𝑇

𝑖=0
max{0, 𝐿 − ||𝑥 𝑖 − 𝑥

laptop
| |2}

 (9.14)

where 𝐿 is the radius of a penalty sphere around the laptop, Δ𝑡 is the discrete timestep

between the states in the trajectory, and the corresponding feature weight vector is � ∈ R3
.

Fig. 9.3 demonstrates how the feature weight � and the situational confidence 𝛽 are

affected for well-explained, noisy, and poorly-explained simulated human demonstration.

The posterior belief is shown for the combination of discrete parameters � and 𝛽. Higher

𝛽 values indicate higher situational confidence. The three circles under each column

represent the � vector for that column, with the components being the efficiency, distance

from the table, and distance from the laptop features. A larger feature weight is indicated

by a darker colored circle, while a white color indicates zero weight.

First, in 9.3(a), we consider the case where the demonstration is a perfectly optimal

trajectory produced by TrajOpt [192]. This serves as a sanity check for when the human

and the robot have the same hypothesis space and the demonstration is perfect. The

CHAPTER 9. QUANTIFYING HYPOTHESIS SPACE MISSPECIFICATION 189

optimal demonstration was produced by finding a trajectory that moves the cup from the

start configuration to the end while minimizing the distance between the cup and the

table. Notice that, with a perfect demonstration, the posterior distribution places the most

probability mass on the � that indicates high penalties for staying away from the table

but no penalties for lack of efficiency or closeness to laptop. Moreover, the posterior also

reveals that the most likely � also corresponds with the highest available confidence 𝛽.

Next, in 9.3(b) we recorded a real human demonstration of the same cup-to-table

behavior. The nature of demonstrations both on hardware and from real people introduce

noise into the demonstration, making it potentially suboptimal with respect to the robot’s

model. However, in this case the human and the robot still share the same hypothesis

space (i.e. the robot and the human both know about the the efficiency, table, and laptop

features). Here, we study how the noise in the demonstration affects the robot’s inference.

Notice that even with an imperfect demonstration, the robot is able to identify the correct

� parameter, but now with a lower confidence 𝛽.

Lastly, we consider the example where the demonstration is optimal but the robot does

not have a rich enough hypothesis space to explain it. The robot reasons about the same

three features, but now the demonstration was produced by optimizing for an additional

feature that is outside its hypothesis space: keeping the cup away from the human’s body.

We observe that the probability distribution in 9.3(c) is spread over all the � values in

the space, with the highest values on low 𝛽s. This example shows how, in the case of

poorly-explained input, the robot’s inference is unsure which objective the human had in

mind, and assigns low situational confidence to the given input.

These illustrative examples give us valuable insight into how the (�, 𝛽)-belief changes

depending on how well-explained the input is. For perfectly explained demonstrations,

the inference identifies the correct � with high posterior probability. As the input becomes

more poorly-explained, the robot loses confidence in all �s, assigning approximately

uniformly spread-out probability on the lowest situational confidence values 𝛽.

9.4 Algorithmic Approach: Corrections

9.4.1 Formulation
We consider the setting in which human input is provided in the form of physical

interventions during the robot’s task execution. Fig. 9.2 (right) is an example of such

a correction. The human may provide a correction to improve some aspect of the task

execution that is not represented in the robot’s objective space. When the robot receives

input, it should be able to reason about its situational confidence in light of the correction

and replan its trajectory accordingly for the rest of the task execution or until a new

correction happens. Thus, the robot must have access to an inference algorithm that can

run in real time. In this section, we will present an online version of our situational

confidence framework.

CHAPTER 9. QUANTIFYING HYPOTHESIS SPACE MISSPECIFICATION 190

In the physical corrections setting, the robot starts with an initial guess of the pa-

rameter � and uses a trajectory optimization scheme to compute a motion plan seeking

to minimize the associated cost 𝐶�. The robot performs the task at hand by applying

controls u𝑅 via an impedance controller in order to track the computed trajectory x.

At any timestep 𝑡 during the trajectory execution, the human may physically interact

with the robot, inducing a joint torque𝑢𝑡
𝐻

. When this happens, the robot can use the human

input to update its estimated � parameter, and thereby the corresponding objective 𝐶�.

Given the new adapted objective, the robot replans an optimized trajectory x and tracks it

until the next human input is sensed or until the task is completed.

Following [19], the robot’s representation of the task assumes that the human does

not explicitly care about the robot’s control effort, but only about features of the state

trajectory. In addition, the human is assumed to have a preference for minimizing her

own control effort. This captures the human’s incentive to have the robot perform the

task autonomously, providing only minimal input to guide the robot towards the correct

behavior when necessary. Encompassing these assumptions, the cost (9.10) takes the form:

𝐶�(x, 𝑢𝑡𝐻) = �𝑇Φ(x) + �∥𝑢𝑡𝐻 ∥
2. (9.15)

To approximately compute the trajectory resulting from the human’s input, we follow

the approach in [19] and introduce the notion of a deformed trajectory x𝐷 . This trajectory

constitutes the robot’s estimate of the human’s desired trajectory given her applied torque

𝑢𝑡
𝐻

. Given the robot’s default trajectory x𝑅 := x(·; 𝑥0, u𝑅 , 0) and having observed the

instantaneous human intervention 𝑢𝑡
𝐻

, we compute x𝐷 by deforming the robot’s default

trajectory in the direction of 𝑢𝑡
𝐻

:

x𝐷 = x𝑅 + �𝐴−1ũ𝐻 , (9.16)

where� > 0 scales the magnitude of the deformation,𝐴 ∈ R𝑛(𝑇+1)×𝑛(𝑇+1)
defines a norm on

the Hilbert space of trajectories4 and dictates the deformation shape [66], and ũ𝐻 ∈ R𝑛(𝑇+1)

is 𝑢𝑡
𝐻

at indices 𝑛𝑡 through 𝑛(𝑡 + 1) and 0 otherwise. The human is therefore modeled

by (9.15) as trading off between inducing a good trajectory x𝐷 with respect to �, and

minimizing her effort.

Equipped with this cost function, we need the robot to reason about the reliability

of its objective space given new inputs in the form of corrections. In contrast with our

analysis in Section 9.3, here the person does not give full demonstrations x, but instead

offers corrections 𝑢𝑡
𝐻

based on the robot’s default trajectory x𝑅. Applying (9.4) to this

setting, we have:

𝑃(𝑢𝑡𝐻 | 𝑥
0, u𝑅;�, 𝛽) = 𝑒−𝛽(�

⊤Φ(x𝐷)+�∥𝑢𝑡𝐻 ∥
2)∫

𝑒−𝛽(�⊤Φ(x̄𝐷)+�∥�̄�∥2)𝑑�̄�
, (9.17)

4
We used a norm 𝐴 based on acceleration, consistent with [19], but other norm choices are possible as

well.

CHAPTER 9. QUANTIFYING HYPOTHESIS SPACE MISSPECIFICATION 191

where x𝐷 and x̄𝐷 are given by (9.16) applied to their respective controls 𝑢𝑡
𝐻

and �̄�.

Ideally, with this model of human actions, illustrated in Fig. 9.4(a), we would per-

form inference over both the situational confidence 𝛽 and the modeled parameters � by

maintaining a joint Bayesian belief 𝑏′(�, 𝛽). Analogously to the demonstrations case, our

probability distribution over � would automatically adjust for well-explained corrections,

whereas for poorly-explained ones the robot’s posterior would not deviate significantly

form its prior on �. Unfortunately, this Bayesian update is not generally feasible in real

time, given the continuous and possibly high-dimensional nature of the parameter space

Θ. Even in simple scenarios with a small number of continuous features, discretizing

Θ as we did in the demonstrations case would generally yield an overly slow inference,

making the method impractical for use in the real-time collaborative scenarios that we

are interested in here. Thus, to evaluate the benefits of estimating 𝛽 we need to derive an

online method that goes beyond simple discretization.

9.4.2 Approximation
To alleviate the computational challenge of performing joint inference over 𝛽 and �,

we introduce a structural assumption that will enable us to approximately decouple the

two inference problems.

Estimating 𝛽

To estimate 𝛽 without dependence on �, we will assume that in order to decide what

correction to provide, the human will first choose the desired features Φ of the resulting

trajectory x𝐷 and then select an input 𝑢𝑡
𝐻

that will obtain these features (Fig. 9.4(b)).

Based on the observed human input 𝑢𝑡
𝐻

and the trajectory features of the deformed

trajectory Φ(x𝐷), the robot can obtain an estimate of 𝛽 by considering how efficient the

human’s input was for the features achieved. Letting𝒰Φ be the set of inputs that achieve

the same observed features Φ𝐷 := Φ(x𝐷), the Boltzmann decision model gives

𝑃(𝑢𝑡𝐻 | 𝑥
0, u𝑅;Φ𝐷 , 𝛽) =

𝑒−𝛽(�
⊤Φ𝐷+�∥𝑢𝑡𝐻 ∥

2)∫
𝒰Φ

𝑒−𝛽(�⊤Φ(x̄𝐷)+�∥�̄�∥2)𝑑�̄�

=
𝑒−𝛽�∥𝑢

𝑡
𝐻
∥2∫

𝒰Φ
𝑒−𝛽�∥�̄�∥2𝑑�̄�

, (9.18)

since the term �⊤Φ(x̄𝐷) is constant for all �̄� ∈ 𝒰Φ and equal to the term �⊤Φ𝐷 in the

numerator.

Using (9.18), the robot can obtain an estimate of 𝛽 by considering how efficient the

human’s correction was for the features achieved—if the input seems highly inefficient,

this is indicative that the features modeled by the robot may not accurately capture the

human’s preference.

CHAPTER 9. QUANTIFYING HYPOTHESIS SPACE MISSPECIFICATION 192

It is useful to approximate the integral over the constrained set𝒰Φ ⊂ 𝒰 by an integral

over the entire set of possible inputs𝒰 , introducing a penalty term in the exponent that

results in a soft indicator function for �̄� ∈ 𝒰Φ:

𝑃(𝑢𝑡𝐻 | 𝑥
0, u𝑅;Φ𝐷 , 𝛽) ≈

𝑒−𝛽�∥𝑢
𝑡
𝐻
∥2∫

𝒰 𝑒
−𝛽(�∥�̄�∥2+�∥Φ(x̄𝐷)−Φ𝐷 ∥2)𝑑�̄�

. (9.19)

Note that for an arbitrarily large � there is an arbitrarily small probability assigned to

𝒰 \ 𝒰Φ in the integral. It is now possible to apply the Laplace approximation to the

unconstrained integral (see Sec. 9.9 for details), yielding:

𝑃(𝑢𝑡𝐻 | 𝑥
0, u𝑅;Φ𝐷 , 𝛽) ≈

𝑒−𝛽�∥𝑢
𝑡
𝐻
∥2

𝑒−𝛽(�∥𝑢
∗
𝐻
∥2+�∥Φ(x∗

𝐷
)−Φ𝐷 ∥2)

√
𝛽𝑘 |𝐻𝑢∗

𝐻
|

2𝜋𝑘
, (9.20)

where 𝑘 is the action space dimensionality and 𝐻𝑢∗
𝐻

is the Hessian of the exponent in

the denominator of (9.19) around 𝑢∗
𝐻

. We obtain the optimal action 𝑢∗
𝐻

by solving the

constrained optimization problem (see Sec. 9.8.2):

minimize

�̃�𝐻
∥�̃�𝐻 ∥2

subject to Φ(x + �𝐴−1ũ𝐻) −Φ𝐷 = 0 .
(9.21)

In other words, the resulting 𝑢∗
𝐻

is the minimal norm �̃�𝐻 the human could have taken,

constrained to lie in 𝒰Φ. As such, the second norm in the denominator’s exponent is 0,

and the final conditional probability becomes:

𝑃(𝑢𝑡𝐻 | 𝑥
0, u𝑅;Φ𝐷 , 𝛽) = 𝑒−𝛽�(∥𝑢

𝑡
𝐻
∥2−∥𝑢∗

𝐻
∥2)

√
𝛽𝑘 |𝐻𝑢∗

𝐻
|

2𝜋𝑘
. (9.22)

We derive below the maximum likelihood estimator (MLE), noting that a maximum a

posteriori (MAP) estimator is often appropriate given a certain prior on 𝛽.

�̂� = arg max

𝛽
{log(𝑃(𝑢𝑡𝐻 | 𝑥

0, u𝑅;Φ𝐷 , 𝛽)}

= arg max

𝛽
{−𝛽�(∥𝑢𝑡𝐻 ∥

2 − ∥𝑢∗𝐻 ∥
2) + log(

√
𝛽𝑘 |𝐻𝑢∗

𝐻
|

2𝜋𝑘
)}.

(9.23)

Applying the first-order condition and setting the derivative to zero yields the maximizer:

�̂� =
𝑘

2�(∥𝑢𝑡
𝐻
∥2 − ∥𝑢∗

𝐻
∥2)

. (9.24)

CHAPTER 9. QUANTIFYING HYPOTHESIS SPACE MISSPECIFICATION 193

0 1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
de

ns
ity

P(table|E) and 2 fit

0 1 2 3 4 5 6 7

P(cup|E) and 2 fit

0 1 2 3 4 5 6 7

P(human|E) and 2 fit
P(|E = 0)
P(|E = 1)

Figure 9.5: Empirical estimates for 𝑃(�̂� | 𝐸) and their corresponding chi-squared (𝜒2
) fits.

The estimator5 above yields a high value when the difference between 𝑢𝑡
𝐻

and 𝑢∗
𝐻

is small, i.e. the person’s correction achieves the induced features Φ(x𝐷) efficiently. For

instance, if x𝐷 brings the robot closer to the table, and 𝑢𝑡
𝐻

pushes the robot straight towards

the table, 𝑢𝑡
𝐻

is an efficient way to induce those new feature values. However, when there

is a much more efficient alternative (e.g. when the person pushes mostly sideways rather

than straight towards the table), �̂� will be small. Efficient ways to induce the feature

values will suggest well-explained inputs, inefficient ones will suggest poorly-explained

corrections.

Estimating �

To tractably estimate � building on the 𝛽 estimate, we introduce an auxiliary binary

variable 𝐸 ∈ {0, 1} indicating whether the human’s intervention can be well explained by

the robot’s modeled cost features. We will perform offline training with ground-truth

access to this variable in order to learn its relation to the robot’s estimate �̂�.

When 𝐸 = 1, the human’s desired modification of the robot’s behavior can be well

explained by some vector � ∈ Θ, which will lead the intervention to appear less noisy to

the robot (i.e. 𝛽 is large). As a result, the correction 𝑢𝑡
𝐻

is likely to be efficient for the

cost encoded by this �. Conversely, when 𝐸 = 0, the intervention appears noisy (i.e. 𝛽 is

small), and the human’s correction cannot be well explained by any of the cost features

modeled by the robot.

The graphical model depicted in Fig. 9.4(c) relates the induced feature values Φ𝐷 to �
as a function of the 𝐸. When 𝐸 = 1, the induced features will tend to have low cost with

respect to �; when 𝐸 = 0, the induced features do not depend on �, and we model them

as Gaussian noise centered around the feature values of the robot’s currently planned

5
Note that �̂� is non-negative, since 𝑢∗

𝐻
is the minimal-norm �̃�𝐻 that satisfies the constraint, so the

difference in the denominator of (9.24) is positive.

CHAPTER 9. QUANTIFYING HYPOTHESIS SPACE MISSPECIFICATION 194

trajectory x𝑅.

𝑃(Φ𝐷 | �, 𝐸) =

𝑒−�

⊤Φ𝐷∫
𝑒−�⊤Φ(x̃𝐷)𝑑x̃𝐷

, 𝐸 = 1(�
𝜋

) 𝑘
2 𝑒−� | |Φ𝐷−Φ(x𝑅)| |2 , 𝐸 = 0

(9.25)

with the constant in the 𝐸 = 0 case corresponding to the normalization term of the normal

distribution.

In addition, this graphical model relates the �̂� resulting from the model in Fig. 9.4(b)

to 𝐸 by a 𝑃(�̂� | 𝐸). We fit this distribution from controlled user interaction samples where

we have ground-truth knowledge of 𝐸6. For each sample interaction, we compute �̂� (for

example, using (9.24) if using MLE) and label it with the corresponding binary 𝐸 value.

We fit a chi-squared distribution to these samples to obtain the probability distributions

for 𝑃(�̂� | 𝐸 = 0) and 𝑃(�̂� | 𝐸 = 1). The resulting distributions are shown in Fig. 9.57.

Using the model in Fig. 9.4(c) with the learned distribution 𝑃(�̂� | 𝐸), we can infer a �
estimate in real time whenever a physical correction from the human is measured. We do

this tractably by interpreting the estimate �̂� obtained from (9.24) as an indirect observation

of the unknown variable 𝐸. We combine the empirically characterized likelihood model

𝑃(�̂� | 𝐸) with an initial uniform prior 𝑃(𝐸) to maintain a Bayesian posterior on 𝐸 based

on the evidence �̂� constructed from human observations at deployment time, 𝑃(𝐸 | �̂�) ∝
𝑃(�̂� | 𝐸)𝑃(𝐸).

Further, since we wish to obtain a posterior estimate of the human’s objective �, we

use the model from Fig. 9.4(c) to obtain the posterior probability measure

𝑃(� | Φ𝐷 , �̂�) ∝
∑

𝐸∈{0,1}
𝑃
(
Φ𝐷 | �, 𝐸

)
𝑃(𝐸 | �̂�)𝑃(�) . (9.26)

Following [19], we note that we can approximate the partition function in the human’s

policy (9.25) by employing the Laplace approximation. Taking a second-order Taylor

series expansion of the exponent’s objective about x𝑅, the robot’s current best guess at the

optimal trajectory, we obtain a Gaussian integral that can be evaluated in closed form

𝑃(Φ𝐷 | �, 𝐸 = 1) ≈ 𝑒−�⊤
(
Φ𝐷−Φ(x𝑅)

)
. (9.27)

We also consider a Gaussian prior distribution of � around the robot’s current estimate

�̂:

𝑃(�) = 1

(2𝜋𝛼) 𝑘2
𝑒−

1

2𝛼 | |�−�̂ | |2 , (9.28)

6
Since we tell users what to optimize for, we know whether the human’s input is well-explained with

respect to the robot’s hypothesis space or not.

7
Because users tend to accidentally correct more than one feature, we perform 𝛽-inference separately for

each feature. This requires more overall computation (although still linear in the number of features, and

can be parallelized) and a separate 𝑃(�̂� | 𝐸) estimate for each feature.

CHAPTER 9. QUANTIFYING HYPOTHESIS SPACE MISSPECIFICATION 195

Figure 9.6: Examples of physical corrections (interaction points shown in blue) and the resulting behavior

for the fixed 𝛽 method (top) and estimated 𝛽 method (bottom). When the corrections are well explained,

both methods learn the correct weight �̂ = 1.0. In the case of poorly-explained corrections, our method

infers low �̂� and manages to reduce unintended learning, whereas the fixed 𝛽 method produces incorrect

oscillatory behavior.

where 𝛼 ≥ 0 determines the variance of the Gaussian.

To obtain an update rule for the � parameter, we can simply plug (9.25), (9.27), and

(9.28) into (9.26). For legibility, let’s denote Γ(Φ𝐷 , 𝐸 = 𝑖) = 𝑃(𝐸 = 𝑖 | �̂�)𝑃
(
Φ𝐷 | �, 𝐸 = 𝑖

)
,

for 𝑖 ∈ {0, 1}. Then, the maximum-a-posteriori estimate of the human’s objective � is the

solution maximizer of

𝑃(�)
[
Γ(Φ𝐷 , 𝐸 = 1) + Γ(Φ𝐷 , 𝐸 = 0)

]
=

1

(2𝜋𝛼) 𝑘2
𝑒−

1

2𝛼 | |�−�̂ | |2
[
𝑃(𝐸 = 1 | �̂�)𝑒−�⊤

(
Φ𝐷−Φ(x𝑅)

)
+ 𝑃(𝐸 = 0 | �̂�)

(�
𝜋

) 𝑘
2

𝑒−� | |Φ𝐷−Φ(x𝑅)| |2
]
.

(9.29)

Differentiating (9.29) with respect to � and equating to 0 gives the maximum-a-

posteriori update rule

�̂′ = �̂ − 𝛼
Γ(Φ𝐷 , 𝐸 = 1)

Γ(Φ𝐷 , 𝐸 = 1) + Γ(Φ𝐷 , 𝐸 = 0)
(
Φ𝐷 −Φ(x𝑅)

)
. (9.30)

CHAPTER 9. QUANTIFYING HYPOTHESIS SPACE MISSPECIFICATION 196

We note that due to the coupling in �̂′, the solution to (9.30) is non-analytic and can instead

be obtained via numerical approaches like Newton-Raphson or quasi-Newton methods.

In previous objective-learning approaches including [19] and [237], it is implicitly

assumed that all human actions are fully explainable by the robot’s representation of the

objective function space (𝐸 = 1), leading to the simplified update

�̂′ = �̂ − 𝛼
(
Φ𝐷 −Φ(x𝑅)

)
, (9.31)

which can be easily seen to be a special case of (9.30) when 𝑃(𝐸 = 0 | �̂�) ≡ 0. Our proposed

update rule therefore generalizes commonly-used objective-learning formulations to cases

where the human’s underlying objective function is not fully captured by the robot’s

model. We expect that this extended formulation will enable learning that is more robust

to misspecified or incomplete human objective parameterizations.8 Once we obtain the

�̂′ update, we replan the robot trajectory in its 7-DOF configuration space with an off-the-

shelf trajectory optimizer, TrajOpt [192].

The update rule changes the weights in the objective in the direction of the feature

difference as well, but how much it does so depends on the probability assigned to the

correction being well-explained. Looking back at Section 9.2, this update is approximating

(9.7). At one extreme, if we know with full certainty that the correction is well explained,

then we do the full update as in traditional objective learning. But crucially, at the other

extreme, if we know that the correction is poorly explained, we do not update at all and

keep our prior belief.

Algorithm 3 Learning from Corrections (Online)

Require: 𝑃(�̂� | 𝐸 = 𝑖),∀𝑖 ∈ {0, 1} from training data.

Initialize x𝑅 ← 𝑇𝑟𝑎 𝑗𝑂𝑝𝑡(�̂) for initial �̂.

while goal not reached do
if 𝑢𝐻 ≠ 0 then

x𝐷 = x𝑅 + �𝐴−1ũ𝐻 .

𝑢∗
𝐻
← 𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝐻𝑢𝑚𝑎𝑛𝐴𝑐𝑡𝑖𝑜𝑛(Φ𝐷), as per (9.21) .

�̂� = 𝑘
2�(∥𝑢𝐻 ∥2−∥𝑢∗𝐻 ∥2)

.

�̂← �̂ − 𝛼 Γ(Φ𝐷 ,𝐸=1)
Γ(Φ𝐷 ,𝐸=1)+Γ(Φ𝐷 ,𝐸=0)

(
Φ𝐷 −Φ(x𝑅)

)
.

x𝑅 ← 𝑇𝑟𝑎 𝑗𝑂𝑝𝑡(�̂) .
end if

end while

8
Note that to enforce the constraint on | |� | | = 1, we can indeed project the resulting �̂′ onto the unit ball.

In practice, because our learning from corrections algorithm separates the 𝛽-inference from the �-inference,

this projection is no longer required, but we found it helpful to still constrain the space of Θ to encourage

smoothness in the change of the cost function.

CHAPTER 9. QUANTIFYING HYPOTHESIS SPACE MISSPECIFICATION 197

Overall, the full algorithm is given in Algorithm 3. The robot begins tracking a

trajectory x𝑅 given by an initial �̂. Once a human torque 𝑢𝐻 is sensed, the robot deforms

its trajectory to compute the induced features Φ𝐷 , computes the optimal human action

𝑢∗
𝐻

using (9.21), and uses it to estimate �̂� for that input. It then updates �̂ using the

learned distributions 𝑃(�̂� | 𝐸 = 𝑖),∀𝑖 ∈ {0, 1}, and updates its tracked trajectory x𝑅. For

more practical details on how replanning works, and how to set various hyperparameters,

consult Sec. 9.8.2.

9.4.3 Examples
As in Section 9.3, we now illustrate some examples to help lay out some of the setup

we will present in our actual experiments in Sections 9.5 and 9.6. We provide intuition for

how the estimators of 𝛽 and � work when we have a perfectly specified objective space

and a misspecified objective space. In all of the examples, the robot reasons about the

previously described distance from the table feature. What changes is the feature for

which the human decides to provide corrections.

We look at two situations: the human may correct the relevant feature and push the

robot closer to the table, or she might provide an poorly-explained input to keep the coffee

mug upright. Fig. 9.6 illustrates the two scenarios and contrasts our estimated-𝛽 approach

to the state of the art fixed-𝛽 approach that uses (9.31).

On the top we present the fixed-𝛽 method and its performance with both the well-

explained and the poorly-explained input. When the input is well explained, the left

image shows that the robot learns from the interactions and converges close to the true

� = 1. However, when the input is poorly explained on the right, the robot incorrectly

learns fictitious � values and produces oscillatory behavior.

In the bottom row of Fig. 9.6 we present our described estimated-𝛽 method. In the

case of well-explained inputs, the value for �̂� increases, allowing � to grow up to the real

value � = 1. The method has the same behavior as the state of the art. However, more

importantly, in the case of poorly-explained input, our method immediately estimates low

�̂� values, which allows it to significantly reduce unintended learning as compared to the

state of the art.

This figure illustrates how situational confidence estimation can aid the robot when

the human input is poorly explained. We stress that although our method does not allow

the robot to magically learn the correct behavior that the user desires, it greatly reduces

unintended learning and undesired behaviors.

9.5 Case Studies
Equipped with our algorithmic approaches to situational confidence estimation, we

now consider two case studies in learning from demonstrations and corrections using real

human input on a 7-DoF robot manipulator.

CHAPTER 9. QUANTIFYING HYPOTHESIS SPACE MISSPECIFICATION 198

9.5.1 Demonstrations
We collected human demonstrations of household motion planning tasks and per-

formed our situational confidence inference offline. We recruited 12 people to physically

interact with a JACO 7-DoF robotic arm and analyzed 4 common cases that can arise in

the context of personal robotics learning.

For all the experiments in this section, we asked the participants to provide demon-

strations with respect to a feature of interest, which the robot might (well-explained) or

might not (poorly-explained) have in its hypothesis space. Some of the features that the

humans had to prioritize include: distance of the end effector from the table, distance

from the person, or distance from the end-effector to a laptop placed on the table.

Before giving any demonstrations, each person was allowed a period of training with

the robot in gravity compensation mode to get accustomed to interacting with the robot.

When collecting human demonstrations, participants were asked to move the robot arm

holding a cup of coffee from the upper shelf of a cupboard to right above the table, across

a laptop.

After collecting all demonstrations, we designed the robot’s hypothesis space for in-

ference purposes. In all four scenarios that we will illustrate, the robot reasons over the

same three features as in (9.14): E, T, and L. Although the robot always knows about these

features, the demonstrations may have been given relative to different (and potentially

unmodeled) features.

Throughout our scenarios, we tested two hypotheses:

H1. If the human input is well-explained, our inference procedure places high proba-

bility on the correct � hypothesis, with a high situational confidence 𝛽.

H2. If the human input is poorly-explained, our inference procedure does not place high

probability on any � hypothesis and is uniform over all hypotheses with low situational

confidence 𝛽.

To test these hypotheses, we looked at the resulting inferred belief. Given the demon-

strations and a parametrization of the cost function, we first updated the belief over the

weight and situational confidence parameters for each single demonstration, 𝑏𝑠𝑖𝑛𝑔𝑙𝑒(�, 𝛽).
This gives insights into how a single demonstration can affect the robot’s inference proce-

dure.

Next, we used all 12 human demonstrations to obtain a probability distribution over

the weight and confidence measures, 𝑏𝑎𝑙𝑙(�, 𝛽) for each scenario. By using multiple

demonstrations as evidence about the cost and the situational confidence parameter, we

see how in some scenarios multiple demonstrations can help improve confidence in the �
estimation.

We now present experimental results in two scenarios that support our above hypothe-

ses.

CHAPTER 9. QUANTIFYING HYPOTHESIS SPACE MISSPECIFICATION 199

Figure 9.7: (Left) Human demonstrations avoiding the laptop. (Right) Upper distribution is the posterior

belief for the highlighted blue demonstration. Since the robot has the laptop feature in its hypothesis

space, this demonstration induces a high 𝛽 on the correct � = [0, 0, 1]. Below, when considering all the

demonstrations, the inference procedure converges to a slightly lower 𝛽 value due to the suboptimality of

some of the demonstrations in the dataset.

Well-specified objective space

Here we consider a scenario where the robot and the human share the same hypothesis

space, i.e. the robot’s model is well specified. The participants were instructed to avoid

spilling the coffee over the laptop by providing a demonstration where the robot’s end-

effector is away from the electronic device. Here, the feature of interest was the distance

from the laptop which was in the robot’s hypothesis space: the demonstration would be

well explained as long as the demonstration maintained a distance of at least 𝐿 meters

away from the center of the laptop.

On the left of Fig. 9.7 we visualize all 12 recorded demonstrations and the experimental

setup. Note that most participants had an easy time providing demonstrations which

avoided the laptop. Indeed, we noticed that 10 out of the 12 demonstrations resulted in

high situational confidence and a probability distribution similar to the one at the top

right of Fig. 9.7. Here, the � vector that has largest weight on the third feature (distance

from the laptop) is correctly inferred to have high 𝛽 value. This signals that the robot is

highly confident the person provided a demonstration that avoids the laptop, which is

correct and supports our hypothesis H1.

Another interesting observation is that the situational confidence over all 12 demon-

strations together is lower than in the case of the single optimal demonstration highlighted

in blue (peak at around 1.0 instead of 100.0)9. This is due to the two noisy demonstrations

that came too close to the laptop. When working with non-expert users, it is inevitable

that such imperfect demonstrations will arise. However, despite the challenge of noisy

9
In the lower right belief in Fig. 9.7, note from the colorbar values that the probability mass is more

peaked than in the case of a single demonstration. This confirms our intuition that the robot’s certainty in

the hypothesis is enhanced the more demonstrations supporting that hypothesis it receives.

CHAPTER 9. QUANTIFYING HYPOTHESIS SPACE MISSPECIFICATION 200

Figure 9.8: (Left) Human demonstrations avoiding the user’s body. (Right) Upper distribution is the

posterior belief 𝑏(𝛽, �) for the highlighted demonstration. Since the robot’s model does not include distance

to the user’s body, none of the robot’s hypotheses can explain the demonstration, as reflected in the higher

probabilities on low 𝛽s for all �s. After performing inference on all the demonstrations, the distribution in

the lower right plot shows even more probability mass on the lowest situational confidence values.

and/or erroneous demonstrations, the algorithm recovers the correct � hypothesis with

a relatively high 𝛽, supporting H1 once again.

Misspecified hypothesis space

We look at the opposite scenario: the robot and the human do not share the same

hypothesis space and the robot’s model is clearly misspecified.

Participants were instructed to move the robot from start to end while also keeping the

robot’s hand away from their body to avoid spilling coffee on their clothes. Since the robot’s

cost function does not include any notion of distance to humans, the demonstrations

should appear poorly explained relative to the robot’s model of how humans choose

demonstrations.

Fig. 9.8 visualizes all 12 demonstrations as well as the posterior probability distribu-

tions for a single highlighted trajectory and for all 12. For both a single demonstration and

all of them, in the case of misspecification none of the hypotheses are correct. Thus, the

robot infers equally low probability for all �s, with low situational confidence, supporting

our hypothesis H2. This signals that the robot is unsure what the person’s demonstration

referred to, as we expected.

These two examples illustrate cases where our method supports the two hypotheses

above. However, there are important limitations that we discuss in the following two

scenarios.

CHAPTER 9. QUANTIFYING HYPOTHESIS SPACE MISSPECIFICATION 201

Figure 9.9: (Left) Human demonstrations avoiding the user’s body. The blue cluster is correlated with

the feature describing distance from the laptop. The orange cluster is uncorrelated. (Right) The top

distribution is the posterior belief 𝑏(𝛽, �) for the highlighted blue correlated demonstration. Notice that the

hypothesis that puts all weight on avoiding the laptop � = [0, 0, 1] dominates the distribution. Meanwhile,

the posterior belief for the highlighted orange demonstration indicates low situational confidence in all

hypotheses. The bottom distribution shows that when combining all demonstrations, the robot continues

to have low situational confidence although the laptop hypothesis has slightly higher 𝛽.

Feature correlation

The past two examples demonstrate clear instances when the robot’s objective space

is either well specified or misspecified. However, often times situations will be more am-

biguous. For example, although the human input may refer to a feature that is nonexistent

in the robot’s hypothesis space, the robot may know about a feature that is correlated to

the one the human is trying to affect. In this next scenario, we investigate how such feature

correlation influences the situational confidence estimates.

We asked the participants to move the robot from the same start and end as before,

while keeping the cup in the robot’s end-effector away from their body to avoid spilling

coffee on their clothes. The setup is similar to the poorly-explained demonstration in the

previous scenario, only that now the human starts in a different initial position.

Visualizations of the 12 demonstrations in Fig. 9.9 showcase that although all demon-

strations move the cup away from the person, some of them (depicted in blue) also

maintain a good distance away from the laptop. Hence, even though the human was

trying to teach the robot to stay away from their body, the robot interprets the human’s

demonstrations as a signal to stay away from the laptop. Thus, we say that the distance

from human and distance from laptop features are correlated.

When looking at the top-right posterior probability in Fig. 9.9, the distribution over

CHAPTER 9. QUANTIFYING HYPOTHESIS SPACE MISSPECIFICATION 202

Figure 9.10: (Left) Human demonstrations keeping the cup in the end-effector close to the table. (Right)

Because it is difficult for the person to give a good demonstration, the top posterior does not have a clearly

defined peak for one particular hypothesis, although several �s are favored. In the bottom distribution,

we notice that when presented with all 12 demonstrations, the robot can more clearly infer the correct

hypothesis for the distance to the table, � = [0, 1, 0].

�, 𝛽 shows that our algorithm infers a high situational confidence for the � that fully

considers the distance from the laptop. Thus, even if the human input does not pertain

to a feature in the robot’s hypothesis space, in some cases the demonstration can still be

explained via correlated features in the robot’s hypothesis space. This observation does

not support H2 and is clearly a limitation of our method.

However, the orange cluster of demonstrations in Fig. 9.9, showcase the fine line

between demonstrations that induce a feature correlation and those that do not. The

orange demonstrations clearly ignore the laptop and simply take the shortest path to the

end goal while avoiding the human’s body. As we can see in the orange probability

distribution, our method infers a uniform distribution over all � hypotheses, with a focus

on the lowest situational confidence values, backing H2.

These two clusters highlight that our method infers reasonable �, 𝛽 values even in the

case of feature correlation. The robot either infers a good � to perform its original task

through the means of another feature, or it has low confidence in understanding the input.

When we look at the posterior distribution that results from all 12 demonstrations,

the bottom-right part of the figure shows that, due to the correlation in the blue cluster,

there is increased probability on the � that considers fully the distance from the laptop.

However, due to the ambiguity of the orange cluster, the situational confidence is not as

high as it would be in a well-explained case (see Fig. 9.7).

Feature engineering

Many of the cost function features we considered so far have been intuitive to provide

demonstrations for. However, some cost functions may be particularly challenging or

unintuitive for human users. Two extreme examples of this could be features learned

CHAPTER 9. QUANTIFYING HYPOTHESIS SPACE MISSPECIFICATION 203

using complex function approximators or unintuitive features like minimizing the total

energy of a system.

In our scenario, the feature users have a difficult time providing good demonstrations

for is the distance between the robot’s hand and the table along the trajectory. Since the

feature was designed as the sum of distances to table for all waypoints in the trajectory, the

optimal demonstration immediately moves the end-effector to the table and then keeps it

right above the tabletop for the rest of the path, as seen in Fig. 9.3(a). This limitation does

not support H1.

However, this mathematical optimum does not necessarily align with how human

users interpret the best behavior for this task. In our experiments, most users gradually

bring the robot’s hand closer to the table, rather than pushing it down immediately, for a

more smooth and natural motion (see left in Fig. 9.10). These demonstrations thus appear

noisy and sub-optimal with respect to the robot’s model and make it difficult to infer the

true � from a single demonstration.

This phenomenon is reflected more clearly when we look at the top-right belief dis-

tribution in Fig. 9.10. Although the distribution for the highlighted blue demonstration

has some peaks around hypotheses that strongly favor the feature responsible for dis-

tance to the table, it is not nearly as clearly defined as it should be for a well-explained

demonstration (see Fig. 9.7).

However, when the robot gathers evidence from multiple demonstrations, the algo-

rithm does manage to figure out that this is the feature that people were optimizing for.

The bottom right plot in Fig. 9.10 illustrates that, once again, having more input samples

eventually leads our algorithm to converge to a strong probability for the right � with a

reasonably high 𝛽. Although our method cannot back H1 when inferring the objective

from a single demonstration, more data leads our algorithm to correctly support H1.

Summary: The four situations presented above illustrate that our two original hy-

potheses H1 and H2 are supported most of the time (9.5.1, 9.5.1), with some exceptions

(9.5.1, 9.5.1). We saw that when the person has a difficult time giving a good demonstration

(Section 9.5.1), our method cannot support H1 unless provided with multiple demonstra-

tions, to disambiguate the inherent noise in the user’s suboptimal input. Additionally,

when the person provides what should be a poorly-explained demonstration (Section

9.5.1), feature correlation might lead the inference to falsely detect �s corresponding to

that input, contradicting H2. However, we observed that when given more demonstra-

tions, our algorithm can attribute low situational confidence 𝛽 if the uncorrelated input is

sufficient. More work is needed in this area.

9.5.2 Corrections
We now turn our attention to case where human input is sparse and in the form of

intermediate corrections during the robot’s task execution. Here we present an offline

case study where we analyze how our estimates of �̂� enable us to distinguish if the input

CHAPTER 9. QUANTIFYING HYPOTHESIS SPACE MISSPECIFICATION 204

is well explained or not to the robot’s model of the human. For a full exploration of the

real-time updates from human corrections, we conduct an online user study which we

later describe in Section 9.6.

We recruited 12 additional individuals to physically interact with the same robotic

manipulator. Each participant was asked to intentionally correct a feature (that the robot

may or may not have in its hypothesis space): adjusting the distance of the end effector

from the table, adjusting the distance from the person, or adjusting the cup’s orientation.

During this case study the robot did not attempt to update the feature weights � and

simply tracked a predefined trajectory with an impedance controller [impedance]. The

participants were instructed to intervene only once during the robot’s task execution,

in order to record a single physical correction. The resulting trajectories and physical

interaction 𝑢
𝐻

were saved for offline analysis. This setup enabled us to easily analyze the

situational confidence of the robot as we changed the robot’s hypothesis space.

Next, we ran our approximate inference algorithm using the recorded human interac-

tion torques and robot joint angle information. We measured what �̂� would have been for

each interaction if the robot knew about a given subset of the features. By changing the

subset of features for the robot, we changed whether any given human interaction was

well explained to the robot’s hypothesis space.

We tested two hypotheses:

H1. Well-explained interactions result in high �̂�, whereas interactions that change a

feature the robot does not know about result in low �̂� for all features the robot does
know about.

H2. Not reasoning about well-explained interactions and, instead, indiscriminately

learning from every update leads to significant unintended learning.

We ran a repeated-measures ANOVA to test the effect of whether and input is well

explained on our �̂�. We found a significant effect (𝐹(1, 521) = 9.9093, 𝑝 = 0.0017): when

the person was providing a well-explained correction, �̂� was significantly higher. This

supports our hypothesis H1.

Fig. 9.11(a) plots �̂� under the well-explained (orange) and poorly-explained (blue)

conditions. Whereas the poorly-explained interactions end up with �̂�s close to 0, well-

explained corrections have higher mean and take on a wider range of values, reflecting

varying degrees of human performance in correcting something the robot knows about.

We fit per-feature chi-squared distributions for 𝑃(�̂� | 𝐸) for each value of 𝐸 which we

will use to infer 𝐸 and, thus, � online. In addition, Fig. 9.11(b) illustrates that even for

poorly-explained human actions 𝑢𝐻 , the resulting feature difference ΔΦ = Φ(x𝐷) −Φ(x) is
non-negligible. This supports our second hypothesis, H2, that not reasoning about how

well-explained an action is is detrimental to learning performance when the robot receives

misspecified updates.

CHAPTER 9. QUANTIFYING HYPOTHESIS SPACE MISSPECIFICATION 205

0.0

0.5

1.0

1.5

2.0
*

table

0.0

0.5

1.0

1.5

2.0

*

cup

0.0

0.5

1.0

1.5
*

human

Poorly-explained uH Well-explained uH

(a) Average 𝛽 for well-explained and poorly-explained

interactions.

0.0

0.2

0.4

0.6

0.8

1.0
table

0.0

0.2

0.4

0.6

0.8

1.0
cup

0.0

0.2

0.4

0.6

0.8

1.0
human

Poorly-explained uH Well-explained uH

(b) Average ΔΦ for well-explained and poorly-

explained interactions.

Figure 9.11: 𝛽 values are significantly larger for well-explained actions than for poorly-explained ones. Fea-

ture updates are non-negligible even during poorly-explained actions, which leads to significant unintended

learning for fixed-𝛽 methods.

9.6 User Study on Learning from Corrections
Our case study on corrections suggested that �̂� can be used as a measure of whether

physical interactions are well explained and should be learned from. Next, we conducted

an IRB-approved user study to investigate the implications of using these estimates during

learning. During each experimental task, the robot began with a number of incorrect

weights and participants were asked to physically correct the robot. Locations of the

objects and human were kept consistent in our experiments across tasks and users to

control for confounds10. The planning and inference were done for robot trajectories in

7-dimensional configuration space, accounting for all relevant constraints including joint

limits and self-collisions, as well as collisions between obstacles in the workspace and any

part of the robot’s body.11

9.6.1 Experiment design
Independent variables

We used a 2 by 2 factoral design. We manipulated the corrections learning strategy

with two levels (fixed-𝛽 and estimated-𝛽 learning), and also whether the human corrected

for features inside (well explained) or outside (poorly explained) the robot’s hypothesis

10
We assume full observability of where the objects and the human are, as the focus of this paper is not

sensing.

11
For video footage of the experiment, see: https://youtu.be/stnFye8HdcU

https://youtu.be/stnFye8HdcU

CHAPTER 9. QUANTIFYING HYPOTHESIS SPACE MISSPECIFICATION 206

space. In the fixed learning strategy, the robot updated its feature weights from a given

interaction via (9.31) with a fixed 𝛽 value. In the estimated-𝛽 learning strategy, the robot

updates its feature weights via (9.30). The offline experiments above provided us an

estimate for 𝑃(𝐸 | �̂�) that we used in the gradient update.

Dependent measures - objective

To analyze the objective performance of the two learning strategies, we focused on

comparing two main measurements: the length of the �̂ path through weight space as

a measurement of the learning process, and the regret in feature space measured by

|Φ(x�∗) − Φ(x𝑎𝑐𝑡𝑢𝑎𝑙)|. Longer �̂ paths should indicate a learning process that oscillates,

whereas shorter paths suggest smoother learning curves. On the other hand, high regret

implies that the learning method did not converge to a good objective �, whereas low

regret indicates better learning.

Dependent measures - subjective

For each condition, we administered a 7-point Likert scale survey about the partic-

ipant’s interaction experience (Table 9.1). We separate the survey into 3 scales: task

completion, task understanding, and unintended learning.

Hypotheses

We tested four hypotheses:

H1. On tasks where humans try to correct inside the robot’s hypothesis space (well-

explained corrections), inferring situational confidence is not inferior to always assum-

ing high situational confidence.

H2. On tasks where humans try to correct outside the robot’s hypothesis space (poorly-

explained corrections), inferring situational confidence reduces unintended learning.

H3. On tasks where they tried to correct inside the robot’s hypothesis space, partici-

pants felt like the two methods performed the same.

H4. On tasks where they tried to correct outside the robot’s hypothesis space, partici-

pants felt like our estimated-𝛽 method reduced unintended learning.

Tasks

We designed 4 experimental household motion planning tasks for the robot to perform

in a shared workspace. Similarly to the case studies, for each experimental task, the robot

carried a cup from a start to end pose with an initially incorrect objective. Participants

were instructed to physically intervene to correct the robot’s behavior during the task.

CHAPTER 9. QUANTIFYING HYPOTHESIS SPACE MISSPECIFICATION 207

Tabler = 1 Tabler = 0 Cupr = 1 Cupr = 0
0

20

40

60

80

100

R
eg

re
t

*

*

Fixed
Estimated

(a) Regret averaged across subjects.

Tabler = 1 Tabler = 0 Cupr = 1 Cupr = 0
0

1

2

3

4

5

Le
ar

ni
ng

 P
at

h
Le

ng
th

*

*

Fixed
Estimated

(b) �̂ learning path length averaged across subjects.

Figure 9.12: Comparison of regret and length of �̂ learning path through weight space over time (lower is

better).

In Tasks 1 and 2, the robot’s default trajectory took a cup from the participant and put

it down on the table, but carried the cup too high above the table. In Tasks 3 and 4, the

robot also took a cup from the human and placed it on the table, but this time it initially

grasped the cup at the wrong angle, requiring human assistance to correct end-effector

orientation to an upright position. For Tasks 1 and 3, the robot knew about the feature the

human was asked to correct for (𝐸 = 1) and participants were told that the robot should be

compliant. For Tasks 2 and 4, the correction was poorly explained (𝐸 = 0) and participants

were instructed to correct any additional unwanted changes in the trajectory.

Participants

We used a within-subjects design and randomized the order of the learning methods

during experiments. We recruited 12 participants (6 females, 6 males, aged 18-30) from

the campus community, 10 of which had technical background. None of the participants

had experience interacting with the robot used in our experiments.

Procedure

Every participant was assigned a random ordering of the two methods, and per-

formed each task without knowing how the underlying methods work. One challenge

in performing and evaluating our experiment was that different participants may have

different internal preferences for how a task should be performed. In order to have a

consistent notion of ground-truth preferences, we fixed the true objective (e.g. how far the

cup should be from the table) for each task. At the beginning of each task, the participant

was first shown the incorrect default trajectory that they must correct, followed by the

ground-truth desired trajectory they should teach the robot. This allows us to focus only

on how well each algorithm infers objectives from human input, versus trying to addi-

CHAPTER 9. QUANTIFYING HYPOTHESIS SPACE MISSPECIFICATION 208

Questions Cronbach’s 𝛼 F-Ratio p-value

ta
sk The robot accomplished the task in the way I wanted.

0.94 0.88 0.348

The robot was NOT able to complete the task correctly.

un
de

rs
ta

nd

I felt the robot understood how I wanted the task done.

0.95 0.55 0.46

I felt the robot did NOT know how I wanted the task done.

un
in

te
nd

I had to undo corrections that I gave the robot.

The robot wrongly updated its understanding about aspects of the task I did not want to change.

0.91 9.15 0.0046
After I adjusted the robot, it continued to do the other parts of the task correctly.

After I adjusted the robot, it incorrectly updated parts of the task that were already correct.

Table 9.1: Results of ANOVA on subjective metrics collected from a 7-point Likert-scale survey.

tionally estimate the unique ground-truth human objective of each participant. Then the

participant performed a familiarization round, followed by two recorded experimental

rounds. After answering the survey, the participant repeated the procedure for the other

method.

9.6.2 Analysis
Objective

We ran a repeated-measures factorial ANOVA with learning strategy and input quality

(well or poorly explained) as factors for the regret. We found a significant main effect for

the method (𝐹(1, 187) = 7.8, 𝑝 = 0.0058), and a significant interaction effect (𝐹(1, 187) =
6.77, 𝑝 = 0.0101). We ran a post-hoc analysis with Tukey HSD corrections for multiple

comparisons to analyze this effect, and found that it supported our hypotheses. On tasks

where corrections were poorly explained, the estimated-𝛽 method had significantly lower

regret (𝑝 = 0.001); on tasks where corrections were well explained, there was no significant

difference (𝑝 = 0.9991). Fig. 9.12(a) plots the regret per task, and indeed the estimated-𝛽
method was not inferior on tasks 1 and 3, and significantly better on tasks 2 and 4.

For the length of the �̂ path through weight space metric, the factorial ANOVA analysis

found a significant main effect for the method (𝐹(1, 187) = 76.43, 𝑝 < 0.0001), and a

significant interaction effect (𝐹(1, 187) = 33.3, 𝑝 < 0.0001). A similar post-hoc analysis with

Tukey HSD correction for multiple comparisons also supports our hypotheses. On tasks

where corrections were poorly explained, our method had significantly lower average

weight paths over time (𝑝 = 0.0025); on tasks where correction were well explained,

however, there was no significant difference (𝑝 = 0.1584). The same results are supported

by Fig. 9.12(b), which plots the average length of �̂ through weight space per task, and

CHAPTER 9. QUANTIFYING HYPOTHESIS SPACE MISSPECIFICATION 209

indeed our method was not significantly inferior for tasks 1 and 3, and significantly better

on tasks 2 and 4.

Subjective

We ran a repeated measures ANOVA on the results of our participant survey. We

find that our method is not significantly different from the baseline in terms of task

completion (𝐹(1, 7) = 0.88, 𝑝 = 0.348) and task understanding (𝐹(1, 7) = 0.55, 𝑝 = 0.46),

which supports H3. Participants also significantly preferred the estimated-𝛽 method in

terms of reducing unintended learning (𝐹(1, 7) = 9.15, 𝑝 = 0.0046), which supports H4.

9.7 Discussion
Human guidance is becoming increasingly important as autonomous systems enter

the real world. One common way for robots to interpret human input is treating it as

evidence about hypotheses in the robot’s objective space. Since accounting for all possible

hypotheses and situations ahead of time is challenging if not infeasible, in this paper we

claim that robots should explicitly reason about how well their given hypothesis space

can explain the human inputs.

We introduced the notion of situational confidence 𝛽 as a natural way to measure how

much the robot should trust its inputs and learn from them. We presented a general

framework for estimating 𝛽 in conjunction with any task objectives for scenarios where

the human and the robot are operating the same dynamical system. We instantiated it for

learning from human demonstrations, as well as for learning from corrections, by deriving

a close to real-time approximate algorithm. In both settings, we exemplified – via human

experiments with a 7-DoF robotic manipulator and a user study – that reasoning about

situational confidence does, in fact, assist the robot in better understanding when it cannot

explain human input.

There are several important limitations in our work. Perhaps the biggest limitation

of all, which we alluded to in the introduction, is that the hypothesis space can be mis-

specified but the robot can nonetheless explain the input relatively well, thus confusing

misspecification for slight noise. This is especially true in more expressive hypothesis

spaces, where there might always be some hypothesis that explains the input. This is

unfortunately a fundamental problem with detecting misspecification in expressive hy-

pothesis spaces: a single demonstration or a single data point will not be enough. Much

like learning cost functions when using such spaces requires much more and diverse data

than when using a less expressive space, with detecting misspecification too it will be the

case that the robot will require a rich and diverse set of data points. The more data the

robot has access to, and the more diversely it is distributed, the less of a chance there is

that one wrong hypothesis can explain all the data.

CHAPTER 9. QUANTIFYING HYPOTHESIS SPACE MISSPECIFICATION 210

Furthermore, our approach cannot disambiguate between misspecification of the hy-

pothesis space and misspecification of the human observation model, i.e. the Boltzmann

model.

Algorithmically, while for corrections we derived a way to handle continuous hypoth-

esis spaces that scales linearly with the dimensionality of the space, for demonstrations

we relied on simply discretizing the space. This was sufficient for showcasing the benefit

of estimating situational confidence, since for demonstrations this is done offline. How-

ever, to scale the method to complex spaces, we need to combine it with state-of-the-art

(Bayesian) IRL approaches that rely on Metropolis Hastings sampling, or simply estimate

the MLE.

Lastly, our experiments for both demonstrations and corrections are limited to a simple

motion planning task with a cost function that depends on only a few features. We do

not show how the method would degrade, both under ideal as well as under approximate

inference.

In subsequent work, we hope to address some of these limitations. We are also

interested in an extension to sequential time-dependent inputs, where the person could

change their mind about what objective is important to them. Additionally, we want to

explore ways of handling misspecification other than reducing learning, such as switching

to a more expressive hypothesis space (but demanding more data and computation)

whenever the situational confidence is very low for all �s. Finally, we are excited to

showcase our work on other coupled dynamical systems, such as autonomous vehicles.

9.8 Practical Considerations

9.8.1 Demonstrations
Discretizing Θ and ℬ in (9.13)

For the Θ discretization, we chose vectors in the unit sphere, as discussed in Section

9.2.2. For practical purposes, we restricted the � components to be positive due to our

task features and the capabilities of our trajectory optimizer; in general, learning from

demonstrations should be restricted to norm 1, not necessarily to the positive quadrant.

In both our examples in Section 9.3 and experiments in Sections 9.5, each �𝑖 component

was allowed to take values 0, 0.5, or 1. Since we used 3 features, �’s dimensionality was

3, leading to a possible set Θ equivalent to the 3-fold Cartesian product of the values

above. After normalizing to norm 1, we were left with 19 unique � vectors in Θ, weighing

the three features in different proportions, as shown in Figures 9.3, 9.7, 9.8, 9.9, and 9.10.

Our discretization scheme ensured an approximately uniform sampling on the positive

quadrant of the unit sphere.

To discretize situational confidence, we found it sufficient to cover

𝛽 ∈ {0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10.0, 30.0, 100.0},

CHAPTER 9. QUANTIFYING HYPOTHESIS SPACE MISSPECIFICATION 211

the log-scale space, similarly to [77, 74]. For different tasks, a similar discretization should

suffice because what matters is 𝛽’s relative magnitude for identifying misspecification,

not its absolute one. We suggest calibrating the threshold 𝜖 in (9.6) using a few simulated

trajectories like the ones in Fig. 9.3.

9.8.2 Corrections
Planning and Replanning

We use TrajOpt [trajopt] to plan and replan robot trajectories. We set up the trajectory

optimization problem to plan a path that minimizes a cost function of the form of (9.15).

Given different features Φ and weights � on these features, different optimal paths may be

found. Additionally, we constrain the optimization to plan a path between a pre-specified

start and goal locations, while avoiding collisions with the objects in the environment

(table, laptop, or human). The total time of the trajectory is fixed, but the actual length

can differ. That means that the robot moves faster for longer trajectories, and slower for

shorter ones.

When the experiment starts, the robot plans an initial path from start to goal, using the

initial weights �. When a human push happens, the robot measures the instantaneous

deviation, which deforms the trajectory via the impedance controller. Without learning,

the robot would resume tracking its original trajectory. However, we use the human input

to update � according to (9.30), which the robot’s planner uses to compute a new trajectory

that the robot can follow instead. In a perfect world, this entire process would happen at

60Hz. In practice, however, the trajectory optimizer’s computation lasts longer. As such,

once a push is registered, the robot starts listening for following torque signals only after

the update is complete.

Imagine this process in the context of a typical user experience. Once the person

begins pushing, the robot instantly starts updating � and optimizing the new induced

path. While the person is applying their correction, the planner eventually finishes its

computation and passes the updated trajectory to the robot controller. The user can

immediately feel that the robot changed course and stops intervening.

Solving (9.21)

We used SLSQP, an off-the-shelf sequential quadratic programming package [125], to

solve (9.21). In practice, the method can fail to return a good result if the initialization is

bad. We found that if we initialize the minimization with a guess that does not satisfy the

constraint (e.g. 0), it returns a reasonable estimate of the true 𝑢∗
𝐻

.

Sensitivity Analysis

Both (9.24) and (9.30) rely heavily on hyperparameters � and �. Here, we discuss how

to set them.

CHAPTER 9. QUANTIFYING HYPOTHESIS SPACE MISSPECIFICATION 212

Setting � affects the magnitude of the resulting estimated situational confidence �̂� in

(9.24). This magnitude plays an important role when later estimating � via (9.30) because

it affects 𝑃(𝐸 | �̂�). However, note that to compute this probability we use 𝑃(�̂� | 𝐸), which

is an entirely data-driven empirical distribution, where the observed �̂� is also computed

via (9.24). As such, we are not relying on absolute magnitudes of the estimated situational

confidence but on relative ones. Therefore, the choice of the hyperparameter � does not

affect our method’s estimates as long as they are computed with the same hyperparameter

that is used for learning 𝑃(�̂� | 𝐸).
In the case of precision � in (9.25), how spread out the Gaussian noise centered around

Φ(x𝑅) is affects the denominator in (9.30). When � → 0, the Γ(Φ𝐷 , 𝐸 = 0) term in the

denominator goes to 0, which means that (9.30) reduces to (9.31): our method always

learns and never identifies misspecification. On the other hand, when �→∞, we can use

the L’Hospital rule to see that Γ(Φ𝐷 , 𝐸 = 0) → 0 as well, as long as | |Φ𝐷 − Φ(x𝑅)| |2 ≠ 0,

which is true unless there is no correction to deform x𝑅, in which case we do not need to

update � at all. Therefore, it is important that � is set not too high and not too low in order

for our method to work properly.

The best practice for setting � also involves using the offline data calibration from

Section 9.5.2. To calibrate properly, after computing the empirical 𝑃(�̂� | 𝐸) distribution,

when 𝐸 = 0 the updated � should not change much, whereas when 𝐸 = 1 the � parameter

should change appropriately.

Without the offline data calibration in Section 9.5.2, both � and � affect the � and 𝛽
estimation, and can have profound effects on the efficacy of our method. Unfortunately,

we cannot do this calibration automatically yet, which is a limitation of our work, and we

leave it for future research.

Trajectory Deformation Parameter Choice

When deforming the robot’s trajectory given a human interaction, there are many

choices of the deformation matrix 𝐴 and the deformation magnitude parameter �. 𝐴 can

be an explicit design choice (for example, constructing 𝐴 from a finite differencing matrix

[19]), can be solved for via an optimization problem which penalizes the undeformed

trajectory’s energy, the work done by the trajectory deformation to the human, and varia-

tion’s total jerk as in [146], or can even be learned from human data [104]. The magnitude

of the deformation � can also be tuned for best performance, for example to be robust to

the rate at which deformations occur (see [144] for more details).

9.9 Laplace Approximation in Equation (9.19)

Let the cost function in the model in (9.19) be denoted by:

𝐶Φ𝐷 (�̄�) = �∥�̄�∥2 + �∥Φ(x̄𝐷) −Φ𝐷 ∥2, (9.32)

CHAPTER 9. QUANTIFYING HYPOTHESIS SPACE MISSPECIFICATION 213

for an observed Φ𝐷 .

First, our cost function can be approximated to quadratic order by computing a second

order Taylor series approximation about the optimal human action 𝑢∗
𝐻

(obtained via the

constrained optimization in 9.21):

𝐶Φ𝐷 (�̄�) ≈ 𝐶Φ𝐷 (𝑢∗𝐻) + ∇𝐶Φ𝐷 (𝑢∗𝐻)
⊤(�̄� − 𝑢∗𝐻)

+ 1

2

(�̄� − 𝑢∗𝐻)
⊤∇2𝐶Φ𝐷 (𝑢∗𝐻)(�̄� − 𝑢

∗
𝐻) .

(9.33)

Since ∇𝐶Φ𝐷 (�̄�) has a global minimum at 𝑢∗
𝐻

then ∇𝐶Φ𝐷 (𝑢∗𝐻) = 0 and the denominator of

Equation 9.19 can be rewritten as:∫
𝒰
𝑒−𝛽𝐶Φ𝐷

(�̄�)𝑑�̄� ≈ 𝑒−𝛽𝐶Φ𝐷
(𝑢∗
𝐻
)
∫
𝒰
𝑒−

1

2
(�̄�−𝑢∗

𝐻
)𝛽∇2𝐶Φ𝐷

(𝑢∗
𝐻
)(�̄�−𝑢∗

𝐻
)𝑑�̄� . (9.34)

Since 𝛽∇2𝐶Φ𝐷 (𝑢∗𝐻) > 0 for 𝑢∗
𝐻

≠ 0, the integral is in Gaussian form, which admits a

closed form solution: ∫
𝒰
𝑒−𝛽𝐶Φ𝐷

(�̄�𝐻)𝑑�̄�𝐻 ≈ 𝑒−𝛽𝐶Φ𝐷
(𝑢∗
𝐻
)

√
2𝜋𝑘

𝛽𝑘 |𝐻𝑢∗
𝐻
|
,

where 𝐻𝑢∗
𝐻
= ∇2𝐶Φ𝐷 (𝑢∗𝐻) denotes the Hessian of 𝐶Φ𝐷 at 𝑢∗

𝐻
. Replacing 𝐶Φ𝐷 (�̄�𝐻) with the

expanded cost function, we arrive at the final approximation of the observation model:

𝑃(𝑢𝑡𝐻 | 𝑥
0, u𝑅;Φ𝐷 , 𝛽) ≈

𝑒−𝛽�(∥𝑢
𝑡
𝐻
∥2)

𝑒−𝛽(�∥𝑢
∗
𝐻
∥2+�∥Φ(x∗

𝐷
)−Φ𝐷 ∥2)

√
𝛽𝑘 |𝐻𝑢∗

𝐻
|

2𝜋𝑘
. (9.35)

214

Chapter 10

Conclusion and Future Work

From autonomous cars in cities to mobile manipulators at home, I aim to design robots

that interact with people. While robot interaction with people is necessary, it is also a

potential mechanism for safety issues such as miscoordination, collision, end-user discom-

fort, erroneous robot learning, or long-term unintended consequences. While my thesis

primarily focused on traditional collision-avoidance notions of safety, close collaboration

with people demands more than just collision-avoidance, raising the question: what is the

right notion of safety? This was apparent during my work on robot learning from physical

human interactions [19, 18, 148]: after consistently misinterpreting my feedback during

a household cleaning task, the robot erroneously learned to move my coffee mugs at an

angle, resulting in spilled coffee and miscoordination.

Thus, future work needs to rethink our notions of safety to capture more subtle aspects

of human-robot interaction. This demands formalizing novel safety concepts related to

robot alignment with human values and the ability to optimize for human preferences.

Ultimately, safe human-robot interaction will require robots to not only reason about the

limitations of their human models, but also their perception capabilities and state-space

representations. I am excited to see future work towards robots that interact safely and

intelligently despite imperfect human models: assistive robots that use perceptual data to

augment their understanding of human feedback, autonomous cars that understand the

long-term effect of model errors on their decisions, and robotic manipulators that leverage

diverse sensing modalities to gently but intentionally initiate physical interaction with

people. In this section, I briefly outline a few future research directions towards such

reliable human-robot interaction.

Safety for robots learning from and coordinating with people
Robot safety around humans has been predominantly focused on collision-avoidance.

However, robots that learn from and coordinate with people demand new, more nuanced

notions of safety.

CHAPTER 10. CONCLUSION AND FUTURE WORK 215

Safe robot learning from people. My work on robots learning from physical human

interaction [19, 18] revealed how robots can erroneously learn from human input if the

human teaches the robot about an aspect of a task it does not knows about. I extended

my confidence-aware human models to the learning from demonstration domain [34],

enabling robots to prevent unintended learning from human interactions when they do

not understand human input. Building on this foundation of safety analysis, human

modelling, and machine learning, I plan to develop novel formalisms for safety in collab-

orative robot learning from people. These formalisms would, for example, enable robots

to assess which data to learn from (e.g., teaching human inputs), which data to ignore

(e.g., adversarial human inputs), and how to strategically gather additional information

from nearby humans.

Safe robot coordination with people. Even when the robot is not explicitly learning

from humans, we still need new methods for safety in robot coordination with humans.

For example, here safety can mean ensuring that robots do not influence nearby humans

negatively and behave too “selfishly” when pursuing their own objectives. I am partic-

ularly interested in approaching these problems through the lens of game-theory, which

rigorously couples the influence between the human, robot, and their respective objectives.

Confidence-awareness for high-capacity learned human models
With more available human data, robots increasingly depend on large learned hu-

man models; in autonomous driving, function approximators like neural networks are

widely used human motion predictors. These high-capacity human models bring not

only significant opportunities, but also challenges.

Active data gathering. Much of the available human data exhibits average-case human

behavior (e.g., straight highway driving). This limits data-driven models because they

cannot extrapolate to the breadth of interactions with humans. Here, I aim to develop

methods for actively and efficiently querying humans for supervisory input; this input

can augment or label datasets used for robot learning.

Safe robot decision-making. I plan to develop algorithms for quantifying—and improving—

the limitations of robot decision-making when relying on complex, data-driven hu-

man models. Towards this vision, I’m excited about developing methods for bringing

confidence-awareness to high-capacity human models by, for example, designing algo-

rithms which detect out-of-distribution human behavior.

A “full-stack” approach to safe human-robot interaction
Safe human-robot interaction should ultimately account for the robot’s perception ca-

pabilities, state-space representations, and dynamics. My preliminary work on adaptive

model selection is a step towards robots explicitly reasoning about how model fidelity

CHAPTER 10. CONCLUSION AND FUTURE WORK 216

affects planning, proving useful for human motion prediction and robot dynamics esti-

mation [176]. Beyond this, I am excited about developing robot algorithms which can

learn to interact with humans in a perception-aware way. For example, instead of hand-

engineered state-space models, dynamics models, and feature spaces, the robot could

automatically extract task and state representations from camera data that are relevant for

human interaction. In fact, with the advent of deep learning, this approach is becoming

increasingly popular (for example, but not limited to, [225, 70]). These perceptually-aware

representations can also serve as a starting point for aligning the robot and human’s un-

derstanding of the task [32]. However, this also raises the question about the quality of

these automatically extracted representations. For instance, imagine that a robot’s repre-

sentation implicitly understands how the location of your hand matters for handovers, but

misses how your body orientation also matters for predicting your behavior. However,

understanding the limitations of what the robot understands is now an increasing concern.

This underscores the need for new safety analysis of these perceptually-aware represen-

tations themselves. These are just small examples of how developing robot algorithms

that leverage real sensors can open up new research directions for safe human-robot

interaction.

217

Bibliography

[1] Nematollah Ab Azar, Aref Shahmansoorian, and Mohsen Davoudi. “From inverse

optimal control to inverse reinforcement learning: A historical review”. In: Annual

Reviews in Control 50 (2020), pp. 119–138.

[2] Pieter Abbeel, Adam Coates, and Andrew Y Ng. “Autonomous helicopter aer-

obatics through apprenticeship learning”. In: The International Journal of Robotics

Research 29.13 (2010), pp. 1608–1639.

[3] Pieter Abbeel and Andrew Y Ng. “Apprenticeship learning via inverse reinforce-

ment learning”. In: Proceedings of the twenty-first international conference on Machine

learning. 2004, p. 1.

[4] Mohamadreza Ahmadi et al. “Control theory meets POMDPs: A hybrid systems

approach”. In: arXiv preprint arXiv:1905.08095 (2019).

[5] Ali Ahmadzadeh et al. “Multi-vehicle path planning in dynamically changing envi-

ronments”. In: Robotics and Automation, 2009. ICRA’09. IEEE International Conference

on. IEEE. 2009, pp. 2449–2454.

[6] Baris Akgun et al. “Keyframe-based learning from demonstration”. In: International

Journal of Social Robotics 4.4 (2012), pp. 343–355.

[7] Matthias Althoff and John M Dolan. “Set-based computation of vehicle behaviors

for the online verification of autonomous vehicles”. In: 2011 14th International IEEE

Conference on Intelligent Transportation Systems (ITSC). IEEE. 2011, pp. 1162–1167.

[8] Heni Ben Amor et al. “Interaction primitives for human-robot cooperation tasks”.

In: Robotics and Automation (ICRA), 2014 IEEE International Conference on. IEEE. 2014,

pp. 2831–2837.

[9] Galen Andrew and Jianfeng Gao. “Scalable training of l 1-regularized log-linear

models”. In: Proceedings of the 24th international conference on Machine learning. 2007,

pp. 33–40.

[10] Georges S. Aoude et al. “Probabilistically Safe Motion Planning to Avoid Dynamic

Obstacles with Uncertain Motion Patterns”. In: Auton. Robots 35.1 (2013), pp. 51–76.

doi: 10.1007/s10514-013-9334-3.

https://doi.org/10.1007/s10514-013-9334-3

BIBLIOGRAPHY 218

[11] Brenna D Argall et al. “A survey of robot learning from demonstration”. In: Robotics

and Autonomous Systems 57.5 (2009), pp. 469–483.

[12] Brenna D. Argall, Eric L. Sauser, and Aude G. Billard. “Tactile Guidance for Policy

Adaptation”. In: Found. Trends Robot 1.2 (Feb. 2011), pp. 79–133. issn: 1935-8253. doi:

10.1561/2300000012.

[13] Haoyu Bai et al. “Intention-aware online POMDP planning for autonomous driving

in a crowd”. In: Robotics and Automation (ICRA), 2015 IEEE International Conference

on. IEEE. 2015, pp. 454–460.

[14] Andrea Bajcsy et al. “A Robust Control Framework for Human Motion Prediction”.

In: IEEE Robotics and Automation Letters 6.1 (2020), pp. 24–31.

[15] Andrea Bajcsy et al. “A Scalable Framework For Real-Time Multi-Robot, Multi-

Human Collision Avoidance”. In: arXiv preprint arXiv:1811.05929 (2018).

[16] Andrea Bajcsy et al. “An efficient reachability-based framework for provably safe

autonomous navigation in unknown environments”. In: 2019 IEEE 58th Conference

on Decision and Control (CDC). IEEE. 2019, pp. 1758–1765.

[17] Andrea Bajcsy et al. “Analyzing human models that adapt online”. In: 2021 IEEE

International Conference on Robotics and Automation (ICRA). IEEE. 2021, pp. 2754–

2760.

[18] Andrea Bajcsy et al. “Learning from Physical Human Corrections, one Feature at

a Time”. In: ACM/IEEE International Conference on Human-Robot Interaction (HRI).

2018, pp. 141–149.

[19] Andrea Bajcsy et al. “Learning robot objectives from physical human interaction”.

In: Conference on Robot Learning (CoRL). 2017.

[20] Chris L Baker and Joshua B Tenenbaum. “Modeling human plan recognition using

Bayesian theory of mind”. In: Plan, activity, and intent recognition: Theory and practice

7 (2014), pp. 177–204.

[21] Chris L Baker, Joshua B Tenenbaum, and Rebecca R Saxe. “Goal inference as inverse

planning”. In: Cognitive Science Society. 2007.

[22] Frank J Balbach and Thomas Zeugmann. “Recent developments in algorithmic

teaching”. In: International Conference on Language and Automata Theory and Applica-

tions. 2009, pp. 1–18.

[23] Tirthankar Bandyopadhyay et al. “Intention-aware motion planning”. In: Algorith-

mic Foundations of Robotics X. Springer, 2013, pp. 475–491.

[24] Somil Bansal and Claire J Tomlin. “Deepreach: A deep learning approach to high-

dimensional reachability”. In: 2021 IEEE International Conference on Robotics and

Automation (ICRA). IEEE. 2021, pp. 1817–1824.

https://doi.org/10.1561/2300000012

BIBLIOGRAPHY 219

[25] Somil Bansal et al. “Hamilton-Jacobi reachability: A brief overview and recent

advances”. In: Decision and Control (CDC), 2017 IEEE 56th Annual Conference on.

IEEE. 2017, pp. 2242–2253.

[26] Somil Bansal et al. “Safe sequential path planning of multi-vehicle systems under

presence of disturbances and imperfect information”. In: Proc. Amer. Control Conf.

2017, pp. 1–8.

[27] Somil Bansal* et al. “A Hamilton-Jacobi reachability-based framework for predict-

ing and analyzing human motion for safe planning”. In: ICRA. 2020.

[28] Tamer Başar and Geert Jan Olsder. Dynamic noncooperative game theory. SIAM, 1998.

[29] Fethi Belkhouche. “Reactive path planning in a dynamic environment”. In: IEEE

Transactions on Robotics 25.4 (2009), pp. 902–911.

[30] Richard Bellman. “The theory of dynamic programming”. In: Bulletin of the Ameri-

can Mathematical Society 60.6 (1954), pp. 503–515.

[31] Dimitri Bertsekas. Dynamic programming and optimal control: Volume I. Vol. 1. Athena

scientific, 2012.

[32] Andreea Bobu et al. “Learning perceptual concepts by bootstrapping from human

queries”. In: arXiv preprint arXiv:2111.05251 (2021).

[33] Andreea Bobu et al. “Learning under Misspecified Objective Spaces”. In: 2nd An-

nual Conference on Robot Learning, CoRL 2018, Zürich, Switzerland, 29-31 October

2018, Proceedings. 2018, pp. 796–805. url: http://proceedings.mlr.press/v87/
bobu18a.html.

[34] Andreea Bobu et al. “Quantifying hypothesis space misspecification in learning

from human–robot demonstrations and physical corrections”. In: IEEE Transactions

on Robotics 36.3 (2020), pp. 835–854.

[35] Léon Bottou. “Online learning and stochastic approximations”. In: On-line Learning

in Neural Networks. Cambridge Univ Press, 1998, pp. 9–42.

[36] Oliver Brock and Oussama Khatib. “Elastic strips: A framework for motion genera-

tion in human environments”. In: The International Journal of Robotics Research 21.12

(2002), pp. 1031–1052.

[37] Daniel S Brown and Scott Niekum. “Toward Probabilistic Safety Bounds for Robot

Learning from Demonstration.” In: 2017.

[38] Daniel S. Brown, Yuchen Cui, and Scott Niekum. “Risk-Aware Active Inverse Rein-

forcement Learning”. In: Proceedings of The 2nd Conference on Robot Learning. Ed. by

Aude Billard et al. Vol. 87. Proceedings of Machine Learning Research. PMLR, 29–31

Oct 2018, pp. 362–372. url: http://proceedings.mlr.press/v87/brown18a.html.

[39] Maya Cakmak and Manuel Lopes. “Algorithmic and Human Teaching of Sequen-

tial Decision Tasks”. In: AAAI. 2012, pp. 1536–1542.

http://proceedings.mlr.press/v87/bobu18a.html
http://proceedings.mlr.press/v87/bobu18a.html
http://proceedings.mlr.press/v87/brown18a.html

BIBLIOGRAPHY 220

[40] Eduardo F Camacho and Carlos Bordons Alba. Model predictive control. Springer

science & business media, 2013.

[41] Peter Carruthers and Peter K Smith. Theories of theories of mind. Cambridge univer-

sity press, 1996.

[42] Sergio Casas, Wenjie Luo, and Raquel Urtasun. “Intentnet: Learning to predict

intention from raw sensor data”. In: CoRL. 2018, pp. 947–956.

[43] Carlos Celemin, Javier Ruiz-del-Solar, and Jens Kober. “A fast hybrid reinforcement

learning framework with human corrective feedback”. In: Autonomous Robots 43.5

(June 2019), pp. 1173–1186. issn: 1573-7527. doi: 10.1007/s10514-018-9786-6.
url: https://doi.org/10.1007/s10514-018-9786-6.

[44] Yuning Chai et al. “Multipath: Multiple probabilistic anchor trajectory hypotheses

for behavior prediction”. In: arXiv preprint arXiv:1910.05449 (2019).

[45] Georgios C Chasparis and Jeff S Shamma. “Linear-programming-based multi-

vehicle path planning with adversaries”. In: American Control Conference, 2005.

Proceedings of the 2005. IEEE. 2005, pp. 1072–1077.

[46] Min Chen et al. “Planning with Trust for Human-Robot Collaboration”. In: ACM/IEEE

International Conference on Human-Robot Interaction (HRI). 2018, pp. 307–315.

[47] Mo Chen, Sylvia Herbert, and Claire J Tomlin. “Fast reachable set approximations

via state decoupling disturbances”. In: Decision and Control (CDC), 2016 IEEE 55th

Conference on. IEEE. 2016, pp. 191–196.

[48] Mo Chen, Jennifer C Shih, and Claire J Tomlin. “Multi-vehicle collision avoidance

via hamilton-jacobi reachability and mixed integer programming”. In: Decision and

Control (CDC), 2016 IEEE 55th Conference on. IEEE. 2016, pp. 1695–1700.

[49] Mo Chen et al. “A General System Decomposition Method for Computing Reach-

able Sets and Tubes”. In: IEEE Transactions on Automatic Control (to appear) (2016).

[50] Mo Chen et al. “Decomposition of reachable sets and tubes for a class of nonlinear

systems”. In: IEEE Transactions on Automatic Control (2018).

[51] Mo Chen et al. “Safe platooning of unmanned aerial vehicles via reachability”. In:

2015 54th IEEE conference on decision and control (CDC). IEEE. 2015, pp. 4695–4701.

[52] Xin Chen, Erika Ábrahám, and Sriram Sankaranarayanan. “Flow*: An analyzer for

non-linear hybrid systems”. In: CAV. 2013, pp. 258–263.

[53] Yujiao Cheng et al. “Human motion prediction using semi-adaptable neural net-

works”. In: 2019 American Control Conference (ACC). IEEE. 2019, pp. 4884–4890.

[54] Jaedeug Choi and Kee-Eung Kim. “MAP inference for Bayesian inverse reinforce-

ment learning”. In: Advances in Neural Information Processing Systems (NeurIPS).

2011, pp. 1989–1997.

https://doi.org/10.1007/s10514-018-9786-6
https://doi.org/10.1007/s10514-018-9786-6

BIBLIOGRAPHY 221

[55] Paul Christiano et al. “Deep reinforcement learning from human preferences”. In:

(June 2017).

[56] Yao-Li Chuang et al. “Multi-vehicle flocking: scalability of cooperative control

algorithms using pairwise potentials”. In: Robotics and Automation, 2007 IEEE Inter-

national Conference on. IEEE. 2007, pp. 2292–2299.

[57] Michael G Crandall and Pierre-Louis Lions. “Viscosity solutions of Hamilton-

Jacobi equations”. In: Transactions of the American mathematical society 277.1 (1983),

pp. 1–42.

[58] Alessandro De Luca et al. “Collision detection and safe reaction with the DLR-III

lightweight manipulator arm”. In: IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS). 2006, pp. 1623–1630.

[59] Agostino De Santis et al. “An atlas of physical human–robot interaction”. In: Mech-

anism and Machine Theory 43.3 (2008), pp. 253–270.

[60] Ankush Desai et al. “Drona: A framework for safe distributed mobile robotics”. In:

Proceedings of the 8th International Conference on Cyber-Physical Systems. ACM. 2017,

pp. 239–248.

[61] Aparna Dhinakaran et al. “A hybrid framework for multi-vehicle collision avoid-

ance”. In: 2017 IEEE 56th Annual Conference on Decision and Control (CDC). IEEE.

2017, pp. 2979–2984.

[62] Hao Ding et al. “Human arm motion modeling and long-term prediction for safe

and efficient human-robot-interaction”. In: Robotics and Automation (ICRA), 2011

IEEE International Conference on. IEEE. 2011, pp. 5875–5880.

[63] Badis Djeridane and John Lygeros. “Neural approximation of PDE solutions: An

application to reachability computations”. In: Proceedings of the 45th IEEE Conference

on Decision and Control. IEEE. 2006, pp. 3034–3039.

[64] Anca Dragan and Siddhartha Srinivasa. “Generating legible motion”. In: (2013).

[65] Anca D Dragan and Siddhartha S Srinivasa. “A policy-blending formalism for

shared control”. In: The International Journal of Robotics Research 32.7 (2013), pp. 790–

805.

[66] Anca D Dragan et al. “Movement primitives via optimization”. In: IEEE Interna-

tional Conference on Robotics and Automation (ICRA). 2015, pp. 2339–2346.

[67] Katherine Driggs-Campbell, Roy Dong, and Ruzena Bajcsy. “Robust, Informative

Human-in-the-Loop Predictions via Empirical Reachable Sets”. In: IEEE Transac-

tions on Intelligent Vehicles (2018).

[68] Robert James Elliott and Nigel John Kalton. The existence of value in differential games.

Vol. 126. American Mathematical Soc., 1972.

BIBLIOGRAPHY 222

[69] L. C. Evans and P. E. Souganidis. “Differential games and representation formulas

for solutions of Hamilton-Jacobi-Isaacs equations”. In: Indiana University mathemat-

ics journal 33.5 (1984), pp. 773–797.

[70] Chelsea Finn, Sergey Levine, and Pieter Abbeel. “Guided cost learning: Deep in-

verse optimal control via policy optimization”. In: International Conference on Ma-

chine Learning (ICML). 2016, pp. 49–58.

[71] Paolo Fiorini and Zvi Shiller. “Motion planning in dynamic environments using ve-

locity obstacles”. In: The International Journal of Robotics Research 17.7 (1998), pp. 760–

772.

[72] Jaime F Fisac et al. “A general safety framework for learning-based control in

uncertain robotic systems”. In: IEEE Transactions on Automatic Control 64.7 (2018),

pp. 2737–2752.

[73] Jaime F Fisac et al. “Hierarchical Game-Theoretic Planning for Autonomous Vehi-

cles”. In: arXiv preprint arXiv:1810.05766 (2018).

[74] Jaime F Fisac et al. “Probabilistically Safe Robot Planning with Confidence-Based

Human Predictions”. In: Robotics: Science and Systems (RSS) (2018).

[75] Jaime F Fisac et al. “Reach-avoid problems with time-varying dynamics, targets

and constraints”. In: Proceedings of the 18th international conference on hybrid systems:

computation and control. 2015, pp. 11–20.

[76] Jaime F. Fisac et al. “Pragmatic-Pedagogic Value Alignment”. In: CoRR abs/1707.06354

(2017).

[77] David Fridovich-Keil et al. “Confidence-aware motion prediction for real-time col-

lision avoidance”. In: International Journal of Robotics Research (2019).

[78] David Fridovich-Keil et al. “Planning, Fast and Slow: A Framework for Adaptive

Real-Time Safe Trajectory Planning.” In: IEEE Conference on Robotics and Automation

(2018).

[79] Jie Fu and Ufuk Topcu. “Pareto efficiency in synthesizing shared autonomy policies

with temporal logic constraints”. In: 2015 IEEE International Conference on Robotics

and Automation (ICRA). IEEE. 2015, pp. 361–368.

[80] Justin Fu et al. “Variational inverse control with events: A general framework for

data-driven reward definition”. In: Advances in neural information processing systems

31 (2018).

[81] György Gergely and Gergely Csibra. “Teleological reasoning in infancy: The naıve

theory of rational action”. In: Trends in cognitive sciences 7.7 (2003), pp. 287–292.

[82] Antoine Girard. “Reachability of uncertain linear systems using zonotopes”. In:

International Workshop on Hybrid Systems: Computation and Control. Springer. 2005,

pp. 291–305.

BIBLIOGRAPHY 223

[83] Sally A Goldman and Michael J Kearns. “On the complexity of teaching”. In: Journal

of Computer and System Sciences 50.1 (1995), pp. 20–31.

[84] Michael A Goodrich. “Potential fields tutorial”. In: Class Notes 157 (2002).

[85] Reymundo Gutierrez et al. “Incremental Task Modification via Corrective Demon-

strations”. In: 2018 IEEE International Conference on Robotics and Automation (ICRA)

(2018), pp. 1126–1133.

[86] Isabelle Guyon and André Elisseeff. “An introduction to variable and feature se-

lection”. In: Journal of Machine Learning Research 3 (2003), pp. 1157–1182.

[87] Sami Haddadin and Elizabeth Croft. “Physical human–robot interaction”. In: Springer

Handbook of Robotics. Springer, 2016, pp. 1835–1874.

[88] Sami Haddadin et al. “Collision detection and reaction: A contribution to safe

physical human-robot interaction”. In: IEEE/RSJ International Conference on Intelli-

gent Robots and Systems (IROS). 2008, pp. 3356–3363.

[89] Dylan Hadfield-Menell et al. “Cooperative inverse reinforcement learning”. In:

Advances in Neural Information Processing Systems (NeurIPS). 2016, pp. 3909–3917.

[90] Dylan Hadfield-Menell et al. “Inverse Reward Design”. In: NIPS. 2017.

[91] Jason Hardy and Mark Campbell. “Contingency planning over probabilistic ob-

stacle predictions for autonomous road vehicles”. In: IEEE Transactions on Robotics

29.4 (2013), pp. 913–929.

[92] Peter E Hart, Nils J Nilsson, and Bertram Raphael. “A formal basis for the heuristic

determination of minimum cost paths”. In: IEEE transactions on Systems Science and

Cybernetics 4.2 (1968), pp. 100–107.

[93] Alain Haurie. “Feedback equilibria in differential games with structural and modal

uncertainties”. In: in Advances in Large Scale Systems. Citeseer. 1984.

[94] Kelsey P Hawkins et al. “Probabilistic human action prediction and wait-sensitive

planning for responsive human-robot collaboration”. In: Humanoid Robots (Hu-

manoids), 2013 13th IEEE-RAS International Conference on. IEEE. 2013, pp. 499–506.

[95] Sylvia L. Herbert et al. “FaSTrack: a Modular Framework for Fast and Guaranteed

Safe Motion Planning”. In: IEEE Conference on Decision and Control (2017).

[96] Guy Hoffman and Cynthia Breazeal. “Cost-based anticipatory action selection for

human–robot fluency”. In: IEEE Transactions on Robotics 23.5 (2007), pp. 952–961.

[97] Neville Hogan. “Impedance control: An approach to manipulation; Part II—Implementation”.

In: Journal of Dynamic Systems, Measurement, and Control 107.1 (1985), pp. 8–16.

[98] Haomiao Huang et al. “A differential game approach to planning in adversarial

scenarios: A case study on capture-the-flag”. In: 2011 IEEE International Conference

on Robotics and Automation. IEEE. 2011, pp. 1451–1456.

BIBLIOGRAPHY 224

[99] Ashesh Jain et al. “Learning preferences for manipulation tasks from online coac-

tive feedback”. In: The International Journal of Robotics Research 34.10 (2015), pp. 1296–

1313.

[100] Siddarth Jain and Brenna Argall. “Recursive Bayesian human intent recognition

in shared-control robotics”. In: 2018 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS). IEEE. 2018, pp. 3905–3912.

[101] Nathanaël Jarrassé, Themistoklis Charalambous, and Etienne Burdet. “A frame-

work to describe, analyze and generate interactive motor behaviors”. In: PloS ONE

7.11 (2012), e49945.

[102] Shervin Javdani et al. “Shared autonomy via hindsight optimization for teleop-

eration and teaming”. In: The International Journal of Robotics Research 37.7 (2018),

pp. 717–742.

[103] E. T. Jaynes. “Information Theory and Statistical Mechanics”. In: Phys. Rev. 106 (4

May 1957), pp. 620–630. doi: 10.1103/PhysRev.106.620. url: https://link.aps.
org/doi/10.1103/PhysRev.106.620.

[104] Hong J Jeon and Anca D Dragan. “Configuration Space Metrics”. In: 2018 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS). IEEE. 2018, pp. 5101–

5108.

[105] Frank Jiang et al. “Using neural networks to compute approximate and guaranteed

feasible Hamilton-Jacobi-Bellman PDE solutions”. In: arXiv preprint arXiv:1611.03158

(2016).

[106] Ananth Jonnavittula and Dylan P Losey. “I know what you meant: Learning human

objectives by (under)estimating their choice set”. In: IEEE International Conference

on Robotics and Automation (ICRA) (2021).

[107] Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. “Planning

and acting in partially observable stochastic domains”. In: Artificial Intelligence

101.1-2 (1998), pp. 99–134.

[108] Mrinal Kalakrishnan et al. “Learning objective functions for manipulation”. In:

IEEE International Conference on Robotics and Automation (ICRA). 2013, pp. 1331–

1336.

[109] Rudolf Emil Kalman. “When is a linear control system optimal?” In: Journal of Basic

Engineering 86.1 (1964), pp. 51–60.

[110] Sertac Karaman and Emilio Frazzoli. “Sampling-based algorithms for optimal mo-

tion planning”. In: The international journal of robotics research 30.7 (2011), pp. 846–

894.

[111] Sertac Karaman and Emilio Frazzoli. “Sampling-based algorithms for optimal mo-

tion planning”. In: The International Journal of Robotics Research 30.7 (2011), pp. 846–

894.

https://doi.org/10.1103/PhysRev.106.620
https://link.aps.org/doi/10.1103/PhysRev.106.620
https://link.aps.org/doi/10.1103/PhysRev.106.620

BIBLIOGRAPHY 225

[112] Vasiliy Karasev et al. “Intent-aware long-term prediction of pedestrian motion”.

In: 2016 IEEE International Conference on Robotics and Automation (ICRA). IEEE. 2016,

pp. 2543–2549.

[113] Martin Karlsson, Anders Robertsson, and Rolf Johansson. “Autonomous Interpre-

tation of Demonstrations for Modification of Dynamical Movement Primitives”. In:

IEEE International Conference on Robotics and Automation (ICRA). 2017, pp. 316–321.

[114] D.F. Keil, J. Fisac, and C. J. Tomlin. “Safe and Complete Real-Time Planning and

Exploration in Unknown Environments”. In: arXiv preprint (2018).

[115] Mahdi Khoramshahi and Aude Billard. “A dynamical system approach to task-

adaptation in physical human–robot interaction”. In: Autonomous Robots 43.4 (2019),

pp. 927–946.

[116] Mahdi Khoramshahi et al. “From human physical interaction to online motion

adaptation using parameterized dynamical systems”. In: IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS). 2018, pp. 1361–1366.

[117] Kris M Kitani et al. “Activity forecasting”. In: ECCV. 2012, pp. 201–214.

[118] Ross A Knepper and Daniela Rus. “Pedestrian-inspired sampling-based multi-

robot collision avoidance”. In: RO-MAN, 2012 IEEE. IEEE. 2012, pp. 94–100.

[119] Niklas Kochdumper and Matthias Althoff. “Sparse polynomial zonotopes: A novel

set representation for reachability analysis”. In: IEEE Transactions on Automatic

Control 66.9 (2020), pp. 4043–4058.

[120] Mykel J Kochenderfer et al. “Airspace encounter models for estimating collision

risk”. In: Journal of Guidance, Control, and Dynamics 33.2 (2010), pp. 487–499.

[121] J Zico Kolter et al. “A probabilistic approach to mixed open-loop and closed-

loop control, with application to extreme autonomous driving”. In: 2010 IEEE

International Conference on Robotics and Automation. IEEE. 2010, pp. 839–845.

[122] Florian Köpf et al. “Inverse Reinforcement Learning for Identification in Linear-

Quadratic Dynamic Games”. In: IFAC-PapersOnLine 50.1 (2017). 20th IFAC World

Congress, pp. 14902–14908. issn: 2405-8963. doi: https://doi.org/10.1016/j.
ifacol.2017.08.2537. url: http://www.sciencedirect.com/science/article/
pii/S2405896317334596.

[123] Hema Swetha Koppula and Ashutosh Saxena. “Anticipating human activities for

reactive robotic response.” In: IROS. 2013, p. 2071.

[124] S. Kousik et al. “Bridging the Gap Between Safety and Real-Time Performance in

Receding-Horizon Trajectory Design for Mobile Robots”. In: arXiv preprint (2018).

[125] Donald H. Kraft. “A software package for sequential quadratic programming”. In:

1988.

[126] Thibault Kruse et al. “Human-aware robot navigation: A survey”. In: Robotics and

Autonomous Systems 61.12 (2013), pp. 1726–1743.

https://doi.org/https://doi.org/10.1016/j.ifacol.2017.08.2537
https://doi.org/https://doi.org/10.1016/j.ifacol.2017.08.2537
http://www.sciencedirect.com/science/article/pii/S2405896317334596
http://www.sciencedirect.com/science/article/pii/S2405896317334596

BIBLIOGRAPHY 226

[127] Tomasz Piotr Kucner et al. “Enabling flow awareness for mobile robots in par-

tially observable environments”. In: IEEE Robotics and Automation Letters 2.2 (2017),

pp. 1093–1100.

[128] Markus Kuderer et al. “Feature-Based Prediction of Trajectories for Socially Com-

pliant Navigation.” In: Robotics: science and systems. 2012.

[129] Maxime Laborde and Adam Oberman. “A Lyapunov analysis for accelerated gra-

dient methods: From deterministic to stochastic case”. In: International Conference

on Artificial Intelligence and Statistics. 2020, pp. 602–612.

[130] M. Lahĳanian et al. “Iterative Temporal Planning in Uncertain Environments with

Partial Satisfaction Guarantees”. In: IEEE Trans. on Robotics 32 (2016), pp. 583–599.

[131] Benoit Landry et al. “Reach-avoid problems via sum-or-squares optimization and

dynamic programming”. In: 2018 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS). IEEE. 2018, pp. 4325–4332.

[132] Przemyslaw A Lasota and Julie A Shah. “A multiple-predictor approach to human

motion prediction”. In: ICRA. 2017, pp. 2300–2307.

[133] Przemyslaw A Lasota and Julie A Shah. “Analyzing the effects of human-aware

motion planning on close-proximity human–robot collaboration”. In: Human factors

57.1 (2015), pp. 21–33.

[134] Karen Leung et al. “On infusing reachability-based safety assurance within plan-

ning frameworks for human–robot vehicle interactions”. In: The International Journal

of Robotics Research 39.10-11 (2020), pp. 1326–1345.

[135] Sergey Levine and Vladlen Koltun. “Continuous Inverse Optimal Control with

Locally Optimal Examples”. In: ArXiv abs/1206.4617 (2012).

[136] Sergey Levine et al. “End-to-end training of deep visuomotor policies”. In: Journal

of Machine Learning Research 17.1 (2016), pp. 1334–1373.

[137] Frank L Lewis et al. Cooperative control of multi-agent systems: optimal and adaptive

design approaches. Springer Science & Business Media, 2013.

[138] Anjian Li et al. “Prediction-Based Reachability for Collision Avoidance in Au-

tonomous Driving”. In: 2021 IEEE International Conference on Robotics and Automa-

tion (ICRA) (2021).

[139] Mengxi Li et al. “Learning Human Objectives from Sequences of Physical Correc-

tions”. In: IEEE International Conference on Robotics and Automation (ICRA). 2021.

[140] Yanan Li et al. “A framework of human–robot coordination based on game theory

and policy iteration”. In: IEEE Transactions on Robotics 32.6 (2016), pp. 1408–1418.

[141] Feng-Li Lian and Richard Murray. “Real-time trajectory generation for the coop-

erative path planning of multi-vehicle systems”. In: Decision and Control, 2002,

Proceedings of the 41st IEEE Conference on. Vol. 4. IEEE. 2002, pp. 3766–3769.

BIBLIOGRAPHY 227

[142] Michael L Littman, Anthony R Cassandra, and Leslie Pack Kaelbling. “Learning

policies for partially observable environments: Scaling up”. In: International Confer-

ence on Machine Learning (ICML). 1995, pp. 362–370.

[143] Stefan B Liu et al. “Provably safe motion of mobile robots in human environments”.

In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

IEEE. 2017, pp. 1351–1357.

[144] Dylan P Losey and Marcia K O’Malley. “Including uncertainty when learning from

human corrections”. In: arXiv preprint arXiv:1806.02454 (2018).

[145] Dylan P Losey and Marcia K O’Malley. “Learning the correct robot trajectory in

real-time from physical human interactions”. In: ACM Transactions on Human-Robot

Interaction (2020).

[146] Dylan P Losey and Marcia K O’Malley. “Trajectory deformations from physical

human–robot interaction”. In: IEEE Transactions on Robotics 34.1 (2018), pp. 126–

138.

[147] Dylan P Losey et al. “A review of intent detection, arbitration, and communica-

tion aspects of shared control for physical human–robot interaction”. In: Applied

Mechanics Reviews 70.1 (2018).

[148] Dylan P Losey et al. “Physical interaction as communication: Learning robot ob-

jectives online from human corrections”. In: The International Journal of Robotics

Research (2021), p. 02783649211050958.

[149] R. Duncan Luce. Individual choice behavior: A theoretical analysis. Wiley, 1959.

[150] John Lygeros. “On reachability and minimum cost optimal control”. In: Automatica.

Vol. 40. 6. Elsevier, 2004, pp. 917–927.

[151] Wei-Chiu Ma et al. “Forecasting Interactive Dynamics of Pedestrians With Fictitious

Play”. In: CVPR. 2017.

[152] David JC MacKay, David JC Mac Kay, et al. Information theory, inference and learning

algorithms. Cambridge university press, 2003.

[153] Jim Mainprice and Dmitry Berenson. “Human–robot collaborative manipulation

planning using early prediction of human motion”. In: IEEE/RSJ International Con-

ference on Intelligent Robots and Systems (IROS). 2013, pp. 299–306.

[154] Anirudha Majumdar and Russ Tedrake. “Funnel libraries for real-time robust feed-

back motion planning”. In: Int. J. Robotics Research (June 2017). doi: 10.1177/
0278364917712421.

[155] Kostas Margellos and John Lygeros. “Hamilton–Jacobi formulation for reach–avoid

differential games”. In: IEEE Transactions on automatic control 56.8 (2011), pp. 1849–

1861.

https://doi.org/10.1177/0278364917712421
https://doi.org/10.1177/0278364917712421

BIBLIOGRAPHY 228

[156] José Ramón Medina, Tamara Lorenz, and Sandra Hirche. “Synthesizing anticipa-

tory haptic assistance considering human behavior uncertainty”. In: IEEE Transac-

tions on Robotics 31.1 (2015), pp. 180–190.

[157] Ian Mitchell. A Toolbox of Level Set Methods.http://people.cs.ubc.ca/~mitchell/
ToolboxLS/index.html. 2009.

[158] Ian M. Mitchell, A. M. Bayen, and C. J. Tomlin. “A time-dependent Hamilton-Jacobi

formulation of reachable sets for continuous dynamic games”. In: IEEE Transactions

on Automatic Control 50.7 (2005), pp. 947–957. doi: 10.1109/TAC.2005.851439.
url: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=
1463302.

[159] John B Moore and Uwe Helmke. “Optimization and Dynamical Systems”. In:

(1996).

[160] Shingo Murata et al. “Achieving Human–Robot Collaboration with Dynamic Goal

Inference by Gradient Descent”. In: International Conference on Neural Information

Processing. Springer. 2019, pp. 579–590.

[161] Thulasi Mylvaganam, Mario Sassano, and Alessandro Astolfi. “A differential game

approach to multi-agent collision avoidance”. In: IEEE Transactions on Automatic

Control 62.8 (2017), pp. 4229–4235.

[162] Andrew Y Ng and Stuart J Russell. “Algorithms for inverse reinforcement learn-

ing”. In: International Conference on Machine Learning (ICML). 2000, pp. 663–670.

[163] KN Niarchos and John Lygeros. “A neural approximation to continuous time reach-

ability computations”. In: Proceedings of the 45th IEEE Conference on Decision and

Control. IEEE. 2006, pp. 6313–6318.

[164] Stefanos Nikolaidis et al. “Game-theoretic modeling of human adaptation in human-

robot collaboration”. In: Proceedings of the 2017 ACM/IEEE international conference

on human-robot interaction. 2017, pp. 323–331.

[165] Stefanos Nikolaidis et al. “Human-robot mutual adaptation in shared autonomy”.

In: ACM/IEEE International Conference on Human-Robot Interaction (HRI). 2017, pp. 294–

302.

[166] Reza Olfati-Saber and Richard M Murray. “Distributed cooperative control of multi-

ple vehicle formations using structural potential functions”. In: IFAC world congress.

Vol. 15. Citeseer. 2002, pp. 242–248.

[167] Takayuki Osa et al. “An Algorithmic Perspective on Imitation Learning”. In: Foun-

dations and Trends in Robotics 7.1-2 (2018), pp. 1–179.

[168] Lev Semenovich Pontryagin. Mathematical theory of optimal processes. CRC press,

1987.

[169] Morgan Quigley et al. “ROS: an Open-Source Robot Operating System”. In: ICRA

Workshop on Open Source Software. 2009.

http://people.cs.ubc.ca/~mitchell/ToolboxLS/index.html
http://people.cs.ubc.ca/~mitchell/ToolboxLS/index.html
https://doi.org/10.1109/TAC.2005.851439
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1463302
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1463302

BIBLIOGRAPHY 229

[170] Sean Quinlan and Oussama Khatib. “Elastic bands: Connecting path planning and

control”. In: IEEE International Conference on Robotics and Automation (ICRA). 1993,

pp. 802–807.

[171] Rajesh Rajamani. Vehicle dynamics and control. Springer Science & Business Media,

2011.

[172] Saša V Raković. “Set theoretic methods in model predictive control”. In: Nonlinear

Model Predictive Control. Springer, 2009, pp. 41–54.

[173] Deepak Ramachandran and Eyal Amir. “Bayesian inverse reinforcement learning”.

In: Urbana 51.61801 (2007), pp. 1–4.

[174] Amir Rasouli et al. “PIE: A large-scale dataset and models for pedestrian intention

estimation and trajectory prediction”. In: ICCV. 2019, pp. 6262–6271.

[175] Nathan D Ratliff, J Andrew Bagnell, and Martin A Zinkevich. “Maximum margin

planning”. In: International Conference on Machine Learning (ICML). 2006, pp. 729–

736.

[176] Ellis Ratner et al. “Efficient Dynamics Estimation With Adaptive Model Sets”. In:

IEEE Robotics and Automation Letters 6.2 (2021), pp. 2373–2380.

[177] Harish Chaandar Ravichandar and Ashwin Dani. “Human intention inference and

motion modeling using approximate em with online learning”. In: 2015 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS). IEEE, pp. 1819–1824.

[178] Christoph Rösmann et al. “Online trajectory prediction and planning for social

robot navigation”. In: AIM. 2017.

[179] Vicenc Rubies Royo et al. “Classification-based Approximate Reachability with

Guarantees Applied to Safe Trajectory Tracking”. In: arXiv preprint arXiv:1803.03237

(2018).

[180] Wenjie Ruan, Xiaowei Huang, and Marta Kwiatkowska. “Reachability analysis of

deep neural networks with provable guarantees”. In: arXiv preprint arXiv:1805.02242

(2018).

[181] Vicenç Rubies-Royo and Claire Tomlin. “Recursive regression with neural net-

works: Approximating the hji pde solution”. In: arXiv preprint arXiv:1611.02739

(2016).

[182] Andrey Rudenko, Luigi Palmieri, and Kai O Arras. “Predictive planning for a

mobile robot in human environments”. In: Proc. of the IEEE Int. Conf. on Robotics

and Automation (ICRA), Works. on AI Planning and Robotics. 2017.

[183] Andrey Rudenko et al. “Human Motion Trajectory Prediction: A Survey”. In: ĲRR.

2019.

[184] Dorsa Sadigh et al. “Active Preference-Based Learning of Reward Functions”. In:

Robotics: Science and Systems. 2017.

BIBLIOGRAPHY 230

[185] Dorsa Sadigh et al. “Data-driven probabilistic modeling and verification of human

driver behavior”. In: AAAI Spring Symposium-Technical Report. 2014, pp. 56–61.

[186] Dorsa Sadigh et al. “Information gathering actions over human internal state”. In:

2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE.

2016, pp. 66–73.

[187] Dorsa Sadigh et al. “Planning for Autonomous Cars that Leverage Effects on Hu-

man Actions”. In: Robotics: Science and Systems (RSS) (2016).

[188] Tim Salzmann et al. “Trajectron++: Dynamically-feasible trajectory forecasting with

heterogeneous data”. In: European Conference on Computer Vision. Springer. 2020,

pp. 683–700.

[189] S. Sarid, Bingxin X., and H. Kress-gazit. “Guaranteeing high-level behaviors while

exploring partially known maps”. In: RSS. 2012.

[190] Edward Schmerling et al. “Multimodal Probabilistic Model-Based Planning for

Human-Robot Interaction”. In: arXiv preprint arXiv:1710.09483 (2017).

[191] Friederike Schneemann and Patrick Heinemann. “Context-based detection of pedes-

trian crossing intention for autonomous driving in urban environments”. In: IROS.

2016.

[192] John Schulman et al. “Motion planning with sequential convex optimization and

convex collision checking”. In: The International Journal of Robotics Research 33.9

(2014), pp. 1251–1270.

[193] Wilko Schwarting, Javier Alonso-Mora, and Daniela Rus. “Planning and decision-

making for autonomous vehicles”. In: Annual Review of Control, Robotics, and Au-

tonomous Systems 1 (2018), pp. 187–210.

[194] Wilko Schwarting et al. “Social behavior for autonomous vehicles”. In: Proceedings

of the National Academy of Sciences 116.50 (2019), pp. 24972–24978.

[195] Bin Shi et al. “Understanding the acceleration phenomenon via high-resolution

differential equations”. In: arXiv preprint arXiv:1810.08907 (2018).

[196] Jennifer C Shih. “Predicting Stochastic Human Forward Reachable Sets Based on

Learned Human Behavior”. In: 2019 American Control Conference (ACC). IEEE. 2019,

pp. 5247–5253.

[197] Pannaga Shivaswamy and Thorsten Joachims. “Coactive Learning”. In: Journal of

Artificial Intelligence Research 53 (2015), pp. 1–40.

[198] David Silver and Joel Veness. “Monte-Carlo planning in Large POMDPs”. In: Ad-

vances in Neural Information Processing Systems (NeurIPS). 2010, pp. 2164–2172.

[199] Sumeet Singh et al. “Robust online motion planning via contraction theory and

convex optimization”. In: Proc. IEEE Int. Conf. Robotics and Automation. 2017.

BIBLIOGRAPHY 231

[200] Sumeet Singh et al. “Robust Tracking with Model Mismatch for Fast and Safe Plan-

ning: an SOS Optimization Approach”. In: arXiv preprint arXiv:1808.00649 (2018).

[201] Emrah Akin Sisbot et al. “A human aware mobile robot motion planner”. In: IEEE

Transactions on Robotics 23.5 (2007), pp. 874–883.

[202] Beate Sodian, Barbara Schoeppner, and Ulrike Metz. “Do infants apply the principle

of rational action to human agents?” In: Infant Behavior and Development 27.1 (2004),

pp. 31–41.

[203] Adhiraj Somani et al. “DESPOT: Online POMDP planning with regularization”. In:

Advances in Neural Information Processing Systems (NeurIPS). 2013, pp. 1772–1780.

[204] Mark W Spong, Seth Hutchinson, and Mathukumalli Vidyasagar. Robot Modeling

and Control. Vol. 3. New York, NY, USA: John Wiley & Sons, 2006.

[205] Liting Sun, Xiaogang Jia, and Anca D Dragan. “On complementing end-to-end

human motion predictors with planning”. In: 2021 Robotics: Science and Systems

(RSS). 2021.

[206] Zachary Sunberg and Mykel Kochenderfer. “POMCPOW: An online algorithm for

POMDPs with continuous state, action, and observation spaces”. In: arXiv preprint

arXiv:1709.06196 (2017).

[207] Andrea L Thomaz and Cynthia Breazeal. “Teachable robots: Understanding human

teaching behavior to build more effective robot learners”. In: Artificial Intelligence

172.6-7 (2008), pp. 716–737.

[208] Andrea L Thomaz and Maya Cakmak. “Learning about objects with human teach-

ers”. In: ACM/IEEE International Conference on Human-Robot Interaction (HRI). 2009,

pp. 15–22.

[209] Ran Tian, Liting Sun, and Masayoshi Tomizuka. “Bounded risk-sensitive markov

games: Forward policy design and inverse reward learning with iterative reasoning

and cumulative prospect theory”. In: AAAI Conference on Artificial Intelligence. 2021.

[210] Ran Tian et al. “Anytime Game-Theoretic Planning with Active Reasoning About

Humans’ Latent States for Human-Centered Robots”. In: 2021 IEEE International

Conference on Robotics and Automation (ICRA). IEEE. 2021.

[211] Ran Tian et al. “Safety Assurances for Human-Robot Interaction via Confidence-

aware Game-theoretic Human Models”. In: International Conference on Robotics and

Automation (ICRA) (2022).

[212] Ekaterina Tolstaya et al. “Identifying driver interactions via conditional behavior

prediction”. In: 2021 IEEE International Conference on Robotics and Automation (ICRA).

IEEE. 2021, pp. 3473–3479.

[213] Alejandro Torreño et al. “Cooperative multi-agent planning: a survey”. In: ACM

Computing Surveys (CSUR) 50.6 (2017), p. 84.

BIBLIOGRAPHY 232

[214] Peter Trautman and Andreas Krause. “Unfreezing the robot: Navigation in dense,

interacting crowds”. In: Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ Inter-

national Conference on. IEEE. 2010, pp. 797–803.

[215] Jur Van den Berg, Ming Lin, and Dinesh Manocha. “Reciprocal velocity obstacles

for real-time multi-agent navigation”. In: Robotics and Automation, 2008. ICRA 2008.

IEEE International Conference on. IEEE. 2008, pp. 1928–1935.

[216] Pravin P Varaiya. “On the existence of solutions to a differential game”. In: SIAM

Journal on Control 5.1 (1967), pp. 153–162.

[217] John Von Neumann and Oskar Morgenstern. Theory of games and economic behavior.

Princeton University Press Princeton, NJ, 1945.

[218] Heinrich Von Stackelberg. Market structure and equilibrium. Springer Science & Busi-

ness Media, 2010.

[219] R. Walambe et al. “Optimal trajectory generation for car-type mobile robot using

spline interpolation”. In: IFAC. 1. 2016, pp. 601–606.

[220] Zĳian Wang, Riccardo Spica, and Mac Schwager. “Game Theoretic Motion Planning

for Multi-Robot Racing”. In: (2018).

[221] Kevin Waugh, Brian D Ziebart, and J Andrew Bagnell. “Inverse Correlated Equi-

librium for Matrix Games”. In: Advances in Neural Information Processing Systems

(NIPS) (2010).

[222] Ashia C Wilson, Benjamin Recht, and Michael I Jordan. “A lyapunov analysis

of momentum methods in optimization”. In: Journal of Machine Learning Research

(2021).

[223] Albert Wu and Jonathan P How. “Guaranteed infinite horizon avoidance of un-

predictable, dynamically constrained obstacles”. In: Autonomous robots 32.3 (2012),

pp. 227–242.

[224] Zheng Wu et al. “Efficient sampling-based maximum entropy inverse reinforce-

ment learning with application to autonomous driving”. In: IEEE Robotics and

Automation Letters 5.4 (2020), pp. 5355–5362.

[225] Markus Wulfmeier, Peter Ondruska, and Ingmar Posner. “Maximum entropy deep

inverse reinforcement learning”. In: arXiv preprint arXiv:1507.04888 (2015).

[226] Insoon Yang et al. “One-shot computation of reachable sets for differential games”.

In: Proceedings of the 16th international conference on Hybrid systems: computation and

control. 2013, pp. 183–192.

[227] Liren Yang and Necmiye Ozay. “Scalable zonotopic under-approximation of back-

ward reachable sets for uncertain linear systems”. In: IEEE Control Systems Letters

6 (2021), pp. 1555–1560.

[228] Hang Yin et al. “An ensemble inverse optimal control approach for robotic task

learning and adaptation”. In: Autonomous Robots 43.4 (2019), pp. 875–896.

BIBLIOGRAPHY 233

[229] Tianhe Yu et al. “One-shot imitation from observing humans via domain-adaptive

meta-learning”. In: arXiv preprint arXiv:1802.01557 (2018).

[230] Wei Zhan et al. “INTERACTION Dataset: An INTERnational, Adversarial and Co-

operative moTION Dataset in Interactive Driving Scenarios with Semantic Maps”.

In: arXiv:1910.03088 [cs, eess] (Sept. 2019).

[231] Zixu Zhang and Jaime F Fisac. “Safe Occlusion-aware Autonomous Driving via

Game-Theoretic Active Perception”. In: arXiv preprint arXiv:2105.08169 (2021).

[232] Hang Zhao et al. “Tnt: Target-driven trajectory prediction”. In: arXiv preprint

arXiv:2008.08294 (2020).

[233] Jiangchuan Zheng, Siyuan Liu, and Lionel M. Ni. “Robust Bayesian Inverse Re-

inforcement Learning with Sparse Behavior Noise”. In: Proceedings of the Twenty-

Eighth AAAI Conference on Artificial Intelligence. AAAI’14. AAAI Press, 2014.

[234] Dingjiang Zhou, Zĳian Wang, and Mac Schwager. “Agile Coordination and As-

sistive Collision Avoidance for Quadrotor Swarms Using Virtual Structures”. In:

IEEE Transactions on Robotics 34.4 (2018), pp. 916–923.

[235] Dingjiang Zhou et al. “Fast, On-line Collision Avoidance for Dynamic Vehicles

using Buffered Voronoi Cells”. In: IEEE Robotics and Automation Letters (RA-L) 2

(2017), pp. 1047–1054. doi: 10.1109/LRA.2017.2656241.

[236] Xiaojin Zhu. “Machine Teaching: An Inverse Problem to Machine Learning and an

Approach Toward Optimal Education”. In: AAAI. 2015, pp. 4083–4087.

[237] Brian D Ziebart et al. “Maximum entropy inverse reinforcement learning.” In: Pro-

ceedings of the Twenty-Third AAAI Conference on Artificial Intelligence. Vol. 8. Chicago,

IL, USA. 2008, pp. 1433–1438.

[238] Brian D. Ziebart et al. “Planning-based prediction for pedestrians”. In: Intelligent

Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on. IEEE.

2009, pp. 3931–3936.

https://doi.org/10.1109/LRA.2017.2656241

	Contents
	List of Figures
	List of Tables
	Introduction
	Thesis Overview and Contributions

	Background and Preliminaries
	Dynamical Systems
	From Optimal Control to Single-Agent Safety
	From Dynamic Games to Multi-Agent Safety
	Cost Function Design via Inverse Reinforcement Learning
	Human Modelling & Behavior Prediction

	Safe Robot Navigation Despite Imperfect Human Models
	Confidence-aware Human Models for Robot Planning
	Prior Work
	Problem Setup
	Confidence-Aware Human Motion Prediction
	Prediction Examples
	Safe Probabilistic Planning and Tracking
	Connections to Reachability Analysis
	Hardware Demonstration with Real Humans
	Conclusion

	Confidence-aware Game-theoretic Human Models
	Related Work
	Background
	Confidence-aware Role Inference for Safe Human-Robot Interaction
	Experimental Setup
	Simulated Human-Robot Interaction Results
	Evaluation with Real Traffic Data
	Discussion & Conclusion

	Scalable Multi-Human, Multi-Robot Collision Avoidance
	The SCAFFOLD Framework
	Robot Planning and Control
	Human Predictions
	Sequential Trajectory Planning
	Implementation and Experimental Results
	Discussion & Conclusion

	Robust Human Motion Prediction
	Problem Setup
	Background: Robust vs. Intent Prediction
	A Robust-Control Framework for Intent-Driven Human Prediction
	Prediction Comparisons
	Implications for Safe Motion Planning
	Conclusion
	Derivation: Continuous-time Distribution Dynamics

	Formalizing Safety Analysis of Adaptive Human Models
	Analyzing Human Models that Adapt Online
	Related Work
	Problem Formulation & Solution
	Encoding Analysis Questions
	Use Cases of Our Analysis Tool

	 Safety for HRI Beyond Collision-Avoidance
	Learning Robot Objectives from Physical Human-Robot Interaction
	Prior Work
	Formalizing Physical Human-Robot Interaction
	Approximate Solutions for Online Learning
	All-at-Once Online Learning
	One-at-a-Time Online Learning
	Optimally Responding to pHRI
	Simulations
	User Studies
	Discussion
	Detailed Derivation: Laplace Approximation & MAP
	Conclusion

	Quantifying Hypothesis Space Misspecification
	Related Work
	Problem Formulation and Approach
	Algorithmic Approach: Demonstrations
	Algorithmic Approach: Corrections
	Case Studies
	User Study on Learning from Corrections
	Discussion
	Practical Considerations
	Laplace Approximation in Equation (9.19)

	Conclusion and Future Work
	Bibliography

