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ABSTRACT
Understanding the spatial scale sensitivity of cellular automata is
crucial for improving the accuracy of land use change simulation.
We propose a framework based on a response surface method to
comprehensively explore spatial scale sensitivity of the cellular
automata Markov chain (CA-Markov) model, and present
a hybrid evaluation model for expressing simulation accuracy
that merges the strengths of the Kappa coefficient and of
Contagion index. Three Landsat-Thematic Mapper remote sensing
images of Wuhan in 1987, 1996, and 2005 were used to extract
land use information. The results demonstrate that the spatial
scale sensitivity of the CA-Markov model resulting from individual
components and their combinations are both worthy of attention.
The utility of our proposed hybrid evaluation model and response
surface method to investigate the sensitivity has proven to be
more accurate than the single Kappa coefficient method and
more efficient than traditional methods. The findings also show
that the CA-Markov model is more sensitive to neighborhood size
than to cell size or neighborhood type considering individual
component effects. Particularly, the bilateral and trilateral interac-
tions between neighborhood and cell size result in a more remark-
able scale effect than that of a single cell size.
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1. Introduction

Cellular Automata (CA) has been recognized as one of the most promising methods to
analyze complex systems, which is widely applied for simulating land use changes
(White and Engelen 1997, Dietzel and Clarke 2006, Chen et al. 2017, Li et al. 2017).
The changes resulting from the biophysical environment, socio-economic conditions,
and human activities are often very complex (Valbuena et al. 2010, Wang et al. 2011a).
Particularly, the complexity becomes more serious when these driving factors interact on
each other (Wu 2002, Verburg and Veldkamp 2005). Numerous studies have suggested
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that CA models efficiently simulate these complex spatiotemporal processes and that
they integrate well with raster-based remote sensing (RS) data (Torrens and O’Sullivan
2001, Li and Yeh 2002, Liu et al. 2010, Feng and Liu 2013). Therefore, research of land
use change simulation using CA has been a hot topic in the field of geographic
information science.

Because of the complexity of land use and cover change (Chen et al. 2014, van
Vliet et al. 2016) and the hierarchy of CA models (Messina et al. 2008), CA-based land
use change simulation results are sensitive to variations in their spatial scales (Li and
Yeh 2001, Salap-Ayca et al. 2018), with different spatial scale combinations resulting
in different outcomes (Moreno et al. 2009). This spatial scale sensitivity is usually
generated from four components: cell size, neighborhood size, neighborhood type,
and spatial extent (Menard and Marceau 2005). Among them, spatial extent is often
associated with a given study case, such that it does not have a universal feature of
spatial scale sensitivity during CA-based land use change simulation. Therefore, one
should pay more attention to the other three components. As crucial parts of the CA
model, their scale sensitivities have been extensively studied since 2000. For exam-
ple, cell size is negatively correlated with simulation accuracy (Samat 2006), and
Wang et al. (2011b) further explained the reasons behind the scale sensitivity in
detail. Wu et al. (2012) concluded that a larger neighborhood size with planar
neighborhood type contributed to a higher prediction accuracy, and Dahal and
Chow (2015) used 30 neighborhood configurations to test the scale sensitivity and
achieved an even more accurate simulation result. Both addressed individual com-
ponents rather than the multiple component combinations of CA. Kocabas and
Dragicevic (2006) used a comprehensive sensitivity analysis approach and concluded
that the neighborhood configuration had a significant influence on the CA results
apart from cell size. Pan et al. (2010) explored means in which multiple scale
variations, including cell size and neighborhood configuration, as well as the spatial
extent of the images, affected CA accuracy. Despite these significant contributions to
the understanding of scale sensitivity of individual components in land use change
simulation, no substantial research has yet been attempted to investigate how the
sensitivity relates to the interactions of different scale combinations. After all, the
existing interactions within the CA model at different scale combinations may ser-
iously affect the simulation accuracy if there are no measures implemented to reduce
the scale sensitivity.

The transition rule is another core part of CA theory (Liu et al. 2008). Many
transition rules have been formulated based on various internal laws of land use
conversion, such as Markov chain (Kamusoko et al. 2009), neural network (Li and Yeh
2002), genetic algorithm (Shan et al. 2008), ant colony optimization (Liu et al. 2008),
and data mining (Li and Yeh 2004). Among them, the CA-Markov model has been
increasingly regarded as a robust approach for simulating land use changes
(Kamusoko et al. 2009). One important advantage of CA-Markov is simultaneously
predicting the trajectory of land use change among various categorical states
(Pontius and Malanson 2005, Feng 2017) and simulating spatio-temporal dynamic
changes (Li et al. 2016) to improve the simulation accuracy as much as possible,
although it only models land use changes using a constant time step (Jenerette and
Wu 2001). Guan et al. (2011) forecasted the future land use changes in Saga during
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the period 2015–2042 integrating the CA-Markov model with natural and socio-
economic data. Halmy et al. (2015) used the CA-Markov integrated approach to
predict land use change and project changes by extrapolating current trends in
the northwestern desert of Egypt. Hyandye and Martz (2017) simulated Usangu
catchment’s land use change for 2020 using CA-Markov analysis to investigate the
effect of land use change on water balance in the catchment. As for the scale
sensitivity of the CA-Markov model for land use change simulation, Wu et al.
(2013b) used the orthogonal test method to examine the interaction at different
scale combinations. Nevertheless, using this methodology to identify the optimal
scale combination of the CA model among a severely limited range, in general, may
produce misleading results, or even miss the optimal scale combination. Fortunately,
the response surface method (RSM), which merges the strengths of the steepest
ascent method with those of the central composite design, has significantly
improved our ability to determine the optimal scale combination (Joyce and Leung
2013). In contrast, RSM is not only more efficient in computational tasks (Zhang and
Liu 2015) but is also more explicit in interaction analyses (Tran et al. 2016) than the
orthogonal test method could be. These characteristics allow one to fully consider
more potential combinations in the CA model to better understand the scale sensi-
tivity of CA-Markov in land use change simulation. Notably, the operational objects
of any transition rule remain the cell and neighborhood during the whole CA
simulation. This means that the spatial scale sensitivity of the transition rule essen-
tially originates from that of the cell and neighborhood.

The objective of this study was to use the RSM to explore the scale sensitivity of the
CA-Markov model in land use change simulation. In particular, we investigated whether
or not the components or their combinations interact at different spatial scales, and
then determined how they affect the simulation accuracy. This will allow governmental
organizations to identify the optimal scale combination for predicting land use change
to achieve better decision making for urban development planning.

2. Study area and data

2.1. Study area and data

Wuhan, similar to other Chinese cities such as Beijing, Shanghai, and Shenzhen, has
undergone rapid land use change over the last three decades (Wu et al. 2014). Between
the middle 1980s and early 2010s, Wuhan underwent two important development
stages. One was the rapid urban construction because of the support of the practice
market economy from the Chinese government, and the other was urban economic
recovery because of the implementation of a series of key transportation projects. Given
that a large area of arable land has been converted to urban land use in Wuhan, it
provides a good case in which to test the scale sensitivity of CA. This area is situated in
the eastern part of Hubei Province, centered at 113°41ʹ115°05ʹE longitude and 29°58ʹ-31°
22N’ latitude as shown in Figure 1. The administrative area of Wuhan covers approxi-
mately 8549 km2, approximately 10.4% of which is the central district, while the
remaining 89.6% consists of rural districts.
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2.2. Image and image pre-processing

Three Landsat-Thematic Mapper (TM) remote sensing images of Wuhan (provided by the
Computer Network Information Center) in 1987, 1996, and 2005 were used to map the
land use at a 30-m resolution. These images were projected to the Universal Transverse
Mercator (UTM) system (datum WGS84 and UTM Zone N49) and resampled using the
maximum likelihood method. After ENVI@RSI 5.1 was used to pre-process these data,
they were then converted into a TIFF format in ArcGIS@ESRI 10.2. To facilitate the
computation and model operation, the land use types in the original images were finally
reclassified into the five shown in Figure 2: water, construction land, forest, arable land,
and unused land.

Figure 1. Location of the study area, Wuhan, China.

Figure 2. Three land use classification maps of Wuhan: (a) 1987, (b) 1996, and (c) 2005.
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3. Methods

3.1. Markov chain analysis

The Markov chain analysis is a stochastic process model that makes use of the
transition probability to simulate land use change between two land use types
(Mondal and Southworth 2010). The transition probability (Pij) is determined by the
number of pixels that change from land use type i in time t to land use type j in time
t þ 1 as follows:

Pij ¼ nij=ni (1)

Xm
j¼1

Pij ¼ 1 (2)

whereniis the total number of pixels of type i, nij is the number of pixels that transform
from type i to type j, and m is the number of land use types. The transition probability
matrix P，which is composed of Pij, is used to analyze the change from time t to t þ 1 as
follows:

Vtþ1 ¼ P� Vt (3)

where Vtþ1and Vt are two consecutive state vectors at timet þ 1and t, respectively.

3.2. RSM for spatial scale sensitivity

The scale sensitivity of CA-Markov is mainly in relation to three factors: cell size,
neighborhood size, and neighborhood type. We used the RSM to explore their effects
on simulation accuracy. There are two key steps, namely the experimental design of the
steepest ascent method and the central composite design.

3.2.1. Experimental design of the steepest ascent method
To minimize the scope of the experimental design and approach the optimal scale as
rapidly as possible, the steepest ascent method was used to aggregate the variations in
the aforementioned three factors from a coarse scale to fine scale. The steepest ascent
method can take advantage of the potential information involved in the optimal scale to
describe a particular response, which is expressed by an object function value. This is
helpful in that it allows one to obtain reasonable experimental combinations, rather
than subjectively selecting or guessing as is typical. This procedure does not stop until
the combination closest to the optimal scale is fully identified.

The neighborhood types used in this study, Moore and Von Neumann, are the most
commonly applied in the two-dimensional raster-based CA-Markov method (Balzter
et al. 1998, Wu et al. 2012). Because of the negative correlation between the simulation
accuracy and the size of the cell and neighborhood, their sizes are initially set at a coarse
scale and progress to a fine scale. These scales and their combinations are sufficient to
explore the potential information regarding how the scale sensitivity behaves during
land use change simulation, such that one can determine finite center points from
numerous initial points on behalf of different scales.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 5



3.2.2. Central composite design
Central composite design (CCD) was applied to optimize the particular response
affected by the aforementioned predetermined independent variables. The extraction
variables included cell size (X1), neighborhood size (X2) and neighborhood type (X3).
Both X1 and X2 were coded at five levels (−1.41, −1, 0, 1, and 1.41) representing the
lowest, lower, middle, higher, and highest values, while X3 was coded at its two levels
(−1 and 1) that represent the Moore and Von Neumann neighborhoods, respectively.
These coded values were generated in the software of Design-Expert@ Stat-Ease 8.0.6.
During the central composite design process, the actual values corresponding to
these coded values were provided with consideration of the data situation. Among
them, the maximum, middle, and minimum actual values of cell and neighborhood
sizes, which correspond to these coded values at three levels (−1.41, 0, and 1.41),
were directly derived from the experimental results of the steepest ascent method.
Other actual values were calculated using the ratio of the coded values and using the
determined cell size as well as the neighborhood size. The calculated actual values of
cell size needed to be rounded to the nearest integral multiple of the raw pixel
resolution to provide convenience during the RS image processing, and the calcu-
lated actual values of neighborhood size needed to be rounded to the nearest odd
number to meet the operating requirement of the CA-Markov model. Then, we used
the central composite design, which integrates the aforementioned different spatial
scale combinations with the corresponding simulation accuracy evaluation indices, to
build a series of trials to fully explore the spatial scale sensitivity of the CA-Markov
land use change simulation. The number of trials was determined by the number of
variables, and the scheme of the experiment was designed according to the actual
values of these variables.

To quantify the unilateral, bilateral, and trilateral effects of cell size (X1), neighborhood
size (X2), and neighborhood type (X3) on the CA-Markov land use change simulation,
a third-order equation was employed to fit these three variables using the least squares
regression method as follows:

Y ¼ a0 þ
X1

i; j ¼ 0
iþ j � 1

bijx
i
1x

j
2x

1�i�j
3 þ

X2
i; j ¼ 0
iþ j � 2

cijx
i
1x

j
2x

2�i�j
3 þ

X3
i; j ¼ 0
i þ j � 3

dijx
i
1x

j
2x

3�i�j
3 (4)

where Y is the response value; x1,x2, andx3 are the predetermined independent vari-
ables; a0 is the intercept; and bij,cij, and dij are the regression coefficients for the linear,
quadratic and cubic components, respectively. In this study, the analysis of variance
(ANOVA) test was employed to determine the statistical significance of these regression
coefficients, and the model adequacy of the third-order equation to the responses was
estimated by the coefficient of determination (R2). The statistical significance of the
terms was evaluated by calculating the F value at the level of p < 0.05. We replicated
each experiment and recorded the hybrid evaluation values as the response. Once the
fitted regression equations and the ANOVA test were completed, the three-dimensional
(3D) response surface and contour plots were generated using the Design-Expert@ Stat-
Ease 8.0.6 software. They were drawn by running any two variables while maintaining
the others constant.
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3.3. Hybrid evaluation model of simulation accuracy

The sensitivity evaluation of CA is often quantified by the accuracy of land use change
simulation. Previous studies have shown that the Kappa coefficient is the most com-
monly used method to evaluate the accuracy of land use change CA-based simulation
(Kocabas and Dragicevic 2006, Fuglsang et al. 2013, Al-Sharif and Pradhan 2014). It is
a statistical measure of the agreement between the simulated land use map and the
classified land use map (van Vliet et al. 2011), but fails to describe the detailed spatial
distribution of the CA-based simulation error (Samat 2006). In terms of the spatial scale-
induced agreement, it is necessary to provide both a statistical solution to the simulation
accuracy of the CA-Markov model at the total level and a spatial solution for its error
distribution at the local level. To describe the detailed spatial error distribution, the
Contagion index from the landscape, which can quantitatively measure both patch type
interspersion and patch dispersion at the landscape level (McGarigal 2015), was intro-
duced. During the evaluation of land use change simulation accuracy, we used the
Contagion index to quantify the interspersion between error patches and non-error
patches, and the spatial distribution of a certain patch type. Therefore, we built a hybrid
model to express the spatial scale sensitivity of the CA-Markov model for land use
change simulation, which integrated the Kappa coefficient with the Contagion index
as follows:

H ¼ WkPk þWc A� Pcð Þ (5)

where H is the value of the hybrid evaluation. It represents the land use change
simulation accuracy of CA-Markov at a certain scale combination, which is the observa-
tional value corresponding to response value Y in Equation (4). PkandPcare the Kappa
coefficient and the Contagion index, respectively, that are standardized using the
Z-score method. Pkis positively related to simulation accuracy, whilePcis negatively
related. Ais the maximum interval distance of the post Z-score standardization to
make the hybrid evaluation value greater than 0. Wkand Wcare the weights of the
Kappa coefficient and contagion index, respectively.

The Kappa coefficient was calculated in the CROSSTAB module of IDRISI Andes@ Clark
University Laboratory 15.0 by comparing the simulated land use map to the classified
land use map. Meanwhile, we also obtained a cross-classification image that contains
the information regarding the simulation error distribution and then used for calculating
the contagion index as follows (McGarigal 2015):

CONTAG ¼
Xm
i¼1

Xm
k¼1

Pi � eik=
Xm
k¼1

eik

 !
ln Pi � eik=

Xm
k¼1

eik

 !" #
=2 lnmþ 1

( )
� 100 (6)

where CONTAG is the Contagion index value; Pi is the proportion of the landscape
occupied by land use patch typei, which was classified during the land use change
simulation experiment; eikis the number of adjacencies between the pixels of land use
patch typesiandkbased on the double-count method; and m is the number of land use
patch types that are present in the landscape. After the cross-classification image was
reclassified as an error patch or non-error patch in ArcGIS@ ESRI 10.2, the contagion
index was calculated using Fragstats@ UMass Landscape Ecology Lab 4.2. The contagion
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index approaches 0 when the spatial distribution error is maximally disaggregated.
Conversely, it approaches 100 when the error is maximally aggregated. For accurate
simulation of land use change, the uniformity of the spatial distribution error is very
important. A lower contagion index means the spatial error is maximally disaggregated
and there is equal distribution. That is to say, the contagion index is negatively related to
simulation accuracy.

Determining the weights of the Kappa coefficient and contagion index is also a key
step in the hybrid evaluation model of spatial scale sensitivity. Here, Wkand Wcwere
determined using the entropy method, which is an objective method of weight deter-
mination. This method determines weights according to the information provided by
the Kappa coefficient and contagion index in quantifying the scale sensitivity of the CA-
Markov model. The weights were calculated using MATLAB@ MathWorks R2012a, and
a detailed explanation of entropy weight has been provided by (Zou et al. 2006).

3.4. Flow of exploring the spatial scale sensitivity of the CA-Markov model

The framework used to explore the spatial scale sensitivity of the CA-Markov model for
land use change simulation is shown in Figure 3. In order to avoid the subjective choice
of transition rules, we used the collection of transition suitability maps without any other
factors, obtained by constant prediction based on a transition probability matrix. In the
experimental design of the steepest ascent method, the cell and neighborhood sizes
were set as 330 m, 270 m, 210 m, 150 m, 90 m, and 30 m and 23, 19, 15, 11, 7, and 3,
respectively, and the neighborhood types were Von Neumann and Moore neighbor-
hoods. After simulating the land use changes using the CA-Markov model with these
different scale combinations, the potential center points at the optimal scale were
chosen by comparing the hybrid evaluation values. Then, the experimental scheme of
the central composite, employing these center points, was designed using Design-
Expert@ Stat-Ease 8.0.6. Likewise, the trials of different scale combinations in the central
composite design were performed using the IDRISI software. Finally, we obtained the
optimal scale combination and then discussed the individual component effect as well
as component combination interaction effect via a comprehensive analysis using the
ANOVA test and contour and 3D response surface plots.

4. Results

4.1. CA-Markov simulation results of land use change

The nature of land use change from 1987 to 1996 can be quantified by the transition
trend as depicted from the Markov transition probability matrices. According to
Equation (1), we used both classification land use maps for 1987 and 1996 to calculate
a series of Markov transition probability matrices at different cell sizes. During the
experiments using the steepest ascent method and central composite design, 6 and
26 transition probability matrices were obtained, respectively. Because the transition
probability matrix is related to cell size rather than neighborhood size and neighbor-
hood type in the CA-Markov model, there were six transition probability matrices from
the experiment using the steepest ascent method. For example, the transition
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Figure 3. Flowchart for exploring the spatial scale sensitivity of the CA-Markov model using the RSM.
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probability matrix at a cell size of 30 m during the experiment of the steepest ascent
method is provided in Table 1. It shows that the construction land yields the highest
transition probability (0.6385), followed by arable land (0.6030), water (0.5712), forest
(0.3208), and unused land (0.0415) in a diagonal line. This result indicates that construc-
tion land, arable land, and water mainly persisted from 1987 to 1996, with transition
probabilities greater than 0.5. Both forest and unused land are different from those three
land use types, with low probability of persistence during this stage. Notably, apart from
arable land, the lowest probability of undergoing no change was that of forest, which
was just 0.3208, while the transition probability from forest to arable land reached
0.5604. Similarly, the transition probability from unused land to arable land was
0.6112. These results suggest that substantial amounts of forest and unused land were
converted into arable land from 1987 to 1996. If we consider the family-contract
responsibility system in 1981, which is regarded as a significant breakthrough and
innovation in rural land property rights in China (Wu et al. 2013a), the transition
probability shown in Table 1 seems reasonable.

Figure 4 shows that 12 groups of CA-Markov land use simulation results for 2005
were obtained using the aforementioned six transition probability matrices, which were
used during the experiment of the steepest ascent method. These simulation maps were
generated from different scale combinations, in which the cell sizes ranged from 30 m to
330 m and neighborhood size from 3 to 23, under the two different neighborhood
types, Moore and Von Neumann. Figure 4(a,b) show that the simulation results with
a cell size of 30 m and neighborhood size of 3 are both fine, while Figure 4(k,l) show that

Figure 4. Results of the land use change simulation at six spatial scale combinations from the
experiment using the steepest ascent method in 2005.

Table 1. Transition probability matrix from 1987 to 1996 (30-m cell size, 3-neighborhood size).
Water Construction land Forest Arable land Unused land

Water 0.5712 0.0820 0.1455 0.1942 0.0071
Construction land 0.1074 0.6385 0.1360 0.1056 0.0124
Forest 0.0723 0.0418 0.3208 0.5604 0.0047
Arable land 0.0440 0.0797 0.2610 0.6030 0.0124
Unused land 0.1010 0.1682 0.0780 0.6112 0.0415
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the simulation results with a cell size of 330 m and neighborhood size of 23 are both
coarse. This indicates that the CA-Markov simulation accuracy continuously decreases
during the upscaling process of cell size and neighborhood size. Notably, the apparent
difference between Figure 4(k,l), which has been marked using two black ellipses, shows
that the simulation result is forest using the Von Neumann neighborhood type while it is
arable land using the Moore neighborhood type when the cell size and neighborhood
size are both the same. The same difference exists at a scale of a 90-m-sized cell as
shown in Figure 4(c,d) and the scale of a 210-m-sized cell as shown in Figure 4(g,h). This
illustrates that the scale effect induced by cell and neighborhood size and neighborhood
type has an obvious influence on the simulation accuracy of the CA-Markov model for
land use change.

4.2. Experimental design results of the steepest ascent method

The Kappa coefficient calculated by comparing the classification land usemaps for 2005 to
the 12 groups of CA-Markov land use simulation results for the experiment using the
steepest ascent method is provided in Table 2. It shows that the Kappa coefficient ranges
from 0.7062 to 0.6719. Although the Kappa coefficient decreases during the upscaling
process of cell and neighborhood size, the differences are not very great. In fact, these
slight differences in the Kappa coefficient shown in Table 2 are inconsistent with the great
differences in the CA-Markov land use simulation results shown in Figure 4. In other words,
the simulation accuracies under different scale combinations are not statistically different.
The reason for this is that Kappa coefficient is just a statistical measure of the agreement
and thus fails to describe the detailed spatial distribution of the CA-based simulation error.
This confirms that the Kappa coefficient is not sufficient to evaluate the accuracy of land
use change simulation. This is why we developed a hybrid evaluation model to improve
upon the Kappa coefficient evaluation system.

According to Equation (6), the contagion index that quantifies the dispersion of
simulation error is provided in Table 2. It shows that the contagion index has a clear
variation, ranging from 15.0459 to 4.8176. This suggests that the simulation error
distribution maximally aggregates at a scale of a 30-m cell and 3 neighborhoods,
while it maximally disaggregates at a scale of a 330-m cell and 23 neighborhoods
using the Moore neighborhood type. This result indicates that the error of the CA-
Markov land use simulation result gradually disaggregates as the cell size and neighbor-
hood size upscale. This demonstrates that it is feasible to use the contagion index to

Table 2. Experimental design results of the steepest ascent method.

ID Cell size Neighborhood size

Kappa coefficient Contagion index HM HV
Moore* Von* Moore Von Moore Von

1 30 3 0.7062 0.7058 15.0459 13.5908 1.3081 1.1055
2 90 7 0.6959 0.6982 8.7081 8.6070 1.3237 1.1460
3 150 11 0.6885 0.6918 7.0571 7.0980 1.0617 0.9270
4 210 15 0.6821 0.6844 6.0261 6.1454 0.7977 0.5992
5 270 19 0.6735 0.6785 5.2311 5.2959 0.3873 0.3463
6 330 23 0.6719 0.6747 4.8176 4.8744 0.3359 0.1716

*Moore: Moore neighborhood type
*Von: Von Neumann neighborhood type.
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evaluate the simulation error spatial distribution of the CA-Markov model for land use
change.

Twelve hybrid evaluation values of simulation accuracy at different scales, derived
from the Kappa coefficient and contagion index using Equation (5), are shown in Table 2.
The table shows that the hybrid evaluation values can be sorted in descending order as
1.3237, 1.3081, 1.0617, 0.7977, 0.3873, and 0.3359 using the Moore neighborhood type,
and 1.1460, 1.1055, 0.9270, 0.5992, 0.3463, and 0.1716 using the Von Neumann neigh-
borhood type. For the Moore neighborhood type, the hybrid evaluation value reaches
a maximum (1.3237) at a cell size of 90 m and neighborhood size of 7 and a minimum
(0.3359) at a cell size of 330 m and neighborhood size of 23. When the cell size ranges
from 30 m to 150 m and the neighborhood size ranges from 3 to 11, these hybrid
evaluation values of different scale combinations are remarkably higher than those
within the 210 m to 330 m cell size and 15 to 23 neighborhood size. Therefore, the
potential center points in the optimal scale lie within a cell size of from 30 m to 150 m
and a neighborhood size of from 3 to 11. The same tendency occurs for the Von
Neumann neighborhood type.

4.3. Optimal scale combination results of the CA-Markov model in central
composite design

The actual values of cell size and neighborhood size at five different levels in the central
composite design are provided in Table 3. They were determined by potential center
points within the cell size range of from 30 m to 150 m and the neighborhood size range
of from 3 to 11. For these actual values of cell size, 30, 90, and 150 were derived from the
aforementioned experiment results using the steepest ascent method, while 60 and 120
were approximately calculated using the ratio of 1.41 to 60, where 1.41 is the difference
from 0 to ±1.41 and 60 is the difference from 90 to 30 or 90 to 150. Similarly, the actual
values of the neighborhood size at five different levels were calculated. In addition, the
neighborhood type coded at two levels is also shown in Table 3, which includes the
Moore and Von Neumann neighborhood types.

The trial scheme of the central composite design was designed using the aforemen-
tioned neighborhood type and actual values of cell size and neighborhood size. The trial
number determined by these three spatial scale sensitivity components was 26 (Table 4).
There were 13 trials under each neighborhood type. Five of the 26 trials were repeated
at a cell size of 90 m and a neighborhood size of 7 using either neighborhood type,
which were automatically generated from the Design-Expert software, so as to validate
whether a certain distinct difference in the hybrid evaluation values existed at the
potential optimal scale combination. For the Moore neighborhood type, its hybrid
evaluation value reached a maximum of 2.4857 and a minimum of 0.3964. For the

Table 3. Cell size, neighborhood size, and neighborhood type at different levels in the
central composite design.
Coded values −1.41 −1 0 1 1.41

Cell size 30 60 90 120 150
Neighborhood size 3 5 7 9 11
Neighborhood type N/A Moore N/A Von N/A
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Von Neumann neighborhood type, its hybrid evaluation value reached a maximum of
2.7888 and a minimum of 1.0143. Both had the maximum hybrid evaluation value at
a cell size of 90 m and neighborhood size of 3. This indicates that the optimal scale
combination of the CA-Markov model for land use change simulation should be near
a 90-m cell size and 3 neighborhoods using Von Neumann neighborhood type. The
simulation results of land use change at this spatial scale combination are shown in
Figure 5. In addition, this suggests that both the potential center points of the central
composite design and the optimal scale combination of the CA-Markov model lie within
the scale range from the steepest ascent method. This validates that it is reasonable to
use the steepest ascent method in advance of the central composite design.

4.4. Results of spatial scale effects of the CA-Markov model on land use change
simulation

Based on 26 trials in the central composite design, the simulation accuracy variation in
land use change is provided using contour and 3D surfaces (Figure 6). The red, green,
and blue represent better, good, and poor simulation results for land use change,
respectively. These results show that a better simulation result of land use change
occurred at a scale range of from the 30 to 90 m for cell size and from 3 to 5 for
neighborhood size under both neighborhood types. Figure 6(a) shows that the blue
areas expanded the most, followed by the green and red areas using the Moore
neighborhood type, while it ranked in descending order as green areas, red areas, and
blue areas using the Von Neumann neighborhood type as shown in Figure 6(b). It is

Table 4. Results of the spatial scale combination and its accuracy evaluation on CA-Markov land use
change simulation results from 26 trials in the central composite design.
ID Cell size Neighborhood size Neighborhood type Kappa coefficient Contagion index H

1 30 7 Von 0.7040 16.3136 1.5099
2 90 7 Von 0.6982 8.6070 1.6392
3 120 9 Moore 0.6905 7.7196 0.3964
4 120 5 Moore 0.6969 7.6471 1.5520
5 90 11 Von 0.6948 8.7179 1.0143
6 90 3 Von 0.7034 7.1568 2.7888
7 90 7 Moore 0.6959 8.7081 1.2125
8 60 9 Moore 0.6965 10.7021 1.0180
9 90 7 Von 0.6982 8.6070 1.6392
10 150 7 Moore 0.6923 7.0708 0.8165
11 60 5 Moore 0.7010 10.4910 1.8548
12 90 7 Moore 0.6959 8.7081 1.2125
13 90 7 Moore 0.6959 8.7081 1.2125
14 90 7 Von 0.6982 8.6070 1.6392
15 90 7 Moore 0.6959 8.7081 1.2125
16 60 9 Von 0.6990 10.5929 1.4816
17 90 7 Moore 0.6959 8.7081 1.2125
18 90 11 Moore 0.6920 8.7196 0.5133
19 60 5 Von 0.7027 10.0575 2.2244
20 150 7 Von 0.6952 6.9787 1.3491
21 120 5 Von 0.6993 7.3936 2.0196
22 90 3 Moore 0.7024 7.9775 2.4857
23 90 7 Von 0.6982 8.6070 1.6392
24 90 7 Von 0.6982 8.6070 1.6392
25 30 7 Moore 0.7026 16.6857 1.2032
26 120 9 Von 0.6940 7.6917 1.0266
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Figure 5. Simulation results of land use change simulation at a 90-m cell size and 3 neighborhoods:
(a) Moore neighborhood type (b) Von neighborhood type.

Figure 6. Contour and 3D surfaces for simulation accuracy variation for land use change.
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obvious that there are larger red areas using the Von Neumann neighborhood type than
using the Moore neighborhood type. This suggests that the scale range of better
simulation accuracy using the Von Neumann neighborhood type is broader than that
of the Moore neighborhood type. This indicates that the CA-Markov model is more
sensitive to spatial scale change using the Von Neumann neighborhood type than using
the Moore neighborhood type. In addition, the 3D surfaces of the change trends from
these hybrid evaluation values are provided in Figure 6(c,d).

5. Discussion

5.1. Complexity of spatial scale sensitivity in the CA-Markov model

Many studies have explored the scale sensitivity of individual components of the CA-
Markov model (including cell size and neighborhood size and type) rather than that of
their combinations. To further identify whether the components or their combinations
affect the simulation results at different scales, we performed ANOVA for 26 trials from
the central composite design. Cell size, neighborhood size, and neighborhood type have
highly significant (p < 0.0001) unilateral (X1, X2, andX3) effects on simulation accuracy
and consequently show scale sensitivity (Table 5). This has been demonstrated by
previous studies (Kocabas and Dragicevic 2006, Samat 2006, Altartouri et al. 2015).
Notably, we also found that the quadratic terms (X2

1andX
2
2 ) have significant

(p < 0.0001) effects, suggesting that they are both characterized by scale sensitivity. In
addition, their bilateral interaction (X1X2, X1X3, andX2X3) and trilateral interaction (X1X2

2 )
also have high significance (p < 0.0001) and show the phenomenon of scale sensitivity. It
is clear that these different component combinations result in considerable effects on
the accuracy of land use change simulation. This demonstrates that there are strong
component interactions in the CA-Markov model at different spatial scales. The findings
show that the CA-Markov model is sensitive to spatial scale change from not only
individual components but also from their combinations. On the basis of the aforemen-
tioned analysis, one should consider the complexity of spatial scale sensitivity in the CA-
Markov model if intending to improve its accuracy of land use change simulation.

When exploring the complexity of spatial scale sensitivity in the CA-Markov model,
efficiency is another important factor that one should consider. In terms of computa-
tional cost, the RSM provides a more efficient alternative to the traditional exhaustive

Table 5. ANOVA for components and their combinations in the CA-Markov model.
Source Sum of squares Mean square F-value p-value

Model 7.44 0.83 1873.49 < 0.0001
X1 0.075 0.075 169.83 < 0.0001
X2 5.25 5.25 11,897.82 < 0.0001
X3 1.25 1.25 2841.37 < 0.0001
X1X2 0.040 0.040 91.79 < 0.0001
X1X3 0.021 0.021 48.47 < 0.0001
X2X3 0.018 0.018 40.22 < 0.0001
X21 0.12 0.12 275.43 < 0.0001
X22 0.22 0.22 490.77 < 0.0001
X1X22 0.090 0.090 203.16 < 0.0001
R2 0.9991
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method. For example, using the same spatial scale levels of the three components in the
CA-Markov model, the trial number of the RSM is just 26, but there are 50 trials when
using the traditional exhaustive method. There is no doubt that the RSM is much more
efficient than the traditional exhaustive method, potentially saving considerable time.
This is why we used the RSM to explore the spatial scale sensitivity of the CA-Markov
model.

5.2. Impact of spatial scale sensitivity on land use change simulation accuracy

Because of the unilateral, bilateral, and trilateral effects of cell size and neighborhood
size and type on the simulation results as previously discussed, it is critically important
to quantitatively understand how much the strength of these component interactions
affects the simulation accuracy of the CA-Markov model. According to Equation (4), we
developed a third-order polynomial model as follows:

Y ¼ 1:43� 0:097x1 � 0:66x2 þ 0:22x3 � 0:1x21 þ 0:14x22 � 0:14x1x2
þ0:042x1x3 þ 0:038x2x3 � 0:37x1x22

(7)

The correlation coefficient (R2= 0.9991) shown in Table 5 suggests that the equation has
a good fit to the individual components and their combinations. The absolute value of
a given coefficient in Equation (7) represents the strength at which the individual
components or their combinations affect simulation accuracy.

5.2.1. Individual component impact on land use change simulation accuracy
As shown in Equation (7), the absolute value of the coefficient of neighborhood size (X2)
is the maximum followed by neighborhood type (X3), cell number in the neighborhood

(X2
2 ), cell area (X2

1 ), and cell size (X1). This suggests that changing the scale of the
neighborhood size results in the most extreme influence on simulation accuracy. In
terms of spatial scale effect, the CA-Markov model is the most sensitive to neighborhood
size. Equation (7) shows that cell size, neighborhood size, and cell area are negatively
related to simulation accuracy, suggesting that the simulation accuracy increases when
the cell size and/or neighborhood size decreases. However, neighborhood type and cell
number within the neighborhood are positively related to the simulation accuracy. This
suggests that the use of the Von Neumann neighborhood type can achieve better
simulation accuracy than that of the use of the Moore neighborhood type. It is particu-
larly interesting that neighborhood size (X2) and cell number within the neighborhood
(X2

2 ) have an opposing effect on simulation accuracy. This indicates that it is necessary to
maintain a certain cell number within the neighborhood, although a smaller neighbor-
hood size usually results in a better simulation accuracy.

5.2.2. Component combination interaction impact on land use change simulation
accuracy
The component combination of the CA-Markov model includes bilateral interactions
and the trilateral interaction. For the bilateral interactions, Equation (7) shows that
X2X3andX1X3are positive, but X1X2is negative. This result suggests that simulation
accuracy increases as the cell size and neighborhood size decrease. The absolute
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value of the coefficients can be sorted in descending order asX1X2 (0.14), X2X3

(0.042), and X1X3 (0.038), whereX1X2 is much greater thanX2X3 and X1X3. This indi-
cates that the bilateral component interaction between the cell and neighborhood
size plays a dominant role compared to the other bilateral interactions. This has an
important implication, namely that one should pay more attention to the choice of
cell and neighborhood size, rather than neighborhood type, during land use change
simulation using the CA-Markov model. After all, the bilateral interaction between
neighborhood type and cell size or neighborhood size only results in a slight scale
effect.

Additionally, we also found another interesting phenomenon as shown in Figure 6(c,
d) that no matter whether the cell size is at a fine scale (e.g. 30 m) or a coarse scale (e.g.
150 m), the overall simulation accuracy decreases when the neighborhood size
increases. However, the simulation accuracy very slowly decreases at the fine scale,
while it rapidly decreases at the coarse scale. This suggests that if the cell size remains
constant at a fine scale, the change in the neighborhood size will not lead to an obvious
influence on the simulation accuracy. Similarly, if the neighborhood size remains con-
stant at a small scale, the change in the cell size will also not result in a significant effect
on the simulation accuracy. However, if the cell size is coarser and the neighborhood
size is larger at the same time, the simulation accuracy will worsen. These phenomena
are primarily because of the existence of component combination interactions between
cell and neighborhood size, which can lessen or enlarge the scale effect from a single
component. To achieve a better simulation result of land use change using the CA-
Markov model, one must avoid choosing both a coarse scale of cell size and a large scale
of neighborhood size.

For trilateral interaction, X3is coded at two levels (−1 and 1) that represent the Moore
neighborhood and Von Neumann neighborhood in the central composite design,
respectively. BecauseX2

3equals 1,X1X2
3andX2X

2
3can be simplified toX1andX2,

respectively.X1X2
2 has a negative effect on simulation accuracy. This indicates that

simulation accuracy increases as the trilateral interaction decreases. This also requires
that the cell and neighborhood size should simultaneously be as small as possible,
which is consistent with the single component discussion above. Notably, the absolute
value of the coefficient of this trilateral interaction (X1X2

2 ) is far greater than that of cell
size (X1). This suggests that their interaction results in a more remarkable scale effect
than that of a single cell size. This further indicates that component combination
interactions easily result in a more serious influence on land use change simulation
than that of an individual component. Therefore, it is necessary to fully understand the
component combination interactions to accurately conduct land use change simulation.
Our in-depth exploration of the spatial scale sensitivity of the CA-Markov model sheds
some light on this issue.

6. Conclusions

The spatial scale sensitivity of the CA-Markov model for land use change simulation,
which mainly originates from cell size, neighborhood size, and neighborhood type, is
very complex. It leads to obvious impacts on the accuracy of land use change simulation.
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This study has made use of the RSM to comprehensively explore the scale sensitivity of
the CA-Markov model via individual components and their combinations. The main
conclusions can be summarized as follows:

(1) The CA-Markov model is significantly sensitive to spatial scale change via indivi-
dual components as well as their combinations. Furthermore, the presence of
component combination interactions easily leads to uncertainty in land use
change simulation, similar to individual components.

(2) The utility of our proposed hybrid evaluation model and the RSM to explore the
spatial scale sensitivity of the CA-Markov model has proven to be more accurate
than that of the single Kappa coefficient evaluation index and more efficient than
that of the traditional methods (e.g. the traditional exhaustive and orthogonal test
methods). A thorough analysis has demonstrated the superiority of the hybrid
evaluation model in terms of accuracy and the RSM in term of efficiency.

(3) Considering individual component effects, the CA-Markov model is more sensitive
to neighborhood size than cell size or neighborhood type. Undeniably, the
bilateral and trilateral interaction between neighborhood size and cell size results
in a more marked scale effect than cell size alone. When conducting a land use
change simulation using the CA-Markov model, one should maintain a certain cell
number within the neighborhood and avoid choosing both a coarse scale of cell
size and a large scale of neighborhood size.

Despite the achievements in this study, there are several aspects that warrant further
investigation, particularly when various transition rules (e.g. neural network, genetic
algorithm, and ant colony optimization) are available. Given the difference in these
transition rules, it is also essential to seek an appropriate method with which to examine
their spatial scale sensitivities as soon as possible. However, one should pay more
attention to spatial pattern differences from various study areas in future studies,
although distinctive land use patterns from a certain study area do not have the
universal feature of spatial scale sensitivity, thus that we cannot attribute it to an internal
factor of the CA-Markov model.
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