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Abstract

Bayesian and frequentist cross-validation methods for explanatory item response models

by

Daniel C. Furr

Doctor of Philosophy in Education

University of California, Berkeley

Professor Sophia Rabe-Hesketh, Chair

The chapters of this dissertation are intended to be three independent, publishable pa-
pers, but they nevertheless share the theme of predictive inferences for explanatory item
models. Chapter 1 describes the differences between the Bayesian and frequentist statisti-
cal frameworks in the context of explanatory item response models. The particular model
of focus, the “doubly explanatory model”, is a model for dichotomous item responses that
includes covariates for person ability and covariates for item difficulty. It includes many
Rasch-family models as special cases. Differences in how the model is understood and spec-
ified within the two frameworks are discussed. The various predictive inferences available
from the model are defined for the two frameworks.

Chapter 2 is situated in the frequentist framework and focuses on approaches for ex-
plaining or predicting the difficulties of items. Within the frequentist framework, the linear
logistic test model (LLTM) is likely to be used for this purpose, which in essence regresses
item difficulty on covariates for characteristics of the items. However, this regression does
not include an error term, and so the model is in general misspecified. Meanwhile, adding an
error term to the LLTM makes maximum likelihood estimation infeasible. To address this
problem, a two-stage modeling strategy (LLTM-E2S) is proposed: in the first stage Rasch
model maximum likelihood estimates for item difficulties and standard errors are obtained,
and in the second stage a random effects meta-analysis regression of the Rasch difficulties
on covariates is performed that incorporates the uncertainty in the item difficulty estimates.
In addition, holdout validation, cross-validation, and Akaike information criteria (AIC) are
discussed as means of comparing models that have different sets of item predictors. I argue
that AIC used with the LLTM estimates the expected deviance of the fitted model when
applied to new observations from the same sample of items and persons, which is unsuitable
for assessing the ability of the model to predict item difficulties. On the other hand, AIC
applied to the LLTM-E2S provides the expected deviance related to new observations arising
from new items, which is what is needed. A simulation study compares parameter recovery
and model comparison results for the two modeling strategies.
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Chapter 3 takes a Bayesian outlook and focuses on models that explain or predict per-
son abilities. I argue that the usual application of Bayesian forms of information criteria
to these models yields the wrong inference. Specifically, when using likelihoods that are
conditional on person ability, information criteria estimate the expected fit of the model to
new data arising from the same persons. What are needed are likelihoods that are marginal
over the distribution for ability, which may be used with information criteria to estimate the
expected fit to new data from a new sample of persons. The widely applicable information
criterion (WAIC), Pareto-smoothed importance sampling approximation to leave-one-out
cross-validation, and deviance information criterion (DIC) are discussed in the context of
these conditional and marginal likelihoods. An adaptive quadrature scheme for use within
Markov chain Monte Carlo estimation is proposed to obtain the marginal likelihoods. Also,
the moving block bootstrap is investigated as a means to estimate the Monte Carlo error
for Bayesian information criteria estimates. A simulation study using a linear random inter-
cept model is conducted to assess the accuracy of the adaptive quadrature scheme and the
bootstrap estimates of Monte Carlo error. These methods are then applied to an real item
response dataset, demonstrating the practical difference between conditional and marginal
forms of information criteria.
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Preface

This dissertation focuses on predictive inferences for item response models that account
for factors associated with person ability and item difficulty, known as explanatory item
response models. Of particular interest is the use of information criteria for the comparison
of competing models, such as models that include different sets of item- or person-related
covariates. While the context of explanatory item response models is niche, the insights
made in this work also apply more broadly, having implications for model comparison for
clustered or cross-classified data in general.

The chapters of this dissertation are intended to be three independent, publishable pa-
pers, but they are interrelated nonetheless. Chapter 1 introduces explanatory item response
models, comparing model specification in the Bayesian and frequentist statistical frame-
works. The various predictive inferences and how they vary depending on framework are
explicated. In this way, the first chapter serves as a conceptual basis for the others, which
seek to solve specific problems.

Chapter 2 is situated in the frequentist framework and focuses on models for the pre-
diction of item difficulty. I argue that the usual model for item difficulty, the linear logistic
test model, is in general misspecified, yielding biased parameter estimates and inaccurate
standard errors. Moreover, using the Akaike information criterion with this model provides
misleading results. I propose a two-stage estimation strategy that yields better parameter
estimates and may be paired with AIC or leave-one-out cross-validation.

Chapter 3 takes a Bayesian outlook and focuses on models for the prediction of person
abilities. I argue that the usual application of Bayesian forms of information criteria to these
models yields the wrong inference. Specifically, when using likelihoods that are conditional
on person ability, information criteria estimate the expected fit of the model to new data
arising from the same persons. I propose an adaptive quadrature scheme for use within
Markov chain Monte Carlo simulation to obtain likelihoods that are marginal over the ability
distribution, which may be used with information criteria to estimate the expected fit of the
model to a new sample of persons.
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Chapter 1

A comparison of the frequentist and
Bayesian frameworks in relation to
explanatory item response models

1.1 Introduction

Item response data are cross-classified; that is, any given response to an item is nested both
within a person and within an item. In developing a model for such data, the effects on
response probabilities of either or both of persons and items may be regarded as arising from
a distribution, and the mean of these distributions may be a function of characteristics of
persons or items. In this way, an item response model may be described as explanatory if it
provides estimates of the effects of person and/or item characteristics, in contrast to purely
descriptive models that do not include these sorts of effects.

Explanatory Rasch-family item response models are the focus of this chapter. In the
frequentist framework, some explanatory Rasch-family models cannot be estimated using the
usual marginal maximum likelihood estimation. In particular, marginal maximum likelihood
estimation is infeasible if both the person and item effects are modeled as arising from
distributions. However, when effects of persons but not items are assumed to arise from a
distribution, a variety of standard software packages are available to fit such models with
relative ease. There is no such barrier in the Bayesian framework, as models for cross-
classified data may be estimated using Markov chain Monte Carlo (MCMC) simulation.
The existing software for MCMC tends to be highly flexible but more cumbersome to use.

In this chapter, frequentist and Bayesian approaches to explanatory item response mod-
eling are compared. Special attention is paid to the predictive inferences that are available
under the two frameworks. Despite the particular context of item response models, the
discussion applies to models for clustered data more generally.
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1.2 A doubly explanatory item response model

General formulation

A useful model for dichotomous item response data is the Rasch model (Rasch, 1960):

Pr(yip|θp, δi) =
exp(θp − δi)yip

1 + exp(θp − δi)
, (1.1)

where yip = 1 if person p (p = 1, . . . , P ) responded to item i (i = 1, . . . , I) correctly and
yip = 0 otherwise, θp is the ability of person p, and δi is the difficulty of item i. The
individual instances of θp and δi may be collected into vectors θ and δ, respectively. This is a
“descriptive” item response model (Wilson & De Boeck, 2004); it fully accounts for abilities
and difficulties, assuming the appropriateness of the model, but does not offer insight into
the factors associated with abilities and difficulties.

The model in Equation 1.1 may be expanded to a “person explanatory” model by de-
composing θp as

θp = w′pγ + ζp, (1.2)

where wp is a row from a design matrix W for person-related covariates, γ is a vector of
regression parameters, and ζp is the residual person ability. The above may be interpreted
as a latent regression of ability on covariates wp. θp may be referred to as the composite
ability, w′pγ the structured part of ability, and ζp the residual part.

Similarly, decomposing δi as
δi = x′iβ + εi (1.3)

results in an “item explanatory” model, in which xi is a row from a design matrix X for
item-related covariates, β is a vector of regression parameters, and εi is the residual item
difficulty. The above is then a latent regression of item difficulty on covariates xi. In parallel
with the preceding terminology for ability, δi may be referred to as the composite difficulty,
x′iβ the structured part of difficulty, and εi the residual part.

Equations 1.1, 1.2, and 1.3 together form a “doubly explanatory” item response model,
which incorporates covariates associated with both the persons and items. Note that the
model may still serve descriptive purpose as the composite abilities and difficulties remain a
part of the model. The final step in formulating the model is to specify distributions for the
residuals. In this chapter, normal distributions are assumed,

ζp ∼ N(0, σ2) (1.4)

and
εi ∼ N(0, τ 2), (1.5)

though other choices could be considered. The person and item “sides” of the model are
specified in directly parallel ways, and much of the discussion that follows will make use of
this point.
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Figure 1.1: The doubly explanatory model presented as a directed graphical model. Circles
represent parameters or latent variables, and squares represent data. Person covariates wp
and item covariates xi are omitted. The boxed regions indicate whether the parameters vary
over persons, items or neither.

The model is also presented as a directed graphical model (for example, Dawid, Cowell,
Lauritzen, & Spiegelhalter, 1999; Jordan, 2004) in Figure 1.1. In the diagram, unknowns
are represented by circles and data are represented by squares. The boxed regions indicate
whether the parameters vary over persons, items or neither, and naturally the item responses
y vary over both. The direction of the arrows indicates dependence. For example, θ depends
on γ and ζ directly, while it depends indirectly on σ. This sort of diagram is associated
with Bayesian modeling, where all the unknowns may be considered parameters. From a
frequentist perspective, the unknowns are a mixture of parameters and latent variables,
which will be discussed in greater depth later.

Hierarchical Bayes modeling approach

In Bayesian methodology, the posterior distribution for the parameters is factorized by way
of Bayes theorem:

p(ω|y,W,X) ∝ p(ω)p(y|ω,W,X), (1.6)

which indicates that the posterior distribution is proportional to the product of the prior
distribution and the likelihood. In the above, ω is the set of model parameters. In this
chapter, the following terminology for different types of parameters is used.
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1. Basic parameters are the foundational parameters. They are plugged into the likelihood
directly or affect it indirectly through intermediate parameters. Priors are specified for
them.

a) Exchangeable basic parameters have hierarchical prior distributions. They are ex-
changeable draws from a distribution, the characteristics of which are determined
by hyperparameters. Residuals ζp and εi are examples.

b) Non-exchangeable basic parameters have non-hierarchical priors. They are not
thought of as exchangeable or drawn from a distribution, except in the loose
sense that there is some prior distribution. Regression coefficients γ and β are
examples.

2. Intermediate parameters are composites built from basic parameters. They may be
included in Bayesian modeling to streamline specifying a model or they may be quan-
tities of genuine interest. They may be plugged into the likelihood in place of basic
parameters. They do not have explicit prior distributions, but instead their priors
follow from the priors for the basic parameters. Parameters θp and δi are examples

3. Hyperparameters are parameters for the distributions for exchangeable basic parame-
ters. They do have prior distributions themselves.

Of the above terms, only “hyperparameters” is in general usage, while the remaining types
of parameters are not typically distinguished from one another.

The doubly descriptive model has a likelihood (Equation 1.1) based on intermediate pa-
rameters θ and δ, which are in turn built from basic parameters γ, ζ, β, and ε (Equations 1.2
and 1.3). γ and β are non-exchangeable basic parameters, while ζ and ε are exchangeable
basic parameters whose priors depend on hyperparameters σ and τ , respectively. The prior
distribution in Equation 1.6 may be rewritten as

p(ω) = p(γ)p(σ)

[
P∏
p=1

p(ζp|σ)

]
p(β)p(τ)

[
I∏
i=1

p(εi|τ)

]
(1.7)

if independent priors are specified, which is the usual case. No prior is included for θ and δ as
they are wholly determined from the basic parameters. The likelihood part of Equation 1.6
may be rewritten in terms of basic parameters as

p(y|ω,W,X) =
P∏
p=1

I∏
i=1

Pr(yip|wp, xi, ζp, γ, εi, β), (1.8)

or in terms of intermediate parameters as

p(y|ω,W,X) = p(y|θ, δ) =
P∏
p=1

I∏
i=1

Pr(yip|θp, δi). (1.9)
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Given that both the prior and the likelihood may be specified ignoring the intermediate
parameters θ and δ, it is clear that they are redundant. For many applications, however,
they have useful interpretations, and for that reason estimation of their posteriors may be
desired. Further, the posterior distributions of θ and δ can be estimated easily from the
posterior draws of the basic parameters.

The posterior for a single parameter, marginal in regards to all other parameters, may be
obtained by integrating the full joint posterior over all other parameters. Let D = {y,W,X},
represent the full data. Then,

p(σ|D) =

∫∫∫∫∫
p(ζ, γ, σ, ε, β, τ |D) dζdγdεdβdτ (1.10)

is the posterior for the standard deviation of the ability residuals. The mean and standard
deviation of the marginal posterior for a parameter may be taken to represent a point estimate
and standard error. Further, the joint posterior of a subset of parameters, p(β, ζp, γ, εi|D)
for example, likewise may be obtained by integrating out the other parameters. Despite the
high-dimensional integral involved, these quantities are readily available from Monte Carlo
simulation by simply ignoring the draws for the parameters to be integrated out, and so no
special effort is required to obtain them.

The model could equivalently be specified using hierarchical centering (Gelfand, Sahu, &
Carlin, 1995) by replacing the preceding prior with

p(ω) = p(γ)p(σ)

[
P∏
p=1

p(θp|wp, γ, σ)

]
p(β)p(τ)

[
I∏
i=1

p(δi|xi, β, τ)

]
(1.11)

where p(θp|wp, γ, σ) = N(wpγ, σ
2) and p(δi|xi, β, τ) = N(xiβ, τ

2), respectively. The likelihood
is still specified as in Equation 1.9. In this formulation, residuals ζ and ε are omitted alto-
gether, and θ and δ are treated as exchangeable (conditional on covariates) basic parameters
rather than as intermediate parameters. Depending on the data and on the algorithm used,
this formulation may improve the efficiency of the MCMC simulation. Because this chap-
ter includes discussion of inferences related to the residuals, the “decentered” formulation
described before is preferred.

Frequentist modeling approach

In the frequentist approach, only the non-exchangeable basic parameters (γ and β) and the
hyperparameters (σ and τ) are treated as parameters to be estimated. In this framework,
marginal maximum likelihood may be used to estimate the model, which involves marginal-
izing the residuals out of the likelihood. The marginal likelihood is

p(y|γ, β, σ, τ) =

∫
· · ·
∫∫
· · ·
∫ P∏

p=1

I∏
i=1

[Pr(yip|ζp, γ, εi, β)p(ζp|σ)p(εi|τ)] dζ1 . . . dζPdε1 . . . dεI ,

(1.12)
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in which the probability of a response is marginal over the distributions for person and item
residuals. Point estimates γ̂, σ̂, β̂, and τ̂ are obtained by maximizing this likelihood

Within this framework, the exchangeable parameters ζ and ε are called latent variables
or random effects because parameters cannot have distributions. Rather than obtain direct
estimates for random effects, marginal maximum likelihood estimation obtains estimates for
the parameters of their distributions only, in this case, σ̂ and τ̂ . The non-exchangeable basic
parameters γ and β are sometimes referred to as “fixed-effects.”

A model of this kind may be formulated in the generalized linear mixed model framework.
The response variable, conditional on covariates and so-called random effects, is specified as
arising from a Bernoulli distribution:

yip|wp, xi, ζp, εi ∼ Bernoulli(πip). (1.13)

Then the model may be written in terms of an inverse link function

πip = Pr(yip = 1|wp, xi, ζp, εi) = logit−1[ηip] (1.14)

and a linear predictor
ηip = (w′pγ + ζp)− (x′iβ + εi). (1.15)

Because the random-effects ζp and εi are not nested, the model may be described as a
crossed-random effects model. Such a model is difficult to estimate efficiently via marginal
maximum likelihood because the integrals in Equation 1.12 do not factorize as they do with
nested random effects. The result is an I × P dimensional integral, though Rasbash and
Goldstein (1994) describe a means of reducing this to an I + 1 dimensional integral.

Special cases

Many dichotomous item response models are special cases of the doubly explanatory model
that arise from restrictions placed on the composite abilities and difficulties. For example,
the Rasch model (Rasch, 1960) as fit by marginal maximum likelihood estimation (Bock &
Aitkin, 1981) can be written as

Pr(yip|θp, δi) =
exp(θp − δi)yip

1 + exp(θp − δi)
(1.16)

θp = ζp (1.17)

δi = x′iβ, (1.18)

where X is an I × I identity matrix (II) and β is a vector of length I, such that δi = βi. In
other words, δi is set equal to the (unstructured) structural part of item difficulty, while θp
is set equal to the ability residuals.
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Model θp δi Notes
MML Rasch ζp x′iβ X = II
JML Rasch w′pγ x′iβ W = IP−1, X = II
Random item Rasch ζp εi
Latent regression w′pγ + ζp x′iβ X = II
Linear logistic test ζp x′iβ
Linear logistic test with error ζp x′iβ + εi
Doubly explanatory w′pγ + ζp x′iβ + εi

Table 1.1: Specification of several special cases of the doubly explanatory model.

In the Bayesian approach, the posterior for this Rasch model variant is given by

p(θ, σ, δ|y) ∝

[
p(δ)p(σ)

P∏
p=1

p(θp|σ)

][
P∏
p=1

I∏
i=1

Pr(yip|θp, δi)

]
, (1.19)

in which the left hand bracketed quantity is the prior and and the right hand quantity is the
likelihood. The marginal likelihood for the frequentist approach is

p(y|σ, δ) =
P∏
p=1

∫ I∏
i=1

Pr(yip|θp, δi)p(θp|σ) dθp. (1.20)

The single-dimensional integration is simpler than the I × P dimensional integral in Equa-
tion 1.12 and may be approximated using adaptive quadrature (Rabe-Hesketh, Skrondal, &
Pickles, 2002).

Other special cases arise from different choices of restrictions placed on the composite
abilities and difficulties, and these are summarized in Table 1.1. As mentioned earlier,
the Rasch model as fit by joint maximum likelihood estimation (for example, Embretson &
Reise, 2000) includes only the structured parts of ability and difficulty with identity matrices
for W and X (one difficulty or ability parameter must be constrained for identifiability).
In contrast, the random item Rasch model (for example, De Boeck, 2008) has only the
residual parts for both sides (a model intercept must be added). The latent regression item
response model (Mislevy, 1985; Adams, Wilson, & Wu, 1997) includes both parts of the
composite ability and the structured part of item difficulty, where X is an identity matrix.
The linear logistic test model (LLTM) (Fischer, 1973), has the residual part for ability and
the structured part for difficulty. Its extension, the linear logistic test model with error
(LLTM-E) (for example, Mislevy, 1988; Janssen, Schepers, & Peres, 2004), adds an item
difficulty residual.
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1.3 Estimated and predicted quantities

Several quantities from the model may be of interest, whether they are estimated directly
or obtained after estimation. At the macro-level, γ represents the effects of the person co-
variates, and Wγ together with σ describes the conditional distribution for person abilities.
Likewise, β represents the effects of the item covariates, and Xβ together with τ describes
the conditional distribution for item difficulties. Depending on the choice of either a fre-
quentist and Bayesian framework, the maximum likelihood estimates γ̂ and β̂ or posterior
distributions p(γ|D) and p(β|D) will be obtained for these parameters.

For some applications, such as measurement “per se”, the specific persons and items will
be of interest. This is the case when, for example, measurements are needed for person
abilities and a Wright map (Wilson, 2004) is used in interpreting them in relation to the
item difficulties. In this case, attention will be placed on θ and δ, though ζ and ε may be
of interest in the identification of outliers. These are within-sample quantities; that is, the
estimation sample contains a person p who is associated with ζp and θp and also an item i
that is associated with εi and δi.

There may be a (real or hypothetical) person p′ not represented in the estimation data.
This out-of-sample person has a covariate vector wp′ and is associated with parameters ζ̃p′
and θ̃p′ , none of which play a role in fitting the model. Likewise, an out-of-sample item
i′ associated with xi′ , ε̃i′ , and δ̃i′ may be envisioned. Inferences for these out-of-sample
quantities may be obtained from the fitted model.

Inferences for the within-sample quantities θp, δi, ζp, and εi are called predictions in
the frequentist framework because they are random variables (and not parameters) that are
not directly estimated from the model. The same inferences are estimates in a Bayesian
setting where ζp and εi are drawn from the posterior and θp δi are functions of parameters
drawn from the posterior. Inferences for the out-of-sample quantities θ̃p′ , δ̃i′ , ζ̃p′ , and ε̃i′ are
considered predictions in either case.

Lastly, inferences may be made regarding new responses, which are always considered
predictions. A new response may be conceived as arising from a within-sample person to
a within-sample item, indicated by ỹip. This is, in other words, simply a model-predicted
response for an existing observation. Several possibilities exist for out-of-sample responses:
ỹi′p represents a new response from a within-sample person to an out-of-sample item, ỹip′
represents a new response from an out-of-sample person to a within-sample item, and ỹi′p′
represents a new response when both the associated item and person are out-of-sample.

Inferences for residuals

Starting with the Bayesian perspective, the posterior for residual ζp is

p(ζp|D) =

∫∫∫∫∫∫
p(ζ, γ, σ, ε, β, τ |D) dζ−pdγdσdεdβdτ, (1.21)
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where ζ−p is the vector ζ omitting ζp. This is simply the full posterior integrating out all
other parameters and its distribution be approximated in MCMC simulation simply by ζsp ,
where s = 1 . . . S indexes the draws from the simulation. The distribution for the residual
of a new person, ζ̃p′ , is

p(ζ̃p′|D) =

∫
p(ζ̃p′ |σ)p(σ|D) dσ, (1.22)

which is referred to as a mixed predictive distribution (Gelman, Meng, & Stern, 1996). It
may be approximated by taking random draws for ζ̃sp′ from its prior, p(ζ̃p′|σs). On the item
side, the parallel quantities are

p(εi|D) =

∫∫∫∫∫∫
p(ζ, γ, σ, ε, β, τ |D) dζdγdσdε−idβdτ, (1.23)

and

p(ε̃i′ |D) =

∫
p(ε̃i′|τ)p(τ |D) dτ. (1.24)

Marshall and Spiegelhalter (2007) have recommended using mixed predictive distributions
like p(ζ̃p′|D) and p(ε̃i′ |D) to detect outlying residuals.

From the frequentist perspective, “empirical Bayes” predictions for residuals may be
obtained post-estimation. The empirical Bayes mean prediction for ζp is

ζ̂EBp =

∫
ζp p(ζp|D, γ̂, σ̂β̂, τ̂) dζp, (1.25)

where p(ζp|D, γ̂, σ̂, β̂, τ̂) is the conditional posterior

p(ζp|D, γ̂, σ̂, β̂, τ̂) ∝ p(ζp|σ̂)p(yp|wp, X, γ̂, ζp, β̂, τ̂). (1.26)

The rightmost quantity in the above is the likelihood conditional on ζp but marginal in regard
to ε:

p(yp|wp, X, γ̂, ζp, β̂, τ̂) =

∫
p(ε|τ̂)p(yp|wp, X, γ̂, ζp, β̂, ε) dε. (1.27)

The above form for the empirical Bayes prediction is more complicated than usual owing to
the need to integrate out the ε vector, which arises from the model being for cross-classified
data. Instead of the empirical Bayes mean prediction, the modal prediction may be obtained
by finding the mode of the conditional posterior. Of course, the empirical Bayes prediction
for either the mean or mode of εi may be written in a way parallel to that for ζp. The main
difference between the frequentist empirical Bayes approach and actual Bayesian approach is
the propagation of uncertainty; while the frequentist approach treats the model parameters
as known when obtaining the prediction, the Bayesian approach incorporates the residuals as
a part of the full posterior. Lastly, frequentists may take p(ζ̃p|σ̂) and p(ε̃i|τ̂) as representing
the distributions for new instances of the residuals, and as both have a mean of zero, zero
may be assigned as the point predictions for residuals for new persons or new items.
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Inferences for composites

Returning to the Bayesian perspective, the posterior for composites like p(θp|D) are easily
approximated from the posterior draws of MCMC simulation:

θsp = w′pγ
s + ζsp . (1.28)

The posterior for a new composite ability, p(θ̃p′|D), is approximated by the empirical distri-
bution of

θ̃sp′ = w′p′γ
s + ζ̃sp′ (1.29)

where wp′ is the covariate vector for the new person and ζ̃sp′ is as given above. In a parallel

way, p(δi|D) and p(δ̃i′ |D) may be approximated by the distributions of

δsi = x′iβ
s + εsi . (1.30)

and
δ̃si′ = x′i′β

s + ε̃si′ , (1.31)

respectively.
In the frequentist perspective, a prediction for an in-sample composite ability is a com-

bination of the regression prediction and the empirical Bayes estimate for the residual:

θ̂p = w′pγ̂ + ζ̂EBp . (1.32)

For an out-of-sample composite ability, the residual part of the prediction may be set to zero
(the mean of residuals):

θ̃p′ = w′p′ γ̂
s. (1.33)

The equivalent quantities on the item side are

δ̂i = x′iβ̂ + ε̂EBi (1.34)

and
δ̃i′ = x′i′ β̂

s. (1.35)

As with the predictions for residuals, each of these are point estimates and do not involve
the propagation of uncertainty realized in Bayesian modeling.

Inferences for responses

Returning again to the Bayesian framework, the posterior predictive distribution (Rubin,
1984) for new a response ỹip from a within-sample person and item is

p(ỹip|D) =

∫∫
Pr(ỹip|θp, δi)p(θp, δi|D) dθpdδi (1.36)

=

∫∫∫∫
Pr(ỹip|wp, xi, γ, ζp, β, εi)p(γ, ζp, β, εi|D) dγdζpdβdεi. (1.37)
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The predictive distribution for a new response arising from an out-of-sample person and
out-of-sample item is

p(ỹi′p′|D) =

∫∫
Pr(ỹi′p′ |θ̃p′ , δ̃i′)p(θ̃p′ , δ̃i′|D) dθ̃p′dδ̃i′ (1.38)

=

∫∫∫∫
Pr(ỹi′p′|wp′ , xi′ , γ, ζ̃p′ , β, ε̃i′)p(γ, ζ̃p′ , β, ε̃i′ |D) dγdζ̃p′dβdε̃i′ , (1.39)

where p(θ̃p′ , δ̃i′|D) is the joint mixed predictive distribution for θ̃p′ and δ̃i′ , and p(γ, ζ̃p′ , β, ε̃i′ |D)
includes the mixed predictive distributions for ζ̃p′ and ε̃i′ , as described previously. In MCMC
simulation, p(ỹsip|D) may be obtained as a random draw from Bernoulli(logit−1(θsp−δsi )), and

likewise p(ỹsi′p′|D) may be obtained as random draw from Bernoulli(logit−1(θ̃sp′ − δ̃si′)).
Figure 1.2 shows four ways of making inferences for new responses. On the left side

of each panel is a graphical representation of the model, similar to the one shown earlier,
though the boxed regions indicating which parameters vary over persons and which vary
over items are omitted for simplicity. On the right side of each is a shaded region for the
out-of-sample predictions. Figure 1.2a shows that the posterior distribution for ỹip, a new
response from an in-sample person and in-sample item, arises directly from an existing θp
and δi pair. In this way, it is clear that ỹip is closely related to the observed yip. Figure 1.2b
shows that the posterior for ỹi′p′ arises from the mixed predictive distributions for θ̃p′ and δ̃i′ .
Further, it depicts how the various predictive distributions are influenced by the posteriors
for the modeled parameters. Lastly, predictive distributions for responses from a new person
to an in-sample item, p(ỹip′|D), as well as responses from an in-sample person to a new
item, p(ỹi′p|D), may be obtained by mixing and matching posterior and mixed predictive
distributions as needed, as shown in Figures 1.2c and 1.2d.

In the frequentist perspective, the predicted probabilities for a correct response are based
on point estimates of model parameters, but are otherwise similar to the Bayesian predictions.
For a new response from a within-sample person-item pair, the predicted probability of a
correct response is

Pr(ỹip = 1|wp, xi, γ̂, σ̂, β̂, τ̂) =

∫∫
Pr(ỹip = 1|wp, xi, γ̂, ζp, β̂, εi)p(ζp, εi|D, γ̂, σ̂, β̂, τ̂) dζpdεi.

(1.40)
Like empirical Bayes predictions, it uses the conditional posterior for ζp and εi. This corre-
sponds to the cluster-averaged expectation for generalized linear mixed models described by
Skrondal and Rabe-Hesketh (2009), except that the prediction given here marginalizes over
the posterior for two sets of residuals rather than just one. The predicted probability for a
new response from a new person to a new item is

Pr(ỹi′p′ = 1|wp′ , xi′ , γ̂, β̂, τ̂ , σ̂) =

∫∫
Pr(ỹi′p′ = 1|wp′ , xi′ , γ̂, β̂, ζp′ , εi′)p(ζp′ , εi′ |τ̂ , σ̂) dζp′dεi′ ,

(1.41)
which uses the prior for ζp and εi. This corresponds to what Skrondal and Rabe-Hesketh
(2009) refer to as the population-averaged expectation, again with the exception that two
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(d) Within-sample persons and out-of-
sample items (ỹi′p)

Figure 1.2: Predictive distributions of various forms for responses under the doubly explana-
tory model. Circles represent parameters and squares represent data. The shaded region
indicates predictive quantities that are not involved in the estimation. Covariates W and X
are omitted.



CHAPTER 1. A COMPARISON OF THE FREQUENTIST AND BAYESIAN
FRAMEWORKS IN RELATION TO EXPLANATORY ITEM RESPONSE MODELS 13

sets of residuals are involved here. Lastly, predictions for new responses of the form ỹi′p and
ỹip′ are obtained by mixing the use of posterior and prior distributions for the residuals.

Inferences for special cases

If a special case of the full model is fitted, such as any described in Section 1.2, some predictive
inferences may not be available. For example, with the Rasch model (either the marginal
or joint maximum likelihood formulations) the predictive distribution for δ̃i′ is unavailable
because for the Rasch model X is a series of indicator variables for the existing items and
ε and τ are omitted. By extension, predictive distributions for ỹi′p and ỹi′p′ also cannot be
obtained for the Rasch model.

1.4 Discussion

For models that are not hierarchical, frequentist analysis will often be equivalent to a
Bayesian analysis using uniform priors. In a more complicated model, like the doubly ex-
planatory model, the results are still expected to be very similar if the priors for Bayesian
analysis are uniform or diffuse. Nonetheless, some advantages have been identified in the
Bayesian approach.

First, in Bayesian modeling it is natural to make inferences about basic parameters, in-
termediate parameters, and hyperparameters simultaneously, while frequentist analysis does
not directly estimate exchangeable basic parameters or intermediate parameters. Paradox-
ically, in frequentist item response modeling, the actual measurement of persons, that is
obtaining a prediction for θp, must occur in a second, post-estimation step when marginal
maximum likelihood estimation is used.

Second, Bayesian analysis propagates uncertainty regarding parameters while frequentist
analysis does not. For example, frequentist analysis may obtain an empirical Bayes prediction
ζ̂EBp that will depend on point estimate σ̂ and other parameters, and standard errors for ζ̂EBp
will be unduly small as σ̂ is treated as known. In contrast, the Bayesian posterior for
ζp will be marginal over the posterior for σ (and all other parameters) and so will more
accurately represent the uncertainty regarding ζp. The difference is more pronounced with
an intermediate parameter like θp, as the true Bayesian posterior for it will also reflect the
uncertainty regarding γ in addition to ζp.
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Chapter 2

Frequentist approaches to
cross-validation for item-explanatory
models

2.1 Introduction

Several models have been developed that account for the factors associated with item dif-
ficulty: the linear logistic test model (LLTM; Fischer, 1973), the linear logistic test model
with error (LLTM-E Janssen et al., 2004), the 2PL-constrained model (Embretson, 1999),
the additive multilevel item structure model (Cho, De Boeck, Embretson, & Rabe-Hesketh,
2014), and others. Such models are described as item explanatory models by Wilson and
De Boeck (2004) and lend themselves to the prediction of item difficulties for new items.
Predictions regarding new items are useful in automatic item generation, especially in re-
gards to adaptive testing when the goal is to generate an optimally informative item during
administration (see for example, Embretson, 1999). Such a prediction is sometimes referred
to as “precalibration” (see for example, Gierl & Haladyna, 2013). Even when item genera-
tion is not automatic, the ability to anticipate the difficulty of new items may be useful in
the development of new test forms.

The best set of predictors for item difficulty may not be known a priori, and in this case
a model selection strategy may be employed to select a preferred model for the prediction
of new item difficulties from a set of candidate models. A model selection strategy requires
a choice of a score function to evaluate the prediction error, and the deviance (−2 times
the log-likelihood) is a natural choice. Holdout validation, cross-validation, or information
criteria may be used to select a preferred model on the basis of the score function. In holdout
validation, a model is estimated on one dataset and then evaluated in a second dataset using
the score function. Cross-validation is similar but involves splitting the data multiple times
and aggregating the results across splits. The Akaike Information Criterion (AIC; Akaike,
1974) is asymptotically equivalent to cross-validation (Stone, 1977) but requires only a single
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fit of the model. In holdout validation, the estimated prediction error is conditional on the
fitted model, whereas cross-validation and AIC approximate the expected prediction error,
with the expectation taken over possible training datasets (Hastie, Tibshirani, & Friedman,
2009, chapter 7).

Predictive utility is a good basis for model selection in general even if the goal is not
actually prediction per se. In particular, if it is believed that none of the candidate models
are true, then the model that best predicts new data may be justified as the best available
approximation to the unknown true model. For example, a researcher may be interested
in identifying the factors associated with item difficulty in order to develop or evaluate the
theory pertaining to the latent construct if interest. In this way, the purpose of modeling
item difficulty may be explanation rather than prediction, but predictive utility may still
form the basis for selecting a preferred model. It must be noted that a true model, even if it
were available, may not be the most predictive model when it is estimated with finite data,
owing to potentially high variance in the parameter estimates. However, this possibility need
not be troubling because it is more realistic to consider models as being approximations to a
complex reality than as being true data generating mechanisms. Further, it is realistic and
appropriate that additional information, in the form of increased amounts of data, should
affect judgments about which model best approximates the unknown true model.

Obtaining predictions for new data requires consideration of how new observations would
arise. For the case of independent observations, new observations come about in a straight-
forward way. For the case of clustered observations, new observations may come from within
the existing clusters or instead from within new clusters. Item response data are more com-
plicated still as the observations are cross-classified, or in other words, responses are clustered
simultaneously within persons and items. As a result, new item responses could arise from
any combination of new or same persons and new or same items. In most applications,
predictions are made for the response variable, but with clustered data prediction may also
be made for the clusters themselves. For item response data, this could mean predictions
for item difficulties or for person abilities, though this chapter focuses on the prediction of
new item difficulties.

Generalized linear mixed models are commonly used in the analysis of clustered data. In
this framework, models are built from “fixed” and “random” effects. Fixed effects are much
like standard regression coefficients and are directly estimated. Fixed effects are usually
constant across clusters, while random effects are cluster-specific. Random effects are not
estimated directly, but instead estimation focuses on the parameters of their assumed joint
distribution. In this way, the clusters are treated as sampled from a distribution, implying
that a new data collection would entail a new set of clusters. An alternative modeling
strategy is to treat cluster-specific effects as fixed effects, in which case the clusters are fixed
rather than random, implying that new observations would arise from the existing set of
clusters.

Rasch family item response models, including the LLTM but not the LLTM-E, are readily
specified as generalized linear mixed models (Rijmen, Tuerlinckx, De Boeck, & Kuppens,
2003). Items are customarily modeled as fixed effects, for example as item-specific parameters
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for the Rasch model or as a weighted sum of covariates for the LLTM, and persons are
modeled as random effects, perhaps with fixed effects for the mean structure of the person
ability distribution (for example, Zwinderman, 1991; Adams et al., 1997). In this way,
common item response models imply that persons are random, and so would be different
in new data, and that the items would be the same in new data. It follows that such a
modeling strategy would be well-suited to the selection of a preferred model for predicting
person abilities but not for predicting item difficulties, which presents a paradox for the
LLTM. In particular, information criteria may perform poorly for the LLTM given that
they are based on a likelihood that treats the items as fixed, while holdout validation or
cross-validation may perform more reasonably so long as they are based on new items.

The LLTM-E treats both the persons and items as random, which is reflected in the
likelihood for it. For this reason, information criteria used with the LLTM-E should exhibit
correct behavior, unlike for the LLTM. However, given that the model is simultaneously
marginal in regard to persons, and the persons and items are crossed, it is infeasible to
estimate using marginal maximum likelihood. I propose a two-stage estimation method for
the LLTM-E, called the LLTM-E2S, that appropriately treats the items as random.

In this chapter, simulation study results for several model selection strategies are reported
for the LLTM and LLTM-E2E. It is expected that holdout validation using a new set of items
will yield better item predictions than holdout validation repeating the same set of items. For
the LLTM, model selection results using AIC are expected to resemble results from holdout
validation with the same items, given that the likelihood for the LLTM treats items as fixed.
For the LLTM-E2S, model selection results using AIC are expected to resemble results from
holdout validation with new items, given that its likelihood treats items as random.

2.2 Models

The linear logistic test model with error

The data generating model in the simulation study is the LLTM-E:

Pr(yij = 1|xi, θj) = logit−1 [θj − (x′iβ + εi)] (2.1)

θj ∼ N(0, σ2) (2.2)

εi ∼ N(0, τ 2), (2.3)

where yij = 1 if person j (j = 1, · · · , J) responded to item i (i = 1, · · · , I) correctly and
yij = 0 otherwise. Latent ability is denoted by θj, which follows a normal distribution.
The quantity x′iβ + εi is a latent regression of item difficulty in which xi is a vector of
item covariates, β is a vector of regression coefficients, and εi is a residual. The residual is
necessary because it is unrealistic that the item covariates would perfectly account for item
difficulty. Further, xi is a row from a matrix of item covariates X, which will in general
include a column with all elements equal to one for the model intercept. The model may
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be understood as a generalization of the Rasch model (Rasch, 1960) that decomposes the
Rasch difficulty parameters into a structural part (x′iβ) and residual part (εi). Omitting the
residual part from the LLTM-E yields the standard LLTM.

Fitting the model using marginal maximum likelihood estimation is infeasible, given the
need to integrate over the vectors θ and ε simultaneously when calculating the marginal
likelihood. Maximizing the likelihood is equivalent to minimizing the deviance, which is −2
times the log likelihood. The deviance for the LLTM-E is

dev(y|ω̂m(y)) = −2 log

∫
· · ·
∫ [ I∏

i=1

J∏
j=1

Pr(yij|β̂, εi, θj)φ(εi; 0, τ̂ 2)φ(θj; 0, σ̂2)

]
dεdθ, (2.4)

where φ is the normal density function. The integral does not factorize and at best may be
reduced from I + J to I + 1 dimensional integrals (Goldstein, 1987; Rasbash & Goldstein,
1994). In the above equation, ω̂m(y) is shorthand for all estimated parameters (β̂, σ̂, and
τ̂) for model m, which are estimated from data {x, y}, and the hats on parameters denote
marginal maximum likelihood estimates. In the notation ω̂m(y), x is omitted for convenience
but would be appropriate to include for completeness. Also, for the moment it may seem
redundant to indicate that the parameter estimates arise from y in the notation ω̂m(y), but
this notation will become useful later.

The linear logistic test model

A common model for studying the effects of item covariates, the LLTM (Fischer, 1973),
omits the item residual εi:

Pr(yip = 1|xi, θj) = logit−1 [θj − x′iβ] (2.5)

θj ∼ N(0, σ2). (2.6)

Otherwise, the model is the same as the LLTM-E. The likelihood for the LLTM is marginal
over persons but not items. Expressing the likelihood in terms of deviance,

dev(y|ω̂m(y)) = −2
J∑
j=1

log

∫ [ I∏
i=1

Pr(yij|β̂, θj)

]
φ(θj; 0, σ̂2) dθj, (2.7)

where ω̂m(y) again represents all estimated parameters, this time only β̂ and σ̂. Only a
one-dimensional integration is involved, and the LLTM is readily fit using marginal maxi-
mum likelihood estimation (Bock & Aitkin, 1981). While no closed-form solution exists for
the integration due to the logit link function (Equation 2.5), it is easily approximated by
adaptive quadrature (Pinheiro & Bates, 1995; Rabe-Hesketh, Skrondal, & Pickles, 2005).
As mentioned earlier, the LLTM may be expressed as a generalized linear mixed model and
is readily fit in standard software in addition to more specialized software for item response
theory models.
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Fischer (1997, p. 232) recommended testing the goodness of fit of the LLTM by con-
ducting a likelihood ratio test comparing the LLTM to the Rasch model, suggesting that the
LLTM was to be interpreted only if it is not rejected. However, as he admitted, the LLTM
will generally be rejected, leaving the researcher with two options: they may either refrain
from studying the sources of item difficulty or interpret the LLTM anyway. The danger in
the second option, which he did not identify, is that standard errors for the item predictors
will be inappropriately small, often substantially so, when the predictions x′iβ fail to repli-
cate the “complete” item difficulties x′iβ+ εi. This problem directly parallels the situation in
multilevel modeling in which a non-hierarchical model is fit to clustered data, and then the
omission of cluster-level residuals leads to an overstatement of the amount of information
available to estimate coefficients of cluster-level covariates.

Two-stage estimation of the linear logistic test model with error

To avoid the high-dimensional integral in Equation 2.4, I propose a two-stage estimation of
the LLTM-E, which I will refer to as the LLTM-E2S. In the first stage, the Rasch model is
fit to the data. The Rasch model is

Pr(yij = 1|δi, θj) = logit−1 [θj − δi] (2.8)

θj ∼ N(0, σ2), (2.9)

where δi is an item-specific difficulty parameter. Point estimates δ̂i and standard errors for δi
are obtained by marginal maximum likelihood estimation, minimizing a deviance similar to
that in Equation 2.7. These results are compiled into a constructed dataset of I observations
that includes the difficulty estimates, standard errors, and predictors for each item.

In the second stage, the δ̂i are regressed on the item covariates using the constructed
data set. This second stage model is

δ̂i = x′iβ + ui + εi (2.10)

ui ∼ N(0, v̂ar(δ̂i)) (2.11)

εi ∼ N(0, τ 2), (2.12)

where ui is a residual related to uncertainty in the estimated δ̂i, and εi is the usual residual
in linear regression. The residual ui has known variance v̂ar(δ̂i), which is the square of the
estimated standard error for δ̂i obtained in the first stage. The variance for εi, τ

2, is a model
parameter to be estimated. This is a random-effects meta-regression model (see for example
Raudenbush & Bryk, 1985). For the LLTM-E2S, let ω̂m(y) represent the set of parameter
estimates from the second stage model. Then the deviance to be minimized in the second
stage is

dev(y|ω̂m(y)) =
I∑
i=1

−2 log φ(δ̂i;x
′
iβ̂, v̂ar(δ̂i) + τ̂ 2), (2.13)
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where δ̂i are estimates carried over from the first step, and β̂ and τ̂ are estimates obtained
in the second step. This deviance is suitable only for the selection of an item difficulty
model. Two-stage estimation has been used elsewhere. For example, Borjas and Sueyoshi
(1994) estimate a probit model with dummy variables for group effects and then regress the
estimated group effects on group-level covariates. In this way, their two-stage estimation is
similar to the LLTM-E2S except that it is for non-cross-classified hierarchical models.

2.3 Model selection strategies

Holdout validation

In holdout validation, a large dataset is split into three parts: the training, validation, and
evaluation subsets. (The evaluation subset may also be referred as the test subset.) In
this process, parameter estimates are obtained for a model by first fitting it to the training
subset, and then the fitted model is used to evaluate the score function in the validation
subset. These steps are repeated for each candidate model In this chapter the deviance
is used as the score function, and so models are both estimated and evaluated using the
deviance. The model with the lowest deviance in the validation subset is selected as the best
model and then evaluated a second time in the evaluation subset. The use of a validation
subset addresses the bias that would arise from both fitting and evaluating the model on the
training subset. The use of an evaluation subset addresses the bias that would arise from
selecting and evaluating a model using the validation subset alone.

This chapter extends the usual holdout validation scheme by considering what elements
differ or persist between the three data subsets. For the case of selecting a model that
best predicts item difficulties, the relevant detail is whether the subsets include the same
or different items. Let yt be the responses from the training subset. A validation subset
may include the same items as the training subset, and the responses from such a validation
subset will be denoted ys. Alternatively, a validation subset might include a new set of items,
and the responses associated with that training subset will be denoted yn. Also, let ye be
the responses from the evaluation subset, which in this chapter will always contain a set of
items distinct from those in the other subsets. Each of yt, ys, yn, and ye are assumed to arise
from separate, random samples of persons. Further, each of yt, ys, yn, and ye is associated
with item covariates xt, xs, xn, and xe respectively, though in general this chapter will omit
the item covariates from notation.

A candidate model is selected based on dev(yn|ω̂m(yt)) or dev(ys|ω̂m(yt)), depending on
the form of the validation subset. Let m∗ represent the model selected from this process. The
deviance for it in the evaluation subset is dev(ye|ω̂m∗(yt)), where m∗ may differ depending
on which type of validation subset was used. In this chapter, the evaluation subset always
contains new items; that is, items that are different from those featured in the training and
validation subsets.

The estimated prediction error (deviance) in holdout validation is conditional on the
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particular training data used. This is clear in the notation dev(ye|ω̂m∗(yt)), in which the
deviance of the chosen model in the evaluation subset is conditional on parameter estimates
obtained from the training subset. This fact distinguishes holdout validation from the cross-
validation methods discussed in the next section.

In summary, two approaches to holdout validation for item prediction are considered in
this chapter: one in which the validation subset features the same items as the training
subset and one in which the validation subset features new items. Whether the LLTM or
LLTM-E2S is used, holdout validation with the same items is expected to perform poorly
because the training and validation subsets will be similar, particularly in regards to the
items. It may be expected to choose overly complex models too often, as idiosyncrasies
related to the items, specifically the realizations of εi, will be repeated in the two subsets.
Holdout validation with new items is expected to choose the model with the correct set of
item predictors, or when the amount of information in the data is low, a simpler model.
The LLTM-E2S may be more successful in this regard than the LLTM, given that its second
stage deviance is more targeted toward item prediction than the deviance for the LLTM.

Cross-validation and AIC

If the available data are not abundant enough to support holdout validation, single dataset
methods for model selection may be considered instead. In k-fold cross-validation, the data
are split into K (approximately) equally sized partitions, most often K = 5 or 10. A model
is fit to all data not in fold k, and then the fitted model is evaluated using the score function
on the data in fold k. This process is performed for every fold, and the resulting deviances
are summed over the folds. Hastie et al. (2009) provide a thorough description of k-fold
cross-validation. Asymptotically, the model selected by cross-validation performs as well as
the candidate model that minimizes the loss function with respect to the true probability
distribution, and this is sometimes referred to as the oracle property (van der Laan & Dudoit,
2003).

When the observations are clustered, k-fold cross-validation may or may not keep the
clusters intact, depending on the whether the desired inference requires new clusters. For
item response data, in which item and person clusters are crossed, either the person clusters
or the item clusters may be kept intact. For example, if the goal is to compare models that
explain the difficulty of I = 20 items differently and K = 5 folds are used, then each fold
should contain all responses for four ( I

K
) items. In this case, the items clusters are held

intact, as the responses to a given item are not split up across folds. However, the person
clusters are broken up across folds, as each fold will have only four responses per person. On
the other hand, if the purpose is to compare models with different sets of person covariates,
folds should instead keep the person clusters intact.

For models for item prediction, a possibility is to assign each item to its own fold, which
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may be referred to as leave-one-cluster-out cross-validation (LOCO-CV). Then

LOCO-CVm =
I∑
i=1

dev(yi|ω̂m(y−i)) (2.14)

where yi indicates all responses for item i, and y−i indicates all responses not associated
with item i. The LLTM-E2S is particularly suited to performing LOCO-CV, given that the
first stage (fitting the Rasch model) need only be carried out once. Then the second stage is
performed I times per candidate model, leaving one item out and then obtaining a prediction
for the left out item difficulty. These predictions are substituted for x′iβ̂ in Equation 2.13 to
obtain LOCO-CVm. LOCO-CV could be performed for the LLTM, but it is time-consuming
when compared to the LOCO-CV with the LLTM-E2S. For this reason, the simulations that
follow only use the LLTM-E2S when performing LOCO-CV.

The Akaike Information Criterion (AIC; Akaike, 1974) requires only a single fit of the
model and has the form

AIC = dev(y|ω̂m(y)) + 2qm, (2.15)

where qm is the count of parameters in model m. AIC is an approximation related to
the Kullback-Leibler distance, which is a measure of the information lost when a model is
used to approximate the true data generating distribution. Calculating the Kullback-Leibler
distance would require knowing the true data generating distribution, but it is possible to
approximate the expected relative distance

−2 ERDm = EyvEyt [dev(yv|ω̂m(yt))] ≈ AIC, (2.16)

where L is the log-likelihood rather than deviance, is tractable. In the above equation, yt

and yv are (hypothetical) independent datasets and the expectations are taken over the true
data generating distribution for yt and yv. The difference between the Kullback-Leibler
distance and expected relative distance is an unknown constant that is a function only of
the true data generating distribution. This constant will be the same for all candidate
models because it does not depend on the models. AIC is an approximation to the ex-
pected relative distance multiplied by negative two, putting it on the scale of deviance. For
models without random effects, AIC is asymptotically equivalent to “leave-one-observation-
out” cross-validation (Stone, 1977), and for models with random effects it is asymptotically
equivalent to LOCO-CV (Fang, 2011), at least for linear mixed effects models.

Kuha (2004) describes two requirements for AIC to be a good approximation of the
expected relative distance. First, the sample size is assumed to be large. Corrections for
small samples exist but must be derived for every model type. Second, the candidate models
are assumed to be true. This is a result of the derivation of AIC; the AIC penalty (two
times the number of parameters) is a property of the true distribution. For untrue models,
the penalty is biased but has zero variance. “Other, less biased, estimates for the same
quantity exist, but their variances must also be larger. Thus, the constant estimate used in
[AIC], besides being trivial to calculate, is likely to have a lower mean squared error than
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alternatives in many models in which its assumptions are at least roughly satisfied” (Kuha,
2004, p. 208).

Vaida and Blanchard (2005) demonstrate that, for linear mixed effects models, “marginal”
AIC (as in Equation 2.15) assumes that (hypothetical) new datasets would entail a different
set of clusters than the original data. Also in the context of linear mixed effects models,
Greven and Kneib (2010) show that marginal AIC is not asymptotically unbiased, favoring
models with fewer random effects, but suggest this may not be a problem in choosing between
models that merely have differing fixed effects. In addition, Vaida and Blanchard (2005)
develop a conditional AIC for inferences pertaining to new datasets that would have the
same, fixed set of clusters, and this work has been extended by others (Liang, Wu, & Zou,
2008, 3; Greven & Kneib, 2010; Yu & Yau, 2012; Yu, Zhang, & Yau, 2013; Saefken, Kneib,
van Waveren, & Greven, 2014). However, conditional AIC is not suitable for this application.

For linear regression models, a corrected form of AIC is available which adjusts for the
finite sample by modifying the penalty (Sugiura, 1978; Hurvich & Tsai, 1989). I apply this
corrected AIC to the LLTM-E2S:

AICc = dev(y|ω̂m(y)) + 2(qm + 1)
I

I − qm − 2
. (2.17)

The appropriateness of the corrected AIC here is uncertain, as the second stage LLTM-E2S
model includes the estimated variances for δ̂ and as such is not a simple linear regression
model. In fact, Kuha (2004, p. 208) notes that a disadvantage of corrected AIC is that the
particular adjustments will differ across types of models. Nonetheless, the corrected AIC
is expected to be more accurate than standard AIC and so will be used in the simulation
study. Corrected AIC has been used with meta-regression in other contexts (see for example,
Knowles, Nakagawa, & Sheldon, 2009; Jones, Nakagawa, & Sheldon, 2009; Chen, Ibrahim,
Shah, Lin, & Yao, 2012). Also, Vaida and Blanchard (2005) provide a similar correction
for linear mixed effects models, but this correction is not used with the LLTM because the
correction may not apply to logistic models and also because it would have almost no impact,
as the sample size under the LLTM is large (I × P ).

As the deviance for the LLTM is marginal only over persons and not over items, or in
other words treats persons but not items as random, AIC is expected to perform similarly
to holdout validation with the same items for the LLTM. By extension, it is unlikely to be
effective for selecting models for item prediction. For the LLTM-E2S, AICc is expected to
perform similarly to holdout validation with new items, given that the LLTM-E deviance is
marginal in regards to items. Results for LOCO-CV with the LLTM-E2S are expected to
more closely match those of holdout validation with new items than AICc, given that it does
not rely on assumptions regarding the appropriate penalty.

BIC and likelihood ratio testing

For completeness, two other model selection strategies are considered despite the fact that
they are not motivated by prediction. First, the Bayesian Information Criterion (BIC;



CHAPTER 2. FREQUENTIST APPROACHES TO CROSS-VALIDATION FOR
ITEM-EXPLANATORY MODELS 23

Schwarz, 1978) is
BICm = dev(y|ω̂m(y)) + qm logN, (2.18)

where N is the count of observations. For the LLTM approach N = I×P , while for the two
stage approach N = I. The penalty for BIC is based on an approximation to the Bayes factor
for an assumed multivariate normal prior distribution with means equal to the parameter
estimates and a covariance matrix that is as informative as one observation (Kuha, 2004, p.
196). The model with the lowest BICm is preferred.

Second, the likelihood ratio test is based on hypothesis testing and is suitable only for
comparing nested models. Let ∆dev be the difference in deviance between two models, and let
∆q be the difference in the number of parameters. Then the asymptotic null distribution for
∆dev is χ2(∆q), and most often a p-value less than .05 is deemed statistically significant. If
the likelihood ratio test provides a statistically significant result, the simpler model is rejected
in favor of the more complex one. When multiple comparisons are needed, the comparisons
may be made in ordered pairs. For example, the simplest model may be compared against the
second simplest, and if the likelihood ratio test rejects the simplest model, then the second
simplest is then compared against the third simplest, and so on. As such, the researcher
selects the simplest unrejected model in the end.

2.4 Simulation

Simulation study design

In each replication of the simulation, the LLTM-E is used to generate a training subset, a
same items validation subset, a new items validation subset, and an evaluation subset. The
two forms of holdout validation (using the same items versus new items) are performed for
competing models using both the LLTM and LLTM-E2S. In this way the simulation is a 2×2
(holdout validation type by modeling strategy) design. The simulation replications track
which model is selected and the score function values, dev(ye|ω̂m(yt)), for the competing
models. In addition, model selection is also preformed using AIC, BIC, LOCO-CV, and
likelihood ratio testing using only the training subset.

The fixed part of the data generating model for the item difficulties is

x′iβ ≡ β1x1i + β2x2i + β3x3i + β4x4i + β5x2ix3i, (2.19)

which includes constant x1i = 1, covariates x2i, x3i, x4i, and one interaction x2ix3i. The
predictors x2i · · ·x4i are independent draws from a standard normal distribution. A key
feature of the generated datasets (and data of this type more generally) is the extent to
which the item covariates account for the item difficulties. Let υ2 represent the variance of
the structural part of item difficulty (x′iβ). Then

R2 =
υ2

υ2 + τ 2
(2.20)
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Branch R2 I P β1 β2 · · · β5 τ υ σ
1 0.3 32 500 0.00 0.41 1.25 0.82 1.50

0.6 32 500 0.00 0.58 0.95 1.16 1.50
0.9 32 500 0.00 0.71 0.47 1.42 1.50

2 0.6 16 500 0.00 0.58 0.95 1.16 1.50
0.6 32 500 0.00 0.58 0.95 1.16 1.50
0.6 64 500 0.00 0.58 0.95 1.16 1.50

Table 2.1: Generating values for parameters across the simulation conditions. In the first
simulation branch, the proportion of explained item variance (R2) is varied while the number
of items (I) is fixed. In the second branch, I is varied while R2 is fixed. The condition in
which R2 = .6 and I = 32 is duplicated in the two branches.

represents the proportion of item variance accounted for by the item predictors. For the
simulation, let the total item variance be τ 2 + υ2 = 1.25, and let each of β2 · · · β5 equal
the same value. Then for a given value of R2, the variance of the structural part of item
difficulty is υ =

√
1.25R2. Given the above, τ =

√
1.25− υ2 and β2 · · · β5 = υ

2
. The

remaining parameters are the intercept, which is set to β1 = 0, and the person variance,
which is set to σ2 = 1.25. In short, the simulation is designed such that the proportion of
item variance accounted for by the predictors, R2, may be varied while maintaining the same
the same total item variance.

In the first of two simulation branches, values for R2 are manipulated, R2 ∈ {.3, .6, .9},
while the number items I = 32 is held constant. These generating values are provided in
the first part of Table 2.1. In the second simulation branch, the number of items is varied,
I ∈ {16, 32, 64}, while R2 is held at .6, and these generating values are depicted in the
second part of Table 2.1. The condition in which R2 = .6 and I = 32 is duplicated in the
two branches, and so there are really five conditions rather than six. In all conditions in
both branches, the number of persons is P = 500. A total of five hundred replications are
carried out for each condition.

Three competing models are subjected to the various model selection strategies. Model 1
includes the main effects only:

x′iβ ≡ β1x1i + β2x2i + β3x3i + β4x4i. (2.21)

Model 2 matches the data generating model in terms of x′iβ. Model 3 includes an extra
interaction:

x′iβ ≡ β1x1i + β2x2i + β3x3i + β4x4i + β5x2ix3i + β6x2ix4i. (2.22)

Using the LLTM-E2s with Model 2 matches the data generating model, while using the
LLTM with Model 2 does not because the LLTM does not include the item residual.
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Parameter recovery and standard error estimates

Parameter recovery is investigated for both the LLTM and LLTM-E2S. Results for the
LLTM-E2S are of interest as confirmation that the method works, while results for the
LLTM are of interest because the misspecification of the LLTM may lead to biased param-
eter estimates. This bias is assessed by the mean difference between the estimated and
generating parameters across 500 simulation replications. For this purpose, I focus on es-
timation results ω̂(yt) for Model 2 because the fixed part matches that of the generating
model. Figure 2.1 presents estimates of bias (the mean of differences) with 95% confidence
intervals (±1.96 sd√

500
).

For the LLTM, there is evidence of downward bias in the coefficient estimates (β̂2 · · · β̂5)
in all of the simulation conditions, and in relation to the magnitude of these coefficients
(β2 · · · β5 = .58), the bias is often substantial. However, no such problem is seen for the
estimated intercept (β̂1). Because of the absence of item residuals, the LLTM is like a
population-average model in regards to the items, which is known to exhibit attenuated
coefficients for the logistic case (Ritz & Spiegelman, 2004). The estimate of the person
standard deviation (σ̂) also exhibits a downward bias that depends on R2 (or by extension,
τ). For the LLTM-E2S, there is no systematic evidence for bias in β̂, though there is a
downward bias in τ̂ that is mitigated in the high information conditions. The bias in τ̂ may
be alleviated by using restricted maximum likelihood estimation or more recent estimators
(see for example, Viechtbauer, 2005), but for simplicity and speed, maximum likelihood
estimation is used in the simulation.

The LLTM and LLTM-E2S provide very different standard error estimates. To illustrate,

I focus on β6 for Model 3. Because β6 = 0 in data generation, β̂6
se(β̂6)

should follow a standard

normal distribution across simulation iterations if the standard error estimates are correct.
Figure 2.2 presents Q-Q plots of the observed β̂6

se(β̂6)
against the quantiles of the standard

normal distribution. In all conditions, values for β̂6
se(β̂6)

for the LLTM deviate greatly from

the expected results from a standard normal distribution and indicate that the estimated
standard errors are too small. In contrast, the LLTM-E2S shows no such problem, conforming
to the appropriate distribution.

Clearly the LLTM yields inappropriately small standard errors, which is a result of the
omission of item residuals. For example, the mean standard error for β̂6 was 0.03 for the
LLTM but 0.20 for the LLTM-E2S in the simulation condition in which R2 = .6 and I = 32.
As mentioned earlier, Fischer (1997, p. 232) recommended conducting a likelihood ratio
test comparing the LLTM and Rasch model as a goodness of fit test. Failure to reject the
LLTM would imply that τ is about zero, and then it may be that the LLTM would yield
approximately correct standard errors. However, this is an improbable scenario as it requires
perfect predictors for item difficulty.
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Figure 2.1: Bias (mean of parameter estimates minus generating values) with 95% confidence
intervals for Model 2. Results are for 500 simulation replications per condition. The LLTM
does not include estimation of τ , and the LLTM-E2S does not include estimation of σ in the
second stage.

Model selection

In describing model selection results, it is useful to consider the relative amount of infor-
mation about the regression coefficients contained in the simulated datasets. Larger values
for R2 are associated with item covariates that are strong predictors, so R2 = .9 is a “high
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Figure 2.2: Q-Q plots for the observed β̂6
se(β̂5)

for Model 3 across simulation iterations versus

standard normal quantiles. On the left are results for simulation replications in which τ
varies, and on the right are results for replications in which the number of items vary.

Because β6 = 0 in data generation, β̂6
se(β̂6)

should follow a standard normal distribution across

simulation iterations if the standard errors are correct. The lines have an intercept of zero
and slope of one, indicating where the points should lay if the standard error estimates are
correct.

information” condition. Also, when the number of items is large, more precise estimates of
β are possible, so I = 64 is also a high information condition. Conversely, R2 = .3 and
I = 16 are “low information” conditions. It is expected that Model 2 should provide the
best predictions given that it matches the generating model, though there is no guarantee of
this with finite data. In high information conditions, it is expected that Model 2 will tend to
be selected using holdout validation, LOCO-CV, or AIC because enough information should
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be available to obtain good parameter estimates. In low information conditions, the simpler
Model 1 may be selected more often, as estimates for its fewer parameters may be more
stable compared to those in larger models. This is a matter of bias-variance trade off (Hastie
et al., 2009, p. 223), and the expected difference in selection between high and low informa-
tion conditions is correct behavior as the goal is to identify the most predictive model rather
than a true model. Lastly, there is no condition in which Model 3, the most complex model,
should tend to be favored, though random variation in the generated datasets are expected
to lead to it being selected some small number of times.

Figure 2.3 provides the model selection results for the simulation conditions in which
R2 is varied, and Figure 2.4 shows the same for conditions in which the number of items is
varied. Holdout validation using new items performs similarly between the LLTM (left side
of both figures) and the LLTM-E2S (right side). In addition, this method selects Model 2 the
majority of times in all conditions, though Model 1 is selected with increasing frequency in
low information conditions. Holdout validation using the same items also behaves similarly
between the LLTM and LLTM-E2S, but for this approach Model 3 is chosen the large
majority of times in all simulation conditions. This result is problematic but not surprising;
idiosyncrasies that arise from a particular set of item residuals in the training subset are
repeated again in the validation subset, and so the two subsets are very similar. In this way
the overly complex Model 3 is provided an opportunity to capitalize on chance. Clearly,
holdout validation for item prediction must feature datasets with different sets of items in
order to be effective.

Focusing now on the LLTM, AIC performs similarly to holdout validation with the same
items in terms of model selection (Figures 2.3 and 2.4 again) and quite differently from
holdout validation with new items. This supports the argument that using AIC with the
deviance from the LLTM corresponds to an inference involving the same set of items. The
likelihood ratio test is more conservative, that is, tends to prefer simpler models, when
compared to AIC. Assuming an alpha level of .05, a model would have to have a deviance
3.8 lower than a competing model with one fewer parameter in order to reject the simpler
model, compared to a difference in deviance of 2 for AIC. BIC is more conservative still
with a penalty ranging from 8.99 to 10.37 per parameter, depending on the number of items.
The relative conservatism of the likelihood ratio test and BIC are noticeable in the two
figures. However, AIC, BIC, and the likelihood ratio test for the LLTM all bear resemblance
to holdout validation with the same items and too frequently select the overly complex
Model 3.

In contrast, AICc paired with the LLTM-E2S performs similarly to holdout validation
with new items in terms of model selection (Figures 2.3 and 2.4 again) and is generally more
apt to select Model 2 than holdout validation with new items. Results for LOCO-CV with
the LLTM-E2S are similar to those for AIC, as expected. For these data and models, AICc

applies penalties ranging from 2.66 to 5.22 per parameter; larger penalties occur with greater
numbers of parameters and with smaller numbers of items. The likelihood ratio test implies a
penalty of 3.8 again (assuming the models differ by one parameter) and BIC implies penalties
ranging from 2.77 to 4.16 per parameter, depending on the number of items. The penalties
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suggested by AICc may be higher or lower than for BIC or the likelihood ratio test. Unlike
for the LLTM, AICc, BIC, and the likelihood ratio test appear more like holdout validation
with new items when paired with the LLTM-E2S, and the three perform as expected in
model selection.

Implied penalties associated with holdout validation

Standard AIC features a penalty to dev(yt|ω̂m(yt)) that is a function of the number of model
parameters. Let this be dAIC = 2q. In this context, dAIC is an asymptotic approximation for

dHV = EyeEyt
[
dev

(
ye|ω̂m(yt)

)
− dev (ye|ω̂m(ye))

]
, (2.23)

which is the expected difference between the holdout validation deviance and the deviance
obtained from both fitting and evaluating the model using the evaluation subset. In effect,
dHV is the correct but unknown penalty. An empirical estimate for it may be obtained from
the simulation as

d̂HV =
1

R

R∑
r=1

[
dev

(
ye,r|ω̂m(yt,r)

)
− dev (ye,r|ω̂m(ye,r))

]
, (2.24)

where r indexes the R simulation replications. In a large sample, dAIC should approximate
dHV well. Also, let dAICc be the penalty associated with AICc, as in Equation 2.17. This
penalty should approximate dHV well in smaller samples. Last, the penalty implied by
LOCO-CV may be estimated as

d̂CV =
1

R

R∑
r=1

[[
I∑
i=1

dev
(
yt,ri |ω̂m(yt,r−i)

)]
− dev

(
yt,r|ω̂m(yt,r)

)]
(2.25)

which should also approximate dHV well when the sample is large.
Figure 2.5 displays the different estimated and calculated penalties across simulation

conditions. For the LLTM, the d̂HV is much greater than dAIC across all simulation conditions.
Clearly the penalty implied by AIC is incorrect for the LLTM, given that that dAIC and
d̂HV bear no resemblance. Interestingly, d̂HV for the LLTM appears to depend on R2, and
if R2 were near one (making the LLTM the correct model), it may be that d̂HV would
approximately equal dAIC for the LLTM. It is clear that d̂HV depends on R2, but AICc for
the LLTM-E2S fails to capture this phenomenon. When R2 = .9 or I = 16, AICc differs
substantially from d̂HV, but otherwise AICc appears to reasonably approximate d̂HV. On the
other hand, d̂CV is quite close to d̂HV, though less so when I = 16.

Comparison of predictive performance

The root mean squared error of prediction for model m is

RMSEPm =

√√√√1

I

I∑
i=1

[
xe′i β̂m(xt, yt)− δei

]2
, (2.26)
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where xe′i is a vector of item predictors associated with the evaluation data, β̂m(xt, yt) is a
vector of coefficients for model m estimated on the training subset, and δei is a known item
difficulty (fixed plus residual parts) associated with the evaluation subset. Here the item
predictors x are brought into the notation to emphasize that the coefficients are trained
with xt (and yt), but predictions for δei are made with xe. The RMSEPm is based on the
difference between predicted and actual item difficulties for new data. In a best case scenario,
xe′i β̂m(xt, yt) may fully account for the fixed part of δei , but it cannot account for the residual
part. In this way, the residual standard deviation (τ) is the best value that may be expected
for RMSEPm. As RMSEPm relies on known δei , it is only available in a simulation context,
though an alternative could be based on estimates δ̂ei from the Rasch model.

Figure 2.6 presents the mean RMSEPm for each model, and τ is indicated by the dashed
lines. In general, Models 2 and 3 both produce predictions that are close to τ , while Model 1
performs more poorly. The exceptions are the low information conditions, in which case
Models 1 and 3 perform similarly. Further, let RMSEPm∗ be the root mean squared error
of prediction for the model chosen by a given selection strategy. Then Figure 2.7 presents
the mean of RMSEPm∗ across simulation replications for several selection strategies. The
selection criteria and and whether the LLTM or LLTM-E2s are used makes little difference
in RMSEPm∗ . Part of the reason for the similarity is that the differences between competing
models in regards to RMSEPm is small.

2.5 Discussion

Some recommendations may be made based on the simulation study. First, the LLTM
should not be used because it yields biased parameter estimates and incorrect standard
error estimates when the true model has an error term for item difficulty. Further, model
selection strategies like AIC, BIC, and the likelihood ratio test behave inappropriately with
the LLTM. The preceding findings occurred even when the unrealistic assumptions of the
LLTM were approximately met (R2 = .9). Instead, the LLTM-E2S is recommended for the
accuracy of its parameter and standard error estimates. It does exhibit biased estimates for
τ with marginal maximum likelihood estimation, but if this is concerning then alternative
estimators, such as REML, could be considered. Second, LOCO-CV is recommended for
model selection over AIC or AICc with the LLTM-E2S. The simulation indicated that correct
penalties for the LLTM-E2S depend on R2, or by extension, τ , and neither AIC nor AICc

address this phenomenon.
Seemingly contradictory findings arose from the simulation study; choices of modeling

strategies and selection strategies had clear implications for model selection, but this did
not lead to substantial differences in predictive accuracy. Though Model 2 made the best
predictions on average across all conditions, it often performed only slightly better than
Model 3. As the simulation demonstrated, competing models may have similar predictive
utility, and furthermore predictive accuracy is limited by the residual standard deviation of
item difficulty.
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If the purpose of model selection is to choose a best model for generating predictions
(with the specific parameter estimates from the available data), then holdout validation
with new items is the recommended strategy as holdout validation is the only approach that
is conditional on the parameter estimates. In this way, inferences regarding predictive utility
are based on the specific prediction parameter estimates that would be used. In contrast,
single dataset approximations like AIC and LOCO-CV rely on expectations over hypothetical
data. This may still be useful if the goal is to merely identify a preferred model with expected
predictive accuracy as a benchmark. In particular, LOCO-CV is recommended as it is less
reliant on assumptions regarding the penalty term.

A stronger method of prediction would combine predictions from several models. The
super learner (van der Laan, Polley, & Hubbard, 2007) accomplishes this by assigning weights
to the predictions from the candidate models, and asympotically such predictions are as
good as those from the candidate model that minimizes the loss function with respect to the
true probability distribution. However, the application of the super learner to the kind of
data considered in this chapter is not straightforward. The super learner has been applied
to propensity scores (Pirracchio, Petersen, & van der Laan, 2015), which like item response
data involve a binary outcome variable, but the super learner would also need to be extended
to clustered data.
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Figure 2.3: Percentages of times each model was chosen by the various selection criteria for
simulation replications in which the proportion of explained item variance (R2) is varied.
Standard AIC is used for the LLTM, while AICc is used for the LLTM-E2S. LOCO-CV was
applied only to the LLTM-E2S.
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Figure 2.4: Percentages of times each model was chosen by the various selection criteria
for simulation replications in which the number of items is varied. Standard AIC is used
for the LLTM, while AICc is used for the LLTM-E2S. LOCO-CV was applied only to the
LLTM-E2S.
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Figure 2.5: Estimated penalties implied by holdout validation with new items (d̂HV), AIC
(dAIC or dAICc), and LOCO-CV (d̂CV) for the LLTM and LLTM-E2S. The y-axes vary.
Standard AIC is used for the LLTM, while AICc is used for the LLTM-E2S. LOCO-CV was
not performed with the LLTM.
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Figure 2.6: Mean for the root mean squared error of prediction (RMSEPm) for each model
across simulation conditions. The dashed line represents the residual item standard deviation
(τ), which is the limit of prediction accuracy.
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Figure 2.7: The mean for the mean root mean squared error of prediction for the selected
model (RMSEm∗) across simulation replications for the various selection strategies. The
dashed line represents the residual item standard deviation (τ), which is the limit of predic-
tion accuracy. Standard AIC is used for the LLTM, while AICc is used for the LLTM-E2S.
LOCO-CV was applied only to the LLTM-E2S.
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Chapter 3

Bayesian approaches to
cross-validation for
person-explanatory models

3.1 Introduction

Model comparison using indices motivated by cross-validation requires consideration of how
new observations would arise. For the case of independent observations, new observations
come about in a straightforward way, that being simply a new collection of exchangeable
units. For the case of clustered observations, new observations may come from within the
existing clusters or instead from within new clusters. Spiegelhalter, Best, Carlin, and van der
Linde (2002) described this distinction as the focus of the model. A model may be focused
on the direct parameters associated with clusters, often referred to as latent variables. Focus
on the direct parameters implies that a new data collection would entail a new sample of
units from the existing set of clusters. Alternatively, the focus of the model may be the
hyperparameters for the distribution of the direct parameters. In this case, the implied new
data collection involves a new sample of clusters, which of course also provide previously
unobserved units.

A researcher may be interested in obtaining estimates of the out-of-sample prediction
accuracy, either to assess a single model or to compare several models. The deviance in-
formation criterion (DIC; Spiegelhalter et al., 2002), widely applicable information criterion
(WAIC; Watanabe, 2010), and Pareto-smoothed importance sampling estimates of leave-
one-out cross-validation (PSIS-LOO; Vehtari & Gelman, 2016) are methods of obtaining
such estimates. Each of these depend on evaluating the likelihood given posterior draws
from Markov chain Monte Carlo (MCMC) simulation. The usual way of specifying Bayesian
models in programs like BUGS, JAGS, or Stan bases the likelihood on the direct parameters,
and so the “default” implementation of information criteria results in an inference with the
focus being on the direct parameters. As such, the estimates of predictive accuracy are for
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predictions for new units arising from the existing set of clusters.
For assessing predictive accuracy with a focus on the hyperparameters, or in other words

for predictions involving a new sample of clusters, it is necessary to obtain cluster-level
likelihoods that are marginal over the direct parameters. Such likelihoods are common
in the frequentist tradition; generalized structural equation models and generalized linear
mixed models are usually fit using marginal maximum likelihood estimation, for example.
In this chapter, I advocate for obtaining posterior draws of marginal likelihoods after the
usual MCMC simulation for use with DIC, WAIC, or PSIS-LOO when a prediction inference
involving new clusters in needed.

3.2 A simple hierarchical Bayesian model

The posterior for a simple hierarchical Bayesian model is

p(ω, ψ, ζ|y) ∝
J∏
j=1

I∏
i=1

p(yij|ω, ζj)
J∏
j=1

p(ζj|ψ)p(ω, ψ), (3.1)

where yij ∈ y is the response for observation i (i = 1 . . . I) in cluster j (j = 1 . . . J), ω is a
vector of parameters common across clusters, ζj is a cluster-specific parameter, and ψ is a
hyperparameter for the prior distribution of ζj. Further, let ζ represent the vector containing
all ζj. The likelihood p(yij|ω, ζj) is conditional on ζj and therefore does not directly involve
ψ. The prior distributions include the hierarchical prior for ζ and the joint prior for ω and
ψ, and the latter may be rewritten as p(ω)p(ψ) if independent priors are assigned.

For a focus on {ω, ψ}, a marginal, cluster-level likelihood may be obtained in order to
make predictive inferences regarding data from new clusters. Otherwise, for a focus on
{ω, ζ}, the usual unit-level likelihood may be used for prediction inferences for new data
from the original clusters. I will refer to this likelihood as the “conditional” likelihood as it
conditions on ζ.

Any hierarchical prior distribution may be assumed for ζj, and depending on the type of
distribution, ψ may be a vector representing multiple parameters associated with the chosen
distribution. Further, ζj may be a vector of several cluster-specific parameters. However, the
adaptive quadrature method proposed in Section 3.4 requires a scalar ζj having a normal
prior, ζj ∼ N(0, ψ2), where ψ is a standard deviation. Here, ζj may be thought of as a
residual, and then ω determines the mean structure of y while ψ represents the standard
deviation of the residuals. As an aside, the proposed adaptive quadrature method could be
generalized to a multivariate normal distribution to accommodate ζj being a vector.
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3.3 Information criteria for hierarchical Bayesian

models

In this section, the notation of Vehtari, Gelman, and Gabry (2016) regarding out-of-sample
pointwise predictive accuracy is modified for the specific case of hierarchical models. For the
conditional approach, predictions are conditional on ζj, while for the marginal approach ζj
is integrated out to obtain predictions. The notation of Vehtari et al. (2016) implicitly takes
the conditional approach, which is made explicit here by the inclusion of the c subscript on
the relevant quantities.

Conditional forms of out-of-sample predictive accuracy

Target quantity for the conditional case

Inference regarding predictive performance of the model for new data relies on the poste-
rior predictive distribution (Rubin, 1984; Marshall & Spiegelhalter, 2007). The posterior
predictive distribution for a new observation ỹi′j is

p(ỹi′j|y) =

∫∫∫
p(ỹi′j|ω, ζj)p(ζj|ω, ψ, y)p(ω, ψ|y) dωdψdζj, (3.2)

where i′ is a new unit within a previously existing cluster j and p(ỹi′j|ω, ζj) is similar to
p(yij|ω, ζj) but for unobserved (hypothetical) ỹi′j. Implicitly, p(ỹi′j|y) in the above also
depends on the choice of model, not just the data. The expected log pointwise predictive
density for a new dataset, in which new observations arise from the existing clusters, is

elpdc =
J∑
j=1

I∑
i=1

∫
pt(ỹi′j) log p(ỹi′j|y) dỹi′j, (3.3)

where pt is the true (unknown) data generating distribution. The c subscript in elpdc denotes
that it is based on the likelihood conditional on ζj. Information criteria and cross-validation
are means of approximating the expected log pointwise predictive density.

Conditional widely applicable information criteria

WAIC is a form of Bayesian information criterion that requires only the log pointwise pre-
dictive density, which is:

lpdc =
J∑
j=1

I∑
i=1

log

∫∫∫
p(yij|ω, ζj)p(ζj|ω, ψ, y)p(ω, ψ|y) dωdψdζj. (3.4)

The lpdc is the log of the full data likelihood integrated over the posterior for all parameters.
An estimate for it is obtained from the draws of MCMC simulation as

l̂pdc =
J∑
j=1

I∑
i=1

log

(
1

S

S∑
s=1

p(yij|ωs, ζsj )

)
, (3.5)
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where ωs and ζsj are the s-th posterior draw from MCMC simulation, s = 1 . . . S. The l̂pdc
is a naively optimistic, in-sample estimate of elpdc, given that the same data are used both

to fit the model and obtain l̂pdc. Similar to many forms of information criteria, WAIC adds

a “penalty” to a naive estimate like l̂pdc to obtain an estimate of expected fit to new data.
This penalty, which approximates the “optimism” of lpdc, may also be referred to as the
estimated effective number of parameters. For WAIC, this estimated effective number of
parameters is

p̂WAIC,c =
J∑
j=1

I∑
i=1

V S
s=1 log p(yij|ωs, ζsj ) (3.6)

where V S
s=1 represents the sample variance across the S posterior draws. Then the expected

log pointwise predictive density for WAIC is

êlpdWAIC,c = l̂pdc − p̂WAIC,c. (3.7)

The value normally reported for WAIC is on the deviance scale,

WAICc = −2êlpdWAIC,c. (3.8)

WAIC is asymptotically equal to Bayesian cross-validation with the deviance as the loss
function (Vehtari et al., 2016, p. 2). It is unreliable when the variance of log p(yij|ωs, ζsj )
(from Equation 3.6) exceeds .4 for a given observation (Vehtari et al., 2016, p. 11). The
penalty in WAIC may be viewed as an approximation to the number of unconstrained pa-
rameters (Gelman, Hwang, & Vehtari, 2014, p. 1003). An alternative formula for the WAIC
effective number of parameters based on the mean of p(yij|ωs, ζsj ) is available, but is less
numerically stable (Gelman, Hwang, & Vehtari, 2014, p. 1002).

Conditional approximate leave-one-out cross-validation

The Bayesian leave-one-out expected log pointwise predictive density is

elpdLOO,c =
J∑
j=1

I∑
i=1

log p(yij|y−i,j) (3.9)

where y−i,j is all observations except for the i-th observation in cluster j and

p(yij|y−i,j) =

∫∫∫
p(yij|ω, ζj)p(ζj|ψ, y−i,j)p(ω, ψ|y−i,j) dωdψdζj, (3.10)

which bears resemblance to the posterior predictive distribution for a new response. An
estimate of elpdLOO,c may be obtained from the posterior draws as

êlpdPSIS-LOO,c =
J∑
j=1

I∑
i=1

log

(∑S
s=1w

s
ijp(yij|ωs, ζsj )∑S
s=1w

s
ij

)
, (3.11)
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where wsij is a weight specific to the observation and posterior draw. Vehtari and Gel-
man (2016) introduced Pareto smoothed importance sampling weights, which are calculated
separately for every observation as follows: first, raw importance ratios are calculated as
p(yij|ωs, ζsj )−1 for each posterior draw; second, the generalized Pareto distribution is fit to
the 20% largest raw importance ratios; third, the 20% largest raw importance ratios are
replaced by the expected values of the order statistics of the fitted generalized Pareto dis-
tribution; and fourth, the weights are truncated at S

3
4 w̄ij, where w̄ij is the average of the S

smoothed weights. The calculation of the raw importance weights was developed by Gelfand,
Dey, and Chang (1992), the truncation of the weights was developed by Ionides (2008), and
the Pareto smoothing was developed by Vehtari and Gelman (2016). On the deviance scale,

PSIS-LOOc = −2êlpdPSIS-LOO,c. (3.12)

Because PSIS-LOOc is calculated from a single fit of a model on one dataset, it may be
considered a form of information criterion. Lastly, an estimate of the effective number of
parameters associated with PSIS-LOO may be obtained after the fact:

p̂PSIS-LOO,c = êlpdPSIS-LOO,c − l̂pdc. (3.13)

PSIS-LOO, like WAIC, is an approximation to elpd (Vehtari et al., 2016, p. 3) that
may be computed from the lpd. PSIS-LOO is more robust than WAIC in cases with weak
priors or influential observations (Vehtari et al., 2016, p. 2), and so it may be used when the
requirements related to the penalty term in WAIC are not met. Still, it becomes unreliable
when the estimated shape parameter for the generalized Pareto distribution exceeds 1 for a
given observation (Vehtari et al., 2016, p. 11).

Conditional deviance information criteria

While conditional WAIC and PSIS-LOO approximate elpdc, the target quantity for DIC
differs. The target is

elpdDIC,c =
J∑
j=1

I∑
i=1

∫
pt(ỹi′j)p(ỹi′j|ω̄, ζ̄j) dỹi′j, (3.14)

where ω̄ and ζ̄j represent the posterior means for their respective parameters. While elpdc,
presented earlier, involves the full posterior predictive distribution p(ỹi′j|y), elpdDIC,c instead
relies on the predictive distribution p(ỹi′j|ω̄, ζ̄j), which is based on point estimates. The use
of point estimates differentiates DIC from WAIC and PSIS-LOO.

The naive, in-sample equivalent of elpdDIC,c is the log-likelihood of the observed y eval-
uated at the posterior mean, which is

lpd∗DIC,c =
J∑
j=1

I∑
i=1

log p(yij|ω̄, ζ̄j). (3.15)



CHAPTER 3. BAYESIAN APPROACHES TO CROSS-VALIDATION FOR
PERSON-EXPLANATORY MODELS 42

Estimates for ω̄ and ζ̄j are plugged into the above to obtain l̂pd
∗
DIC,c, the estimated log-

likelihood evaluated at the posterior mean. Obtaining the estimated effective number of
parameters requires this quantity as well as the mean of the log-likelihood taken over the
posterior, which is

lpdDIC,c =
J∑
j=1

I∑
i=1

∫∫∫
log p(yij|ω, ζj)p(ζj|ω, ψ, y)p(ω, ψ|y) dωdψdζj. (3.16)

This lpdDIC,c differs from lpdc in that it is the log-likelihood integrated over the posterior
rather than the log of the likelihood integrated over the posterior. It is estimated in MCMC
simulation as

l̂pdDIC,c =
J∑
j=1

I∑
i=1

(
1

S
log

S∑
s=1

p(yij|ωs, ζsj )

)
, (3.17)

where ωs and ζsj represent parameter values at posterior draw s, s = 1 · · ·S. Then the
estimated effective number of parameters is

p̂DIC,c = 2(l̂pd
∗
DIC,c − l̂pdDIC,c). (3.18)

The approximation for the expected log pointwise predictive density is

êlpdDIC,c = l̂pd
∗
DIC,c − p̂DIC,c, (3.19)

and the value reported for DIC is usually on the deviance scale:

DICc = −2êlpdDIC,c. (3.20)

This conditional DIC corresponds to the DIC7 of Celeux, Forbes, Robert, and Titterington
(2006).

The reliance on point estimates in calculating l̂pd
∗
c results in DIC not being invariant to

reparameterization (Spiegelhalter, Best, Carlin, & van der Linde, 2014, p. 4). For example,
results for DIC will differ depending on whether a parameter like ψ represents a standard
deviation or a variance. Further, owing to the reliance on point estimates, the posterior
distribution must be reasonably summarized by its mean (Gelman, Hwang, & Vehtari, 2014,
p. 1015), and it is possible for p̂DIC,c to be negative if the posterior mean is far from the
mode (Gelman, Carlin, et al., 2014, p. 172). An alternative for p̂DIC,c based on the variance
of p(yij|ωs, ζsj ) is guaranteed to be positive, but is less numerically stable (Gelman, Carlin,
et al., 2014, p. 173). Lastly, DICc will only be a good approximation of −2elpdDIC,c when
p̂DIC,c is much less than the number of units (Plummer, 2008, p. 535), which may not be the
case for DICc given the cluster-specific parameters.
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Marginal forms of out-of-sample predictive accuracy

Target quantity for the marginal case

Marginal likelihoods may be used with information criteria instead of the “default” condi-
tional likelihoods. In this section, marginal equivalents of the conditional quantities in the
previous section are described. The marginal likelihood, which integrates out ζj, is

p(yj|ω, ψ) =

∫
p(ζj|ω, ψ)

I∏
i=1

p(yij|ω, ζj) dζj, (3.21)

where yj is the vector of responses for cluster j, and p(ζj|ψ) is the prior distribution of ζj given
ψ. This prior is not directly influenced by the data, in contrast to the posterior p(ζj|yj, ω, ψ).
Though the conditional likelihood is normally used to specify the Bayesian model in software
for MCMC, the marginal likelihood may be calculated after MCMC simulation, which is the
approach taken here.

The predictive distribution for ỹj′ , which is a new response vector arising from a new
cluster j′, is

p(ỹj′|y) =

∫∫
p(ỹj′|ω, ψ)p(ω, ψ|y) dωdψ, (3.22)

where p(ỹj′|ω, ψ) is similar to p(yj|ω, ψ) (in Equation 3.21) but for unobserved ỹj′ . The
density p(ỹj′|y) may be referred to as a mixed predictive distribution (Gelman et al., 1996;
Marshall & Spiegelhalter, 2007); it involves the posterior for ω and ψ but the prior p(ζ̃j′ , ψ)
for ζ̃j′ . The expected log pointwise predictive density for a new dataset, containing a new
sample of clusters, is

elpdm =
J∑
j=1

∫
pt(ỹj′) log p(ỹj′ |y) dỹj′ , (3.23)

where pt again is the true data generating distribution. The m subscript indicates that
elpdm results from the marginal likelihood. It is important to note that here the meaning of
“point” is redefined to refer to a cluster rather than a single unit within a cluster.

Marginal widely applicable information criteria

Marginal WAIC is calculated in much the same way as the conditional version by substituting
p(yj|ωs, ψs) for p(yij|ωs, ζsj ) in the calculations and defining the points to be clusters. For
completeness, the modified equations are presented. The marginal form for the log pointwise
predictive density is

lpdm =
J∑
j=1

log

∫∫
p(yj|ω, ψ)p(ω, ψ|y) dωdψ (3.24)
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and may estimated from the draws of MCMC simulation as

l̂pdm =
J∑
j=1

log

[
1

S

S∑
s=1

p(yj|ωs, ψs)p(ωs, ψs|y)

]
, (3.25)

where p(yj|ωs, ψs) is similar to p(yj|ω, ψ) in Equation 3.21 but for a given posterior sample
s. It is expected that lpdm will be less than lpdc (Trevisani & Gelfand, 2003). The effective
number of parameters for marginal WAIC is

p̂WAIC,m =
J∑
j=1

V S
s=1 log p(yj|ωs, ψs), (3.26)

the expected log pointwise predictive density is

êlpdWAIC,m = l̂pdm − p̂WAIC,m, (3.27)

and the final value on the deviance scale is

WAICm = −2êlpdWAIC,m. (3.28)

The integrated WAIC of Li, Qiu, Zhang, and Feng (2016) bears some relation to this
marginal WAIC. Integrated WAIC was developed for the case in which there is a vector of
direct parameters (ζj) for each observation. The data in this case are not clustered. Li et al.
(2016) use Monte Carlo sampling to approximate the integration over the ζj vector. On one
hand, integrated WAIC is less general than the marginal WAIC proposed in this chapter
in that it does not handle clustered data. On the other hand, it is more general in that it
allows for cluster-specific parameters vectors that are correlated between clusters.

Marginal approximate leave-one-out cross-validation

The marginal Bayesian leave-one-out expected log pointwise predictive density is

elpdLOO,m =
J∑
j=1

log p(yj|y−j) (3.29)

where y−j is the response vectors of all clusters except for the j-th cluster and

p(yj|y−j) =

∫∫
p(yj|ω, ψ)p(ω, ψ|y−j) dωdψ, (3.30)

which bears resemblance to the mixed predictive distribution for ỹj′ . An estimate of elpdLOO,m

may be obtained from the posterior draws as

êlpdPSIS-LOO,m =
J∑
j=1

log

(∑S
s=1w

s
jp(yj|ωs, ψs)∑S
s=1w

s
j

)
. (3.31)

The raw importance ratios are obtained as p(yj|ωs, ψs)−1, and these are adjusted by smooth-
ing and truncating as before to obtain weights wsj . On the deviance scale,

PSIS-LOOm = −2êlpdPSIS-LOO,m. (3.32)
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Marginal deviance information criteria

For marginal DIC, the target quantity is

elpdDIC,m =
J∑
j=1

∫
log pt(ỹj′)p(ỹj′ |ω̄, ψ̄) dỹj′ . (3.33)

The marginal log-likelihood evaluated at the posterior means of the parameters is

lpd∗m =
J∑
j=1

log p(yj|ω̄, ψ̄), (3.34)

and plugging in the estimated posterior means for ω̄ and ψ̄ yields l̂pd
∗
m. The log-likelihood

integrated over the posterior is

lpdDIC,m =
J∑
j=1

∫∫
log p(yj|ω, ψ)p(ω, ψ|y) dωdψ, (3.35)

which is estimated in MCMC simulation as

l̂pdDIC,m =
J∑
j=1

1

S

S∑
s=1

[log p(yj|ωs, ψs)p(ωs, ψs|y)] . (3.36)

The estimated effective number of parameters for marginal DIC is

p̂DIC,m = 2(l̂pd
∗
m − ̂lpdm), (3.37)

the expected log pointwise predictive density is

êlpdDIC,m = l̂pd
∗
m − p̂DIC,m, (3.38)

and the final value on the deviance scale is

DICm = −2êlpdDIC,m. (3.39)

This marginal DIC corresponds to the DIC1 of Celeux et al. (2006). It has not been used
much in the literature, partly due to the difficulty in integrating out the cluster-specific
parameters.

3.4 Adaptive Gaussian quadrature for marginal

likelihoods

For models with normally distributed yij, obtaining l̂pdm by way of Equation 3.54 provides
an exact and computationally efficient result. For cases where an analytical form for the
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integration is unavailable, such as logistic models, Gaussian quadrature may be used to
perform numerical integration. (Both methods depend on the integration being performed
over a normal prior distribution.) Rabe-Hesketh et al. (2002) applied the adaptive quadrature
scheme developed by Naylor and Smith (1982) to generalized linear mixed models. In this
chapter, that approach is extended to the individual posterior draws from Markov chain
Monte Carlo simulation.

The proposed adaptive quadrature method relies on M standard Gaussian quadrature
node locations Gstd,m and weights Wstd,m, m = 1 · · ·M , as well as the posterior mean and
standard deviation of each ζj. The posterior mean of ζj is

µ̂j = Ê(ζj|y) =
1

S

S∑
s=1

ζsj , (3.40)

and the posterior standard deviation is

τ̂j =
√

v̂ar(ζj|yj) =
√
V S
s=1ζ

s
j . (3.41)

The posterior means and standard deviations are marginal over ω and ψ, whereas adap-
tive quadrature for maximum likelihood estimation would use conditional quantities. The
adaptive quadrature node locations are

Gjm = µ̂j + τ̂j ×Gstd,m, (3.42)

and their weights are

Ws
jm =

√
2π × τ̂j × exp

(
G2
jm

2

)
× φ

(
Gjm; 0, ψ2,s

)
×Wstd,m. (3.43)

The adaptive quadrature node locations will differ between clusters, while the weights will
differ between both clusters and MCMC iterations because they depend on ψs. The marginal
likelihood for cluster j at posterior draw s is approximated as

p(yj|ωs, ψs) ≈
M∑
m=1

[
Ws

jm

I∏
i=1

p(yij|ωs,Gjm)

]
, (3.44)

where p(yij|ωs,Gjm) is similar to the conditional likelihood p(yij|ωs, ζsj ) except that Gjm is
substituted for ζsj .

3.5 Circular block bootstrap for estimating Monte

Carlo error

Straightforward expressions exist for estimating the Monte Carlo error for means or variances
of functions of parameters but not for more complicated quantities like DIC, WAIC, and
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PSIS-LOO. Instead, the moving block bootstrap (Kunsch, 1989; Liu & Singh, 1992), a
bootstrap technique for autocorrelated data, may be used to estimate the Monte Carlo
error for these quantities. The moving block bootstrap may be used in this context by
concatenating the independent MCMC chains into a single chain having length S. Then
blocks of consecutive draws are drawn with replacement and concatenated into a new chain
of the same length, S. A quantity of interest, in this case information criterion, is recorded for
the new chain. The process is repeated a large number of times, and the standard deviation
of the results provides a bootstrap estimate of the Monte Carlo error. This approach may
further be improved by using the circular block bootstrap (Politis & Romano, 1992), which
joins the ends of the chain, forming a circle. In this way, a sampled block may wrap around
from the last observations to the first observations, solving the problem in the moving block
bootstrap of under sampling the early and late observations.

Sampling from the original draws in blocks preserves the autocorrelation structure when
forming a bootstrap chain, except at the “seams” where the blocks are stitched together.
Some care is needed in selecting the size of the blocks to maintain the autocorrelation struc-
ture while also obtaining sufficiently different block bootstrap samples. Data-dependent
means of selecting a block length have been proposed (Hall, Horowitz, & Jing, 1995; Bühlmann
& Künsch, 1999; Politis & White, 2004; Patton, Politis, & White, 2009), but these methods
are not used in this chapter. Instead, a simulation is conducted in which a wide range of
block sizes are chosen with the circular block bootstrap in order to study how the results
may depend on block size. As an aside, both Hall et al. (1995) and Bühlmann and Künsch

(1999) suggest a block size of S
1
3 as a starting point.

3.6 Simulation study of adaptive quadrature and

circular block bootstrap

Data and model

Data are generated and analyzed using a linear random intercept model because for this
model marginal likelihoods may be obtained by exact integration, which will serve as a
benchmark to test the adaptive Gaussian quadrature approximation. The model is

yij|xj, β, ζj, σ2 ∼ N(x′jβ + ζj, σ
2) (3.45)

ζj ∼ N(0, ψ2) (3.46)

β ∼ N(0, 4) (3.47)

σ ∼ Exp(.1) (3.48)

ψ ∼ Exp(.1), (3.49)

where i = 1 . . . I indexes observations within cluster j, j = 1 . . . J . Further,

x′jβ = β0 + β1x1j + β2x2j + β3x3j + β4x1jx2j + β5x2jx3j. (3.50)
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The generating parameters are: σ = 1, ψ = 1, and β = {−0.5, 0.5, 0.5, 0.5,−0.5, 0}. One
dataset is simulated for each cluster size I ∈ {25, 50, 100}. Each dataset has J = 200 clusters,
and the covariates in xj are random draws from a standard normal distribution.

All MCMC simulations within the simulation study use 4 chains of 1000 iterations. The
first 500 iterations of each chain are discarded, leaving a total of 2000 posterior draws across
the chains. Convergence is monitored using the R̂ statistic of Gelman and Rubin (1992);
when R̂ < 1.1 for each parameter and for the log posterior, convergence may be inferred.

The linear random intercept model is a special case of the general model described pre-
viously. Let ω = {β, σ}, and then ω, ζj, and ψ directly correspond to the parameters of the
general model. The likelihood for the linear random intercept model is

p(yij|xj, ω, ζj) = φ(yij;x
′
jβ + ζj, σ

2), (3.51)

where φ is the normal density function. The conditional log pointwise predictive density is

l̂pdc =
J∑
j=1

I∑
i=1

log
1

S

S∑
s=1

φ(yij;x
′
jβ

s + ζsj , σ
s,2). (3.52)

The simulation focuses on the marginal likelihood, which has a simple form because of the
normally distributed yij and ζj:

p(yj|xj, ω, ψ) = Φ
(
yj;x

′
jβ,Ω

)
, (3.53)

where Φ is the multivariate normal density function and Ω is an I-by-I covariance matrix
with elements on the diagonal equal to ψ2 + σ2 and elements on the off-diagonal equal to
ψ2. Then marginal log pointwise predictive density is

l̂pdm =
J∑
j=1

log
1

S

S∑
s=1

Φ(yj;x
′
jω

s,Ωs). (3.54)

Marginal information criteria may be calculated from this l̂pdm without resorting to a quadra-
ture approximation.

Conditional and marginal information criteria estimates

Information criteria for the three simulated datasets are presented in Table 3.1. The mul-
tivariate normal density (as in Equation 3.54) is used to evaluate the marginal likelihood.

Values for WAIC and PSIS-LOO (−2êlpd) are very close to one another in both the condi-
tional and marginal cases, while those for DIC are slightly lower.

The effective number of parameters p̂ may be compared against the number of parameters
in focus. In the conditional focus, there are 207 parameters (contained in {β, ζ, σ}), but p̂c
is less than this count in all cases. The reason for this discrepancy is that the prior on ζ is



CHAPTER 3. BAYESIAN APPROACHES TO CROSS-VALIDATION FOR
PERSON-EXPLANATORY MODELS 49

informative and as such partially constrains ζ, reducing the effective number of parameters.
As cluster size increases, p̂c decreases, reflecting the increase of data available for estimating
each ζj and the resulting decline in influence of the prior. In the marginal focus, there are 8
parameters (contained in {β, σ, ψ}), and p̂m approximately matches this count.

Conditional Marginal Minimum N. nodes

I Criterion −2êlpdc p̂c −2êlpdm p̂m Absolute Relative
25 DIC 14454.35 193.21 14923.10 7.93 25 37
25 WAIC 14457.70 189.48 14922.71 7.18 17 25
25 PSIS-LOO 14457.98 189.62 14922.80 7.22 17 25
50 DIC 28541.09 197.91 29149.04 7.40 37 55
50 WAIC 28542.97 195.88 29148.92 7.00 17 25
50 PSIS-LOO 28542.99 195.89 29148.95 7.02 17 25

100 DIC 56641.63 199.66 57377.89 7.59 83 125
100 WAIC 56642.74 198.71 57378.07 7.42 37 55
100 PSIS-LOO 56642.64 198.66 57378.10 7.43 37 55

Table 3.1: Conditional and marginal DIC, WAIC, and PSIS-LOO for the simulated datasets
using the multivariate normal density. In the conditional focus, there are a total of 207
model parameters, whereas there are 8 in the marginal focus. Shown on far right are the
minimum numbers of adaptive quadrature nodes (among those considered) needed to obtain
an absolute and relative error less than .01. Absolute error refers to the absolute difference
between the adaptive quadrature approximation and exact results. Relative error refers to
the difference between the adaptive quadrature approximation and the same approximation
using one-third fewer nodes.

Adaptive quadrature approximation

Marginal DIC, WAIC, and PSIS-LOO are calculated on the same three simulated datasets
using 7, 11, 17, 25, 37, 55, 83, and 125 adaptive quadrature nodes. Each number of nodes
is 50% greater than the preceding number, rounded to the nearest odd number. With an
odd number of nodes, one node is placed on the mean of the distribution, which does not
happen for an even number. The absolute difference between approximate results from
adaptive quadrature and exact results from the multivariate normal density are shown in
Figure 3.1. In this chapter, an absolute difference less than .01 is judged to be a sufficiently
close approximation (shown as horizontal dashed lines), which is somewhat arbitrary but
should be conservative unless the information criteria values are very close. The figure
indicates that more nodes are required as cluster size increases and that DIC requires more
nodes than WAIC or PSIS-LOO.

Marginal DIC required more nodes than WAIC or PSIS-LOO to obtain the desired ac-

curacy, which appears to be due to the difficulty in obtaining accurate values for l̂pd
∗
m
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Figure 3.1: Differences in marginal information criteria (−2 × êlpdm) between calculations
using adaptive quadrature (approximate method) and the multivariate normal density func-
tion (exact method). The y-axis uses a log scale. The dashed line is drawn at .01.

(Equation 3.34) with adaptive quadrature. To illustrate, consider the most difficult simu-
lation condition, which involved using 7 nodes to estimate marginal quantities for cluster
sizes of I = 100. In this condition, the difference between the adaptive quadrature approxi-

mation for l̂pd
∗
m and the exact value was 14.08, while the corresponding difference for l̂pdm

was -1.81. Given that adaptive quadrature calculations for p(yj|ωs, ψs) and p(yj|ω̄, ψ̄) are
identical, the disparity in accuracy is likely due to the fact that p(yj|ωs, ψs) is averaged over

many posterior draws to obtain l̂pdm, but no such averaging is involved in using p(yj|ω̄, ψ̄)

to obtain l̂pd
∗
m. It may be that errors resulting from adaptive quadrature cancel out, at least

partially, when they are averaged over posterior draws.
In real applications, adaptive quadrature will only be used when an exact calculation

is not available, and so a sufficient number of nodes cannot generally be determined by
comparison to an exact calculation. In this case, results may be obtained and compared for
different numbers of nodes to calculate a relative error of approximation. The relative error
of approximation may be calculated for M nodes by finding the absolute value of difference
between the information criteria result using M nodes and using 2

3
M , which corresponds

to the node counts used in this study. In this chapter, an approximation using M nodes
is judged sufficient when the relative error of approximation is less than .01, which again
is somewhat arbitrary but is expected to be conservative. Table 3.1 provides the minimum
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number of nodes needed to obtain the desired absolute (that is, in comparison to the exact
result) and relative precision. The sufficient number of nodes as judged by relative precision
tends to be the next higher number than that indicated by absolute precision. In this way,
the simulation results support the conservativeness of this approach in testing the number
of nodes used.

Circular block bootstrap

Focusing on WAIC, the circular block bootstrap will be used to obtain standard error esti-
mates. Before that, however, a “brute force” approach is used as a reliable means of studying
the variability of WAIC that arises from Monte Carlo error. To this end, 200 independent
sets of MCMC chains are simulated, and for each the conditional and marginal versions of
lpdWAIC, pWAIC, and WAIC are estimated. The same simulated dataset is used throughout,
having 200 clusters each having 25 units. The standard deviation of the brute force results
may serve as a benchmark against which to compare the bootstrap standard error estimates.
The means and standard deviations related to the brute force replications are presented in
Table 3.2. Conditional WAIC (WAICc) is substantially more variable than marginal WAIC
(WAICm), as shown by its larger standard deviation. For either the conditional or marginal
case, most of the variability appears tied to pWAIC rather than lpdWAIC, which has a relatively
low standard deviation across replications.

Conditional Marginal
Mean SD Mean SD

lpdWAIC -6981.01 0.14 -7393.95 0.04
p̂WAIC 189.85 0.75 8.44 0.22
WAIC 14341.73 1.55 14804.78 0.43

Table 3.2: Means and standard deviations for the “brute force” WAIC results for the sim-
ulation. Results are from 200 independent sets of MCMC chains using the same simulated
dataset with cluster size I = 25.

Next, the circular block bootstrap is applied once each to the 200 independent sets of
MCMC chains. Block sizes ranging from 1 to 100 are used, and the results are presented
in Figure 3.2. The bootstrap substantially underestimates the Monte Carlo error for both
conditional and marginal WAIC. While Monte Carlo error estimates for lpdWAIC and pWAIC

are both too small using the bootstrap, the discrepancy for pWAIC is much worse. Further,
block size does not appear to have an effect on estimated Monte Carlo error, possibly because
autocorrelations with Stan are typically low. This bootstrap scheme may also be applied to
DIC and PSIS-LOO, but there is no reason to expect better performance.
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Figure 3.2: Circular block bootstrap standard error estimates for WAIC by block size for
the simulation. Points are bootstrap estimates from 200 independent sets of MCMC chains
using the same simulated dataset, and the solid line is a loess curve fit to the points. The
dashed line is the “brute force” standard error estimate. The y-axes vary.

3.7 Applied example

Data and models

A latent regression Rasch model is fit to a dataset on verbal aggression (Vansteelandt,
2000) that consists of J = 316 persons and I = 24 items. Participants were instructed to
imagine four frustrating scenarios, and for each they responded to items regarding whether
they would react by cursing, scolding, and shouting. They also responded to parallel items
regarding whether they would want to engage in the three behaviors, resulting in a total
six items per scenario (cursing/scolding/shouting × doing/wanting). An example item is,
“A bus fails to stop for me. I would want to curse.” The response options for all items
were “yes”, “perhaps”, and “no.” The items have been dichotomized for this example by
combining “yes” and “perhaps” responses. Two person-related covariates are included: the
respondent’s trait anger score (Spielberger, 1988), which is a raw score from a separate
measure taking values ranging from 11 to 39 in the data, and an indicator for whether the
respondent is male, which takes the values 0 and 1.

The model is

yij|wj, λ, ζj, δi ∼ Bernoulli
(
logit−1(w′jλ+ ζj − δi)

)
(3.55)

δ1 . . . δI−1 ∼ N(0, 9) (3.56)
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ζj ∼ N(0, σ2) (3.57)

σ ∼ Exp(.1) (3.58)

λ ∼ t1(0, 1), (3.59)

where yij = 1 if the response for person j to item i is correct and yij = 0 otherwise, wj is a
vector of person-related covariates, λ is a vector of latent regression coefficients, ζj is a person
residual, and δi is an item difficulty parameter. One element of wj is one for the intercept,

and the last item difficulty is constrained, δI = −
∑(I−1)

i δi. The priors for λ match those
recommended by Gelman, Jakulin, Pittau, and Su (2008) for logistic regression. First, the
covariates (wj) are transformed. Continuous covariates are mean-centered and then rescaled
to have a standard deviation of .5. Binary covariates are also mean-centered and then are
rescaled by dividing by the difference between their maximum and minimum values, which
results in a range of 1. A constant supplied for the model intercept is left to equal 1. With
these transformations, the same prior is applied to all coefficients, λ ∼ t1(0, 1), where t1 is
the Student’s t distribution with one degree of freedom. A transformation may be applied
to λ to find what the regression coefficients would be on the original scale of the covariates.

Focus is placed on ζj for the conditional approach, which yields a prediction inference
involving new responses from the same persons (and items). The marginal approach, perhaps
more realistically, places focus on σ, implying a prediction inference involving new responses
from a new sample of persons. Five competing models are considered, differing only in what
person covariates are included: Model 1 includes no covariates, Model 2 has the trait anger
score, Model 3 has the indicator for male, Model 4 has both covariates, and Model 5 has
both covariates and their interaction. All models include an intercept term.

Results

The five models are estimated with Stan using 5 chains of 2,500 draws with the first 500
draws of each discarded, resulting in a total of 10,000 kept posterior draws. The larger
number of posterior draws is chosen here due to the anticipated Monte Carlo errors, but
such a large number is not ordinarily necessary for estimating, for example, the posterior
means and standard deviations for parameters. Marginal DIC, WAIC, and PSIS-LOO are
computed using adaptive quadrature to integrate out ζ. Arbitrarily focusing on Model 4, the
process described in the previous section was used to determine that 17 nodes are sufficient
to obtain an accurate approximation. All evaluations of the marginal likelihood that follow
use this number of nodes.

In order to obtain an indication of the variability of results owing to Monte Carlo error,
10 independent sets of MCMC chains are run for each model. The circular block bootstrap
is not used for this purpose, as it was found to substantially underestimate the Monte Carlo
error. Figure 3.3 provides the estimated effective number of parameters (p̂) for each model
and focus, as well as the count of parameters associated with each focus. For conditional
information criteria, the p̂ are substantially less than the counts of parameters, owing mainly
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to the fact that each ζj, with its hierarchical prior, contributes less than one to the effective
number of parameters. On the other hand, p̂ for marginal information criteria are close to
the counts of model parameters, and for WAIC and PSIS-LOO it tends to be slightly larger
than the count of parameters.
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Figure 3.3: Estimated effective number of parameters (p̂) for the five latent regression Rasch
models. Points represent the results of the 10 independent MCMC simulations per model.
A small amount of horizontal jitter is added to the points. The horizontal lines represent
the counts of parameters associated with each model and focus. The y-axes vary by focus.

Figure 3.4 provides the estimates for the information criteria values themselves (−2êlpd).
The different conditional information criteria differ from each other for any given model,
though they seem to show a similar pattern between models. The high degree of Monte
Carlo error in the conditional focus renders differentiating the predictive performance of the
models difficult. In the marginal focus the amount of Monte Carlo error is less but still poses
a degree of difficulty in making close comparisons. Models 1 and 2 clearly provided poorer
predictions in comparison to the others using marginal information criteria, and there is
some evidence supporting Model 4 as the best among the candidates.

As discussed in their respective sections, WAIC and PSIS-LOO are associated with crite-
ria to support the reliability of their estimates. For WAIC any given point should contribute
less than .4 to p̂, and for PSIS-LOO a point should not have a Pareto shape parameter greater
than one. As mentioned earlier, “point” is defined either as a unit or a cluster depending
on whether the focus is conditional or marginal, respectively. Table 3.3 provides the counts
of problematic observations by model, averaging over the 10 repeated MCMC simulations.
Conditional WAIC has a small number problematic observations with each model, while
marginal WAIC does not exhibit any such issues. No problematic observations are found for
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Figure 3.4: Information criteria values (−2êlpd) for the five latent regression Rasch models.
Points represent the results of the 10 independent MCMC simulations per model. A small
amount of horizontal jitter is added to the points. The y-axes vary by focus.

either form of PSIS-LOO.

Conditional Marginal
Model WAIC PSIS-LOO WAIC PSIS-LOO

1 3.0 0.0 0.0 0.0
2 3.3 0.0 0.0 0.0
3 2.0 0.0 0.0 0.0
4 3.2 0.0 0.0 0.0
5 3.1 0.0 0.0 0.0

Table 3.3: Counts of problematic observations for WAIC and PSIS-LOO by model, averaged
over the 10 repeated MCMC simulations. For WAIC, this is the count of observations that
contribute more than .4 to p̂, and for PSIS-LOO this is the number of observations having a
Pareto shape parameter greater than one. In the conditional focus, observations are defined
at the unit level, whereas they are defined at the cluster level for the marginal focus.

3.8 Discussion

The choice of conditional or marginal focus should depend on the prediction inference to be
made, but the marginal approach was found to have some advantages over the conditional
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approach. Marginal information criteria were found to have less Monte Carlo error and
to be more robust in terms of pointwise diagnostics for WAIC and PSIS-LOO. Marginal
information criteria are easily obtained for linear models when the cluster-specific parameters
to be integrated out are assigned a normal prior. For non-linear models, analysis revealed
adaptive Gaussian quadrature to be a viable means of obtaining the necessary marginal
likelihoods. The methods described in this chapter may be extended to models with cluster-
specific vectors of parameters having a multivariate normal prior.

The preceding analyses also demonstrated the existence of non-ignorable Monte Carlo
error in both marginal and conditional WAIC, PSIS-LOO, and DIC, though the issue is sub-
stantially worse for the conditional information criteria. Caution is therefore advised when
using these methods for model comparison. Disappointingly, the circular block bootstrap
did not provide reasonable estimates for Monte Carlo error of information criteria. The
approach taken in the applied example of simply rerunning the MCMC simulation many
times is cumbersome and merely suggestive of the amount of Monte Carlo error, but it could
provide accurate results if the time and computing power is available to conduct a larger
number of replications.

The conditional information criteria are more easily obtained than the marginal, as the
conditional information criteria depend on quantities easily generated from MCMC soft-
ware. In fact, BUGS and JAGS provide conditional DIC by default, perhaps accounting
for the popularity of DIC. Researchers may rely on these defaults without an awareness of
the marginal alternatives, running the risk of obtaining inappropriate prediction inferences.
Further, consideration is not usually given to the degree of Monte Carlo error associated with
information criteria, which as demonstrated in the applied example may be substantial even
with a large number of weakly correlated posterior draws. In short, the naive application of
these techniques leaves a great deal of room for obtaining misleading results.
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Appendix A

Software details

A.1 Software details for chapter 2

Stata 14.2 was used to conduct the simulation. The Rasch and LLTM models were fit using
the melogit command. For example, if y is the response variable and item and person are
both factor variables, then the Rasch model may be estimated as follows:

melogit y ibn.item, noconstant || person:

A new dataset may then be created having one row per item. Suppose that the variable
delta is the estimated item difficulties and delta se is the standard errors for those esti-
mates. Also, suppose that x1, x2, and x3 are item covariates. The LLTM-E2S may be fit as
follows:

gsem (delta <- c.delta_se#c.M@1 x1 x2 x3), variance(M@1)

Figures and tables were prepared using R 3.4.0 with the ggplot2 2.2.1 and xtable 1.8.2
packages, respectively. The following R packages were additionally used: grid 3.4.0, gridEx-
tra 2.2.1, readstata13 0.8.5, reshape2 1.4.2.

A.2 Software details for chapter 3

All analysis was conducted using R 3.4.0. MCMC simulation was carried out using the rstan
2.15.1 package, which is the R implementation of Stan. WAIC and PSIS-LOO estimates were
obtained using loo 1.1.0. The block bootstrap was carried out using the tsboot function in
boot 1.3.19. The example application data was from edstan 1.0.6. Figures and tables were
prepared using the ggplot2 2.2.1 and xtable 1.8.2, respectively. The following R packages
were additionally used: doParallel 1.0.10, foreach 1.4.3, matrixStats 0.52.2, mvtnorm 1.0.6,
reshape2 1.4.2, statmod 1.4.29.
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The Stan code used for the random intercept model is printed below. The transformed
data and generated quantities blocks are needed only to sample from the posterior log-
likelihoods. In the generated quantities block, cll ij is the conditional log-likelihood for an
observation, and mll j is the marginal log-likelihood for a cluster.

data {

int<lower=1> I; // # obs per cluster

int<lower=1> J; // # clusters

int<lower=1, upper=I> ii[I*J]; // obs for n (1:I for each cluster)

int<lower=1, upper=J> jj[I*J]; // cluster for n

vector[I*J] y; // measurement for n

int<lower=1> L; // # covariates

matrix[J, L] X; // covariate matrix

}

transformed data{

vector[I] y_vecs[J];

for(n in 1:(I*J)) y_vecs[jj[n]][ii[n]] = y[n];

}

parameters {

vector[L] beta;

real<lower=0> sigma;

real<lower=0> psi;

vector[J] zeta;

}

model {

vector[J] eta;

eta = X*beta;

beta ~ normal(0, 2);

sigma ~ exponential(.1);

psi ~ exponential(.1);

zeta ~ normal(0, psi);

y ~ normal(eta[jj] + zeta[jj], sigma);

}

generated quantities {

vector[J] eta;

vector[I*J] cll_ij;

vector[J] mll_j;

eta = X*beta;

for(n in 1:I*J)

cll_ij[n] = normal_lpdf(y[n] | eta[jj[n]] + zeta[jj[n]], sigma);

{

matrix[I, I] Omega;
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Omega = rep_matrix(psi^2, I, I);

for(i in 1:I)

Omega[i,i] = psi^2 + sigma^2;

for(j in 1:J)

mll_j[j] = multi_normal_lpdf(y_vecs[j] | rep_vector(eta[j], I), Omega);

}

}

The Stan code used for the latent regression Rasch model is below. This is a modified
version of the Rasch model provided by edstan. It adds in sampling from the posterior of
zeta and theta fix, which are required for approximating the marginal log-likelihood.

functions {

matrix obtain_adjustments(matrix W) {

real min_w;

real max_w;

int minmax_count;

matrix[2, cols(W)] adj;

adj[1, 1] = 0;

adj[2, 1] = 1;

if(cols(W) > 1) {

for(k in 2:cols(W)) { // remaining columns

min_w = min(W[1:rows(W), k]);

max_w = max(W[1:rows(W), k]);

minmax_count = 0;

for(j in 1:rows(W))

minmax_count = minmax_count + W[j,k] == min_w || W[j,k] == max_w;

if(minmax_count == rows(W)) { // if column takes only 2 values

adj[1, k] = mean(W[1:rows(W), k]);

adj[2, k] = (max_w - min_w);

} else { // if column takes > 2 values

adj[1, k] = mean(W[1:rows(W), k]);

adj[2, k] = sd(W[1:rows(W), k]) * 2;

}

}

}

return adj;

}

}

data {

int<lower=1> I; // # questions

int<lower=1> J; // # persons
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int<lower=1> N; // # observations

int<lower=1, upper=I> ii[N]; // question for n

int<lower=1, upper=J> jj[N]; // person for n

int<lower=0, upper=1> y[N]; // correctness for n

int<lower=1> K; // # person covariates

matrix[J,K] W; // person covariate matrix

}

transformed data {

matrix[2,K] adj; // values for centering and scaling covariates

matrix[J,K] W_adj; // centered and scaled covariates

adj = obtain_adjustments(W);

for(k in 1:K) for(j in 1:J)

W_adj[j,k] = (W[j,k] - adj[1,k]) / adj[2,k];

}

parameters {

vector[I-1] delta_free;

vector[J] theta;

real<lower=0> sigma;

vector[K] lambda_adj;

}

transformed parameters {

vector[I] delta;

delta[1:(I-1)] = delta_free;

delta[I] = -1*sum(delta_free);

}

model {

target += normal_lpdf(delta | 0, 3);

theta ~ normal(W_adj*lambda_adj, sigma);

lambda_adj ~ student_t(3, 0, 1);

sigma ~ exponential(.1);

y ~ bernoulli_logit(theta[jj] - delta[ii]);

}

generated quantities {

vector[K] lambda;

vector[J] theta_fix;

vector[J] zeta;

lambda[2:K] = lambda_adj[2:K] ./ to_vector(adj[2,2:K]);

lambda[1] = W_adj[1, 1:K]*lambda_adj[1:K] - W[1, 2:K]*lambda[2:K];

theta_fix = W_adj*lambda_adj;

zeta = theta - theta_fix;

}




