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A B S T R A C T

Multivariate pattern classification (decoding) methods are commonly employed to study mechanisms of neu-
rocognitive processing in typical individuals, where they can be used to quantify the information that is present
in single-participant neural signals. These decoding methods are also potentially valuable in determining how
the representation of information differs between psychiatric and non-psychiatric populations. Here, we ex-
amined ERPs from people with schizophrenia (PSZ) and healthy control subjects (HCS) in a working memory
task that involved remembering 1, 3, or 5 items from one side of the display and ignoring the other side. We used
the spatial pattern of ERPs to decode which side of the display was being held in working memory. One might
expect that decoding accuracy would be inevitably lower in PSZ as a result of increased noise (i.e., greater trial-
to-trial variability). However, we found that decoding accuracy was greater in PSZ than in HCS at memory load
1, consistent with previous research in which memory-related ERP signals were larger in PSZ than in HCS at
memory load 1. We also observed that decoding accuracy was strongly related to the ratio of the memory-related
ERP activity and the noise level. In addition, we found similar noise levels in PSZ and HCS, counter to the
expectation that PSZ would exhibit greater trial-to-trial variability. Together, these results demonstrate that
multivariate decoding methods can be validly applied at the individual-participant level to understand the
nature of impaired cognitive function in a psychiatric population.

1. Introduction

The present study had two related goals. The main goal was to
determine whether multivariate pattern classification (decoding)
methods can be validly used to compare neural representations in
psychiatric and non-psychiatric populations given that the data may be
noisier in the psychiatric population (Yang et al., 2014). Addressing this
issue required a careful assessment of the strength of the working
memory-related signals, the noise level, and the ratio of signal to noise
in each group.

A secondary goal was to provide converging evidence for the hy-
perfocusing hypothesis of cognitive impairment in schizophrenia
(Luck et al., 2019), which proposes that people with schizophrenia
(PSZ) tend to focus their processing resources more narrowly and more
intensely than healthy control subjects (HCS). Consistent with this hy-
pothesis, we have previously shown that univariate measures of ERP
and fMRI activity in posterior brain regions during working memory

tasks are actually greater in PSZ than in HCS when a single object is
being maintained in memory (Hahn et al., 2018; Leonard et al., 2013).
The present study asked whether applying multivariate pattern classi-
fication (decoding) methods to the ERP data would also yield greater
decoding accuracy in PSZ than in HCS for this condition. We also asked
whether the ERP signals are actually noisier in PSZ than in HCS.

We will begin by describing why multivariate decoding methods
may be particularly useful for understanding schizophrenia (and other
neuropsychiatric disorders), and we will then turn to the specific
questions about working memory addressed by the present study.

1.1. The potential value of decoding methods for studying neuropsychiatric
disorders

Basic cognitive neuroscience research has increasingly embraced
multivariate analyses that examine fine-grained patterns of neural ac-
tivity instead of overall response magnitudes. In fMRI research, for
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example, the pattern of activity over a set of voxels within a region can
provide more precise information about neural representations than the
average activity level of the region (Kriegeskorte et al., 2008;
Norman et al., 2006; Poldrack, 2011). One common multivariate ap-
proach involves classifying the stimuli or experimental conditions from
the pattern of activity over the voxels within a region, which can be
thought of as decoding the neural signal. For example, instead of asking
whether overall activity in the fusiform face area is greater for faces
than for non-face stimuli (Kanwisher et al., 1997), decoding methods
can ask whether the specific face being viewed can be reliably de-
termined from the pattern of activity across voxels in this area
(Anzellotti et al., 2014; Axelrod and Yovel, 2015). This makes it pos-
sible to go beyond asking whether a given area is more responsive to
faces than to other stimuli and instead ask whether that area contains
information (as classically defined by information theory) about the
identity of individual faces. Thus, decoding methods can be used to
assess the amount of information represented in specific brain regions
and how the amount of information varies across experimental condi-
tions.

Decoding methods can also be applied to ERPs and other electro-
magnetic signals, making it possible to assess how the information
content of the neural signal varies from moment to moment following
the onset of a stimulus (see review by Grootswagers et al., 2017). In
principle, ERP decoding could reveal how PSZ and HCS differ in terms
of the information they represent at each moment in time following the
onset of a stimulus. ERP decoding is often conducted by classifying the
stimuli on the basis of the pattern of voltage (or frequency-specific
power) across the entire set of electrode sites, providing an overall
measure of the information present in the signal rather than assessing
the information present in specific brain regions. For many questions
about psychiatric disorders—especially in the domains of perception,
attention, and working memory—temporal resolution may be just as
important as spatial resolution (Erickson et al., 2018).

Decoding methods can detect subtle aspects of neural representa-
tions that cannot be detected by conventional univariate ERP methods.
For example, by applying decoding to the ERP scalp distributions of
individual subjects, it is possible to determine which one of 16 or-
ientations is being maintained in working memory at each moment of
the retention period (Bae and Luck, 2018), and it is even possible to
detect the automatic reactivation of this information when the next trial
begins (Bae and Luck, 2019a). We call this the information-based de-
coding approach, because it seeks to quantify the information present in
the neural signals of each individual participant.

A distinctly different decoding approach has been applied in several
previous studies of schizophrenia (e.g., Bleich-Cohen et al., 2014;
Du et al., 2012; Koch et al., 2015). In this approach, the decoder at-
tempts to classify the group membership (PSZ vs. HCS) of each in-
dividual subject on the basis of the pattern of brain activity observed
under a given set of conditions. That is, in this group classification ap-
proach, the decoder is given data from many participants and learns to
classify the group membership of the individual participants. This
contrasts with the information-based approach, in which a separate
decoder is trained for each participant and the goal is to assess the
information content of the neural signal. Although the group classifi-
cation approach can be valuable, especially when developing diagnostic
tools, it is not designed to characterize how each group represents and
processes information. That is, the group classification approach aims
to predict whether or not someone has schizophrenia on the basis of the
pattern of brain activity, not the information content of the brain ac-
tivity in each group. Consequently, this approach may show that PSZ
and HCS reliably differ in terms of the pattern of neural activity without
revealing how the information content of the neural representations
differs across groups. Both decoding approaches are potentially valu-
able, but they serve different goals (reflecting two distinct streams of
research in computational psychiatry; see Bennett et al., 2019). In the
group classification approach, the main goal is to achieve high levels of

decoding accuracy, whereas in the information-based approach the
main goal is to gain insight into the nature of the neural representa-
tions, which can often be achieved with only modest levels of decoding
accuracy (Hebart and Baker, 2018).

In the present study, we applied the information-based decoding
approach that is typically used in basic cognitive neuroscience, but we
asked how decoding accuracy (as a measure of information content)
differs between PSZ and HCS. This approach has been used only rarely
in schizophrenia research (e.g., Schmack et al., 2017).

1.2. The role of variability in comparing decoding accuracy across groups

Comparisons of decoding accuracy across groups of participants
must address the fact that decoding is impacted by trial-to-trial varia-
bility, which may differ across groups for reasons unrelated to the
neurocognitive process of interest. Data from one subset of trials is
typically used to train the decoder, and then the decoder attempts to
classify the data from a different set of trials that were not used in
training. Trial-to-trial variability in the signal will cause these two sets
of trials to differ from each other, decreasing decoding accuracy. It is
quite plausible that trial-to-trial variability would be greater in PSZ
than in HCS, owing to greater variability in neural activity (including
neural activity that is unrelated to the processes of interest) and/or
greater contamination by nonneural artifacts. During the resting state,
for example, PSZ have been found to exhibit greater moment-to-mo-
ment variability than HCS in both global signal strength and local voxel
activity (Yang et al., 2014). PSZ have also been found to exhibit greater
intraindividual variability in manual and saccadic reaction times
(Smyrnis et al., 2009; Vinogradov et al., 1998). Note, however, that this
is an issue of trial-to-trial variability rather than subject-to-subject
variability, and the information-based decoding approach does not re-
quire that the populations being compared have equivalent subject-to-
subject variability.

In general, decoding accuracy for a given participant is related to (a)
the magnitude of the differences in neural activity between the condi-
tions being classified in that participant, and (b) the trial-to-trial
variability of the measured activity in that participant. We can combine
these into a contrast-to-noise ratio (CNR), where the difference in the
pattern of activity between conditions is the contrast and the trial-to-
trial variability is the noise (see Welvaert and Rosseel, 2013 for a dis-
cussion of CNRs in the context of fMRI). This is analogous to a signal-to-
noise ratio (SNR), but the numerator reflects differences in the signal
among the conditions rather than reflecting the raw signal magnitude,
and the denominator reflects trial-to-trial variability in the differences
among conditions rather than variability in the raw signal.

Differences in decoding accuracy between groups could reflect dif-
ferences in the task-related neural activity (i.e., the contrast between
the stimuli or conditions being classified) or differences in the noise
(i.e., the trial-to-trial variability). To draw inferences about differences
in neural representations between two groups, it is necessary to exclude
the possibility that the observed differences in decoding accuracy re-
flect differences in the noise. In the present study, we therefore quan-
tified these two sources of variance as well as their ratio (the CNR).
Note that an analogous issue arises in fMRI studies that compare de-
coding accuracy for different brain regions rather than for different
groups of participants, and CNR analyses are used to ensure that any
differences in decoding accuracy between regions are not a result of
differences in noise (Haynes, 2015).

1.3. Hyperfocusing and working memory in people with schizophrenia

On the basis of experimental evidence gathered over the last decade,
we have proposed a hyperfocusing hypothesis that is designed to explain
many aspects of cognitive impairment in schizophrenia (reviewed by
Luck et al., 2019). According to this hypothesis, schizophrenia involves
an abnormally narrow but intense focusing of processing resources.
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This is thought to reduce the ability of PSZ to distribute attention
among multiple locations in space (Hahn et al., 2012; Kreither et al.,
2017), decrease the number of representations they can simultaneously
maintain in working memory (Leonard et al., 2013), and cause their
attention to be abnormally captured by irrelevant inputs that share
features with active representations (Luck et al., 2014; Sawaki et al.,
2017).

The hyperfocusing hypothesis makes a specific prediction about
neural activity in working memory tasks: When only a single item is
being stored in working memory, PSZ should focus their resources
unusually intensely on this item, leading to greater neural activity in
PSZ than in HCS; however, PSZ should be impaired at distributing their
resources when a larger set of items must be stored, leading to greater
neural activity in HCS than in PSZ. Consistent with this prediction, both
ERP and fMRI studies have found that PSZ exhibit greater WM storage-
related neural activity than HCS in posterior brain regions when the
task requires maintaining a single object in working memory, but PSZ
exhibit reduced activity relative to HCS when multiple objects must be
maintained in memory (Hahn et al., 2018, 2017; Leonard et al., 2013).

The ERP study (Leonard et al., 2013) took advantage of contralateral
delay activity (CDA), a sustained ERP signal that is observed during the
delay period of WM tasks and is strongly linked to individual differ-
ences in WM capacity (Vogel and Machizawa, 2004; Vogel et al., 2005).
As illustrated in Fig. 1A, each display in this experiment contained
rectangles on one side of the display and circles on the other, and the
participants were instructed to remember the colors of the rectangles
and filter out the circles (or vice versa). The side containing the to-be-
remembered items varied unpredictably from trial to trial.

As can be seen in Fig. 1B, CDA amplitude was significantly greater
in PSZ than in HCS when each side contained only one item, providing
evidence that PSZ were focusing their WM resources more intensely
than HCS on the to-be-remembered object (a result that was replicated

by Reinhart et al., 2018). However, CDA amplitude was smaller in PSZ
than in HCS when each side contained 3 or 5 items, consistent with the
proposal that PSZ were impaired at spreading their processing resources
over multiple items. Analogous results in fMRI experiments have
sometimes been explained as being a side effect of reduced WM capa-
city in PSZ (Manoach, 2003), but greater CDA amplitude in PSZ than in
HCS for a single item was also found in subjects who were matched on
behaviorally measured WM storage capacity.

1.4. Application of decoding methods to the CDA data

The present paper provides a re-analysis of the CDA data reported
by Leonard et al. (2013), using decoding methods instead of standard
univariate ERP amplitude measures. We focused on decoding which
side of the stimulus display was being held in WM,1 and we contrasted
two opposite predictions. First, one might expect that neural data
would be much more variable in PSZ than in HCS—either because of
greater intrinsic variability in neurocognitive processes (Smyrnis et al.,
2009; Vinogradov et al., 1998; Yang et al., 2014) or greater nonneural
noise—which might lead to lower decoding accuracy in PSZ than in
HCS. Alternatively, given that CDA amplitude was greater for PSZ than
for HCS, we might expect that decoding accuracy would be higher in
PSZ than in HCS (consistent with the hyperfocusing hypothesis). A third
possibility is that a larger CDA in PSZ and lower noise in HCS might
lead to equivalent decoding accuracy in the two groups.

It might seem that decoding accuracy would be isomorphic with

Fig. 1. Procedure and results from the study of Leonard et al. (2013). (A) Example of a single trial. Participants were instructed to remember the colors of the target
shapes in the first display (either the circles or the rectangles) and report whether a color of target shape changed between the two displays. Shown here is a ‘no
change’ trial at memory load 3 when the circles were the to-be-remembered targets. (B) Average CDA amplitude at each memory load for healthy control subjects
(HCS) and people with schizophrenia (PSZ), averaged across the time period of interest (i.e., 400–1000 ms after the onset of the first array). Error bars indicate ± 1
S.E. * = p < .05, ** = p< .01. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

1 It would be ideal to decode the specific colors being held in memory and not
just the side containing these colors. Unfortunately, no one has yet developed a
method that can decode the color being maintained in working memory from
EEG signals. Decoding of the actual contents of working memory for other
stimulus dimensions in PSZ must await future research.
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CDA amplitude in this paradigm and that decoding accuracy would
inevitably be greater for the group with greater CDA amplitude.
However, decoding accuracy in multivariate pattern analyses is not
actually isomorphic with differences in amplitude in standard uni-
variate analyses. First, the decoding approach employed in the present
study used the fine-grained scalp distribution of the ERPs to predict
which side contained the to-be-remembered information, whereas fine-
grained scalp distribution information usually plays a secondary role in
the standard approach and can be difficult to interpret (Urbach and
Kutas, 2006, 2002). Second, the standard approach examines com-
monalities in scalp patterns across participants and loses power when
scalp distributions vary across individuals, whereas the decoding ap-
proach finds the optimal scalp patterns for each individual participant
and is not hindered by individual differences in scalp topography.

Third, the decoding approach is designed to answer a different
question than the standard approach: Rather than asking whether a
neural signal with a known meaning differs across groups or conditions
(which can lead to the problem of reverse inference; Poldrack, 2006),
the decoding approach asks how much information is present in the
pattern of neural signals and how the information content differs across
conditions or groups (Hebart and Baker, 2018; Poldrack, 2011). This is
important because the magnitude of the neural response can be dis-
sociated from the decodable information content (Emrich et al., 2013),
and it is even possible to decode the content of the neural representa-
tion when the overall response does not exceed baseline levels
(Serences et al., 2009). Thus, whereas the previous finding of greater
CDA amplitude in PSZ than in HCS provides evidence that PSZ devote
more neural activity to WM-related processes than do HCS (when
storing a single item in memory), a finding of greater decoding accuracy
in PSZ than in HCS would allow us to conclude that the neural signals
contain more information about which side is being maintained in
memory in PSZ than in HCS. Although such a finding would provide
only a modest increment in knowledge about WM abnormalities in
schizophrenia, it would provide an important proof of concept for using
information-based decoding methods to compare psychiatric and non-
psychiatric populations. This could then set the stage for studies that
attempt to decode more subtle information in these populations (e.g.,
facial expressions).

Because trial-to-trial variability plays a major role in decoding ac-
curacy, we also provided separate measures of the strength of the task-
related signal (the brain activity that differed as a function of which
side was being remembered) and the noise (the trial-to-trial variability
in this signal, as will be defined more precisely in Section 2.5) for the
two groups.

2. Materials and methods

This paper reports new analyses of previously published data
(Leonard et al., 2013). Additional details of the stimuli, task, and
analyses can be found in that paper. Here, we provide a summary of the
key methodological details.

2.1. Participants

Usable data were available from 24 PSZ (including cases of both
schizophrenia and schizoaffective disorder) and 21 HCS. The PSZ were
chronic outpatients who were receiving stable levels of antipsychotic
medications, and the HCS were matched for age, gender, ethnicity, and
parental education. Details of recruiting, diagnosis, demographics,
medications, and symptom scores can be found in Leonard et al. (2013).

2.2. Stimuli & task

The stimuli and task are depicted in Fig. 1. Stimuli were presented
on a CRT monitor with a gray background. On each trial, one, three, or
five objects (0.65° each) were presented on each side of a central

fixation point, with equal numbers of objects on each side. The items on
one side were circles and the items on the other side were rectangles.
The objects were randomly positioned within two invisible rectangular
regions (4° wide and 7.3° tall) that were centered 3.5° to the left or the
right of fixation. The colors of the objects in the encoding display were
randomly selected without replacement from a set of 12 categorically
distinct colors. The encoding array was presented for 200 ms and was
followed by an 800-ms delay interval in which only fixation was pre-
sented. A test array was then presented and remained on the screen
until response (maximum of 2000 ms).

Participants performed a color change-detection task. They were
instructed to remember the colors of the circles in half of the trial blocks
and the colors of the rectangles in the remaining half. On no-change
trials, the test array was identical to the encoding array. On change
trials, the color of one randomly selected object in the test array was
changed to a new color; the changed object was always one of the at-
tended-shape items. Participants reported whether or not a color
change occurred by pressing one of two buttons on a gamepad. The test
array contained a new color on 50% of the trials and no change on the
remaining 50%.

The test array was followed by 1000-ms intertrial interval. The side
containing the to-be-remembered items and the number of items pre-
sented (the memory load) varied unpredictably from trial to trial. The
relevant shape (circle or rectangle) alternated between blocks. To en-
sure that participants remembered which shape was relevant on each
block, an outline of the relevant shape in the current block was visible
at fixation throughout the block. There were 12 blocks of 75 trials,
yielding a total of 150 remember-left trials and 150 remember-right
trials at each memory load (1, 3, or 5). Participants completed a set of
practice trials prior to the start of data collection.

2.3. EEG recording & preprocessing

The EEG was recorded using a Neuroscan Synamps 2 system
(500 Hz sampling rate, half-amplitude bandpass filter from .05–100 Hz
with a 60 Hz notch filter). Scalp electrodes were located at a subset of
the International 10/20 system sites (O1, O2, Oz, P3, P4, Pz, P7, P8, T7,
T8, TP7, TP8, CP3, CP4, CPz, C3, C4, Cz, F3, F4, Fz, and right mastoid)
with a left mastoid reference. Bipolar horizontal and vertical electro-
oculogram (HEOG and VEOG) signals were also recorded. Signal pro-
cessing and analysis was performed in Matlab using EEGLAB Toolbox
(Delorme & Makeig, 2004), ERPLAB Toolbox (Lopez-Calderon & Luck,
2014), and custom Matlab code (available online at http://osf.io/
6uv42). The data were bandpass filtered offline (non-causal Butter-
worth impulse response function, half-amplitude cutoffs at 0.1 and
80 Hz, 12 dB/oct roll-off) and resampled at 256 Hz. Note that the
0.1 Hz high-pass cutoff tends to be ideal for slow ERP components,
reducing slow drifts but producing minimal time-domain distortion
(Kappenman and Luck, 2010; Tanner et al., 2015). EEG segments with
extreme artifacts (e.g., movement artifacts during breaks) were re-
moved. Independent component analysis (ICA) was then performed to
remove components associated with blinks (Jung et al., 2000) and eye
movements (Drisdelle et al., 2017).

The ICA-corrected EEG data were segmented to include a 500-ms
pre-stimulus period (which was used to perform subtractive baseline
correction), the 200-ms duration of the encoding array, and 1300 ms
following the encoding array. To ensure that our decoding analyses
were not contaminated by ocular activity, we removed epochs that
contained step-like voltage changes larger than 25 μV in the HEOG
signal (see Luck, 2014), equivalent to saccades >1.5° (Lins et al. 1993).
We also removed epochs with potentials exceeding 200 μV in any
electrode and epochs with peak-to-peak deflections within any 200-ms
window exceeding 150 μV. Overall, these removal procedures excluded
an average of 2.7% of epochs in HCS and 5.1% of epochs in PSZ,
yielding 145.1 ± 8.17 and 145.3 ± 6.67 usable trials for the left and
right sides at memory load 1, 144.2 ± 8.25 and 145.0 ± 8.36 usable
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trials for the left and right sides at memory load 3, and 144.4 ± 7.88
and 143.7 ± 8.94 usable trials for the left and right sides at memory
load 5. As in most CDA studies, trials were included independent of
whether the behavioral response was correct.

2.4. Decoding analyses

All analyses were performed in Matlab (The Mathworks, Natick,
MA). The data and analysis scripts are available online at http://osf.io/
6uv42.

2.4.1. Decoding procedure
We attempted to decode the side of the display that contained the

to-be-remembered shapes on the basis of the scalp distribution of the
phase-locked (averaged) ERPs during the delay period, separately for
each memory load. We made an a priori decision to analyze the same
time window used for CDA measurements in the original study
(Leonard et al., 2013), namely 400–1000 ms after the onset of the en-
coding array. This window avoids both the initial sensory response and
the neural activity related to focusing attention during perception of the
array (e.g., the N2pc component). In the primary decoding analysis, we
computed the mean voltage across the time window of interest at each
electrode and decoded the side being maintained in memory from this
time-averaged signal (which we will call time-averaged decoding). In
additional analyses that are presented in online supplementary mate-
rials, we decoded the data separately at each time point during the
window (which we will call point-by-point decoding).

We used a binary support vector machine (SVM) classifier to decode
the side of the display (left vs. right) being maintained in memory on
the basis of the spatial pattern of the averaged ERP activity across the
22 scalp electrodes. For each participant, the procedure was conducted
separately for each of the three memory loads. The data from a given
memory load were divided into remember-left and remember-right
trials according to which side contained the to-be-remembered shape
on a given trial. As in previous decoding studies (Bae and Luck, 2019b,
2019a, 2018), we used a 3-fold cross-validation procedure in which the
remember-left and remember-right trials from the current memory load
were each randomly divided into 3 sets. The data from a given set were
averaged together. The averaged data from two of the three sets for a
given remembered side were used to train the classifier, and then the
performance of the classifier was assessed with the averaged data from
the third set. This procedure was iterated multiple times with different
randomly chosen trials in the training and test waveforms, which pro-
vides a more robust estimate of decoding accuracy.

More specifically, for each iteration the data from each stimulus side
were averaged across the pre-defined time points (400–1000 ms) in
each single-trial epoch and then randomly divided into three equal-
sized sets of approximately 50 trials for the current memory load (this
number varied slightly from participant to participant because of the
exclusion of trials with artifacts). The trials in each set were then
averaged together, producing a separate scalp distribution for each
stimulus side (a matrix of 3 averages × 2 stimulus sides × 22 elec-
trodes) for the current memory load. The averaged data from two of the
three sets for each stimulus side served as the training dataset for the
SVM classifier. The trained SVM classifier was then used to predict the
stimulus side of the left-side and right-side averages that were not used
for training. Decoding accuracy was computed by comparing the labels
for the true to-be-remembered side in the testing dataset and the labels
for the predicted side. The training and testing were accomplished
using the fitcecoc() and predict() Matlab functions. Because the classi-
fication was binary, and the two alternatives were equally probable,
chance performance was 0.5.

This procedure was repeated three times, with each of the three sets
of trials for each stimulus side serving as the testing set and the other
two sets serving as the training sets, and the entire procedure was it-
erated 50 times with new random assignments of trials to the three sets.

Decoding accuracy was computed by averaging across the two stimulus
sides, the 3 cross validations, and the 50 iterations (a total of 300 de-
coding attempts). This process was repeated for each of the three
memory loads, separately for each participant.

One might be concerned that only four observations (two averages
for remember-left and two for remember-right) were used to train the
SVM, which is much smaller than the number of features (electrodes)
used for the classification. In many situations, this would lead to
overfitting and spurious results. However, our cross-validation ap-
proach rules out overfitting as an explanation for above-chance de-
coding. That is, if the hyperplane chosen by the SVM from the training
data solely reflected noise in the data, the SVM would not perform
above chance for the test data, because the noise in the training and test
data on a given iteration were independent.

2.4.2. Statistical analysis of decoding accuracy
The dependent variable for the statistical analysis was the average

decoding accuracy at each memory load for each participant. These
values were analyzed using a 3 × 2 ANOVA with memory load (1, 3, 5)
as a within-subjects factor and group (HCS, PSZ) as a between-subjects
factor. We also conducted independent-samples t tests comparing de-
coding accuracy between HCS and PSZ at each memory load.

When the accuracy within a group was compared to chance, we
used one-tailed tests (because below-chance accuracy is not meaningful
with the present decoding procedures).

2.5. Relationship between contrast-to-noise ratio and decoding accuracy

Because decoding accuracy is impacted by the amount of trial-to-
trial variability in the pattern of the neural response, we conducted
additional analyses that quantified the contrast-to-noise ratio (CNR) in
each participant. Although CNR is a simple concept, it is important to
define the contrast and the noise so that they reflect the information that
is relevant for a given classification task.

Our main goal was to determine whether we could predict which
side of the display was being maintained in WM from the spatial pattern
of voltages across the electrodes on the remember-left and remember-
right trials. This is analogous to an interaction between stimulus and
electrodes in a conventional two-way ANOVA, which asks whether the
distribution of voltages is reliably different for the remember-left and
remember-right trials. An ANOVA is analogous to a CNR insofar as it
reflects variance due to condition divided by error variance. However, a
traditional ANOVA is applied to the data from all participants in a study
and therefore reflects subject-to-subject variability. We therefore ap-
plied our ANOVA-inspired approach to the single-trial epochs from an
individual participant rather than applying it to the averaged ERPs from
the entire set of participants. This gave us a separate measure of CNR
for each participant in each group.2

Specifically, for each participant we decomposed the total ERP
variance into 4 sum-of-squares (SS) values: (1) SS reflecting variance
due to which side was to-be-remembered (SSSide); (2) SS reflecting
variance due to electrodes (SSElectrode); (3) SS reflecting variance due to
the interaction between to-be-remembered side and electrodes
(SSInteraction); and (4) SS reflecting variance across trials within each cell
of the design (SSNoise). The total SS (SSTotal) is equal to the sum of these
four SS terms:

= + + +SS SS SS SS SSTotal Side Electrode Interaction Noise

To convert this from squared values into the original units of µV,

2 More sophisticated metrics that scale the contrast by the noise are available
(Allefeld and Haynes, 2014; Walther et al., 2016), but they are based on exactly
the same underlying model as the decoder. Our goal here was to provide a
simple measure of the WM-related signal and noise that would not be redundant
with decoding accuracy.
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which minimizes extreme values, we computed the root mean square
(RMS) corresponding to each SS by dividing the SS value by the cor-
responding degrees of freedom (creating a mean squared value) and
then taking the square root. RMSSide reflects the overall voltage dif-
ference between the remember-left and remember-right trials irre-
spective of electrode site (corresponding to the main effect of the to-be-
remembered side). RMSElectrode reflects the overall voltage differences
among the 22 electrode sites irrespective of the to-be-remembered side
(corresponding to the main effect of electrode). RMSInteraction reflects
differences in scalp distribution between the remember-left and re-
member-right trials (corresponding to the interaction between to-be-
remembered side and electrode), which is the information used for
decoding. Finally, RMSNoise reflects trial-to-trial differences that cannot
be explained by to-be-remembered side, electrode site, or the interac-
tion between them (corresponding to the error term in ANOVA). In
other words, RMSNoise represents the trial-to-trial variability within an
average cell of the design. We used the ratio between RMSInteraction and
RMSNoise to quantify the relevant CNR for decoding which side was
being remembered. This was computed from the mean voltage from
400–1000 ms separately for each memory load and participant.

3. Results

3.1. Scalp distributions

Our approach used differences in ERP scalp distributions to decode
which side of the display was being maintained in WM. Fig. 2A shows
scalp maps of the difference between remember-left and remember-
right trials, averaged across the 400–1000 ms time window. At memory
load 1, the voltage was positive at left posterior scalp sites and negative
at right posterior scalp sites in PSZ, reflecting a negative voltage con-
tralateral to the side being stored in memory. This effect was not clearly
visible in the HCS scalp maps for memory load 1. Both groups exhibited
this left-positive/right-negative pattern for memory loads 3 and 5, but
this effect was larger for HCS than for PSZ. Note, however, that these
maps were created by averaging across all participants, whereas the
decoding was performed for each participant separately. Given that the
scalp distribution likely varies across individuals as a result of bio-
physical factors, these maps are only an approximate representation of

the single-participant differences in scalp distribution between the re-
member-left and remember-right conditions.

3.2. Decoding of time-averaged ERPs

Fig. 2B shows average decoding accuracy, separately for each
memory load in each group. At memory load one, decoding accuracy
was greater for PSZ than for HCS. At memory loads three and five,
however, decoding accuracy was greater in HCS than in PSZ. These
results are consistent with the prior finding (Leonard et al., 2013) that
CDA amplitude (which reflects the left-right difference) was larger for
PSZ than for HCS at memory load one but was smaller in PSZ than for
HCS at memory loads three and five.

Our first statistical analyses used one-sample t tests to ask whether
decoding accuracy was significantly greater than chance (0.5) for each
combination of memory load and group (using one-tailed tests). We
found that mean decoding accuracy was significantly greater than
chance for all memory loads in PSZ (memory load one: t(23) = 2.22,
p = .018; memory load three: t(23) = 3.22, p = .002; memory load
five: t(23) = 6.33, p < .001) and for memory loads three and five in
HCS (memory load one: t(20) = -1.05, p = .848; memory load three: t
(20) = 4.90, p < .001; memory load five: t(20) = 4.62, p < .001).

To assess differences across groups and memory loads, we con-
ducted a 3 × 2 ANOVA with memory load (1, 3, and 5) as a within-
subject factor and group (HCS, PSZ) as a between-subject factor. The
main effect of group was not significant (F(1,43) = .002, p = .97),
providing no evidence of an overall difference in decoding accuracy
between PSZ and HCS. The main effect of memory load was significant
(F(2,86) = 17.62, p < .001, ηp2 = .29), indicating greater decoding
accuracy at higher memory loads. Most importantly, the interaction
between memory load and group was significant (F(2,86) = 4.13,
p = .019, ηp2 = .09), consistent with the observation of greater accu-
racy for PSZ than for HCS at memory load one but greater accuracy for
HCS than for PSZ at the higher loads.

To test our a priori hypothesis that decoding accuracy should be
greater for PSZ than for HCS at memory load one but not at other
memory loads, we compared PSZ and HCS at each memory load. We
found that decoding accuracy was indeed significantly greater for PSZ
than for HCS at memory load one (t(43) = -2.16, p = .036), but we

Fig. 2. (A) Grand average ERP scalp maps (mean voltage from 400–1000 ms) of the remember-right minus remember-left difference in HCS and PSZ. In these
difference maps, a negative value indicates greater negativity when attending to the left visual field, and a positive value indicates greater negativity when attending
to the right visual field. (B) Decoding accuracy based on the average voltage from 400–1000 ms at each memory load for HCS (solid blue line) and PSZ (broken red
line). Chance decoding would be 0.5. Error bars indicate ± 1 S.E. Blue and orange asterisks indicate significant above-chance decoding for a given group and
memory load. The black asterisk at memory load one indicates a significant difference between HCS and PSZ. * = p < .05, * = p < .01, *** = p < .001. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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found no significant group differences at memory load three (t
(43) = 1.16, p = .253) or memory load five t(43) = 0.61, p = .543).

The present results were based on the mean voltage from
400–1000 ms, and because EEG signals are transmitted to the scalp
with millisecond-level resolution and no delay, we can be confident that
these results reflect neural activity during this precise time period.
However, even more fine-grained information is possible from EEG
signals, and a more detailed examination of the time course of decoding
is provided in the Supplementary Materials. As shown in
Supplementary Figure S1, decoding accuracy for memory load one was
significantly above chance for most of the retention interval in PSZ but
did not exceed chance at any time point in HCS. For memory loads
three and five, decoding accuracy was above chance in both groups but
tended to be greater in HCS than in PSZ (although this difference did
not reach significance at memory load five).

Together, these results demonstrate that the scalp distribution of the
sustained ERP activity contained information about which side was
being maintained in working memory. Moreover, decoding accuracy
was significantly greater in PSZ than HCS when a single object had to be
remembered. Thus, EEG signals can contain more task-related in-
formation in PSZ than in HCS under some conditions.

3.3. Relationship between decoding accuracy and contrast-to-noise ratio

So far, we have demonstrated that the ERP scalp distribution con-
tained information about which side of the display was being main-
tained in WM, with more information for PSZ than for HCS when a
single object was being remembered. This result might seem as if it was
inevitable given that the CDA was larger in PSZ than in HCS at memory
load one in the original analyses of Leonard et al (2013). However, a
larger signal does not necessarily lead to greater decoding accuracy,
especially when assessed with a cross-validation procedure in which
one subset of trials is used to train the decoder and a different subset is
used to assess decoding accuracy. That is, when the trials were sub-
divided to create separate averaged ERP waveforms for training and
testing, increased trial-by-trial variability would lead the training and
testing waveforms to be more different from each other, decreasing
decoding accuracy. Consequently, if the neural signals were more
variable in PSZ than in HCS (owing to greater cognitive variability,
greater variability in concurrent neural activity, or increased non-
neural artifacts), decoding accuracy could actually be poorer in PSZ
than in HCS even though the average CDA voltage was larger in PSZ
than in HCS. Thus, the greater decoding accuracy observed for PSZ at
memory load one implies that the single-participant contrast-to-noise
ratio (CNR) was, on average, greater in PSZ than in HCS at this memory
load.

To assess this directly, we asked whether the greater decoding ac-
curacy for PSZ than for HCS at memory load one was associated with a
stronger contrast signal (i.e., a larger difference in scalp distribution
between remember-left and remember-right trials, which was quanti-
fied as RMSInteraction), reduced noise (quantified as RMSNoise), and/or an
increase in the ratio of the contrast signal to the noise (i.e., a larger
CNR, quantified as RMSRatio = RMSInteraction ÷ RMSNoise). We com-
puted each of these measures for each participant, and we asked how
well each of these measures was correlated with decoding accuracy
(using Pearson's r).

As can be seen in Fig. 3A, our measure of CNR (RMSRatio) was
strongly correlated with decoding accuracy, accounting for a large
proportion of the variance in decoding accuracy for both HCS and PSZ
at all memory loads. These strong correlations demonstrate that
RMSRatio was a very good predictor of decodability. Our measure of the
contrast signal (RMSInteraction) also exhibited a positive correlation with
decoding accuracy (Fig. 3B), and our measure of the corresponding
noise (RMSNoise) exhibited a modest negative correlation (Fig. 3C).
Table 1 summarizes these results.

These results show that individual differences in decoding accuracy

are well explained by individual differences in CNR (RMSRatio), as might
be expected. Interestingly, the magnitude of the task-related signal (i.e.,
the numerator in the CNR) was only modestly correlated with decoding
accuracy, and the associated noise (i.e., the denominator in the CNR)
exhibited even weaker correlations (especially in PSZ). It appears to be
the ratio of these two factors that primarily predicts decoding accuracy.

Fig. 3D shows how RMSRatio varied across each combination of
group and memory load. Mirroring the decoding accuracy results,
RMSRatio was greater for PSZ than for HCS at memory load one but
smaller for PSZ than for HCS at memory loads three and five. To test
this statistically, we conducted a 3 × 2 ANOVA with memory load (1,
3, 5) as a within-subject factor and group (HCS, PSZ) as a between-
subject factor. The two-way interaction was significant (F
(2,86) = 4.742, p = .011, ηp2= .09). However, follow-up t tests
comparing PSZ and HCS at each memory load did not yield a significant
difference in RMSRatio at any individual memory load (memory load 1: t
(43) = -1.036, p = .306; memory load 3: t(43) = 1.861, p = .070;
memory load 5: t(43) = 1.196, p = .238). These results suggest that our
CNR measure is not as sensitive as decoding accuracy, perhaps because
the SVM finds the optimal hyperplane for separating the remember-left
and remember-right trials.

We also found that RMSInteraction was greater for PSZ than for HCS at
memory load one but was lower for PSZ than for HCS at higher memory
loads (Figure 3E). In a 3 × 2 way ANOVA with factors of memory load
and group, the two-way interaction was significant (F(2,86) = 5.068,
p = .008, ηp2 = .11), supporting the idea of stronger signal strength for
PSZ than for HCS at memory load one. Again, however, follow-up t tests
comparing PSZ and HCS at each memory load did not yield a significant
difference at any individual memory load (memory load 1: t
(43) = −1.450, p = .154; memory load 3: t(43) = 1.211, p = .233;
memory load 5: t(43) = .755, p = .454).

RMSNoise was somewhat greater for PSZ than for HCS at all memory
loads (Fig. 3F). However, in a two-way ANOVA with factors of memory
load and group, the main effect of group was not significant (F
(1,43) = .874, p = .355, ηp2 = .02), nor was the interaction (F
(2,86) = .229, p = .796, ηp2 = .01). Thus, it is mainly the WM-related
signal (RMSInteraction) rather than the noise (RMSNoise) that differ-
entiated the groups. However, the lack of a significant difference be-
tween groups in RMSNoise should not be taken as evidence that noise
levels will be the same in PSZ and HCS in all experimental paradigms.

4. Discussion

The present results provide a proof of concept for taking the in-
formation-based decoding approach that is widely used in basic cog-
nitive neuroscience and applying it to the study of schizophrenia and
other neuropsychiatric disorders. One might expect that decoding
would inevitably be less accurate in almost any clinical group compared
to a matched control group as a result of differences in noise, making it
problematic to compare decoding accuracy across groups. Indeed,
subject-to-subject variability is greater among PSZ than among HCS for
many measures (Alnæs et al., 2019; Joyce and Roiser, 2007), and there
is some evidence of greater moment-to-moment variability of neural
activity and response times in PSZ than in HCS (Smyrnis et al., 2009;
Vinogradov et al., 1998; Yang et al., 2014). However, we found that
decoding accuracy was actually greater in PSZ than in HCS at memory
load one, mirroring the pattern observed for CDA amplitude. Thus, it is
not the case that decoding accuracy will inevitably be lower in psy-
chiatric populations than in non-psychiatric control groups. Moreover,
when we carefully examined the WM-related signal (RMSInteraction) and
the trial-to-trial variability in that signal (RMSNoise), we did not find
that the ERP data were substantially noisier in PSZ than in HCS.

It might also seem inevitable that decoding accuracy would be
greater for PSZ than for HCS at memory load one of the present ex-
periment given that CDA amplitude was significantly greater for PSZ
than for HCS in the original univariate analyses of
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Leonard et al. (2013). However, the univariate analyses are based on
the mean voltage across trials for each participant, and they reflect the
consistency of the effect across individuals rather than the consistency
across trials. In contrast, the decoding analysis was performed sepa-
rately for each participant, using averages of different subsets of trials
for training and testing, and decoding accuracy for a given participant
reflects the ability of the neural signal to reliably predict the to-be-
remembered side in that participant. Indeed, decoding accuracy was
predicted very strongly by the ratio of the WM-related signal to the

variability in that signal (i.e., by the CNR). Thus, the decoding analysis
makes it possible to draw a conclusion that would not be warranted
from the univariate CDA analysis: the ERP signals contained more in-
formation about which side was to be remembered in PSZ than in HCS at
memory load one.

In the present case, where we simply examined whether the left or
right side of the display was being maintained in WM, the primary
advantage of the decoding approach over the univariate approach is
that the decoding results can be expressed in terms of the information
contained in the neural signal rather than the magnitude of the signal.
Consequently, in the present case, the decoding results provide only a
small increment in knowledge over the prior univariate findings. Thus,
the present results serve mainly as a proof of concept, demonstrating
that information-based decoding can be used to compare psychiatric
and non-psychiatric populations when the potential for group differ-
ences in noise is carefully considered.

This proof of concept is important, however, because the applica-
tion of decoding methods to future studies could potentially reveal
differences that would be difficult to detect with traditional univariate
measures. For example, research with typical adults using fMRI has
decoded face identity (Anzellotti et al., 2014; Axelrod and Yovel, 2015),
the contents of working memory (Ester et al., 2015), the current focus
of attention (Kamitani and Tong, 2005), visual features rendered in-
visible by masking (Haynes and Rees, 2005), and the contents of mental
images (Reddy et al., 2010). Decoding of ERP signals has only recently
become common outside the brain-computer interface literature, but
already it is possible to decode—with a temporal resolution on the
order of milliseconds—face identity (Nemrodov et al., 2016), semantic
categories of words and pictures (Chan et al., 2011; Murphy et al.,
2011), the direction of attention (Bae and Luck, 2018; Fahrenfort et al.,

Fig. 3. Relationship between decoding accuracy and (A) RMSRatio, (B) RMSInteraction, and (C) RMSNoise at each memory load. Each dot represents a single participant.
Average RMSRatio (D) RMSInteraction (E) and RMSNoise (F) for PSZ and HCS at each memory load. Error bars represent ± 1 S.E.

Table 1
Correlation between decoding accuracy and RMSRatio, RMSInteraction,and
RMSNoise for each group at each memory load.

Group Memory load Type r df p

HCS 1 RMSratio 0.89 19 <.001
3 0.73 19 <.001
5 0.68 19 0.001
1 RMSInteraction 0.34 19 0.126
3 0.62 19 0.003
5 0.53 19 0.012
1 RMSNoise −0.46 19 0.038
3 −0.27 19 0.242
5 −0.46 19 0.036

PSZ 1 RMSratio 0.78 22 <.001
3 0.60 22 0.002
5 0.68 22 <.001
1 RMSInteraction 0.45 22 0.027
3 0.23 22 0.277
5 0.10 22 0.649
1 RMSNoise −0.13 22 0.549
3 −0.05 22 0.804
5 −0.22 22 0.311
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2017), and the contents of working memory (Bae and Luck, 2019a,
2018; Foster et al., 2016, 2020). The application of these techniques to
neuropsychiatric populations could provide important new insights into
how these individuals differ from typical individuals in the neural re-
presentation of information.

Thus, the present results should embolden researchers to use in-
formation-based decoding methods in future studies comparing neu-
ropsychiatric populations with matched control populations. The re-
sults of such analyses will be especially compelling when decoding
accuracy is found to be greater in the neuropsychiatric population, as in
the present study. Findings of less accurate decoding can also be
meaningful as long as CNR analyses demonstrate that the decreased
accuracy cannot be explained by greater noise.

However, it is essential that the CNR quantifies the portion of the
overall noise that actually impacts the decoding and not some generic
measure of noise. In the present study, for example, the primary de-
coding analysis was performed on the scalp topography of the mean
voltage from 400–1000 ms, and we quantified the noise as the trial-to-
trial variation in this voltage topography (after factoring out consistent
sources of variation, such as the to-be-remembered side). This excludes
sources of noise that would not impact decoding accuracy. For example,
high-frequency noise would be expected to have very little impact on
either the time-averaged voltage that we used for decoding or our
measures of contrast, noise, and CNR. However, such noise could have a
large impact on generic measures of the noise level (e.g., the RMS
voltage during the prestimulus period).

Although we did not find that the WM-related signals were sub-
stantially more variable in PSZ than in HCS, the present results should
not be taken to indicate that neural signals will always have approxi-
mately the same level of noise in PSZ and in HCS (or across other di-
agnostic groups). The present study examined stable, medicated out-
patients, who may exhibit less trial-to-trial variability than acutely
psychotic individuals. In addition, the data were recorded by well
trained and highly skilled personnel, and the EEG preprocessing pipe-
line was designed to minimize the effects of non-neural artifacts.
Nonetheless, the present results suggest that comparable levels of noise
can be obtained in psychiatric and non-psychiatric populations under
these conditions.

Because EEG-based decoding can be influenced by the EOG voltages
produced by eye movements (Mostert et al., 2018), it is important to
show that our decoding results were not driven by systematic differ-
ences between groups in the EOG signals. To assess whether these
signals differed systematically between PSZ and HCS, we applied our
CNR analysis to the EOG data. As detailed in the online supplementary
materials, we found no differences between groups that approached
significance (all ps > .24), and Bayes factors indicated that the data
were more consistent with the null hypothesis than with a difference
between the two groups at all set sizes. Thus, it is unlikely that our main
results were driven by eye movements. However, it is difficult to rule
out the possibility of secondary consequences from very small eye
movements, and this is an issue that requires caution and further
methodological development.

In summary, information-based decoding methods can provide very
useful evidence about the neural representations of information in a
given group of people as they perform a task, and differences in de-
coding accuracy between groups can be meaningfully interpreted as
long as care is taken to assess noise levels. Although the present study
focused on a simple decoding of remember-left versus remember-right,
future research can apply these methods to much more subtle aspects of
neurocognitive processing.
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