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REVIEW ARTICLE OPEN

From bulk, single-cell to spatial RNA sequencing
Xinmin Li1✉ and Cun-Yu Wang2,3✉

RNA sequencing (RNAseq) can reveal gene fusions, splicing variants, mutations/indels in addition to differential gene expression,
thus providing a more complete genetic picture than DNA sequencing. This most widely used technology in genomics tool box has
evolved from classic bulk RNA sequencing (RNAseq), popular single cell RNA sequencing (scRNAseq) to newly emerged spatial RNA
sequencing (spRNAseq). Bulk RNAseq studies average global gene expression, scRNAseq investigates single cell RNA biology up to
20,000 individual cells simultaneously, while spRNAseq has ability to dissect RNA activities spatially, representing next generation of
RNA sequencing. This article highlights these technologies, characteristic features and suitable applications in precision oncology.
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INTRODUCTION
Ribonucleic acid (RNA) has multiple forms and plays a critical role
in cell growth and differentiation. RNA transcription and stability
are tightly regulated in response to physiological and pathological
stimuli1. Abnormal expression of RNA is frequently associated with
human cancer initiation, development, progression and metas-
tasis. In addition to the mutation of tumor suppressor genes and
oncogenes, gene expression could be overactivated or epigeneti-
cally silenced which could lead to uncontrolled tumor cell growth
and proliferation. Aberrant activation of cell growth signaling
pathways and/or transcription factors could lead to high-level
expression of genes associated with tumor development and
progression. Different gene expression profiles may reflect
different cancer subtypes, the stage of cancer development or
tumor microenvironment2–4. Therefore, RNAseq is a powerful tool
for understanding the molecular mechanisms of cancer develop-
ment and developing novel strategies for cancer prevention and
treatment.

BULK RNASEQ
Since the first EST library was sequenced using Roche 454 sequen-
cer in 20071, bulk RNAseq has become the most valuable and
extensively used tool in understanding cancer biology. Its diverse
translational research and potential clinical applications have been
well reviewed in the past2–4. This section does not intend to
discuss either technologies or its applications in details. Instead,
we will highlight the bottlenecks of its clinical translation and the
recent progresses toward their solutions.
By RNA species, bulk RNAseq involves sequencing two types of

libraries: mRNA-only library and whole transcriptome library that
includes all RNA species except for rRNA. By sequencing type, the
most frequently used bulk RNAseq is a single end short
sequencing focused on differentially expressed genes to under-
stand molecular mechanisms implicated in various stage of
tumorigenesis. This type of sequencing is simple and cost

effective, largely focused on mRNA only. The less routinely used
type is paired end longer sequencing aimed at additional
knowledge on alternative splicing, point mutations, novel
transcripts, long non-coding RNAs and gene fusions. This type of
bulk RNAseq normally sequences rRNA-depleted libraries for more
comprehensive information (Fig. 1).
Bulk RNAseq has broad utilities in cancer classification,

biomarker and gene fusion discoveries, disease diagnosis, and
optimizing therapeutic treatment. The translational research
targeted for clinical oncology is primarily in two areas. The most
informative area is the biomarker discoveries for cancer diagnosis,
prognosis, and prediction. Numerous RNAseq-based signatures
have been developed and validated across many major tumor
types5–9. However, only a few such signature panels have been
successfully translated into clinical practice due to low reprodu-
cibility. One of the main reasons for the poor performance across
independent tumor patients is sampling bias inherent to intra-
tumor heterogeneity10. A recent study provided a promising
solution to tackle this issue through a novel strategy for biomarker
selection11. By analyzing multiple RNAseq data from lung cancer
patients, the team found that genes with homogeneous expres-
sion within individual tumors, despite high inter tumor variability,
have significantly better prognostic potential. These genes
“encode expression modules of cancer cell proliferation and are
often driven by DNA copy-number gains”11. Such a transcriptomic
signature minimizes sampling bias and offers robust prognostic
performance in NSCLC survival. If this selection strategy is
applicable in other tumor types, more biomarker signatures can
be readily translated into clinical practice.
Another area subject to intensive clinical research is gene fusion

discoveries. Fusion genes are well documented as major cancer
drivers. Some recurrent fusion genes can be used as a diagnostic
tool, such as the RUNX1–RUNX1T1 fusion for diagnosis of acute
myeloid leukemia12, while others may be considered as prognostic
biomarkers like TMPRSS2–ERG fusion in prostate cancer13. Using
bulk RNAseq, numerous novel gene fusions have been discovered,
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many of which can be directly beneficial as FDA approved drugs or
offer new therapeutic opportunities14–17. However, due to the high
false positive rate and the low detection sensitivity, the diagnostic
potential of these discoveries has not been fully realized in a clinical
setting. Nevertheless, great advancements have recently been made
towards addressing these two hurdles. A new computational
modeling algorithm for fusion gene detection from bulk RNAseq
data, named Data-Enriched Efficient PrEcise STatistical fusion
detection (DEEPEST), was developed. DEEPEST is able to effectively
minimize false positives and improve detection sensitivity18. In
addition, Heyer EE et al19 reported a targeted RNAseq technique
offering enhanced sensitivity and reduced background noise. Broad
adoption of these new methodologies will facilitate accurate
detection of gene fusion events for clinical applications.
One valuable potential of bulk RNAseq is still underappreciated.

Because bulk RNAseq includes diverse types of RNA species and
detects multiple forms of genomic alterations at a single base
resolution, many of which are not detected by the DNA approach
or other traditional methods20–24, it holds great promise to
develop more efficient and multi-tasked clinical applications.
FoundationOne Heme is such an excellent example. This clinical
test detects various gene fusions, substitutions, indels, and CNVs,
and used for therapy selection, prognosis, and diagnosis in
multiple tumor types. The wide adoption of this LDT test in clinical
labs has demonstrated that the multi-faceted, targeted RNAseq
panel has a broad clinical utility in clinical oncology.
Bulk RNAseq uses a tissue or cell population as a starting

material, and results in a mixture of different gene expression
profiles from the studied material. The transcriptome programs of
tumors are highly heterogeneous both between tumor cells, due
to somatic genetic alterations, and within tumor microenviron-
ments, resulting from significant infiltration of the stroma and
other cell types in the tumor. The true signals driving the
tumorigenesis or therapeutic resistance from a rare cell population
or cell type can be obscured by an average gene expression
profile from bulk RNASeq. This biological challenge catalyzed the
birth of scRNAseq, an alternative RNAseq technology.

SINGLE CELL RNA SEQUENCING (SCRNASEQ)
Every tumor cell is unique with distinct somatic alterations,
transcriptional regulations and epigenetic modifications. Differ-
ences between cells are even greater for RNA since all of these
changes will be most likely reflected at the RNA level.
Furthermore, RNA is more vulnerable to the influence of micro-

and macro-environmental stimuli. Given the extraordinary tran-
scriptional diversity at the single cell scale, tumor cells deserve and
require individualized treatment at the transcriptome level. This
demand facilitated the development of several scRNAseq
technologies25,26. However, none of those have been broadly
applied in translational or clinical research until the recent
development of the 10X genomics chromium system, which
triggered a rapid adoption of this revolutionized technology.
10X genomics chromium system offers an integrated and

complete solution for rapid analysis of gene expression profiles up
to 20,000 individual cells in a single assay. The system consists of
Chromium Controller or Chromium X for single cell partition,
Chromium Connect for automated library construction, and
several software package (cell ranger, loupe browser and cloud
analysis) for data analysis. The core technology of the 10X single
cell platform is the ability to generate hundreds of thousands of
single cell microdroplets, called GEMs, on the Chromium
microfluidics chip. Each GEM contains a single cell, reverse
transcription mixes and a gel bead conjugated with millions of
80-base pair oligo sequences. Each oligo sequence includes an i7
adapter sequence for Illumina sequencing, a cell-specific 10x
barcode for decoding the origin of the RNA, a random molecular
tag for identifying and quantifying unique mRNA transcript (UMI),
and an oligo-dT primer for mRNA binding. Each gel bead has a
unique cell-specific 10x barcode, but all oligo sequences on the
same bead contain an identical 10x barcode. There are 3.6 million
different gel beads to ensure each of the GEMs has a unique 10x
barcode. Thus, the microfluidics chip holds the key to make single
cell GEMs while the cell-specific 10x barcode on the gel bead is
the code to recognize and separate mRNAs from individual cells.
Cell lysis commence immediately after cell encapsulation. The
detailed workflow is outlined in Fig. 2.
Since 2017, scRNAseq has become one of the most popular

genomic tools to dissect transcriptome heterogeneity, discovering
rare cell types and cell states in tumors. Tumors are transcriptionally
heterogeneous. These diversified transcriptional programs provide
tumors with a plasticity to adapt to various environments27 and to
promote tumorigenesis and treatment resistance28. This complex
heterogeneity is partially due to the tumor cells themselves, derived
from genetic variations among cells, as well as responses to other
environmental factors. The tumor cell-derived heterogeneity is
frequently morphologically indistinguishable. scRNAseq offers an
unprecedented opportunity and has demonstrated its utility in
dissecting intra-tumor heterogeneity at a single cell resolution in
primary glioblastoma29, colorectal cancer30 and head and neck
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Fig. 1 Outlines of two types of bulk RNAseq libraries. The types of libraries are dictated by the goal of the experiment: the single short read
libraries are generally for differential gene expression, while the paired long read libraries are for whole transcriptome analysis, including
spicing variant and point mutation analysis in addition to analysis of differentially expressed genes
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squamous cell carcinoma (HNSCC) or oral cancer31. Such a dissection
is not only important for fundamental tumor biology, but is also
effective for deciphering rare treatment-resistant cell populations and
optimizing therapeutic strategy32. The partial epithelial-to-
mesenchymal transition (p-EMT) has been identified to be associated
with lymph node metastasis and adverse pathologic features. Tumor
cells expressing the p-EMT program was found to be present at the
invasive front of HNSCC31. Early scRNA-seq experiments found the
presence of rare stem-like cells with treatment-resistance properties
and a minor cell population expressing high levels of AXL that
developed drug resistance after treatment with RAF or MEK inhibitors
in melanoma33. Similarly, several drug-tolerant-specific RNA variants
were also identified in a drug-tolerant breast cancer cell line that were
absent in control cell lines34. These rare variants with significant
implications are inaccessible by classic bulk RNAseq.
Tumor heterogeneity is also the result of the tumor micro-

environment. Tumors are infiltrated by various immune and
stromal cell populations that are constantly evolving and have
been recruited from surrounding tissues. The diversity of different
cell populations creates a unique tumor microenvironment. These
non-tumor cells within the tumor also have distinct transcriptional
programs and play important roles in tumor progression,
metastasis, and cancer therapy resistance through constant
communication with tumor cells. The characterization of tran-
scriptional diversity of these non-tumor cells in the tumor is
essential to the successful treatment of cancer patients. A recent
scRNAseq study discovered that a high proportion of active
CD8+ T lymphocytes are associated with a better outcome in
non-small cell lung cancer35. A small subset of CD8+ T cells is
associated with favorable response to adaptive cell transfer
immunotherapy in melanoma patients36, while a large number
of regulatory T lymphocytes have a poor prognosis in liver
cancer37. Very recently, we showed that the immune checkpoint
inhibitor targeting CD276 remodels the heterogeneity of HNSCC
by reducing EMT and promote CD8+ T cell infiltration to kill
cancer stem cells using scRNAseq38.

Another exciting application of scRNAseq is the identification of
circulating tumor cells (CTCs) for non-invasive tumor diagnostics and
treatment from a simple liquid biopsy. A recent report shows that a
modified scRNAseq technique, Hydro-seq, has enhanced CTC
capturing capacity while effectively minimizing background cells39.
Using Hydro-seq technique, drug targets for hormone therapies
were identified from CTCs of breast cancer patients. Although there
are several CTC enrichment technologies available on the market,
their clinical utility is limited by high background cells and lack of
genetic knowledge of captured CTCs. Hydro-Seq provides a new
approach for direct genetic characterization of CTCs at a single-cell
resolution and opens a feasible path for making non-invasive tumor
diagnosis, targeted therapy and treatment monitoring.
Until now, single cell sequencing has been centered around

scRNAseq. However, scRNAseq data alone does not provide
insight into upstream regulatory networks or downstream
functional consequences. Integrated scRNAseq analysis with other
single cell omic data will link these networks together and
provides additional values in decoding complex causal relation-
ships among different omic data. Recently, integrated single-cell
multimodal omics is emerging as a major step toward interactively
dissecting tumor heterogeneity at multiple layers of genetics.
Nature Methods named single-cell multimodal omics as the
method of the Year in 201940 since it selected single cell
sequencing as the method of the Year in 201341. Several recent
publications have thoroughly reviewed the utility of integrating
scRNAseq data with other types of omic data42,43. It is highly
expected that single-cell multimodal omics analysis will become a
major focus in the upcoming years and reveals a more in-depth
understanding of intratumoral heterogeneity of tumor cells and
tumor microenvironment than scRNAseq alone.
scRNAseq, jointly with other genetic, epigenetic and proteomic

data, will have a profound impact on cancer research. However,
scRNAseq has several limitations, including: 1) the requirement for
cell dissociation, removal of cell debris and dead cells to obtain
viable, individual fresh cells, which can potentially stress the cells
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and alter the transcriptional profile; 2) the data only recover a few
thousand unique transcripts from a single cell, far less than a
whole transcriptome profile, that limits its broad applications; and
3) scRNAseq data (as well as bulk RNAseq data) loses critical spatial
information, which negatively impacts the understanding of cell
functionality and pathological changes44. Driven by these limita-
tions, spRNAseq is emerging as a game changing technology.

SPATIAL RNA SEQUENCING (SPRNASEQ)
spRNAseq is a recently developed transformative technology. It
combines the strengths of the global transcriptional analysis of
bulk RNAseq and in situ hybridization, providing whole tran-
scriptome data with spatial information. Tumors comprise of
diverse cell types that often communicate in highly structured
manners both spatially and temporally. Unlocking such complex
spatial structures enables us to understand how tumor cells
communicate with each other, escape immune surveillance,
develop drug-resistance, and eventually metastasize. Thus, to
fully understand tumorigenesis and design effective treatment
strategies, it is essential to study gene expression spatially45.
Two spatial RNAseq technologies are commercially available

today: the 10X spatial transcriptomics from 10X Genomics and
digital spatial profiler from Nanostring Technologies. 10X spatial
transcriptomics was initially developed by Spatial Transcriptomics
and was further improved after it was merged with 10X Genomics
in 2018. The first 10X visium spatial transcriptomics platform was
launched in late 2019. This technology utilizes the power of classic
microarrays and the modern barcoding technology of 10x
Genomics for whole transcriptome analysis43. The workflow starts
with imaging the fresh-frozen tissue section placed on the visium
spatial gene expression slide. The visium slide is functionalized
with printed oligo capture probes. The composition of the probes
is similar to that of the oligo sequences coated on the gel beads as
described in the scRNAseq section. After the tissue section is fixed,
stained, and imaged, it is permeabilized to release RNA to bind to

adjacent capture probes for on-slide cDNA synthesis. The double
stranded cDNA, carrying the spatial barcode, is denatured, and the
second strand cDNA is collected for off-slide library preparation
(Fig. 3). This technology does not require specialized equipment
except for traditional histology tools and is easily adoptable within
existing lab infrastructures. The currently released visium platform
is not able to offer single-cell resolution as it is limited by the spot
size and spacing. However, the spatial resolution has now been
experimentally improved by 1 400x46, and we expect a commer-
cial product with single cell resolution to soon follow after.
The digital spatial profiler (DSP), GeoMx DSP, was launched in

2019. The GeoMx DSP is built on Nanostring’s digital molecular
barcoding core technology and is further extended by linking the
target complementary sequence probe to a unique DSP barcode
through a UV cleavable linker. A pool of such barcode-labeled
probes is hybridized to mRNA targets that are released from fresh
or FFPE tissue sections mounted on a glass slide. The slide is also
stained using fluorescent markers (i.e., fluorescently conjugated
antibodies) and imaged to establish tissue “geography” using the
GeoMx DSP instrument. After the regions-of-interest (ROIs) are
selected, the DSP barcodes are released via UV exposure and
collected from the ROIs on the tissue. These barcodes are
sequenced through standard NGS procedures (Fig. 4). The identity
and number of sequenced barcodes can be translated into specific
mRNA molecules and their abundance, respectively, and then
mapped to the tissue section based on their geographic location.
The DSP technology has several advantages over the 10X spatial

transcriptomics technology, including profiling both RNA and protein,
applying multiple samples on the same slide for cost savings, and
flexibility to apply different protein or RNA panels for integrative
analysis. The DSP whole transcriptome panel offers a targeted
approach to quantify transcripts instead of the polyA approach like
10X transcriptome panel, thus excludes biologically uninformative
high-expressors like ribosomal RNAs. It also allows user to add up to
60 custom targets of interest to quantify unique transcript variants
such as isoforms, lncRNA and exogenous transcripts.
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There are several common challenges in 10X visium and Nanostring
GeoMx technologies that limit their applications, including non-single
cell resolution, relatively low sensitivity, high cost, labor intensive
process, and inability or limited capacity to do protein profiling. Both
platforms cannot provide much needed single cell resolution today.
The 10x Visium platform is limited by a spot size of 55 µm, which is
larger than the size of many mammalian cells. Nanostring GeoMx can
technically draw a region of interest at a single cell size, but high signal
to noise ration limits this capacity. Before the resolution issue can be
addressed, integration of scRNA-seq with spRNAseq is a viable option.
The spRNAseq is still in its early stages and has already shown

promising applications that yielded inaccessible knowledge in biomar-
ker discoveries, optimizing therapeutic strategy47–49, and in elucidating
tumor heterogeneity and its dynamic microenvironments. Early
spRNAseq studies, resulting from early product access programs,
showed the coexistence of several distinct expression profiles from
the same biopsy in melanoma that can be linked to specific histologic
entities, but have more complex and detailed information than a
histopathologic analysis can possibly reveal50. The lymphoid area
adjacent to the tumor region displayed a specific expression pattern,
which was later validated as a unique cancer expression profile that
progresses gradually beyond tumor boundaries in prostate cancer51.
Recent spRNAseq studies on tumor microenvironments revealed more
insightful data. Using multimodal intersection analysis, Moncada R
et al52 found that subpopulations of ductal cells, macrophages, dendritic
cells and cancer cells have spatially restricted enrichments and
coenrichments of inflammatory fibroblasts with cancer cells in primary
pancreatic tumors. The distinct architecture among intercellular
subpopulations and cross-talking networks within tumor microenviron-
ments likely vary among patients and could have prognostic and
therapeutic value. Similarly, Ji et al.53, identified four tumor subpopula-
tions in cutaneous squamous cell carcinoma (cSCC). Of those, a tumor-
specific keratinocyte (TSK) population unique to cancer is localized to a
fibrovascular niche that is used as a hub for intercellular communication.
In murine carcinomas, the co-existence of distinct subsets of cancer-
associated fibroblasts (CAFs) has unique phenotypic features and
functions that can be remodeled by TGFβ-blockade leading to

enhanced efficacy of PD1 immunotherapy54. These findings demon-
strate that the cell-cell interactions in a spatial context in the tumor
microenvironment are critical components in understanding tumor
progression, drug resistance and therapeutic efficacy.

CONCLUDING REMARKS
Three main RNAseq technologies described above have their unique
features and suitable applications. It is likely that bulk RNAseq will
remain the primary choice for clinical oncology in the near future.
scRNAseq will further expand in the clinical research arena, and
eventually get into the clinical practice when the cost significantly
decreases. As for spRNASeq, it is still in its infancy. Given its capacity
to dissect intercellular subpopulations of tumor microenvironment
sensitively and spatially, spatial oncology will inevitably become a
fundamental area of research in both discovery and therapeutics.
The ultimate goal in spatial biology is to develop a spatial multi-

omics technology at a single cell resolution. Deng et al.55,56 has
recently demonstrated the possibility of spatial genome wide
epigenome profiling with three histone modification markers
(H3K27me3, H3K4me3, H3K27ac) at tissue scale and cellular level.
By combining epigenome, transcriptome and proteome datasets
at a single cell resolution will have profound implications for
understanding causative relationships of the multi-omics data,
how genome organizes and functions, and how cancer develops.
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