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Abstract

Social learning is essential to survival. It is likely to
evolve when it is more efficient than asocial, trial-and-
error learning. The consensus in cultural evolutionary
theory holds that some amount of environmental vari-
ability and uncertainty about the best decisions are nec-
essary for social learning to evolve. However, current
models for the evolution of social learning tend to con-
flate forms of uncertainty, and rarely consider different
ones in tandem. Moreover, many models are limited
by considering only two possible behaviors and environ-
mental states. Here we use evolutionary agent-based
modeling to identify the complex ways in which differ-
ent forms of uncertainty affect social learning. We model
a time-varying environment with dozens of possible be-
haviors performed by agents engaging in individual and
social learning. We show that ambiguous payoffs, larger
possible decision sets, and shorter agent lifespans some-
times increase social learning prevalence, as expected.
However we also find which concrete uncertainty condi-
tions cause evolution to select against social learning.
Keywords: anthropology; evolution; learning; social
cognition; agent-based modeling

Introduction
Social learning is essential to human and other species’
everyday life and survival. It allows individuals to solve
problems when acquiring information from others is
more efficient than learning on one’s own (Laland, 2004).
Theory predicts that social learning should be favored
in contexts with greater uncertainty (Boyd & Richerson,
1985; Henrich & Boyd, 1998), and this prediction has re-
ceived some empirical support (McElreath et al., 2005;
Kendal et al., 2018). However, the meaning of the term
“uncertainty” is not always clear, and often conflates en-
vironmental variability, spatial heterogeneity, and ambi-
guity or uncertainty about payoff structure. Moreover,
most models of the evolution of social learning blackbox
key cognitive learning processes that underlie it (Heyes,
2016).

In this paper we use agent-based modeling to com-
pare the effect of different sources of uncertainty on so-
cial learning by un-blackboxing typically abstracted-out
model components of environmental variability, payoff
structures and agent life histories, and learning mech-
anisms. Uncertainty here means variability where the
probabilistic structure is unknown. Uncertainty in-
creases when payoffs are more similar across behaviors,

when environmental variability increases, when the num-
ber of possible behaviors increases, and when lifespan
decreases. In this paper we show that more ambigu-
ous payoff structures and shorter lifespans sometimes do
lead to greater reliance on social learning—however, we
also identify and explain cases where greater uncertainty
leads to less social learning due to the possibility that
social information is misleading. Here we show that dif-
ferent sources of uncertainty interact in complex ways to
affect the evolution of social learning. We thus conclude
that many predictions made by previous models of the
evolution of social learning are likely overgeneralized.

Social Learning
Social learning, as we consider it here, occurs whenever
an individual acquires a behavior by observing another
individual. This need not require explicit instruction,
and is, in fact, widespread across a broad range of non-
human taxa (Kendal et al., 2018; Allen, 2019). Impor-
tantly, social information can be inherited both from par-
ents — i.e., via vertical transmission like genetic infor-
mation — and from others in the same generation —
i.e., via horizontal transmission (Cavalli-Sforza & Feld-
man, 1981). The joint action of vertical and horizontal
transmission gives rise to qualitatively different evolu-
tionary dynamics. For example, inter-generational envi-
ronmental change will affect the adaptive value of genetic
information and vertically-transmitted cultural informa-
tion more than information that is horizontally trans-
mitted. We include both horizontal and vertical trans-
mission pathways in our model. For simplicity, we ignore
oblique transmission in which non-parental members of
the previous generation are observed.

Environmental variability has been seen as a key se-
lective force in shaping social learning starting with the
first formal models of cultural evolution (Cavalli-Sforza
& Feldman, 1981; Boyd & Richerson, 1985). Totally
stable environments will not favor learning mechanisms
because information can become genetically hardwired,
while extreme environmental instability will degrade the
value of social learning as information becomes rapidly
outdated (Feldman, Aoki, & Kumm, 1996). This sug-
gests that an intermediate degree of environmental pre-
dictability will favor social learning. Strategies can also
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evolve to mitigate the risks of relying on outdated so-
cial information by weighing more heavily information
from others who more recently acquired it (Rendell et
al., 2010).

Uncertainty has also been modelled as arising from
other aspects of the environment. For example,
Perreault, Moya, and Boyd (2012) vary the ambiguity of
the environmental cue individuals get through individual
learning about the state of the world. Perhaps not sur-
prisingly, the more ambiguous the asocial information,
the greater the selection for weighing social information
heavily. Alternatively, uncertainty about the optimal
behavior has been modelled by increasing the number
of cultural traits to choose from (Nakahashi, Wakano,
& Henrich, 2012; Muthukrishna, Morgan, & Henrich,
2016).

Empirical research supports some of these theoretical
predictions. Organisms flexibly use social learning as a
function of the ambiguity of the environmental cue and
of other environmental features that are often subsumed
under the rubric of uncertainty. While some studies ex-
plicitly impose a cost whenever participants use asocial
information (Morgan, Rendell, Ehn, Hoppitt, & Laland,
2012; Atkisson, O’Brien, & Mesoudi, 2012), others allow
the costs of each strategy to emerge as a function of task
structure and assess its consequences for learning strate-
gies. For example, when participants received equivocal
private information about the best investment to make
in a lab game, they were more likely to rely on social in-
formation to make their choice (Toelch, Bruce, Newson,
Richerson, & Reader, 2013).

McElreath et al. (2005) developed a similar experi-
ment where participants “pulled” virtual slot machine
arms (often called “bandits”), each yielding stochastic
payoffs. Participants relied more on social learning when
the bandits had higher-variance payoffs, and when the
highest-paying bandit changed more frequently. The
number of options to choose between can also increase
uncertainty about the optimal choice, and has been
shown to increase participants’ reliance on social learn-
ing (Muthukrishna et al., 2016).

Thus existing theoretical work and the empirical evi-
dence seem to support that various forms of uncertainty
favor the evolution of social learning. However, un-
certain outcomes are operationalized in different ways
across models, and any given model tends to focus on
only one or two forms of uncertainty at a time. Our
agent-based modeling approach enables us to explicitly
specify different forms of uncertainty independently in
order to understand which of these environmental fac-
tors particularly favor the evolution of social learning.
Simultaneous modelling also allows us to examine their
interaction. We first attempt conceptual replications of
previous models’ findings, and then examine where they
diverge.

Research overview
Computational agents in our model face a problem: ev-
ery time step they perform one of several behaviors, with
each behavior represented by a “bandit” that pays off
1 or 0 with some probability. One of these behaviors
(the optimal behavior) pays off with a higher probabil-
ity than all the others. Agents decide which behavior
to perform based either on a success-biased observation
of a peer’s behavior (social learning) or based on their
own observations (asocial learning). Agents then update
their memory of expected payoffs for each behavior when
they receive a payoff from their chosen action. Within
this framework we have four mechanisms by which we
operationalize and vary uncertainty: (1) the expected
payoffs of the optimal behavior and all the rest—when
payoffs are nearly identical, uncertainty in the form of
ambiguity increases; (2) the environmental variability,
i.e., the probability that the optimal behavior changes
between generations; (3) the number of possible behav-
iors the environment allows—which behavior is optimal
is more uncertain when there are more possibilities; and
(4) agent lifespan—agents experience fewer learning op-
portunities and die more uncertain about which behavior
is optimal when their lifespan is shorter.

The primary outcome measure of our model is the av-
erage difference between the frequency of (horizontal) so-
cial learning and the frequency of asocial learning across
all agents. If social learning is more prevalent than aso-
cial learning this suggests that the optimal behavior is
more likely found by copying peers than by trial-and-
error search. Conversely, when asocial learning is more
prevalent, this suggests social information is likely to be
misleading. When social and asocial learning are equally
prevalent this means there is no discernible advantage to
either, i.e., the agents have weak priors on which chan-
nel provides more reliable information. Each agent has
its own social learning frequency that it inherits from
its parent (haploid reproduction) with mutation, so evo-
lution selects for, or computes (Smaldino & Richerson,
2013), the optimal social learning frequency.

Using our model we found that increased uncertainty
sometimes led to increased reliance on social learning,
as expected from prior literature. However, we also find
cases where increased uncertainty decreased agents’ re-
liance on social learning due to increased uncertainty
that made social information less reliable, thereby in-
creasing reliance on asocial learning.

Model
We developed an agent-based model of a society of N
individuals who each must decide which of B behav-
iors to perform at each time step. Each behavior is a
bandit indexed by integer b, a common modelling and
experimental approach for representing behaviors with
probabilistic payoffs (Sutton & Barto, 2018; McElreath

3635



et al., 2005; Rendell et al., 2010; Schulz & Gershman,
2019). Each behavior indexed by b is modeled here as
a “pull” of bandit b (Figure 1, left). Payoffs from each
behavior b are binomially distributed with mean πb, and
yield a payoff of 1 when the behavior is successful and
0 otherwise. Agents must decide which behavior to per-
form at each time step. To do this, each agent i employs
either social information with probability si or asocial
information with probability ai = 1−si (Figure 1).

We operationalized uncertainty in four different ways:
(1) payoff ambiguity, Aπ, which measures the difference
between the optimal expected payoff behavior πhigh and
the expected payoff of the other behaviors, πlow; (2) en-
vironmental variability, u, the probability the optimal
behavior changes from one generation to another; (3)
the number of possible behaviors, B; and (4) the lifes-
pan, or time steps per generation, L.
We ran the simulation for R rounds (i.e., generations

of L time steps each). At the end of each round agents
reproduce and then die off. Those selected to reproduce
pass on their social learning frequency si with muta-
tion, so that selection favors higher payoff strategies at
reproduction. We developed a series of computational
analyses where we systematically vary the uncertainty
and risk variables and observe the social-asocial learn-
ing difference, our primary outcome measure, 〈s−a〉. In
other words, we examine when horizontal social learning
is more likely to evolve than asocial learning.

Agents
In each time step, N agents—autonomous problem
solvers—select which behavior to perform based on ei-
ther social or asocial information (Figure 1). In either
case the agent tracks the mean payoff of each behavior b,
denoted π̄b, and a count of how many times it has per-
formed each behavior, denoted cb. Agents’ beliefs about
mean payoffs are updated from π̄b to π̄′b using exponen-
tial weighted averaging, π̄′b = π̄b+ Banditb(0,1)−π̄b

c′
b

, where
Banditb(0,1) is 0 or 1 depending on the result of the
bandit draw for behavior b. π̄b is initialized to 0 for all
b at model initialization, and initialized based on ver-
tical transmission from each new agent’s parent at the
start of each generation, after the first, described in more
detail below (see Table 2 for a summary of agent-level
variables).

Agent i chooses social information with probability
si, which is itself an inherited trait (see below for details
on evolutionary dynamics). When an agent engages in
social learning it first selects NT potential teachers at
random from the other N − 1 agents in the population
(NT = 3 in the example at the bottom of Figure 1, and
is set to NT = 10 for our analysis). By setting NT = 10,
which is less than the total number of agents N , we
make a conservative estimate of the scope of social learn-
ing since in real-world settings individuals do not always

Table 1: Agent variables. Agents have social learning
and vertical transmission traits vi and si; individual-
level dynamic variables tracking agent observations, ci
and πi, and global parameter τ . The subscript i is in-
cluded when each agent i has its own local value of that
variable. See text for variable initializations.

Variable Description
si Frequency of horizontal social learning
vi Propensity for vertical social learning
ci Vector length B counting number of times

each behavior was performed
πi Vector length B of observed mean payoffs

for each behavior
τ Softmax parameter that tunes how often

agents exploit the best observed behav-
ior (lower τ) versus explore alternatives
(higher τ)

have access to the whole population as teachers at any
given moment. The agent selects one of the teachers
of the NT , weighted by each potential teacher’s accu-
mulated payoffs in the round (Figure 1, bottom right).
The agent then performs the behavior done by its chosen
teacher in the previous time step.

Following Luce’s choice axiom (Luce, 1959), an agent
using asocial information selects a behavior at random,
with the probability of selecting any particular behavior
weighted by the softmax function applied to that behav-
ior’s observed mean payoff relative to all mean payoffs:

Pr(choose behavior b) = exp(π̄b/τ)∑B
b=1 exp(π̄b/τ)

. (1)

The softmax method is a biologically plausible
model (Hill, Boorman, & Fried, 2016; Schulz & Ger-
shman, 2019) that enables agents to explore alternative
behaviors sometimes and exploit the best observed be-
havior other times, even for small sample sizes (Vul,
Goodman, Griffiths, & Tenenbaum, 2014). The param-
eter τ specifies how frequently alternative behaviors are
explored—higher τ means more frequent exploration. To
mimic increased plasticity and exploration in the devel-
opmental period we use simulated annealing to decrease
τ over the course of a model generation (Gopnik, 2020),
starting from τ = 0.01 and reducing τ by 9.999e-5 each
time step so that τ = 1e-6 after 100 time steps.

Modeling uncertainty
In our model uncertainty is a tunable consequence of
four environmental features:

1. We vary the latent expected payoffs yielded by the
bandits. For simplicity, we assume that in any given
environmental state, there is one optimal behavior
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Figure 1: Behavior selection. Agents select a behavior
to do at each timestep either using asocial information
(top row) with probability a or social information with
probability s= 1−a (bottom row).
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that yields an expected payoff of πhigh, while all other
behaviors yield a payoff of πlow < πhigh. The differ-
ence between these quantities is the payoff ambiguity,

Aπ = 1− (πhigh−πlow), (2)
which is maximized when the expected payoffs are
close to equal and minimized when they differ greatly.

2. We vary the frequency at which the optimal behav-
ior changes, which we call environmental variability,
u. At the start of each generation, with probability u,
a new behavior is assigned a payoff of πhigh while all
other behaviors are assigned a payoff of πlow. Other-
wise, the same behavior remains optimal across gen-
erations.

3. We vary the total number of available behaviors, B,
which is a source of uncertainty since agents are less
likely to know which behavior yields high payoffs.

4. Finally, we vary number of behavioral events per gen-
eration, L. This can be viewed as the effective lifes-
pan of an agent. Decreasing this lifespan effectively
increases the importance of each event for acquiring
payoffs. When lifespans are short (L is small), agents
experience greater uncertainty about which behavior
is optimal given the fewer learning opportunities.

Dynamics and evolution
Model dynamics occur on two timescales. The shorter
scale is the individual behavioral event, in which horizon-
tal social learning occurs and payoffs are accrued. There
are L such events per generation. The longer scale is
the intergenerational one. At the end of each genera-
tion’s L time steps, agents reproduce before dying. N
new offspring are then created, and assigned to a parent
with probability proportional to the potential parents’
accumulated payoffs. Each of these offspring inherits
two traits from its parent i—the propensity for horizon-
tal social learning frequency, si, and the magnitude of
vertical transmission, vi.

Table 2: Uncertainty variables. We model uncer-
tainty with these four variables, explained in the text.

Variable Description
Aπ Payoff ambiguity 1−(πhigh−πlow), which

is maximal when πhigh = πlow
u Environmental variability, i.e., probabil-

ity the optimal behavior switches between
generations

B Number of possible behaviors; only one is
the optimal behavior

L Agent life span, i.e., number of behaviors
performed before reproduction and die-off

An offspring j inherits traits related to social learning
from its parent, i, with mutation, such that sj = si+ ε
and vj = vi+ε, where ε is a random draw from a normal
distribution with a mean of zero and a standard devia-
tion of σ (we used σ = 0.05 for all simulations reported
here). All mutated traits were truncated in [0, 1].

This propensity for vertical social learning affects how
much offspring weight the information they learn about
their parents’ behavioral repertoire. In the absence of
vertical transmission, offspring initially assign their ex-
pected payoffs for each behavior b to the mean value
over all payoffs in the parent’s memory, π̄. With vertical
transmission, offspring j learns about each behavior’s ex-
pected payoff from its parent: π̄′b = π̄+vi(π̄b− π̄). Here
π̄′b is the mean payoff for behavior b that is transmitted
to the child, π̄b is the expected payoff for behavior b in
the parent’s memory, and π̄ is the mean payoff across all
behaviors observed by the parent. The number of ob-
servations of behavior b known to the child, call it c′b, is
set conservatively based on its parent p’s behavior ob-
servation count cb as follows under vertical transmission
c′b = min(bvpcbc,1). This means that if bvpcbc= 0, then
c′b is set to 0. If bvpcbc ≥ 1, then cb is set to 1. This keeps
children from inheriting a high cb that would cause new
information to be weighted very little.

Computational analyses
We manipulated environmental uncertainty parameters
described above, Aπ (via πlow and πhigh), u, B, and
L, to examine their effects on our main outcome, the
difference between the probabilities of social and asocial
learning 〈s− a〉. For each parameter setting in our
analysis we calculated the average value of 〈s−a〉 over
the final 20,000 of T = 100,000 behavioral events (i.e.,
time steps) for each simulation, across 100 runs for each
combination of parameter values. 〈s−a〉 is dynamically
stable over this time frame for all analyses, which we
demonstrate in time series plots in a supplemental
Jupyter notebook included in the GitHub repository
for this project (https://github.com/mt-digital/
UncMod/blob/CogSci2022-CameraReady/notebooks/
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Final%20CogSci%20results.ipynb).
In this paper, we highlight the results from four com-

putational analyses. In the first analysis, we manipu-
lated the base payoff πlow ∈ {0.1,0.2, . . . ,0.8} and the
optimal payoff πhigh ∈ {0.2,0.3, . . . ,0.9}. In the second
analysis, we manipulated the environmental variability
alone with u ∈ {0.0,0.1,0.25,0.5,0.75,0.9}. In the third
analysis, we manipulated the number of possible behav-
iors, B ∈{10,20, . . . ,100}, along with environmental vari-
ability u ∈ {0.1,0.9}. In the final analysis, we manip-
ulated the lifespan of agents, the number of steps per
generation, L ∈ {5,10,20,50,100} and the environmen-
tal variability u ∈ {0.1,0.9}.
The model was implemented in Julia (Bezanson, Edel-

man, Karpinski, & Shah, 2017) using the Agents.jl
package for model development (Datseris, Vahdati, &
DuBois, 2022) and the Gadfly package for figures (Jones,
Arthur, Nagy, Mattriks, & Contributors, 2021). Simula-
tions were run on the Sherlock supercomputing cluster at
Stanford University. Model and analysis code, and links
to output datasets used for this paper’s figures, can be
found on GitHub at https://github.com/mt-digital/
UncMod/tree/v0.1-CogSci2022Sub.

Analysis
Payoff ambiguity Aπ (via πlow and πhigh)
Payoff ambiguity, Aπ, is the first form of uncertainty
we analyze. To do this, we manipulated the base payoffs
πlow and optimal payoff πhigh, and by consequence varied
payoff ambiguity, Aπ (Equation 2). We found some cases
supporting the claim that greater uncertainty in the form
of payoff ambiguity leads to more social learning—or its
logical equivalent, that less ambiguity leads to less so-
cial learning. However we also found several counterex-
amples where increased (decreased) uncertainty of this
form suppresses (selects for) social learning.

First, we found cases that support the claim that
greater uncertainty leads to more social learning. For
example, consider the case where u = 0.1 (Figure 2a)
and πlow ≈ 0.1. In this case social learning becomes less
prevalent as Aπ decreases when moving from parameter
setting πhigh ≈ 0.6 to πhigh = 0.9, as classically expected.

On the other hand, we also found cases where social
learning is selected for as ambiguity decreases, contrary
to expectations. For example, consider the low environ-
mental variability (u = 0.1) case with πhigh = 0.9. In
this case 〈s−a〉 decreases while πlow increases to ≈ 0.5,
which correspondingly increases Aπ. When πlow contin-
ues to increase from ≈ 0.5 to 0.8, the trend switches back
to wheresocial learning prevalence increases with payoff
ambiguity.

Social learning sometimes increases when ambiguity
decreases because horizontally-acquired information is
more reliable than information either asocially acquired
through trial and error or vertically transmitted to off-

Figure 2: Social-asocial learning difference 〈s− a〉 over
different payoff structures defined by πlow and πhigh for
low environmental availability, u = 0.1, in (a) and high
environmental variability, u= 0.9, in (b). B = 100, L=
20.
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Figure 3: Social-asocial learning difference 〈s− a〉 in-
creases with environmental variability u. B = 100, L =
20.
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spring. When intergenerational environmental variabil-
ity is high (u = 0.9; Figure 2b) it is unlikely that the
average individual knows which of the 100 possible be-
haviors is optimal (i.e. when B = 100), at least in the
first time steps of the generation. However, when Aπ is
low, such as when πlow = 0.1 and πhigh = 0.9, it is likely
that at least one out of the other ten randomly selected
individuals is doing the optimal behavior, and success-
biased social learners can reap the benefits of this pooled
information.

Environmental variability u

We find that that social learning frequency broadly in-
creases with environmental variability Figure 3 for two
of the most sensitive payoff structures identified in the
previous analysis. The lower 〈s−a〉 for more ambiguous
payoffs in this figure illustrates that the evolution of so-
cial learning responds differently to different types of un-
certainty (Figure 3). Note that environmental changes
do not particularly degrade social information in this
model because s only involves horizontal transmission.

Number of possible behaviors B
Next we manipulated the number of possible behaviors
B (i.e. the number of bandits) agents could perform,
which increases the difficulty of finding the optimal be-
havior. In the case of low environmental variability, B
has minimal effect on the extent of social learning (see
solid lines in Figure 4a). This is likely because of the
relatively low need to learn from members of the same
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generation when the environment doesn’t vary. In con-
trast, with high environmental variability (dotted lines),
we sometimes observe a decreased reliance on social
learning as the number of behaviors increases, partic-
ularly for the high-ambiguity and low-information case
of πlow = 0.1,πhigh = 0.2 (Figure 4a).
This appears to contradict the claim that individuals

should rely on social learning for more difficult or un-
certain tasks. In this computational experiment, agents
only live for L= 20 time steps, so that when B is smaller
(B ≈10-20) it is more likely that one out of ten randomly
selected agents is doing the optimal behavior. When
πlow = 0.1 and πhigh = 0.2, the optimal behavior is twice
as likely to pay off. When B becomes larger than 20, it
is increasingly unlikely any agent knows what the best
behavior is, and so social and asocial learning drift to
s= a= 0.5.

Agent lifespan L

Shorter lifespans (i.e., lower L) increase agents’ uncer-
tainty as it gives them fewer opportunities to learn the
optimal behaviors. We observe a non-monotonic effect
of L on 〈s−a〉, though most variation over L occurs in
the form of a sharp increase in 〈s− a〉 as L increases
from 5 to 20 time steps for some levels of payoff ambi-
guity (Figure 4b). This result is particularly acute for
the low-ambiguity case of πlow = 0.1 and πhigh = 0.9 for
both u = 0.1 and u = 0.9. As in the previous analyses,
this appears to be due to the availability of reliable teach-
ers for horizontal social learning. When L is very small,
no agents have been able to discern the optimal behav-
ior, so social learning confers little benefit over asocial
learning. However, once agents live long enough some
inevitably begin doing the optimal behavior. It then be-
comes advantageous to pursue social learning more fre-
quently than asocial learning. When u = 0.9 it appears
that increasing L slightly decreases average reliance on
social learning. This is likely due to the fact that softmax
will always eventually converge to the optimal behavior
with enough samples. If individuals are able to even-
tually identify the optimal behavior on their own, there
should be a slight correction to lower levels of horizontal
social learning.

Vertical transmission magnitude evolution
Vertical transmission is an important component of this
model, as can be seen by the effect of intergenerational
environmental variability on 〈s− a〉. However, in our
analyses, the vertical transmission magnitude, v, evolves
to be around 0.5 across our computational experiments
after being initialized to 0.1. In supplemental informa-
tion (Jupyter notebook included in our GitHub repos-
itory) we provide equivalent visualizations for v as we
have presented here for s. We will further analyze the
evolution of vertical social transmission in future work
given current space limitations.

Figure 4: Social-asocial learning difference 〈s− a〉 over
(a) number of behaviors B (L = 20) and (b) agent life
span L (B = 100) for environmental variabilities u= 0.1
(solid lines) and u= 0.9 (dashed lines).
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Discussion
In this paper we re-examined the relationship between
uncertainty and social learning. While uncertainty is
generally thought to favor social learning, we show that
increased payoff ambiguity, increased number of possi-
ble behaviors, and decreased lifespan sometimes suppress
the evolution of social learning. Our results derive from
an agent-based model where individuals solve the prob-
lem of choosing among many possible behaviors to find
the one with the highest payoff using social learning from
peers, asocial learning by trial-and-error, and vertically-
transmitted information from parents. Our model could
be extended in a number of ways, including to consider
questions about who learns from whom under different
forms and levels of uncertainty (Muthukrishna et al.,
2016).

In general this work highlights the importance of pre-
cision in characterizing sources of risk and uncertainty
in understanding social phenomena. While social learn-
ing may be favored under one form of uncertainty, other
forms can select against it. The time scales under which
those uncertainties operate also matter. This work thus
answers calls for greater precision in theory-building and
hypothesis generation. More practically, this work could
be adapted to guide reinforcement learning AI agents to
optimize their use of social information (Jaques et al.,
2019).
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