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Randomized near-neighbor graphs, giant components and 
applications in data science
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*Postal address: Applied Mathematics, Yale University, New Haven, CT 06511

**Dept. of Pathology & Applied Mathematics, Yale University, New Haven, CT 06511

***Dept. of Mathematics, Yale University, New Haven, CT 06511

Abstract

If we pick n random points uniformly in [0, 1]d and connect each point to its cd log n–nearest 

neighbors, where d ≥ 2 is the dimension and cd is a constant depending on the dimension, then it is 

well known that the graph is connected with high probability. We prove that it suffices to connect 

every point to cd,1 log log n points chosen randomly among its cd,2 log n–nearest neighbors to 

ensure a giant component of size n − o(n) with high probability. This construction yields a much 

sparser random graph with ~ n log log n instead of ~ n log n edges that has comparable 

connectivity properties. This result has nontrivial implications for problems in data science where 

an affinity matrix is constructed: instead of connecting each point to its k nearest neighbors, one 

can often pick k′ ≪ k random points out of the k nearest neighbors and only connect to those 

without sacrificing quality of results. This approach can simplify and accelerate computation; we 

illustrate this with experimental results in spectral clustering of large-scale datasets.

Keywords

k–nearest neighbor graph; random graph; connectivity; sparsification

1. Introduction and Main Results

1.1. Introduction.

The following problem is classical (we refer to the books of Penrose [23], Walters [37], and 

references therein): suppose n points are randomly chosen in [0, 1]2 and we connect every 

point to its k nearest neighbors, what is the likelihood of obtaining a connected graph? It is 

not very difficult to see that k ~ log n is the right order of magnitude. Arguments for both 

directions are sketched in the first section of a paper by Balister, Bollobás, Sarkar & Walters 

[3]. Establishing precise results is more challenging; the same paper shows that k ≤ 0.304 

log n leads to a disconnected graph and k ≥ 0.514 log n leads to a connected graph with 

probabilities going to 1 as n → ∞. We refer to [4, 5, 9, 41, 44] for other recent 

developments.

We contrast this problem with one that is encountered on a daily basis in applications.
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Suppose n points are randomly sampled from a set with some geometric structure 

(say, a submanifold in high dimensions); how should one create edges between 

these vertices to best reflect the underlying geometric structure?

This is an absolutely fundamental problem in data science: information in data science is 

usually represented as points in high dimensions and for many applications one creates an 

affinity matrix that may be considered an estimate on how ‘close’ two elements in the data 

set are; equivalently, this corresponds to building a weighted graph with data points as 

vertices. Taking the k nearest neighbors is a standard practice in the field (see e.g. [2, 11, 

28]) and will undoubtedly preserve locality. Points are only connected to nearby points and 

this gives rise to graphs that reflect the overall structure of the underlying geometry. The 

main point of our paper is that this approach, while correct at the local geometric 

perspective, is often not optimal for how it is used in applications. We first discuss the main 

results from a purely mathematical perspective and then explain what this implies for 

applications.

Notations.—The notation A ≲ B denotes that A ≤ cB for a universal constant c > 0 that 

does not depend on A or B and A ≲c,d,… B to denote that this implicit constant may depend 

on c, d,… The symbol A ≳ B is used in the same sense, if both A ≲ B and A ≳ B, then we 

say that A ~ B (with the same convention for dependencies on other parameters).

1.2. k–Nearest Neighbors.

We now explore what happens if k is fixed and n → ∞. More precisely, the question being 

treated in this section is as follows.

Suppose n points are randomly sampled from a nice (compactly supported, 

absolutely continuous) probability distribution and every point is connected to its k 
nearest neighbors. What can be said about the number of connected components as 

n → ∞? How do these connected components behave?

The results cited above already imply that the arising graph is disconnected with very high 

likelihood. We aim to answer these questions in more detail. By a standard reduction (a 

consequence of everything being local, see e.g. Beardwood, Halton & Hammersley [6]), it 

suffices to study the case of uniformly distributed points on the d dimensional unit interval, 

i.e. [0, 1]d, where d ∈ ℕ.

The following theorem is a direct consequence of a theorem of Penrose and Yukich 

(Theorem 2.4 of [25])

Theorem 1.1. (There are many connected components..) Let k ∈ ℕ be fixed and let Xn 

denote the number of connected components of a graph obtained from connecting n points 
sampled uniformly from [0, 1]d to their k nearest neighbors. There exists a constant cd,k > 0 

such that

lim
n ∞

EXn
n = cd, k .
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In terms of number of clusters, this is the worst possible behavior: the number of clusters is 

comparable to the number of points. The reason why this problem is not an issue in 

applications is that the implicit constant cd,k decays quickly in both parameters (see Table 1).

We emphasize that this is a statement about the typical clusters and there are usually clusters 

that have very large diameter – this is also what turns k–nearest-neighbor graphs into a 

valuable tool in practice: usually, one obtains a giant connected component. Results in this 

direction were established by Balister & Bollobas [1] and Teng & Yao [36]: more precisely, 

in dimension 2 the 11–nearest neighbor graph percolates (it is believed that 11 can be 

replaced by 3, see [1]). More precisely, our statements are very clearly located in the setting 

where k is fixed and n → ∞.

1.3. Randomized Near Neighbors.

Summarizing the previous sections, it is clear that if we are given n points uniformly 

distributed in [0, 1]d, then the associated k–nearest-neighbor graph will have ~ n connected 

components for k fixed (as n → ∞) and will be connected with high likelihood as soon as k 
≳ log n. The main contribution of our paper is to show that there is a much sparser random 

construction that has better connectivity properties – this is of intrinsic interest but has also a 

number of remarkable applications in practice (and, indeed, was inspired by those).

Theorem 1.2. There exist constants cd,1,cd,2 > 0, depending only on the dimension, such that 
if we connect every one of n points, i.i.d. uniformly sampled from [0, 1]d, to each of its cd,1 

log n nearest neighbors with likelihood p =
cd, 2log log n

log n , then the arising graph has a 

connected component of size n−o(n) with high probability.

1. This allows us to create graphs on ~ n log log n edges that have one large 

connected component of size proportional to ~ n with high likelihood.

2. While the difference between log n and log log n may seem negligible for any 

practical applications, there is a sizeable improvement in the explicit constant 

that can have a big effect (we refer to §2.3 for numerical examples). This 

suggests that the constants cd,1 and cd,2 need not be very large – it could be of 

quite some interest to obtain both sharp estimates as well as effective results for n 
sufficiently small compared to d.

3. In practical applications the constants scale favorably and the graphs are 

connected (in practice, even large n are too small for asymptotic effects).

Related results.—There are two classical ways of building a nearest-neighbor network 

[40]: (1) selecting the k nearest neighbors or (2) selecting all points that are at most a 

distance r > 0 away from a given point. Our Theorem 1.2. is dealing with (1), the case (2) 

has been studied by Broutin, Devroye, Fraiman & Lugosi [19]. We observe that these 

problems are structurally somewhat different but both of obvious relevance in applications.
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1.4. The Big Picture.

We believe this result to have many applications in data science domains that involve the 

construction of a k-nearest-neighbor graph. For example, Maier, von Luxburg & Hein [21, 

42] address the question of how the choice of parameters for the k-nearest-neighbor graph 

influences the output of the spectral clustering algorithm. Naturally, in light of the results 

cited above, the parameter k must grow at least like k ≳ log n for such results to become 

applicable. Our approach allows for a much sparser random graph with comparable 

connectivity and several other useful properties.

However, we believe that there is also a much larger secondary effect that should be 

extremely interesting to study: suppose we are given a set of points {x1, … , xn} ⊂ [0, 1]2. If 

these points are well-separated then the k–nearest-neighbor graph is an accurate 

representation of the underlying structure; however, even very slight inhomogeneities in the 

data, some points landing in localized clusters, can have massive repercussions throughout 

the network (Figure 3). Even a slight degree of clustering will produce strongly localized 

clusters in the k–nearest-neighbor graph – the required degree of clustering is so slight that 

even randomly chosen points will be subjected to it (and this is one possible interpretation of 

Theorem 1.1).

Smoothing at logarithmic scales.—It is easy to see that for points in [0, 1]d generated 

by a Poisson process with intensity n, local clustering is happening at spatial scale ~ (c log 

(n)/n)1/d. The number of points contained in a ball B with volume |B| ~ c log (n)/n is given 

by a Poisson distribution with parameter λ ~ c log n and satisfies

ℙ(B contains less than l points) (c log n)l
l!

1
nc ≲ 1

nc − ε .

This likelihood is actually quite small, which means that it is quite unlikely to find isolated 

clusters at that scale. In particular, an algorithm as proposed in Theorem 1.2 that picks 

random elements at that scale, will then destroy the nonlinear concentration effect in the k–

nearest-neighbor construction induced by local irregularities of uniform distribution. We 

believe this to be a general principle that should have many applications.

When constructing a graph based on inhomogeneous data, it can be useful to 

connect each point to a random k-size subset of its K nearest neighbors, where k ≪ 
K. Here, K should be chosen at such a scale that localized clustering effects 

disappear.

An important assumption here is that clusters at local scales are not intrinsic but induced by 

unavoidable sampling irregularities. We also emphasize that we believe the best way to 

implement this principle in practice and in applications to be very interesting and far from 

resolved.

We note that our theorem is closely related but does not exactly correspond to this setting. In 

our theorem, each node, on average, is connected to k ~ log log(n) neighbors, whereas in this 

setting each node is connected to exactly k neighbors. In particular, there are no isolated 
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nodes, and hence it likely has improved connectivity over the graph that we study in 

Theorem 1.2. We state the following open problem that is related to Problem 38 of Stanislaw 

Ulam in the Scottish Book.

Question.—If we are given n randomly chosen points in [0, 1]d and connect each vertex to 

exactly c1 log log n of its c2 log n nearest neighbors, is the arising graph connected with high 

probability?

2. Applications

2.1. Implications for Spectral Clustering.

The first step in spectral clustering a set of points x1, …, xn ⊂ ℝd into p clusters involves 

computation of a pairwise affinity kernel w(xi, xj), resulting in an n×n matrix W. The kernel 

is commonly chosen to be a Gaussian with bandwidth σ,

w xi, xj = exp  −‖xi − xj‖2/σ2 .

W defines a graph with n nodes where the weight of the edge between xi and xj is w(xi, xj). 

The normalized symmetric graph Laplacian [40] Lsym is defined as:

Lsym = I − D−1/2W D−1/2,

where D is a diagonal matrix with the sum of each row on the diagonal. The eigenvectors 

{v1, …, vp} corresponding to the p smallest eigenvalues of Lsym are then calculated and 

concatenated into the n×p matrix V. The rows of V are normalized to have unit norm and are 

then clustered into p clusters using the k–means algorithm. Crucially, the multiplicity of 

eigenvalue 0 of Lsym equals the number of connected components of the graph defined by 

Lsym, and the eigenvectors corresponding to eigenvalue 0 span a p–dimensional subspace 

that contains the vectors D1/21j j = 1
p

, where 1j is piecewise constant on the j-th connected 

component. In the case of p well-separated clusters, each connected component corresponds 

to a cluster, and the first p eigenvectors contain the information necessary to separate the 

clusters. In practice, eigenvalues corresponding to distinct clusters in the datasets will have 

eigenvalues close to zero, and even this happens only in the well-separated case.

The computational complexity and memory storage requirements of computing a full 

affinity matrix W scale quadratically with n, typically making computation intractable when 

n exceeds tens of thousands of points. Notably, as the distance between any two points x and 

y increases, w(x, y) decays exponentially. Therefore, W can be approximated by a sparse 

matrix W′, where W ij′ = w xi, xj  if xj is among xi’s k nearest neighbors or xi is among xj’s 

nearest neighbors, and 0 otherwise.

Fast algorithms have been developed to find approximate nearest neighbors (e.g. [13]), 

allowing for efficient computation of W′, and Lanczos methods can be used to efficiently 

compute its eigenvectors. When the number of neighbors, k, is chosen sufficiently large, W′ 
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is a sufficiently accurate approximation of W for most applications. However, when k cannot 

be chosen large enough (e.g. due to memory limitations when n is on the order of millions of 

points), the connectivity of the k–nearest-neighbor graph represented by W′ can be highly 

sensitive to noise, leading W′ to overfit the data and poorly model the overall structure. In 

the extreme case, W′ can lead to a large number of disconnected components within each 

cluster, such that the smallest eigenvectors correspond to each of these disconnected 

components and not the true structure of the data.

On the other hand, choosing a random k–sized subset of K–nearest neighbors, for K > k, 

results in a graph with the same number of edges which is much more likely to be connected 

within each cluster, and hence, allow for spectral clustering (Figure 4). This strategy is a 

more effective “allocation” of the k edges, in the resource limited setting. A naïve 

implementation is to calculate the K-nearest neighbors of every point, and then select a 

random subset of k neighbors to connect to. This does not alleviate the nearest-neighbor 

search time, but has reduced memory requirements. In the following, we refer to this 

approach as the “random near neighbors” or “near” method.

2.2. Potential Implementation

In order to apply this method to large datasets on resource-limited machines, an efficient 

algorithm for finding a k–sized subset for the K nearest neighbors of each point is needed. 

The naïve implementation of the near method is prohibitive for large datasets. Given a 

dataset so large that K nearest neighbors cannot be computed, how can we find k–sized 

random subsets of the K nearest neighbors for each point? Interestingly, this corresponds to 

an “inaccurate” nearest neighbors algorithm, in that the “near” neighbors of each point are 

sought, not the “nearest.” From this perspective, it appears an easier problem than that of 

finding the nearest neighbors. We suggest a simple and fast implementation which we have 

found to be empirically successful (Algorithm 1). Our approach is probabilistic, first we 

perform a random partition of the data into K
k  subsets of equal size. For simplicity we 

assume that the number of data points n is a multiple of K and that K is a multiple of k. 

Then, for each point xi we search for the k nearest neighbors among one of the preallocated 

subsets. Thus, on average k points from the K nearest neighbors in A will be among the 

subset samples. A k-nearest neighbor search will therefore yield k out of the ~ K nearest 

neighbors. We emphasize that the resulting graph is simply an approximation to the graphs 

described in Theorems 1.1 and 1.2, and hence these results do not necessarily apply directly.

Algorithm 1:

Partition method for finding near neighbors

 Input: Dataset A = x1, …, xn ⊂ ℝd, non-negative integers k, K with k < K

 Output: Matrix M of size n × k where Mi1,…, Mik are the indices of a random subset of ~ K nearest neighbors of xi 
∈ A.

1 Let {Bj} be a random partition of A into K/k subsets of size m = kn
K

2 For each xi ∈ A, pick at random one of the subsets Bj and find the k nearest neighbors of xi within the chosen subset.
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We use K/k preallocated subsets since this enables using special data structures to enhance 

the searching speed. For example, our Matlab implementation constructs a Kd-tree on each 

partition and searches for all the neighbors of all points assigned to that partition 

simultaneously. As in [16], where a k-nearest neighbor classifier is constructed using a 

subset of the points, we find that searching a much smaller number of points leads to a 

speed-up of several orders of magnitude (Tables 4 & 5).

2.3. Numerical Results.

As proof of concept, we applied spectral clustering to two large datasets and compared 

quality of the embedding and computational times between the traditional nearest neighbor 

approach (denoted nearest-k), random near neighbors (denoted near-k/K), and the partition 

method described in Algorithm 1 (denoted partition-k/K). For all three approaches the graph 

edges are weighted using the Gaussian kernel from above with an adaptive bandwidth σi 

equal to the point’s squared distance to its kth neighbor. The first dataset is InfiMNIST [20] 

where we chose digits 0, 3, 6, 7, resulting in a dataset of n ~ 3, 271, 995 in a d = 784 

dimensional space. The second dataset is Reuters [29], composed of 645, 564 articles, across 

four root categories in a d = 2000 dimensional space. Note that while InfiMNIST is a 

balanced dataset, in Reuters the largest cluster is two times larger than two of the other 

clusters, and six times larger than the smallest cluster. The full details of the datasets and 

their preprocessing appear in Appendix A). We used the Lanczos iterations as implemented 

in MATLAB’s ‘eigs’ function to compute the first four eigenvectors of the Laplacians for 

InfiMNIST and first 20 for Reuters. For Reuters, we used more eigenvectors than the 

number of expected clusters, as some of the categories are composed of multiple smaller 

clusters, requiring more eigenvectors to reveal the underlying structure of the data.

For the InfiMNIST dataset, we plot the embedding of the datapoints computed with the first 

three eigenvectors of nearest-10, nearest-50 and nearest-100 in the top row and near-2/100 

and partition-2/100 in the bottom row (Figure 5). The first three eigenvectors of nearest-10 

do not separate the digits and for nearest-50 the embedding collapses to a curve with 

multiple outliers, providing a poor visualization of the data, i.e., neither reveals the 

underlying manifold on which the digits lie. Increasing the number of nearest neighbors in 

nearest-100 provides a meaningful embedding. Remarkably, the same quality embedding 

can be obtained with near-2/100 and partition-2/100, despite it being a much sparser graph.

To quantify our results, we perform K-means on the eigenvectors and compare the resulting 

clusters to the true labels. To assess the quality of the clusters we use two different popular 

measures: normalized mutual information (NMI) and unsupervised clustering accuracy 

(ACC). The definition and details of these measures can be found in the Appendix A. 

Results are presented in Tables 2 & 3 (more detailed results across a wider range of k values 

for the near and partition approach appear in Appendix A). We note that results for Reuters 

are comparable to those achieved by SpectralNet in [30], where a deep neural network is 

trained to map datapoints to their corresponding eigenspace of their associated graph 

Laplacian matrix.

We also calculate the subspace angle (principal angle) between the embedding for nearest-K 
vs near-k/K and partition-k/K embeddings for increasing k, where we consider the 
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embedding obtained from nearest-K to be the “ground-truth” embedding. For InfiMNIST, 

the angle between the “ground-truth” embedding and the embeddings of both near-neighbor 

methods is very small, while for nearest-k the angle is practically maximal. For Reuters, the 

subspace angles near-k/K are small and decrease as k increases (see Appendix A). For 

partition-k/K, the angle is large but drops around k = 50 and further decreases as k increases.

To compute these spectral embeddings, there are two computationally intensive steps: 

near(est) neighbor search and computation of the leading eigenvectors of the Laplacian 

(Tables 4 & 5). The Partition method described in Algorithm 1 is 1–2 orders of magnitude 

faster than searching for the number of nearest neighbors necessary to obtain the above 

results. For the second step, the time taken to compute the eigenvectors is mainly determined 

by two factors: (i) the sparseness of the Laplacian matrix, which determines the complexity 

of a single iteration, (ii) the spectrum of the Laplacian matrix, which determines the rate of 

convergence. The near neighbor approach has an obvious advantage over the nearest 

neighbors approach in terms of sparsity of the Laplacian. In terms of its spectral decay, 

however, the comparison depends on the values of k and K. If K is insufficient for a good 

embedding (i.e K = 20 for the InfiMNIST) the convergence is extremely slow. On the other 

hand, if K is sufficient, then the convergence rate improves dramatically and thus might 

require less iterations than the k near neighbor approach. For InfiMNIST, the Partition 

method took only 5 minutes for the near neighbor search and computing the first three 

eigenvectors took 6 minutes (in contrast to many hours for the nearest neighbors approach). 

Similar speed-ups can be seen with the Reuters dataset, where both the near neighbors 

search and eigenvector computation took less than a minute in total (in contrast to longer 

than an hour using the nearest neighbor approach).

2.4. Further outlook.

We demonstrate the application of our approach in the context of spectral clustering but this 

is only one example. There are a great many other methods of dimensionality reduction that 

start by constructing a graph that roughly approximates the data, for example t-distributed 

Stochastic Neighborhood Embedding (t-SNE) [18, 39], diffusion maps [7] or Laplacian 

Eigenmaps [2]. This refinement could be valuable for a very wide range of algorithms that 

construct graph approximations out of underlying point sets – determining the precise 

conditions under which this method is effective for which algorithm will strongly depend on 

the context, but needless to say, we consider the experiments shown in this section to be 

extremely encouraging. We believe this paper suggests many possible directions for future 

research: are there other natural randomized near neighbor constructions? Other questions 

include the behavior of the spectrum and the induced random walk – here we would like to 

briefly point out that random graphs are natural expanders [15, 22, 26]. This should imply 

several additional degrees of stability that the standard k–nearest-neighbor construction does 

not have.
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3. Proof of Theorem 1.2

3.1. The Erdős-Renyi Lemma.

Before embarking on the proof, we describe a short statement. The proof is not subtle and 

follows along completely classical lines but occurs in an unfamiliar regime: we are 

interested in ensuring that the likelihood of obtaining a disconnected graph is very small. 

The subsequent argument, which is not new but not easy to immediately spot in the 

literature, is included for the convenience of the reader (much stronger and more subtle 

results usually focus on the threshold p = (1 ± ε)(log n)/n).

Lemma 3.1. Let G(n, p) an Erdős-Renyi graph with p > 10 log n/n Then, for n sufficiently 
large,

ℙ(G(n, p) is disconnected) ≲ e−pn/3 .

Proof. It suffices to bound the likelihood of finding an isolated set of k vertices from above, 

where 1 ≤ k ≤ n/2. For any fixed set of k vertices of it being isolated is bounded from above 

by

ℙ(fixed set of k vertices being disconnected) ≤ (1 − p)k(n − k)

and thus, using the union bound,

ℙ(G(n, p) is not connected) ≤ ∑
k = 1

n/2 n
k (1 − p)k(n − k) .

We use

n
k ≤ ne

k
k

to rewrite the expression as

∑
k = 1

n/2 n
k (1 − p)k(n − k) ≤ ∑

k = 1

n/2
ek + k log n + k log k + [ log (1 − p)]k(n − k)

≤ ∑
k = 1

n/2
ek(3 log n + [ log (1 − p)](n − k))

# ≤ ∑
k = 1

n/2
ek(3 log n + [ log (1 − p)](n/2))

≲ e3 log n + [ log (1 − p)]n/2,

where the last step is merely the summation of a geometric series and valid as soon as
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3 log n + [log (1 − p)]n
2 < 0,

which is eventually true for n sufficiently large since p > 10 log n/n. □

3.2. A Mini-Percolation Lemma

The purpose of this section is to derive rough bounds for a percolation-type problem. These 

problems have been of great interest in mathematical physics and probability theory (see e.g. 

Penrose & Pisztora [23]). We provide a simple self-contained argument that, while not being 

sharp, results in a simple estimate sufficient for our purpose.

Lemma 3.2. Suppose we are given a grid graph on {1, 2, … , n}d for d ≥ 2 and remove each 
of the nd points with likelihood p = (log n)−c for some c > 0. Then, for n sufficiently large, 
there is a giant component with expected size nd − o(nd).

Proof of Lemma 3.2. The proof is actually fairly lossy and proceeds by massive 

overcounting. The only way to remove mass from the giant block is to remove points in an 

organized manner: adjacent squares have to be removed in a way that encloses a number of 

squares that are not removed (see Fig. 3.2).

The next question is how many other points can possibly be captured by a connected 

component on ℓ–nodes. The isoperimetric principle implies

#blocks captured by l nodes ≲d l
d

d − 1 ≤ l2 .

Altogether, this implies we expect to capture at most

∑
l = 1

nd
nd 23d − 1 l

(log n)−cll2 ≤ nd ∑
l = 1

∞ 23d − 1

(log n)c

l
l2 ≲ nd

(log n)c
,

where the last inequality holds as soon as log nc ≫ 23d − 1 and follows from the derivative 

geometric series

∑
l = 1

∞
l2ql = q(1 + q)

(1 − q)3
   whenever  |q | < 1.

□

Remark. There are two spots where the argument is fairly lossy. First of all, every connected 

component on ℓ nodes is, generically, counted as ℓ connected components of length ℓ − 1, as ~ 

ℓ2 connected components of size ℓ − 2 and so on. The second part of the argument is the 

application of the isoperimetric inequality: a generic connected component on ℓ nodes will 
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capture ≪ ℓ2 other nodes. These problems seem incredibly close to existing research and it 

seems likely that they either have been answered already or that techniques from percolation 

theory might provide rather immediate improvements.

We now show a separate result which we will use later. We will call a subset A ⊂ {1, 2, … , 

n}d connected if the resulting graph is connected: here, edges are given by connecting every 

node to all of its adjacent nodes that differ by at most one in each coordinate (that number is 

bounded from above by 3d − 1).

Lemma 3.3. The number of connected components A in the grid graph over {1, 2, … , n}d 

with cardinality |A| = ℓ is bounded from above

# number of connected components of size l ≤ nd 23d − 1 l
.

Proof. The proof proceeds in a fairly standard way by constructing a combinatorial 

encoding. We show how this is done in two dimensions, giving an upper bound of n2256ℓ – 

the construction immediately transfers to higher dimensions in the obvious way. The 

encoding is given by a direct algorithm.

1. Pick an initial vertex x0 ∈ A. Describe which of the 8 adjacent squares are 

occupied by picking a subset of {1, 2, … , 8}.

2. Implement a depth-first search as follows: pick the smallest number in the set 

attached to x0 and describe its neighbors, if any, that are distinct from previously 

selected nodes as a subset of {1, 2, … , 8}.

3. Repeat until all existing neighbors have been mapped out (the attached set is the 

empty set) and then go back and describe the next branch.

Just for clarification, we quickly show the algorithm in practice. Suppose we are given an 

initial point x0 and the sequence of sets

4, 5 , 3, 4 , , , 5 , 4 , ,

then this uniquely identifies the set showing in Figure 8.

Clearly, this description returns ℓ subsets of {1, … , 8} of which there are 256. Every 

element in A generates exactly one such subset and every connected component can thus be 

described by giving the nd initial points and then a list of ℓ subsets of {1, … , 8}. This 

implies the desired statement; we note that the actual number should be much smaller since 

this way of describing connected components has massive amounts of redundancy and 

overcounting. □

3.3. Outline of the Proof

The proof proceeds in three steps.
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1. Partition the unit cube into smaller cubes such that each small cube has an 

expected number of ~ log n points (and thus, the number of cubes is ~ n/log n). 

Show that the likelihood of a single cube containing significantly more or 

significantly less points is small.

2. Show that graphs within the cube are connected with high probability.

3. Show that there are connections between the cubes that ensure connectivity.

3.4. Step 1.

We start by partitioning [0, 1]d in the canonical manner into axis-parallel cubes having side-

length ~ (c log n/n)1/d for some constant c to be chosen later. There are roughly ~ n/(c log n) 

cubes and they have measure ~ c log (n)/n. We start by bounding the likelihood of a one such 

cube containing ≤ log n/100 points. Clearly, this likelihood can be written as a Bernoulli 

random variables

number of points in cube  = ℬ n, c log n
n .

The Chernoff-Hoeffding theorem [12] implies

ℙ ℬ n, c log n
n ≤ log n

100 ≤ exp −nD log n
100n ‖c log n

n ,

where D is the relative entropy

D(a‖b) = a loga
b + (1 − a) log1 − a

1 − b .

Here, we have, for n large,

D log n
100n‖c log n

n
log n

n c − 1
100 + 1

100log 1
100c .

This implies that for c sufficiently large, we have

ℙ fixed cube has less than log n
100  points ≲c, ε

1
nc − ε

and the union bound implies

ℙ there exists cube that has less than log n
100  points ≲c, ε

1
nc − 1 − ε

The same argument also shows that
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ℙ(exists cube with more than 10c log n points) ≲ 1
nc .

This means we have established the existence of a constant c such that with likelihood 

tending to 1 as n → ∞ (at arbitrary inverse polynomial speed provided c is big enough)

∀ cubes Q           log n
100 ≤ # points in Q ≤ 10c log n .

We henceforth only deal with cases where these inequalities are satisfied for all cubes.

3.5. Step 2.

We now study what happens within a fixed cube Q. The cube is surrounded by at most 3d − 

1 other cubes each of which contains at most 10c log n points. This means that if, for any x 
∈ Q, we compile a list of its 3d10c log n nearest neighbours, we are guaranteed that every 

other element in Q is on that list. Let us suppose that the rule is that each point is connected 

to each of its 3d10c log n–nearest neighbors with likelihood

p = m
3d10c log n

.

Then, Lemma 3.1 implies that for m ≳ 10 log (3d10c log (n)) ~d,c log log n the likelihood of 

obtaining a connected graph strictly within Q is at least (log n)−c. Lemma 3.2 then implies 

the result provided we can ensure that points in cubes connect to their neighboring cubes.

3.6. Step 3.

We now establish that the likelihood of a cube Q having, for every adjacent cube R, a point 

that connects to a point in R is large. The adjacent cube has ~ log n points. The likelihood of 

a fixed point in Q not connecting to any point in R is

≤ 1 −
log n
100

3d10c log n

c log log n

= 1 − 1
3d1000c

c log log n
≲ (log n)−εc, d .

The likelihood that this is indeed true for every point is then bounded from above by

(log n)−εc, dlog n/100 ≲ n−1,

which means, appealing again to the union bound, that this event occurs with a likelihood 

going to 0 as n → ∞. □

Connectedness.—It is not difficult to see that this graph is unlikely to be connected. For 

a fixed vertex v, there are ~ c log n possible other vertices it could connect to and ~ c log n 
other vertices might possibly connect to v. Thus
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ℙ(v is isolated) ≲ 1 −
c2 log log n

log n

c3 log n
≤ e−c2c3 log log n = 1

(log n)c2c3
.

This shows that we can expect at least n(log n)−c2c3 isolated vertices. This also shows that the 

main obstruction to connectedness is the nontrivial likelihood of vertices not forming edges 

to other vertices.
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Appendix A.: Experimental Results

A.1. Data and preprocessing

The first dataset is the MNIST8M dataset generated by InfiMNIST [20], which provides an 

unlimited supply of handwritten digits derived from MNIST using random translations and 

permutations. For simplicity of visualization, we chose digits 0, 3, 6, 7, resulting in a dataset 

of n ~ 3, 271, 995 in a d = 784 dimensional space. The second dataset is Reuters [29], 

composed of 645, 564 articles, across four root categories: corporate/industrial, government/

social, markets, and economics (documents with multiple root categories were removed). 

Each article is represented using tf-idf features on the 2000 most frequently occurring word 

stems, as in [43]. In addition, we removed all points that were exact duplicates. For both 

datasets, we reduced the dimensionality of the samples via the randomized PCA algorithm 

[14] implemented in [17]. All neighbor searches were done in the reduced dimension.

A.2. Clustering measures

Normalized mutual information (NMI) is defined as

NMI(l, c) = I(l; c)
max H(l), H(c) , (1)

where H(c), H(l) denote the entropy of the clustering result c and the true labels l, 
respectively, and I(l; c) denote the mutual information between them. Unsupervised 

clustering accuracy (ACC), is defined as

ACC(l, c) = 1
n max

π ∈ Π ∑
i = 1

n
1 li = π ci , (2)

where Π is the collection of all permutations of {1, … , k}. The optimal permutation π can 

be computed using the Kuhn-Munkres algorithm (Munkres, 1957).
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A.3. Extended simulations

Table 6:

Measures for Infinite MNIST dataset

near partition nearest

k/K 2 /100 5 /100 10 /100 2 /100 5 /100 10 /100 10 20 50 100

subspace 0.050 0.025 0.016 0.063 0.031 0.020 1.564 1.501 1.571 0

NMI 0.967 0.970 0.971 0.962 0.968 0.970 0.386 0.823 0.964 0.971

ACC 0.993 0.993 0.993 0.992 0.993 0.993 0.462 0.744 0.991 0.994

eigs time 254.0 340.4 530.6 350.6 400.4 645.2 2471.7 5836.1 7572.4 3048.6

search time - - - 337.6 913.6 1627.2 2478.3 4644.7 7565.5 10903.2

Table 7:

Measures for Reuters dataset

k 5 10 25 50 100 1000

Subspace angle

Nearest 1.57 1.57 1.57 0.00

Near 0.20 0.14 0.09 0.06 0.04

Partition 1.48 1.47 1.57 0.53 0.23

NMI

Nearest 0.048 0.129 0.158 0.422

Near 0.418 0.420 0.421 0.421 0.422

Partition 0.407 0.411 0.425 0.424 0.423

ACC

Nearest 0.420 0.371 0.417 0.637

Near 0.638 0.638 0.637 0.637 0.637

Partition 0.671 0.673 0.642 0.641 0.639

eigs time

Nearest 643.9 428.9 518.8 2137.0

Near 41.8 58.4 96.2 162.3 268.8

Partition 38.2 60.1 110.6 181.6 315.6

search time

Nearest 1524.5 1394.5 1400.2 1315.0

Partition 14.6 18.6 31.9 56.7 126.4
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Figure 1: 
Random points, every point is connected to its 2–nearest neighbors.
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Figure 2: 
Theorems 1.1 and 1.2 illustrated: 5000 uniformly distributed random points are each 

connected to their 2 nearest neighbors (left) and 2 out of the 4 nearest neighbors, randomly 

selected (right). Connected components are distinguished by color – we observe a giant 

component on the right.
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Figure 3: 
Structured points, every point is connected to its 4 nearest neighbors (some edges lie on top 

of each other); a slight perturbation of the points immediately creates a cluster in the 4–

nearest neighbor graph.
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Figure 4: 
16000 points arranged in 4 clusters and a spiral. We compare connecting every point to its 2 

nearest neighbors (left) and connecting every point to 2 randomly chosen out of its 7 nearest 

neighbors (right). Connected components are colored, the graph on the left has ~ 700 

connected components; the graph on the right consists of the actual 5 clusters.
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Figure 5: 
Datapoints embedding of four digits from the Infinite-MNIST data set computed by the 

sparse graph Laplacian leading eigenvectors. Connecting to k nearest neighbors when k is 

too small leads to catastrophic results (top left and center), while a successful embedding is 

obtained for k = 100. Connecting to 2 randomly chosen out of the 100 nearest neighbors 

points gives a comparable embedding (bottom left), while using far fewer edges. The 

partition method (Algorithm 1) also produces an embedding of equivalent quality (bottom 

right).
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Figure 6: 
Removing tiny squares randomly: this random sample ends up removing a bit more from the 

giant component but is quite unlikely.
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Figure 7: 
Fixing labels for the 8 immediate neighbors.
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Figure 8: 
The starting point followed by generating the connected component described by the 

sequence of sets {4, 5} , {3, 4} , {} , {} , {5} , {4} , {}.
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Table 1:

Monte-Carlo estimates for the value of cd,k (e.g. k = 2 nearest neighbors in [0, 1]2 yield roughly ~ 0.049n 

clusters). Larger values are difficult to obtain via sampling because cd,k decays very rapidly.

k \ d 2 3 4

2 0.049 0.013 0.0061

3 0.0021 0.00032 0.000089

4 0.00011 0.0000089 0.0000014
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Table 2:

Clustering quality metrics (NMI and ACC) for spectral clustering of 4 digits 0,3,6,7 of InfiMNIST (~3.27 

million points) using a k-nearest neighbor graph compared to using the near neighbors and partition 

approaches. Subspace angle between leading eigenvectors of each construction and the leading eigenvectors of 

nearest-100 is also computed.

nearest-k near-k/K partition-k/K

k 10 20 50 100 2/100 2/100

subspace angle 1.564 1.501 1.571 0 0.050 0.063

NMI 0.386 0.823 0.964 0.971 0.967 0.962

ACC 0.462 0.744 0.991 0.994 0.993 0.992
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Table 3:

Quality metrics as in Table 2 for spectral clustering of Reuters (~ 650, 000 points).

nearest-k near-k/K partition-k/K

k 25 50 100 1000 5/1000 5/1000

subspace angle 1.57 1.57 1.57 0.00 0.20 1.48

NMI 0.048 0.129 0.158 0.422 0.418 0.407

ACC 0.420 0.371 0.417 0.637 0.638 0.671

J Appl Probab. Author manuscript; available in PMC 2020 September 09.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

LINDERMAN et al. Page 29

Table 4:

Time taken by neighbor search and computation of leading eigenvectors for the InfiMNIST dataset (~3.27 

million points)

nearest near partition

k 10 20 50 100 2/100 2/100

search time (sec) 2478 4645 7565 10903 - 338

eigs time (sec) 2472 5836 7572 3049 254 351
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Table 5:

Run-time as in Table 4 for the Reuters dataset (~ 650, 000 points)

nearest near partition

k 25 50 100 1000 5/1000 5/1000

search time (sec) 835 942 1124 2084 - 15

eigs time (sec) 644 429 519 2137 42 38
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