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porating quantum mechanical
force field reparameterization at the ligand binding
site for improved drug-target kinetics through
milestoning simulations†

Anupam Anand Ojha, a Lane William Votapka a

and Rommie Elizabeth Amaro *b

Understanding the interaction of ligands with biomolecules is an integral component of drug discovery and

development. Challenges for computing thermodynamic and kinetic quantities for pharmaceutically

relevant receptor–ligand complexes include the size and flexibility of the ligands, large-scale

conformational rearrangements of the receptor, accurate force field parameters, simulation efficiency,

and sufficient sampling associated with rare events. Our recently developed multiscale milestoning

simulation approach, SEEKR2 (Simulation Enabled Estimation of Kinetic Rates v.2), has demonstrated

success in predicting unbinding (koff) kinetics by employing molecular dynamics (MD) simulations in

regions closer to the binding site. The MD region is further subdivided into smaller Voronoi tessellations

to improve the simulation efficiency and parallelization. To date, all MD simulations are run using general

molecular mechanics (MM) force fields. The accuracy of calculations can be further improved by

incorporating quantum mechanical (QM) methods into generating system-specific force fields through

reparameterizing ligand partial charges in the bound state. The force field reparameterization process

modifies the potential energy landscape of the bimolecular complex, enabling a more accurate

representation of the intermolecular interactions and polarization effects at the bound state. We present

QMrebind (Quantum Mechanical force field reparameterization at the receptor–ligand binding site), an

ORCA-based software that facilitates reparameterizing the potential energy function within the phase

space representing the bound state in a receptor–ligand complex. With SEEKR2 koff estimates and

experimentally determined kinetic rates, we compare and interpret the receptor–ligand unbinding

kinetics obtained using the newly reparameterized force fields for model host–guest systems and

HSP90-inhibitor complexes. This method provides an opportunity to achieve higher accuracy in

predicting receptor–ligand koff rate constants.
1 Introduction

Receptor–ligand binding and unbinding is a crucial mechanism
that governs a range of biological processes, including cellular
signaling, enzymatic catalysis, and immunological responses.1–3

The interaction between the ligand and receptor enables cells to
respond to environmental cues, transmit signals, and carry out
essential physiological functions.4–6 A comprehensive
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understanding of the kinetic and thermodynamic properties of
receptor–ligand interactions is essential for designing and
optimizing therapeutic agents acting upon specic protein
targets.7–11 Ligands with a higher residence time (or slow
dissociation rates) tend to remain in the binding pocket of the
receptor for an extended period, leading to prolonged phar-
macological effects. On the other hand, ligands with a lower
residence time (or fast dissociation rates) are less likely to
produce pharmacological effects.12–17 Similarly, the thermody-
namic parameters for receptor–ligand interaction, such as
affinity, provide insights into the specicity and stability of
receptor–ligand binding and unbinding.18–21 A complex inter-
play of kinetic and thermodynamic factors of receptor–ligand
(un)binding determines the duration and strength of interac-
tion between the two entities. Leveraging these factors could aid
the development of novel therapeutics, leading to efficient drug
discovery and development processes.
Chem. Sci., 2023, 14, 13159–13175 | 13159
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With recent advancements in computing power and hard-
ware, molecular dynamics (MD) simulations have emerged as
a powerful tool for studying the kinetics and thermodynamics
of molecular interactions.22,23 Despite such progress, MD
simulations have limitations when studying complex biological
processes, such as protein folding and unfolding,24–26 large
protein conformational rearrangements,27,28 and receptor–
ligand binding and unbinding due to the relatively long time-
scales needed to observe such events.29–31 These phenomena
may occur on a timescale of milliseconds or longer, and it
becomes increasingly difficult for MD simulations to rigorously
characterize such events. Enhanced MD simulations accelerate
the conformational search of the system, thereby allowing rare
events to be observed within a reasonable computational
time.32–34 Enhanced MD simulations can be roughly categorized
into collective variable (CV) free and CV-based approaches. CV-
based approaches include metadynamics,35–37 Markov state
models (MSMs),38–40 variationally enhanced sampling,41–43

weighted ensemble,44–47 and umbrella sampling,48–50 while CV-
free approaches include accelerated molecular dynamics
(aMD),51–53 Gaussian accelerated molecular dynamics
(GaMD),54–56 replica exchange molecular dynamics (REMD),57–59

and selective integrated tempering.60,61

Path sampling methods represent a class of enhanced
sampling approaches that enable comprehensive exploration of
the kinetic properties in biological systems, encompassing
phenomena such as receptor–ligand binding and unbinding,
protein folding and unfolding, and substantial conformational
changes in complex biological systems. The Markovian mile-
stoning with Voronoi tessellations (MMVT) approach in MD
simulations partitions the phase space of the receptor–ligand
complex into distinct regions called “Voronoi cells”.62–64 Inde-
pendent and parallel MD simulations are carried out within
each Voronoi cell, with the ligand incrementally displaced from
the bound state. This approach is implemented in the compu-
tational soware toolkit, Simulation Enabled Estimation of
Kinetic Rates v.2 (SEEKR2),65–69 which is further discussed in
Section 2.2. Estimation of drug-target residence times of phar-
maceutically relevant biomolecular complexes remains difficult
for MD-based approaches. However, SEEKR2 has recently suc-
ceeded in estimating close-to-experiment residence times for
JAK2/STAT5 axis inhibitors with extended residence times
(hours or longer) within the target.69,70

Enhanced MD simulations can be robust methods for
investigating complex molecular systems. However, signicant
challenges are oen encountered while predicting the kinetics
and thermodynamics of receptor–ligand (un)binding. One such
challenge is accurately representing non-covalent interactions
at the binding site. While general force elds describe the
potential energy landscape across a broad range of biomolec-
ular congurations, incorporating quantummechanics (QM) to
tune the force eld parameters can precisely describe non-
covalent interactions at the binding site for the conformations
examined with QM. Our approach focuses on reparameterizing
the potential energy landscape of the receptor–ligand complex
within the bound state conformation.
13160 | Chem. Sci., 2023, 14, 13159–13175
Despite the effectiveness of classical force elds in success-
fully replicating equilibrium properties and binding affinities,
MD simulations face challenges in accurately predicting kinetic
parameters.71,72 Recent investigations have extensively explored
this issue, revealing noteworthy disparities between simulation
results and experimental data and underscoring the growing
realization that classical force elds might need to better
capture the complexity of dynamics at transition states.73,74

Consequently, two promising avenues for improvement have
surfaced. The rst involves adopting polarizable force elds,
a paradigm shi from traditional xed-charge models.75–77

Secondly, quantum mechanics/molecular mechanics (QM/MM)
simulations show promise to enhance rate prediction accu-
racy.77,78 In QM/MM simulations, specic regions (such as the
ligand and binding site) are treated at the quantum mechanical
level, allowing for precisely describing electronic properties
during molecular events. These simulations have demonstrated
their potential in modeling the complex kinetics of binding and
unbinding processes.79–82 Furthermore, ongoing research efforts
aim to rene parametrization strategies for classical force elds,
integrating kinetic information and addressing polarization
issues within xed-charge schemes.83–85

In this study, we aim to recalibrate the charges of the ligand
within the vicinity of its neighboring residues in the binding
site, thereby facilitating an accurate representation of interac-
tions between the drug and the target. Subsequently, the QM-
enhanced force eld parameters are employed in the SEEKR2
simulations to determine the unbinding kinetics of receptor–
ligand complexes.
2 Methods
2.1 Quantum mechanical force eld reparameterization at
the receptor–ligand binding site (QMrebind)

For computing kinetic and thermodynamic properties for
receptor–ligand complexes, we have employed different theo-
retical frameworks to model certain regions of the biomolecular
complex under study. Specically, we applied a higher level of
theory (i.e., high-level QM and low-level QM2) to model the
active site of the complex and obtain optimized point charges of
the ligand, while utilizing classical mechanics to model the
remaining protein (Fig. 1). This multiscale approach allows for
a more precise and efficient representation of the molecular
system within the bound state, which may improve accuracy
when modeling the binding and unbinding process. ORCA,
a versatile quantum chemistry package that offers a wide range
of electronic structure methods, enables the application of
different theoretical frameworks for different regions of
a molecular system.86–88 In its latest release, i.e., ORCA 5.0, new
features include the three-layered (QM-QM2-MM) ONIOM
method with electrostatic and mechanical embedding, covalent
bond boundary denitions between the QM and QM2 regions,
and automated detection of system topologies with link
atoms.89–91 QMrebind integrates the ORCA QM engine for rep-
arameterizing force eld parameters for receptor–ligand
complexes.
© 2023 The Author(s). Published by the Royal Society of Chemistry



Fig. 1 Partition of the receptor–ligand complex (Hsp90-ligand 9
complex) into the QM region comprising the ligand (red), the QM2
region comprising the residues surrounding the ligand within a cut-off
distance of 5.0 Å (yellow), and the MM region (cyan).
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The QMrebind method involves several steps to calculate the
charges of the ligand at its binding site (see QMrebind
protocol). Initially, a protein data bank (PDB) le of the
receptor–ligand complex and its topology le are provided as
inputs to the QMrebind soware. The user denes a distance
cut-off value, which delineates a region of receptor atoms
QMrebind protocol

(1) Initialization
� A structure (PDB) and topology le for the receptor–ligand complex with the l
� The receptor-ligand complex is locally minimized (if not already minimized).
� A user-dened distance cut-off value is dened to identify the receptor region
(2) Dene QM, QM2, and MM regions within the multiscale ONIOM method
� The ligand at the binding site is dened as the high-level QM region within th
� Residues surrounding the ligand containing any atoms within the cut-off dist
� All protein residues except those within the QM2 region are dened as the MM
(3) Assign theories and methods to QM–QM2–MM regions
� An appropriate electronic structure method (HF, DFT, MP2, etc.) and corres
quantum behavior of the system.
� A semi-empirical tight-binding method (GFN-XTB/GFN2-XTB) is assigned for t
� The MM region is treated with the generic force eld provided in the original
(4) Dene QM–QM2 and (QM–QM2)–MM interactions
� An additive scheme is employed to model (QM–QM2)–MM interactions, treati
� A subtractive scheme is employed to model QM–QM2 interaction, subtracting
� Electrostatic embedding is employed for QM–QM2 interactions, wherein the hig
region.
(5) Employ QM–QM2–MM calculations and charge-tting schemes
� QMrebind interfaces with ORCA to execute QM–QM2–MM calculations.
� A self-consistent eld (SCF) electronic structure calculation is performed for t
� Geometry-basis wavefunction (GBW) and the SCF electron density les are sav
� Charge-tting methods are employed (CHELPG in this study, although Hirsh
distribution information to calculate charges for the ligand.
(6) Integration of newly obtained ligand charges into a copy of the original para
� Partial charges of the ligand are replaced in a copy of the original topology l
� Tests are conducted using the OpenMM engine to validate the correctness of
� Aer successful validation, the reparameterized receptor–ligand topology le

© 2023 The Author(s). Published by the Royal Society of Chemistry
encompassing the ligand within the cut-off distance, typically
including only the residues in the binding site. Once the
binding site is identied, the ligand is dened as the high-level
QM region of the ONIOM method. Residues surrounding the
ligand, containing any atom within the cut-off distance, are
classied as the low-level QM2 region of the ONIOM method
(Fig. 1). All the remaining residues of the receptor comprise the
MM region. For the QM region, electronic structure methods
such as the Hartree–Fock (HF), density functional theory (DFT),
second-order Møller–Plesset perturbation (MP2), and coupled-
cluster (CC) theories may be employed.92–94 A semi-empirical
tight-binding method, GFN-XTB or GFN2-XTB, is employed in
the QM2 region.95,96 The GFN2-XTB method accelerates the
calculations of noncovalent interaction energies for complex
molecular systems by accounting for anisotropic second-order
density uctuation effects.97,98

Two schemes are employed, i.e., subtractive and additive,90,99

to account for interactions between the QM, QM2, and MM
regions. Let the three regions in the receptor–ligand complex be
dened as the high-level QM region (H), the low-level QM region
(M), and the MM region (L). The QM and QM2 regions employ
a subtractive scheme, where the QM–QM2 interaction is calcu-
lated by subtracting the contribution of the QM2 region from
the total QM–QM2 interaction to ensure the accuracy of the
calculations. In a subtractive scheme, three separate energy
calculations are performed, i.e., QM calculation for the high
layer, (EQMH ), QM2 calculation for the high and medium layer
(EQM2

HM ), and a QM2 calculation for the high layer (EQM2
H ). The

total energy for the subtractive scheme, EsubQM–QM2, is given by:
igand at its binding site is provided as an input.

(low-level QM2) surrounding the ligand (high-level QM).

e three-layered multiscale ONIOM method.
ance are dened as low-level QM2 region within the ONIOM method.

region.

ponding basis set for the high-level QM region are assigned to describe the

he QM2 region.
topology le.

ng these regions as independent entities.
the contribution of the QM2 region from the total QM–QM2 interaction.
h-level QM region interacts with the atomic point charges of the low-level QM2

he QM–QM2–MM system.
ed post-SCF convergence.
feld, Löwdin, etc. are available in QMrebind) that utilize the electron density

meter/topology le
e with the newly obtained QM charges.
the reparameterized topology le.
can be used in SEEKR2 milestoning simulations.
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Esub
QM–QM2 = EQM

H + EQM2
HM − EQM2

H (1)

An additive scheme models the (QM–QM2)–MM interaction.
This scheme assumes the QM–QM2 and MM regions to be
independent, and simple pairwise potentials describe their
interactions. In an additive scheme, two energy calculations are
performed, i.e., a subtractive QM–QM2 calculation for the QM–

QM2 region (EsubQM–QM2) and a MM calculation, EMM
L–HM. The total

energy for the additive scheme, Eadd(QM–QM2)–MM, is given by:

Eadd
(QM–QM2)–MM = Esub

QM–QM2 + EMM
L–HM (2)

EMM
L–HM is dened as the sum of MM energy of the MM region

(EMM
L ) and the (QM–QM2)–MM interface energy

(E(QM–QM2)–MM
L–HM ) and is given by:

EMM
L–HM = EMM

L + E(QM–QM2)–MM
L–HM (3)

Upon substituting the value of EsubQM–QM2 and EMM
L–HM in eqn (2),

we get:

Eadd
(QM–QM2)–MM = EQM

H + EQM2
HM − EQM2

H

+ EMM
L + E(QM–QM2)–MM

L–HM (4)

In subtractive QM–QM2 calculations, a high-level QM region
interacts with a low-level QM2 region treated with the GFN-XTB/
GFN2-XTB method. Since the QM2 method, i.e., GFN-XTB/
GFN2-XTB, an extended semiempirical tight-binding model, is
polarizable, the interaction with the high-level QM region is
more accurate.100 The GFN-XTB method accounts for aniso-
tropic second-order density uctuation effects, allowing the
QM2 region to adjust its electron density dynamically in
response to external perturbations (electron distribution) in the
QM region,95,101 allowing for a more realistic description of
charge redistribution and electronic polarization during inter-
actions between the high-level QM and low-level QM2 regions.
Consequently, subtractive QM–QM2 methods, compared to
additive methods, improve accuracy in energy calculations,
geometry optimization, and interaction energies by accurately
treating electron density differences.

By default, unless specied, ONIOM calculations in the
ORCA engine employ the electrostatic embedding scheme,
where the high-level QM region interacts with the atomic point
charges of the low-level QM2 region. In the electrostatic
embedding scheme, partial charges of QM2 atoms are incor-
porated directly into the Hamiltonian of the QM region, i.e.,
electrostatic interactions between the QM and QM2 regions are
explicitly considered at the QM level. These point charges are
determined based on a full system low-level (QM2) calculation,
ensuring that they accurately represent the charge distribution
of the QM2 atoms.

Different charge schemes implemented into the ORCA QM
engine are available to calculate the charges of the ligand at the
binding site, including the CHELPG (CHarge-Extra Loop and
Gaussian Potentials), Hirshfeld, Löwdin, and Mulliken pop-
ulation analysis. The CHELPG algorithm was used exclusively in
this study and involves tting atomic charges to reproduce the
molecular electrostatic potential at a set of grid points
13162 | Chem. Sci., 2023, 14, 13159–13175
surrounding the molecule,102 subject to the constraint that the
sum of charges of all the atoms equals the overall charge of the
molecule. Other charge analysis schemes, such as the Hirsh-
feld, Mulliken and Löwdin population analysis, can also be
employed within the framework. The CHELPG method is
chosen for reparameterizing ligand charges for the two sets of
receptor–ligand complexes in the present study due to its reli-
ability in reproducing molecular electrostatic potentials (ESP).
However, as discussed previously, other charge schemes could
also be employed for ligand charge parameterization at the
binding site. A self-consistent eld (SCF) electronic structure
calculation is performed for the QM–QM2–MM system to nd
the electronic wave function that minimizes the electronic
energy of the system, accounting for the interactions between
the QM and MM regions. Once the SCF calculation converges,
necessary output les, including the geometry-basis wave-
function (GBW) and the SCF electron density le, are saved.
These les contain information about the molecular structure,
electronic structure, and electron density distribution. The
CHELPG scheme then calculates the ESP using the data from
the GBW and electron density les. It performs a charge tting
procedure to assign atomic charges to each atom in the mole-
cule to best reproduce the calculated ESP at a set of grid points
surrounding the molecule. These charges represent the electron
density distribution within the molecule based on the electro-
static potential.

As a part of the QMrebind protocol, solvent molecules are
not included in the charge calculation at the MM level.
Numerous charge derivation methodologies in MD simulations
exclude water or other solvent molecules,84,103,104 ensuring that
derived charges are indicative of the inherent electronic prop-
erties of the system without being inuenced by a liquid-phase,
transient, high dielectric medium in its surroundings. More-
over, introducing water molecules into a charge calculation
involves consideration of numerous complexities, such as
selecting the number of water molecules, their respective
orientations, and relative positions, which may introduce
accounting for several parameters at once. It should also be
noted that such decisions are made on a case-by-case basis and
could introduce unnecessary degrees of arbitrariness in repar-
ameterization processes. QMrebind automates the process of
interfacing with the QM–QM2–MM multiscale calculation
functionality within the ORCA simulation engine. Upon
completion of the calculation, newly obtained QM charges for
the ligand replace the charges in the initial topology le. Finally,
a preliminary MD simulation is run to ensure the correctness of
the reparameterized topology le. At this point, the reparame-
terized system is ready to be simulated with SEEKR2.
2.2 Simulation enabled estimation of kinetic rates v.2
(SEEKR2)

2.2.1 Background and theory. Simulation Enabled Esti-
mation of Kinetic Rates v.2 (SEEKR2) is an open-source soware
that estimates the kinetics (kon and koff) and thermodynamics
(DG) of molecular processes, most especially receptor–ligand
binding and unbinding.65–69,105 The SEEKR2 program has been
© 2023 The Author(s). Published by the Royal Society of Chemistry
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validated to accurately compute the kinetic and thermodynamic
properties of receptor–ligand (un)binding processes in model
host–guest systems and the trypsin-benzamidine
complex.66,67,106 In addition, SEEKR2 has demonstrated the
ability to successfully predict the residence times of more
complex receptor–ligand systems with extended drug-target
residence times, such as the Janus kinase 2 (JAK2) and JAK3
inhibitors, and rank-order them in accordance with their
respective residence times.69

In the SEEKR2 algorithm, the phase space of the receptor–
ligand complex is partitioned into two distinct regions based on
the distance between the ligand and the binding site of the
receptor, i.e., the MD region and the Brownian dynamics (BD)
region (Fig. 2). SEEKR2 employs the OpenMM engine to run the
MD simulations107,108 and the Browndye2 engine to run the BD
simulations.109 The MD region is in close proximity to the
binding site, where solvent effects and molecular exibility
predominantly mediate the receptor–ligand interactions.
Consequently, fully atomistic MD simulations are required in
this region to represent the molecular interactions accurately. A
Voronoi tessellation approach partitions a given region into
multiple smaller regions based on the proximity to a set of
anchor points.110,111 In a Voronoi diagram, the boundaries of the
cells corresponding to an anchor point are equidistant to
adjacent anchor points, and the vicinity corresponding to the
given anchor point is closer to that point than any other input
point (Fig. 3a). Fig. 3b illustrates a Voronoi diagram for a simple
Muller potential system transitioning between states A and B
using a CV that follows a likely reaction pathway between states
Fig. 2 Graphical representation of the partition of the phase-space of
the receptor (grey)–ligand (yellow) complex into the MD region
(further partitioned into Voronoi cells) and the BD region. Voronoi cells
are defined based on the CV, which is determined by the distance
between the COMof the inhibitor and the COMof the a-carbon atoms
of the residues at the binding site.

© 2023 The Author(s). Published by the Royal Society of Chemistry
A and B. The CV is segmented into anchor points. Milestones
are dened as surfaces that are equidistant between two adja-
cent anchor points. The spaces between milestones constitute
the Voronoi cells. A Voronoi cell around a particular anchor
point is the region in conguration space where every point
within this cell is closer to that anchor point than any other.
With the SEEKR approach on a biologically relevant receptor–
ligand system, the MD region is partitioned into “Voronoi cells”
based on the distance between the center of mass (COM) of the
ligand and the COM of the alpha-carbon (a-C) atoms of the
binding site residues of the receptor. Each Voronoi cell contains
a copy of the system where the ligand is at varying distances
from the binding site of the receptor, where independent MD
simulations are carried out. To generate starting structures of
the receptor–ligand complex in each Voronoi cell, steered
molecular dynamics (SMD) simulations are propagated that
facilitate the controlled movement of the ligand away from its
binding site and into the solvent. This process involves gradu-
ally pulling the ligand out of the binding pocket with a moving
harmonic restraint while maintaining the system in equilib-
rium and adding no signicant stress. Each time the ligand
crosses a milestone, a snapshot of the receptor–ligand complex
is saved as a starting structure for that particular Voronoi cell
for running SEEKR2 simulations. MD simulations with the
Markovianmilestoning scheme are then employed concurrently
within individual Voronoi cells until convergence is
reached.64,112 Reective boundary conditions are implemented
to conne the molecular trajectories within each cell. The mean
free passage time (MFPT) is then calculated from the transition
matrix, Q̂ obtained from the MMVT-SEEKR2 simulations.
Section 2.2.2 provides a comprehensive set of equations
employed in the calculation of mean free passage time (MFPT)
and the binding free energy prole (DGi) in the context of
SEEKR2 simulations.

2.2.2 Equations employed in the MMVT-SEEKR2 simula-
tion approach. The SEEKR2 algorithm employs a series of
equations to calculate the MFPT and DGi. Let the phase space of
a bimolecular complex be divided into N milestones, and Q is
the N by N transition rate matrix represented by eqn (5).

Q ¼

0
BBBBB@

q1;1 q1;2 / q1;N
q2;1 q2;2 / q2;N
« « ⋱ «

qN;1 qN;2 / qN;N

1
CCCCCA (5)

qii and qij are the diagonal and off-diagonal elements,
respectively, of the transition matrix, Q, Nij represents the
number of transitions between the ith and jth milestone, and Ri
is the time spent by a long-timescale trajectory having last
touched the ith milestone, then qii and qij are represented by
eqn (6) and (7) respectively.

qii ¼ �
X
jsi

qij (6)
Chem. Sci., 2023, 14, 13159–13175 | 13163



Fig. 3 (a) An example of the two-dimensional Voronoi diagram generated from a random set of input points illustrating the spatial decom-
position based on proximity to a given set of anchor points. Each input point represents an anchor point, and the enclosed region around the
point is a Voronoi cell, which is the set of all locations closer to that anchor point than any other. The edges of the Voronoi cell indicate the
boundary where any two neighboring sites are equidistant. (b) A simple Muller potential systemwith an energy barrier between equilibrium states
A and B. A collective variable is defined as a series of line segments following a likely reaction pathway along the transition from state A to state B.
Specific anchor points on this distance variable form a two-dimensional Voronoi tessellation. After determining the anchor points, milestones are
placed equidistant between them. The space between milestones defines each Voronoi cell.
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qij ¼

8><
>:

Nij

Ri

if Ris0

0 if Ri ¼ 0

(7)

Let xa and va be the position and velocity of an MMVT
trajectory, at any time, t, in the Voronoi cell, Va. The variables x*a
and v*a are the position and velocity of the trajectory at time, t +
Dt, as predicted by the simulation time integrator algorithm
(typically, the Langevin integrator). Reective boundary condi-
tions are employed to keep the trajectories within each Voronoi
cell, as represented by eqn (8) and (9), respectively.

xaðtþ DtÞ ¼
(
x*
a if x*

a˛Va

xaðtÞ otherwise
(8)

vaðtþ DtÞ ¼
(
v*a if x*

a˛Va

�vaðtÞ otherwise
(9)

Let pa be the probability of an ensemble of unconstrained
long-timescale trajectories being in a particular Voronoi cell
when the system has reached equilibrium. For Voronoi cell Va,
let Ta be the total simulation time in that cell. A normalizing
factor, T, is given by eqn (10).

T ¼
 Xn

a¼1

pa

Ta

!�1

(10)

Let Nij
a be the number of collisions during the MMVT

trajectories with the ith milestone having last touched the jth
milestone in Va, then the total number of transitions between
the ith and jth milestones, Nij is given by eqn (11).
13164 | Chem. Sci., 2023, 14, 13159–13175
Nij ¼ T
Xn
a¼1

pa

Nij
a

Ta

(11)

Let Ri
a be the simulation time in Voronoi cell Va, having last

touched the ith milestone. The time spent by the trajectory
having last touched the ith milestone, Ri is given by eqn (12).

Ri ¼ T
Xn
a¼1

pa

Ri
a

Ta

(12)

Let Na,b be the number of MMVT trajectory collisions in
Voronoi cell Va against its boundary with Voronoi cell Vb, and
Nb,a be the number of collisions in Voronoi cell Vb against its
boundary with Voronoi cell Va. The equations to compute pa are
to be found in eqn (13) and (14).

Xn
b¼1;bsa

pb

Nb;a

Tb

¼
Xn

b¼1;bsa

pa

Na;b

Ta

(13)

Xn
a¼1

pa ¼ 1 (14)

Let Q̂ be the N-1 by N-1 matrix obtained from the upper le
corner of Q, and 1 is a vector of ones, the mean free passage
times from all states, TN is obtained by solving eqn (15).

Q̂TN = −1 (15)

Stationary probabilities of the milestones, p are obtained
from solving eqn (16).

Qp = p (16)
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Let R be the gas constant, T be the temperature, pi and pref be
the stationary probabilities of the ith and (arbitrary) reference
milestone, respectively. The free energy prole of the ith mile-
stone, DGi is given by eqn (17).

DGi ¼ �RT ln

 
pi

pref

!
(17)
2.3 Applications to receptor–ligand complexes

2.3.1 Host–guest complexes. b-Cyclodextrin (host) is
a cyclic oligosaccharide characterized by a toroidal shape
formed by seven glucopyranose units linked by a-1,4 glycosidic
bonds.113 This macrocyclic molecule possesses a hydrophobic
cavity in its central core, which can effectively encapsulate one
of the ligand (guest) molecules of suitable size and shape, thus
stabilizing their molecular structures and altering their physi-
cochemical properties. These properties make b-cyclodextrin an
ideal model system for studying host–guest interactions using
novel approaches. The shape, size, and functional groups of the
guest molecules affect their binding to the host cavity. Addi-
tionally, these ligands have different binding affinities for the
host, allowing it to rank-order them according to their
unbinding (koff) rates. The host with seven different ligands,
including alcohols (1-butanol, 1-naphtylethanol, 2-naph-
tylethanol, 1-propanol, and tert-butanol) and esters (aspirin and
methyl-butyrate) served as model receptor–ligand complexes for
evaluating the effectiveness of the reparameterized force eld
parameters of the receptor–ligand complexes in the SEEKR2
algorithm (Fig. 4). Receptor–ligand unbinding rates are calcu-
lated using the QMrebind + SEEKR2 algorithm and compared
Fig. 4 Structures of b-cyclodextrin and the seven ligands.

© 2023 The Author(s). Published by the Royal Society of Chemistry
against the previously performed SEEKR2 simulations, without
QMrebind reparameterization, and experimentally determined
unbinding koff rates.

2.3.1.1 System preparation and simulation. The host mole-
cule is initially parameterized using the q4md-CD force eld,114

while the guest ligands are parameterized using the general
Amber force eld (GAFF).115 q4md-CD force eld has been
designed to accurately represent the geometrical, structural,
dynamical, and hydrogen bonding aspects of heterogeneous
cyclodextrin-based systems.114 q4md-CD force eld incorporates
geometrical parameters from the Amber99SB force eld to
describe protein residues and GLYCAM04 for carbohydrate and
organic components (if available). Partial atomic charges are
derived using the R.E.D. tools,116 while scaling factors of 1.2 and
2.0 are imposed for the 1–4 electrostatic and 1–4 van der Waals
interactions, respectively. The q4md-CD force eld has
demonstrated better agreement with experimental ndings
compared to GAFF for cyclodextrin molecules.117,118

Subsequently, the complexes are solvated with the TIP3P
water model and subjected to a non-bonded cut-off distance of 9
Å, and long-range electrostatic interactions were treated with
the particle mesh Ewald (PME) method.119,120 The relatively
smaller size of the host–guest complexes necessitates the divi-
sion into two regions. We treated the ligandmolecules quantum
mechanically using the Becke-3-parameter-Lee–Yang–Parr
(B3LYP) functional,121 and correlation consistent polarized
valence triple zeta (cc-pVTZ)122 basis set in the QM region. The
host molecule is assigned the QM2 region where the semi-
empirical tight-binding method (GFN2-XTB) is employed. For
each of the host–guest complexes, 14 CV-based milestones are
dened as concentric spheres and are located at distances of
1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0,
and 14.0 Å respectively from the center of mass (COM) of the
host. Starting structures for the SEEKR2 simulations are ob-
tained using the steered molecular dynamics (SMD) simula-
tions, where a moving harmonic restraint of 50 000 kJ mol−1

nm−2 is applied over the course of 50 ns. Identical CV deni-
tions and milestone spacings have been implemented in the
current study as in the previous SEEKR2 implementation,67

facilitating a comparison between the two methodologies.
SEEKR2 simulations with the QMrebind-reparameterized

force eld parameters are run with same milestone spacings
for all the complexes. A total of 50 ns of MD simulations are run
within each Voronoi cell, totaling a simulation time of 700 ns
for 14 Voronoi cells. To obtain statistically meaningful results
and assess the reproducibility and robustness of the simula-
tions, three replicas of SEEKR2 simulations are performed for
each complex, totaling a simulation time of 2.1 ms. Experi-
mental values for the unbinding rates for the seven host–guest
complexes, along with the koff rates estimated by the SEEKR2
framework, with the QMrebind-reparameterized and generic
force eld parameters, are provided in ESI Table S1.†

2.3.2 Hsp90-inhibitor complexes. Heat shock protein 90
(Hsp90) is an ATP-dependent molecular chaperone protein that
plays a vital role in maintaining the conformational integrity
and stability of its client proteins.123–127 Inhibition of Hsp90 can
lead to the degradation of its client proteins, many of which are
Chem. Sci., 2023, 14, 13159–13175 | 13165
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important oncogenic drivers, making it an attractive target for
drug discovery. The N-terminal domain of Hsp90 (N-Hsp90)
binds to ATP and co-chaperones, which are essential for regu-
lating its activity.128,129 By inhibiting the ATPase function of the
human N-Hsp90 using ATPase inhibitors, its chaperone activity
can be disrupted, which causes the client proteins to degrade
and reduce tumor growth. This approach is being investigated
as a potential cancer therapy, and several ATPase inhibitors
have been developed for this purpose.130–132

N-Hsp90-inhibitor complexes pose challenges for MD
simulations in a variety of ways. The binding and unbinding
mechanism of N-Hsp90-inhibitor complexes is complicated
and dynamic, involving multiple conformational states and
high exibility of the ATP binding site.133–135 These confor-
mational changes may occur on timescales beyond the reach
of current MD simulations, making it challenging to capture
the entire binding/unbinding process accurately. Moreover,
such (un)binding events typically involve long timescales, and
MD simulations must be run for extended periods, oen on
the order of microseconds or milliseconds.30,136,137 Addition-
ally, modeling the interactions between inhibitors and the
binding site requires considering various factors, such as
polarization at the bound state, complex receptor–ligand
binding dynamics, choice of appropriate CVs, and initial
starting states. To address such challenges, dividing the
conformational space of the receptor–ligand complex into
a series of discrete milestones implemented in SEEKR2 and an
accurate representation of the non-covalent inhibitor–receptor
interactions at the binding site through the QMrebind scheme
Fig. 5 Structure of the Hsp90-ligand complexes (Hsp90-ligand 1 comple
the 17 inhibitors examined in this study. The inhibitors are further classifi
aminoquinazoline, aminopyrrolopyrimidine, and 2-aminopyramidine, ba
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allows for accurate and efficient sampling of rare events and
a greater exploration the conformational space of the
receptor–ligand complex.

s-Random acceleration molecular dynamics (sRAMD) is an
enhanced sampling computational approach for exploring
relevant biomolecular pathways and ranking drug candidates
by estimated mean rst passage times (MFPT).138 Recently,
sRAMD has been used to observe the ligand unbinding pathway
for a series of 70 N-Hsp90 inhibitors and ranked them accord-
ing to their relative residence times. N-Hsp90 protein has been
shown to acquire different conformations, namely the loop and
the helix conformations.139 In the loop conformation, inhibitors
bind solely to the ATP binding site, while in the helix confor-
mation, inhibitors additionally occupy a hydrophobic transient
subpocket situated between a-helix3 and the beta-strands,
thereby stabilizing the a-helix3 domain (Fig. 5). This study
chooses a subset of 17 inhibitors representing signicant
diversity in molecular scaffold among 70 inhibitors (Table 1).
These inhibitors possess varying residence times within the
protein, bind to either the loop or the helix conformation of the
protein, and are classied into different groups, including
resorcinol, hydroxy-indazole, benzamide, aminoquinazoline,
aminopyrrolopyrimidine, and 2-aminopyramidine, based on
their structural diversity, scaffold, and chemical motifs (Fig. 5).
Absolute unbinding kinetics (koff) for eight of the 17 are calcu-
lated using the original force eld parameters input directly
into SEEKR2 and the QMrebind + SEEKR2 approach and are
compared against the experimental values. PDB and topology
les for the Hsp90-inhibitor complexes are obtained from the
x, a loop binder, and the Hsp90-ligand 22 complex, a helix binder) and
ed into six groups, namely, resorcinol, hydroxy-indazole, benzamide,
sed on their structural diversity, scaffold, and chemical motifs.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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original study.138 In the same study, ligands were parameterized
using the Antechamber program, and electrostatic potentials
derived from ab initio calculations were employed to t the
restrained electrostatic potential (RESP) atomic partial
charges140–142 at the HF level with a 6-31G*(1d) basis set. While
the general Amber force eld (GAFF) was applied to the ligands
for all non-charge parameters, the protein was parameterized
with the Amber14 force eld.115,143

2.3.2.1 System preparation and simulation. PDB and topology
les for the Hsp90-ligand complexes are obtained from the
original study.138 Before initiating the QMrebind reparameteri-
zation process, structure les are subjected to energy minimi-
zation (using only MM) to ensure the stability and optimal
conformation of the receptor–ligand complexes. In the repar-
ameterization process, the Hsp90-inhibitor complexes are par-
titioned into three regions, the high-level QM region, the low-
level QM2 region, and the MM region. The inhibitors
comprise the QM region, where second-order Møller–Plesset
perturbation (MP2) theory is implemented with the cc-pVTZ
basis set. The binding site residues having any atoms within
a cut-off distance of 5 Å comprise the QM2 region, where the
semi-empirical tight-binding method, GFN2-XTB, is employed
(refer to ESI Table S2† for an exhaustive list of binding site
residues for Hsp90-inhibitor complexes). The rest of the protein
comprises the MM region. CVs are dened based on the
distance between the COM of the inhibitor and the a-carbon
atoms of the residues at the binding site. For each of the Hsp90-
inhibitor complexes, 20 CV-based milestones are dened as
concentric spheres and are located at distances of 1.00, 1.50,
2.125, 2.875, 3.625, 4.375, 5.125, 5.875, 6.625, 7.375, 8.125,
8.875, 9.625, 10.50, 11.50, 12.50, 13.50, 14.50, 15.50, and 16.50 Å
respectively from the COM of the a-C atoms of the binding site
residues of the receptor. Starting structures for SEEKR2 simu-
lations are obtained using the SMD simulations, where
a moving harmonic restraint of 30 000 kJ mol−1 nm−2 is applied
Table 1 Categorizing Hsp90 inhibitors into different functional groups
and their binding to specific conformations of the Hsp90 protein

Hsp90-inhibitor
complex Inhibitor group

Binding
conformation

Hsp90-ligand 1 Resorcinol Loop
Hsp90-ligand 2 Resorcinol Loop
Hsp90-ligand 3 Resorcinol Loop
Hsp90-ligand 4 Resorcinol Loop
Hsp90-ligand 8 Resorcinol Loop
Hsp90-ligand 9 Hydroxy-indazole Loop
Hsp90-ligand 10 Resorcinol Helix
Hsp90-ligand 22 Benzamide Helix
Hsp90-ligand 31 Resorcinol Helix
Hsp90-ligand 37 Hydroxy-indazole Helix
Hsp90-ligand 43 Hydroxy-indazole Helix
Hsp90-ligand 58 Aminoquinazoline Helix
Hsp90-ligand 59 Aminoquinazoline Helix
Hsp90-ligand 62 Aminoquinazoline Helix
Hsp90-ligand 65 Aminoquinazoline Helix
Hsp90-ligand 67 Aminopyrralopyrimidine Helix
Hsp90-ligand 70 2-Aminopyramidine Helix

© 2023 The Author(s). Published by the Royal Society of Chemistry
over the course of 100 ns. A single set of SEEKR2 simulations
with the reparameterized and generic force eld parameters are
run with the same milestone spacings for all the complexes. A
total of 400 ns of MD simulations are run within each Voronoi
cell, totaling a simulation time of 8 ms for 20 Voronoi cells. For
a subset of eight of the Hsp90 inhibitors, the performance of
QMrebind + SEEKR2 simulations is evaluated by comparing it
with SEEKR2 simulations with generic force elds with the
same simulation time, milestone spacings, and collective vari-
able denitions for each of the Hsp90-inhibitor complexes.
3 Results and discussion
3.1 Host–guest complexes

The SEEKR2 and QMrebind + SEEKR2 methods reproduce the
rank ordering for receptor–ligand unbinding rates for the seven
host–guest complexes (Fig. 6). However, improved accuracies in
estimating koff rates for the host–guest complexes are achieved
with the QMrebind + SEEKR2 approach. SEEKR2 simulations
with the generic force eld tend to slightly overestimate the koff
values for all host–guest complexes, while QMrebind helps to
correct this overestimation, resulting in koff rates that are in
closer agreement with experimental measurements (Fig. 6).
Additionally, comparable convergences of koff rates for QMre-
bind + SEEKR2 simulations with reparameterized force elds
and SEEKR2 simulations employing generic force elds are
observed (ESI Fig. S1†). For all the seven host–guest complexes,
QMrebind + SEEKR2 consistently outperformed SEEKR2 in
estimating koff rates. Such improvements can likely be attrib-
uted to more accurate force eld parameters for the ligand
within the vicinity of the host molecule, as computed by the
QMrebind soware. There is a peculiar systematic error where
the SEEKR2 and QMrebind + SEEKR2 approaches overestimate
Fig. 6 Unbinding rates or koff (s−1) for seven host–guest complexes
obtained from experiments, QMrebind-reparameterized force field
and the generic force field parameters employed in SEEKR2 simula-
tions. Experimental koff rates for b-cyclodextrin complexed with
naphthylethanols were measured using laser flash photolysis.146 For
the other host–guest complexes, the ultrasonic absorption method
was employed.147,148 The horizontal axis is represented in a logarithmic
scale, allowing for better visualization of koff rates that span several
orders of magnitude.
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the experimental koff values for the host–guest systems. Similar
overestimations have also been observed using weighted
ensemble sampling144 and the Ligand Gaussian accelerated
Molecular Dynamics (LiGaMD) method.145
3.2 Hsp90-inhibitor complexes

3.2.1 SEEKR2 and QMrebind + SEEKR2 simulations.
SEEKR2 simulations employing QMrebind-reparameterized
force elds outperformed the SEEKR2 simulations employing
the generic force elds in more accurately estimating the
unbinding rates for all eight Hsp90-inhibitor complexes (Fig. 7).
Both force elds within the SEEKR2 framework provided close-
to-experimental koff rates for the Hsp90-ligand 9 complex, with
the QMrebind-reparameterized force eld slightly out-
performing the generic one (ESI Table S3†). For the rest of the
seven complexes involving ligands 1, 3, 4, 22, 31, 59, and 67,
QMrebind-reparameterized SEEKR2 simulations signicantly
outperformed generic force eld SEEKR2 simulations in esti-
mating the koff rates. However, for the Hsp90-ligand 22 and 31
complexes, neither of the methods could estimate the koff rates
within an order of magnitude to the experimental values, with
the QMrebind-reparameterized force eld simulations per-
forming better than the generic force eld. In the cases of
complexes 1 and 4, the experimental koff values were only known
to be less than 1 × 10−4 s−1, and unbinding rates obtained with
QMrebind + SEEKR2 and SEEKR2 methods seem reasonable
within the margin of uncertainty. To further validate the
consistent accuracy of QMrebind-reparameterized SEEKR2
simulations in estimating receptor–ligand unbinding rates, an
additional set of nine Hsp90-inhibitor complexes is selected.
These inhibitors encompassed a diverse range of koff rates and
scaffold diversity (Fig. 4), allowing us to thoroughly assess the
accuracy and robustness of the QMrebind-reparameterization
method across a broader spectrum of estimating koff rates for
receptor–ligand interactions.
Fig. 7 Unbinding rates or koff (s−1) for eight Hsp90-inhibitor
complexes obtained from experiments are compared to SEEKR2 koff
rates with both the QMrebind-reparameterized force field and the
generic force field parameters. In all cases, the QM-parameterized
systems reported koff values closer to the experiment.
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Unbinding rate estimates for the eight Hsp90-inhibitor
complexes were substantially improved by the use of QMre-
bind, so that, while they do not match within experimental or
theoretical error margins, they oen fall within the single order
of magnitude criteria for success67 and in almost all cases, at
least within two orders of magnitude. While the QMrebind +
SEEKR2 method has shown koff prediction accuracy for most of
the Hsp90-inhibitor complexes, certain outliers underscore
inherent challenges and limitations of this method. For the
Hsp90-ligand 37 complex, the estimated koff of (3.82 ± 0.05) ×
102 s−1 is signicantly higher than the experimentally deter-
mined koff of (2.0 ± 0.2) × 10−3 s−1, and is essentially predicted
by QMrebind + SEEKR2 to be a fast unbinder. We choose to
dene an outlier as any complex whose predicted koff is greater
than two orders of magnitude distant from the experimental
koff. For the outlier complex of ligand 37, reparameterizing
partial charges of the ligand via QMrebind did not produce
close-to-experiment koff. The inaccurate koff estimate for the
Hsp90-ligand 37 complex can likely be attributed to other
deciencies within the model. In our assessment, it is possible
that starting structures generated via SMD simulations do not
always correctly sample the unbinding pathway. Unfortunately,
attempts to pull the ligand more slowly out of the binding
pocket via SMD simulations to generate starting structures to
resolve the problem have not improved the kinetic estimates
(data not shown). It is also possible that a better choice of CV,
Fig. 8 Unbinding rates or koff (s−1) for 17 Hsp90-inhibitor complexes
obtained from experiments and QMrebind-reparameterized force
field parameters employed in SEEKR2 simulations. The experimental
koff rates were obtained using Surface Plasmon Resonance (SPR)
measurements138,139,149 (refer to ESI Table S4† for a list of references for
experimentally measured koff for each of the Hsp90-inhibitor
complexes). The horizontal axis is represented in a logarithmic scale,
allowing for better visualization of koff rates that span several orders of
magnitude.
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apart from the ligand-binding site COM–COM distance, would
produce better kinetics, as it may lead to more extensive
sampling within the Voronoi cells. Several attempts have been
made to identify the exact causes of these discrepancies, but the
solution has, so far, evaded us. Additional investigations,
therefore, need to be undertaken to determine the exact causes
to resolve such outlier kinetics estimates.

QMrebind-reparameterized SEEKR2 simulations predicted
close-to-experimental koff rates for a majority of Hsp90-inhibitor
complexes (Fig. 8). Linear t and Kendall's tau analysis are
performed to evaluate the predictive accuracy of QMrebind-
reparameterized SEEKR2 simulations in estimating unbinding
rates for a set of 17 Hsp90-Inhibitor complexes. The linear t (R2

= 0.82) among the non-outliers demonstrated a strong corre-
lation between the logarithm of experimental koff values and
QMrebind + SEEKR2 estimated koff values, showing a good t to
the linear regression model (Fig. 9). Additionally, the computed
Kendall's tau (s = 0.79) displayed a positive and signicant
ordinal association between the experimental and QMrebind-
reparameterized SEEKR2 estimated unbinding rates, support-
ing the agreement in ranking between both methods (Fig. 9).
These analyses establish the improvement allowed by
QMrebind-reparameterized SEEKR2 simulations in accurately
predicting the unbinding rates for Hsp90-inhibitor complexes
with high precision.

3.2.2 Long timescale MD simulations. Experimental koff
data indicate distinct residence time proles for a series of
Fig. 9 Scatter plot comparing the logarithm of experimental koff
values against the QMrebind + SEEKR2 estimated koff values for
Hsp90-inhibitor complexes. Each data point is labeled with its corre-
sponding Hsp90-inhibitor complex ID, and error bars are shown for
both data sets (refer to the ESI† of the SEEKR2 article67 for detailed
analyses on milestoning error estimates). The plot displays a line of
best fit to indicate the correlation between the experimental and
theoretically calculated koff, with R2 values indicating the goodness of
the fit and the computed Kendall's tau statistic, denoting the strength
and direction of the ordinal association between the experimental koff
and the QMrebind + SEEKR2 estimated koff values for 17 Hsp90-
Inhibitor complexes. TheQMrebind + SEEKR2 koff value for the Hsp90-
ligand 37 complex deviates significantly from its experimental value
and is considered an outlier. This complex is excluded from the linear
fit and Kendall's tau analysis (refer to ESI Fig. S2† for the line of best fit
and Kendall's tau statistics, including complex 37).
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inhibitors in the loop and helix conformations of the Hsp90
protein. Ligands 1 and 4 exhibit prolonged residence times,
characterized by koff values less than 10−4 s−1, while ligand 9
displays the shortest residence time with a koff value of (8.2 ±

0.5) × 10−1 s−1 (ESI Table S4†). Unbiased MD simulations are
performed for the two Hsp90-inhibitor complexes involving
ligands 1 (slowest koff) and 9 (fastest koff) to elucidate the
underlying factors contributing to discrepancies in residence
times. Since these inhibitors are loop binders, direct compari-
sons can be made to investigate the structural and dynamic
determinants governing the receptor–ligand (un)binding
kinetics. Initial structures and force eld parameters for the
Hsp90-inhibitor complexes are obtained from the rst Voronoi
cell of the QMrebind-reparameterized SEEKR2 milestones. A
total of 10 ms of MD simulations are run for each receptor–
inhibitor complex at 300 K with a 2 fs timestep and
a nonbonded cutoff distance of 10 Å using the Amber20 MD
engine.150 Simulation trajectories are analyzed using the
CPPTRAJ module of the Amber 20 package.151–153

A low koff denotes an extended residence time for the ligand,
characterizing it as a high-affinity binder (as observed for ligand
1). Conversely, ligand 9 exhibits a relatively higher koff as
compared to ligand 1, indicating rapid dissociation from the
binding site, classifying it as a low-affinity binder. To explain
the variations in residence times, we computed the distances
between the center of mass (COM) of the ligands and the COM
of a-carbon atoms of the binding site residues for both the
Hsp90-ligand 1 and Hsp90-ligand 9 complexes, as depicted in
Fig. 10a and b. Changes in the ligand-binding site COM–COM
distance during the simulation may suggest shis in the
interaction dynamics between the ligand and the receptor
protein. In the context of the Hsp90-ligand 1 complex, a notable
decrease in the COM–COM distance is evident at approximately
6 ms into the simulation, suggesting a modication in its
interaction pattern with the binding site residues, as illustrated
in Fig. 10a. This dynamic behavior could potentially contribute
to an increased receptor–ligand interaction or efficient binding,
contributing to a smaller koff. Conversely, the Hsp90-ligand 9
complex showed no signicant changes in the ligand-binding
site COM–COM distance throughout the simulation (Fig. 10b).

POVME2 (POcket Volume MEasurer 2) is a powerful
computational tool designed to characterize and measure
binding pockets within macromolecular and small-molecule
complexes.154–156 POVME2 operates through a series of steps,
including grid-based point generation, exclusion of points near
receptor atoms, and optional removal of non-contiguous
regions. We utilized the POVME2 algorithm to assess the
binding pocket volumes for the two complexes for 10 ms of MD
simulations. A 1.09 Å cutoff, corresponding to the van der Waals
radius of the hydrogen atom, ensured the precise exclusion of
non-pocket regions. Larger binding pocket volumes are
observed for the Hsp90-ligand 1 complex compared to the
Hsp90-ligand 9 complex (Fig. 10c). Ligand 1 possesses a larger
and more voluminous molecular structure and is expected to
adopt conformations that extend into the binding pocket more
than ligand 9 (Fig. 5), leading to an increased volume estimate
for the binding pocket. Consequently, the Hsp90-ligand 1
Chem. Sci., 2023, 14, 13159–13175 | 13169



Fig. 10 (a and b) Distances between the center of mass (COM) of the ligand and the COM of a-carbon atoms of the binding site residues for (a)
Hsp90-ligand 1 complex and (b) Hsp90-ligand 9 complex calculated for 10 ms of unbiasedMD simulations. (c) Pocket volume analysis for Hsp90-
ligand 1 and ligand 9 complexes. (d) Contact frequencies of Hsp90 residues when interactingwith ligand 1 (within the ligand-binding pocket) over
two intervals, i.e., 0–6.0 ms and 6.5–8.5 ms. Contact frequencies are expressed as a percentage of the total number of possible contacts. Only
residues with a difference in contact frequencies exceeding 10% between the two simulation intervals are shown.

Fig. 11 (a and b) Hsp90 protein residues interacting with ligand 1 within a cutoff distance of 4 Å for the (a) initial 6 ms of MD simulation and (b) 2 ms
(6.5–8.5 ms) of MD simulation interval. (c) Hsp90 protein residues interacting with ligand 9 within a cutoff distance of 4 Å for 10 ms of MD
simulation.
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complex might exhibit a more expansive and accommodating
binding pocket due to the specic interactions (Fig. 10d) and
spatial arrangements between the ligand and the receptor,
resulting in a larger calculated binding volume.

We analyzed interaction dynamics between ligand 1 and
a set of key residues (within a cutoff distance of 4 Å) within the
ligand-binding pocket of the Hsp90 receptor. Two distinct time
intervals were selected (0 ms to 6.0 ms and 6.5 ms to 8.5 ms), where
signicant differences in the ligand-binding site distance were
observed (Fig. 11a and b). More ligand-residue contacts were
prevalent during the 6.5 ms to 8.5 ms simulation interval, indi-
cating a dynamic shi in the binding interactions (Fig. 10d and
ESI Table S5†). Residues such as Glu32, Ser35, Asn36, Asp39,
and Gly80 consistently exhibited higher ligand-residue contact
frequencies throughout both intervals (ESI Table S5†), indi-
cating their key roles in maintaining robust interactions with
the ligand. Conversely, residues such as Met83, Thr94, Gly120,
Val121, and Phe123 displayed signicant uctuations in contact
frequency between the two intervals, highlighting dynamic
alterations in their binding patterns (Fig. 10d). Changes in
receptor–ligand interactions are observed during the later
simulation phase (6.5–8.5 ms), where a larger number of resi-
dues interacted with the ligand as compared to the initial 6 ms of
simulation (Fig. 11a, b, and ESI Table S6†). Such a shi in the
interaction landscape with a different ensemble of residues
suggests a potential ligand rearrangement within the binding
pocket, and a dynamicity of ligand 1 in the binding pocket of
the receptor–ligand complex may contribute to an extended
residence time of ligand 1. To interpret the binding strength
and specicities of the two Hsp90-ligand complexes, residues
interacting with the ligand within a cutoff distance of 4 Å were
monitored at 0.4 ns intervals for the entire duration of the
simulation. It is observed that ligand 1 interacted with
a signicantly higher number of residues than ligand 9
(Fig. 11a–c and ESI Table S6†). Interactions, such as hydrogen
bonds, hydrophobic interactions, and van der Waals forces,
potentially account for a higher residence time of ligand 1. On
the contrary, reduced ligand-residue interactions for ligand 9
correlate well with its lower residence time, suggesting fewer
constraints holding it in the binding pocket.

4 Conclusion

We have presented a novel approach to enhance the accuracy of
SEEKR2 milestoning simulations of bimolecular complexes for
predicting receptor–ligand unbinding rates through quantum
mechanical reparameterization of the ligand charges at the
binding site. The QMrebind force eld reparameterization
method may also be useful to simulate the binding–unbinding
processes of receptor–ligand complexes using other enhanced
sampling methods besides SEEKR2, such as RAMD, GaMD, etc.
This method provides a multi-scale approach for force eld
parameterization through quantum mechanical treatment of
the ligand at its binding site, thereby increasing the accuracy of
simulations in estimating the unbinding rates of the ligands. To
evaluate the effectiveness of our approach, we implemented this
method within the SEEKR2 simulation framework to estimate
© 2023 The Author(s). Published by the Royal Society of Chemistry
the ligand-unbinding rates for seven host–guest complexes and
17 N-Hsp90-inhibitor complexes. Our results showed that the
QMrebind-reparameterized force eld within the SEEKR2
framework outperformed the generic force eld in estimating
the kinetic properties of receptor–ligand unbinding for most of
the complexes. This comparison highlights the potential of the
improved force eld parameters to enhance the simulation
accuracy. Integration of the QMrebind method into SEEKR2 is
straightforward, and it can also be used as a standalone package
for reparameterizing force eld parameters for unbiased MD
simulations and other enhanced MD simulation methods.

Data availability

The QMrebind project is available at https://github.com/
seekrcentral/qmrebind, and the SEEKR2 project is available at
https://github.com/seekrcentral/seekr2. Data supporting the
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T. E. Cheatham III and P. Jurecka, J. Chem. Theory
Comput., 2011, 7, 2886–2902.

104 E. Harder, W. Damm, J. Maple, C. Wu, M. Reboul,
J. Y. Xiang, L. Wang, D. Lupyan, M. K. Dahlgren,
J. L. Knight, et al., J. Chem. Theory Comput., 2016, 12, 281–
296.

105 A. Ojha, L. Votapka, G. Huber, S. Gao and R. Amaro, An
introductory tutorial to the SEEKR2 (Simulation enabled
Chem. Sci., 2023, 14, 13159–13175 | 13173

https://doi.org/10.6075/J01Z44MN


Chemical Science Edge Article
estimation of kinetic rates v. 2) multiscale milestoning soware
[Article v1. 0], 2023, DOI: 10.26434/chemrxiv-2023-kd1wt.

106 L. W. Votapka, A. M. Stokely, A. A. Ojha and R. E. Amaro,
Data from: SEEKR2: Versatile Multiscale Milestoning
Utilizing the OpenMM Molecular Dynamics Engine, 2022,
DOI: 10.6075/J0668DDR.

107 P. Eastman, J. Swails, J. D. Chodera, R. T. McGibbon,
Y. Zhao, K. A. Beauchamp, L.-P. Wang, A. C. Simmonett,
M. P. Harrigan, C. D. Stern, et al., PLoS Comput. Biol.,
2017, 13, e1005659.

108 P. Eastman and V. Pande, Comput. Sci. Eng., 2010, 12, 34–
39.

109 G. A. Huber and J. A. McCammon, Comput. Phys. Commun.,
2010, 181, 1896–1905.

110 B. Boots, K. Sugihara, S. N. Chiu and A. Okabe, Spatial
tessellations: concepts and applications of Voronoi diagrams,
John Wiley & Sons, 2009.

111 F. Aurenhammer and R. Klein, Handbook of Computational
Geometry, 2000, vol. 5, pp. 201–290.

112 A. E. Cardenas and R. Elber, J. Phys. Chem. B, 2016, 120,
8208–8216.

113 N. Morin-Crini, S. Fourmentin, É. Fenyvesi, E. Lichtfouse,
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F.-Y. Dupradeau, Phys. Chem. Chem. Phys., 2011, 13,
15103–15121.

115 J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman and
D. A. Case, J. Comput. Chem., 2004, 25, 1157–1174.

116 F.-Y. Dupradeau, A. Pigache, T. Zaffran, C. Savineau,
R. Lelong, N. Grivel, D. Lelong, W. Rosanski and
P. Cieplak, Phys. Chem. Chem. Phys., 2010, 12, 7821–7839.

117 Z. Tang and C.-e. A. Chang, J. Chem. Theory Comput., 2018,
14, 303–318.

118 B. R. Jagger, C. T. Lee and R. E. Amaro, J. Phys. Chem. Lett.,
2018, 9, 4941–4948.

119 U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee
and L. G. Pedersen, J. Chem. Phys., 1995, 103, 8577–8593.

120 H. G. Petersen, J. Chem. Phys., 1995, 103, 3668–3679.
121 A. D. Beeke, J. Chem. Phys., 1993, 98, 5648–5652.
122 D. G. Truhlar, Chem. Phys. Lett., 1998, 294, 45–48.
123 D. Picard, Cell. Mol. Life Sci., 2002, 59, 1640–1648.
124 A. D. Zuehlke, M. A. Moses and L. Neckers, Philos. Trans. R.

Soc., B, 2018, 373, 20160527.
125 C. Jolly and R. I. Morimoto, J. Natl. Cancer Inst., 2000, 92,

1564–1572.
126 V. Condelli, F. Crispo, M. Pietrafesa, G. Lettini,

D. S. Matassa, F. Esposito, M. Landriscina and
F. Maddalena, Cells, 2019, 8, 532.

127 S. Messaoudi, J. Peyrat, J. Brion and M. Alami, Anti-Cancer
Agents Med. Chem., 2008, 8, 761–782.

128 B. Tillotson, K. Slocum, J. Coco, N. Whitebread, B. Thomas,
K. A. West, J. MacDougall, J. Ge, J. A. Ali, V. J. Palombella,
et al., J. Biol. Chem., 2010, 285, 39835–39843.

129 K. Richter, J. Reinstein and J. Buchner, J. Biol. Chem., 2002,
277, 44905–44910.
13174 | Chem. Sci., 2023, 14, 13159–13175
130 C. Prodromou, B. Panaretou, S. Chohan, G. Siligardi,
R. O'Brien, J. E. Ladbury, S. M. Roe, P. W. Piper and
L. H. Pearl, EMBO J., 2000, 19, 4383–4392.

131 P. Workman, Curr. Cancer Drug Targets, 2003, 3, 297–300.
132 K. Richter, S. Moser, F. Hagn, R. Friedrich, O. Hainzl,

M. Heller, S. Schlee, H. Kessler, J. Reinstein and
J. Buchner, J. Biol. Chem., 2006, 281, 11301–11311.

133 G. Vettoretti, E. Moroni, S. Sattin, J. Tao, D. A. Agard,
A. Bernardi and G. Colombo, Sci. Rep., 2016, 6, 1–13.

134 L. Li, L. Wang, Q.-D. You and X.-L. Xu, J. Med. Chem., 2019,
63, 1798–1822.

135 J. Trepel, M. Mollapour, G. Giaccone and L. Neckers, Nat.
Rev. Cancer, 2010, 10, 537–549.

136 A. Nunes-Alves, D. B. Kokh and R. C. Wade, Curr. Opin.
Struct. Biol., 2020, 64, 126–133.

137 S. Wolf, B. Lickert, S. Bray and G. Stock, Biophys. J., 2021,
120, 77a.

138 D. B. Kokh, M. Amaral, J. Bomke, U. Gradler, D. Musil,
H.-P. Buchstaller, M. K. Dreyer, M. Frech, M. Lowinski,
F. Vallee, et al., J. Chem. Theory Comput., 2018, 14, 3859–
3869.

139 M. Amaral, D. Kokh, J. Bomke, A. Wegener, H. Buchstaller,
H. Eggenweiler, P. Matias, C. Sirrenberg, R. Wade and
M. Frech, Nat. Commun., 2017, 8, 2276.

140 J. Wang, W. Wang, P. A. Kollman and D. A. Case, J. Mol.
Graphics Modell., 2006, 25, 247–260.

141 W. D. Cornell, P. Cieplak, C. I. Bayly and P. A. Kollman, J.
Am. Chem. Soc., 2002, 115, 9620–9631.

142 C. I. Bayly, P. Cieplak, W. Cornell and P. A. Kollman, J. Phys.
Chem., 1993, 97, 10269–10280.

143 J. A. Maier, C. Martinez, K. Kasavajhala, L. Wickstrom,
K. E. Hauser and C. Simmerling, J. Chem. Theory Comput.,
2015, 11, 3696–3713.

144 S.-H. Ahn, B. R. Jagger and R. E. Amaro, J. Chem. Inf. Model.,
2020, 60, 5340–5352.

145 Y. Miao, A. Bhattarai and J. Wang, J. Chem. Theory Comput.,
2020, 16, 5526–5547.

146 T. C. Barros, K. Stefaniak, J. F. Holzwarth and C. Bohne, J.
Phys. Chem. A, 1998, 102, 5639–5651.

147 T. Fukahori, S. Nishikawa and K. Yamaguchi, Bull. Chem.
Soc. Jpn., 2004, 77, 2193–2198.

148 S. Nishikawa, T. Fukahori and K. Ishikawa, J. Phys. Chem. A,
2002, 106, 3029–3033.

149 D. A. Schuetz, L. Richter, M. Amaral, M. Grandits,
U. Gradler, D. Musil, H.-P. Buchstaller,
H.-M. Eggenweiler, M. Frech and G. F. Ecker, J. Med.
Chem., 2018, 61, 4397–4411.

150 D. A. Case, H. M. Aktulga, K. Belfon, I. Ben-Shalom,
S. R. Brozell, D. S. Cerutti, T. E. Cheatham III,
V. W. D. Cruzeiro, T. A. Darden, R. E. Duke, et al., Amber
2021, University of California, San Francisco, 2021.

151 D. A. Case, T. E. Cheatham III, T. Darden, H. Gohlke,
R. Luo, K. M. Merz Jr, A. Onufriev, C. Simmerling,
B. Wang and R. J. Woods, J. Comput. Chem., 2005, 26,
1668–1688.

152 R. Salomon-Ferrer, D. A. Case and R. C. Walker, Wiley
Interdiscip. Rev.: Comput. Mol. Sci., 2013, 3, 198–210.
© 2023 The Author(s). Published by the Royal Society of Chemistry

https://doi.org/10.26434/chemrxiv-2023-kd1wt
https://doi.org/10.6075/J0668DDR


Edge Article Chemical Science
153 D. R. Roe and T. E. Cheatham III, J. Chem. Theory Comput.,
2013, 9, 3084–3095.

154 J. D. Durrant, C. A. F. de Oliveira and J. A. McCammon, J.
Mol. Graphics Modell., 2011, 29, 773–776.
© 2023 The Author(s). Published by the Royal Society of Chemistry
155 J. D. Durrant, L. Votapka, J. Sørensen and R. E. Amaro, J.
Chem. Theory Comput., 2014, 10, 5047–5056.

156 J. R. Wagner, J. Sørensen, N. Hensley, C. Wong, C. Zhu,
T. Perison and R. E. Amaro, J. Chem. Theory Comput.,
2017, 13, 4584–4592.
Chem. Sci., 2023, 14, 13159–13175 | 13175


	QMrebind: incorporating quantum mechanical force field reparameterization at the ligand binding site for improved drug-target kinetics through...
	QMrebind: incorporating quantum mechanical force field reparameterization at the ligand binding site for improved drug-target kinetics through...
	QMrebind: incorporating quantum mechanical force field reparameterization at the ligand binding site for improved drug-target kinetics through...
	QMrebind: incorporating quantum mechanical force field reparameterization at the ligand binding site for improved drug-target kinetics through...
	QMrebind: incorporating quantum mechanical force field reparameterization at the ligand binding site for improved drug-target kinetics through...
	QMrebind: incorporating quantum mechanical force field reparameterization at the ligand binding site for improved drug-target kinetics through...
	QMrebind: incorporating quantum mechanical force field reparameterization at the ligand binding site for improved drug-target kinetics through...
	QMrebind: incorporating quantum mechanical force field reparameterization at the ligand binding site for improved drug-target kinetics through...
	QMrebind: incorporating quantum mechanical force field reparameterization at the ligand binding site for improved drug-target kinetics through...
	QMrebind: incorporating quantum mechanical force field reparameterization at the ligand binding site for improved drug-target kinetics through...
	QMrebind: incorporating quantum mechanical force field reparameterization at the ligand binding site for improved drug-target kinetics through...
	QMrebind: incorporating quantum mechanical force field reparameterization at the ligand binding site for improved drug-target kinetics through...

	QMrebind: incorporating quantum mechanical force field reparameterization at the ligand binding site for improved drug-target kinetics through...
	QMrebind: incorporating quantum mechanical force field reparameterization at the ligand binding site for improved drug-target kinetics through...
	QMrebind: incorporating quantum mechanical force field reparameterization at the ligand binding site for improved drug-target kinetics through...
	QMrebind: incorporating quantum mechanical force field reparameterization at the ligand binding site for improved drug-target kinetics through...
	QMrebind: incorporating quantum mechanical force field reparameterization at the ligand binding site for improved drug-target kinetics through...

	QMrebind: incorporating quantum mechanical force field reparameterization at the ligand binding site for improved drug-target kinetics through...
	QMrebind: incorporating quantum mechanical force field reparameterization at the ligand binding site for improved drug-target kinetics through...
	QMrebind: incorporating quantum mechanical force field reparameterization at the ligand binding site for improved drug-target kinetics through...
	QMrebind: incorporating quantum mechanical force field reparameterization at the ligand binding site for improved drug-target kinetics through...
	QMrebind: incorporating quantum mechanical force field reparameterization at the ligand binding site for improved drug-target kinetics through...




