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RESEARCH ARTICLE
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Abstract
Children affected by Specific Language Impairment (SLI) fail to acquire age appropriate lan-

guage skills despite adequate intelligence and opportunity. SLI is highly heritable, but the

understanding of underlying genetic mechanisms has proved challenging. In this study, we

use molecular genetic techniques to investigate an admixed isolated founder population

from the Robinson Crusoe Island (Chile), who are affected by a high incidence of SLI, in-

creasing the power to discover contributory genetic factors. We utilize exome sequencing in

selected individuals from this population to identify eight coding variants that are of putative

significance. We then apply association analyses across the wider population to highlight a

single rare coding variant (rs144169475, Minor Allele Frequency of 4.1% in admixed South

American populations) in the NFXL1 gene that confers a nonsynonymous change (N150K)
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and is significantly associated with language impairment in the Robinson Crusoe population

(p = 2.04 × 10–4, 8 variants tested). Subsequent sequencing of NFXL1 in 117 UK SLI cases

identified four individuals with heterozygous variants predicted to be of functional conse-

quence. We conclude that coding variants within NFXL1 confer an increased risk of SLI

within a complex genetic model.

Author Summary

Children affected by Specific Language Impairment (SLI) have unexpected problems
learning to talk and understand language, despite developing normally in all other areas.
This disorder runs in families but we do not understand how the genetic contributions
work, or which genetic mechanisms might be important. In this paper, we study a Chilean
population who are affected by a high incidence of SLI. Such populations may provide in-
creased power to discover contributory genetic factors, under appropriate conditions. We
identify a genetic change in the population that causes a change to a protein called NFXL1.
This change is usually very rare but is found at a higher frequency than expected in our
population, particularly in those people affected by SLI. We then looked at this gene in
over 100 individuals from the UK affected by SLI and found four more changes that prob-
ably affect the protein. This is a higher number than we would expect by chance. We there-
fore propose that the NFXL1 gene and the protein it encodes might be important in risk of
SLI.

Introduction
Language deficits form a central feature of many developmental disorders and account for a
high number of pediatric referrals and statements of special educational need [1]. These lan-
guage impairments often represent a secondary clinical feature of a more pertinent develop-
mental disability such as Down syndrome, Autistic Spectrum Disorder or intellectual
disability. However, in a proportion of cases, the primary clinical concern is the language diffi-
culties, which occur in the absence of any other developmental deficit or neurological im-
pairment and in the presence of normal non-verbal IQ. In such cases, the diagnosis is Specific
Language Impairment (SLI) [2].

SLI affects between 5 and 7% of children in the UK [3] and significantly more boys than
girls [4]. The disorder is highly heritable [5] but genetic contributions are expected to be com-
plex in nature with significant heterogeneity between individuals [6]. Common risk variants
within ATP2C2 (OMIM#613082), CMIP (OMIM#610112) [7], ABCC13 (OMIM#608835) [8],
FLNC (OMIM#102565), RBFOX2 (OMIM#612149) [9] and ROBO2 (OMIM#602431) [10]
have been associated with quantitative measures of language skills. Genome-wide association
studies of language-impaired probands have also highlighted potential risk variants in NDST4
(OMIM#615039), ZNF385D, COL4A2 (OMIM#120090) [11] and NOP9 [12]. Other studies im-
plicate rare genetic events which may have higher penetrance [13,14]. However, it is clear that
the contributions of these various genetic effects are complex. Some may be specific to individ-
uals with certain forms of language deficits, others may contribute across the range of ability
[7,8,11,15,16]. The functional impact of these candidate genes has yet to be elucidated and fur-
ther candidates need to be identified before we can properly understand the molecular path-
ways underlying SLI.

NFXL1 Variants Confer Risk for Specific Language Impairment
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Clearer links have been made between the presence of language deficits and disruption of
the FOXP2 gene (OMIM#605317), a forkhead/winged-helix transcription factor [17,18]. Re-
duced functional dosage of FOXP2, caused by mutation or chromosomal rearrangements,
leads to characteristic deficits in coordinating sequences of orofacial movements, impairing
speech, producing a disorder known as developmental verbal dyspraxia (DVD) or childhood
apraxia of speech (CAS) [18–22]. Typically the DVD/CAS features of FOXP2mutation cases
are accompanied by wide-ranging problems with spoken and written language [23]. Whilst
FOXP2 disruptions are rare and account for only a small proportion of DVD/CAS cases, the in-
vestigation of this gene, its expression patterns and interactions, have led to the elucidation of
genetic networks that are important to language development and contribute to more common
forms of language impairment [23–25]. One of the transcriptional targets of FOXP2 is
CNTNAP2 (OMIM#604569), a member of the neurexin family which mediates interactions be-
tween neurons and glia during nervous system development [26]. Genetic variation across
CNTNAP2 has been associated both with language deficits [15,27–29] and language ability in
the general population [30–32]. Variations in, and disruptions of, this gene have also been im-
plicated across a range of neurodevelopmental disorders such as autism, epilepsy and schizo-
phrenia [26], indicating that it is likely to be crucial for brain development. These
investigations demonstrate how the identification of genetic mutations underlying a distinct se-
vere form of disorder provide entry points into mechanisms that are relevant to the wider pro-
cesses underlying the initial deficit.

In 2008, Villanueva et al described a population who are affected by an unusually high prev-
alence of language impairment [33]. This admixed population inhabits the Robinson Crusoe
Island which forms part of the Juan Fernandez Archipelago in the South Pacific Ocean, ap-
proximately 400 miles off the coast of Chile. The Island was last colonized in 1876 by 64 indi-
viduals of European and South American descent. In the 2002 census, the Island population
was 633, the majority of whom were descendants of the founder families. More than 70% of the
current population has a surname from the colonizing families and 14% of marriages involve
consanguineous unions [34]. In their 2008 study, Villanueva et al completed psychometric pro-
filing of 66 island children aged between 3 and 9 years of age, of whom 40 were descendants of
the founder party. They found that 35% of the founder-related children (14 of 40) were affected
by specific language impairment. No evidence for a male bias was observed in this group. A
further 27.5% of the founder-related child population (11 of 40) had language abilities below
that expected for their age but presented with additional developmental concerns or low non-
verbal IQ, precluding a diagnosis of SLI. The remaining 37.5% of founder-related children (15
of 40) had typical language development. In contrast, only one of 26 children whose parents
are not related to the founder families (3.8%) had evidence of language impairment, a frequen-
cy of language impairment that coincided with that seen in mainland Chile (3%) [33]. Further-
more, when the genealogical records of the islanders were recompiled, 90% of the individuals
affected by SLI were direct descendants of a single pair of founder brothers who formed part of
the founder party [33,35]. Given the clear phenotypic differences between founder-related and
non-founder-related children on the Island, we postulated that the founder brothers may have
carried a rare causative genetic mutation or, alternatively, combinations of common genetic
variations that together confer a high risk of language impairment. A previous genome-wide
linkage study of 34 families from the Robinson Crusoe Island identified significant linkage to
several chromosome regions, the most consistent of which included a large section (48Mb) of
chromosome 7q (SLI4 –OMIM#612514) that included many genes which represent good can-
didates for language impairment, including FOXP2 and CNTNAP2 [35]. However, in depth ge-
nomic profiling has yet to be performed within this population.

NFXL1 Variants Confer Risk for Specific Language Impairment
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In this study, we make use of this admixed isolated population and assess the possibility of a
founder mutation, by completing exome sequencing of five individuals from the Robinson
Crusoe population affected by SLI. We substantiate the findings of the exome screen by per-
forming association analyses of selected putative functional variants in the wider Robinson
Crusoe population. The contribution of identified risk variants is subsequently validated by
performing targeted sequencing of candidate genes in a UK-based cohort of individuals affect-
ed by SLI.

Results
We selected five related individuals with SLI from the Robinson Crusoe cohort for exome se-
quencing (Fig. 1). From the exome sequence data, we selected all novel variants (i.e. not re-
ported in publically available or in-house databases) that caused nonsynonymous changes or
changes to canonical splice sites and were shared by at least three of the five individuals se-
quenced. A flow diagram of our methodology can be found in S1 Fig.. All such variants were
subsequently genotyped in 111 founder-related cases and controls from the Robinson Crusoe
Island (Robinson Crusoe validation cohort) and tested for association to language impairment
using a method that takes into account familial relationships. To substantiate the findings of
the exome screen and association analyses, we then went on to sequence the coding regions of
candidate genes implicated from these investigations in an independent cohort of 117 British
children affected by SLI (SLIC cohort).

Exome sequencing
On average, 47,276 (median = 49,543, range = 43,075–50,112) genic variants were identified in
each of the five exomes. This included an average of 17,405 (median = 17,326, range = 15,200–
19,837) exonic variants, 8,379 (median = 8,089, range = 7,258–9,629) missense variants and
106 (median = 90, range = 72–157) nonsense (including indels) variants per individual. Across
all five samples, 90.0% of targeted exome sequencing had coverage of at least 10-fold. The aver-
age coverage of targeted sequence was 56.5-fold and 21% of the reads reached this level. Se-
quencing metrics can be found in S1 Table. To test the hypothesis that the founder brothers
carried a rare causative genetic mutation, we focused upon novel variants that caused nonsy-
nonymous protein substitutions or altered canonical splice sites for our downstream analyses.

Fig 1. Pedigree showing direct lines of descent between founder brothers and children in Robinson Crusoe validation cohort. Founder brothers are
individuals on the second line of the pedigree. Individuals with language impairment are colored in black. Individuals with typical language are denoted in
white. Individuals with unknown phenotype are shaded grey. Genotypes at rs144169475 are represented by small circles; blue circles represent homozygote
reference allele, red circles represent variant carriers, grey circles represent unknown genotype. Note that each individual may be represented through
multiple lines of descent and so might appear more than once on this diagram. Children are labelled according to affection status – SLI1 to SLI15 and TLD1 to
TLD17. Cases whose exomes were sequenced are indicated by asterisks. Three children (1 affected, 2 unaffected, none of whom carried the rs144169475
variant) are not represented on this figure since they were related to alternative founder families. SLI15 is known to be related to one of the founder brothers
but the exact line of descent is unknown.

doi:10.1371/journal.pgen.1004925.g001
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Comparisons between individuals found that no such variants were shared by all five individu-
als. However, allowing for potential genetic heterogeneity between affected individuals, we
identified nine novel nonsynonymous or splice-site variants that were shared by at least 3 of
the 5 children sequenced (Table 1). Eight novel nonsynonymous or splice-site variants were
validated in the five exome samples by Sanger sequencing. None of these variants overlapped
with the regions of suggestive linkage (P<7.3×10−4, chromosomes 2, 6, 7, 8, 9, 12, 13 and 17, as
listed in S2 Table) previously identified in this population [35]. S3 Table provides a full list of
all shared, high-quality variants that fell within the previously identified regions of linkage. All
of these had previously been reported in dbSNP (138) and many were non-genic, intronic or
synonymous (see notes column in S3 Table).

Association analyses of key variants in Robinson Crusoe validation
cohort
All shared novel nonsynonymous or splice-site variants identified in the exome screen were
subsequently genotyped in 111 members of the Robinson Crusoe population (49 individuals
with language-impairment and 62 individuals with typical language ability). This validation co-
hort was ascertained via 35 children living on the Robinson Crusoe Island who had been diag-
nosed with SLI or who showed typical language development (as described in methods) and
included the five children used in the exome sequencing. All children were descendants of the
founder families of the Robinson Crusoe Island and, as such, the cases and controls used in
these association analyses were inter-related (Fig. 1). We therefore employed an association al-
gorithm that allowed for relatedness between cases (MQLS, [36]), and that took into account
the shared ancestry of the Robinson Crusoe validation cohort (288 individuals over 5 genera-
tions). These analyses highlighted one particular coding variant (chr4:g.47,907,320A>T, hg19)
that was present at a significantly higher frequency in Islanders with language impairment
than in Islanders with typical language ability (Table 1). Thirty nine percent of Islanders with
language impairment were found to carry this variant compared to ten percent of Islanders

Table 1. Association of novel nonsynonymous or canonical splice-site variants in 111 individuals from the Robinson Crusoe validation cohort.

Chr Variant
Position
(hg19)

Ref/
variant

Average
read depth
across
variant

Gene Transcript ID Gene
element
affected
by variant

Amino
Acid
change

SLI/
TLD1

Variant
Freq2

SLI
variant
freq3

TLD
variant
freq4

MQLS
p

1 113,245,326 A/G 60 RHOC NM_001042678 IVS3 SA site 49/62 0.059 0.071 0.048 0.625

1 248,308,783* T/A 415 OR2M5 NM_001004690 Exon 1 C112S 49/62 0.000 0.000 0.000 -

4 47,907,320 A/T 57 NFXL1 NM_152995 Exon 4 N150K 49/62 0.113 0.194 0.048 0.0002

10 31,134,425 C/T 119 ZNF438 NM_001143766 Exon 8 R641H 49/62 0.158 0.173 0.145 0.466

11 33,054,503 T/G 36 DEPDC7 NM_139160 Exon 8 N444K 40/60 0.131 0.149 0.117 0.399

16 27,363,901 G/A 30 IL4R NM_000418 Exon 7 R185H 49/61 0.095 0.143 0.057 0.053

21 47,359,924 C/T 52 PCBP3 NM_001130141 IVS-12 SA site 48/59 0.266 0.292 0.246 0.228

22 41,257,834 T/TA 37 DNAJB7 NM_145174 Exon 1 V55VX 49/62 0.261 0.245 0.274 0.554

X 48,682,972 A/G 30 HDAC6 NM_006044 Exon 29 N1200D 49/62 0.419 0.378 0.452 0.456

1 – The number of individuals with SLI genotyped / the number of individuals with typical language ability genotyped.

2 – Frequency of discovered variant in all genotyped Islanders

3 – Frequency of discovered variant in genotyped Islanders with SLI

4 – Frequency of discovered variant in genotyped Islanders with typical language ability

Note that all Islanders (both cases and controls) were related

*- this variant was not validated with Sanger sequencing and represents a false positive finding from the exome sequencing

doi:10.1371/journal.pgen.1004925.t001
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with typical language skills (p = 2.04 × 10−4) (Table 1). Across the Robinson Crusoe validation
cohort, the minor allele frequency was 11.3% (25 of 222 chromosomes sampled) (Table 1).

Predicted functional effects of chr4:g.47,907,320A>T
Chr4:g.47,907,320A>T (hg19) falls in exon 4 of the Homo sapiens nuclear transcription factor,
X-box binding-like 1 (NFXL1) gene (Fig. 2). The variant causes a nonsynonymous change
yielding an asparagine to lysine substitution in the encoded protein (p.N150K, uncharged
amino acid to positively charged amino acid). This change is predicted to be “disease-causing”
by MutationTaster with a confidence probability of 0.98 (SIFT = 0.67, PolyPhen-2 = 0.178).
The position is conserved at both the amino acid and nucleotide level (PhyloP = 0.66, Phast-
Cons = 1); the amino acid N150 is invariant across 36 of the 38 vertebrate species in which an
alignment could be made and the thymine nucleotide at this position is conserved across all six
ENSEMBL primate species investigated (Human, chimp, gorilla, orangutan, macque and mar-
moset) (Fig. 2).

Chr4:g.47,907,320A>T, hg19 in control populations
The variant at chr4:47,907,320 was not observed in 127 independent European population con-
trols that were genotyped (Table 2). We therefore went on to genotype an additional 320 inde-
pendent individuals from a Colombian population cohort and 121 independent individuals
from a Chilean control population cohort. In these cohorts, the variant was present with a
minor allele frequency of 4.2% (27 of 640 chromosome sampled) and 7.4% (18 of 242 chromo-
some sampled) respectively (Table 2). Subsequent data released by the 1000 genomes project
confirmed that this variant is specific to admixed American populations (AMR) with an

Fig 2. Putative contributory coding variants identified inNFXL1 by this study. Position of putativeNFXL1 coding variants with respect to exons and
protein coding sequence. Genomic coding exons (exons 2–23) are shown by pink bands at the top. Protein motifs are represented by colored bands in the
lower boxes. The red box represents a Znf RINGmotif, the yellow boxes represent Znf NFX1motifs, the blue box represents a coiled-coil domain and the
green box a transmembrane domain. Putative contributory coding variants are shown by arrows. Blue arrows denote synonymous changes, red arrows
nonsynonymous changes. Sanger sequencing plots are given for all variants identified. Conservation of amino acid sequences across 11 species shown for
all variants identified. The ref row shows the human reference allele and the variant row shows the observed variant in our samples. All sequences that differ
from the reference sequence are shown in red.

doi:10.1371/journal.pgen.1004925.g002
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average minor allele frequency of 4.1%. In the sub-populations of the AMR grouping, the
minor allele frequency is reported as 0.9% in Puerto Ricans (PUR – 1 in 110 chromosomes
sampled), 3.3% in Colombians in Medellin (CLM – 4 in 120 chromosomes sampled) and 7.6%
in individuals of Mexican ancestry in Los Angeles (MXL – 10 of 132 chromosomes sampled)
(Table 2). The variant has recently been designated as rs144169475 accordingly.

Linkage analyses of chromosome 4 (46–49Mb)
Parametric and nonparametric linkage analyses were performed for 55 SNPs across the NFXL1
region of chromosome 4 (46–49Mb, hg19) within seven extended pedigrees from the Robinson
Crusoe validation cohort (S2 Fig.). In these analyses, we did not observe evidence of linkage
(maximum LOD score = 0.62, S3 Fig.).

Sequencing of NFXL1 in a language-impaired cohort (SLIC)
We sequenced the entire coding region of the NFXL1 gene in 117 unrelated probands affected
by SLI (from the UK SLI Consortium (SLIC) cohort [7,37–39]), to assess whether we could rep-
licate a role for NFXL1 in SLI etiology. In total, we identified 166 high-quality sequence variants
across the NFXL1 gene. 155 of the variants detected were intronic, 4 were in the 3’UTR and 7
affected the coding region. Of the coding variants, three were nonsynonymous and four were
synonymous substitutions (Table 3).

Nonsynonymous variants and those with estimated allele frequencies of<5% were verified
across all the pools of DNA in which they were observed using Sanger sequencing. This allowed
the derivation of accurate allele frequencies within the SLIC cohort.

One of the synonymous variants (chr4:g.47,916,008G>A, hg19) was found in a heterozy-
gous state in one SLIC proband (allele frequency of 0.43%) but had not been documented in
any European individuals in the 1000 genomes project [40] or the NHLBI GO ESP Exome Var-
iant Server (EVS), which together consist of data from 4679 control individuals and therefore
have the ability to detect rare variants with a population frequency of 0.0001. A comparison of
allele frequencies between SLIC probands (1 of 234 chromosomes tested) and controls (0 of
9358 chromosomes tested) yielded a significant P-value of 0.0244. Intriguingly, although it is
synonymous, this variant was predicted to be “disease-causing” by MutationTaster with a con-
fidence probability of 0.98 (SIFT = 1.0). This variant falls in the most 5’ coding exon of NFXL1
and is part of a CpG island, indicating that it may be important for the regulation of gene ex-
pression. Furthermore, ENCODE data shows that it is part of a H3K4Me3 mark (which is
often associated with promoters) and binds multiple transcription factors, particularly
POLR2A c-MYC and PHF8 (www.genome.ucsc.edu, accessed April 2014).

The remaining three synonymous variants (rs2053404, rs6818556 and rs35139099) found
in SLIC probands were also found at similar frequencies in control databases. All had allele fre-
quencies of>5% and are therefore thought to represent common polymorphisms (Table 3).

One nonsynonymous substitution (chr4:g.47,887,652T>C, hg19 – rs151113647) was found
in a heterozygous state in a single SLIC proband (allele frequency of 0.43%) and again, was not
observed in 4679 independent European individuals in the control public databases (Table 3),
yielding a significant P-value of 0.024 (1 of 234 SLIC chromosomes tested vs 0 of 9358 control
chromosomes tested). Further investigations found that this variant had been observed in a
heterozygous state in a single African American individual from the EVS. Principal compo-
nents analysis of genome-wide SNP data in the SLIC proband against the hapmap-3 popula-
tions did not detect any African ancestry. The rarity of the rs151113647 variant and its position
within a zinc-finger motif (Fig. 2) indicates that it may confer negative effects upon protein
function. Nonetheless, because the nucleotide is not highly conserved across species (phylo

NFXL1 Variants Confer Risk for Specific Language Impairment
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P = −0.418, phastCons = 0.925), the change was predicted to be a polymorphism by Mutation-
Taster with a confidence probability of 0.99 (SIFT = 0.68, polyphen-2 = 0.00) (Fig. 2).

A second nonsynonymous substitution (chr4:47,898,575G>A, hg19 - rs35139099) was ob-
served in a heterozygous state in two independent SLIC probands (allele frequency of 0.85%).
This variant was also found in 44 of 4679 independent European control individuals from pub-
lic databases (allele frequency of 0.47%, Table 3) yielding a P value of 0.3097. Although, it was
not observed to occur at a significantly increased frequency in SLIC probands, the rs35139099
variant occurs at a conserved residue (phyloP = 1.466, phastCons = 1) within a zinc-finger
motif (Fig. 2) and is therefore predicted to be damaging by MutationTaster with a confidence
probability of 0.99 (SIFT = 0.00, Polyphen-2 = 1.00) (Fig. 2).

Fig 3. Coding variants observed in SLIC probands and their families. Pedigrees are shown for nuclear
families of SLIC individuals carrying three coding variations in NFXL1. Individuals carrying the variants are
identified with a black circle. Sequencing traces of each variant is shown. SLIC probands are colored in red
and other family members with SLI (defined as expressive and/or receptive language skills>1.5SD below
that expected for their age) are colored in orange. In pedigree 3 (rs151113647), the youngest sibling (colored
in yellow) did not meet the criteria for SLI but had expressive and receptive language scores*1SD below
that expected for his age. Individuals with no shading have typical language ability. DNA was not available for
individuals colored in grey.

doi:10.1371/journal.pgen.1004925.g003
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The remaining nonsynonymous variant (chr4:g.47,901,476G>A, hg19 - rs12651301) was
observed to occur across all the sequence pools with an estimated allele frequency of 32%
(Table 3). This common variant was also observed in independent European controls from
public databases with a frequency of 31% (Table 3) and falls outside of any protein motifs and
is thus likely to represent a polymorphism.

The three rare variants identified (rs151113647, rs35139099 and chr4:g.47,916,008G>A,
hg19) were sequenced in all available family members of the SLIC proband in whom they were
observed (Fig. 3). The chr4:g.47,916,008 variant was inherited from an affected father by two
affected children and one child with typical language development (Fig. 3). The rs151113647
variant was inherited from a father, who reports a history of language and literacy problems, by
the proband, who attends a special language unit, and his sibling, who also has SLI. The middle
child in this family, who also showed evidence of expressive and receptive language deficits, did
not inherit the variant (Fig. 3). Two SLIC families carried the rs35139099 variant; in the first,
the variant is present in the father, who self-reports a history of dyspraxia, and passed onto
both the proband and her elder sib, each of whom has expressive and receptive language prob-
lems. The youngest daughter in this family, who was observed to have a similar pattern of lan-
guage deficits, did not inherit the variant (Fig. 3). In the second family carrying the rs35139099
variant, the change was present in both the proband and his younger sib, who had expressive
and receptive language scores*1SD below that expected for his age, indicating that it is inher-
ited (Fig. 3). The variant was not present in the mother and we did not have a DNA sample, or
phenotypic data, from the father. Nonetheless, haplotype analyses of genome-wide SNP data
indicated that the two children shared the same paternal chromosome in this region indicating
that the rs35139099 variant was likely inherited from the father.

Discussion
In this paper, we report results from the whole exome sequencing of five individuals from an
isolated Chilean island population affected by a high incidence of SLI. We identify a heterozy-
gous nonsynonymous coding variant in the NFXL1 gene that is shared by three of the five indi-
viduals sequenced. Association analyses within a larger Robinson Crusoe validation cohort,
demonstrated that this variant occurred at a significantly increased frequency in Islanders with
language impairment than those with typical language development (P = 0.0002) and is pre-
dicted to be “disease-causing”. Subsequent sequencing of NFXL1 in a cohort consisting of 117
independent UK probands (SLIC) with SLI identified four individuals with putative high-risk
variants in the heterozygous state; three SLIC individuals carried rare nonsynonymous changes
and one SLIC individual carried a novel variant that falls within a regulatory motif. Given the
above evidence, we postulate that variants within NFXL1may contribute to genetic risk of lan-
guage impairment. We propose that such changes are likely to function as—risk variants with a
complex model of inheritance.

We used the Robinson Crusoe ancestry to trace back the relationships between individuals
carrying the associated rs144169475 variant. The only common ancestors to the carriers were
two founder brothers who had previously been reported to head the SLI lineage on the Island
(Fig. 1). These brothers were related to all carriers of the rs144169475 variant (Fig. 1). However
no single brother was related to all Islanders carrying the variant allele (Fig. 1). We therefore
concluded that both founder brothers are likely to have carried the variant. These data there-
fore support the founder model of language impairment proposed at the outset of this study.
We performed allele dropping simulations within the descendants of these founder brothers
and found that a variant with an allele frequency of 3–9% in the founder population would be
expected to have a frequency of 8–14% in the current population (S1 Text, S4 Table). This
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prediction fits well with the observed frequency of 12.5% in the founder-related Islanders and
is elevated above that observed in Chilean population controls (7.4%), indicating the presence
of a founder effect at this locus. Moreover, we found that the increased frequency of the
rs144169475 variant is driven by Islanders with SLI (19.4% in 49 individuals with SLI vs 4.8%
in 62 individuals with typical language ability) (Table 2).

Our data further suggest that the effects of rare mutations in NFXL1may extend to the etiol-
ogy of SLI in other populations. In a screen of the NFXL1 coding regions in 117 independent
UK probands affected by SLI, we observed four individuals who carried rare coding changes
generating a combined high risk allele frequency of 1.71%. By contrast, the combined allele fre-
quency of these three variants in 4679 independent European controls (from the 1000 genomes
and EVS public databases) is 0.47%, a difference that yields a marginally significant P-value of
0.029 (4 of 234 SLIC chromosomes vs 44 of 9358 control chromosomes). Extending our inves-
tigations to include all private coding mutations (i.e. only found in one individual) across the
entire NFXL1 transcript, as opposed to the consideration of the three specific mutations con-
sidered above, we again observed a marginally increased frequency in the SLIC cohort (2 of 234
chromosomes tested, 0.85%) above that expected given the data reported in public European
databases (EVS European American and 1000 Genomes EUR super-population – 28 of 9358
chromosome sequenced, 0.3%, P = 0.0359). Broadening our investigation to include all rare
coding changes (<1%) across the entire NFXL1 transcript, revealed a similar trend (1.71%
(4 of 234 chromosomes sequenced) in the SLIC cohort, compared to 1.36% (127 of 9358
chromosome sequenced) in public European databases) but this did not reach significance
(P = 0.3821).

Given our consistent findings across cohorts, and in line with the data arising from other
neurodevelopmental disorders, we suggest that rare variants in NFXL1may represent genetic
risk factors with incomplete penetrance. Given our data, it is likely that these putative risk fac-
tors are modulated by other genetic variations and/or environmental factors [41–43]. We
could not identify a distinct or specific phenotypic feature that distinguished rs144169475 lan-
guage-impaired carriers from language-impaired non-carriers. Nor did we observe complete
co-segregation between NFXL1 variants and the presence of SLI in either the Robinson Crusoe
validation population or the UK SLIC cohort. Thirty nine percent of the Robinson Crusoe vali-
dation cohort affected by language impairment carried the rs144169475 variant, as did ten per-
cent of the Robinson Crusoe validation cohort with typical language ability. Similarly, one of
the variants observed in the SLIC probands was inherited by a child with typical language de-
velopment and two children affected by language impairment did not inherit the observed vari-
ant. In addition, we observed a high phenocopy rate in the Robinson Crusoe cohort; only 39%
of individuals affected by language impairment carried the rs144169475 variant. Incomplete
segregation is commonly described in neurodevelopmental disorders such as autism [42,43]
and intellectual disability [44,45] and represents a major challenge in the interpretation of
high-throughput sequencing data [46].

The NFXL1 gene encodes a NFX-1-type nuclear zinc-finger transcriptional repressor that is
expressed at the cytoplasm [47]. Little is known regarding the function of the NFXL1 protein;
no disorders have been identified that arise from the mutation of this gene and no animal
knock-outs have been described. The protein has zinc-finger domains which mediate DNA
binding and carries a RING domain that has E3 ubiquitin ligase function (Fig. 2) [48]. This
transcription factor has been shown to be highly expressed in embryonic stem cells prior to
differentiation into myelinated oligodendrocytes [49] and shows a high level of expression in
the early mouse embryonic development (E11.5) and in human cerebellar structures (www.
brainmap.org). NFXL1 is so-called because it is a paralogue of the NF-X1 transcription factor
which binds the X-box sequence of class IIMHC genes [50]. This feature may be relevant in
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light of a recent study that found association between HLA loci and SLI [51]. Similarly, an NF-
X1 isoform functions in the regulation of the NFĸB pathway [52], as does CMIP, a gene impli-
cated in the etiology of SLI in UK populations [7,53].

Limitations of our study
A natural limitation of all studies of founder or isolated populations is the restricted size of the
cohort. Although our study represents a comprehensive profiling of the Robinson Crusoe child
population, the total sample consisted of only 111 individuals, 100 of whom were founder-re-
lated and 49 of whom had language impairment. Although it should be noted that the power of
this particular sample lies in the close relationships between individuals rather than the abso-
lute number of samples, the issue of sample sizes is especially pertinent when one is considering
rare variations. Thus it is of particular importance that we observed independent evidence im-
plicating NFXL1 rare variants in another cohort. However, in the absence of a large South
American cohort of language-impaired individuals, we were unable to include the rs144169475
variant in our replication investigations (since this SNP is particular to South American popu-
lations). Thus, further studies of larger sample sizes that include language-selected controls
and South American individuals will be required to fully evaluate the role of rs144169475 and
rare NFXL1 coding variants in SLI susceptibility.

Of note, none of the shared variants identified through exome sequencing co-incided with
regions of suggestive linkage reported in a previous genomewide linkage study of the Robinson
Crusoe population (S2 and S3 Tables) [54]. Nor did we find evidence for linkage to the NFXL1
region of chromosome 4 (S4 Fig.). We must therefore acknowledge that the increased frequen-
cy of rs144169475 in language-impaired individuals of the Robinson Crusoe validation cohort
does not directly indicate pathogenicity. The result may represent a chance finding or, alterna-
tively, rs144169475 may be a proxy for the causal variant. Since the exome sequencing per-
formed did not capture 100% of the exome, it is possible that the causal variant was not
detected here. Full genome sequencing would be required to fully investigate this possibility.
However, it is also important to note that a lack of linkage does not preclude the presence of a
causal variant and may instead reflect the complexities of analyzing a pedigree of this size and
complexity [55]. The pedigree, which explained the known relationships between the founder
brothers and the Robinson Crusoe validation cohort, included 288 individuals (321 bits, where
a bit is defined as twice the number of non-founders—the number of founders) and so had to
be broken into smaller sets for linkage analyses. This segmentation process discards informa-
tion and can reduce the power to detect linkage if individuals sharing the linked chromosome
segment are split between sub-pedigrees [56]. Lastly, since we hypothesize that SLI in this pop-
ulation has a complex genetic basis and involves incomplete and a high phenocopy frequency,
it is possible that the power to detect linkage is insufficient. We observed reduced penetrance at
the NFXL1 locus (of 25 variant carriers, 19 were diagnosed with SLI, penetrance of 76%) in
combination with evidence of a high phenocopy rate in our cohort (of 49 individuals with lan-
guage impairment, 19 carried the variant, phenocopy rate of 61%). In combination, these fac-
tors break down the correspondence between genotype and phenotype, compromising the
ability to detect linkage [57].

In summary, the Robinson Crusoe admixed founder population represents a rare resource
which may assist in the identification of genetic variants that contribute to SLI susceptibility.
Exome sequencing of five individuals from this population identified eight shared coding vari-
ants. One of these variants (rs144169475) was found to be significantly associated (P = 0.0002)
with language impairment in the wider Robinson Crusoe population. rs144169475 confers a
nonsynonymous change (N150K) in the NFXL1 gene at a highly conserved residue. Subsequent
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sequencing of the NFXL1 coding regions in 117 independent UK SLI cases identified four indi-
viduals with rare heterozygous variants predicted to be of functional consequence. We con-
clude that coding variants within NFXL1 confer an increased risk of SLI within a complex
genetic model.

Materials and Methods

Ethics
The work on the Robinson Crusoe Island was approved by the ethics department of the Uni-
versity of Chile. Ethical permission for each SLIC collection was granted by local ethics com-
mittees. Guys Hospital Research Ethics Committee approved the collection of families from
the Newcomen Centre to identify families from the South East of England with specific lan-
guage disorder. Ref No. 96/7/11. Cambridge Local Research Ethics Committee approved the
CLASP project "Genome Search for susceptibility loci to language disorders" Ref No. LREC96/
212. Ethical approval for the Manchester Language Study was given by the University of Man-
chester Committee on the Ethics of Research on Human Beings. Ref No. 03061 The Lothian
Research Ethics Committee approved the project "Genetics of specific language impairment in
children in Scotland" for the use of the Edinburgh samples. Ref. No. LREC/1999/6/20. The eth-
ics department of the University of Chile approved the project "Genetic analysis of language-
impaired individuals from the Robinson Crusoe Island". Project Number 001-2010. Informed
consent was given by all participants and/or, where applicable, their parents.

Ascertainment of the Robinson Crusoe population
The Robinson Crusoe cohort was ascertained on the basis of phenotypic data from 61 children,
between the ages of 3 years and 8 years, 11 months (i.e. the child cohort, described below) all of
whom were descendants of the founder families and represents an extended cohort (including
children who have turned 3 years of age since 2008) of that described in [33]. First-degree rela-
tives of founder-related children found to meet criteria for SLI or typical language development
were then also assessed for language performance (i.e. the family cohort, described below). Age
constraints of available standardized tests meant that different language batteries were em-
ployed within the child and family cohorts.

Phenotyping and selection of the Robinson Crusoe child cohort
The language ability of 61 children, all of whom were related to a founder individual, was as-
sessed by tests of expressive and receptive language (Toronto Spanish Grammar Exploratory
test, TEGE [58]) and phonology (Phonological simplification test (Test para Evaluar Procesos
de Simplificación Fonológica—TEPROSIF [59]). Nonverbal IQ was tested using the Colombia
Mental Maturity Scale [60]. In addition, all children were subjected to an auditory screen and
oral motor exam [61]. All tests were validated and normalized in Chilean populations. On the
basis of these tests, all children were classified into one of the three following categories:

1. “Specific Language Impairment)” (N = 16, 7 male, 9 female, 26.2%) defined as (i) perfor-
mance>2SD below expected on TEPROSIF (for children aged 6 years or less) or perfor-
mance>2 years below expected for chronological age on TEPROSIF (for children aged over
6 years) and/or performance below the 10th percentile on either the receptive or expressive
scales of the TEGE, (ii) nonverbal IQ not below the 10th percentile, (iii) normal hearing, oral
motor skills and neurological development.
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2. “Typical language development” (N = 23, 8 male, 15 female, 37.7%) defined as (i) perfor-
mance not>2SD below expected on TEPROSIF or performance>2 years below expected
for chronological age on TEPROSIF (for children aged over 6 years) and performance above
the 10th percentile on both the receptive and expressive scales of the TEGE.

3. “Nonspecific language impairment” (N = 22, 13 male, 9 female, 36.1%) defined as (i) perfor-
mance>2SD below expected on TEPROSIF or performance>2 years below expected for
chronological age on TEPROSIF (for children aged over 6 years) and/or performance below
the 10th percentile on either the receptive or expressive scales of the TEGE, and (ii) nonver-
bal IQ>1SD below age-expected, and/or (iii) evidence of hearing loss or oral motor disabili-
ty (e.g cleft lip) or abnormal neurological development.

The observed language deficits in the individuals diagnosed with SLI were typical of those
described in other SLI cohorts and involved varied deficits across grammatical, morphosyntac-
tical and receptive aspects of language, but not dialectic variations in intonation, vocabulary
or phonology.

Phenotyping and selection of the Robinson Crusoe family cohort
Since we were particularly interested in genetic contributions to SLI, our family cohort con-
sisted of the first-degree relatives of the 39 founder-related children presenting with SLI or typ-
ical language development. All available first-degree family members (92 parents and siblings,
47 male, 45 female) were assessed for language difficulties using tests of verbal fluency (Barce-
lona test [62]) and verbal comprehension (Token test [63]). These family members included 11
parents who were not related to a founder member of the Island (referred to as non-founder-
related parents). In addition to these formal language assessments, all individuals (or their pa-
rents or spouses) completed a family history interview (provided by P Tallal) [64], which spe-
cifically asks questions regarding language difficulties. On the basis of these data individuals
were classified as either:

1. “Language-impaired” (N = 34, 15 male, 19 female, 37.0%, including 4 non-founder-related
parents) if they scored below the 10th percentile on either the Barcelona test or the token
test or they self-reported a need for writing or reading support at school or a history of lan-
guage support in the family history questionnaire.

2. “Typical language ability” (N = 58, 32 male, 26 female, 63.0%, including 7 non-founder-re-
lated parents) if they scored above the 10th percentile on both the Barcelona test and the
token test and they indicated no requirement for writing, reading or language support in the
family history questionnaire.

Exome sequencing of selected Robinson Crusoe children
Five Islanders (3 male, 2 female) from the child cohort who had been diagnosed with SLI were
selected for exome sequencing. The selection of individuals for sequencing was based upon the
amount and quality of DNA available, the severity of observed language impairment and their
known relationships with other affected individuals. The five children were selected to cover
the different branches of the founder pedigree and were descendants of the founder families
(Fig. 1).

Exome capture was performed using 10μg of genomic DNA with a first generation (v1) Agi-
lent SureSelect human exome kit (Agilent, Santa Clara, CA, USA), which provide an average
target coverage of 80% of the exome at 56-fold across all samples. Sequencing of the generated
fragments was performed on the SOLiD 4 sequencer (Life Technologies, Carlsbad, CA, USA).
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Color space reads were mapped to the human reference genome (hg18) in the SOLiD bioscope
software (v1.2), which applies an iterative mapping approach. Variants were called using a
diBayes algorithm [65] using high stringency settings, requiring calls on each strand. Small in-
sertions and deletions were detected using the SOLiD Small Indel Tool. We assumed a binomi-
al distribution with a probability of 0.5 of sequencing the variant allele at a heterozygous
position. Given such a distribution, a minimum of ten reads would be required to provide a
99% probability that two or more reads contain an allele variant call. We filtered variant calls
to have at least four unique (i.e. different start sites) variant reads with the variant being present
in at least 15% of all reads.

To test the hypothesis that the founder brothers carried a rare causative genetic mutation,
for our downstream analyses, we focused upon novel variants that were potentially deleterious.
Each exome file was individually filtered to exclude nongenic, intronic (other than canonical
splice sites) and synonymous variants. The remaining nonsynonymous and splice-site muta-
tions were further filtered to exclude known sites of variation (as described in dbSNP, (build
130), publically available genome sequences and an in-house sequencing database). The re-
maining variants were then compared across exome samples to allow the selection of variants
that occurred in 3 or more of the 5 children sequenced. A flow diagram of the methodology
can be found in S1 Fig.. Shared novel, potentially deleterious variants discovered in the exome
data were verified by Sanger sequencing. Primers for Sanger sequencing were designed in prim-
er3 [66]. Primer sequences are available on request.

Association analyses of selected variants in the Robinson Crusoe
population
All novel nonsynonymous or canonical splice-site variants found to occur in 3 or more of the 5
exome samples were also genotyped in the wider child and family cohorts from the Robinson
Crusoe population. We were able to obtain DNA samples for 35 founder-related children
(from the SLI and typical language development child groups described above) and their family
members (from the family cohort described above). Forty nine of these individuals (16 chil-
dren, 22 parents (4 of whom were non-founder-related), 7 siblings and 4 half-siblings) were
language impaired and 62 (19 children, 32 parents (7 of whom were non-founder-related), 9
siblings and 2 half-siblings) had language ability in the normal range. These families included
the five children used in the exome sequencing. DNA was extracted from EDTA whole blood
samples using a standard chloroform extraction protocol. All novel nonsynonymous or canon-
ical splice-site variants identified from the exome screen were sequenced using a standard
Sanger protocol in these 111 individuals.

The resultant genotype data were used to perform a family-based test of association within
the MQLS-XM package [36,67]. This algorithm calculates a quasi-likelihood score which cor-
rects the Chi-square statistic for relationships between individuals, providing accurate type I
error rates [68]. The MQLS-XM extension allows for the accurate application of this statistic to
X-linked markers [67]. The MQLS algorithm distinguishes between unaffected controls and
controls of unknown phenotype, can incorporate phenotypic data from individuals who have
not been genotyped [36] and is robust to the mis-specification of prevalence. It allows for the
presence of both linkage and association effects in the test statistic and is computationally
straightforward making it particularly suitable for large complex pedigrees in which cases and
controls may be inter-related, as is the case in this study [36].

A full pedigree structure was generated that accounted for all known relationships be-
tween 111 individuals from the child and family cohorts and the two identified, shared,
founder brothers. This pedigree included 288 individuals (141 males, 144 females and 85
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founders (i.e. individuals with no parental information available—both original founders
and incoming), 203 non-founders) over 5 generations. As described above, 111 individuals
(including 11 non-founder-related parents) had full genotype and phenotype data, 11 indi-
viduals were also included who had phenotype data but no genotype data and the remaining
166 individuals had no phenotype or genotype data but defined relationships between the
111 genotyped individuals and the founder brothers. In the MQLS-XM analyses, the ex-
pected prevalence of SLI was set at 0.25 for males and 0.27 for females. These figures were de-
rived from the child cohort described above.

Any variant that was significantly associated with language impairment in the population
cohort was genotyped in 127 independent European population controls (ECACC, HRC-1
DNA Panel),441 independent South American controls; 320 individuals of Colombian descent
and 121 individuals of Chilean origin. The Colombian controls were collected as part of a ge-
netic demography study in the Colombian population, where all participants had to have four
grandparents of local origin (provided by Luis Carvajal-Carmona and Maria Magdalena Eche-
verry). The Chilean controls were ascertained from the Santiago area and consisted of DNA
from 30 male Chilean students (provided by P Villanueva) and from 91 female adult controls
from a breast cancer study (provided by L Jara, University of Chile). Genome-wide SNP data
indicated that these samples were of Amerindian and European ancestry. Note that both the
European and South American control populations were unselected and, as such, were not
screened for language ability.

Linkage analysis of chromosome 4
Genome-wide linkage data for the Robinson Crusoe validation cohort have previously been re-
ported [35]. These previous analyses included 6,090 SNPs and reported suggestive linkage
(P<7.3×10−4) between SLI and chromosomes 2, 6, 7, 8, 9, 12, 13 and 17. In the current study,
we had access to a new set of denser genotypes from the Robinson Crusoe population, generat-
ed with the Affymetrix Axiom GW-LAT 1 array (Affymetrix Inc, Santa Clara, CA, www.
affymetrix.com), supplemented with a custom array designed to cover South American-specific
variants which together included 1,141,741 SNPs.

929 SNPs across chromosome region chr4:46,000,000–49,000,000 (hg19) were selected to
cover the chromosome region surrounding the NFXL1 gene (reported transcript—
chr4:47,849,258–47,916,680, hg19). SNP data were filtered within PLINK [69] to remove mark-
ers in close linkage disequilibrium (r2>0.5) resulting in a linkage dataset of 54 independent
SNPs that were appended with rs144169475 genotype data and analysed for linkage in MER-
LIN [70]. Linkage disequilibrium between these SNPs and rs144169475 are provided in S3 Fig.

Since linkage packages were unable to analyse genome-wide data for the 321-bit Robinson
Crusoe validation pedigree as a whole, it was broken into sub-pedigrees manually selected on
the basis of closest shared ancestor. We employed linkage sub-pedigrees and linkage methods
analogous to those described in the previous linage study [35]; Seven extended families of 20–
24 bits (where a bit is defined as twice the number of non-founders—the number of founders)
were analysed for linkage under parametric and nonparametric models with MERLIN (S2 Fig.)
Parametric linkage analyses were performed under a model which reflected the observed na-
ture of rs144169475 (assuming a disease frequency of 26.2% (as observed in the Robinson Cru-
soe children) and penetrance of 0.76 (as observed in the Robinson Crusoe validation cohort).
Nonparametric linkage results are reported as P-values derived from the Kong and Cox expo-
nential model, which can be more powerful in large pedigrees [71]. Expected allele frequencies
were derived from the 1000 Genomes AMR super-population (integrated phase 1, accessed
March 2014) which includes 181 independent South American individuals (60 Colombians
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fromMedellin, Colombia (CLM), 66 individuals with Mexican ancestry in Los Angeles (MXL)
and 55 Puerto Ricans from Puerto Rico (PUR)) [40].

Functional effects of identified variants
Putative functional effects of associated variants were evaluated using MutationTaster [72].
MutationTaster uses a Bayes classifier which integrates information from various biomedical
databases and analysis tools to evaluate the possible pathogenicity of coding variants. Muta-
tionTaster considers evolutionary conservation at both the nucleotide and amino acid level,
splice-site changes, loss of protein motifs or features and changes that might affect the level of
mRNA expression and stability within a single tool to classify variants as a “disease mutation”
or a “polymorphism”. A p-value is given to indicate “the security” of the prediction [72]. The
MutationTaster algorithm was trained using more than 390,000 known disease mutations
from HGMD and more than 6,800,000 SNPs and Indel polymorphisms from the 1000 Ge-
nomes Project.

For each of the variants highlighted, we also present the SIFT and polyphen-2 scores. In
contrast to MutationTaster, the SIFT and PolyPhen algorithms primarily consider protein se-
quences, motifs and structures to assign pathogenicity and therefore can only be applied to
coding changes. SIFT performs a multiple alignment of closely related protein sequences to
identify conserved motifs and assign a probability that a given amino acid substitution is path-
ogenic [73]. PolyPhen-2 uses a Bayes classifier to consider the property of the reference and
variant amino acids, the amino acid conservation, protein motifs and 3D protein structure to
derive a probability that a mutation is damaging [74]. SIFT scores vary between 0 and 1.
Amino acid substitutions are classified as “deleterious” for scores�0.05 and “tolerated” for
scores>0.05. In Polyphen-2, two training models are available—HumDiv, which is more ap-
propriate for the identification of fully penetrant Mendelian mutations and HumVar, which is
more appropriate for the classification of rare alleles at loci potentially involved in complex
phenotypes. PolyPhen scores from both of these models vary from 0 to 1, where 0 represents a
variant with no functional effect. Functional effects are classified as “benign”, “possibly damag-
ing”, or “probably damaging”, depending on whether the posterior probability falls above or
below the appropriate false positive thresholds.

Sequencing of candidate genes in SLIC cohort
In order to further investigate the role of NFXL1 variants in SLI, the coding regions of the
NFXL1 gene were subsequently sequenced in 117 unrelated British children affected by SLI.
These children formed part of the SLI Consortium (SLIC) collection, which has previously
been described in detail [7,37,39]. In short, the probands were collected from four sites across
the UK (The Newcomen Centre at Guy’s Hospital, London, the Cambridge Language and
Speech Project (CLASP) [75], the Child Life and Health Department at the University of Edin-
burgh [76] and the Manchester Language Study [77]). All probands were selected to have re-
ceptive and/or expressive language skills (as assessed by the Clinical Evaluation of Language
Fundamentals (CELF-IV-R) [78]) more than 1.5SD below the normative mean for his or her
age and non-verbal IQ (as measured by the Wechsler Intelligence Scale for Children [79]) in
the “normal” range (>80).

The concentration of genomic DNA samples from 117 independent SLIC probands was
quantified by picogreen and each sample normalized to 10ng/μl. Individual DNAs were pooled
prior to PCR amplification. Following PCR, the amplicons were fragmented, end-repaired and
adapter-ligated. The prepared and tagged libraries were then multiplexed before paired-end se-
quencing in a single lane of flow-cell on an Illumina HiSeq 2000 (Illumina Inc, SanDiego, CA,
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www.illumina.com). Sequences were aligned against human reference sequence (37d5) using
STAMPY [80] and variants called by the Syzygy (1.2.6) algorithm to create a VCF file. Syzygy
implements a Bayes likelihood calculation to allow a base calling strategy that is particularly
suited to the calling of variants in pooled samples, in which the frequency of reads containing a
rare variant will be lower than expected [81]. Identified sequence variants were annotated with-
in the SNPeff package allowing the identification of coding variants [82]. Individual DNAs
from all pools that contained a nonsynonymous coding variant with an expected frequency
of<5% were resequenced by Sanger sequencing using primers designed with the primer3 soft-
ware [66]. This allowed the verification of the variants, the derivation of true variant frequen-
cies across pools and the identification of the individuals who carried the variant.

The allele frequencies of coding variants discovered in SLIC probands were compared to
those observed in 4679 individuals of European ancestry across publically available control da-
tabases; the 1000 genomes project (the European (EUR) super-population from integrated
phase 1, accessed March 2014) [40] which includes 379 independent European individuals (89
British in England and Scotland, 93 Finnish in Finland, 14 Iberian populations in Spain, 98
Toscani in Italy and 85 Utah residents with Northern andWestern European ancestry) and the
European American (EA) cohort from the exome variant server (ESP6500 SI-V2, accessed
March 2014) (http://evs.gs.washington.edu/EVS/) which includes data from 4300 independent
individuals of European American ancestry. The 1000 genomes samples are unselected con-
trols while the EVS samples are selected to include controls, extremes of specific traits (LDL
and blood pressure) and specific diseases (early onset myocardial infarction and early onset
stroke). Allele frequencies were compared between SLIC probands and controls using a two-
tailed Fisher’s exact test with 1 degree of freedom. Calculations were performed in the graph-
pad online calculator (http://www.graphpad.com/). Where given variants were observed in al-
ternative populations, these data are reported but were not included in the statistical analyses
since population admixture and stratification can lead to false positives, especially when inves-
tigating rare variants [83].

Supporting Information
S1 Fig. A flow diagram showing the filtering of the exome data. Blue boxes show each filter
step and red boxes describe exclusion criteria involved in each step
(PDF)

S2 Fig. Structure of pedigrees used for linkage analyses (redrawn using data from [35])).
Seven pedigrees of no more than 24-bits were used for linkage analyses. Individuals with lan-
guage impairment are colored in black. Individuals with typical language are denoted in white.
Individuals with unknown phenotype are shaded grey.
(PDF)

S3 Fig. Linkage disequilibrium between markers across NFXL1 region. a—Linkage disequi-
librium between all genotyped markers (n = 929) across chr4:46–49Mb (hg19). b—Linkage dis-
equilibrium between all analyzed markers (n = 55) across chr4:46–49Mb (hg19), after pruning
for r2>0.5. Position of NFXL1 gene is shown by red box. Plots were generated in haploview
(http://www.broadinstitute.org/scientific-community/science/programs/medical-and-
population-genetics/haploview/haploview) using linkage pedigrees (as shown in S2 Fig.). Color
scheme is standard haploview colour scheme (blue—D’ = 1, LOD<2; white—D’<1, LOD<2;
pink/red—LOD≥2).
(PDF)
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S4 Fig. Linkage across the NFXL1 region. No linkage was observed to the NFXL1 region of
chromosome 4 under parametric and non-parametric models using a dense SNP array. The ap-
proximate position of the NFXL1 gene is indicated by the red box on the X axis.
(PDF)

S1 Table. Exome sequencing metrics.
(PDF)

S2 Table. Regions of suggestive linkage in the Robinson Crusoe population (as presented
in [35]).
(PDF)

S3 Table. All variants found under the peaks of previous linkage (as reported in [35]) that
were shared across all 5 exome samples.
(PDF)

S4 Table. Genotype reconstruction simulations. The NFXL1 variant has an expected popula-
tion frequency of between 0.033 (1000 genomes CLM) and 0.09 (1000 genomes PUR) and is
predicted to be present in both founder brothers (frequency in founder brothers of 0.5). Given
the population structure, it would therefore be expected to be present in the current population
at a frequency of between 0.08 (MAF = 0.03) and 0.14 (MAF = 0.10). Although the frequency
of the NFXL1 variant in the founder-related individuals of the Robinson Crusoe validation co-
hort was at this expected level (0.125), the variant allele was found to cosegregate with language
impairment; the frequency of the NFXL1 variant in the founder-related individuals with SLI
was above expected (0.194) while that of founder-related individuals with typical language was
below expected (0.048), supporting a pathogenic role for this allele.
(PDF)

S1 Text. Genotype reconstruction simulations.
(PDF)
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