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a b s t r a c t

An accurate description of turbulent core convection is necessary in order to build robust models of
planetary core processes. Towards this end, we focus here on the physics of rapidly rotating convection.
In particular, we present a closely coupled suite of advanced asymptotically-reduced theoretical models,
efficient Cartesian direct numerical simulations (DNS) and laboratory experiments. Good convergence is
demonstrated between these three approaches, showing that a comprehensive understanding of the
dynamics appears to be within reach in our simplified rotating convection system. The goal of this paper
is to review these findings, and to discuss their possible implications for planetary cores dynamics.
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that qualitatively resemble non-magnetic rotating convection
(e.g., Kageyama and Sato, 1997; Olson et al., 1999; Ishihara
and Kida, 2002; Aubert et al., 2008; Soderlund et al., 2012;
Sreenivasan et al., 2014). For example, Fig. 1b shows a snapshot of
the radial component of the magnetic field on the outer boundary
of a spherical shell dynamo simulation from the study of
Soderlund et al. (2012), with resolution up to spherical harmonic
degree 64. In this image, strong magnetic flux patches are evident
at higher latitudes near where the tangent cylinder intersects the
outer boundary. Further, strong flux patches are generated with a
high degree of symmetry across the geographic equator. (For
detailed descriptions of magnetic induction processes in planetary
dynamos and numerical dynamo models, we refer to a number of
recent review articles: Sreenivasan (2010), Jones (2011), Roberts
and King (2013).)

The magnetic field in Fig. 1b is generated by simultaneously
solving the evolution equations of convection-driven magnetohy-
drodynamic induction in a spherical shell with outer boundary ro

and inner boundary ri (e.g., Glatzmaier, 2013):

@tuþ ðu � rÞu ¼ �rpþ ðRaPr�1ÞHð~r=roÞ þ r2u� E�1ẑ� u

þ ðEPmÞ�1ðr � BÞ � B; ð1Þ

@tHþ ðu � rÞH ¼ Pr�1r2H; ð2Þ

@tBþ ðu � rÞB ¼ ðB � rÞuþ Pm�1r2B; ð3Þ

subject to the solenoidal conditions r � u ¼ 0 and r � B ¼ 0 for the
velocity and magnetic fields, u and B, respectively. The first
equation describes the conservation of momentum in a rotating
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1. Introduction

Earth’s global-scale magnetic field is generated deep inside our
planet, within the iron-rich core. Flows of molten metal in the
liquid outer core, which are likely driven by thermo-chemical
buoyancy forces, continually regenerate the geomagnetic field, cre-
ating a self-sustaining planetary dynamo. Fig. 1a shows the radial
component of the geomagnetic field in 2000 A.D. plotted on the
core-mantle boundary (CMB) (Jackson, 2003). In this image, the
field is spatially-resolved up to spherical harmonic degree 13;
higher order components are masked by the magnetization of
Earth’s crust (e.g., Fig. 3 in Roberts and King, 2013). The magnetic
field is dominated by its axial dipolar component, with magnetic
flux predominantly emerging from the southern hemisphere and
returning back through the CMB in the northern hemisphere.
Most of the axial dipole’s energy is contained in four strong high
latitude flux patches, two in the northern hemisphere and two in
the southern hemisphere (e.g., Olson and Amit, 2006). These flux
patches are located in the vicinity of the tangent cylinder, the
imaginary axial cylinder shown schematically in Fig. 1d that
circumscribes the solid inner core’s equator. Magnetic flux patches
exist in the vicinity of the magnetic equator as well. These equato-
rial flux patches also contain significant magnetic energy (Jackson,
2003). Due to their low latitude placement, they contribute princi-
pally to the higher, non-dipolar axial components of the geomag-
netic field.

At present, numerical simulations form the primary tool for
studying dynamo processes on Earth and the other planets (e.g.,
Stanley and Glatzmaier, 2010). Dynamo action develops in these
simulations, primarily driven by axially-aligned columnar flows

J.M. Aurnou et al. / Physics of the Earth an
Fig. 1. (a) Radial magnetic field, Br , on Earth’s core-mantle boundary (CMB), adapted from Jackson (2003). Red (blue) denotes magnetic field parallel (antiparallel) to the
radial outward normal vector. (b) Outer boundary Br from a numerical simulation by Soderlund et al. (2012); E ¼ 10�4; Pr ¼ 1; Pm ¼ 2;Ra ¼ 1:42� 106 ¼ 1:9Racrit , and radius
ratio v ¼ ri=ro ¼ 0:4. The intersection of the tangent cylinder with ro is denoted by the solid black lines at cos�1ðvÞ ¼ �66:4� latitude. (c) Axial vorticity, f ¼ ẑ � ðr � uÞ,
rendered from the same Ra ¼ 1:9Racrit case. Purple (green) denotes fluid vorticity aligned parallel (antiparallel) to the system’s rotation axis. (d) Schematic of laminar axial
convection columns of width ‘conv , with associated large-scale outer boundary magnetic flux patches shown at the ends of the cyclonic columnar structure (f > 0, purple).



shell of electrically conducting, Boussinesq fluid. The second equa-
tion is the thermal energy equation and the third is the magnetic
induction equation. The dynamic pressure is demarcated by p and
(superadiabatic) temperature is denoted by H.

This system of equations has been non-dimensionalized using
the following scales: H for length, where H ¼ ro � ri here denotes
the fluid shell thickness (in later usages, H will represent the
Cartesian layer depth in ẑ); H2=m for time, where m is the fluid’s
kinematic viscosity; m=H for velocity; qm2=H2 for pressure, where
q is the fluid’s mass density; DH ¼ HðriÞ �HðroÞ for the fixed tem-
perature difference between the shell boundaries; X for the sys-
tem’s constant angular rotation rate, which is oriented in the
axial ẑ-direction; and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2qlogX

p
for the magnetic field, where lo

is the magnetic permeability of free space, g is the fluid’s magnetic
diffusivity, and X is the axial angular rotation rate of the system.

Non-dimensionalizing the system in this way then yields the
following non-dimensional control parameters. The Rayleigh num-
ber Ra ¼ agoDHH3=ðmjÞ is the thermal and viscous time scales nor-
malized by the squared buoyancy time scale, where a is the
thermal expansivity and go is the gravitational acceleration on
the outer boundary. The Prandtl number Pr ¼ m=j is the ratio of
the fluid’s thermal and viscous diffusion time scales. The Ekman
number E ¼ m=ð2XH2Þ is the system’s rotation time scale, 1=ð2XÞ,
normalized by the viscous diffusion time scale. The magnetic
Prandtl number Pm ¼ m=g is the ratio of the fluid’s magnetic and
viscous diffusion time scales, where the fluid’s magnetic diffusivity

g ¼ ðlorÞ
�1 is the reciprocal of the magnetic permeability lo and

the fluid’s electrical conductivity r.
Characteristic estimates of these control parameters in

current-day planetary dynamo simulations, such as those of
Soderlund et al. (2012) and Sreenivasan et al. (2014), are
Ra � 107; Pr � 1; E � 10�4, and Pm � 1. In contrast, characteristic
values in Earth’s core are Ra � 1025; Pr � 3� 10�2; E � 10�15,
and Pm � 10�5 (Gubbins, 2001; Schubert and Soderlund, 2011).
Thus, planetary dynamos and current-day numerical models of
planetary dynamo action operate in disparate regions of parameter
space, with most of the defining time scales differing by many
orders of magnitude. It therefore remains unclear whether today’s
dynamo models correctly capture the leading order physical pro-
cesses operating in planetary cores.

Another difficulty in building accurate models of core dynamics
is that it is not possible to directly sense the velocity fields that drive
the dynamo. Instead, cores flows must be inferred based on remote
observations of the magnetic field itself (e.g., Pais and Jault, 2008). In
contrast, one of the great strengths of numerical dynamo models is
that researchers have complete information on the velocity fields
that generate the model’s dynamo action. For example, Fig. 1c
shows a snapshot of the flow field that corresponds to the magnetic
field shown in Fig. 1b. The purple surfaces in Fig. 1c show positive
axial vorticity (f ¼ ẑ � r � u), connoting cyclonic or counterclock-
wise axial circulation measured in the rotating frame. The green
surfaces show regions of negative axial vorticity. The boundary lay-
ers located adjacent to non-slip boundaries are not shown in this
image in order to provide a clear view of the bulk convective flow.
The bulk flow is dominated by axially-aligned convection columns,
which roughly fill the fluid shell volume but are strongest in the
region just outside the tangent cylinder. The high latitude strong
magnetic flux patches are affiliated with the cyclonic vortices (pur-
ple structures in Fig. 1c). This occurs because buoyancy-driven
intra-columnar flows and Ekman pumping on ro both act to gener-
ate convergent flows into the cyclonic columns, concentrating the
outer boundary magnetic field in their vicinity (e.g., Olson et al.,
1999; Ishihara and Kida, 2002; Aubert et al., 2008; Takahashi and
Shimizu, 2012). Thus, the magnetic flux patches are found to be

similar in the horizontal scales to the convection columns, and are
strongest in the vicinity of the tangent cylinder where the columns
tend to outcrop on ro. Since roughly 10–20 columns exist in these
models, a qualitatively comparable number of flux patches are
generated. Further, there are radially diverging and converging
flows from the columns in the equatorial plane. These
near-equatorial radial flows can efficiently generate low-latitude
magnetic flux patches (Bloxham, 1986), as are also evident in Fig. 1b.

Comparison of Figs. 1a and 1b shows that there is a high degree
of agreement between the observed geomagnetic field morphology
and the magnetic field morphologies generated in numerical
dynamo models, with strong, axially-aligned flux patches at high
latitudes as well as smaller-scale flux patches in the equatorial
regions. This agreement between observed and surface magnetic
fields in current-day planetary dynamo models, with relatively
high Ekman numbers, has led to the argument, shown schemati-
cally in Fig. 1d, that the flows in present day dynamo models can
be extrapolated to planetary core settings (e.g., Christensen,
2010, 2011).

However, it is not clear that the dynamo-generating flows, and
the physics underlying those flows, are well understood in Earth’s
core. For instance, three recent studies have put forth explanations
of the observed geomagnetic secular variation based, respectively,
on heterogeneously-forced rotating convective flows (Aubert et al.,
2013), on flows governed by so-called ‘‘magnetic winds’’
(Livermore et al., 2013), and by the action of stably-stratified
magnetostrophic waves (Buffett, 2014). Taken as an ensemble,
these studies show that the parameters describing planetary core
magnetohydrodynamics (MHD) are sufficiently unconstrained that
these three fundamentally different models can all provide viable
explanations of the available geomagnetic data.

It is clear, though, that the flows that generate dynamo action in
Earth’s core must be turbulent. System-scale dynamo action can
arise only if magnetic induction is capable of overcoming magnetic
diffusion. The magnetic Reynolds numbers estimates this ratio on
the scale of the system:

Rm ¼ UH
g
; ð4Þ

where U is a characteristic velocity estimate. Dynamo action
becomes possible above some critical value Rmcrit ¼ Oð10Þ (cf.
Christensen and Aubert, 2006; Schaeffer and Cardin, 2006). The
value of Rm in Earth’s core is roughly estimated to be of order
103, well above Rmcrit . The magnetic Reynolds number can be recast
as

Rm ¼ RePm; ð5Þ

where Re ¼ UH=m is the system-scale hydrodynamic Reynolds num-
ber, estimated by the ratio of the viscous diffusion time scale and
the advection time scale. Flows with Re J 104 are typically turbu-
lent, with a broad range of length and time scales as well as
cross-scale energy transfers that allow for complex cascades of
energy through the system (e.g., Davidson, 2004, 2013; Mininni
and Pouquet, 2010; Nataf and Schaeffer, 2015; Ouellette, 2012;
Rubio et al., 2014). In Earth’s core, the value of Pm is estimated to
be between 10�5 and 10�6 (e.g., Pozzo et al., 2012), which suggests
that the Reynolds number in Earth’s core is between roughly 108

and 109.
The core’s high Reynolds number value then implies that turbu-

lent flows exist there. However, these flows are not expected to be
well described by the isotropic, homogeneous turbulence that
arises in unconstrained turbulent settings (Frisch, 1995;
Davidson, 2004). Instead, core turbulence is expected to be mas-
sively constrained by the action of system rotation and magnetic
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fields (Julien and Knobloch, 2007; Davidson, 2013), and possibly by
stratification near the boundaries (e.g., Gubbins et al., 2008;
Buffett, 2014). The rotational influence on the system-scale is
parameterized by the Rossby number, which is the ratio of the
rotation time scale and the advection time scale,

Ro ¼ U
2XH

¼ ReE; ð6Þ

and has estimated values ranging from 10�5 to 10�7 in Earth’s core
(e.g., Finlay and Amit, 2011).

In the absence of magnetic fields, the action of strong rotational
forces at Ro� 1 is to impose the geostrophic force balance

E�1ẑ� u 	 �rp with r � u ¼ 0: ð7Þ

This is a pointwise diagnostic balance, which contains no dynamical
information. If all other forces remain subdominant, a consequence
of geostrophy is that the flow field becomes invariant over an axial
scale z, following the Taylor–Proudman theorem (TPT), i.e., (e.g.,
Stewartson and Cheng, 1979; Tritton, 1988; Davidson, 2013):

@zðu; pÞ 	 0: ð8Þ

However, geostrophy and the TPT do not imply that there are no
inertial effects in low Rossby number flows. These balances are
not exact: small imbalances that arise due to inertial and buoyancy
forces are capable of driving turbulent fluid motions (e.g., Sprague
et al., 2006; Sreenivasan and Jones, 2006b). Indeed, turbulent
exchanges can still occur between small-scale inertial flows and
large scale axialized modes (e.g., Julien et al., 2012b; Favier et al.,
2014; Guervilly et al., 2014; Stellmach et al., 2014). When resolved
in state-of-the-art simulations, these spatially anisotropic, and
often spectrally non-local, exchanges can lead to novel modes of
rotating convective flow (e.g., Heimpel et al., 2005; Käpylä et al.,
2011; Chan and Mayr, 2013; Rubio et al., 2014) and dynamo action
(Guervilly et al., 2015). This idea – that turbulent motions and
fluxes are possible in low E, low Ro settings – will prove relevant
to following discussions of core convection in this manuscript.

To understand present-day dynamo modeling results as well as
turbulent core flow, it is essential then to understand the physics of
strongly-constrained convection. In rapidly-rotating layers of mod-
erate Pr � 1 fluids, such as water (e.g., Grooms et al., 2010; King
and Aurnou, 2012; Nieves et al., 2014) and those used in present

day dynamos (e.g., Christensen and Aubert, 2006; Soderlund
et al., 2012), laminar convection first occurs, or ‘onsets’, in the form
of steady columns that are tall and narrow (e.g., Veronis, 1959;
Sprague et al., 2006; Grooms et al., 2010; King and Aurnou,
2012). At convective onset, viscous forces perturb the geostrophic
balance to select the narrow horizontal scale of the columns, ‘conv

(e.g., Fig. 1d). By noting that the column height at onset, and thus
the scale over which the TPT is relaxed, is predicted to be H, this
small imbalance can be shown to be the result of vertical vorticity
production through vortex stretching and vortical dissipation.
These effects lead to the estimate of a convective cell with horizon-
tal width ‘conv � E1=3H. In the E! 0 limit, stability analyses shows
that ‘conv varies as

‘conv ¼ 2:4E1=3H ð9Þ

in rotating plane layer geometry (Chandrasekhar, 1961; Julien and
Knobloch, 1998). Qualitatively similar scalings are found in spheri-
cal geometries as well (e.g., Zhang and Schubert, 2000; Dormy et al.,
2004).

Another source of vorticity production in planetary fluid flows
can arise due to fluid compressibility. Such effects are likely of rel-
evance in gas planets (e.g., Glatzmaier et al., 2009; Kaspi et al.,
2009), and may be relevant in Earth-sized terrestrial cores as well
(cf. Anufriev et al., 2005; Verhoeven and Stellmach, 2014). The
effects of self-compression in liquid metal cores are not, however,
considered here, but can be accurately incorporated via
fully-compressible models (Calkins et al., 2014; Calkins et al.,
2015a).

In present-day Cartesian models of rotating convection (Fig. 2a)
and planetary dynamo action in spherical geometries (Fig. 2b),
columnar convection structures follow the E1=3 scaling predicted
in (9), albeit with differing scaling coefficients (King et al., 2013;
King and Buffett, 2013). These E1=3 scalings demonstrate that these
flows are geostrophically balanced at leading order. From Fig. 2b it
can also be seen that the median value of the Ekman number in
present-day planetary dynamos is roughly 10�4. The current
community-wide understanding of core dynamo physics (e.g.,
Christensen, 2010) is based predominantly on the results of
dynamo models carried out in the vicinity of E � 10�4. At this med-
ian E-value, the width of convection columns is predicted by (9) to

Fig. 2. (a) Characteristic length scales from the planar rotating convection survey studied in King et al. (2012); (b) Characteristic length scales from the spherical planetary
dynamo survey studied in King and Buffett (2013).
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be ‘conv=H ’ 0:1. These large-scale, viscous onset columns are
extremely efficient at generating large-scale magnetic fields via
magnetic flux patches that are of the same scale as the columns
themselves (Fig. 1b) (e.g., Olson et al., 1999).

Mapping these E ’ 10�4 results directly to Earth’s core leads to
the prediction of columns and associated magnetic flux patches
of order 1000 km in diameter, comparable to the geomagnetic
observations (Fig. 1a). However, if instead, one extrapolates (9) to
Earth core conditions, where E ’ 10�15, this leads to the prediction
that the columns would be of order 10–100 m in width. If such nar-
row structures are capable of existing in the core (cf. Nataf and
Schaeffer, 2015), they would be far too small in scale to be geomag-
netically observable.

Although such small-scale flow structures will not generate
individual magnetic flux anomalies that are externally observable,
this does not imply that small-scale flows are unable to take part in
the large-scale dynamo generation process. In fact, a great deal of
theoretical work has shown that small scale flows that have small
local magnetic Reynolds numbers, Rm‘ ¼ U‘conv=g� 1, can gener-
ate ensemble electromotive forces that produce dynamo action
on the large scale (e.g., Childress and Soward, 1972; Soward,
1974; Moffatt, 1978; Stellmach and Hansen, 2004; McWilliams,
2012; Roberts and King, 2013; Calkins et al., 2015b). However,
the ensemble averaging of the well-organized, laminar flows that
develop near the onset of rotating convection (Veronis, 1959) will
tend to produce spatially uniform large-scale dynamo fields (e.g.,
Favier and Proctor, 2013) that are unlike the observed patchy geo-
magnetic field.

To illustrate the above arguments, Fig. 3 shows snapshots of the
outer boundary radial magnetic field, BrðroÞ, generated in two
dynamo models from Sreenivasan (2010). Fig. 3a shows the results
of a dynamo model with E ¼ 5� 10�5 and Pm ¼ 1. In this case,
large-scale convection columns generate an axial dipole field that
has clear crenelations that correlate closely with the columnar
flows. Fig. 3b shows BrðroÞ in a more extreme case with
E ¼ 1:5� 10�6 and Pm ¼ 0:1. The latter case produces a more uni-
form large-scale axial dipolar magnetic field, with fewer
large-scale magnetic flux patches outside the tangent cylinder, dis-
similar to geomagnetic observations (cf. Christensen et al., 2010).
Extrapolation of these results suggests that axial columnar flows,

as exist in current day models, will remain capable of generating
dynamo action in the limit of low E and Pm, but that such models
will produce smooth, scale-separated large-scale magnetic fields
that bear little resemblance to that of the Earth.

How then do rapidly rotating, strongly turbulent, low-Rm‘ plan-
etary dynamos generate strong, large-scale magnetic flux patches?
Similar to the geomagnetic secular variation, numerous possible
answers exist to this question:


 Large-scale flux anomalies may arise due to large-scale bound-
ary heterogeneities (Gubbins and Richards, 1986; Bloxham and
Gubbins, 1987; Johnson and Constable, 1998). Recent dynami-
cal models of these effects include the topographic CMB hetero-
geneity study of rapidly rotating convection by Calkins et al.
(2012) and the heterogeneous buoyancy-flux driven model of
the geodynamo by Aubert et al. (2013).

 It may be possible that large-scale modes of fluid motion inher-

ently dominate core flows. For example, fixed flux boundary
conditions may favor the existence of low wavenumber flows
(e.g., Sakuraba and Roberts, 2009; Hori et al., 2012; Matsui
et al., 2014; Cao et al., 2014, cf. Johnston and Doering (2009)).

 Constrained turbulent systems often generate large-scale flows

either via energy transfer into coherent structures (e.g.,
McWilliams, 1984; Bardóczi et al., 2012) or through turbulent
(non-diffusively-controlled) instabilities (e.g., Aurnou et al.,
2003; Zimmerman et al., 2011). Large-scale magnetic flux
patches may be the expression of turbulent large-scale struc-
tures in the core (e.g., Guervilly et al., 2015).

 It could even be that localized regions of intensified magnetic flux

arise simply as a by-product of our remote observations of a
multi-scale field. Turbulent systems typically have broad ranges
of spatiotemporal complexity. Spectrally low-passed, external
observations of the geomagnetic field highlight low degree flux
anomalies. For examples of this phenomenon, see Fig. 4 in
Calkins et al. (2012) and Fig. 4 in Roberts and King (2013).

 Lastly, it is possible that these mechanisms are convolved

together in geophysical and astrophysical settings.

An accurate description of turbulent core-style convection – in par-
ticular, its essential flow behaviors and characteristic length-scales
– is necessary in order to deconvolve and disambiguate the

Fig. 3. Comparison of outer boundary radial magnetic field intensities, BrðroÞ, from two dynamo simulations carried out in Sreenivasan (2010). (a) More moderate case carried
out with E ¼ 5� 10�5; Ra=Racrit ¼ 11; Pr ¼ Pm ¼ 1. (b) More extreme case with E ¼ 1:5� 10�6; Ra=Racrit ¼ 50; Pr ¼ 1, and Pm ¼ 0:1. In both images, red (blue) denotes
positive (negative) values. Image adapted from Sreenivasan (2010).
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mechanisms described above. Towards this end, we focus here on
developing a better understanding of the physical processes in the
case of rapidly rotating convection. In this physics-driven
approach, we choose to reduce the complexity of the problem in
hopes of developing a comprehensive understanding of rotating

convection systems, while still retaining many key aspects of plan-
etary core flows. In particular, we present here (i) advanced theoret-
ical models containing the leading order physical processes in the
asymptotic limit of rapid rotation; (ii) Cartesian direct numerical
simulations (DNS), that can be carried out at more extreme param-
eter values than spherical models; and (iii) laboratory experiments
capable of reaching levels of turbulence beyond what can be inves-
tigated in even the most advanced simulations. Good convergence is
demonstrated between these approaches. Thus, a comprehensive
understanding of the dynamics appears to be within reach in our
simplified rotating convection system. The goal of this paper is to
review these findings, and to discuss their geophysical implications.

2. Methods of studying rapidly-rotating convection

In this section, we present the three independent means of
investigating rapidly rotating core-style convection considered
here: (i) laboratory experiments, (ii) direct numerical simulations,
and (iii) asymptotically-reduced models. In all three, core convec-
tion is simulated in a parcel of fluid located near the poles, where
the gravity vector is parallel to the rotation axis (Fig. 4). The top
and bottom boundaries are flat in these models. With no boundary
curvature, Rossby waves do not develop and solutions do not drift
in azimuth. Thus, these techniques model the fundamental rotat-
ing convection dynamics without the complexities of Rossby
waves and zonal flows (e.g., Gillet et al., 2007; Calkins et al., 2012).

The capabilities of these approaches are shown schematically in
Fig. 5. We posit that the intercomparison of these different meth-

Fig. 4. (Left) Schematic view of Earth’s interior. The coloration represents the
buoyancy gradient that drives thermo-compositional convection in the iron-rich
outer core fluid. (Right) Snapshot image of a laboratory rotating thermal convection
experiment. Qualitatively similar to a polar region in the core (e.g., Sreenivasan and
Jones, 2006a), the gravity and rotation and buoyancy gradient vectors are all axial. A
laser light sheet hitting reflective flakes shows the shear structures in the rotating
convective flow. Here the adverse temperature gradient is represented by the
coloration, with vermilion (aquamarine) representing the warmer (cooler) fluid.
Image adapted from Cheng et al. (2015).

Fig. 5. Reynolds–Ekman regime diagram showing the different capabilities of various methods of studying rotating convection and dynamo physics. The salmon, dark grey,
and deep violet colored boxes represent, respectively, the accessibility ranges of direct numerical simulations (e.g., Stellmach et al., 2014), global dynamo models (e.g.,
Sheyko, 2014; Jones, 2014; Nataf and Schaeffer, 2015) and rotating convection experiments in water (e.g., Cheng et al., 2015). The solid black line denotes Ro ¼ ReE ¼ 1, where
geostrophic balance is expected to be lost at all scales in the fluid layer. The black dashed line corresponds to Ro ¼ 10�6, a typical estimate of Ro in Earth’s core. The red and
green lines represent upper bounding limits on the reduced models, with the solid part of these lines marking the lower of the two bounds. The red line demarcates where the
local Ro‘ ¼ RoE�1=3 = 0.1, above which the assumption of local geostrophic balance likely breaks down, thereby invalidating the reduced equations. The green line represents
current-day computing capabilities for the reduced models, for which Re‘ K 103 (e.g., Rubio et al., 2014).
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ods, each with its different strengths and weaknesses, optimizes
our ability to understand rotating convection physics under
extreme, planetary-core-like conditions.

2.1. Laboratory experiments

The laboratory rotating convection experimental results pre-
sented here were made using the ‘‘RoMag’’ device at UCLA.
RoMag consists of an upright cylindrical tank with a fixed 20 cm
diameter. The tank is heated from below and cooled from above
to drive thermal convection. The maximum heating power that
can be passed through the system is about 5 kW. The minimum
heating power is about 25 W, which, importantly, determines the
minimum Ra values that can be accessed in our laboratory exper-
iments. The tank is situated on a pedestal that spins at up to 60
rotations per minute. See King et al. (2012) for further device
details.

An important feature of RoMag’s design is that the height of the
tank’s sidewall can be varied from 3.2 cm to 160 cm. The variable
tank height enables data to be acquired over the broad parameter
ranges (Table 1; Fig. 5) necessary to identify fundamental changes
in system behavior (e.g., King et al., 2009, 2012; Cheng et al., 2015).
This device uses either water or liquid gallium as the working fluid.
Water has a Prandtl number Pr ’ 7, comparable to the Pr � 1 val-
ues used in the vast majority of present-day dynamo models. In
contrast, gallium has Pr ’ 0:025 and better simulates the physical
properties of metallic core fluid (King and Aurnou, 2013). In addi-
tion, gallium has a non-zero magnetic Prandtl number, Pm � 10�6,
and can also be used to study core-style magnetohydrodynamics.
Detailed MHD convection studies are the focus of the most recent
RoMag experimental surveys (e.g., King and Aurnou, 2015; Ribeiro
et al., 2015), but will not be considered herein.

Hydrodynamic convection experiments allow us to characterize
the core-style convective flows that underlie planetary dynamo
action. To quantitatively diagnose the convection behaviors in the
laboratory, simultaneous thermal field measurements are made
on up to 32 thermistors. This allows us to accurately determine
the Nusselt number, Nu, which is the non-dimensional heat transfer
across the fluid layer. The Nusselt number provides a global mea-
surement of convective heat transfer efficiency and reveals funda-
mental changes in convective behavioral regimes (Figs. 10 and
11). We can qualitatively determine the style of convection in water
by putting optically reflective flakes into suspension. A vertical laser
light sheet is used to illuminate the flakes, thereby revealing the
shear structures in the flow (Fig. 7, top row). Combining thermal
measurements with visualizations experiments allows us to map
out differing regimes of convective flow.

2.2. Direct numerical simulations

Direct numerical simulations (DNS) are carried out in Cartesian
domains with periodic sidewall conditions and that solve the

non-magnetic (~B ¼ 0) versions of Eqs. (1)–(3), subject to the

solenoidal velocity condition, r � u ¼ 0, and with constant
gravitational acceleration directed anti-parallel to ẑ (Stellmach
and Hansen, 2008).

In all of the DNS cases, the top and bottom boundaries are
impenetrable and isothermal, with a fixed temperature
difference DH maintained between the top and bottom
boundaries. Calculations using non-slip and free-slip top and bot-
tom mechanical boundaries are both presented (Stellmach et al.,
2014). In addition, an additional set of calculations is shown in
which free-slip mechanical boundary conditions are augmented
by a parameterized Ekman pumping condition (e.g., Greenspan,
1968). DNS are carried out here over the range 10�5 P E P 10�7.
The width, W, of the computational domain is fixed at 10 onset
wavelengths (for stress-free BC’s), corresponding to roughly
20‘conv . Using (9), the aspect ratio C, which is the width W of the
computational domain divided by its height H, is C ’ 48E1=3 for
all the DNS. Thus, the DNS aspect ratios range from C ’ 1 at
E ¼ 10�5 to C ’ 1=5 at E ¼ 10�7.

The numerical resolutions employed in the DNS reach up to
576� 576 points in the horizontal directions by 513 points in
the vertical direction, with a minimum of 10 grid points in the
Ekman boundary layers. The code employed here has been
validated by comparison with the predictions of linear theory
and further benchmarked using reported results (King et al.,
2012; Stellmach et al., 2014).

2.3. Asymptotically reduced models

In rapidly-rotating systems in which the Ekman and Rossby
numbers are extremely small, as in Earth’s core, it is possible to
‘reduce’ the governing equations to a simpler form. This can be
done rigorously for rapidly rotating convection systems via a
multiple scale, asymptotic expansion approach (e.g., Julien et al.,
1998, 2006, 2012a,b; Sprague et al., 2006; Julien and Knobloch,
2007). Because this multiple scale asymptotic approach is not well
known commonly used in the planetary interior dynamics commu-
nity, we will present the essentials of this method here.

In the asymptotic expansion employed here, the small parameter
� is the local Rossby number Ro‘, based on the horizontal flow scale
‘ ¼ E1=3H. Note that ‘ scales similarly to ‘conv but without the prefac-
tor in (9) in order to maintain generality. By employing a viscous
velocity scaling, U � m=‘, the velocities are in local Reynolds number
units, Re‘ ¼ U‘=m, with horizontal components u? ¼ ðu;vÞ and verti-
cal component w. By substituting U into the local Rossby number, we

find that Ro‘ ¼ m=ð2X‘2Þ ¼ EðH=‘Þ2 ¼ E1=3. By non-dimensionalizing
the length and time scales with ‘ and ‘2=m, respectively, the differen-
tials in the Cartesian system become

@x ! @x; @y ! @y; @z ! @z þ �@Z ; @t ! @t þ �2@s; ð10Þ

where Z ¼ �z is the slow spatial variable and s ¼ �2t is the slow
temporal variable. Note that the axial distance over which the slow

Table 1
Non-dimensional parameters relevant for describing core turbulence, planetary dynamo models and the hydrodynamic rotating convection models described herein. In the
reduced equations, the nondimensional parameters are the local Rossby Ro‘ and local Reynolds Re‘ based on the column width ‘=H ’ E1=3.

System E Ra Pr Pm Re Ro

Earth’s core � 10�15 � 1025 � 10�2 � 10�6 � 108 � 10�7

Dynamo models J 10�6 K 1010 0.1–10 � 1 K 103 � 10�2

Lab Experiments J 10�8 K 1013 0.025–7 0 K 105 K 10

Cartesian DNS P 10�7 K 1012 0.1–100 0 K 104 � 10�2

Reduced Models K 10�5 K 20RaC � 10�2 - 1 0 Re‘E
�1=3 Ro‘E

1=3
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variable, Z, changes by an order one value corresponds to E�1=3 order
one variations in the fast axial scale z. (So if Z is analogous to a
meter stick, then z corresponds to the millimeter scale markings
on the stick, providing an example of an 1000-fold difference
between the fast and slow axial scales. In our multi-scale reduced
environment, a similar 1000-fold scale separation describes QG
convection occurring at E ’ 10�9.)

The temperature field is decomposed into mean and fluctuating
components

H ¼ HðZ; sÞ þ �hðx; y; z; t; Z; sÞ; ð11Þ

where h denotes the fluctuating temperature field and H represents
the mean temperature field that can vary only on the slow scales, Z
and s. The overbar, therefore, denotes an average over the fast
scales, x; y; z, and t.

A natural consequence of employing multiple scale asymptotics
is an increase in the dimensionality of the system, from four
dimensions ðx; y; z; tÞ to six dimensions ðx; y; z; t; Z; sÞ in the cur-
rent context. Indeed, the multiple scale asymptotic approach out-
lined here is typically referred to as the ‘‘many-variable method’’
(Nayfeh, 1973). However, the new slow temporal and spatial vari-
ables are not strictly independent of the original fast variables, e.g.,
Z ¼ �z (Bender and Orszag, 1999). Moreover, by introducing these
new slow variables, the multi-scales approach helps to elucidate
the physics contained within a given problem by, for example,
identifying processes that occur on the fast timescale t (e.g., con-
vection) versus those that occur on the slow timescale s (e.g.,
adjustment of the mean temperature profile).

At leading order, Oð��1Þ, the asymptotic expansion of the gov-
erning equations produces geostrophic balance:

ẑ� u? ¼ �r?p such that u? ¼ ð�@yp; @xp; 0Þ: ð12Þ

From this, the axial vorticity f ¼ r� u? can be related to the pres-
sure field as

f ¼ r2
?p: ð13Þ

It should be noted that for geostrophically balanced flows, the pres-
sure field is formally equivalent to the geostrophic streamfunction,
u? ¼ ð@yw;�@xwÞ, making it possible to replace p with w (e.g., Vallis,
2006).

This leading order solution requires that the flow remains in
geostrophic balance everywhere in the fluid layer. However, it is
not prognostic since it contains no time derivatives. To gain prog-
nostic information, it is necessary to go to Oð�0Þ in the asymptotic
expansion, where evolution equations are recovered for the axial
vorticity, f, and the axial velocity, w:

@tfþ ðu? � rÞf ¼ @Zwþr2
?f; ð14Þ

@twþ ðu? � rÞw ¼ �@Zpþ ðfRa Pr�1Þhþr2
?w: ð15Þ

Here fRa ¼ RaE4=3 is the reduced Rayleigh number. This parameter is
related to the supercriticality of the system, noting that the critical
Ra for Cartesian rotating convection is Racrit ¼ c1E�4=3, where the
coefficient c1 varies as a function of E (Chandrasekhar, 1961) and
reaches a value of 8.69 as E! 0 (Chandrasekhar, 1961; Julien and
Knobloch, 1998). Thus, we can express the reduced Rayleigh

number as fRa ’ 8:7Ra=Racrit .
Eqs. (14) and (15) arise because of Oð�Þ departures in

geostrophic balance (12) are generated by inertial, viscous and
buoyancy forces. These departures remains small and geostrophy
is sustained as the leading order balance provided that the velocity
amplitudes are less than Oð��1Þ (Sprague et al., 2006). It follows
that the large scale Reynolds number ReH < Oð��2Þ. Thus, turbulent
fluid motions are accessible and are to be expected in this regime.

Evolution equations for the temperature field are also required.
The fluctuating and mean temperature field equations are found,
respectively, at Oð�1Þ and Oð�2Þ to be:

@thþ ðu? � rÞh ¼ �w@ZHþ Pr�1r2
?h; ð16Þ

@sH ¼ �@ZðwhÞ þ Pr�1@2
ZH; ð17Þ

where, again, the overbar denotes an average over the fast time and
spatial scales, ðx; y; z; tÞ.

Eqs. (14)–(17) are the reduced equations for rapidly rotating
convection in a plane layer geometry. Substituting the streamfunc-
tion w for pressure, and using relationships (12) and (13), we arrive
at this closed set of equations for axial vorticity, axial velocity,
temperature fluctuation and mean temperature:

@tðr2
?wÞ þ J½w;r2

?w� ¼ @Zwþr4
?w; ð18Þ

@twþ J½w;w� ¼ �@Zwþ ðfRa Pr�1Þhþr2
?w; ð19Þ

@thþ J½w; h� ¼ �w@ZHþ Pr�1r2
?h; ð20Þ

@sH ¼ �@ZðwhÞ þ Pr�1@2
ZH: ð21Þ

Here the horizontal advection of a generic field f is expressed using
the Jacobian, J½w; f � ¼ @xw@yf � @yw@xf ¼ u? � r?f . The fast axial
scale z does not explicitly appear in the reduced equation set as a
consequence of the TPT and the averaging procedure. In addition,
the fluctuating Eqs. (18)–(20) depend on the fast scales and must
be timestepped over the fast time scale t, whereas the mean tem-
perature Eq. (21) depends solely upon the slow scales Z and s,
and needs only to be timestepped on the slow time scale s. A
detailed treatment of the derivation can be found in Sprague et al.
(2006).

These so-called generalized non-hydrostatic quasi-geostrophic
equations are solved here subject to fixed-temperature thermal
boundary conditions

ðH ¼ 1; h ¼ 0Þ at Z ¼ 0; and ðH ¼ 0; h ¼ 0Þ at Z ¼ 1;

ð22Þ

and mechanical conditions

w ¼ 0 at Z ¼ ð0; 1Þ; ð23Þ

which impose impenetrable velocity fields on the bottom and top
boundaries. Inspection of (19) shows that @Zw ¼ 0 on the horizontal
boundaries (where w ¼ 0 and h ¼ 0), such that the boundary flows
are necessarily stress-free. The asymptotically-reduced equations
are modeled in rectilinear domains using a semi-implicit, spectral
code, which employs a Fourier decomposition on horizontal planes
and a Chebyshev decomposition in the vertical direction (Sprague
et al., 2006; Grooms et al., 2010). With present-day computing
power, models of the generalized quasi-geostrophic (QG) equations
have been made for Reynolds numbers up to Re‘ � 103 (Fig. 5).

In contrast to the development above, the classical QG equations,
first applied in atmospheric and oceanographic settings (e.g., Vallis,
2006), are restricted to flows with weak axial motions associated
with axial hydrostatic balance. Despite their many successes (e.g.,
Busse, 1970; Aubert et al., 2003; Schaeffer and Cardin, 2006;
Vallis, 2006; Calkins et al., 2012), the classical QG equations cannot
model sizable axial non-hydrostatic effects or the effects of strongly
sloping container boundaries. Because core convection is inherently
non-hydrostatic and occurs in a thick spherical shell with strongly
sloping spherical boundaries, convection in Earth’s core cannot be
modeled accurately with the classical quasi-geostrophic equations
(Julien et al., 2006; Calkins et al., 2013). The generalized QG
equations overcome the difficulties associated with the classical
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QG equations, and are therefore well-suited to model rapidly
rotating turbulent core-style convection.

At first glance, the generalized QG equations – called the
‘reduced equations’ henceforth – appear more complex than the
full rotating convection equations employed in DNS. However,
the reduced equations offer computational advantages over the full
Navier–Stokes equations. First, the reduced equations filter out
temporally-restrictive, fast inertial waves at and below the
horizontal flow scale ‘, while retaining slow, spatially-anisotropic
inertial waves. The increased computational efficiency of the
reduced equations can be seen in our comparisons of DNS and
reduced models; using less resources, the reduced models are
capable of simulating four times the fluid volume than comparable
DNS performed at E ¼ 10�7 (Figs. 12c,d).

Another advantage of the reduced equations is that they contain

only two non-dimensional parameters, fRa and Pr, in comparison to
the three parameters, Ra; Pr and E, necessary to characterize
Navier–Stokes. By asymptotically reducing the system in the low
Ro limit, it becomes possible to discuss the buoyancy forcing
only in terms of the effective supercriticality of the flow

(fRa ’ 8:7Ra=Racrit) and the Prandtl number. It is not possible to

deconvolve Ra and E in this system; they exist only via fRa. This lack
of an explicit Ekman number does not mean there are no viscous
effects in the fluid. They are contained, for instance, in the horizon-
tal Laplacian terms in (14) and (15). In fact, it is the diffusive terms
that allow the reduced equations to naturally produce convective
onset at the correct E! 0 value of Racrit and with the predicted

non-dimensional horizontal scale of 2:4E1=3 (Sprague et al., 2006;
Calkins et al., 2013).

Synonymous with there being no explicit value of E in the
reduced equations, there is also no explicit height H to the fluid
layer (Fig. 6). Instead, the reduced equations should appropriately
describe convection for any sufficiently low E, low Ro convective

flow with the given fRa and Pr values. Thus, we require only that

‘=H ’ E1=3, for any asymptotically low value of E. In this

manuscript, numerical simulations of the reduced equations,
so-called reduced models, are presented in which the horizontal
size of the computational domain is 20 onset wavelengths, such
that W ’ 40‘conv . Since the reduced models are dominantly com-
pared here against laboratory experiments and DNS made at
E ¼ 10�7, we elect to display the height of the reduced modeling
domain corresponding to E ¼ 10�7 (Fig. 6b). Thus, the reduced
model visualizations are displayed with an aspect ratio
C ¼W=H ’ 96E1=3 ’ 0:45 in Figs. 8 and 12.

The main limitations of the reduced equations presented here
are that they are locally Cartesian with gravity fixed anti-parallel
to the angular velocity vector; they include no Ekman pumping
effects; and they are purely hydrodynamic. However, the reduced
equations have been shown to be well-defined at all latitudes
(Julien et al., 2006; Calkins et al., 2013). Julien et al. (2015) have
recently constructed an extended reduced framework that includes
the effects of Ekman pumping. Furthermore, Calkins et al. (2015b)
have developed a set of multi-scale reduced MHD equations that
are capable of simulating fully nonlinear dynamo action via
quasi-geostrophic convection. Ongoing work is focussing on the
development of a multi-scale, asymptotically reduced modeling
environment in (finite) spherical geometries.

Fig. 5 shows that the reduced equations may be approaching
their validity limits in Earth’s core. For upper bounding estimates
of the Rossby number in Earth’s core, that approach Ro � 10�5

(Finlay and Amit, 2011), the local scale flow may exceed Ro‘ ’ 0:1,
thereby invalidating the assumption of quasi-geostrophy at all
scales. If such high Ro values correctly describe core flow, then it
may prove necessary to develop higher order corrections to the
reduced equations to accurately model small-scale core flows.
Similar approaches have proven successful in the atmospheric and
oceanic sciences (e.g., Gent and McWilliams, 1983).

Due to the inherent theoretical complexity in developing
novel reduced equation sets, it is essential, as with any other
model, to benchmark them against reference data sets. One of
our goals then is to test the various assumptions underlying
the generalized QG reduced equations by comparing the results
of reduced models directly against those of laboratory experi-
ments and DNS. In so doing, it is possible to show under what
conditions a given asymptotically-reduced system is valid and
for what conditions must they be further extended in order to
be accurate (e.g., Fig. 11).

3. Rapidly-rotating convection results

In this section, we compare the results of laboratory experi-
ments, which have non-slip mechanical boundary conditions
(MBCs), and reduced models, with free-slip MBCs. We will further
compare these against DNS with non-slip, free-slip, and so-called
Ekman pumping MBCs. This exercise will show that the regime
diagram of flow morphologies shows good agreement between
all the methods and MBCs, with columnar flows breaking down
for Ra J 10Racrit in all Pr ¼ 7 cases. However, the efficiency of
rotating convective heat transfer is found to fundamentally differ
under different MBCs, leading us to argue that boundary layer phe-
nomena may play an important role in convection processes even
at planetary core conditions.

3.1. Flow morphologies

Figs. 7 and 8 show snapshot images of the flow fields for labo-
ratory, DNS and reduced models of rotating convection. Fig. 7
shows cases with non-slip top and bottom boundaries. The top
row shows three flake visualizations from the laboratory experi-
ments of Cheng et al. (2015), made using an 80 cm tall by

Fig. 6. In the reduced equations, the domain height, H, can be considered a variable
since E formally drops out of the system. Thus, H can be varied for comparison with
any low E laboratory or DNS case. For a reduced simulation carried out using a
Cartesian box that is 20 onset wavelengths wide (i.e., W ’ 40‘conv ), then, at a given
E value, the domain height is H ¼ ‘conv= 2:4E1=3

� �
. This scaling behavior is shown for

(a) E ¼ 10�6 (H ¼ 1:04 W; C ¼ 0:96), and (b) E ¼ 10�7 (H ¼ 2:23 W; C ¼ 0:45). In
this manuscript, reduced modeling results are rendered assuming E ¼ 10�7 for
comparison with laboratory experiments and DNS made at this E value.
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18.73 cm diameter container of water (Pr ’ 7). The convection in
these cases was driven by a fixed 10 W heating power, correspond-
ing to a flux Rayleigh number RaF ¼ RaNu ¼ 4� 1012. Even at this
relatively low heating power, it is not possible, with water as the
working fluid, to reach low enough Ra=Racrit needed to access the
cellular regime in the RoMag device. This inability to reach low
Ra=Racrit in low E cases in Pr J 1 fluids is a problem for all current
laboratory rotating convection devices (cf. Ecke and Niemela, 2014;
Cheng et al., 2015). (The opposite issue arises in Pr � 1 liquid met-
als, where it is more difficult to access Ra� Racrit (e.g., Cioni et al.,
2000; King and Aurnou, 2013; Ribeiro et al., 2015).)

The three laboratory images in the top row correspond to rota-
tion rates of 60 rpm (E ¼ 1:2� 10�7), 10 rpm (E ¼ 7:5� 10�7) and
4 rpm (E ¼ 1:9� 10�6), from left to right. Since the rotation rate,
and therefore E, is varied in each laboratory case, this leads to nor-
malized domain widths of W ’ 21:0‘conv for the leftmost case;
W ’ 10:5‘conv for the middle case; and W ’ 7:7 ‘conv for the right-
most case.

The second row in Fig. 7 shows the temperature fluctuation
field, h, from non-slip DNS cases (Stellmach et al., 2014). The left
and right images in this row have Pr ¼ 1, while the middle two
images have Pr ¼ 7. The color scale is such that vermilion struc-
tures are warmer than the surrounding fluid and aquamarine
structures are cooler than the surrounding fluid. This color scale
is used for h throughout this manuscript. The horizontal scale of
the numerical domain is W ’ 20‘conv for all DNS cases reported.

Fig. 8 shows images from cases with free-slip MBCs. The top
row of images from DNS made with nearly the same parameters
as the non-slip DNS cases shown in Fig. 7. The bottom row shows
images from the reduced models (e.g., Sprague et al., 2006; Rubio
et al., 2014). Note that Pr ¼ 7 in the left three images in this row,
whereas Ra=Racrit ¼ 16:1 in the right two cases, but the Prandtl
number is lowered to Pr ¼ 1 in order to boost the effective buoy-
ancy forcing in the rightmost case shown. The horizontal scale of
the numerical domain is W ’ 40‘conv for all of the reduced model-
ing results reported.

Fig. 7. Snapshot visualizations showing the cellular, Taylor column, plume and geostrophic turbulence regimes, as defined in Sprague et al. (2006) and Julien et al. (2012b).
Top row: flake visualizations from the laboratory experiments made in Cheng et al. (2015). Bottom row: temperature fluctuation field h from the non-slip DNS cases in
Stellmach et al. (2014).
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A flow morphology regime diagram is presented in the reduced
modeling studies of Sprague et al. (2006) and Julien et al. (2012b).
Cellular flows with horizontal widths following (9) are found close
to the onset of convection, in good agreement with the seminal
work of Veronis (1959). For Pr ’ 7 fluid, these sinusoidal axial flow
structures give way to quasi-steady, axially coherent, convective
Taylor columns (CTCs) at higher supercriticality (e.g., Grooms
et al., 2010; King and Aurnou, 2012; Nieves et al., 2014). CTCs form
via the synchronization of convective plumes ejected from oppos-
ing thermal boundary layers. At greater forcing, this synchroniza-
tion is lost, and the CTCs lose their axial coherence. This is
referred to as the plume or wavy column regime. For Pr K 1, the
cellular state transitions directly to the plume state. At still greater
forcings, the convective flows lose all system-scale coherence,
resulting in anisotropic 3D flows with strong variation on the con-
vection scale, but with greater coherence in the vertical direction
in comparison to the horizontal directions. This is the geostrophic
turbulence regime. (In contrast, in isotropic turbulence, there is no

anisotropy to the flow, with no preferred directionality to the flow
field.)

The bulk flow fields in the laboratory and DNS cases qualita-
tively agree with those predicted by the asymptotically reduced
modeling results for both non-slip and free-slip cases. (The exact
regime boundaries for the no-slip cases are slightly shifted in
parameter space relative to the stress-free results, as shown in
Stellmach et al. (2014).) This good agreement is shown in
Fig. 9, which is an adapted version of the bulk flow regime dia-
gram of Julien et al. (2012b). The x-axis denotes the fluid Prandtl
number. The left-hand y-axis shows convective supercriticality
Ra=Racrit and the right-hand y-axis is demarcated in terms of

the reduced Rayleigh number fRa ¼ ðRa=RacritÞ=8:7. The different
asymptotically reduced bulk flow regimes are marked here as
‘C’ for cells; ‘T’ for convective Taylor columns; ‘P’ denotes plumes
or wavy columns; and ‘G’ for geostrophic turbulence. In addition,
we have marked on this same plot the laboratory and DNS visu-
alization results from Figs. 7 and 8. Laboratory experimental

Fig. 8. Snapshot visualizations of the temperature fluctuation field h for difference cases in the cellular, Taylor column, plume and geostrophic turbulence regimes, as defined
in Sprague et al. (2006) and Julien et al. (2012b). Top row: free-slip DNS cases from Stellmach et al. (2014). Bottom row: Reduced modeling results from Julien et al. (2012b).
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results are marked by solid, black circles; non-slip DNS results
are marked by blue, hollow circles; and free-slip DNS cases are
marked by green, hollow squares.

3.2. Heat transfer

Fig. 10 shows measurements of rotating convective heat trans-
fer for Pr ¼ 7 fluids. The left-hand panel, Fig. 10a, shows laboratory
and DNS results all carried out at E ¼ 10�7. The lower x-axis in
Fig. 10a shows the non-dimensional buoyancy forcing, Ra, and
the y-axis shows the non-dimensional heat transfer, Nu. On the
top of the panel, the buoyancy force is scaled relative to the
Coriolis force, forming the convective Rossby number,

RoC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
agDH=ð4X2HÞ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RaE2=Pr

q
(Gilman, 1977). This parame-

ter is the square root of Christensen (2002)’s modified Rayleigh

number, RoC ’
ffiffiffiffiffiffiffiffi
Ra
p

. The black filled symbols show laboratory
experimental data; the blue open circles show DNS results for
non-slip mechanical boundary conditions; the green open squares
show DNS results for free-slip boundaries.

The non-slip DNS results display a very steep heat transfer scal-
ing over the range 2� 1010 K Ra K 5� 1010. The best fit trend to in

this steep scaling regime is Nu ’ ðRa=RacritÞ3:5 (Cheng et al., 2015;
Stellmach et al., 2014), which is the steepest rotating convective
heat transfer law yet proposed (cf. King et al., 2012; Ecke and
Niemela, 2014). The heat transfer behavior transitions over the
range 5� 1010 K Ra K 3� 1011, with relatively small, but possibly
non-trivial differences between the laboratory and DNS data. At
still higher Ra values, the laboratory data conforms to the
non-rotating heat transfer Nu � Ra2=7, from below. It does not

overshoot the 2=7th trend, as is often found in higher E cases
(Julien et al., 1996; Kunnen et al., 2006; King et al., 2012). The tran-
sition away from the steep scaling regime occurs at RoC ’ 10�2.
Thus, our E ¼ 10�7; Pr ¼ 7 data does not support a RoC ’ 1 heat
transfer transition (cf. Zhong et al., 2009).

Importantly, the free-slip DNS results follow a fundamentally

different heat transfer trend, with Nu ’ ðRa=RacritÞ3=2 over the range
2� 1010 ’ Ra ’ 1:5� 1011. This scaling exponent is less than half

the value of the non-slip DNS scaling. Clearly, the MBCs affect
rotating convective heat transfer even at Ekman numbers as low
as E ¼ 10�7. For instance, at Ra ’ 5� 1010, the laboratory and
DNS value of Nu is a factor of nearly 800% greater than the
corresponding Nu value for the free-slip case.

Fig. 10b shows how the convective heat transfer plotted as a
function of the supercriticality of the flow Ra=Racrit , with the bulk
flow regimes of Fig. 9 qualitatively denoted by the dashed lines
at the top of the figure panel. Using Ra=Racrit as the ordinate, it is
formally justifiable to plot the reduced modeling results along with
the DNS and laboratory results. No assumptions about the value of
E need be made in plotting the reduced modeling results since

Ra=Racrit ¼ 8:696fRa. The reduced modeling results are demarcated
by red x-shaped symbols. There is exceptional agreement between
the free-slip DNS and the reduced modeling results for
1 K Ra=Racrit K 3:5 (Stellmach et al., 2014). They diverge slightly
for higher supercriticalities, both having heat transfer scalings
trending away slightly from 3/2, which is the exponent value found
in cases with Pr K 1 and that is theoretically predicted for rotating
convective heat transfer controlled by turbulent flow in the fluid
bulk (Julien et al., 2012a). Overall, quantitative measurements of
convective heat transfer are in good agreement for free-slip DNS
and reduced models, which approximate heat transfer in the limit
of a vanishing Ekman boundary layer, whereas we find first order
differences between the non-slip and free-slip Nu–Ra data. Our
studies have unexpectedly revealed that mechanical boundary
effects play an important role in rotating convection at low E.

Fig. 11 presents additional Nu-Ra=Racrit DNS data at Pr ¼ 7,
carried out to elucidate the differing heat transfer behaviors found
in Fig. 10. In addition to previously displayed results, Fig. 11a
contains an additional data set from Stellmach et al. (2014) that
is demarcated by orange hollow squares. These orange squares
mark the results of DNS made using free-slip MBCs (@zu? ¼ 0 on
z ¼ 0;H), as well as the effects of parameterized Ekman pumping
(EP). This axial pumping condition fluxes material in and out of
the boundaries according to

w ¼ �ðEH2=2Þ1=2
f on z ¼ 0; H ð24Þ

(Niiler and Bisshopp, 1965; Greenspan, 1968), such that the axial
pumping is proportional to the local axial vorticity. The EP param-
eterization formally violates the non-penetration condition at the
top and bottom boundaries, but does so with no net flux of mass
in or out of the fluid layer. The agreement in Fig. 11a between the
non-slip DNS results and the free-slip EP cases demonstrates that
the heat flux augmentation by boundary layer pumping explains
the zeroth order differences in heat transfer scalings in Fig. 10.

Fig. 11b shows that the EP effects increase as E is made smaller.
To demonstrate this, we have plotted the reduced modeling results
and non-slip DNS results at E ¼ 10�5;10�6 and E ¼ 10�7. At low
supercriticalities, Ra=Racrit K 2, the E ¼ 10�7 non-slip DNS results
are closest to the reduced modeling results. However, above
Ra=Racrit ’ 2, the E ¼ 10�7 data exceed the higher E data sets, dis-
playing the steepest local heat transfer scaling of the three E cases.
Thus, it appears not only that Ekman pumping is causing the differ-
ence in results between non-slip and reduced/ free-slip cases, but
that this difference is exacerbated as E is decreased from
E ¼ 10�5 to E ¼ 10�7. It should be possible to extrapolate this result
to low E geophysical settings, so long as the horizontal length scale
of boundary variations greatly exceeds ‘ ’ E1=3H. Thus, we hypoth-
esize that Ekman pumping effects may prove to be important in
terrestrial planetary cores (Stellmach et al., 2014; Julien et al.,
2015), while having little relevance in gas planets and stars (e.g.,
Julien et al., 2012a; Barker et al., 2014).

Fig. 9. Regime diagram (Pr–Ra=Racrit) showing regimes of bulk convective flow
behavior. The asymptotically reduced morphological regimes are demarcated here
as ‘C’ for cells, ‘T’ for convective Taylor columns; ‘P’ for plumes; and ‘G’ for
geostrophic turbulence. Symbols represent laboratory (black filled circles) and non-
slip DNS (blue, hollow circles) and free-slip DNS (green, hollow squares) visualiza-
tion results. All the laboratory and DNS cases qualitatively agree with the flow
regimes predicted by the asymptotically reduced modeling results.
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Fig. 11. Close up of Fig. 10b, including (a) an additional data set of DNS results made using free-slip mechanical boundary conditions and parameterized Ekman pumping (EP)
and (b) additional non-slip DNS data sets at E ¼ 10�5 and E ¼ 10�6. Adapted from Stellmach et al. (2014).

Fig. 10. (a) Convective heat transfer measurements (Nu–Ra) from laboratory and direct numerical simulations (DNS) carried out at Pr ¼ 7 and E ¼ 10�7 (Stellmach et al.,
2014). The dashed lines show best fit scaling trends. The Nu � Ra2=7 is the best fit to non-rotating convection data not shown here (Cheng et al., 2015). The Nu ’ ðRa=RacritÞ3:5

scaling represents the best fit to the non-slip Nu K 70 DNS data. The Nu ’ ðRa=RacritÞ3=2 scaling represents the best fit to the free-slip DNS data. The convective Rossby number,
RoC , provides a non-dimensional measure of the buoyancy forces in rotating convection systems. (b) Nu as a function of supercriticality Ra=Racrit from laboratory, direct
numerical simulations (DNS), and asymptotically-reduced models all carried out at Pr ¼ 7. Bulk flow regime boundaries, which we find are not sensitive to mechanical
boundary conditions, are qualitatively shown near the top of this panel.
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Fig. 12. Large-scale vortices (LSVs) in rotating, three-dimensional convection. (a) Rendering of axial vorticity field, f, from free-slip DNS carried out at E ¼ 10�7; Pr ¼ 1; Ra=Racrit ¼ 10:4,
and computational domain width W ’ 20‘conv . Adapted from Stellmach et al. (2014). (b) Axial vorticity field from the reduced model carried out at Pr ¼ 1; Ra=Racrit ¼ 11:5, and
W ’ 40‘conv . Adapted from Rubio et al. (2014). (c and d) Axial integrations of f from panel a and b, respectively. The color scheme is the same as in Fig. 1c, but the scaling ranges all differ.
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3.3. Large-scale coherent structures

Fig. 12 shows renderings of the axial vorticity fields, f, from
the free-slip DNS and reduced model carried out in the geos-
trophic turbulent regime, corresponding to the two rightmost
cases displayed in Fig. 8. Figs. 12a and b show 3D renderings of
the axial vorticity field. Two counter-rotating, large-scale vortices
(LSVs) form in each computational domain; they extend axially
across the entire domain, embedded within a sea of small-scale
geostrophic turbulent structures. Figs. 12c and d show the z-inte-
grated axial vorticity field, with both images dominated by the
LSVs.

The widths, W, of the reduced computational domain is twice
that of the DNS cases presented here. This difference allows us to
test the effect of box size on the saturation scale of Cartesian
LSVs. Comparing Figs. 12c and d shows that the LSVs grow until
they roughly fill the entire computational domain (e.g., Julien
et al., 2012b). Thus, the larger the domain, the larger the scale at
which the LSVs saturate.

Given sufficiently turbulent, rapidly rotating convection, LSVs
have been found to develop in an array of recent high resolution
numerical models in stress-free, doubly-periodic domains (e.g.,
Käpylä et al., 2011; Chan and Mayr, 2013; Favier et al., 2014;
Guervilly et al., 2014; Stellmach et al., 2014; Rubio et al., 2014)
and triply-periodic domains (e.g., Mininni and Pouquet, 2010).
(See also Sreenivasan and Jones (2006a) for magnetically-
enhanced high latitude vortices in a planetary dynamo model.) In
the survey by Favier et al. (2014), it was found that LSVs formed
only in cases with Re‘ J 20 and Ro‘ K 1. Thus, it was found that
for overly small local Reynolds numbers, too few modes were
available to take part in nonlinear energy exchanges; for overly
large local Rossby numbers, the turbulence was effectively
isotropic and had no preferred directionality.

It must be stressed that most of the energy in these flows is dis-
sipated by viscosity on small scales (a standard, forward energy
cascade), and that only a fraction is transferred non-locally to the
large-scale, axial vorticity (an inverse energy cascade). LSVs, there-
fore, form slowly via the nearly inviscid pile-up of energy into
large-scale, quasi-two-dimensional, axially-invariant modes.
Thus, both low Ekman number values (such that Ro ¼ ReE� 1)
and long time scale experiments are required for significant energy
to accumulate in LSV modes (e.g., Julien et al., 2012b). They will not
be able to develop in experiments that are integrated on shorter
time scales comprising a moderate number of advective turnover
times. This behavior is similar to studies of QG zonal flows in
spherical shells, in which sufficiently long integration times are
necessary for the zonal velocity field to become fully developed
(cf. Sun et al., 1993; Christensen, 2001).

The fact that LSVs form in Rubio et al. (2014)’s reduced models
demonstrates that LSVs can be generated by rotating convective
turbulence even in the theoretical limit of low Rossby number. In
fact, this reduced modeling result then suggests that LSVs are cap-
able of forming even at the very low Rossby number values that
describe planetary core flows. Additionally, the essential agree-
ment between E ¼ 10�7; Pr ¼ 1 stress-free DNS and Pr ¼ 1 reduced
modeling results verifies that the reduced equations are predictive
of strongly nonlinear, low Ro, high Re solutions of the full Navier–
Stokes equations.

The effects of LSVs on convective heat transfer are not well
understood. In the moderate Rossby number simulations of
Favier et al. (2014) and Guervilly et al. (2014), they find that the
presence of LSVs weakly decreases the convective heat transfer
efficiency across the fluid layer. In contrast, the reduced models
of Rubio et al. (2014) find a slight increase in Nu when LSVs are
present. Thus, the generalized mechanism by which LSVs alter
the convective heat transfer has yet to be clearly elucidated.

To date, convection-driven LSVs have not been found in labora-
tory experiments or in DNS with non-slip boundary conditions
(Stellmach et al., 2014). However, inverse energy cascades have
been detected in rapidly-rotating laboratory experiments with
forced turbulence (e.g., Yarom et al., 2013), suggesting that
convection-driven LSVs will be detected in laboratory experiments
and in non-slip DNS that are carried out at sufficiently extreme
conditions (e.g., E K 10�7; Pr K 1).

4. Extrapolations and predictions

In the previous section, we presented the results of our
state-of-the-science laboratory-numerical-theoretical models of
high latitude planetary core-style hydrodynamic rotating convec-
tion, made in cylindrical tanks and doubly-periodic Cartesian
domains. Our main findings are the following. (i) Convective heat
transfer is efficient in high latitude geometries in which the gravity
and rotation vectors are aligned, with especially efficient heat
transfer occurring in the presence of non-slip horizontal bound-
aries. (ii) Columnar convection in Pr � 1 fluids tends to break down
into anisotropic, 3D, geostrophic turbulent flow in the vicinity of
Ra=Racrit ¼ Oð10Þ for all three methods and irrespective of the
mechanical boundary conditions. (iii) Cartesian, 3D geostrophic
turbulence generates a weak flux of kinetic energy into
system-scale, quasi-2D, columnar large-scale vortices (LSVs).

The theoretical investigations of Childress and Soward (1972);
Soward (1974) and Calkins et al. (2015b) show that dynamo action
can be driven by quasi-geostrophic convective flows. Bearing this
in mind, in this section we extrapolate our rapidly-rotating, turbulent
convection results to more extreme conditions in order to make pre-
dictions concerning the multi-scale nature of turbulence in planetary
cores as well as in next-generation planetary dynamo models. In
doing so, we will attempt to take into account what may be consid-
ered the leading order physics missing from our Cartesian models:
the effects of spherical core geometry and magnetic field effects.

4.1. Geostrophic turbulent convection

We extrapolate our moderate Prandtl number heat transfer
results to Earth’s core conditions in Fig. 13. On the left hand side
of the figure, the rotating convection data from Fig. 10a is plotted.
On the right hand side, we plot the reduced modeling results for
E ¼ 10�15, the typical E estimate for Earth’s outer core. In addition,
the long dashed lines show extrapolations of both the steep Pr ’ 7

non-slip heat transfer scaling law, Nu ’ ðRa=RacritÞ3:5, as well as the

shallower reduced modeling trend, Nu ’ ðRa=RacritÞ3=2, both assum-
ing Racrit for E ¼ 10�15. Note that the Pr ¼ 1 scaling in Stellmach
et al. (2014) approximately bisects these two trends. In addition,
we extrapolate the overarching Nu ’ Ra2=7 heat transfer branch
to core conditions (e.g., Cheng et al., 2015).

Although rotating convective heat transfer is typically described
in terms of Nu and Ra, these quantities are difficult to constrain in
deep planetary interiors since it is very difficult to estimate the
superadiabatic temperature difference DH across the core (e.g.,
Gubbins, 2001). Their product, though, which is called the flux
Rayleigh number,

RaF ¼ RaNu ¼ agH4qsa

kjm
; ð25Þ

does not depend on DH. This parameter can be estimated relatively
accurately, for example, in Earth’s core, because it depends only on
the superadiabatic heat flux out from the core, qsa, and the physical
properties of the system. As explained in Cheng et al. (2015),
conservative estimates of RaF give its range in the core to be
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6� 1027 K RaF K 6� 1032. This RaF range is shown as the diagonal
grey stripe on the right side of Fig. 13.

Irrespective of the particular heat transfer scaling exponent, we
find that our heat transfer extrapolations (the dashed lines) pre-
dominantly intersect the outer core RaF estimates (the grey stripe)
such that Ra=Racrit J 10. Based on Fig. 9, this implies that
(non-magnetic) rotating convective flows in Earth’s core are not
dominated by convective Taylor columns. Instead, this moderate
Pr extrapolation suggests that convection exists in the geostrophic
turbulence regime. Thus, our high latitude models of core convec-
tion suggest, in sharp contrast to the schematic views shown in
Figs. 1d and 15a, that quasi-laminar columns are not prevalent
under planetary core conditions.

At lower latitudes, situated well outside the tangent cylinder, we
predict that low E convective flows will also occur in the form of 3D
geostrophic turbulent motions. This argument stems from the
asymptotically-reduced linear stability investigation of Calkins et al.
(2013), in which it was found that many axially varying convection
modes become accessible for Ra < 10Racrit at moderate Pr.

Thus, based upon Pr ’ 7 rotating convection results, we make
the general prediction that convective flows in planetary cores,
as well as in E K 10�7 planetary dynamo models, will manifest pre-
dominantly in the form of 3D, geostrophic turbulence (cf. Nataf and
Gagnière, 2008; Nataf and Schaeffer, 2015). This prediction can be
tested using numerical model outputs: in the limit of strongly 3D
geostrophic turbulence, the instantaneous axial coherence
length-scale of the convection field will be far smaller than the sys-
tem scale H. Instead, we hypothesize here that it will approach the
scale of the thermal boundary layer thickness.

4.1.1. Low Prandtl number considerations
The moderate Pr arguments above likely provide a conservative

estimate for when convection columns become unstable to

geostrophic turbulent motions. At lower Pr values, as describe core
fluids, steady convective Taylor columns are never stable (Sprague
et al., 2006). This trend is shown Fig. 9, in which the geostrophic
turbulent regime is approaching the onset of convection as Pr is
lowered. For example, Fig. 14 shows an oblique view of an

Fig. 13. Extrapolation of Pr ’ 7; Pm ¼ 0 laboratory/numerical/reduced heat transfer data in water to the estimated ranges of heat transfer parameters in Earth’s liquid metal
core where Pr ’ 10�1 to 10�2 and Pm ’ 10�6. On the left side of this figure, we plot laboratory and DNS Nu–Ra data. To the right, assuming E ¼ 10�15 as in Earth’s core, we plot
the two heat transfer scaling laws and the reduced modeling Nu–Ra data. The range of accessible Nu–Ra space for convection in Earth’s core is denoted by the diagonal grey
stripe on the figure’s right side, corresponding to 6� 1027 K RaF K 6� 1032. Estimated flow regimes, defined in Sprague et al. (2006) and described in Fig. 9, are denoted cells
(C), convective Taylor columns (CTCs), wavy plumes (P) and geostrophic turbulence (GT). Irrespective of the heat transfer scaling exponent, 3.5 or 1.5, the intersection with
accessible RaF values in Earth’s core occurs in the geostrophic turbulence regime. Image adapted from Cheng et al. (2015).

Fig. 14. Oblique view of the axial vorticity field in an asymptotically-reduced
rotating convection model with Pr ¼ 0:0235, a value comparable to that of many
liquid metals. The flow is in the geostrophic turbulent regime, even though the
Ra ¼ 1:0Racrit for steady cellular convection. Unlike previous reduced models, here
we have set C ¼ 1, in order to visually highlight axial variations in the vorticity
field.
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asymptotically-reduced model carried out at Pr ¼ 0:0235, similar
to that of liquid gallium and liquid mercury. The Rayleigh number
in this case is set to the onset value for steady convection
Ra ¼ Racrit . This implies then that steady convective Taylor col-
umns, which have a significant range of stability in moderate Pr
fluids, are not stable in low Pr liquid metals.

Similarly, the laboratory-numerical simulations of rotating
convection in liquid gallium made by Ribeiro et al. (2015)
demonstrate that convection first onsets as oscillatory convection
columns. These oscillatory columns become destabilized at
Ra ’ 0:3Racrit in cases with E ¼ 10�5 and Pr ’ 0:025. Steady colum-
nar convective motions, which are the dominant flow in most
present-day dynamos, are not found. Thus, based upon low Pr
reduced models and Ribeiro et al. (2015)’s laboratory-numerical
models, we predict that the regime of stable columns is far
narrower in liquid metal convection than in the moderate Pr
simulations that have been the focus of this manuscript. In contrast
to the extrapolation of our Pr ’ 7 results in Fig. 13 to planetary
core conditions, experiments in metals imply an even broader
range of geostrophic turbulent convection in which columnar
flows may never be stable.

4.2. Large-scale vortices

Space-filling axialized vortices develop in free-slip DNS and
reduced modeling cases carried out in the geostrophic turbulent
convection regime (Fig. 12). Based on our above arguments that
geostrophic turbulent convection exists in Earth’s core, we posit
that LSVs can develop at high latitudes in Earth’s core as well
and may take part in the generation of high latitude geomagnetic
flux patches.

In contrast, no high resolution studies have been carried out to
date to investigate under what conditions LSVs can form at low
latitudes where buoyancy forces predominantly act in the direc-
tion perpendicular to the rotation axis. In this ‘‘low latitude’’ con-
figuration, convection often drives large-scale zonal jet flows
(e.g., Christensen, 2001; Heimpel et al., 2005; Gillet et al., 2007).
It is unclear whether LSVs in deep fluid layers can co-exist with
zonal flows or whether they are subsumed by the zonal jet
generation processes.

We will assume here that LSVs are able to form at all latitudes
in planetary cores. However, unlike in Cartesian boxes where LSVs
grow to the size of the computational domain, in planetary cores
their growth should halt approximately at the Rhines scale,
denoted as ‘turb, where boundary curvature effects act to truncate
the inverse energy cascade (e.g., Vasavada and Showman, 2005).
Applying the spherical shell topographic Rhines scaling arguments
of Heimpel and Aurnou (2007) yields

‘turb ’ prc Ro
v2 � cos2 b
sin b cos b

� �� �1=2

and ‘turb

’ prc Ro= cos bð Þ1=2
; ð26Þ

where the left expression holds at high latitudes inside the tangent
cylinder; the right expression holds at lower latitudes outside of the
tangent cylinder; rc is the core radius; v is the spherical shell radius
ratio; and b is the latitude angle in radians. In contrast to the lam-
inar onset scale given by (9), the turbulent length-scales in (26) vary
in proportion to the Rossby number; these turbulent scales are
insensitive to the fluid viscosity. Thus, we predict that the small,
convective length-scales in turbulent dynamo models will vary in
proportion to the value of the Ekman number (e.g., the fluid viscos-
ity), whereas the size of turbulent hydrodynamic structures will
scale in proportion to the Rossby number (e.g., the fluid inertia).

Applying (26) to Earth’s core and assuming an upper bounding
estimate of Ro � 10�5, we estimate that LSVs situated just outside
the tangent cylinder at 69� latitude will halt their growth at a scale
of roughly ‘turb ’ 60 km. This ‘turb � Ro1=2 turbulent length-scale
exceeds the convective length scale ‘conv � E1=3 by a factor of
approximately 103, supporting our contention that a broad range
of turbulent scales likely exist in planetary core flows.
Hydrodynamic Rhines scales are still, however, far too small to
provide a simple, direct explain for the 1000 km scale of the largest
CMB geomagnetic flux patches.

4.3. Magnetohydrodynamic considerations

Extrapolating our hydrodynamic rotating convection results to
planetary core settings has led us to argue that multi-scale pro-
cesses arise, with 3D geostrophic turbulent at the convection scale
and quasi-2D large-scale vortices on larger-scales. In Earth’s core,
upper bounding estimates for the local magnetic Reynolds number
on the convection scale gives values that are less than unity:

Rmconv �
U‘conv

g
¼ RoPm

E2=3 �
10�5 10�6

ð10�15Þ2=3 � 10�1: ð27Þ

Using upper bounding values for the turbulent scale, ‘turb � prcRo1=2

with Ro � 10�5, leads to a magnetic Reynolds number that
significantly exceeds unity:

Rmturb �
U‘turb

g
� pRo3=2 Pm

E
� 102: ð28Þ

As stated before, the low value of Rmconv does not imply that
dynamo generation processes cannot occur on the convection scale.
As shown in a numerous theoretical investigations (e.g., Soward,
1974; Moffatt, 1978; Calkins et al., 2015b), in a multi-scale dynamo,
small-scale motions act on the large-scale (locally-uniform)
magnetic field to generate weak, small-scale emf’s. The average of
these weak, small-scale emf’s creates, on the large-scale, a coherent
current system that produces the large-scale magnetic field. Thus,
the convection-scale magnetic field, although far weaker than the
large-scale field, is a necessary component of the dynamo loop that
connects the induction, and thereby the dynamics, of the
small-scale convection with that of the large-scale magnetic field.

Guervilly et al. (2015) provide a recent example of dynamo
generation driven by a turbulent rotating convective flow.
Their numerical models solve Eqs. (1)–(3) in a Cartesian,
doubly-periodic domain subject to stress-free, isothermal top and
bottom boundary conditions. They argue that multi-scale turbu-
lence develops in a Pm ¼ 0:2 dynamo case. Further, they show
that the dynamo threshold is lowered by the existence of an LSV
that develops in this case. Guervilly et al. (2015)’s findings suggest
then that Pm must be lowered below unity in dynamo models in
order for multi-scale turbulent processes to be able to develop.
Thus, we hypothesize that multi-scale flows and multi-scale
dynamo loops will emerge in next-generation, turbulent planetary
dynamo models carried out at low E and Pm.

5. Summary

We have presented the results of laboratory-numerical-theoreti
cal models of rapidly rotating convection. These non-magnetic,
Cartesian and cylindrical models provide novel predictions for
the convective flows that will develop as global-scale models
approach realistic planetary core conditions. Our results suggest
that axially-coherent, helical, ‘conv � E1=3 convection columns break
apart into three-dimensional geostrophic turbulence. Thus, we
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argue that large-scale flows inferred to exist in planetary cores
(e.g., Schaeffer and Pais, 2011) are not directly attributable to the
columnar flows that develop near the onset of convection in
present-day dynamo models (Fig. 15a). Furthermore, our results
show that large-scale vortices (LSVs) develop on slow time scales
in cases of geostrophic turbulent convective flow. These multiple
scales of flows suggest that multi-scale dynamo processes can
occur in planetary cores as well as in strongly turbulent, rapidly
rotating dynamo models (Fig. 15b). Such multi-scale dynamo sys-
tems have long been proposed by theorists (e.g., Childress and
Soward, 1972; Moffatt, 1978), but have yet to clearly emerge in
global-scale planetary dynamo models.

Many open questions exist concerning the properties of LSVs in
spherical geometries and in magnetohydrodynamic systems. For
instance, it has yet to be shown that LSVs can form at low latitudes
where significant horizontal (non-axial) buoyancy forces exist. To
date, LSVs have been found to form in Cartesian, polar simulations
subject to stress-free boundaries. These LSV flows are comprised of
nearly perfectly horizontal motions with almost no helical compo-
nent of flow. Even though these flows appear capable of generating
substantial large-scale magnetic fields, it remains to be determined
whether helical LSV flows develop in the presence of non-slip BCs
or in fluid domains with boundary curvature.

To test the various mechanisms hypothesized for generating
large-scale magnetic flux patches in Earth’s core, we first need
advanced models of the field itself (e.g., Lesur et al., 2008; Korte
and Holme, 2010; Finlay et al., 2012). Given accurate field models,
it is essential to generate advanced models of the essential turbu-
lent processes and dynamo physics occurring in liquid metals.
Efforts are being made in this direction via laboratory experiments
(e.g., Cabanes et al., 2014; Zimmerman et al., 2014; Ribeiro et al.,
2015). To computationally access turbulent liquid metal dynamo
action, numerical models will need to be run on tens to hundreds

of thousands of cores. Community dynamo codes will be capable of
this in the next decade (http://geodynamics.org/). However, theo-
retical advances, such as the development of asymptotically
reduced models of rotating convection and dynamo action in
spherical shell geometries, may prove even more important for
generating robust physical explanations of the turbulent dynamo
action occurring in planetary cores.
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