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RESEARCH ARTICLE

Few-Shot Learning Enables Population-Scale 
Analysis of Leaf Traits in Populus trichocarpa
John  Lagergren1*, Mirko  Pavicic1, Hari B.  Chhetri1, Larry M.  York1, 
Doug  Hyatt1, David  Kainer1, Erica M.  Rutter2, Kevin  Flores3, 
Jack  Bailey-Bale4, Marie  Klein4, Gail  Taylor4, Daniel  Jacobson1*,  
and Jared  Streich1*

1Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA. 2Department of Applied 

Mathematics, University of California, Merced, CA, USA. 3Department of Mathematics, North Carolina 

State University, Raleigh, NC, USA. 4Department of Plant Sciences, University of California, Davis, CA, 

USA.
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Plant phenotyping is typically a time-consuming and expensive endeavor, requiring large groups of 
researchers to meticulously measure biologically relevant plant traits, and is the main bottleneck in 
understanding plant adaptation and the genetic architecture underlying complex traits at population 
scale. In this work, we address these challenges by leveraging few-shot learning with convolutional neural 
networks to segment the leaf body and visible venation of 2,906 Populus trichocarpa leaf images obtained 
in the field. In contrast to previous methods, our approach (a) does not require experimental or image 
preprocessing, (b) uses the raw RGB images at full resolution, and (c) requires very few samples for 
training (e.g., just 8 images for vein segmentation). Traits relating to leaf morphology and vein topology 
are extracted from the resulting segmentations using traditional open-source image-processing tools, 
validated using real-world physical measurements, and used to conduct a genome-wide association 
study to identify genes controlling the traits. In this way, the current work is designed to provide the 
plant phenotyping community with (a) methods for fast and accurate image-based feature extraction 
that require minimal training data and (b) a new population-scale dataset, including 68 different leaf 
phenotypes, for domain scientists and machine learning researchers. All of the few-shot learning code, 
data, and results are made publicly available.

Introduction

Image-based plant phenotyping is a method by which scientists 
use image data to characterize and categorize plants within and 
across species. This process typically involves the use of tools, 
instrumentation, and domain expertise to (a) measure infor-
mation from individual or groups of samples in the greenhouse, 
field, and/or nature, (b) be applied across scales, ranging from 
cell microscopy to satellite imagery, and (c) allow researchers 
to extract complex morphological and topological features that 
would otherwise be impossible to measure by hand. One of the 
main challenges of image-based phenotyping is identification 
of the relevant biological structures (foreground) from the 
background. In some cases, imaging methods can be modified 
to highlight these objects, such as using back lights or relying 
on fluorescence of those objects; however, in many situations, 
the contrast between the relevant object and the background 
is low. When contrast is high, simple grayscale or color-based 
thresholding can be used, but in more complex color imagery, 
plant phenomics has focused on machine learning approaches.

Deep learning has revolutionized computer vision as a 
powerful and efficient way to extract features from image-
based data [1–3]. An important strength of this approach is 
that deep learning models can learn an invariance to het-
erogeneous background effects that allows them to gener-
alize to new samples outside of the training set. However, 
such approaches can be laborious and expensive to adopt, 
because users must generally annotate hundreds or thou-
sands of images to provide sufficient training data. In plant 
biology for example, to reliably associate plant traits with 
genes at population scale requires large amounts of observa-
tions that span hundreds or thousands of genotypes. Such 
associations provide deeper understanding of the genetic 
architectures and underlying mechanisms that govern com-
plex processes that control the growth, acclimation, response, 
and composition of plants, with important implications for 
sustainable agriculture and bioenergy [4,5]. Thus, there exists 
a need to develop methods for fast and accurate image- 
based plant phenotyping that alleviate the data annotation 
bottleneck.
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In contrast to traditional deep learning approaches, which 
can require large amounts of training samples to reach suffi-
cient prediction accuracy [1,2], few-shot learning is an emerg-
ing subset of machine/deep learning that attempts to maximize 
predictive accuracy while using only a small number of labeled 
samples for training. Multiple approaches exist to solve this 
problem, including data augmentation, metric learning, exter-
nal memory, and parameter optimization [6]. This work utilizes 
a combination of data augmentation (i.e., applying random 
spatial and color augmentations to images during training) and 
iterative algorithms, which have been previously demonstrated 
for biomedical image analysis, e.g., semantic segmentation of 
cells and retinal vasculature [7–10]. The goal of this study is to 
extend these methods to image-based plant phenotyping by 
leveraging convolutional neural networks (CNNs) to segment 
the body and visible vein architecture of poplar (Populus tri-
chocarpa) leaves from high-resolution scans obtained in the 
field. In particular, few-shot learning is utilized in this work 
because it divides a small number of large images into a large 
number of small image tiles. In this way, the complex task of 
whole-image segmentation is broken down into smaller easier 
decision rules, which enables accurate segmentation using very 
few labeled images for training. Note that use of the term “few-
shot learning” to describe the methods in this work is distinct 
from the typical definition and here refers to maximizing pre-
dictive outcomes using very few labeled images following ter-
minology from [6].

P. trichocarpa (also called black cottonwood, western balsam-
poplar, or California poplar) is a model system for studying the 
genetic architecture of complex traits and climate adaptation 
in woody plants. Spanning from central California, USA, to 
northern British Columbia, Canada, it harbors tremendous 
geographic, climatic, phenotypic, and genetic diversity. Further, 
P. trichocarpa has a fully sequenced genome, genome anno-
tation, abundant transcriptomes, resequencing, and phenotypic 
data. Importantly, rapid biomass growth, clonal propagation, 
and the ability to grow in marginal lands with low agricultural 
input make it an ideal crop for sustainable bioenergy applica-
tions [11–18]. As a result, research and commercial groups have 
invested heavily in the development of P. trichocarpa as a high-
impact species for forest products and biofuel production 
[16,19–21]. To this end, leaves play a key role in biomass pro-
duction since they are the primary organs responsible for sun-
light absorption and carbon fixation, the food source of vascular 
plant systems. Further, vein architecture supports the mechan-
ical structure of the leaf and governs the distribution of water 
and other nutrients, which has important implications for the 
physiology, biomechanics, and structure of a plant [22]. Thus, 
capturing accurate leaf traits and relating them to the genetic 
components that control them may provide insights toward 
improved tree biomass and composition.

In plant phenotyping, segmentation of individual leaves and 
their venation has seen sparse attention. In general, existing 
approaches use (a) experimental methods to chemically clear 
the leaf lamina and stain the veins to highlight the venation 
against the background [23,24]; (b) image preprocessing by 
grayscaling, aggregating specific color channels, or spatial res-
caling [23–27]; (c) global filters and morphological operations 
(e.g., Odd Gabor filters, Hessian matrices, vesselness filters, and 
region merging) to obtain binary segmentations [23,25–28]; 
(d) ensembles of scales and models to make aggregate predic-
tions [28,24]; and (e) require hundreds of manually annotated 

training samples to produce accurate segmentation models 
[24]. However, these commonly encountered steps can bottle-
neck the scalability and accuracy of image-based plant pheno-
typing at population scale. For example, approach (a) adds 
additional experimental time, effort, materials, expenses, and 
hazards to data acquisition compared to capturing just raw 
images; (b) destroys fine-grained image details across spatial 
and color dimensions; (c) may be overly simplistic and generate 
large amounts of effort in segmentation postprocessing; (d) 
uses complex workflows which may be difficult to automate at 
scale; and (e) can be infeasible for smaller research groups with 
limited time and budgets. These challenges may help explain 
why leaf and vein segmentation has not received as much atten-
tion compared to crop- or field-level phenotyping for plant 
stress, shoot morphology, and plant/organ counting [29].

This work presents few-shot learning methods based on 
CNNs to segment the body and visible vein architecture of 
P. trichocarpa leaves. Leaf segmentation is formulated as a trac-
ing task, in which a CNN iteratively traces the boundary of a 
leaf to produce a single contiguous leaf segmentation. Previous 
studies have shown that alternative CNN-based segmentation 
methods (e.g., U-Net [3]) that do not include spatial priors that 
encourage object contiguity may result in biologically unreal-
istic segmentation masks (i.e., contain holes or other artifacts 
caused by individual or groups of pixels that do not exceed a 
global probability threshold) [7]. In contrast, boundary tracing 
addresses this challenge by only segmenting a single contiguous 
region, thereby ensuring accurate downstream extraction of 
morphological features. Alternatively, vein segmentation is 
formulated as a region growing task, in which a CNN iteratively 
adds neighboring pixels to a growing region of interest corre-
sponding to the visible vein architecture. Similar to the tracing 
approach, the vein segmentation ensures biologically realistic 
morphological features by including pixels in the segmentation 
only if a neighboring pixel was previously classified. Each 
method is fully automated (i.e., requires no human supervision 
or initialization) and segments images orders of magnitude 
faster compared to manual annotation. Additionally, each method 
is compared against a variant of the state-of-the-art image seg-
mentation model, U-Net [3].

The current work is designed to provide the plant pheno-
typing community with (a) methods for fast and accurate 
image-based feature extraction with minimal training data and 
(b) a new population-scale dataset for domain scientists and 
machine learning researchers. In particular, the methods devel-
oped here are applied to raw RGB images with no experimental/
image preprocessing, use individual CNN models that learn 
the complex relationships between pixels for accurate leaf and 
vein segmentation, and require very few training samples to 
generalize and make accurate predictions at population scale. 
The segmentations are used to extract biologically realistic fea-
tures that are validated using real-world physical measurements 
and applied downstream using broad-sense clonal heritability 
estimates and a genome-wide association study (GWAS).

Materials and Methods
CNNs are used to segment the body and visible vein architec-
ture of P. trichocarpa leaves from high-resolution scans. The 
resulting segmentations are combined with open-source tools 
for image processing and genomic analysis to expand the appli-
cation of these methods to a wider scientific audience. All deep 
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learning methods are implemented in Python (version 3.7.8) 
using the PyTorch deep learning library (version 1.11.0) [30] 
and are made publicly available at [31]. Feature extraction is 
completed using Fiji (version 2.9.0) [32] and RhizoVision 
Explorer (RVE, version 2.0.3) [33,34]. Genomic analysis is con-
ducted in R (version 4.2.0) using the GAPIT3 software package 
(version 3) [35]. All of the images, manual segmentations, 
model predictions, extracted features, and underlying genome 
sequences are made publicly available at [36]. Finally, a copy 
of both the code and the data is available at [37].

Data collection
The leaf scans considered in this work were collected during a 
field campaign in August, 2021, from the 10-acre poplar plan-
tation at the University of California, Davis, which maintains 
a common garden of poplar trees that can be grown on low-
quality, poor, and marginal land [4,38]. The plantation is 
composed of 3 blocks. Each block is partitioned into rows and 
positions that uniquely identify the corresponding genotypes 
and contain approximately 1,500 P. trichocarpa trees per block. 
For practical reasons, leaf samples were collected from the 
entire first block (1,322 viable samples) and partially from the 
second block (131 samples) totaling 1,453 trees.

Leaves were sampled from a branch at approximately breast 
height (i.e., ∼1.37 m) from the south-facing side of each tree. 
Leaves were chosen by selecting the first fully mature leaf 
counting from the top of each branch. Each leaf was also paired 
with a barcode label that encoded the treatment, block, row, 
and position of the tree, which uniquely identified the corre-
sponding genotype and allowed the user to record the sample 
ID during data capture. This helped expedite the phenotyping 
process and reduce human error. Selected leaves were scanned 
in the field as they were sampled from each tree using a USB-
powered Epson Perfection model V39 [39]. The top and bottom 
of each leaf was scanned with a resolution of 300 dots per inch 
(DPI). To account for heterogeneous leaf shapes (e.g., leaves 
with nontrivial 3-dimensional [3D] characteristics like “wavi-
ness”), a weight was used on the scanner lid to compress each 
leaf to the glass of the scanner in order to reduce image artifacts 
like blurring. Additionally, between rows of trees (there are 
approximately 30 trees per row), the scanner glass and back-
ground were cleaned to reduce the buildup of dust and other 
debris.

During data capture, the scanner suffered a hardware failure 
where one of the pixels of the scanner began to malfunction 
and caused a vertical white line to gradually appear near the 
center of each subsequent scan. This artifact affected approxi-
mately 100 leaf scans. To mitigate the malfunction, leaves were 
moved to the edge of the scanner away from the malfunctioning 
pixel, affecting 62 leaf scans. A new scanner was acquired and 
used for the remainder of the field campaign (2,634 leaf scans). 
Despite the hardware failure, these data acquisition steps 
resulted in 2,906 RGB leaf scans (i.e., top and bottom of 1,453 
samples), each with a dimension of 3,510 × 2,550 pixels.

In addition to image-based measurements, petiole length 
and diameter were measured manually for each leaf. Using a 
similar procedure to leaf imaging, barcode scanners were used 
to record the sample ID, followed by length/diameter measure-
ments using USB-powered SPI 17-600-8 electronic calipers 
[40]. The manual measurements for petiole length and width 
are used to validate image-based measurements.

Obtaining accurate high-quality ground truth data is impor-
tant for deep learning applications in general, but it is crucial 
for few-shot learning, since a model must learn features from 
a small number of training samples that generalize well to the 
broader population. To this end, training data was generated 
for leaf body segmentation using the top and bottom scans of 
25 leaves (50 images in total), which were randomly selected and 
manually traced. Manual segmentation was completed using the 
open-source graphics editor, GNU Image Manipulation Program 
[41], taking between 15 and 30 min per image, depending on 
the size and serration of the leaf. Similarly for vein segmenta-
tion, GNU Image Manipulation Program was used to manually 
draw all visible leaf venation for 8 leaf-bottom scans, taking 
between 4 and 8 h per image, depending on the vein density. 
Note that only leaf-bottom venation is considered in this work. 
Leaf-top venation will be considered in future work.

Due to the large amount of manual effort required for vein 
segmentation, the training dataset was constructed using iter-
ative dataset refinement, in which images were individually 
added to the training set based on manual inspection of model 
performance across the set of all images. For example, com-
pressing samples against the scanner glass caused some leaves 
to fold on themselves, which produced dark lines that were 
falsely identified as veins. Thus, an image with multiple exam-
ples of such folds was manually segmented and added to the 
training set so that the model learned an invariance to such 
artifacts. This process was repeated similarly for other leaf 
characteristics (e.g., dead, diseased, and nutrient-deficient leaf 
tissue), including a scan exhibiting the hardware failure dis-
cussed above, until the model converged to acceptable perfor-
mance across the population. This strategy resulted in a total 
of 8 images (6 for training, 2 for validation) mentioned previ-
ously. Note that in practice, the number of images may vary 
depending on the application and image quality, but it is impor-
tant (particularly for few-shot learning) that the training dataset 
is fine-tuned to the point that the model is able to generalize.

Leaf segmentation
Segmentation of the leaf body is formulated as an object tracing 
task based on [7,8], in which a CNN is used to iteratively trace 
along the contour of a leaf. These methods have been shown to 
reach state-of-the-art accuracy in biomedical image segmen-
tation using a fraction of the training data required by other 
approaches [8]. In this framework, a CNN inputs a small image 
tile centered somewhere on the edge of an object and outputs 
a predicted trace (i.e., set of pixel displacements) along the 
object boundary from the center to the edge of the tile. The 
iteration proceeds by generating new image tiles along the pre-
dicted contours, continuing the trace until reaching the starting 
location, thereby closing the loop and finishing the segmenta-
tion. An important benefit of this approach is that it breaks the 
complex task of whole-leaf segmentation into multiple smaller, 
easier decision rules and requires only a small number of images 
to train an accurate model. See Fig. 1 for a diagram of the leaf 
tracing algorithm and Movie S1 for a video of the iteration.

The leaf tracing CNN inputs 256 × 256 × 4 image tiles, which 
include 3 color channels (RGB) and an overlay of the previously 
traced path as an additional channel. The tile size is chosen 
large enough to provide the model with sufficient context to 
trace through areas where the leaf contour may be obscured 
(e.g., in damaged/diseased areas or near the petiole). The RGB 
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values are normalized to [0, 1] for computational stability. The 
additional channel is a binary image composed of ones along 
pixels of the previously traced path and zeros otherwise and 
thus provides the network with a direction to continue the trace. 
Each image tile is centered at a pixel on the contour of a leaf, 
by which the 50 manually traced samples are used to generate 
more than 300,000 individual tiles for training. Further, heavy 
image augmentation is used so that the CNN learns an invar-
iance to heterogeneous leaf shapes and conditions. In particu-
lar, random continuous rotations, horizontal and vertical flips, 
displacement jitter, and color augmentation (hue, saturation, 
brightness, and contrast) are combined to increase image diver-
sity during training.

The leaf tracing CNN outputs 2 × N trace predictions, which 
encode N horizontal and vertical pixel displacements along 
the leaf contour relative to the center pixel of the input tile. 
Training data is generated by evenly sampling pixels from the 
center to the edge of the tile along the contour of the leaf. 
Distance is then measured between the predicted trace and the 
ground truth contour using mean squared error, MSE, as an 
objective function. Importantly, the quality of the predicted 
trace degrades near the edges of image tiles since the CNN 
does not have context beyond the boundaries of the input. 
However, it is still important for the model to predict the 
trace from the center pixel to the edge of the image tile so that 
the predicted trace can “skip” over obscured segments of the 
contour [8]. To account for these effects, weighted mean squared 
error is used to weight predictions closer to the center pixel 
more heavily than predictions near the edge. The objective 
function is given by

where x ∈ ℝ256 × 256 × 4 is the input image tile, y ∈ ℝ2 × N is the 
set of ground truth row/column coordinates with yi indicating 
the row and column position of the ith pixel, ω ∈ ℝN is the 
weight vector, the number of pixel displacements is N = 128, 
and α = 8/N and β =  − 4 are chosen such that the hyperbolic 
tangent function (which defines ω) gradually decreases the 
error weight from 2 to 1 along the predicted contour. In this 
way, the objective function weights pixels near the center of the 
tile approximately twice compared to pixels near the edge.

The model architecture follows standard practices for CNNs 
[2,42]. In particular, the CNN uses blocks of three 3 × 3 con-
volution layers with zero-padding and a max pooling layer. 
Each convolution layer includes batch normalization to stabi-
lize training [43] and a “LeakyReLU” activation function for 
nonlinearity [44]. Additionally, residual connections are applied 
between convolution layers for easier optimization and better 
prediction accuracy [2]. In total, the leaf tracing CNN includes 
6 blocks with max pooling and the final block without, which 
transforms the spatial image dimensionality from 256 × 256 to 
4 × 4. Then, a final 4 × 4 convolution layer reduces the outputs 
to a vector of length 256, which is reshaped into 2 × 128 for 
trace prediction. Note that the final convolution is linear (i.e., 
it does not include a nonlinear activation function) so that the 
trace predictions can reach the edges of the input tile in any 
direction. To prevent overfitting, images are randomly split 
into 80% training (i.e., 40 images totaling ∼250K image tiles) 
and 20% validation (i.e., 10 images totaling ∼50K image tiles) 
sets. The model is then trained for 1,000 epochs with a batch 
size of 256 and the Adam optimizer [45] with default parame-
ters. Further, early stopping with 20 epochs (i.e., training is (1A)MSE=

1

N

∑N

i=1
�i ∥ yi−CNN(x)i ∥

2
2
,

(1B)�i = 1 +
1 − tanh(�i + �)

2
,

Fig. 1. Leaf tracing algorithm. An image tile and a small segment of the previously traced path are input to a CNN that predicts the next steps of the trace. The predictions 
are added to the leaf contour and used to generate an image tile at the new location. This iteration continues until the trace reaches the starting location of the contour. Left: 
RGB leaf scan and input tile (front) with previously traced pixels (back). Center: The leaf tracing CNN which transforms the 256 × 256 input tile into a 2 × 128 set of pixel 
displacements for trace prediction. Right: Predicted pixel displacements that are used to update the trace and generate image tiles in the next iteration.
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stopped if the validation error does not improve within 20 
epochs) is used to guarantee the convergence of the model.

Once the leaf tracing CNN is trained, it is used to iteratively 
trace the contour of each leaf image in the dataset. The tracing 
algorithm is initialized using automatic thresholding to obtain 
a rough segmentation of the leaf, which provides both a start-
ing location and trace direction. An image tile centered at the 
top of the rough segmentation (i.e., at the tip of the leaf) is 
initially fed to the CNN, which outputs the initial trace pre-
diction from the center to the edge of the image tile. The first 
32 pixel predictions along the edge of the leaf are added to the 
trace, and a new image tile is drawn centered at the new loca-
tion. This iteration continues until the predicted trace falls 
within 10 pixels of the previously traced contour, after which 
a line is drawn from the prediction to the contour to close the 
loop. To eliminate errors from the trace initialization, the trac-
ing algorithm uses 10 “burn-in” iterations before storing traced 
pixels for the final segmentation. The leaf body segmentation 
is obtained by classifying all interior pixels as foreground and 
exterior pixels as background. Note that the trace direction is 
randomized during training, so that the tracing CNN can seg-
ment leaves in either clockwise or counterclockwise directions. 
In practice, the tracing algorithm does not require human 
supervision to start or stop the iteration and takes (1) s per 
image on a single graphics processing unit (GPU) of an NVIDIA 
DGX Station A100.

Vein segmentation
Segmentation of the leaf venation is formulated as a region grow-
ing task based on [9,10], in which a CNN is used to iteratively 

expand a region of interest (i.e., visible veins of a leaf). The 
convolutional region growing method (also called flood filling 
networks [9]) has been shown to reach state-of-the-art seg-
mentation accuracy while preserving biologically realistic 
morphological features [10]. However, rather than tracing the 
boundary of an object with a 1-dimensional line, the vein 
growing CNN iteratively grows a segmentation in all directions 
(e.g., 2-dimensional [2D] in [10] and 3D in [9]) by classifying 
which pixels/voxels should be included in or rejected from the 
region. In particular, a CNN inputs small image tiles centered 
on pixels of interest and predicts classifications of the center 
pixel and its adjacent neighbors. Neighboring pixels that are 
added to the region become the seeds for new image tiles in 
the next iteration. This process continues until no new pixels 
are added to the region, thereby finishing the segmentation. 
Similar to the leaf tracing framework, the region growing 
approach breaks the complex task of vein segmentation into 
many smaller decision rules and can produce high-accuracy 
segmentations using fewer than 10 images for training. See Fig. 2 
for a diagram of the vein growing algorithm and Movie S2 for 
a video of the iteration.

The vein growing CNN inputs 128 × 128 × 3 RGB image 
tiles (also normalized to [0, 1]) centered on pixels in the interior 
of a leaf. The tile size is chosen to be smaller than the leaf tracing 
tiles (a) since vein classification does not require as much con-
text and (b) for computational efficiency, since many more 
image tiles are used in this framework. However, the tile size is 
still large enough so that the model can accurately predict vein 
pixels in areas of uncertainty (e.g., blurry patches and diseased/
dead tissue). To construct a training set, image tiles are drawn 
for each vein pixel, by which the 8 manually segmented images 

Fig. 2. Vein growing algorithm. Image tiles centered on pixels of interest are input to a CNN which predicts the classification of the center pixel and its neighbors. Neighboring 
pixels with high probability are added to the vein region and used as seed pixels in the next iteration. The iteration continues until no new pixels are added to the vein region. 
Left: RGB leaf scan and input tiles with center pixels highlighted in black. Center: The vein growing CNN that transforms the 128 × 128 input tile into a 3 × 3 matrix of vein 
probabilities. Right: Predicted pixel probabilities that are used to update the region and generate new image tiles in the next iteration.
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generate more than 1,000,000 positive samples (i.e., samples 
centered on leaf veins rather than leaf lamina). Further, to 
account for heterogeneous backgrounds and image artifacts, 
up to 10 times as many background pixels are sampled from the 
interior of each leaf. The image tiles are augmented during train-
ing using a combination of random continuous rotations, hori-
zontal and vertical flips, color augmentation, and Gaussian blur.

The vein growing CNN outputs 3 × 3 × 2 predictions of the 
center pixel and its neighbors, in which the 2 prediction chan-
nels represent probabilities that a pixel belongs to the foreground 
(vein) or background (lamina). To measure error between pre-
dicted pixel probabilities and their ground truth classifications, 
Focal Loss (FL), an extension of standard binary cross-entropy 
(BCE), is used as an objective function [46]. In particular, Focal 
Loss seamlessly accounts for the class imbalance between pos-
itive and negative samples (i.e., there are many more background 
pixels than vein pixels) and allows the model to focus on more 
difficult examples where veins are obscured. The objective func-
tion is given by

where p = CNN(x) are the pixel probabilities, x ∈ ℝ128×128×3 
is the input image tile, y ∈ {0, 1} are the ground truth pixel 
classes, and α = 0.25 and γ = 2.0 are the default hyperparam-
eters of the Focal Loss (FL) function [46]. Vein growing CNNs 
are trained using both FL as well as BCE and compared in the 
results section.

The model architecture and training strategy are nearly 
identical to the leaf tracing framework. Since the input tiles for 
vein segmentation are half the dimension of the inputs for leaf 
tracing, the first block of 3 × 3 convolutional layers and max 
pooling is removed from the architecture described in the leaf 
segmentation section. Thus, the vein growing CNN trans-
forms the spatial image dimensionality from 128 × 128 to 
4 × 4, after which a final 4 × 4 convolution layer reduces the 
outputs to a vector of length 18, which is reshaped into 3 × 3 × 2 
for vein classification. Note that, unlike the leaf tracing CNN, 
the final convolution includes a Softmax activation function, 
which constrains the outputs to between 0 and 1 and motivates 
the probabilistic interpretation for the objective function. The 
model is trained with the Adam optimizer for 1,000 epochs 
with a batch size of 1,024 and early stopping of 20. Note that a 
larger batch size is used here compared to the leaf tracer since 
the inputs are smaller and thus more can be included in each 
batch. Finally, 6 images (totaling ∼6.7M image tiles) are used 
for training and 2 (totaling ∼2.5M image tiles) for validation.

Once the vein growing CNN is trained, it is used in a recur-
sive framework in which the CNN decides whether new pixels 
should be added to the vein segmentation. The algorithm is 
initialized by randomly sampling 10,000 seed pixels inside the 
leaf body (using the leaf segmentations). For each seed pixel, 
image tiles are generated and fed to the model, which then 
classifies the seed pixel and its neighbors. Neighboring pixels 
that are classified as leaf veins are used as seeds in the next 
iteration. Once a seed pixel has been considered, it is removed 
from the sample set for future iterations. This process is then 
repeated, continuously adding pixels to the segmentation, 
until no new pixels are positively classified. Note that a pixel 
can receive multiple classifications as its neighbors become 
seeds during the iterations. To account for this, the final vein 

segmentation is determined by thresholding the average prob-
ability of each pixel. The optimal probability threshold is chosen 
by minimizing the number of connected components in the 
segmentation mask across a range of threshold values. In other 
words, the optimal threshold is the one that maximizes vein 
connectivity in the segmentation mask. Like the leaf tracing 
framework, the vein growing algorithm does not require 
human supervision at inference time and completes accurate 
vein segmentations in (10) s on a single GPU of an NVIDIA 
DGX Station A100, which is orders of magnitude faster com-
pared to human annotation.

Baseline comparison
A variant of the state-of-the-art image segmentation model, 
U-Net [3], is used as a baseline to compare against the leaf 
tracing and vein growing methods. Unlike the leaf tracing and 
vein growing CNNs, which consist of only an encoder network, 
U-Net uses an additional decoder network in an auto-encoder-
like model structure. However, instead of the decoder network 
leveraging information from just the final layer of the encoder, 
U-Net includes skip connections from the encoder to the 
decoder at each spatial resolution so that the model may 
leverage multiple levels of information to accurately seg-
ment images. Following the same strategy for the leaf trac-
ing and vein growing methods, U-Net is also trained on 
smaller image tiles that are then combined during prediction 
to reconstruct the image-level segmentation mask. See Fig. 3 
for a diagram of the model architectures used for leaf and vein 
segmentation.

Separate U-Net models are trained for leaf and vein segmen-
tation. For leaf segmentation, following a similar procedure 
outlined in the leaf segmentation section, U-Net inputs 
256 × 256 × 3 RGB image tiles that are [0, 1] normalized and 
outputs corresponding 256 × 256 probability maps that predict 
pixels belonging to the leaf body. However, unlike the leaf trac-
ing inputs, U-Net inputs are not constrained to be centered 
along the leaf boundary and are instead sampled from any-
where in the leaf. For vein segmentation, following the vein 
segmentation section, U-Net inputs 128 × 128 × 3 RGB image 
tiles that are [0, 1] normalized and outputs corresponding 
128 × 128 probability maps that predict pixels belonging to the 
venation. Similarly, these input tiles are sampled from any-
where in the leaf. Each U-Net is trained using the same image 
augmentation techniques that are described in the leaf and vein 
segmentation sections.

The baseline models used in this work are variants of the 
original U-Net architecture described in [3] and are adapted 
from the CNN models described in the leaf and vein segmen-
tation sections. In particular, each U-Net model uses an iden-
tical encoder to the leaf tracing and vein growing CNNs. 
However, rather than applying a final convolution layer to the 
encoder outputs, a decoder network is applied instead. The 
decoders use the same number of layers as the encoders, but 
with layer widths in reverse order (i.e., layer width increases 
with depth in the encoder and decreases with depth in the 
decoder). Skip connections are drawn from the activation 
maps preceding each pooling layer in the encoder and concat-
enated with the corresponding upsampled activation maps in 
the decoder. Upsampling is achieved using 2D transpose con-
volutions. The outputs of the last layer of the decoder are fed 
to a final convolution layer with a Sigmoid activation, which 
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transforms the outputs into a 1-channel probability map used 
for pixel classification.

To compare the models directly, each U-Net is trained using 
the same training and validation sets as the leaf tracing (i.e., 
40 training images totaling ∼250K image tiles and 10 validation 
images totaling ∼50K image tiles) and vein growing (i.e., 6 train-
ing images totaling ∼6.7M image tiles and 2 validation images 
totaling ∼2.5M image tiles) models. The models are trained for 
1,000 epochs with early stopping set to 20 iterations. However, 
due to memory constraints (i.e., U-Net uses approximately 
twice the memory compared to the leaf tracing and vein grow-
ing CNNs), half of the batch size is used for the respective 
segmentation tasks (i.e., 128 for leaf segmentation and 512 for 
vein segmentation). Following the leaf and vein segmentation 
sections, U-Net is trained using BCE for leaf segmentation and 
BCE and FL for vein segmentation, which are compared in the 
results section.

For whole-image segmentation of the leaf body and vein 
architecture, each image is broken into uniform grid of small 
overlapping image tiles. For leaf tracing, 256 × 256 tiles are 
sampled with a step size that is half of the window size (i.e., 
128). Similarly for vein segmentation, 128 × 128 tiles are sam-
pled with a step size of 64 pixels. In this way, each pixel is con-
sidered from multiple positions in the image, thereby reducing 
poor predictability near the edges where the network has less 
context. After all of the image tiles have been predicted by 
U-Net, the average probability is computed for each pixel and 
then thresholded to produce the final segmentation mask. For 
leaf segmentation, the probability threshold is set to 0.5. For 
vein segmentation, the optimal probability threshold is chosen 
to minimize the number of connected components in the vein 
structure in order to maximize vein connectivity. Like the leaf 

tracing and vein growing methods, the U-Net prediction algo-
rithm requires no human interaction and completes segmen-
tations in (1) s for leaf segmentation and (10) s for vein 
segmentation on a single GPU of an NVIDIA DGX Station 
A100. Note that for vein segmentation, though both methods 
segment images in the same order of magnitude of seconds, 
U-Net is consistently 2 to 3 times faster owing to the smaller 
number of image tiles the model needs to predict (e.g., 20 s 
rather than 60 s per image).

Feature extraction
Given the binary segmentation maps from the leaf and vein 
segmentation sections, traditional open-source image-processing 
tools are used to extract biologically meaningful traits from 
the leaf body, vein architecture, and petiole. This is possible 
since the segmentation methods effectively remove back-
ground artifacts and highlight the salient information in leaf 
scans. In this work, Fiji [32] is used to extract leaf-level traits, 
RVE [33,34] is used for vein traits (e.g., length and thickness), 
and a custom implementation is used for petiole traits (length 
and width). RVE is chosen for vein traits in particular since it 
is designed to analyze root systems, which are composed of 
vessel-like structures with tips, branch points, redundant con-
nections, etc., and makes it applicable to studying vein archi-
tectures, which share many of the same characteristics. Further, 
since the scan resolution is known (i.e., 300 DPI), features 
extracted from Fiji and RVE are easily converted from pixel 
coordinates to standard units (e.g., centimeter).

Fiji is applied to the leaf segmentations to extract 23 image-
based traits related to whole-leaf morphology. Some morpho-
logical descriptors include area (square centimeter), perimeter 

Fig. 3. Baseline models. U-Net is used as a baseline for comparison, in which large images are broken into smaller image tiles for prediction. Note that input tiles are sampled 
such that they overlap during prediction to account for edge effects. Top: RGB input tiles (256 × 256 × 3) are fed to a U-Net model that predicts a 256 × 256 matrix of leaf pixel 
probabilities. Bottom: RGB input tiles (128 × 128 × 3) are fed to a U-Net model that predicts a 128 × 128 matrix of vein pixel probabilities.
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(centimeter), circularity (unitless), and solidity (unitless). Color 
features are also derived by relating the segmentations back to 
the original scanned images, including average red, green, blue, 
hue, saturation, and brightness values corresponding to leaf 
pixels. Feature extraction in Fiji is scripted and applied in 
“batch mode” to the full set of leaf segmentations. A detailed 
description of each of leaf-level trait is provided in (Table S1).

RVE is used to extract 27 features from the vein segmenta-
tions. Note that only vein pixels inside the leaf segmentation 
were used for vein architecture traits (i.e., the petiole is not con-
sidered here). The software parameters are set to 300 DPI and 
“whole mode” for image-level traits. Vein diameter ranges are 
used classify veins into ranges: (a) less than 0.25 mm, (b) between 
0.25 and 0.80 mm, and (c) above 0.80 mm, in an attempt to cor-
respond to third-, second-, and first-order veins, respectively. 
Extracted traits include those supplied by default (e.g., average 
vein diameter [millimeter], length [millimeter], and area [square 
millimeter]), with some traits being repeated across the vein 
diameter ranges. Following [22], additional venation traits are 
also derived that measure proportions between vein length/
area to leaf morphology. See Table S2 for the full list of vein traits 
and their descriptions.

Petiole segmentations are derived by considering the largest 
connected component of vein pixels outside of the leaf segmen-
tation. Then, to compute petiole length and width, Fiji is used 
to compute the best-fit rotated rectangle around the petiole 
mask. The height of the bounding rectangle is sufficient to esti-
mate petiole length. However, rectangle width is not used to 
estimate petiole width since (a) petiole width changes along 
the length of the petiole (i.e., it tends to be wider near the ends 
and thinner near the midpoint) and (b) the caliper measure-
ments for petiole width were taken near the center of the pet-
iole. Thus, petiole width is estimated by computing the average 
diameter over the center 20% of the segmentation. Finally, Fiji 
is used to estimate similar traits for the petiole compared to the 
leaf body (e.g., area and perimeter), and RVE was used to esti-
mate petiole volume. See Table S3 for the full list of 18 petiole 
traits and their descriptions.

The feature extraction process yields 68 traits related to leaf, 
vein, and petiole morphology that can be used for genomic 
analysis. To validate image-based features with real-world meas-
urements, petiole length and width are compared against cali-
per measurements that were recorded manually during image 
capture. To consider the results from a biological perspective, 
(a) broad-sense clonal heritability is computed for each recorded 
trait and (b) a GWAS is performed for the vein density trait (i.e., 
the ratio of vein area to leaf area). Vein density is chosen since 
it utilizes both the leaf and vein segmentations and since the 
ratio between lamina and venation must balance sunlight intake 
and carbon fixation with the transport of sugars and other nutri-
ents to sink organs, all of which are essential processes for bio-
mass production.

Validation
To validate the leaf and vein segmentations, following [7,10], 
the Jaccard index (intersection over union) is used to measure 
segmentation accuracy for images in the validation sets (i.e., 
10 for leaf segmentation and 2 for vein segmentation). This 
metric measures similarity between semantic segmentations 
by computing the ratio between the set intersection (all true-
positive pixels) and the set union (all true-positive, false-positive, 

and false-negative pixels), where scores near one indicate high 
accuracy and near zero indicate low accuracy. These values are 
compared between the leaf tracing CNN, vein growing CNN, 
and baseline U-Net models.

To account for cases in which set similarity metrics like the 
Jaccard index may be misleading, an additional perspective is 
taken to measure the biological accuracy of the vein segmen-
tations. In particular, the leaf vasculature is made up of a single 
connected network of veins. In other words, a perfect segmen-
tation mask of the vasculature should, in theory, contain a sin-
gle connected component. In practice, this is exceedingly 
difficult to obtain since veins are only partially observable 
from the surface of the leaf lamina (i.e., veins appear and 
disappear throughout the leaf surface), meaning that even the 
ground truth segmentations include multiple connected com-
ponents. Despite this observation, an accurate vein segmenta-
tion must not only overlap with the ground truth mask (i.e., 
maximize the Jaccard index) but must also be biologically real-
istic (i.e., minimize the number of connected components). 
Thus, in addition to computing the Jaccard index for vein seg-
mentations, the number of connected components are also 
computed and compared across the vein growing CNN and 
U-Net baseline models.

Note that since validation error was monitored during train-
ing, conclusions drawn from segmentation accuracy for vali-
dation images may be affected by data leakage (i.e., create an 
overoptimistic interpretation of the model). To account for this, 
the predicted digital measurements across the population are 
further validated using real-world physical measurements. To 
this end, calipers were used to measure petiole length and width 
during data collection. These values are compared against the 
corresponding features extracted from the vein segmentations. 
To measure the agreement between digital and manual values 
quantitatively, the coefficient of determination (R2) is computed 
for each trait.

Genomic analysis
To preprocess the vein density trait for GWAS, outliers are 
removed using median absolute deviation (MAD), where any 
measurement with MAD > 6 is removed. To account for geo-
spatial variation across the plantation, thin-plate spline (TPS) 
correction is applied using the fields software package in R [47], 
in which the row and position of each tree are used as coordi-
nates for the TPS models. To extract the genetic component of 
each sample, best linear unbiased predictors (BLUPs) are com-
puted for the TPS-corrected values using the lme4 software 
package in R [48], which fits genotypes as random effects for 
each trait. In addition, to assess the repeatability of each meas-
urement and the genetic control of the vein density trait, broad-
sense heritability (H2) was estimated using the TPS-corrected 
values of the clonal replicates (131 replicated samples) from the 
blocks considered in this work. Heritability is computed by

where �2
G

 is the genotypic variance due to clonal differences 
and �2

E
 represents environmental variance.

For genomic analysis, a total of 1,492 P. trichocarpa accessions 
were previously sequenced using the Illumina genetic analyzer 

(3)H2 =
�2
G

�2
G
+ �2

E

,
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with paired-end sequencing technology at the Department of 
Energy Joint Genome Institute [49]. The sequences are aligned 
to the v4 reference genome using the Burrows-Wheeler Align
ment tool, BWA-MEM [50], and variant calling is performed 
using the GATK (version 4.0) Haplotype caller [51]. Starting 
with more than 22 million single-nucleotide polymorphisms 
(SNPs) obtained by the GATK Variant Quality Score Recalibration 
method at tranche 99, 847,066 SNPs across 1,419 genotypes were 
retained for population-scale genomic analysis after applying the 
following filters. Seventy-three individuals were removed due to 
having excessive genomic relatedness or having greater than 10% 
missing SNP data. SNPs were removed if they had greater than 
15% missing genotypes, or minor allele frequency less than 0.05, 
or Hardy Weinberg Equilibrium chi-square test P value < 10-50. 
SNPs were further pruned using a linkage disequilibrium coef-
ficient of determination threshold of R2 ≥ 0.7.

The data preprocessing steps above yield 847,066 SNPs for 
1,419 unrelated genotypes that are used for GWAS analysis of 
the vein density trait. Association between the SNPs and the 
phenotypic vector was tested using a multilocus GWAS method, 
Bayesian-information and Linkage-disequilibrium Iteratively 
Nested Keyway (BLINK), from the GAPIT3 software package 
in R [52], that uses 2 fixed-effect models (FEM) iteratively. The 
first FEM tests for the association of all genetic markers inde-
pendently to generate a set of pseudo quantitative trait nucle-
otides (QTNs) that are then used in the second FEM to 
optimize the selection of pseudo QTNs. Only those QTNs that 
are significant and not in linkage disequilibrium are used as 
covariates in the association test. The first FEM is given by 

where yi is the phenotypic value of the ith individual, Si1, …, Sik 
are the genotypes of the k QTNs, b1, …, bk are the correspond-
ing effects of the QTNs, Sij is the genotype of the ith individual 
and jth SNP, dj is the jth SNP effect, and ei is the residual. The 
second FEM is used to optimize the QTNs for use as covariates 
in the first FEM and is given by 

with a similar interpretation to Eq. 4. Note that Eq. 5 is essen-
tially a reduced version of Eq. 4, in which the SNP term that 
tests for the association with the phenotypic vector is removed. 
The model optimization is performed with Bayesian informa-
tion criterion.

Results

Segmentation results
The few-shot learning and baseline methods are applied to the 
total set of images, in which the 2,906 top and bottom scans 
are used for leaf segmentation, and the 1,453 bottom scans are 
used for vein architecture. Examples of the resulting model 
outputs are given in Fig. 4. Note that the leaf in Fig. 4 was not 
used for model training or validation. Additional segmentation 
results are visualized in (Fig. S1), which illustrates leaf hetero-
geneity by varying leaf size and vein density. All of the image 
data, ground truth annotations, and predicted leaf/vein seg-
mentations are made publicly available at [31,36].

The Jaccard index is used to measure segmentation accuracy 
for images in the validation sets (i.e., 10 for leaf segmentation 
and 2 for vein segmentation), where scores near one indicate 
high accuracy and near zero indicate low accuracy. For leaf 

segmentation, the leaf tracing CNN achieves a mean (± SD) 
Jaccard score of 0.9946 (±0.0016) while the baseline U-Net 
model achieves a score of 0.9969 (±0.0009), indicating a high 
degree of overlap between the predicted and ground truth seg-
mentations and virtually no difference in accuracy between the 
methods. For vein segmentation, the 2 validation images are 
used to compare Jaccared scores between the vein growing 
CNN and U-Net models and BCE and FL objective functions 
and are given in Table 1. Note that to compare each method 
equally, the Jaccard scores are computed using a probability 
threshold of 0.5 for each case. This is in contrast to the other 
results and visualizations, which use thresholds that minimize the 
number of connected components in each segmentation mask.

The reduced scores for vein segmentation compared to leaf 
segmentation is due mainly to (a) human errors in the ground 
truth segmentation and (b) the complexity of the vein archi-
tecture. For example, the model identifies veins that were missed 
during manual annotation and thus are considered false posi-
tives in the Jaccard score. Further, due to thin veins, predicted 
veins that are off by just 1 pixel can result in large changes in 
Jaccard score. For a visualization of these phenomena, see (Fig. 
S2), which illustrates these effects for the validation image with 
the lowest Jaccard score. Despite the lower Jaccard metric, the 
vein growing framework achieves recall/sensitivity values (i.e., 
the probability of detecting a vein pixel) of 0.9219 and 0.8673, 
respectively, which indicates that the method has a high detec-
tion rate, and thus almost completely captures the structure of 
the visible vein architecture.

In addition to Jaccard index, the number of connected com-
ponents in each vein segmentation is computed as a proxy for 
biological accuracy. In other words, since the vein architecture 
of a leaf is a single fully connected network, a biologically accu-
rate vein segmentation should minimize the number of con-
nected components. To this end, bar plots are constructed 
for the vein segmentations arising from the vein growing and 
baseline CNN models and are visualized in Fig. 5. Note that 
vein objects are counted using custom probability thresholds 
that minimize the number of connected components in each 
image for each model as described in the vein segmentation 
and baseline comparison sections.

Figure 5 demonstrates that the vein growing CNN, while 
producing more fragmented segmentations compared to the 
ground truth masks, significantly reduces the number of vein 
objects compared to U-Net, regardless of objective function. 
Further, while the objective function does not significantly 
change the number of connected components for the vein 
growing CNN, there is a drastic difference between U-Net 
models. To quantify these observations, the mean number of 
connected components of each model’s outputs is compared 
using Tukey’s honestly significant difference (HSD) test with 
α = 0.05. This test reveals that the 4 models are reduced to 3 
statistically significant groups, A: U-Net with BCE, B: U-Net 
with FL, and C: vein growing CNN with BCE and FL. These 
findings show that the 3 groups differ statistically significantly 
in value, with the vein growing CNN producing the smallest 
number of vein objects. Thus, since the vein growing CNN with 
FL results in the highest segmentation accuracy see (Table 1) 
and approximately the same biological accuracy to BCE (see 
Fig. 5), it is chosen as the optimal model for vein segmentation 
in this work. In particular, this model is used for feature extrac-
tion, validation with physical measurements, and downstream 
genomic analysis.

(4)yi = Si1b1 + Si2b2 + ⋯ + Sikbk + Sijdj + ei,

(5)yi = Si1b1 + Si2b2 + … + Sibk + ei,
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Fig. 4. Leaf and vein segmentations. Results of the leaf and vein segmentation methods on an example leaf outside the training set. The top row shows the full leaf and the bottom 
row gives a zoomed in view. Left: Example leaf scan chosen from outside the training and validation sets. Center left: Predicted segmentation of the leaf body using the leaf 
tracing CNN, where pixels inside the traced contour are shown in white and outside the contour in black. Center right: Predicted segmentation of the visible vein architecture 
using the vein growing CNN with FL, where vein pixels are shown in white and background pixels in black. Right: Example leaf scan with the predicted leaf boundary and vein 
architecture overlaid in blue and red, respectively. Note that for visualization these images are zoomed in to remove redundant white space from the scanner background.

Table  1. Vein segmentation accuracy. Jaccard index is used to 
quantify vein segmentation accuracy for the 2 images held out 
for validation (see the top of each table for the leaf ID). The 
vein growing CNN (Grower) is compared to the baseline model 
(U-Net) for both BCE and FL. The model/loss combination re-
sulting in the largest Jaccard score is shown in bold.

C_1_14_18_bot.png

BCE FL

U-Net 0.6312 0.5947

Grower 0.5990 0.6586

C_1_8_1_bot.png

BCE FL

U-Net 0.5965 0.5633

Grower 0.6047 0.6381

Fig. 5. Vein object counts. Biological accuracy of the vein segmentations is measured by 
counting the number of connected components in the 8 ground truth (GT) and sets of 
1,453 predicted masks. The vein growing CNN (Grower) is compared against the baseline 
model (U-Net) trained using BCE and FL. The vertical axis represents the number of 
connected components in the vein segmentations. The height of each bar corresponds 
to the mean object count, with black lines indicating 95% confidence intervals (CI). 
The results of a Tukey’s HSD test groups the means of the 4 models into 3 statistically 
significant groups: A, B, and C. Note that ground truth masks are not considered in this 
analysis due to the orders-of-magnitude difference in number of samples.
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The predicted digital measurements across the population 
are further validated using real-world caliper measurements, 
which are visualized in Fig. 6. In particular, the data are compared 
against a linear model, which results in R2 = 0.96 for petiole 
length and R2 = 0.77 for petiole width. This discrepancy between 
R2 values is due to several factors. First, manual measurement 
of petiole length is made from end to end, resulting in larger, 
more consistent measurements. However, for petiole width, the 
caliper was placed at the approximate center of the petiole, 
resulting in greater variation due to subjective positioning of 
the caliper. Further, since petiole width is typically smaller, 
measurement errors affect the R2 value more compared to pet-
iole length. Despite these effects, the digital traits strongly agree 
with the manual measurements, which further helps validate 
the accuracy of the segmentations and extracted features.

Genomic analysis results
To consider the segmentation and feature extraction methods 
from a biological perspective, a GWAS analysis is conducted 
at population-scale to associate vein density (i.e., the ratio of 
vein area to leaf area) to the P. trichocarpa genome. The broad-
sense clonal heritability of the vein density trait is moderately 
high (H2 = 0.65), which suggests that the trait is under genetic 
control. The multilocus BLINK method is used to perform 
GWAS on the vein density trait with 847,066 SNPs in the 
genome. This analysis identified 12 significant SNPs using a 
false discovery rate (FDR) P value, P < 0.05, and 15 unique 
SNPs using a less-strict FDR P value, P < 0.2. A Manhattan 
plot, quantile-quantile plot, and the distribution of the TPS-
corrected vein density BLUPs are shown in Fig. 7. A total of 30 
unique genes that potentially control for the variation in vein 
density trait are identified for these SNPs based on the nearest 
flanking genes in both directions of the GWAS hits in the 
genome. To gain more insight into the function of these genes, 
the Arabidopsis thaliana orthologs are identified based on the 

protein sequence similarity. The GWAS results are summarized 
in Table 2. See the discussion section for more information 
about these genes and their associated physiological plant 
processes.

Discussion

In this work, few-shot learning was used for both leaf and vein 
segmentation. In particular, each method divided a small num-
ber of large images into a large number of small image tiles and 
used the predictions of previous iterations to expand partial 
segmentations until stopping criteria was reached. In particular, 
iterative dataset refinement was paired with heavy image aug-
mentation so that the CNN models learned an invariance to 
potential image artifacts not included in the small number of 
annotated images. In this way, the complex task of whole-image 
segmentation was broken down into smaller easier decision 
rules, thereby maximizing predictive accuracy while minimiz-
ing the amount of labeled images needed for model training. 
This strategy was chosen primarily due to (a) the lack of labeled 
training images (e.g., only 50 leaf segmentations and 8 vein seg-
mentations) and (b) because each leaf scan is large (3, 510 ×  
2, 550 pixels) and does not easily fit into a standard deep learn-
ing model (e.g., a CNN). To address (a), one could simply anno-
tate more data manually; however, to segment the visible venation 
in the images considered here (see the data collection section) 
would require up to 12,000 person-hours. Note that the approaches 
discussed in this work could be used to automatically label 
training data for larger deep learning workflows (e.g., U-Net 
[3] or Mask-RCNN [53]). For (b), large images are typically 
grayscaled, reshaped, or downsampled to fit within system 
requirements and hardware limitations [24]. However, this 
strategy can alter or destroy fine-grained details that may be 
crucial for accurate prediction. Thus, the methods demon-
strated here utilized raw RGB images at full resolution, but 

Fig. 6. Petiole measurement validation. Each subplot compares predicted (x-axis) with actual (y-axis) morphological measurements of the petiole. Manual measurements 
were obtained with calipers during data collection while digital measurements were derived from the leaf and vein segmentations. Left: Petiole length comparison with data 
shown in black and the best-fit line shown in red. Right: Petiole width comparison with data shown in black and the best-fit line shown in red.
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Fig. 7. Population-scale genomic analysis. Top: A Manhattan plot of the GWAS results for leaf vein density using the multilocus BLINK method for 847,066 SNPs across 1,419 
P. trichocarpa genotypes. The horizontal axis corresponds to genomic positions by chromosome and the vertical axis shows the negative log-base-10 P value for each SNP. The 
dashed horizontal line represents the FDR threshold, P < 0.05, and the dotted line represents the FDR threshold, P < 0.2. Bottom left: The quantile-quantile plot corresponding 
to the P values shown in the Manhattan plot with the expected values shown by the red dashed line. Bottom right: The distribution of TPS-corrected vein density BLUPs used 
for GWAS.

Table 2. Identified genes. Top gene models detected by the BLINK GWAS method based on FDR P value P < 0.2 for vein density in Populus 
trichocarpa. Each row corresponds to different genes and includes the gene ID, chromosome number, SNP position, distance in the genome 
(positive for upstream and negative for downstream from the SNP position), minor allele frequency (MAF), P value, A. thaliana ortholog, and 
ortholog annotation.

Gene ID Chr. (pos.) Dist. MAF P value Ortholog Annotation

Potri.017G077200 17 (8,592,229) −5,329 0.1246 3.24 × 10−4 AT3G04680 CLP-SIMILAR PROTEIN 3

Potri.017G077300 17 (8,592,229) 6,036 0.1246 3.24 × 10−4 AT3G01300 PBS1-LIKE 35

Potri.006G090501 6 (6,910,580) −2,825 0.1938 4.69 × 10−4 - -

Potri.006G090600 6 (6,910,580) 1,617 0.1938 4.69 × 10−4 AT3G53880 ALDO-KETO REDUCTASE FAMILY 4 MEMBER

Potri.006G227300 6 (23,159,363) −3,829 0.2158 7.47 × 10−4 AT1G18600 RHOMBOID-LIKE PROTEIN 12

Potri.006G227400 6 (23,159,363) 2,083 0.2158 7.47 × 10−4 AT3G13784 CELL WALL INVERTASE 5
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rather than using entire images as inputs, smaller tiles were 
sampled from within images to iteratively segment leaf bound-
aries and visible venation. For example, see (Fig. S1), which 
illustrates how these tile-based approaches are generally insen-
sitive to changes in object size and characteristics.

Leaf segmentation was formulated as a tracing task, in which 
a CNN inputs image tiles centered along the boundary of a leaf, 
and outputs trace predictions that are used to sample new tiles 
in the next iteration. This methodology performed well in this 
application since there is only 1 leaf per image and each leaf is 
fully contained within the image. Note that images with mul-
tiple objects have been previously considered [7,8], but addi-
tional modifications to the algorithm (e.g., recurrence) may be 
needed to account for images with cluttered objects and over-
lapping boundaries. The resulting leaf segmentations were highly 
accurate and captured the morphology and serration of each 
leaf. Since each leaf was scanned against a white background, 
automatic thresholding could be used to obtain a rough seg-
mentation of the leaf. However, this approach captures back-
ground artifacts, includes the petiole, and falsely detects shaded 
regions near the leaf boundaries and petiole. These artifacts 
could be addressed for individual samples by postprocessing 
the binary segmentation maps (e.g., binary erosion and dila-
tion), but defining such rules that generalize to all cases across 
the population is increasingly difficult. In contrast, a strength 
of the tracing approach is that the tracing CNN can learn an 
invariance to image artifacts in a data-driven way without 
human supervision and still leverage the auto-threshold seg-
mentations for trace initialization, which allows the method to 
be fully automated. Finally, the tracing methodology produced 
accurate leaf segmentations multiple orders of magnitude faster 
than human annotation ((1) s compared to 15 to 30 min per 
image), allowing the method to scale up to population-level 
datasets, especially for computing systems that support paral-
lelization (i.e., tracing multiple images at once).

Due to the complexity of leaf venation, vein segmentation 
was formulated as a region growing task where a CNN predicts 
whether to include pixels in a segmentation by inputting image 
tiles centered at those pixels. Unlike the tracing framework (which 
segments objects by tracing boundaries in 1 dimension), the 
region growing approach grows the segmentation directly by 
continuously adding pixels to the region of interest in 2D (see 
[9] for 3D). A strength of this approach is that each pixel is 
considered individually. However, unlike previous methods that 
conduct an exhaustive prediction over all pixels in an image 
(which would equate to 8,950,500 pixels per image in this work) 
[54], pixels were only considered if they exceed a probability 
threshold, which allowed the model to focus only on pixels of 
interest. This distinction dramatically increased segmentation 
speed ((10) s compared to 4 to 8 h per image with manual seg-
mentation). In addition, the region growing framework can use 
a random sample of pixels from anywhere in the image to ini-
tialize the iteration. Note that in this work, seed pixels were 
drawn using the leaf body segmentations from the tracer to 
reduce the number of redundant white background pixels. 
Finally, and perhaps most importantly, the model produced 
accurate segmentations at population scale using just 6 images 
for training and 2 images for validation. This is in contrast to pre-
vious approaches that used CNNs for vein segmentation and 
required more than 700 ground truth vein segmentations [24]. 
In particular, this result highlights the importance of iterative 
dataset refinement, in which images were specifically added to 

the training set in order to build an invariance to observed arti-
facts in the population (e.g., leaf folds that were falsely classified 
as veins), which has also been noted in similar applications for 
root segmentation [55].

Leaf and vein segmentation were specified as independent 
tasks and used separate computational strategies to achieve 
each goal. Since both approaches were designed for segmen-
tation, a natural question arises concerning whether distinct 
approaches are necessary, or whether a single method would 
suffice for both tasks. In principle, the region-growing CNN 
could be used for leaf segmentation; however, this would be 
computationally inefficient due to the large number of leaf 
pixels in the high-resolution scans. Compared to the tracing 
CNN (which focuses solely on boundary pixels), the region-
growing CNN would waste a large amount of computational 
resources on redundant “interior” pixels, which vastly out-
number boundary pixels. In the reverse case, the tracing CNN 
could theoretically be applied to vein segmentation. However, 
since the vein architecture is not homotopic to a circle, the 
tracing CNN would need to be reinitialized thousands of 
times inside the leaf to account for all of the “holes” in the 
vein architecture. Further, overlapping tracer boundaries near 
1-pixel-thick veins would create additional challenges in post-
processing the thousands of traced contours. Thus, iterative 
methods of this kind may only be effective for certain types 
of segmentation tasks. In particular, images containing mul-
tiple objects that overlap and obscure each other may be less 
suitable for tracing, while high-resolution images with large 
objects may be computationally infeasible for region growing. 
Therefore, it is important to account for such nuances when 
selecting a method for a particular task. For example, in this 
work, each method was particularly well suited for the seg-
mentation task it was assigned.

The leaf tracing and vein growing CNNs were compared 
with a variant of the state-of-the-art image segmentation 
model, U-Net. Almost every aspect of the models and training 
strategies were kept equal, e.g., identical encoder networks, 
same datasets, input sizes, augmentation techniques, loss func-
tions, training parameters, thresholding techniques, etc., with 
only a small number of changes to account for fundamental 
differences between the models, e.g., output size and batch size. 
The U-Net models provided multiple strengths. In particular, 
whereas tracing and region growing approaches are applied 
separately to leaf and vein segmentation, U-Net is agnostic to 
these objectives and only differs in the size of the input/output 
resolution. Further, U-Net reported approximately equal seg-
mentation speed and accuracy compared to the leaf tracing 
CNN. For vein segmentation, U-Net segmented images in the 
same order of seconds but consistently 2 to 3 times faster than 
the vein growing CNN. However, U-Net requires more than 
twice the memory per sample compared to the methods pre-
sented here (296.30 MB compared to 139.91 MB for leaf seg-
mentation and 76.93 MB compared to 36.33 MB for vein 
segmentation), which may limit its use on smaller compute 
hardware (e.g., edge-computing devices for field deployment). 
Additionally, U-Net reported lower Jaccard scores and dramat-
ically more fragmented segmentations compared to the vein 
growing CNN, which were quantified using Tukey’s HSD test. 
Thus, the vein growing CNN is a more biologically accurate and 
memory-efficient model for vein segmentation, with important 
implications for downstream scientific analyses where vein con-
nectivity is important (e.g., leaf hydraulic modeling, gas exchange, 
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length/branching estimation, biomechanics, etc.). Note that 
even the ground truth segmentations included multiple con-
nected components, since veins appear and disappear through-
out the leaf lamina, which necessitates further development 
of methods to infer these missing connections in future work.

A utility of the segmentation methods discussed here is that 
they remove background artifacts and highlight salient infor-
mation in images (e.g., the leaf body or vein architecture). Using 
traditional computer vision applications (e.g., Fiji and RVE) to 
extract digital traits from such segmentations becomes trivial 
compared to using the raw image data. These advances not only 
reduce human effort but also expand the number and variety 
of traits one can extract by including traits that can only be 
estimated digitally (e.g., vein density, leaf solidity, etc.). Further, 
custom algorithms can be developed that extract cryptic phe-
notypes related to leaf morphology and topological information 
from the vein networks, which may yield new biological insights 
into the role leaves play in plant physiology—this analysis is 
left for future work. These methods were also used to estimate 
measurable traits like petiole width and length, which were used 
as a source of validation in this work. This study demonstrated 
that manually estimated petiole length and width strongly cor-
related with their corresponding digital measurements, sug-
gesting that the segmentation quality and feature extraction 
methodology accurately predicts biologically relevant features 
from the raw images. A strategy to consider these digital traits 
from a biological perspective was to estimate their broad-sense 
heritability (i.e., the amount of variation in the trait that is con-
trolled by genetics), denoted by H2. In particular, the H2 value 
for vein density was 0.65, suggesting that the trait is under 
significant genetic control.

As a proof of concept for downstream application of the seg-
mentation methods, a GWAS analysis was performed for the 
vein density trait at population scale. The top GWAS hit was 
Potri.017G077200, which is highly expressed in apical bud, 
dormant bud, and stem [56]. This gene is also expressed in 
immature/young leaves, suggesting that it plays a role in such 
tissues [56]. Comparing to A. thaliana, CLP-SIMILAR PROTEIN 3 
(CLPS3, AT3G04680) is the closest ortholog of Potri.017G077200 
and is related to the human cleavage factor polyribonucleotide 
kinase subunit 1, which forms part of the complex responsible 
for polyadenylation of 3′ (3 prime) of messenger RNA [57]. CLPS3 
also interacts with components of the polyadenylation complex 
in plants, and it is expressed throughout whole plant development, 
including leaves and vasculature [58]. Overexpression of CLPS3 
causes aberrant leaf phenotypes, abnormal phyllotaxis, and 
early flowering [58]. Futher, CLPS3 increases the expression of 
CUP-SHAPED COTYLEDON 1 (CUC1), an NAC transcription 
factor, which together with CUC2 and CUC3, have been found 
to participate in meristem formation, organ boundary separa-
tion, and leaf shape [59–61]. Since Potri.017G077200 is an 
CLPS3 ortholog, it could play similar roles in leaf development 
of P. trichocarpa, making it a strong target for genomic selection 
studies.

Potri.006G227300 is expressed in most plant tissues, but it 
is highly expressed in apical bud in spring, swelling bud, late 
dormant bud, as well as young and immature leaves [56]. Its 
Arabidopsis ortholog, RHOMBOID-LIKE PROTEIN 12 (RBL12, 
AT1G18600), follows a similar expression pattern, being enriched 
in floral buds [62]. Very little is known about RBL12, but it is 
predicted to be an active transmembrane protease located in 
the mitochondria [63]. Further, RBL12 substrates in A. thaliana 

have not been identified; therefore, its role is yet to be determined 
[64]. Other genes that were associated with vein density by 
GWAS may play an indirect role in leaf development. For 
instance, the Potri.017G077300 ortholog, PBS1-LIKE 35 
(PBL35, AT3G01300), participates in shoot apical meristem 
homeostasis and plant immunity, while the Potri.006G090600 
ortholog, ALDO-KETO REDUCTASE FAMILY 4 MEMBER 
C11 (AKR4C11, AT3G53880), participates in abiotic stress 
tolerance through detoxification of reactive carbonyls [65–68]. 
Thus, Potri.017G077300 and Potri.006G090600 may play a 
role in leaf and vein development through such processes. Further, 
the Potri.006G227400 ortholog, CELL WALL INVERTASE 5 
(CWINV5, AT3G13784), is a cell wall invertase, and members of 
this family have been found to affect plant development by mak-
ing hexoses available for transport [62,69].

Conclusions
Few-shot segmentation methods were extended to image-based 
plant phenotyping, whereby researchers can maximize predic-
tive accuracy while minimizing the amount of training data. 
These methods were demonstrated for leaf scans of P. tricho-
carpa, where 50 training images were used to train an auto-
mated tracing algorithm for whole-leaf segmentation and 8 
images were used to train a region growing algorithm to seg-
ment the visible vein architecture. The methods were compared 
against a variant of the U-Net model, which suggested that the 
models considered here may produce more biologically real-
istic segmentations (i.e., reduce fragmentation). The leaf and 
vein segmentations were used to extract biologically relevant 
morphological and topological traits related to the leaf body, 
venation, and petiole, which were validated with real-world 
manual measurements. Broad-sense clonal heritability esti-
mates for each trait were measured, and a population-scale 
genomic analysis was conducted for vein density, which com-
bined information from both leaf and vein segmentations. The 
GWAS analysis revealed a set of previously unconsidered 
SNPs and associated genes with mechanistic associations to 
multiple physiological processes relating to leaf development 
and function. Future work will include a deep dive into the 
relevant biology surrounding the features discussed in this 
work and will include the extraction of additional cryptic phe-
notypes relating to leaf morphology and vein topology. In par-
ticular, this work will leverage systems biology, network analysis, 
and climatic data to uncover the mechanistic associations within 
and across genotypes as they relate to sustainable bioenergy 
applications (e.g., biomass yield and composition).

In conclusion, this study demonstrated a complete workflow 
from image acquisition to phenotype extraction. The utility of 
these methods for biological use cases was further demon-
strated by comparing biological accuracy with U-Net-based 
segmentations and performing GWAS that identified genomic 
regions and associated genes potentially controlling important 
plant phenotypes, such as vein density. This enhances current 
understanding of the genetic architecture of complex traits and 
may facilitate future quantitative genetics and genotype × envi-
ronment interaction studies. This further allows researchers to 
assess how vein traits relate to other physiological processes, 
such as stomatal conductance, gas exchange, and overall plant 
productivity with important implications for developing Populus 
as a bioenergy crop. Genes detected from the quantitative genetic 
analysis can be used in future biotechnology experiments for 
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optimizing traits targeted for climate resilience, biomass produc-
tion, and accelerated domestication for agriculture and biofuel 
production.
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Data Availability

In addition to releasing all of the segmentation code on a 
public GitHub repository [31], we are also releasing all of 
the images, manual segmentations, model predictions, 68 
extracted leaf phenotypes, and a new set of SNPs called against 
the v4 P. trichocarpa genome for 1,419 genotypes on the Oak 
Ridge National Laboratory Constellation Portal (a public DOI 
data server) [36]. Further, a copy of both the code and the 
data is available at [37]. This is, to our knowledge, one of the 
largest releases of plant genotype and phenotype data in a 
single manuscript. We hope that this work becomes a valuable 
community resource and helps reduce barriers commonly 

associated with high-throughput image-based plant pheno-
typing and machine learning.
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