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ABSTRACT OF THE DISSERTATION 

 
 

Mechanisms of Sensory Learning Processes 
 
 

by 
 
 

Brett Christopher Bays 
 

Doctor of Philosophy, Graduate Program in Psychology 
University of California, Riverside, August 2016 

Dr. Aaron R. Seitz, Chairperson 
 
 
 

 
 Sensory learning – the ability of our perceptual systems to exhibit change and 

improvement in response to sensory input – is an important class of processes that allows 

perception to adapt meaningfully to the environment. It can include improvements based 

on repeated exposure to stimuli, called perceptual learning (PL), and learning patterns 

governing stimuli, called statistical learning (SL). Efficiently combining information from 

multiple modalities, called multisensory integration (MI), has also been shown to interact 

with these processes. In a series of experiments, we investigate whether PL, SL, and MI 

might each comprise multiple underlying mechanisms and whether those mechanisms 

might intersect, using behavioral and neurological methodology. 

 In the first chapter, we conduct three experiments using an SL paradigm to show 

that SL may comprise multiple processes. Experiment 1 demonstrates our ability to find a 

dissociation between behavioral outcome measures; Experiment 2 replicates Experiment 1 

using a different task; and Experiment 3 replicates it further while investigating whether 

the learning is associative or representational. In the second chapter, we analyze 
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electroencephalogram (EEG) alpha power as a proxy for attentional resources during PL 

training. Behavioral results suggest that PL occurred and electrophysiological results 

suggest that after training, participants were able to perform the task using fewer resources 

and to allocate those resources more efficiently. This latter result did not apply specifically 

to trained stimuli, suggesting that multiple mechanisms may be at work during PL. The 

third chapter uses a novel training paradigm that combines PL, SL, and MI to investigate 

the extent to which these processes share common mechanisms and how their interactions 

impact perception. Across two sets of experiments, participants performed a discrimination 

task on audio-visual stimuli that appeared according to controlled spatio-temporal 

statistics. Behavioral data show some PL, SL, and MI effects, and EEG data hint at an SL 

and PL relationship with alpha power. The results of this study, although not all statistically 

significant, provide insight into the underlying mechanisms of PL, SL, MI. 

 Altogether, we provide evidence that sensory learning and other perceptual 

processes should not be treated as unitary mechanisms but instead should be investigated 

in terms of their manifold natures. 
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 1 

GENERAL INTRODUCTION 

Sensory learning and plasticity 

 Adapting to our environment is essential to human functioning. Without this ability 

there could be no learning, no changes to our perceptual abilities, and no development 

throughout our lifetimes. The ability for a sensory system to learn and adapt to the 

environment is broadly known as “sensory plasticity” at the cellular level or “sensory 

learning” at the behavioral level, and involves the system’s ability to change in response to 

perceptual input. Plasticity in the brain and its connection to learning has been postulated 

for over a hundred years, dating back to groundbreaking work such as Santiago Ramón y 

Cajal’s “theory of neurotropism” (Ramón y Cajal, 1894, 1959) and Donald Hebb’s 

investigations of the neural mechanisms underlying learning and behavior (Hebb, 1949). 

Experience-dependent plasticity has been more recently studied in a variety of paradigms 

(e.g., Buonomano & Merzenich, 1998; Johnson, 2001) and importantly has been discussed 

with respect to fully developed adult brains instead of solely with respect to younger, 

developing systems. This is important because early evidence suggested a lack of 

neuroplasticity in adult brains and evidence for critical periods of brain plasticity that 

occurred in developing neurological systems lent additional weight to this idea (Berardi, 

Pizzorusso, & Maffei, 2000; Hubel & Wiesel, 1962, 1970; Ramón y Cajal, 1959). These 

studies served to reinforce a view among many that mature, adult brains are incapable of 

further plasticity. However, a large number of studies soon provided evidence for adult 

plasticity in different perceptual modalities (Calford et al., 2005; Kaas, 1991). In the 

somatosensory modality, reorganization of adult brains has been observed in monkeys 
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(Merzenich et al., 1984), flying-fox bats (Calford & Tweedale, 1988), and in humans 

(Elbert et al., 1994; T. T. Yang et al., 1994). Similarly, in the visual modality adult neural 

plasticity has been observed in rats (Baroncelli et al., 2010; Sale et al., 2010), cats (Hua et 

al., 2010), monkeys (Heinen & Skavenski, 1991), humans (Fine et al., 2003; Gilbert, Li, & 

Piech, 2009; Yotsumoto et al., 2014), and correlates have been observed at both the 

molecular level (Obata, Obata, Das, & Gilbert, 1999) and at the behavioral level (e.g., 

Andersen, Ni, Bower, & Watanabe, 2010; Deveau, Ozer, & Seitz, 2014; Levi, 2005). 

 The evidence for adult plasticity is especially important for the types of sensory 

learning that we will discuss, namely perceptual learning (PL) and statistical learning (SL), 

and for the process of multisensory integration (MI) which can interact with perception. 

These three facets of learning and perception deal with a variety of situations in which 

mature sensory systems are exposed to new stimuli, patterns of stimuli, or combinations of 

stimuli, and produce improved or otherwise changed responses. For example, these 

changes might be improvements in visual acuity (PL), improved detection of patterns in 

the environment (SL), or integration of different modalities leading to improved detection 

of stimuli (MI). There is an open question in the literature, however, as to whether these 

processes are unitary, as they are often treated, or whether they each comprise multiple 

underlying mechanisms. Investigating the multifaceted nature of these processes is central 

to this dissertation and the evidence for predicting such a nature is discussed along with 

each process below. We then describe the experiments that were used to investigate the 

neural and behavioral mechanisms underlying these processes and how those mechanisms 

may intersect. 
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Perceptual learning 

 Perceptual learning refers to an improvement in performance for perceptual tasks 

after repeated exposure or training with stimuli related to those tasks. PL has been studied 

for over a century, has been documented in both non-human and human animals, and is 

typically considered an implicit process that can occur in multiple sensory modalities (for 

reviews see, Fahle, 2005; Ghose, 2004; Gilbert, Sigman, & Crist, 2001; Sagi, 2011; Sasaki, 

Náñez, & Watanabe, 2012; Seitz & Dinse, 2007; Watanabe & Sasaki, 2015). PL has 

retained its investigative importance because of its relationship to a sensory system’s 

ability to adapt and improve in response to the environment and has been particularly well-

studied in the visual modality. In visual PL, laboratory stimuli are often composed of 

simple features which can be manipulated and measured easily. For example, visual PL 

has been investigated using oriented gratings (Dobres & Seitz, 2010; Schoups, Vogels, 

Qian, & Orban, 2001; T. Yang & Maunsell, 2004), line or dot offset (Fahle, Edelman, & 

Poggio, 1995; Hung & Seitz, 2014; Poggio, Fahle, & Edelman, 1992), motion (Seitz, 

Nanez, Holloway, & Watanabe, 2006; Seitz & Watanabe, 2005, 2008; Zohary, Celebrini, 

Britten, & Newsome, 1994), and contrast (Adini, Sagi, & Tsodyks, 2002; Hua et al., 2010; 

Yu, Klein, & Levi, 2004). More complex stimuli and training paradigms have also been 

used to study PL, such as action video games (Green & Bavelier, 2007; Green, Li, & 

Bavelier, 2010), human faces (Hussain, Sekuler, & Bennett, 2011), and training designed 

to evoke perceptual gains outside of the laboratory (Deveau, Lovcik, & Seitz, 2014; 

Deveau, Ozer, & Seitz, 2014). 
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 A highly debated topic within PL over the last two decades has involved the issue 

of specificity. Classically, behavioral improvements seen after training have been specific 

to the stimuli, location, and task used during training, leading many to theorize that neural 

correlates of PL occur in early visual areas, where neurons are sharply tuned to features 

such as orientation, location, and size (De Valois, 1977; Fahle, 2004; Fiorentini & Berardi, 

1980; Ramachandran & Braddick, 1973). Evidence of neuronal changes in early visual 

areas that are specific to trained features has also provided support for this view (Bao, 

Yang, Rios, He, & Engel, 2010; Gilbert et al., 2009, 2001; Hua et al., 2010). However, a 

growing body of research has demonstrated that under certain conditions, PL can transfer 

to untrained locations and stimuli (Ahissar & Hochstein, 2004; Deveau, Ozer, et al., 2014; 

Hung & Seitz, 2014; Xiao et al., 2008; Zhang et al., 2010). Evidence such as this has been 

used to argue against early plasticity as the seat of PL, and there is currently a great deal of 

debate as to how to model the available evidence (Ahissar & Hochstein, 2004; Byers & 

Serences, 2012; Dosher & Lu, 1998; Fahle, 2005; Hung & Seitz, 2014; Jeter, Dosher, Liu, 

& Lu, 2010; Petrov, Dosher, & Lu, 2005; Pilly, Grossberg, & Seitz, 2010; Xiao et al., 2008; 

Zhang et al., 2010). We propose that one possible explanation would be the existence of 

multiple mechanisms subserving PL at different stages of perceptual processing. Thus, 

Chapter 2 of this dissertation adds to the discussion by examining neuronal and attentional 

mechanisms that might change due to PL training, how those changes provide evidence for 

different mechanisms supporting PL, and how those mechanisms might affect different 

explanations of PL specificity and non-specificity. Chapter 3 also examines whether the 
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underlying mechanisms might interact with other perceptual processes and investigates 

specificity in PL by measuring transfer to untrained tasks after training. 

 

Statistical learning 

 Statistical learning refers to the perceptual process of learning patterns among 

probabilistically organized stimuli, normally without any conscious awareness that there 

are patterns to be learned (for a review see, Turk-Browne, 2012). Like PL, the process of 

SL can occur in various modalities (e.g., Conway & Christiansen, 2006; Fiser & Aslin, 

2001; Saffran, Aslin, & Newport, 1996), is thought to occur implicitly (Fiser & Aslin, 

2002; Kim, Seitz, Feenstra, & Shams, 2009) and can influence our perception of stimuli 

(Barakat, Seitz, & Shams, 2013; Chalk, Seitz, & Seriès, 2010). Unlike PL, which normally 

occurs on a time-scale of days, SL can occur in a matter of minutes (Aslin, Saffran, & 

Newport, 1998; Kim et al., 2009; Saffran et al., 1996; Turk-Browne, Scholl, Chun, & 

Johnson, 2009) and in the visual modality can transfer across spatial and temporal 

dimensions (Turk-Browne & Scholl, 2009). Auditory SL is thought to underlie aspects of 

language development in humans (Saffran et al., 1996; Saffran, Johnson, Aslin, & 

Newport, 1999; Saffran & Thiessen, 2003; C. D. Yang, 2004) and visual SL has been 

implicated in the binding of features and objects (Turk-Browne, Isola, Scholl, & Treat, 

2008) and defining the scale of objects (Fiser & Aslin, 2001, 2005).  

 The mechanisms underlying SL are not as well modeled as the mechanisms 

underlying PL. This is possibly due to SL becoming a research topic more recently than 

PL and also the wide variety of paradigms used to investigate SL, which can include 
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exposure with cover tasks (Saffran, Newport, Aslin, Tunick, & Barrueco, 1997; Toro, 

Sinnett, & Soto-Faraco, 2005), exposure without cover tasks (Fiser & Aslin, 2001; Saffran 

et al., 1996), familiarity tests (Fiser & Aslin, 2001, 2002; Saffran et al., 1999; Turk-Browne 

et al., 2008), reaction time tests (Hunt & Aslin, 2001; Kim et al., 2009; Turk-Browne, 

Jungé, & Scholl, 2005), and different patterns governing the stimuli, such as visuo-spatial 

patterns, visuo-temporal patterns, and audio-temporal patterns (Fiser & Aslin, 2005; 

Saffran et al., 1999; Zhao, Al-Aidroos, & Turk-Browne, 2013). Neurological evidence for 

SL comes mostly from fMRI studies (for a review see, Karuza, Emberson, & Aslin, 2014) 

and suggests two main brain regions supporting SL – the medial temporal lobe (Schapiro, 

Gregory, Landau, McCloskey, & Turk-Browne, 2014; Schapiro, Kustner, & Turk-Browne, 

2012; Turk-Browne et al., 2009; Turk-Browne, Scholl, Johnson, & Chun, 2010) and the 

striatum (Durrant, Cairney, & Lewis, 2013; Turk-Browne et al., 2009). Additionally, there 

is fMRI and near-infrared spectroscopy evidence for support from the left inferior frontal 

gyrus (Abla & Okanoya, 2008; Karuza et al., 2013; Turk-Browne et al., 2009) and activity 

in other regions, such as the occipital cortex, has also been correlated with SL (Turk-

Browne et al., 2009, 2010). Taken together, this evidence points towards a learning process 

that likely involves higher brain regions than PL but which also demonstrates a fair amount 

of overlap, suggesting that there may be common components to both processes. 

 Although there are clearly many behavioral aspects of SL and multiple brain 

regions subserving it, the literature is fairly silent on whether SL is a unitary process or 

whether is comprises multiple processes. Based on evidence from SL in different 

modalities, Conway and Christiansen (2005) argue that multiple mechanisms compose SL, 
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but few others discuss the topic. There is behavioral evidence that multiple processes may 

affect results of visual SL (Zhao, Ngo, McKendrick, & Turk-Browne, 2011), that the 

consolidation of SL may have multiple components (Durrant, Taylor, Cairney, & Lewis, 

2011), and that SL may affect attentional processes (Zhao et al., 2013) and perceptual 

processes such as PL (Barakat et al., 2013). Additionally, there is neurological evidence 

for different time-courses of medial temporal lobe and striatal activation during SL, which 

might correspond to multiple memory systems at work (Durrant et al., 2013; Turk-Browne 

et al., 2009, 2010). Chapter 1 investigates this question further by using a novel analysis 

technique designed to find behavioral evidence of multiple processes underlying SL. 

Additionally, Chapter 3 investigates the relationship between SL and other perceptual 

processes such as PL and MI. 

 

Multisensory integration 

 Multisensory integration is the process of combining information from different 

sensory modalities into a single multisensory unit. Although not utilized in the experiments 

of this dissertation as much as PL or SL, it is an important perceptual process that can affect 

both PL and SL, is involved in the experiments of Chapter 3, and thus deserves a brief 

introduction here. Historically, unisensory input has been considered the brain’s primary 

source of perceptual information but growing evidence suggests that MI plays an important 

role as well (for reviews see, Koelewijn, Bronkhorst, & Theeuwes, 2010; Shams & Seitz, 

2008; Shimojo & Shams, 2001; Stein & Stanford, 2008). For example, it is possible to 

obtain enhanced performance in visual learning tasks by using integrated visual and 
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auditory stimuli (Kim, Seitz, & Shams, 2008; Raposo, Sheppard, Schrater, & Churchland, 

2012; Seitz, Kim, & Shams, 2006; Shams & Seitz, 2008; Sheppard, Raposo, & Churchland, 

2013). There is also a large body of evidence suggesting that MI may take place at very 

early processing stages in the brain, including primary visual and auditory cortex (Calvert 

et al., 1997, 1999; Cohen et al., 1997; Macaluso, Frith, & Driver, 2000; Powers, Hevey, & 

Wallace, 2012; Sadato et al., 1996; Shams, Kamitani, Thompson, & Shimojo, 2001). 

For the purposes of this dissertation, MI is important because it has been shown 

that it can affect and improve PL performance (Deveau, Lovcik, et al., 2014; Kim et al., 

2008; Seitz, Kim, et al., 2006; Shams & Seitz, 2008). For example, Kim, Seitz, and Shams 

(2008) found that using congruent auditory stimuli in conjunction with visual stimuli in a 

motion detection task increased the amount of learning and the rate of learning across 

training days. Multisensory stimuli have also been incorporated into vision-enhancing 

video games that utilize perceptual learning approaches (Deveau, Lovcik, et al., 2014). 

Additionally, multisensory stimuli have been used in studies of SL (Conway & 

Christiansen, 2006) although the results suggest that integration between modalities did 

not occur. These results suggest that there may be common mechanisms underlying MI 

and PL, and possibly MI and SL, and thus Chapter 3 is designed to investigate the question 

of how MI, PL, and SL might interact by incorporating all three processes in a single 

experimental paradigm. 
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Methodology 

The methods used to investigate PL, SL, and MI are extremely varied and include 

behavioral measures such as reaction times and accuracy, electrophysiology such as single 

unit recordings and electroencephalography (EEG), and imaging based techniques such as 

MRI and fMRI (e.g., Abla & Okanoya, 2009; Bays, Visscher, Le Dantec, & Seitz, 2015; 

Le Dantec, Melton, & Seitz, 2012; Powers et al., 2012; Schapiro et al., 2014; Schoups et 

al., 2001; Yotsumoto et al., 2014). In this dissertation we focus on using behavioral 

measures and EEG to understand underlying mechanisms. EEG has been used to study PL 

(Bao et al., 2010; Bays et al., 2015; Freyer, Becker, Dinse, & Ritter, 2013; Sigala, Haufe, 

Roy, Dinse, & Ritter, 2014), SL (Abla, Katahira, & Okanoya, 2008; Abla & Okanoya, 

2009; Sanders, Newport, & Neville, 2002), and MI (Shams et al., 2001). Converting the 

EEG signal from the time domain, where it is a measure of voltages across time, to the 

time-frequency domain, where it is a measure of power at different frequencies across time, 

has become a popular and revealing method for analyzing EEG data (for reviews see, 

Hanslmayr, Gross, Klimesch, & Shapiro, 2011; Hughes & Crunelli, 2005; Klimesch, 1999; 

Samar, Bopardikar, Rao, & Swartz, 1999). In particular the alpha bandwidth, comprising 

frequencies 8-12Hz, has shown to be predictive of performance (Hanslmayr et al., 2011; 

Klimesch, Sauseng, & Hanslmayr, 2007; Payne & Sekuler, 2014) and to be negatively 

correlated with effort and attention to visual tasks (Bollimunta, Chen, Schroeder, & Ding, 

2008; Ergenoglu et al., 2004; Hanslmayr et al., 2007; Nenert, Viswanathan, Dubuc, & 

Visscher, 2012; Snyder & Foxe, 2010; Vaden, Hutcheson, McCollum, Kentros, & 

Visscher, 2012). The question of what alpha power may reveal about PL and SL is 
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addressed in Chapters 2 and 3 and all three chapters utilize behavioral measures to address 

their respective issues. 

 

Dissertation structure 

The overarching goal of this dissertation is to examine the underlying mechanisms 

of sensory learning and other perceptual processes in novel ways and to ultimately 

determine where they might intersect. Chapter 1 examines visual SL and investigates 

whether it might itself comprise multiple processes. In a series of three experiments we 

show that visual SL, commonly treated as a single process, is able to show dissociable 

behavioral effects which suggest an underlying family of processes. Chapter 2 examines 

visual PL and uses behavioral and time-frequency EEG methodology to investigate task 

automaticity, efficiency, and effort in a PL training paradigm. The results suggest that after 

training participants are able to perform a PL task with more efficient uses of cognitive 

resources, although these benefits were not specific to trained stimuli. These results imply 

that there might be multiple mechanisms at work during PL training and help to address 

unresolved issues within the PL area such as transfer of training. Chapter 3 combines SL, 

PL, and MI methodology into a novel training paradigm used to investigate the intersection 

of those perceptual processes, whether they can be combined to improve perceptual 

abilities, and whether the training can transfer to untrained tasks. Behavioral and time-

frequency EEG results suggest that learning occurred and that some of it may have 

transferred to untrained tasks. Together, these three chapters serve to help us understand 
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different underlying aspects of sensory learning and perception, what they might have in 

common, and what remains for us to learn about them. 
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Abstract 

Statistical learning refers to the extraction of probabilistic relationships between stimuli 

and is increasingly used as a method to understand learning processes. However, numerous 

cognitive processes are sensitive to statistical relationships between stimuli and any one 

measure of learning may conflate these processes; to date little research has focused on 

differentiating these processes. To understand how multiple processes underlie statistical 

learning, here we compared, within the same study, operational measures of learning from 

different tasks that may be differentially sensitive to these processes. In Experiment 1, 

participants were visually exposed to temporal regularities embedded in a stream of shapes. 

Their task was to periodically detect whether a shape, whose contrast was staircased to a 

threshold level, was present or absent. Afterwards, they completed a search task, where 

statistically predictable shapes were found more quickly. We used the search task to label 

shape pairs as “learned” or “non-learned”, and then used these labels to analyze the 

detection task. We found a dissociation between learning on the search task and the 

detection task where only non-learned pairs showed learning effects in the detection task. 

This finding was replicated in further experiments with recognition memory (Experiment 

2) and associative learning tasks (Experiment 3). Taken together, these findings are 

consistent with the view that statistical learning may comprise a family of processes that 

can produce dissociable effects on different aspects of behavior.  
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Introduction 

An important cognitive function is to learn associative relationships between 

stimuli in our environment. However, our perceptual systems are oversaturated in terms of 

the number of stimuli we can attend to and remember. Thus, learning to associate stimuli 

into coherent perceptual objects may seem like a hopeless endeavor. One way that people 

learn associative relationships between environmental patterns is through statistical 

learning, a ubiquitous process that involves learning patterns among stimuli organized 

according to probabilistic relationships. It can occur extremely quickly in experimental 

settings, after only a few minutes (Aslin, Saffran, & Newport, 1998; Kim, Seitz, Feenstra, 

& Shams, 2009; Saffran, Aslin, & Newport, 1996), and without explicit awareness (Fiser 

& Aslin, 2002; Kim et al., 2009). Statistical learning has been found to underlie basic 

aspects of language development (Saffran et al., 1996; Saffran & Thiessen, 2003; C. D. 

Yang, 2004), as well as other aspects of cognitive development and psychology. For 

instance, it occurs in both children and adults (Saffran, Johnson, Aslin, & Newport, 1999), 

operates in multiple modalities (Conway & Christiansen, 2005), helps bind both features 

and objects (Turk-Browne, Isola, Scholl, & Treat, 2008), transfers across spatial and 

temporal dimensions (Turk-Browne & Scholl, 2009), defines the scale of visual objects 

(Fiser & Aslin, 2001, 2005), and can even alter our perception of stimuli (Chalk, Seitz, & 

Seriès, 2010). 

 Among the wide array of statistical learning studies, there is an equally wide array 

of exposure (acquisition of learning) and testing (assessment of learning) procedures. 

Exposure can occur passively with auditory stimuli (Saffran et al., 1996), passively with 
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visual stimuli (Fiser & Aslin, 2001), actively with a cover task related to the stimuli (Toro, 

Sinnett, & Soto-Faraco, 2005), and actively with a cover task unrelated to the stimuli 

(Saffran, Newport, Aslin, Tunick, & Barrueco, 1997). Testing procedures used to assay 

learning include familiarity tests (e.g., Fiser & Aslin, 2001, 2002; Saffran et al., 1999; 

Turk-Browne et al., 2008), reaction time tests (Hunt & Aslin, 2001; Kim et al., 2009; Turk-

Browne, Jungé, & Scholl, 2005), and functional magnetic resonance imaging (e.g., Karuza 

et al., 2013; Schapiro, Gregory, Landau, McCloskey, & Turk-Browne, 2014; Schapiro, 

Kustner, & Turk-Browne, 2012; Turk-Browne, Scholl, Chun, & Johnson, 2009).  

Researchers often alternate between measures of statistical learning without 

differentiating between the general interpretations of the outcomes (Turk-Browne et al., 

2008, 2005). For example, results obtained using a reaction time task have been discussed 

in the same terms as those obtained using a two-interval forced choice task with relation to 

what they reveal about statistical learning (Turk-Browne et al., 2008, 2005). Additionally, 

results from paradigms as varied as the learning of visuo-spatial patterns, visuo-temporal 

patterns, and audio-temporal patterns, are all labeled with the general name of “statistical 

learning” with little discussion of distinctions in the learning rate, mechanisms, and 

constraints (Fiser & Aslin, 2005; Saffran et al., 1999; Zhao, Al-Aidroos, & Turk-Browne, 

2013). These results are sometimes explicitly theorized to represent the same underlying 

learning mechanism (Kirkham, Slemmer, & Johnson, 2002; Perruchet & Pacton, 2006) or 

occasionally theorized to stem from different cognitive mechanisms (Conway & 

Christiansen, 2005), but more often the literature has not discussed in detail what exactly 

statistical learning is.  
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Further, despite the myriad procedures that have been used to investigate statistical 

learning, researchers rarely address the possibility that different systems may be engaged 

and responsible for the learning observed across studies. Here we address the possibility 

that statistical learning comprises multiple cognitive processes. A “process” refers to a 

series of steps to achieve a particular end (process, 2015), and by “multiple processes” we 

mean that different systems act at once upon the stimuli — independently, cooperatively, 

or competitively — and that each can achieve its own end and learn independently.  

Growing evidence suggests that numerous cognitive processes are sensitive to 

statistical relationships and that learning in even simple tasks can involve simultaneous 

dissociable processes (Frost, Siegelman, Narkiss, & Afek, 2013; Le Dantec, Melton, & 

Seitz, 2012; Zhao et al., 2013; Zhao, Ngo, McKendrick, & Turk-Browne, 2011). The 

consolidation of statistical learning has both sleep-dependent and time-dependent 

components (Durrant, Taylor, Cairney, & Lewis, 2011) and may lead to perceptual learning 

in addition to associative learning (Barakat, Seitz, & Shams, 2013). In artificial grammar 

learning (AGL) paradigms, which are closely related to statistical learning paradigms, 

fMRI studies have revealed different neural networks subserving the recognition of items 

and the learning of the grammar (Fletcher, Büchel, Josephs, Friston, & Dolan, 1999; 

Lieberman, Chang, Chiao, Bookheimer, & Knowlton, 2004; Seger, Prabhakaran, Poldrack, 

& Gabrieli, 2000) and dissociable overlapping networks of implicit and explicit learning 

during AGL have been demonstrated (J. Yang & Li, 2012). Similarly, in statistical learning 

paradigms, different time-courses of medial temporal lobe and striatal activation have been 

observed, which might correspond to competing memory systems at work (Durrant, 
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Cairney, & Lewis, 2013; Turk-Browne et al., 2009; Turk-Browne, Scholl, Johnson, & 

Chun, 2010). 

 In the present study, we investigate how the utilization of multiple tasks that assay 

statistical learning may reveal different underlying cognitive processes. This involves 

using a novel ‘item analysis’ approach in which we quantify statistical learning with two 

different tests per experiment and then relate the amount of learning in each test on an item-

by-item basis. This approach enables a more detailed characterization of statistical learning 

than is typically possible in studies using a single outcome measurement. Moreover, by 

using multiple tests of statistical learning, we can also examine whether learning manifests 

itself in a stable way across different behaviors for a given item. Although measuring 

different behavioral tasks does not provide conclusive evidence for or against multiple 

processes per se, this approach might nevertheless produce evidence useful for evaluating 

our hypothesis. 

A single-process model of statistical learning predicts that multiple tests should 

reveal the same qualitative pattern of results. If one measure is more sensitive to learning 

than another, a single-process model would predict significant results from the more 

sensitive measure(s) and diminished or null results from the less sensitive measure(s). 

However, across three experiments, we found reversals between different behavioral 

outcomes of statistical learning; that is, qualitative patterns of learning opposite to each 

other. These findings undermine an implicit assumption in the field that a common process 

underlies all manifestations of statistical learning. 
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Experiment 1 

 Our first experiment was an investigation of whether different tasks can reveal 

different statistical learning outcomes from the same exposure. We conducted an item-

level analysis where, for each statistical regularity (e.g., a single pair of items for a 

participant), we compared learning for that regularity across two outcome measures. 

Specifically, we used a search post-test to categorize regularities as “learned” or “non-

learned”, and then examined performance for these categorized regularities during a 

detection task conducted concurrent with exposure.  

In the detection task, a continuous stream of shapes was presented and participants 

responded to a periodic tone as to whether a shape was present or absent. This task occurred 

while participants learned the statistical regularities and then continued for a period of time 

after learning could reasonably be assumed to have occurred. In the search task, which 

occurred after the detection task, participants were presented with a target shape at the 

beginning of each trial and responded as soon as that shape appeared in a rapid-serial visual 

presentation (RSVP) of distractors and a target.  

  These tasks are described more fully below, but insofar as different measures of 

statistical learning reveal the same underlying process, then learned regularities from the 

search task should exhibit the same signatures of learning in the detection task. 

Alternatively, there may be no relationship or a negative relationship between learning 

effects during the detection task and the search task, which would be consistent with the 

existence of multiple processes in statistical learning that manifest different behavioral 

outcomes.  
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Methods 

Participants 

 Thirty-seven undergraduates at the University of California, Riverside, aged 18-24 

(24 females), were included in this study. The number of participants was determined based 

on how many students could be recruited for this study within one 10-week quarter in the 

UC Riverside undergraduate subject pool. This method introduces no statistical bias, as at 

no point were data analyzed in order to determine when to cease data collection. Inclusion 

required completion of all experimental procedures without technical errors and with 

responses to at least 70% of targets in both tasks (a criterion derived from pilot data). 

Inability to complete both tasks satisfactorily resulted in the exclusion of seven participants 

beyond the thirty-seven included in the study. The data of these participants were not 

analyzed beyond the point of determining their response rates and, importantly, these 

subject exclusion criteria are not related to the differential performance between items that 

form the critical analyses in this study. Participants received credit toward partial 

fulfillment of course requirements for an introductory psychology course, gave written 

informed consent as approved by the Human Research Review Board, and had normal or 

corrected-to-normal vision. These criteria also apply to the subsequent experiments 

reported below. 
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Stimuli 

 The stimuli consisted of 15 shapes that were novel to the participants. These shapes 

were adapted from or made to resemble shapes used in previous statistical learning studies 

(Fiser & Aslin, 2001; Turk-Browne et al., 2005), subtending approximately 2.5º visually, 

and were randomly grouped into five triplets on a participant-by-participant basis (see 

Figure 1A). 

 

Apparatus 

 All stimuli were displayed on a 40.96cm wide ViewSonic PF817 CRT monitor 

connected to an Apple Mac Pro computer running OSX 10.6.8. Mediating the connection 

from monitor to computer was a Bits++ digital video processor (Cambridge Research 

Systems) that enables a 14-bit DAC, allowing for a 64-fold increase in the display's 

possible contrast values. Sennheiser HD 650 headphones, plugged into an AudioFire 2 

(Echo Digital Audio) audio interface, were used to present the auditory stimuli. 

Participants' heads were restrained with a chin rest and forehead bar 69.22cm from the 

screen. Stimuli were controlled by custom code written in Matlab, using the Psychophysics 

Toolbox (http://psychtoolbox.org). 

 

Detection Task  

 During exposure, participants performed a detection task on a stream of shapes 

appearing one at a time. Unbeknownst to them, the 15 shapes were grouped into 5 triplets 

— e.g., if shapes A, B, and C were grouped together, they always occurred in the order of 
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A-B-C. Triplets for each participant were mixed pseudorandomly within the presentation 

blocks, preserving relations within triplets and equating overall exposure of triplets. In each 

of the 20 exposure blocks, the 5 triplets were presented 18 times. The shapes were 

presented one at a time in the center of the screen, on a gray background, with duration of 

300ms and ISI of 100ms. Shapes were filled with spatial white noise with pixel values 

above or below the gray background and thus were always presented at the same mean 

luminance as the background (54 cd/m2). The luminance range was scaled according to a 

staircase (see Figure 1B and Figure 2B). The duration of each block was 1.8 minutes, and 

with breaks between blocks, the exposure phase typically lasted 40-45 minutes.    

Within every block, each shape was paired twice with a tone that signaled the 

participants to press “1” on the keyboard if a shape was visible on the screen or “2” if there 

was no visible shape (Figure 1C). All shapes were used once as a “present” target (i.e., 

visible and requiring a “1” response from the participant) and once as an “absent” target 

(i.e., invisible and requiring a “2” response). That is, when a shape was an "absent" target, 

we presented a gray patch the same color and contrast as the background (and thus 

invisible) during the shape's normal presentation period. When the tone sounded the 

participant had to report whether there was a shape present or whether there was no shape 

present. To temporally distribute responses, 1-3 filler triplets were placed between triplets 

containing a target. 

 To ensure that the detection task was engaging and challenging, the contrast of the 

shapes was adjusted using a block-wise staircase (Le Dantec et al., 2012). If mean accuracy 

in the prior block was greater than .80, contrast was adjusted according to the formula 
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, where  is the new contrast level for the upcoming block, C is the 

current contrast level, and P is the mean performance for the completed block. If mean 

accuracy for the block was .70 or less, then contrast was adjusted according to the formula 

 with the constraint that the minimum value of P was set to .50 (i.e., 

chance level). This staircase brought participants' performance to an average of 75% 

accuracy (see Figure 2A) and converged after approximately 10 blocks. 

 To measure statistical learning, we examined data after the staircase on contrast 

converged. Based upon pilot experiments, and verified in the present experiment, this 

occurred after block 10. Thus, all analyses use only data from the second half of the 

detection task, blocks 11-20, where the change in contrast between blocks is minimal (see 

Figure 2B). The use of these later blocks ensured that there was minimal variance in 

stimulus contrast and subject performance and that there was sufficient time for the 

statistical regularities to be learned. As such, our analysis of blocks 11-20 is akin to post-

tests used in other studies of statistical learning. For staircasing purposes accuracy was 

calculated over both present and absent targets, but because we were interested only in how 

statistical learning occurs for visible shapes and the effect of the absence of a shape is 

unknown, analyses were performed only on present targets. Since present trials had higher 

accuracy than absent trials overall, accuracy in subsequent analyses was slightly greater 

than the 75% level. 

In both the detection task and in the search task (below), RTs more than two 

standard deviations from the mean of each subject were excluded from analyses. 

 

€ 

" C =
C

(P − .75) +1

€ 

" C 

€ 

" C = C ∗ (1− (P − .75))
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Search Task 

 Immediately following exposure, a "search task", adapted from previous studies 

(Kim et al., 2009; Turk-Browne et al., 2005), was performed. At the beginning of each trial 

of the search task, a target shape (one of the 15 seen in the exposure phase) was displayed 

at the top of the screen and the participant pressed any key to begin the trial. After the target 

shape disappeared, a pseudorandomly ordered stream of the 5 triplets was shown at the 

same sequential presentation rate as in exposure, with the constraint that the triplet 

containing the target could not be the first or last triplet shown in that trial. The participant's 

task was to press the space bar as soon as the target shape appeared. Each of the 15 shapes 

served as a target once per block, and all shapes were displayed at a suprathreshold contrast 

level. The search task consisted of six blocks with 15 trials each, which lasted 12 minutes 

total. 

 

Analysis of shape groupings 

 The goal of the study was to determine statistical learning on an item level — that 

is, at the level of individual shape groupings — and determine whether different shape 

groupings were learned in different ways (see “Analysis of learned and non-learned pairs”, 

below). To determine the proper items to use in the ultimate analyses, we first examined 

whether participants learned the full configuration of the triplets or whether participants 

learned two pairs — the first/second shape pair (pair 1) and the second/third shape pair 

(pair 2; Fiser & Aslin, 2002, 2005; Hunt & Aslin, 2001). We based this analysis on the 

search task, which is a more standard measure of visual statistical learning (Baker, Olson, 



 36 

& Behrmann, 2004; Hunt & Aslin, 2001; Olson & Chun, 2001; Turk-Browne et al., 2005) 

than the detection task that we introduce for the first time in this paper. In this analysis, a 

negative correlation of r=-0.5 is expected by chance, simply because the same second-

position RT is the negative part of the subtraction for pair 1 and the positive part of the 

subtraction for pair 2. Response latency in the search task measures the degree to which a 

target can be predicted based on associations with the preceding item(s) and previous 

studies using this task found monotonic decreases in RT as item position increases (e.g., 

Campbell, Healey, Lee, Zimerman, & Hasher, 2012; Kim et al., 2009; Turk-Browne et al., 

2005, 2010). Insofar as a triplet has been well learned, there are strong associations between 

all items and the associative strength from the first to second item and the second to third 

item should be correlated. Thus, if the full triplet structure were learned, the RT differences 

between items 1 and 2 would correlate with RT differences between items 2 and 3 

significantly more positively than r=-0.5. However, we found an even more negative 

correlation between the effects for the two pairs (r=-0.77, p<0.00001), which was more 

negative than all but 8.37% of iterations in non-parametric randomization test (i.e., 

randomly assigning the observed distribution of RTs to different triplet positions 10,000 

times and computing the correlation in each iteration). We also ran additional correlational 

analyses and simulations on the difference between the first two items of the triplet and the 

difference between the first and last items of the triplet. Here we found a correlation of 

r=0.47, which is almost identical to the correlation of r=0.50 that is expected by chance. 

These analyses suggest a failure to learn at the triplet level and the trend in the opposite 
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direction suggests that learning of the two pairs — which shared an element — may be 

competitive (see also Fiser & Aslin, 2002) rather than cooperative. 

Given that the evidence suggested that learning did not occur on the level of the 

triplets, subsequent analyses were restricted to pairs, and in particular, to pair 1 of each 

triplet. The restriction of analyses to the first pair also provides uniformity across the 

studies, as Experiment 3 only included pairs (which were all first pairs, by definition). In 

addition, because the first pair appeared before the second, this decision helps mitigate any 

complications that might arise due to the possible competition between the pairs. For 

example, if there are negative interactions between pair 1 and pair 2 then including pair 2 

in the analysis would introduce a lack of independence, which could complicate the 

interpretation of learning comparisons between the detection and search tasks. Of note, the 

correlational analysis described here is intended to determine which items should be 

included in subsequent comparisons of learning between the two tasks and does not itself 

argue for or against the multiple-process hypothesis of statistical learning. 

 

Analysis of learned and non-learned pairs 

 A key novelty of the present study is that we split each participant's pairs into those 

that were learned and those that were not learned. We did this based on the search task, 

which represents the more typical measure of statistical learning and where the standard 

analysis is to compute the mean RT for all first position shapes and compare that to the 

mean RT for all second position shapes. Instead of averaging over all shapes in each 

position, our analysis conserved information about the pairings that the shapes were 
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assigned to for each participant. Each pair for a participant was classified as "learned" if 

the mean RT during the search task was lower for the second position shape of that pair 

than for the first position (Figure 3, solid blue lines, negative slope). If the mean RT was 

not lower for the second position shape of a pair, then it was classified as "non-learned" 

(Figure 3, dashed red lines, zero or positive slope). Although this classification method 

may not capture all of the nuances of the extent to which a pair was learned, it provides a 

simple dichotomous measure of learning from the search task which can then be related to 

the independent data from the detection task (see Figure S1 for confirmation that this 

analysis is reliable and consistent with the number of times that the second position RTs 

are faster than that of the first position RTs within each of the six blocks of the search task). 

 To analyze learning of each pair separately (averaging across repetitions of each 

item in the detection and search tasks), we employed a modified 2x2 (position: first/second 

X learning status: learned/non-learned) factorial ANOVA (see Supplemental Data 

“Statistical analyses” for details). After the interaction had been calculated, we used 

planned paired-samples t-tests to analyze the simple effects of position across learned and 

non-learned pairs. Because the search and detection tasks were independent of one another, 

using this method to analyze the pairs did not raise any issues of spurious dependencies 

between the results of the search task and the results of the detection task. Additionally, we 

modeled these results using 10,000 permutations of the data to discover how often we 

would expect results similar to those reported below, in which the detection task reveals 

opposite patterns of RT than the search task. The resulting likelihood was less than 0.1% 

(p<.001) of obtaining an effect similar to this by chance. 
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Results and discussion 

As a basic measure of statistical learning, we examined first vs. second shape 

position performance in the search and detection tasks. In accordance with the literature, 

the search task showed significantly faster RTs (Figure 4; planned one-tailed paired t-test, 

t(36)=1.69, p=0.05, Cohen's d=0.28) for the second (520.0 ms) compared to the first 

position (535.0 ms) of pairs. However, in the detection task no effect of position (see 

Supplemental Data), was observed in terms of RTs (666.7 vs. 674.5 ms, respectively; 

t(36)=1.08, p=0.29, Cohen's d=0.18) or accuracy for second vs. first positions (85.6 vs. 

84.8%, respectively; t(36)=0.69, p=0.50, Cohen's d=0.12). 

Although an overall effect of statistical learning was observed in the search task, 

the significance of this effect was borderline. This raises the question of whether all pairs 

were learned weakly and to the same extent, or whether some pairs were learned and others 

were not. This question gets to the heart of our multiple-process hypothesis and, as can be 

seen in Figure 3, evidence suggests that there was considerable variability across pairs in 

the search RT effect, with some pairs showing an effect consistent with learning and others 

showing the opposite. This variability may just be noise, unrelated to performance in the 

detection task for the same items. Alternatively, it may reflect true differences in item-level 

learning, such that our labeling of pairs as learned or non-learned retains meaning in the 

detection task. 

To test the multiple-process hypothesis, we examined whether learned pairs from 

the search task (Figure 3, solid blue lines) elicited different performance in the detection 
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task than non-learned pairs (Figure 3, dashed red lines). For results of this experiment and 

of Experiment 2 using the full triplet structure, see Supplemental Data. This pair-wise 

analysis differs from typical analyses in studies of statistical learning, in that we allow for 

the possibility that participants did not learn each pair that they were exposed to in the same 

manner. 

This analysis revealed a dramatic and counterintuitive negative relationship 

between the detection task from exposure and the search task from the post-test (Figure 5). 

The pairs classified as learned in the search task (N=106 pairs, or 212 shapes) and the pairs 

classified as non-learned in the search task (N=79, or 158 shapes) showed a significant 

interaction (position X learning status) for RT (F(1,366)=7.00, p=0.0085, η2=0.019) 

although not accuracy (F(1,366)=1.36, p=0.24, η2=0.0037) in the detection task. For RTs, 

non-learned pairs (i.e., those not showing learning in the search task) did show learning in 

the detection task, with faster responses for second vs. first positions (645.7 vs. 670.7 ms, 

respectively; t(78)=2.42, p=0.018, Cohen's d=0.27). This finding of learning in the 

detection task for pairs not showing learning in the search task cannot be explained by a 

speed-accuracy tradeoff, as accuracy was numerically higher for the second vs. first 

positions (87.7 vs. 85.6%, respectively) of the non-learned pairs (t(78)=1.46, p=0.15, 

Cohen's d=0.16). In contrast, learned pairs (i.e., those showing learning in the search task) 

exhibited no learning in the detection task for second vs. first RTs (684.3 vs. 677.9 ms, 

respectively; t(105)=0.79, p=0.43, Cohen's d=0.076) or accuracy (84.0 vs. 84.2%, 

respectively; t(105)=0.22, p=0.82, Cohen's d=0.015). Notably, the reliable decrease in RT 

for non-learned second position in the detection task implies that statistical learning 
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occurred for those pairs, as there was no information available to the participant about the 

upcoming shape except for the statistical regularities governing the presentations. These 

data, showing a dissociation between statistical learning as manifested in the detection and 

search tasks, are consistent with the predictions of the multiple-process hypothesis. 

 

Experiment 2 

 Although Experiment 1 provides initial support for the multiple-process hypothesis, 

the counter-intuitive nature of the result compelled us to replicate the finding. Furthermore, 

to better understand the dissociation between learning on the detection and search tasks, 

and to validate the dissociation, in Experiment 2 we replaced the search task with a 

recognition task, in which participants were asked to judge whether a sequence had 

occurred during exposure or not, and to rate their confidence in the judgment. 

The recognition task was selected as potentially being more sensitive to different 

components of memory than the classically described two-alternative-forced-choice 

familiarity test in statistical learning (e.g., Fiser & Aslin, 2002). Research indicates that 

familiarity and recognition judgments may correspond to different aspects of encoded 

memories (Wixted, 2007; Yonelinas, 1994) and we hypothesized that different memory 

judgments might map onto the learned/non-learned dissociations seen in Experiment 1. For 

example, pairs rated with "Remember" (see Methods below) might correspond to the 

learned pairs of Experiment 1 and pairs rated as “Familiar” might correspond to the non-

learned pairs. However, regardless of information gained from the ratings, the main 
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purpose of this experiment was to replicate the results of Experiment 1 and generalize the 

dissociation of statistical learning measures using a different learning measure.  

 

Methods 

Participants 

Forty-one undergraduates at the University of California, Riverside, aged 18-22 (26 

females), participated in this experiment (sample size again determined by how many 

students could be recruited within a quarter from the UC Riverside undergraduate subject 

pool). Inability to complete both tasks satisfactorily resulted in the exclusion of four 

participants beyond the forty-one included in the study. As in Experiment 1, if participants 

were excluded then their data were not analyzed beyond determining their response rate. 

 

Stimuli and apparatus 

The stimuli and display apparatus were identical to Experiment 1, except for the 

differences noted here. Stimuli were displayed on a 48.26cm wide Sony Trinitron CRT 

monitor connected to an Apple Mac mini computer running OSX 10.5.6. Mediating the 

connection from monitor to computer was a Datapixx processor (VPixx Technologies) that 

enables a 16-bit DAC, allowing for a 256-fold increase in the display's possible contrast 

values. Responses were collected using a RESPONSEPixx button box (VPixx 

Technologies) that enables microsecond precision of response latency measurement. Tones 

were presented using a small speaker placed behind the monitor. Participants' heads were 

restrained with a chin rest 69.85cm from the screen.  
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Detection Task 

The exposure and detection task were identical to Experiment 1.  

 

Recognition Task 

A recognition task was used instead of the search task for the post-test. Responses 

were provided on a multidimensional "New/Old" and "Familiar/Remember" scale (Figure 

6; adapted from Ingram, Mickes, & Wixted, 2012). On this scale, participants reported with 

a single response whether a sequence was new or old, rated their confidence, and, in the 

case of old responses, whether they recollected any details surrounding prior experiences 

with the sequence. If participants recalled any such details, for example a specific instance 

when that sequence occurred, they responded with the "R" scale for remember. If they did 

not recall specific details but simply had a feeling that they had seen the sequence before, 

they responded with the "F" scale for familiar. Stickers were placed on the number-pad of 

the keyboard to match the scale shown in Figure 6.  

In each of 10 trials, participants were exposed to a sequence of three of the shapes 

seen during exposure, presented with the same SOA and ISI as before. After the last shape 

was displayed, a response query appeared on screen and participants reported whether that 

sequence (i.e., those three shapes in that exact order) had occurred during exposure. The 

10 trials consisted of the 5 intact triplets, which had occurred repeatedly during exposure, 

and 5 rearranged triplets, which contained the same exposed shapes but in an order that 

could not have occurred during exposure. After obtaining the recognition judgments, we 
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confined our multiple-process analyses to the first two shapes, i.e., the first pair, of each 

triplet for the reasons provided in Experiment 1. 

 

Results and discussion 

To test the multiple-process hypothesis, we coded the detection task performance 

according to whether an intact pair was correctly identified as “Old” in the recognition task 

("Recognition learned") or incorrectly identified as “New” ("Recognition non-learned"). 

Consistent with the hypothesis (see Figure 7), learned pairs (N=139 pairs, or 278 shapes) 

and non-learned pairs (N=66 pairs, or 132 shapes) showed a significant interaction 

(position X learning status) for RT (F(1,406)=10.41, p=0.0014, η2=0.025) and a marginal 

interaction for accuracy (F(1,406)=2.90, p=0.089, η2=0.007). Learned pairs (i.e., those that 

were correctly identified in the recognition task) showed a significant drop in detection 

accuracy for the second vs. first positions (87.2 vs. 90.6%, respectively; t(138)=3.15, 

p=0.002, Cohen's d=0.27) and no significant difference in RT for the second vs. first 

positions (603.4 vs. 601.0 ms, respectively; t(138)=0.41, p=0.68, Cohen's d=0.036). For 

non-learned pairs (i.e., those that were not correctly identified in the recognition task), RT 

showed a significant decrease for the second vs. first positions (579.9 vs. 608.4 ms, 

respectively; t(65)=3.32, p=0.0015, Cohen's d=0.41) and no significant difference in 

accuracy for the second vs. first positions (90.8 vs. 91.1%, respectively; t(65)=0.20, 

p=0.84, Cohen's d=0.024). These results conceptually replicate those of Experiment 1 and 

suggest that, unlike the detection task, the recognition task from this experiment and the 
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search task from Experiment 1 may tap into the same statistical learning process — at least 

based on their shared opposition to the detection task. 

 To understand these results in greater detail, learned pairs were further subdivided 

into "Familiar" or "Remember" retrieval modes (Figure 8). Treating learning status as a 

three-level factor (Familiar, N=78 pairs, or 156 shapes; Remember, N=61 pairs, or 122 

shapes; and New, N=66, or 132 shapes), there was a significant interaction (position X 

learning status) for RT (F(2,404)=5.44, p=0.0047, η2=0.026) and a marginal interaction for 

accuracy (F(2,404)=2.40, p=0.092, η2=0.011). The decrease in accuracy for the second 

position vs. the first position in learned pairs was driven by Familiar (84.7 vs. 89.4%, 

respectively; t(77)=2.89, p=0.005, Cohen's d=0.33) but not Remember pairs (90.3 vs. 

92.1%, respectively; t(60)=1.35, p=0.18, Cohen's d=0.17). The difference in RT for the 

second position as compared to the first was not reliable for Familiar (615.7 vs. 616.8 ms, 

respectively; t(77)=0.13, p=0.90, Cohen's d=0.015) nor Remember (587.5 vs. 580.9 ms, 

respectively; t(60)=0.90, p=0.37, Cohen's d=0.11) pairs. As reported above, only the non-

learned pairs showed a decrease in RT for the second position. 

These results suggest a potential dissociation between remembered and familiar 

pairs with the primary distinction being faster and more accurate detection for the 

remembered pairs. Although we had hypothesized that a familiar/remember dissociation 

might be linked to the learned/non-learned dissociation seen in Experiment 1, the data did 

not support this hypothesis. Instead, both the familiar and remember pairs are consistent 

with the learned pairs of Experiment 1 and the results as a whole replicate the learned/non-

learned dissociation found in Experiment 1. 
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Experiment 3 

Although Experiment 2 replicated Experiment 1, it failed to provide additional 

clarity about the mechanisms underlying our results. Experiment 3 was run for this purpose, 

to determine whether the facilitation for the second shape position in the search task reflects 

an enhanced representation of the second shape, the learning of an association between the 

first and second shapes, or a combination of the two. 

Statistical learning is typically assumed to reflect an association between stimuli A 

and B, where perceiving A enables one to predict the subsequent appearance of B (Schapiro 

et al., 2012). However, recent work suggests that statistical learning can give rise to an 

enhanced salience of the second stimulus of a pair even outside of its exposed context, and 

that this enhanced salience can account for second position effects in the search task 

(Barakat et al., 2013). We therefore examined whether learning in the detection and search 

tasks reflects an associative and/or representational form of learning. If learning is 

associative, then replacing the second shape with an out-of-context shape (a misplaced 

second shape or a foil, see Methods below) should result in slower RTs. On the other hand, 

if the learning reflects an enhanced representation of the second shape, then misplaced 

second shapes should elicit speeded responses even when presented out of context; in 

contrast, foils, which are shapes not shown during exposure, should receive no such benefit. 

A combination of associative effects and enhancement is also possible. 
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Methods 

Participants 

Fifty-six undergraduates at the University of California, Riverside, aged 17-32 (25 

females), participated in this experiment (sample size again determined by how many 

students could be recruited within a quarter from the UC Riverside undergraduate subject 

pool). Inability to complete both tasks satisfactorily resulted in the exclusion of five 

participants beyond the fifty-six included in the study. As in Experiments 1 and 2, if 

participants were excluded then their data were not analyzed beyond determining their 

response rate. 

 

Stimuli and apparatus 

The stimuli and apparatus were identical to Experiment 2, except that three 

additional shapes were used to accommodate the conditions of this experiment.  

 

Detection Task  

The detection task during exposure was the same as Experiment 1, except as noted. 

First, the stimulus regularities in Experiment 3 consisted of six pairs rather than five 

triplets. Second, in blocks 11-20, one of five conditions occurred when a target appeared 

on the screen (blocks 1-10 were the same as in Experiment 1 other than the use of pairs 

rather than triplets). The two “intact” target conditions were the same as in the previous 

experiments and as in the first 10 blocks of the current experiment: the target was either 

the correct first or second shape of a pair. The two “foil” target conditions involved six foil 
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shapes that were never shown in the first half of exposure. Foils could occur as targets in 

either the first or second position of a pair with equal frequency. That is, in each of the 

latter 10 blocks, each of the six foil items occurred in place of the first item of a 

pseudorandomly determined intact pair and during a different trial would also appear in 

place of the second item of a pseudorandomly determined intact pair. The particular foil 

used with each pair was randomized and counterbalanced across blocks. The “mismatched” 

condition replaced a pair's second shape with the second shape from a different pair as was 

done in Barakat et al. (2013). That is, a shape that had been seen in the first half of the 

exposure task occupying a second position appeared as a target after a different first shape. 

All conditions and shapes were counterbalanced to equate the exposure of shapes and pairs. 

As in Experiment 1, there were twenty blocks of exposure. In the first ten blocks, 

all pairs were presented as intact pairs. Each shape position of the six pairs was used as a 

target twice, resulting in twenty-four pairs that contained a target. In half of these, the target 

was present and in the other half, the target was absent. The shape used as the target was 

counterbalanced. 1-3 intact filler pairs were presented between target-containing pairs, 

which amounted to a total of 72 pairs, or 144 shapes, per block. In the second ten blocks, 

there were sixty targets per block, again half present and half absent. The thirty present 

targets consisted of six instances of each of the following: intact first position, intact second 

position, foil first position, foil second position, and mismatched second position. 

Combined with 1-3 intact filler pairs between each target-containing pair, this amounted to 

a total of 180 pairs, or 360 shapes, per block. 
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Search Task 

The search task was similar to Experiment 1, except as noted. There were five 

blocks of 30 trials each. Within a block, every shape from each condition (first and second 

intact, first and second foil, mismatch) was used once as a target, including the six foils 

when the trial called for one of those two conditions. Given that the mismatched condition 

required the second shape of a pair to be replaced with another pair's second shape, the pair 

from which the second shape was drawn could not be displayed on that trial (or else the 

target would be displayed twice in a single trial, once as an intact second shape and once 

as a mismatched second shape). Thus, each trial of the search task displayed five of the 

pairs instead of all six. The omitted pair was counterbalanced across trials, and when the 

mismatched condition occurred, the missing pair was always the pair from which the 

replacement shape had been drawn.  

 

Results and discussion 

Search task 

We first sought overall evidence of statistical learning in the search task (Figure 9). 

The intact pairs showed reliably faster RTs for the second vs. first positions (424.7 vs. 

441.9 ms, respectively; t(55)=5.38, p<0.0001, Cohen's d=0.72). The second position foils 

(422.0 ms) and mismatched second shapes (429.9 ms) were also found more quickly than 

the first intact shape (441.9 ms; t(55)=5.93, p<0.0001, Cohen's d=0.80 and t(55)=3.64, 

p=0.0006, Cohen's d=0.48, respectively). Furthermore, RTs were faster for second position 

vs. first position foils (422.0 vs. 434.9 ms, respectively; t(55)=4.14, p=0.00012, Cohen's 
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d=0.55), suggesting that there may have been some learning for position, regardless of item 

presented. These results demonstrate that statistical learning occurred and replicate the 

findings of Barakat et al. (2013), showing a benefit for shapes in the second position even 

outside of their pair context. 

 However, our primary interest was to test the multiple-process hypothesis by 

examining performance in the detection task. As in Experiment 1, we split pairs according 

to whether they displayed a negative slope (learned) or a flat/positive slope (non-learned) 

in the search task. We did this separately for each condition.  

 

Learned vs. non-learned pairs – intact conditions 

For intact conditions, learning was measured as intact first shape RT minus intact 

second shape RT, resulting in N=179 learned pairs, or 358 shapes, and N=157 non-learned 

pairs, or 314 shapes. Results for the intact pairs replicated those of Experiment 1 (Figure 

10) and provide additional support for the multiple-process hypothesis. Although neither 

interaction (position X learning status) reached significance (accuracy: F(1,668)<0.1, 

p=0.95, η2<0.001; RT: F(1,668)=1.01, p=0.31, η2=0.0015), non-learned pairs showed a 

simple RT effect for second vs. first position in the detection task (542.6 vs. 553.6 ms, 

respectively; t(156)=2.24, p=0.026, Cohen's d=0.18), whereas learned pairs did not (556.6 

vs. 561.0 ms, respectively; t(178)=0.92, p=0.36, Cohen's d=0.068). There was no effect in 

accuracy for second vs. first in either learned pairs (89.0 vs. 88.7%, respectively; 

t(178)=0.25, p=0.80, Cohen's d=0.020) or non-learned pairs (88.3 vs. 87.9%, respectively; 

t(156)=0.32, p=0.75, Cohen's d=0.027). 
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Learned vs. non-learned pairs – foil and mismatched conditions 

As in the search task, analyses of the foil and mismatched conditions in the 

detection task can provide additional evidence on whether the faster performance for 

second shapes is an associative effect rather than just a speeded response for any item 

presented after a learned first item. The foil and mismatched conditions indicated that both 

the learned and non-learned pairs displayed some learning in the detection task (Figure 10). 

However, the nature of these effects differed. For the learned pairs, the overall pattern was 

slower RTs for second shapes relative to intact first shapes. This was only significant for 

foil second shapes (571.2 vs. 561.0 ms; t(178)=2.10, p=0.037, Cohen's d=0.16), not 

mismatched second shapes (564.1 vs. 561.0 ms; t(178)=0.70, p=0.49, Cohen's d=0.052). 

Comparing just second positions of the learned pairs, RTs were significantly slower for 

foil vs. intact shapes (571.2 vs. 556.6 ms, respectively; t(178)=3.14, p=0.002, Cohen's 

d=0.23) and marginally slower for mismatched vs. intact shapes (564.1 vs. 556.6 ms, 

respectively; t(178)=1.68, p=0.094, Cohen's d=0.12). These results provide support for the 

hypothesis that associative learning occurred between the first and second positions of the 

learned pairs. 

For the non-learned pairs, the overall pattern was equivalent RTs for second shapes 

relative to first intact shapes. This was true for both foil second shapes (549.1 vs. 553.6 

ms; t(156)=0.91, p=0.36, Cohen's d=0.072) and mismatched second shapes (553.8 vs. 

553.6 ms; t(156)=0.04, p=0.97, Cohen's d=0.0033). Comparing just second positions, RTs 

were significantly slower for mismatched vs. intact shapes (553.8 vs. 542.6 ms, 
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respectively; t(156)=2.41, p=0.017, Cohen's d=0.19) and not significantly different for foil 

vs. intact shapes (549.1 vs. 542.6 ms, respectively; t(156)=1.46, p=0.15, Cohen's d=0.12). 

This can be considered a lack of facilitation for the mismatched second shapes and is also 

suggestive of associative learning being displayed in the detection task for the non-learned-

pairs. 

Considering the learned and non-learned pairs together, our data are consistent with 

the associative learning hypothesis. Whenever the second shape in a pair is replaced, the 

response is slowed. Using this measure of learning, there was a comparable magnitude of 

associative learning displayed in the detection task for both learned pairs (11.1ms) and non-

learned pairs (8.9ms). However, the manner in which the violation of the associative 

prediction manifested itself (slowing for learned but a lack of speeding for non-learned) 

provides further evidence of dissociation between detection and search measures of 

statistical learning. Combined with the pattern of results for the intact conditions, which 

are analogous to the conditions of Experiments 1 and 2 and replicate those patterns of 

results, these data again are consistent with the predictions of the multiple-process 

hypothesis for statistical learning. 

 

General Discussion 

For most studies of statistical learning, a single test is used to index learning. Here 

we show that this approach underestimates the extent of learning that has taken place. 

Specifically, we found that statistical learning can be reflected in multiple behavioral tasks, 

and critically, that these tasks do not provide redundant information. One aspect of learning 
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was revealed in the search task, where lower latencies were found for predictable shapes. 

A dissociated aspect of learning was observed in the detection task, again indicated by 

better performance for predictable shapes, but only for those items that did not display 

learning in the search task. Similar results were obtained for recognition memory 

judgments, where correctly recognized regularities did not show a detection effect, and 

other regularities showed a detection effect but were forgotten in the recognition test, and 

the results were obtained again with the intact pairs of Experiment 3. 

 This manner of double dissociation of performance across tasks is classically taken 

as evidence for different processes in cognitive research (Chun, 1997; Gabrieli, 

Fleischman, Keane, Reminger, & Morrell, 1995) and defies the alternative explanation that 

different tasks will naturally have different sensitivities because of the starkly opposite 

results seen in the dependent variables of the compared tasks. If the tasks were merely 

displaying different levels of sensitivities for the same process, we would expect similar 

results for both tasks, albeit with different effect sizes. Instead we observe results that 

consistently demonstrate one pattern for one task and an opposite pattern for another task. 

The observed search, recognition, and detection effects cannot be explained by individual 

shapes nor happenstance groupings of the shapes, as these were randomized and 

counterbalanced across participants. Furthermore, in Experiment 3, we provided evidence 

that dissociable patterns of learning for different pairs (positive vs. negative second 

position RT effects) can be observed within the same detection task. The question then 

becomes: why is learning expressed differently depending on the task? 
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 A logical answer is that there are multiple processes that underlie different aspects 

of visual statistical learning. Moreover, to account for the observation that any given 

regularity is only reflected in one task, these systems may compete with each other. 

Neuroscientific investigations of statistical learning are consistent with this interpretation. 

Specifically, statistical learning is supported by at least two memory systems in the brain, 

the hippocampus and the striatum (Durrant et al., 2013; Schapiro et al., 2014, 2012; Turk-

Browne et al., 2009, 2010). These systems have been shown to compete with each other 

during learning (Packard, 1999; Poldrack et al., 2001; but see Sadeh, Shohamy, Levy, 

Reggev, & Maril, 2011). The left inferior frontal cortex also supports statistical learning 

(Karuza et al., 2013; Turk-Browne et al., 2009), and it has been suggested that learning in 

frontal cortex differs from the striatum in terms of the speed of learning (Pasupathy & 

Miller, 2005). Different learning processes in the hippocampus, striatum, and frontal cortex 

may therefore occur at different rates and produce different kinds of behavioral effects 

(e.g., the hippocampus may underlie recognition judgments). Identifying other specific 

mechanisms that might underlie these processes will require future experimental and 

theoretical work. A first step could be to generalize existing computational models of 

statistical learning to account for multiple behavioral measures. Currently, these models 

account for either recognition (e.g., TRACX, French, Addyman, & Mareschal, 2011; 

PARSER, Perruchet & Vinter, 1998) or prediction (e.g., SRN, Cleeremans & McClelland, 

1991; Elman, 1990), but not both. 

 An intriguing result from Experiment 2 is the difference in performance for 

regularities that were given "Familiar" versus "Remember" ratings. As discussed above, 
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the dissociation seen in the detection task for familiar/remember pairs did not mirror the 

dissociation seen for learned/non-learned pairs as we had hypothesized it might. However, 

the fact that there is a visible difference between explicitly given "Familiar" and 

"Remember" ratings suggests that participants are able to effectively rank their implicit 

memories of the regularities and indicates a shade of grey between classic notions of 

implicit and explicit knowledge (Bertels, Franco, & Destrebecqz, 2012). This explicit sense 

of the richness of retrieval is intriguing because statistical learning is often thought to be 

an implicit process (Kim et al., 2009). Indeed, out of 134 participants, not a single 

participant reported consciously detecting any pattern to the shapes displayed in the 

experiment. Ultimately the familiar/remember aspect of this experiment failed to reveal a 

further dissociation of learning patterns across pairs but nevertheless, Experiment 2 

provided compelling results regarding differences in processing between “Remembered” 

and “Familiar” pairs which warrants further study. 

 Experiment 3 provides evidence that the learning in both the detection and search 

tasks is associative. The results for the detection task as split by the search task show that 

when the second shape of a pair is replaced with a shape that it does not normally occur 

with, there is a slowing of RT (learned pairs) or a lack of facilitation (non-learned pairs). 

As discussed above, this different pattern of results for learned and non-learned pairs 

provides further evidence that the detection and search tasks are measuring two separate 

learning processes. This does not rule out the possibility that perceptual enhancement of 

the second shape also occurred (Barakat et al., 2013). Of note, RTs for mismatched second 
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shapes were faster than for intact first shapes in the search task. Thus, a mix of associative 

and enhancement effects can jointly determine performance in statistical learning tasks. 

In sum, the data presented here provide evidence that visual statistical learning 

might be composed of dissociable processes that can be revealed through different 

behavioral tasks. While it is possible that the different tasks used in the experiments reveal 

different aspects of a complex memory representation, the multiple-process model is 

consistent with neuroscience research showing that there are multiple brain systems that 

are sensitive to statistical regularities in the environment (Schapiro & Turk-Browne, 2015). 

Together, these findings challenge a common assumption that different operational 

methods of measuring statistical learning are interchangeable in terms of their 

interpretation. We caution against treating different measures of statistical learning as 

equivalent, since this not only discards useful variance in the data, but also gives the false 

impression that statistical learning is a single process rather than a multifaceted collection 

of processes. Our findings are useful in that they provide a foundation for future research 

in statistical learning that should more routinely use multiple tasks and seek to clarify 

dissociations of learning and the brain structures that underlie these dissociated processes. 
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Chapter 1 Supplemental Data 

Reliability of learned and non-learned classifications 

 The pairs which were classified as learned and non-learned in the search task of 

Experiment 1 were classified by averaging the RTs of a pair's particular first-position shape 

across all six blocks of the search task and comparing that to the average RT of that pair's 

second-position shape across all six blocks of the search task. Each shape was tested once 

in each block. Although each trial of a block only included a single target, and thus no 

within-trial comparison of a pair's first- and second-position shapes is possible, it is still 

possible to compare the RTs of each pair's two shapes within a block. (This assumes that a 

subject's RT will be relatively stable over the block and that the randomized position of the 

target shape within the trial presentation will not drastically affect the RT.) By counting 

the number of instances in which a pair's second shape had a faster RT than its first shape 

on a block-by-block basis, we can obtain a crude measure of reliability of the learned vs. 

non-learned classifications. We would expect when comparing pairs classified as learned 

to pairs classified as non-learned that the learned pairs would comprise a higher number of 

blocks in which the second shape has a lower RT than the first shape. Figures S1A and 

S1B show the distribution of within-block item comparisons in which the RT for the 

second-position shape is lower than the RT for the first-position shape for the 106 pairs 

classified as learned and for the 79 pairs classified as non-learned in Experiment 1, 

respectively. It is possible for a given pair to have a second-position shape with a lower RT 

than its first-position shape up to six times - once in each block of the search task. The 

ordinate of both figures corresponds to the total count within each bin of the histograms. 
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The mean number of blocks with a faster second-position RT than first-position RT for the 

learned pairs is 3.80 (Fig. S1A, dashed green line; SD = 1.046) and for the non-learned 

pairs is 2.18 (Fig. S1B, dashed green line; SD = 1.059); an independent-samples t test 

reveals a highly significant difference between these two means (t(183)=10.39, p<0.001, 

Cohen's d = 1.54). 

 

Statistical analyses 

 Given that subjects differed in the number of “learned” and “non-learned” pairs in 

the search task, we employed a modified 2x2 (position: first/second X learning status: 

learned/non-learned) factorial ANOVA approach to analyze these data, which included 

subtracting each participant's mean RT (across all shapes) from the RT for each shape. 

This method is statistically equivalent to a repeated-measures design (removing between-

subject variance but retaining within-subject comparisons) while also permitting unequal 

cell counts (and was verified on balanced datasets). This approach was not an attempt to 

increase statistical power but rather was a direct method designed to address unequal cell 

counts, which themselves were an expected result of the coding procedure used. 

Analyzing data containing unequal cell counts is unadvisable (and sometimes impossible) 

with traditional repeated-measures designs and obtaining equal cell sizes in these 

experiments could only occur if each participant had the exact same number of pairs 

classified as learned and non-learned, regardless of how many total pairs were used. 
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Overall detection task results 

 Prior to splitting the pairs based on the post-test of each experiment, the detection 

task generally showed an overall pattern of lower RTs for second compared to first 

positions. However, the reliability of this effect was variable across experiments. 

 Experiment 1 (Figure S2) displayed a non-significant decrease in RT for second vs. 

first positions (666.7 vs. 674.5 ms, respectively; t(36)=1.08, p=0.29, Cohen's d=0.18), and 

a non-significant increase in accuracy for second vs. first positions (85.6 vs. 84.8%, 

respectively; t(36)=0.69, p=0.50, Cohen's d=0.12). 

 Experiment 2 (Figure S3) showed a trend for a decrease in RT for second vs. first 

positions (596.3 vs. 603.6 ms, respectively; t(40)=1.70, p=0.097, Cohen's d=0.26), 

however also a significant decrease in accuracy for second vs. first positions (88.3 vs. 

90.7%, respectively; t(40)=2.71, p=0.0098, Cohen's d=0.43); this may represent a speed 

accuracy trade-off. 

 Experiment 3 (Figure S4) displayed a significant decrease in RT for second vs. first 

positions in the intact condition (550.0 vs. 557.2 ms, respectively; t(55)=2.05, p=0.046, 

Cohen's d=0.27) and a non-significant increase in accuracy for second vs. first positions in 

the intact condition (88.7 vs. 88.3%, respectively; t(55)=0.44, p=0.66, Cohen's d=0.071). 

There was no significant difference between second vs. first positions in the foil condition 

for RT (561.0 vs. 560.7, respectively; t(55)=0.076, p=0.94, Cohen's d=0.012) or accuracy 

(89.4 vs. 89.7%; t(55)=0.34, p=0.73, Cohen's d=0.058). Mismatched second shapes 

displayed a small but significant increase in accuracy compared to intact first shapes (89.9 
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vs. 88.3%, respectively; t(55)=2.35, p=0.023, Cohen's d=0.32), but no significant 

difference in RT (559.1 vs. 557.2 ms, respectively; t(55)=0.46, p=0.64, Cohen's d=0.064). 

 

Results using the full triplet structure 

Although we do not believe that the full triplet structure was learned in our 

experiments, it is nevertheless informative to perform the analyses for Experiments 1 and 

2 using the full triplet structures of the experiments. Figure S5 shows the search task results 

for Experiment 1, in which there is an expected monotonic decrease in RT across item 

position (535ms vs. 520ms vs. 502ms, respectively; F(2,72)=9.42, p=0.0002, η2=0.021). 

In order to classify triplets as “learned” or “non-learned”, a metric similar to that used with 

pairs was applied, in which a triplet was classified as “learned” if it showed a monotonic 

decrease in RT across item position (i.e., item 1 RT > item 2 RT > item 3 RT) and “non-

learned” if the triplet did not meet this standard. Although this rule is similar to the rule 

used for pairs, it results in different assignments to triplets than would have been made via 

a decision based on the first two items of that triplet. This can be seen in Figure S6, which 

shows accuracy and RT for the detection task of Experiment 1 for triplets as defined by 

whether they were learned or not in the search task. Although the trend is similar to the 

patterns seen from analyzing pairs, due to the different categorizations there is not as clear 

of a separation between the items classified as learned and non-learned in accuracy 

(interaction F(2,549)=0.71, p=0.49, η2=0.0026) or RT (interaction F(2,549)=2.86, 

p=0.058, η2=0.01). 
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 Experiment 2 utilized a recognition task to measure learning after the detection task 

and, as reported in the main text, 139 triplets were correctly identified and 66 triplets were 

not correctly identified. These classifications of the triplets are the same as the 

classifications for the pairs reported in the main text since the recognition judgment was 

made using triplets and does not change whether we analyze the full triplet or just the first 

two items of that triplet in the detection task. The results for the full triplets in the detection 

task, as split by whether they were classified as learned or non-learned based on their 

identification in the recognition task, and split by whether they were judged as “Familiar” 

or “Remember” (see Experiment 2 Methods in main text), can be seen in Figure S7. 

Patterns similar to those seen in the pair analyses emerge, with a significant interaction for 

RT (interaction F(4,606)=2.56, p=0.038, η2=0.016) but not for accuracy (interaction 

F(4,606)=1.31, p=0.26, η2=0.0084). Collapsing the Familiar and Remember judgments (as 

in Figure 7 of the main text) reveals similar effects, with a significant interaction for RT 

(interaction F(2,609)=4.74, p=0.009, η2=0.015) but not for accuracy (interaction 

F(2,609)=1.7, p=0.18, η2=0.0055). 
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Figures 

 

  

Figure 1 - (A) 15 shapes used in Experiment 1, shown here grouped into five example 
triplets. (B) Example of block progression and of stimuli at different contrasts. (C) Example 
of progression within a single block. Stimuli appear onscreen sequentially and musical 
notes indicate the occurrence of the periodic tone, which instructs participants to respond 
whether a shape was or was not onscreen. 
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Figure 2 - (A) Mean accuracy as a function of block number. (B) Contrast levels at each 
block, averaged over the 37 participants of Experiment 1. The ordinate displays the 
proportion contrast, above or below the background. The first block was a practice block 
and was not analyzed. Error bars in both figures represent between-subjects standard error 
of the mean (SEM). 
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Figure 3 – Mean RTs of each pair across participants for the search task of Experiment 1. 
"Search learned" were pairs showing learning in the search task in terms of a faster RT for 
the second vs. first shape (102 pairs, solid blue lines, negative slope). "Search non-learned" 
were pairs not showing learning (78 pairs, dashed red lines, flat or positive slope). N = 36 
participants (1 participant, comprising 5 pairs, omitted from figure for clarity, due to RTs 
greater than 1000ms). 
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Figure 4 – Mean RT in the search task of Experiment 1. Error bars reflect +/- 1 within-
subjects SEM (Loftus & Masson, 1994). N = 37. 
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Figure 5 - Detection task results in Experiment 1 split by the search task, in terms of (A) 
accuracy and (B) RT. "Search learned" were pairs that demonstrated learning in the 
subsequent search task (solid blue lines). "Search non-learned" were pairs that did not 
demonstrate learning in the subsequent search task (dashed red lines). Error bars reflect +/- 
1 within-subject SEM. N = 37. (N of pairs in blue curves = 106; N of pairs in red curves = 
79.) 
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Figure 6 - Response scale used during the recognition task. "F" stands for "Familiar" and 
"R" stands for "Remember". Size of numbers and letters corresponds to confidence levels, 
with 1 and 6 being the most confident in a "New" or "Old" response, respectively.	  
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Figure 7 - Detection task results in Experiment 2 split by the recognition task, in terms of 
(A) accuracy and (B) RT. "Recognition learned" were pairs correctly identified in the 
subsequent recognition task (solid blue lines). "Recognition non-learned" were pairs not 
correctly identified in the subsequent recognition task (dashed red lines). Error bars reflect 
+/- 1 within-subject SEM. N = 41. (N of pairs in blue curves = 139; N of pairs in red curves 
= 66.) 
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Figure 8 - Detection task results in Experiment 2 split by the Familiar/Remember ratings 
in the recognition task, in terms of (A) accuracy and (B) RT. "Recognition learned 
(Familiar)" were pairs correctly identified in the subsequent recognition task and given a 
"Familiar" rating (solid blue lines). "Recognition learned (Remember)" were pairs 
correctly identified in the subsequent recognition task and given a "Remember" rating 
(dotted black lines). "Recognition non-learned" were pairs not correctly identified in the 
subsequent recognition task (dashed red lines). Error bars reflect +/- 1 within-subject SEM. 
N = 41. (N of pairs in blue curves = 78; N of pairs in black curves = 61; N of pairs in red 
curves = 66.) 
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Figure 9 - RTs in the search task of Experiment 3. "Intact items" were shapes from 
conditions in which the pairs were presented intact (solid blue line). "Foil items" were 
shapes from conditions in which pairs were presented with either the first or second shape 
replaced with a foil unseen in the first ten blocks of exposure (dashed red line). Note that 
the foil items were not matched as the intact items were; the dashed line is only to 
demonstrate the difference between the two position RTs. "Mismatched 2nd items" were 
shapes from the condition in which the second shape of a pair was replaced with the second 
shape of another pair (black point). Error bars reflect +/- 1 within-subject SEM. N = 56. 
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Figure 10 - Detection task results for intact, foil, and mismatched conditions in Experiment 
3 split by the search task, in terms of (A) accuracy and (B) RT. "Search learned" circles 
were intact pairs that showed evidence of learning in the subsequent search task. "Search 
non-learned" circles were intact pairs that did not show learning in the subsequent search 
task. "Search learned" triangles were foils following an intact first shape that showed 
learning in the subsequent search task. "Search non-learned" triangles were foils following 
an intact first shape that did not show learning in the subsequent search task. "Search 
learned" squares were mismatched second shapes following an intact first shape that 
showed learning in the subsequent search task. "Search non-learned" squares were 
mismatched second shapes following an intact first shape that did not show learning in the 
subsequent search task. Error bars reflect +/- 1 within-subject SEM. N = 56. (N of blue 
pairs in each condition = 179; N of red pairs in each condition = 157.) 
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Figure S1 - Histograms displaying the number of times the RT to a second-position shape 
of a pair was lower than the RT to a first-position shape within the same block of the search 
task of Experiment 1 for (A) each of the 106 learned pairs and (B) each of the 79 non-
learned pairs. The dashed green line on each figure represents the mean of the distribution, 
(A) 3.80 and (B) 2.18.  
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Figure S2 - Detection task results in Experiment 1, in terms of (A) accuracy and (B) RT. 
Error bars reflect +/- 1 within-subject SEM (Loftus & Masson, 1994). N = 37. 
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Figure S3 - Detection task results in Experiment 2, in terms of (A) accuracy and (B) RT. 
Error bars reflect +/- 1 within-subject SEM. N = 41. 
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Figure S4 - Detection task results in Experiment 3. "Intact items" were items presented in 
their associated pairs (solid blue line). "Foil items" were items presented with either the 
first or second item replaced with a foil unseen in the first ten blocks of exposure (dashed 
red line). "Mismatched 2nd items" were items in which the second item of a pair was 
replaced with the second item of another pair (black point). Error bars reflect +/- 1 within-
subject SEM. N = 56. 
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Figure S5 - Mean RT for the full triplet structure in the search task of Experiment 1. Error 
bars reflect +/- 1 within-subject SEM. N = 37. 
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Figure S6 - Detection task results for the full triplet structure in Experiment 1 split by the 
search task, in terms of (A) accuracy and (B) RT. "Search learned" were triplets that 
demonstrated learning in the subsequent search task (solid blue lines). "Search non-
learned" were triplets that did not demonstrate learning in the subsequent search task 
(dashed red lines). Error bars reflect +/- 1 within-subject SEM. N = 37. (N of triplets in 
blue curves = 83; N of triplets in red curves = 102.) 
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Figure S7 - Detection task results for the full triplet structure in Experiment 2 split by the 
Familiar/Remember ratings in the recognition task, in terms of (A) accuracy and (B) RT. 
"Recognition learned (Familiar)" were triplets correctly identified in the subsequent 
recognition task and given a "Familiar" rating (solid blue lines). "Recognition learned 
(Remember)" were triplets correctly identified in the subsequent recognition task and given 
a "Remember" rating (dotted black lines). "Recognition non-learned" were triplets not 
correctly identified in the subsequent recognition task (dashed red lines). Error bars reflect 
+/- 1 within-subject SEM. N = 41. (N of triplets in blue curves = 78; N of triplets in black 
curves = 61; N of triplets in red curves = 66.) 
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Tables of Means 
 
 
Chapter 1 - Experiment 1 Shape 1 Shape 2 
Variable M M SD 
Search Task RT (ms) 535.0016 519.9835 27.0906 
Search Learned RT (ms) 677.8779 684.3018 41.9448 
Search Learned Accuracy (%) 84.2453 83.9623 6.5993 
Search Non-learned RT (ms) 670.7070 645.7044 45.8544 
Search Non-learned Accuracy (%) 85.5696 87.7215 6.5374 

 
Table 1 – Means and within-subject standard deviations for the search task and the 
detection task as split by the search task in Experiment 1. Note that within-subject SD is 
calculated according to Loftus and Masson (1994) and involves subtracting a participant’s 
overall mean RT from each condition’s mean RT, thus resulting in the same within-subjects 
SD for each condition. 
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Chapter 1 - Experiment 2 Shape 1 Shape 2 
Variable M M SD 
Recog. Learned RT (ms) 601.0396 603.3661 33.4764 
Recog. Learned Acc. (%) 90.5755 87.1942 6.3290 
Recog. Non-learned RT (ms) 608.3596 579.8756 34.8195 
Recog. Non-learned Acc. (%) 91.0606 90.7576 6.1998 
Recog. Learned (Fam.) RT (ms) 616.7955 615.7430 36.8466 
Recog. Learned (Fam.) Acc. (%) 89.3590 84.7436 7.0569 
Recog. Learned (Rem.) RT (ms) 580.8928 587.5400 28.7532 
Recog. Learned (Rem.) Acc. (%) 92.1311 90.3279 5.2048 

 
Table 2 – Means and within-subject standard deviations for the detection task as split by 
the recognition task (Recog.) in Experiment 2 and as further split by Familiar 
(Fam.)/Remember (Rem.) ratings in the recognition task. Note that within-subjects SD is 
calculated according to Loftus and Masson (1994) and involves subtracting a participant’s 
overall mean RT from each condition’s mean RT, thus resulting in the same within-subjects 
SD for each condition. 
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Chapter 1 - Experiment 3 Shape 1 Shape 2 
Variable M M SD 
Search Task (Intact) RT (ms) 441.8604 424.6667 15.1232 
Search Task (Foil) RT (ms) 434.9080 422.0179 16.8743 
Search Task (Mismatched) RT (ms) -    429.8590 13.6318 
Detect. Learned (Intact) RT (ms) 561.0158 556.5837 44.9820 
Detect. Learned (Intact) Acc. (%) 88.7151 88.9944 10.4170 
Detect. Learned (Foil) RT (ms) - 571.1587 43.5238 
Detect. Learned (Foil) Acc. (%) - 90.0000 9.0451 
Detect. Learned (Mis.) RT (ms) - 564.1364 46.8164 
Detect. Learned (Mis.) Acc. (%) - 89.3855 9.4754 
Detect. Non-learn. (Intact) RT (ms) 553.5948 542.5806 46.4856 
Detect. Non-learn. (Intact) Acc. (%) 87.8981 88.2802 10.4046 
Detect. Non-learn. (Foil) RT (ms) - 549.0857 37.0857 
Detect. Non-learn. (Foil) Acc. (%) - 88.7898 8.9181 
Detect. Non-learn. (Mis.) RT (ms) - 553.7758 37.7127 
Detect. Non-learn. (Mis.) Acc. (%) - 90.5096 8.7767 

 
Table 3 – Means and within-subject standard deviations for the search task and the 
detection task as split by the search task in Experiment 3. The detection task split by the 
search task only included the second shapes of the intact and mismatched pairs. Note that 
within-subjects SD is calculated according to Loftus and Masson (1994) and involves 
subtracting a participant’s overall mean RT from each condition’s mean RT, thus resulting 
in the same within-subjects SD for each condition. 
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Chapter 1 - Supplemental Data  
Variable M SD 
Position 2 < 1 Learned RT 3.8019 1.0458 
Position 2 < 1 Non-learned RT 2.1772 1.0593 
Exp. 1 Detect. Task RT (ms)   
    Shape 1 674.5226 22.0731 
    Shape 2 666.7086 22.0731 
Exp. 1 Detect. Task Acc. (%)   
    Shape 1 84.8108 3.3529 
    Shape 2 85.5676 3.3529 
Exp. 2 Detect. Task RT (ms)   
    Shape 1 603.6415 13.7694 
    Shape 2 596.3334 13.7694 
Exp. 2 Detect. Task Acc. (%)   
    Shape 1 90.7317 2.8215 
    Shape 2 88.3415 2.8215 
Exp. 3 Detect. Task RT (ms)   
    Shape 1 (Intact) 557.2170 19.6873 
    Shape 2 (Intact) 550.0484 19.6873 
    Shape 1 (Foil) 560.7402 18.1728 
    Shape 2 (Foil) 561.0014 18.1728 
    Shape 2 (Mismatched) 559.0566 18.7134 
Exp. 3 Detect. Task Acc. (%)   
    Shape 1 (Intact) 88.3333 3.6446 
    Shape 2 (Intact) 88.6607 3.6446 
    Shape 1 (Foil) 89.6726 3.7797 
    Shape 2 (Foil) 89.4345 2.6689 
    Shape 2 (Mismatched) 89.9107 3.2004 
Exp. 1 Search Task Triplet RT (ms)   
    Shape 1 535.0016 33.7906 
    Shape 2 519.9835 23.4039 
    Shape 3 502.0861 21.0593 
Exp. 1 Detect. Task Triplet RT (ms)   
    Shape 1 (Learned) 668.9590 44.6678 
    Shape 2 (Learned) 672.9014 49.9690 
    Shape 3 (Learned) 682.8752 39.5317 
Exp. 1 Detect. Task Triplet Acc. (%)   
    Shape 1 (Learned) 86.2651 6.9939 
    Shape 2 (Learned) 85.6626 7.3337 
    Shape 3 (Learned) 86.9880 7.7871 
Exp. 1 Detect. Task Triplet RT (ms)   
    Shape 1 (Non-learned) 679.5779 50.6901 
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    Shape 2 (Non-learned) 663.6845 49.4496 
    Shape 3 (Non-learned) 666.2951 44.4885 
Exp. 1 Detect. Task Triplet Acc. (%)   
    Shape 1 (Non-learned) 83.6274 8.0554 
    Shape 2 (Non-learned) 85.4902 8.1072 
    Shape 3 (Non-learned) 85.4902 8.1072 
Exp. 2 Detect. Task Triplet RT (ms)   
    Shape 1 (Learned Familiar) 616.7955 39.8886 
    Shape 2 (Learned Familiar) 615.7430 44.4447 
    Shape 3 (Learned Familiar) 621.9238 41.2576 
Exp. 2 Detect. Task Triplet Acc. (%)   
    Shape 1 (Learned Familiar) 89.3590 8.7093 
    Shape 2 (Learned Familiar) 84.7436 7.9623 
    Shape 3 (Learned Familiar) 87.4359 8.9050 
Exp. 2 Detect. Task Triplet RT (ms)   
    Shape 1 (Learned Remember) 580.8928 37.6057 
    Shape 2 (Learned Remember) 587.5400 30.8788 
    Shape 3 (Learned Remember) 584.2880 37.7941 
Exp. 2 Detect. Task Triplet Acc. (%)   
    Shape 1 (Learned Remember) 92.1311 6.3053 
    Shape 2 (Learned Remember) 90.3279 6.3728 
    Shape 3 (Learned Remember) 90.9836 7.2374 
Exp. 2 Detect. Task Triplet RT (ms)   
    Shape 1 (Non-learned) 608.3596 39.9798 
    Shape 2 (Non-learned) 579.8756 42.1087 
    Shape 3 (Non-learned) 596.9038 43.5140 
Exp. 2 Detect. Task Triplet Acc. (%)   
    Shape 1 (Non-learned) 91.0606 6.5666 
    Shape 2 (Non-learned) 90.7576 7.1425 
    Shape 3 (Non-learned) 92.4242 5.8753 

 
Table 4 – Means and within-subject standard deviations for the Supplemental data of 
Chapter 1, listed in order of discussion within the Supplemental data section. Note that 
with the exception of the first two variables, all SD is within-subjects SD, which is 
calculated according to Loftus and Masson (1994) and involves subtracting a participant’s 
overall mean RT from each condition’s mean RT. For situations in which there are only 
two conditions this results in the same within-subjects SD for each condition. 
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Abstract 

In studies of perceptual learning (PL), subjects are typically highly trained across 

many sessions to achieve perceptual benefits on the stimuli in those tasks. There is 

currently significant debate regarding what sources of brain plasticity underlie these PL 

based learning improvements. Here we investigate the hypothesis that PL, among other 

mechanisms, leads to task automaticity, especially in the presence of the trained stimuli. 

To investigate this hypothesis, we trained participants for 8 sessions to find an oriented 

target in a field of near-oriented distractors and examined alpha-band activity, which 

modulates with attention to visual stimuli, as a possible measure of automaticity. Alpha-

band activity was acquired via EEG, before and after training, as participants performed 

the task with trained and untrained stimuli. Results show that participants underwent 

significant learning in this task (as assessed by thresholds, accuracy and reaction time 

improvements) and that alpha power increased during the pre-stimulus period and then 

underwent greater desynchronization at the time of stimulus presentation following 

training. However, these changes in alpha-band activity were not specific to the trained 

stimuli with similar patterns of post-training alpha power for trained and untrained stimuli. 

These data are consistent with the view that participants were more efficient at focusing 

resources at the time of stimulus presentation and are consistent with a greater automaticity 

of task performance. These findings have implications for PL, as transfer effects from 

trained to untrained stimuli may partially depend on differential effort of the individual at 

the time of stimulus processing. 
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Introduction 

 Perceptual learning (PL) is defined as improvement in performance on perceptual 

tasks after training or experience with stimuli related to those tasks. PL is typically thought 

to be an implicit process and has been shown to occur in numerous modalities and in a 

wide variety of animal models, including non-primates, non-human primates, and humans 

(for reviews see, Fahle, 2005; Ghose, 2004; Gilbert, Sigman, & Crist, 2001; Sagi, 2011; 

Sasaki, Náñez, & Watanabe, 2012). In the visual modality, PL is often investigated with 

simple visual features, e.g., orientation (Dobres & Seitz, 2010; Schoups, Vogels, Qian, & 

Orban, 2001; Yang & Maunsell, 2004), line or dot offset (Fahle, Edelman, & Poggio, 1995; 

Hung & Seitz, 2014), and motion (Seitz & Watanabe, 2005; Zohary, Celebrini, Britten, & 

Newsome, 1994), although more complex visual stimuli, such as human faces, have also 

been successfully used to study PL (Hussain, Sekuler, & Bennett, 2011). 

 In PL paradigms, behavioral improvements are often task-specific and stimulus-

specific. For example, if a key parameter of the stimulus, such as orientation, is changed, 

then observed behavioral improvements often disappear (Fahle, 2005). This specificity led 

many early researchers to hypothesize that PL is a result of feed-forward changes occurring 

in early visual areas (De Valois, 1977; Fiorentini & Berardi, 1980; Ramachandran & 

Braddick, 1973). Subsequently, neuronal changes in response to PL were reported in early 

visual areas that are specific to trained features (Bao, Yang, Rios, He, & Engel, 2010; 

Gilbert, Li, & Piech, 2009; Gilbert et al., 2001; Hua et al., 2010) providing further evidence 

for feed-forward models of PL. However, under certain training conditions, behavioral 

improvements do generalize to untrained stimuli (Ahissar & Hochstein, 2004; Deveau, 
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Ozer, & Seitz, 2014; Hung & Seitz, 2014; Xiao et al., 2008; Zhang et al., 2010). These 

observations have led to an important and ongoing debate as to whether representation or 

readout changes are responsible for different observations of PL (Ahissar & Hochstein, 

2004; Byers & Serences, 2012; Dosher & Lu, 1998; Fahle, 2005; Hung & Seitz, 2014; 

Jeter, Dosher, Liu, & Lu, 2010; Petrov, Dosher, & Lu, 2005; Pilly, Grossberg, & Seitz, 

2010; Xiao et al., 2008; Zhang et al., 2010).  

An additional mechanism that may explain at least some component of transfer in 

PL is the extent to which participants are able to focus resources during task performance 

after training. This idea of task focus is often not well defined and typically described with 

terms such as attentiveness, alertness, vigilance, etc., and each have nuanced meanings that 

sometimes depend on the subfield and can be overlapping. Here we use the terms attention 

to refer to up and down regulation of task resources (Posner & Petersen, 1990) and 

automaticity to describe the extent to which attention can be regulated with minimal 

executive control. 

 The concept of automaticity has been studied for decades yet remains relatively 

difficult to define. For example, Posner and Snyder (1975) define automatic processes as 

those which do not rely on conscious attention, Jacoby (1991) defines automaticity as 

processing that “occurs as a passive consequence of stimulation, is not necessarily 

accompanied by awareness, and requires neither intention nor processing capacity,” while 

Logan (1992) argues that automaticity is “processing that involves a different way of 

attending.” To address changes of task-processing after PL, here we offer an operational 

definition of automaticity: when a task is more automatic, it can be performed with more 
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efficient use of resources and less attention is required to perform the task to maintain, or 

achieve superior, task performance. This definition is not meant to be authoritative but is 

one that fits into many of these theories of attentional and automatic processes. While 

automaticity has been described conceptually, there is a question of how best to measure 

it. A difficulty is that behavioral measures of automaticity have the potential to disrupt the 

flow of the learned task. For this reason we chose to measure a possible correlate of 

automaticity, namely alpha-band EEG activity.  

 The alpha bandwidth found within the electroencephalogram (EEG) refers to the 

set of frequencies ranging approximately from 8-12 Hz. This bandwidth was first observed 

and studied by Hans Berger (Berger, 1929), who noted that the amplitude of activity in 

these frequencies increased significantly when human subjects sat quietly with their eyes 

closed. A large body of evidence points towards thalamo-cortico connections as the source 

of alpha oscillations (for a review see Hughes & Crunelli, 2005) although evidence also 

exists for intracortical sources (Bollimunta, Chen, Schroeder, & Ding, 2008; Jones, 

Pritchett, Stufflebeam, Hämäläinen, & Moore, 2007; Lopes da Silva, van Lierop, Schrijer, 

& Storm van Leeuwen, 1973; Ronnqvist, McAllister, Woodhall, Stanford, & Hall, 2013; 

Silva, Amitai, & Connors, 1991). Alpha power is most prominent in occipital channels of 

the EEG but can also be found across other areas of the scalp (e.g., Rolandic alpha rhythms 

found over sensory-motor areas). These alpha oscillations have been shown to vary 

significantly based on a participant’s cognitive state (Berger, 1929; Klimesch, 2012), and 

level of alpha power during a range of tasks can predict performance (Hanslmayr, Gross, 

Klimesch, & Shapiro, 2011; Payne & Sekuler, 2014). 
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Importantly for the current study, alpha power is generally found to be reduced with 

greater effort and attention to visual tasks (Bollimunta et al., 2008; Ergenoglu et al., 2004; 

Hanslmayr et al., 2007; Nenert, Viswanathan, Dubuc, & Visscher, 2012; Snyder & Foxe, 

2010; Vaden, Hutcheson, McCollum, Kentros, & Visscher, 2012). For example, 

Hanslmayr et al. (2007) found that participants with lower overall alpha power better 

discriminated brief visual stimuli, Snyder and Foxe (2010) found that alpha power 

modulates depending on which features of visual stimuli were being attended, and 

Chaumon and Busch (2014) found that occipital alpha power before high-contrast visual 

detection trials correlated negatively with performance. Results such as these provide 

evidence for the “inhibition” hypothesis of alpha oscillations, which states that strong alpha 

power reflects top-down inhibition on processes which are not being used for a task, 

whereas alpha power is suppressed for processes which are needed for a task (Klimesch, 

Sauseng, & Hanslmayr, 2007; Sigala, Haufe, Roy, Dinse, & Ritter, 2014). While the link 

between alpha power and automaticity is not fully established, alpha power is modulated 

by precisely the elements that define the automaticity of the task: Less attention is required 

of automatic tasks, and less attention leads to increases in alpha power (Jensen & Mazaheri, 

2010). Other task conditions can modulate alpha power --for example holding items in 

working memory can increase alpha power (Jensen, Gelfand, Kounios, & Lisman, 2002), 

though it has been argued that this effect is in fact driven by decreased attention to 

anticipated visual distraction (Bonnefond & Jensen, 2012). However, when stimulus 

parameters and task demands are otherwise held constant, most current interpretations 

show changes in alpha power during a visual task as reflecting changes in the level of 
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attention being directed to a stimulus (Foxe & Snyder, 2011; Jensen & Mazaheri, 2010; 

Jensen, Spaak, & Zumer, 2014; Lange, Keil, Schnitzler, van Dijk, & Weisz, 2014; Palva 

& Palva, 2011). Thus, for the purposes of this paper, we chose to examine how alpha power 

is modulated following perceptual learning. 

In the present study, we examine how psychophysical and electrophysiological 

measures change as participants gain proficiency in a visual search task. We find that there 

are indeed substantial changes in how alpha band activity is regulated after learning (with 

higher alpha in the pre-stimulus period followed by greater alpha desynchronization during 

stimulus processing) and suggest that these may provide a basis for understanding aspects 

of stimulus transfer after PL. 

 

Methods 

Participants 

 Eight undergraduates at the University of California, Riverside (age range 19-25 

years) were included in this study. Inclusion required completion of all experimental 

procedures without technical errors, such as improperly affixed electrodes, or excessive 

muscular noise in the EEG. Participants were paid $10 an hour for their participation, gave 

written informed consent as approved by the Human Research Review Board, and had 

normal or corrected-to-normal vision. 
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Display Apparatus  

 An Apple Mac Mini (Apple, Inc., Cupertino, CA, USA) running OSX 10.5.6 

controlled the experiment. The stimuli were displayed on a 24” wide Sony Trinitron (Sony 

Corp., Tokyo, Japan) CRT monitor with a resolution of 1600x1200 pixels and a refresh 

rate of 100 Hz. Participants sat 50-55” from the screen with their heads restrained by a 

chinrest. The range in distance is due to individual differences in posture since a chinrest 

was used without a forehead restraint. An EyeLink 1000 eyetracking system (SR Research, 

Ltd., Mississauga, ON, Canada) was used with custom software to ensure that stimuli were 

only displayed while participants fixated on the center of the screen. Stimuli were created 

and controlled by custom code written in Matlab (The Mathworks, Inc., Natick, MA, USA), 

using the Psychophysics Toolbox (Brainard, 1997; Kleiner, Brainard, & Pelli, 2007). 

Mediating the connection between the monitor, the computer, and the EEG system was a 

Datapixx processor (Vpixx Technologies, Inc., Saint-Bruno, QC, Canada) which enables a 

16-bit DAC, allowing for a 256-fold increase in the display’s possible contrast values, and 

which provides monitor-refresh-locked stimulus presentations for accurate timing of 

stimuli and response triggers. 

 

PL Training 

 The PL training took place over eight days and began one day after the pre-test 

(Figure 11). On each day, participants performed a visual search task for approximately 

one hour (Figure 12). The stimuli in the task comprised white or black lines (0.1ºx1º; 95 

cd/m2 and 5.5 cd/m2, respectively) that were presented on a gray background (40 cd/m2). 
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On each trial, participants first fixated on a centrally presented red dot for 1100-2000ms 

(determined pseudorandomly). The trial only proceeded if the participant maintained 

fixation for this period of time. After fixation, a search display was presented for 100ms, 

followed by a blank gray response screen that was presented for up to 2000ms during which 

the participant made a response, and a further 500ms intertrial interval (ITI). 

 The participant’s task in each trial was to find a target line within a set of distractor 

lines in the search display and report with a keypress (“1” for white and “2” for black) 

during the response period whether the line was white or black. The target line was defined 

by its orientation, which could be either 45º or 135º (counterbalanced across participants), 

and was randomly assigned its color for each trial. The orientations of the distractors were 

determined by a staircase wherein the distractor lines were offset from the target line by a 

number of degrees between 0-90º, which we refer to as θ. After every 24 trials, θ was 

adjusted according to the participant’s performance such that if the average performance 

for the previous 24 trials was above 80% correct then θ was decreased, making the task 

more difficult, and if the average performance was lower than 70% correct then θ was 

increased, making the task easier (Le Dantec, Melton, & Seitz, 2012). Each training session 

took place on a separate day, consisted of 1200 trials, and lasted approximately one hour. 

The 1200 trials of each session were split into eight blocks with a short participant-

controlled break between each block. In addition, on the first day of the experiment there 

was a familiarization session in which participants were instructed on the task and ran 20 

practice trials with visual feedback. 
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Pre- and Post-Testing 

 One day before training and one day after training, pre- and post-test sessions were 

conducted. These sessions were similar to the training sessions with three main differences. 

First, EEG recordings were collected during these test sessions. Second, the target line 

could either be of the trained orientation or untrained orientation, run in separate, 

interleaved blocks so that the participants knew which orientation to search for in each 

block of trials. Third, instead of a staircase determining θ, the offset of the distractor lines 

was set to 30º for all pre-test trials and 15º for all post-test trials. This was done to avoid 

stimulus-driven differences in processing between orientations while keeping stimuli close 

to threshold. An examination of the average beginning and ending θ thresholds in the 

training sessions (Figure 14, in Results below) confirm that 30º and 15º were very near the 

obtained average thresholds. 

 Each session consisted of 1200 trials, lasted approximately 1.5 hours (plus 

additional time for EEG set-up), and was split into eight blocks with a 30 second break 

between each block and a 3-minute break half-way through the session in which 

participants were required to get up and stretch. Each of the eight blocks consisted of 150 

trials and each block alternated between containing targets of a trained orientation or targets 

of an untrained orientation, for a total of 600 trials in each condition. 

Electroencephalography (EEG)  

 EEG was recorded using 128-active Ag/AgCl electrodes (ActiveTwo system, 

BioSemi, Inc., Amsterdam, Netherlands) at a rate of 1024 Hz. All electrodes were mounted 

in an elastic ActiveTwo cap according to the BioSemi layout and labeled according to the 
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10/20 system (Oostenveld & Praamstra, 2001; Figure 13A). Given that alpha power is most 

prominent in occipital channels, and that we were analyzing a visual task, a bilateral 

selection of nine occipital and parietal electrodes was analyzed, corresponding 

approximately to sites Oz, O1, O2, PO7, PO8, PO9, PO10, P3, and P4 (Figure 13A, 

highlighted regions). The selection of electrode sites to analyze was based on post hoc 

analyses of where the greatest overall areas of alpha power occurred in the recorded EEGs. 

Horizontal (HEOG) and vertical (VEOG) electrooculograms were recorded, using 

additional electrodes affixed with adhesive disks at, respectively, the outer right and left 

canthi (HEOG) and below the right and left eye (VEOG). Conductive gel was applied to 

maintain the contact between the electrodes and the scalp (Signa Gel, Parker Laboratories, 

Inc., Fairfield, NJ, USA). 

 After recording, EEG data were initially processed using EMSE Suite 5.4 (Source 

Signal Imaging, Inc., San Diego, CA, USA). The data were first referenced to the average 

of all active electrodes (Keil et al., 2014) and filtered using zero phase-shift Butterworth 

high- and low-pass filters with half-amplitude cutoffs of 0.01 Hz and 100 Hz, respectively. 

Ocular artifacts were corrected using a proprietary algorithm of the EMSE Suite which is 

designed to remove eyeblink noise without removing the underlying signal (Pflieger, 

2001). 

 After processing using EMSE Suite software, time-frequency analysis was 

conducted using Matlab and the FieldTrip toolbox (Oostenveld, Fries, Maris, & Schoffelen, 

2011). The data were segmented into six-second periods centered on each stimulus 
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presentation and convolved with a Morlet wavelet. The frequencies of interest extracted 

were 2-20Hz and each wavelet had a width of seven cycles.  

 In order to prevent individual differences in raw alpha power (which can vary 

dramatically between individuals) from driving the results, all alpha power values were 

normalized to a [0-1] scale before being analyzed. For each subject, the minimum and 

maximum alpha power value was calculated. The minimum value was then subtracted from 

all alpha values and the result divided by the difference between the maximum and 

minimum values (i.e., the range). This transformed each subject’s alpha values such that 

the minimum value became 0 and the maximum value became 1, with all other values 

falling within the [0-1] range. 

 EEG data were analyzed primarily by comparing pre-test alpha power vs. post-test 

alpha power. Within the pre- and post-tests, two time periods of interest were defined – a 

pre-stimulus period, 1000ms preceding the stimulus onset in each trial for each participant, 

and the stimulus processing period, 250-500ms following the stimulus onset in each trial 

for each participant (Figure 13B). These two periods were defined post hoc based on the 

length of pre-stimulus fixation and on the average timing of alpha desynchronization 

(“desynchronization”, in this usage, describing a decrease in overall alpha power following 

stimulus presentation). Statistical tests to determine differences between the pre-test and 

post-test values within these periods were performed by calculating the mean power during 

the period of interest in the pre- and post-tests for each participant and conducting either 

repeated measures factorial ANOVA or paired-samples t tests between those mean values, 

depending on the analysis of interest. 



 101 

 

Results 

Behavioral Results 

 Behavioral results, in the form of orientation thresholds, response accuracy, and 

reaction times (RTs), all demonstrate classical evidence of PL. Orientation thresholds (θ) 

decreased as a function of training (Figure 14; effect of day: F(7,56)=5.88, p=0.000038, 

η2=0.42) and a planned t test between θ on the first and last day of training (mean of 28.44º 

and 11.96º, respectively) revealed a significant learning effect (t(14)=5.59, p=0.000067, 

Cohen’s d=2.98). Accuracy improved overall as a function of training from the pre-test to 

the post-test (Figure 15A; main effect of test session: F(1,7)=11.02, p=0.013, η2=0.18), 

however this was largely due to the greater increase in accuracy for trained targets as 

compared to untrained targets (Target X Session interaction: F(1,7)=76.37, p=0.0001, 

η2=0.17). Similarly, reaction times show an overall decrease in latency as a function of 

training from the pre-test to the post-test (Figure 15B; main effect of test session: 

F(1,7)=10.78, p=0.013, η2=0.13), and also showed a significant interaction between 

trained/untrained targets and testing session, where the trained targets showed a greater 

decrease in RT than the untrained targets (Target X Session interaction: F(1,7)=13.29, 

p=0.0082, η2=0.024). These data show that learning is, at least in part, specific to the 

trained orientation.  
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EEG Data 

 To evaluate how alpha changed with PL, we analyzed alpha power across all trials 

of the pre-test vs. the post-test. Our first observation is that during the pre-stimulus period 

(1000ms prior to stimulus onset; see Figure 13B) there is significantly more alpha power 

in the post-test than in the pre-test (t(7)=3.97, p=0.0054, Cohen’s d=1.40; mean normalized 

alpha power values of 0.67 and 0.39, respectively; Figure 16A). Topographic maps for the 

pre-stimulus periods in the pre-test and post-test can be seen in Figure 16B. Lighter regions 

represent more alpha power and darker regions represent less alpha power.  

Once the stimulus appears there is a notable reduction of alpha (often referred to as 

alpha desynchronization) with a greater desynchronization of alpha in the post-test 

compared to in the pre-test. (Note here there are actually two phases of alpha 

desynchronization - one occurring around 500ms before stimulus onset that corresponds 

with the onset of the fixation period and another at 0ms when the stimulus array appeared. 

We refer to the post-stimulus desynchronization in subsequent usage.) Clarifying this 

effect, we examined whether the extent of alpha desynchronization (1000ms pre-stimulus 

period minus stimulus processing period - 250-500ms) significantly differed between the 

pre-/post-test. Here a 2 (Test session) X 2 (Trial period) ANOVA showed a significant 

Session X Period interaction (F(1,7)=13.36, p=0.0081, η2=0.044), signifying that the 

amount of alpha desynchronization at the time of stimulus processing was greater after PL. 

Notably, alpha was also slightly, but significantly, greater during the stimulus processing 

period (250-500ms after stimulus onset; see Figure 13B) in the post-test than in the pre-

test (t(7)=2.53, p=0.039, Cohen’s d=0.90; mean normalized alpha power values of 0.13 
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and 0.066, respectively). Topographic maps for the stimulus processing periods of the pre-

test and post-test can be seen in Figure 16B.  

Together, these results are consistent with the view that subjects learn to allocate 

their attentional resources more effectively after training, exerting fewer attentional 

resources during the pre-stimulus period, as indicated by the greater pre-stimulus period 

alpha power, and then appropriately allocating attention at the time of stimulus onset, as 

indicated by the strong alpha desynchronization. Further, the finding that alpha power was 

greater after training during the stimulus processing period is consistent with our view of 

automaticity, that after training participants could perform a more difficult task with less 

focus.  

 A key question regards the extent to which changes in alpha power between the 

pre-test and the post-test reflect the specificity of the perceptual learning. To test this, we 

compared alpha power between trials with trained vs. untrained targets in the post-test 

(Figure 17). Within the pre-stimulus period there is a notable lack of difference between 

the trained and untrained conditions (t(7)=0.23, p=0.82, Cohen’s d=0.083; mean 

normalized alpha power values of 0.62 and 0.63, respectively) without a significant change 

in alpha desynchronization (F(1,7)=1.22, p=0.31, η2=0.00077. However, there was a trend 

for slightly greater alpha power in the trained compared to untrained condition in the 

stimulus processing period (t(7)=1.93, p=0.095, Cohen’s d=0.68; mean normalized alpha 

power values of 0.11 and 0.086, respectively). Of note, while there are apparent differences 

in alpha between the trained and untrained conditions growing in the 500-1000 time period, 

these are during the response period and are likely related to the different reaction times 
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observed between these conditions. As a whole, these results suggest that the observed 

changes in alpha with learning are largely independent of the specificity found in the 

behavioral results.  

 While it is clear that changes in alpha EEG activity occurred between the pre- and 

post-testing sessions, an important question is whether these are correlated with task 

performance. An examination of the correlation between alpha power and individual trials 

could potentially provide additional insight into these results. To this effect, the alpha 

power in the pre-stimulus period, the stimulus processing period and the level of alpha 

desynchronization were calculated for each trial and then correlated with reaction times 

and accuracy. In no case, whether in individual participants or combined across 

participants, did we find an r2>.05, or any correlation with a p < 0.05. Likewise we also 

examined whether there were correlations with changes in training-related alpha power 

(pre-stimulus, desynchronization and stimulus processing) and changes in reaction time or 

threshold and again found no significant correlations. We further address these 

correlational analyses in the discussion.  

 

Discussion 

 Here we examined alpha power in EEG recordings and its relationship to PL. 

Behavioral results (Figures 14, 15) show that PL occurred over the training period with 

improved orientation discrimination thresholds and superior accuracy and lower response 

latencies for the trained compared to the untrained target orientations. After training, EEG 

alpha power during the pre-stimulus period increased, and desynchronization during the 
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stimulus-processing period also increased. However, while the change in alpha power with 

PL was dramatic and strongly significant, these changes did not appear to reflect a 

stimulus-specific component of learning in this task. We suggest that these results are 

consistent with the hypothesis of an increase of automaticity with learning, and that this 

increase is at least partially stimulus independent. 

Changes in alpha power have been shown to reflect modulations in the level of 

attention to a visual stimulus (for example, Bollimunta et al., 2008; Ergenoglu et al., 2004; 

Hanslmayr et al., 2007; Nenert et al., 2012; Snyder & Foxe, 2010; Vaden et al., 2012). It 

is debatable whether these attentional modulations are driven by active suppression of 

visual inputs (Kelly, Lalor, Reilly, & Foxe, 2006), processes such as vigilance (Klimesch, 

1999), or some combination. Regardless, changes in alpha power relate to attentional 

modulations of visual stimuli and help regulate transfer of information during visual 

processing (Romei, Gross, & Thut, 2010; Thut, Nietzel, Brandt, & Pascual-Leone, 2006). 

The extensive previous literature examining modulations of occipital alpha power thus 

suggests that alpha power can be interpreted in the context of attention to vision and 

automaticity, as defined in the Introduction. 

Our strongest results were that training resulted in more alpha power during the 

pre-stimulus period and larger alpha desychronization after stimulus onset. The increase in 

desynchronization after training fits in well with the inhibition theory of alpha (Klimesch 

et al., 2007; Payne & Sekuler, 2014; Sigala et al., 2014) – after training, fewer resources 

are needed for the overall task during the pre-stimulus period but as soon as resources are 

needed to perform the most demanding portion of the task, alpha levels are lowered, 
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thereby releasing the resources from inhibition. Because participants achieve superior task 

performance despite apparently allocating fewer attentional resources to the task, this result 

suggests that the task became more automatic after training, though the results cannot be 

conclusively linked to automaticity. While other models can be considered to explain the 

EEG data, for example, boredom with the task following training, such models are less 

consistent with the larger alpha desychronization observed. This observation seems most 

consistent with a more efficient deployment of resources following training. 

While it is natural to assume that changes in alpha should be related to task 

performance, there are a number of reasons to expect that direct correlations may not be in 

evidence. First off, there were only 8 participants and numerous factors (differences in 

wakefulness, use of caffeine or other drugs, differences in impedance between the sessions, 

etc.) could impact how individual magnitudes of change of alpha may not be linearly 

related to changes in performance levels, especially across sessions. There are also possible 

cognitive explanations that could have given rise to a lack of correlations. For example, if 

participants actively regulate (whether implicitly or explicitly) task related resources then 

changes in alpha power with training would reflect how much alpha power the system can 

tolerate during task performance. This would mean that accuracy, reaction time, or 

threshold would be kept relatively constant while alpha fluctuates, leading to no expected 

correlation. A lack of correlations of alpha power with performance and learning may be 

consistent with a subject’s being able to regulate the amount of alpha that can be “tolerated” 

based upon their skill at the task. Further research will be required to substantiate this 
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postulate, but in any event the lack of correlations found between alpha power and 

performance is not evidence for or against our interpretation. 

We found that participants showed both increased pre-stimulus alpha power and 

increased stimulus processing period desynchronization after training. The pattern of our 

results supports a model where automaticity leads to efficient allocation of attentional 

resources through, as noted above, keeping the level of resource use relatively low until 

the moment when it is needed, at which time there is strong alpha desynchronization. Of 

course, there are other possible sets of results that would have been consistent with 

changing allocation of resources. For example, suppose the finding had been that after 

training, pre-stimulus power and post-stimulus desynchronization were weaker than before 

training, instead of stronger as we actually found. The level of post-stimulus 

desynchronization has been thought to reflect the recruitment of attentional resources to 

process a stimulus (Van Winsum, Sergeant, & Geuze, 1984). Thus, weaker 

desynchronization after training would have indicated that subjects could perform the task 

while recruiting fewer visual cortical resources on a trial-by-trial basis, consistent with 

greater task automaticity. However, the structure of this hypothetical automaticity is of a 

different kind than what we observed. We did not find that there were fewer resources used 

on a trial by trial manner during stimulus presentation (as measured by desynchronization 

or power during the stimulus processing period). Instead we found stronger alpha power 

during the pre-stimulus period in the post-test than the pre-test even though the task 

required more precision of orientation processing in the post-test than in the pre-test. These 

data are consistent with a model of automaticity in which, following training, subjects 
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could perform the task using fewer visual cortical resources to prepare for trials, while the 

trial-to-trial resource use was unchanged.  

However, there is also the possibility the changes in alpha are epiphenomenal and 

are unrelated to perceptual learning. The issue of causality is one that is difficult to address, 

and in fact, even if significant correlations with behavior had been found then this still 

would be insufficient to prove that changes in alpha were causal or even directly related to 

perceptual learning. While we thus realize that some aspects of the current results are 

preliminary, in that the causal relations between changes in alpha and perceptual learning 

are not determined, they do raise important issues about the relationship of alpha power to 

perceptual learning that have not previously been raised in the literature. The benefit of 

using neural measures like EEG is that we can use them in this way to help us better 

understand the temporal profile of processes associated with constructs like automaticity. 

Given the current debate in the field about the myriad mechanisms involved in perceptual 

learning, we believe that the data reported help provide additional understanding of what 

changes in the brain occur after extensive training, although readers may come to different 

conclusions than we do. Further research will be required to gain more understanding of 

how changes in alpha and the regulation of alpha may be related to components of 

behavioral changes found in perceptual learning.  

An interesting question is to what extent changes in alpha may also represent 

specific components of PL. For example, one may expect for the trained orientation that 

participants would be even more automatic in their deployment of resources (especially 

given that trained and untrained orientations were given in separate blocks). Consistent 
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with this, we did find a trend for stronger alpha power during the stimulus processing period 

for trained stimuli, though the magnitude of this effect is small compared to the pre- vs. 

post-test changes in alpha that were observed. The different reaction times of these trained 

vs. untrained conditions may also contribute to this effect. Furthermore other aspects of 

perceptual learning may also explain some aspects of the transfer of the alpha effect to 

untrained orientations. Comparison of the accuracy and RT performance for untrained 

stimuli in pre-test vs. post-test shows that, despite the fact that θ changed from 30 degrees 

in the pre-test to 15 degrees in the post-test, accuracy and RT were maintained. This 

substantial amount of non-specific learning could reflect learning of other aspects of the 

stimulus array such as the characeristics of the background elements (Le Dantec et al., 

2012), specific locations of training (Le Dantec & Seitz, 2012) or other factors related to 

the task. These and other factors may also be related to changes in alpha power and future 

research will be required to more fully describe how different compents of learning 

contribute to the changes in alpha power observed here. 

 
As a whole, our results enrich the current discussion in the literature regarding the 

mechanisms that underlie PL. Instead of the classic view that PL is a unitary process 

reflecting changes in processing in low-level perceptual areas (Fahle, 2004; Fiorentini & 

Berardi, 1980; Gilbert et al., 2001) the field is increasingly recognizing that PL involves 

plasticity in myriad brain processes related to the trained task and stimuli (Watanabe & 

Sasaki, 2015). For example PL has been observed in both early (Schoups et al., 2001) and 

late processing stages (Law & Gold, 2008) and can be at least partially explained by 

changes in decision processes (Dosher, Jeter, Liu, & Lu, 2013). In fact small changes in 
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training procedures can give rise to substantial changes in the behavioral characteristics of 

PL and likely the underlying distribution of learning across the brain (Hung & Seitz, 2014). 

Our results add to this literature and are consistent with models of PL which posit that 

attention is a contributing factor (Byers & Serences, 2012) and suggest that a component 

of transfer found in studies of PL may depend on an individual’s brain state at the time of 

stimulus processing. While more research will be required to clarify the links between 

alpha EEG, automaticity and PL, the present results suggest that alpha EEG is a useful 

window into an individual’s level of attention during task performance and may help us 

better understand what is learned during PL. 
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Figures 
 
 

 
Figure 11 – Schedule of the experimental sessions. Day 1 consisted of a familiarization 
session, Day 2 consisted of the pre-test, Days 3-10 consisted of the training sessions, and 
Day 11 consisted of the post-test. 
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Figure 12 – Diagram of a single trial. After a fixation period the stimulus array appeared 
for 100ms. (The target is marked for illustrative purposes here but was distinguishable only 
by its orientation during actual presentations.) This was followed by a blank screen while 
the response was made and a 500ms intertrial interval after the response. 
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Figure 13 – (A) Overhead view of the 128 electrode placement using the BioSemi 
ActiveTwo system. Red highlighted regions denote electrodes used in the alpha power 
analyses, corresponding approximately to sites Oz, O1, O2, PO7, PO8, PO9, PO10, P3, 
and P4. (B) Diagram of the pre-stimulus period (yellow shaded region), the stimulus 
processing period (red shaded region), and desynchronization (the difference between the 
mean pre-stimulus period and mean stimulus processing period) used in the alpha power 
analyses. The pre-stimulus period consists of the 1000ms before the stimulus onset (0ms). 
The stimulus processing period consists of the 250-500ms after the stimulus onset. 
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Figure 14 – Orientation offset (θ) threshold as a function of training day. Dashed lines 
denote +/- 1 SEM. 
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Figure 15 – Accuracy (A) and reaction times (B) for trained targets (blue bars) and 
untrained targets (red bars) during the pre-test and post-test. Error bars denote +/- 1 SEM. 
θ denotes the orientation offset, in degrees, between the target and the distractors in the 
pre- and post-test. 
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Figure 16 – (A) Peristimulus period of normalized alpha power as a function of pre-test 
(thick solid blue line) and post-test (thick dashed red line) with all trial conditions 
contributing. Thin dashed lines denote +/- 1 SEM. (B) Scalp distributions showing 
normalized alpha power during the pre-stimulus period (-1000ms – 0ms) as a function of 
pre-test and post-test (left side) and normalized alpha power during the stimulus processing 
period (250ms – 500ms) as a function of pre-test and post-test (right side). Lighter regions 
denote more relative alpha power, darker regions denote less relative alpha power. Nose is 
up, left on left. 
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Figure 17 - Peristimulus period of normalized alpha power as a function of trained targets 
(thick solid blue line) and untrained targets (thick dashed red line) within the post-test only. 
Thin dashed lines denote +/- 1 SEM. The pre-stimulus period is -1000ms – 0ms and the 
stimulus processing period is 250ms – 500ms. 
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Table of Means 

Chapter 2 - All  
Variable M SD 
Orientation Offset Threshold (deg.)   
    Day 1 28.4414 7.8831 
    Day 2 24.5411 6.3218 
    Day 3 25.1930 9.0739 
    Day 4 22.9928 5.4176 
    Day 5 20.9841 4.7902 
    Day 6 20.9403 5.5054 
    Day 7 15.3559 8.8280 
    Day 8 11.9638 4.4865 
Pre-test RT (ms)   
    Trained 906.1055 41.7535 
    Untrained 892.1720 37.6136 
Pre-test Accuracy (%)   
    Trained 61.6267 1.4175 
    Untrained 64.3044 2.8019 
Post-test RT (ms)   
    Trained 695.3097 41.7535 
    Untrained 808.5520 37.6136 
Post-test Accuracy (%)   
    Trained 72.2555 1.4175 
    Untrained 64.3967 2.8019 
Pre-test Alpha Power (Normalized)   
    Pre-stimulus Period (Overall) 0.3864 0.1860 
    Stim. Processing Period (Overall) 0.0662 0.0752 
Post-test Alpha Power (Normalized)   
    Pre-stimulus Period (Overall) 0.6748 0.1126 
    Pre-stimulus Period (Trained) 0.6253 0.0910 
    Pre-stimulus Period (Untrained) 0.6342 0.1355 
    Stim. Processing Period (Overall) 0.1315 0.1030 
    Stim. Processing Period (Trained) 0.1107 0.1054 
    Stim. Processing Period (Untrained) 0.0854 0.0955 

 
Table 5 – Means and within-subject standard deviations for analyses in Chapter 2, listed 
in order of discussion. SD is within-subjects SD, calculated according to Loftus and 
Masson (1994). 
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Chapter 3 

 

A novel paradigm to examine how perceptual learning, statistical learning, and 

multisensory integration jointly contribute to perceptual performance  
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Abstract 

It is well established that our visual perceptions are jointly determined by visual 

input, expectations of the world, and informative inputs to other sensory modalities. 

Numerous studies examine different aspects of this equation. For example, studies of 

perceptual learning (PL), statistical learning (SL), and multisensory integration (MI) detail, 

respectively, improvements in perceptual processing after repeated exposure to certain 

stimuli, learning of relationships between stimuli after repeated exposure, and interactions 

between modalities that lead to improved processing of multisensory objects. Researchers 

typically design paradigms that investigate one of these phenomena independently and 

discuss the results in terms of mechanisms for that phenomenon alone. However, it is 

unclear the extent to which these cognitive processes share common mechanisms and how 

their interactions impact perception. To investigate this, we designed a novel paradigm 

through which to understand how PL, SL, and MI jointly influence perception and tested 

it with two sets of experiments. Across all experiments, participants performed a 

discrimination task on audio-visual stimuli that appeared in different locations according 

to controlled spatio-temporal statistics. Behavioral data show some learning for position 

and statistical probability, and auditory benefits on trials. Electroencephalographic (EEG) 

data hints at an SL alpha power relationship and at a general increase in alpha power over 

all trials. Paradigms such as this have important implications for a wide variety of fields as 

the results can help elucidate underlying mechanisms driving different types of perceptual 

processes and also demonstrate where these different processes may intersect. 
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Introduction 

 It is well established that our visual perceptions are jointly determined by visual 

input, expectations of the world, and informative inputs to other sensory modalities. 

Numerous studies examine different aspects of this equation. For example, studies of 

perceptual learning (PL), statistical learning (SL), and multisensory integration (MI) detail, 

respectively, improvements in perceptual processing after repeated exposure to certain 

stimuli, learning of relationships between stimuli after repeated exposure, and interactions 

between modalities that lead to improved processing of multisensory objects (for reviews 

see, Koelewijn, Bronkhorst, & Theeuwes, 2010; Sagi, 2011; Sasaki, Náñez, & Watanabe, 

2012; Seitz & Dinse, 2007; Shimojo & Shams, 2001; Stein & Stanford, 2008; Turk-

Browne, 2012; Watanabe & Sasaki, 2015). Researchers typically design paradigms that 

investigate one of these phenomena independently and discuss the results in terms of 

mechanisms for that phenomenon alone. However, it is unclear the extent to which 

cognitive processes responsible for these three types of learning share common 

mechanisms and how their interactions impact perception. 

 PL is typically thought to be an implicit process and has been shown to occur in 

numerous modalities and in a wide variety of animal models, including non-primates, non-

human primates, and humans (Fahle, 2005; Ghose, 2004). In the visual modality, PL is 

often investigated with simple visual features, e.g., orientation (Dobres & Seitz, 2010; 

Schoups, Vogels, Qian, & Orban, 2001; Yang & Maunsell, 2004), line or dot offset (Fahle, 

Edelman, & Poggio, 1995; Hung & Seitz, 2014), and contrast (Adini, Sagi, & Tsodyks, 

2002; Hua et al., 2010; Yu, Klein, & Levi, 2004), although more complex visual stimuli, 
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such as human faces, have also been successfully used to study PL (Hussain, Sekuler, & 

Bennett, 2011). PL is thought to underlie our visual system’s ability to adapt and improve, 

and although perceptual improvements are often specific to the task, stimuli, and other 

parameters used during training, PL has also been shown to transfer to untrained stimuli 

(Ahissar & Hochstein, 2004; Hung & Seitz, 2014; Xiao et al., 2008; Zhang et al., 2010). 

PL has even been shown to transfer to situations outside of the laboratory, such as visual 

improvements and performance improvements for baseball players after undergoing PL 

training (Deveau, Ozer, & Seitz, 2014). 

 SL is another implicit process which, similar to PL, has also been shown to occur 

in a variety of paradigms, modalities, and in both human and non-human primates (Conway 

& Christiansen, 2006; Fiser & Aslin, 2001; Hauser, Newport, & Aslin, 2001; Saffran, 

Aslin, & Newport, 1996; Turk-Browne, Isola, Scholl, & Treat, 2008). Instead of measuring 

perceptual improvements in the processing of simple stimuli as is done in PL studies, SL 

studies typically measure learned associations between stimuli which have been organized 

probabilistically. Within the visual modality, these relationships might be visuo-temporal, 

where the temporal structure of observed sequences of shapes are learned (Bays, Turk-

Browne, & Seitz, 2016; Fiser & Aslin, 2002; Zhao, Al-Aidroos, & Turk-Browne, 2013), 

or visuo-spatial, where the spatial structures of layouts of shapes are learned (Fiser & Aslin, 

2001, 2005). The ability of the visual system to learn these relationships has been 

hypothesized to help bind features and objects (Turk-Browne et al., 2008), to define the 

scale of visual objects (Fiser & Aslin, 2001, 2005), to orient attention (Zhao et al., 2013), 
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and to affect our perceptions of stimuli (Barakat, Seitz, & Shams, 2013; Chalk, Seitz, & 

Seriès, 2010).  

 MI has come to be understood as a historically underappreciated method of sensory 

processing and has increasingly been studied as an important part of everyday perception 

(Koelewijn et al., 2010; Shams & Seitz, 2008; Shimojo & Shams, 2001; Stein & Stanford, 

2008). Perceptions in one modality are known to affect perceptions in another modality 

(Shams, Kamitani, & Shimojo, 2000) and integration of the auditory and visual modalities 

has been shown to be particularly important for visual learning (Kim, Seitz, & Shams, 

2008; Raposo, Sheppard, Schrater, & Churchland, 2012; Seitz, Kim, & Shams, 2006; 

Shams & Seitz, 2008; Sheppard, Raposo, & Churchland, 2013). The neural substrates of 

MI are not as well-known as substrates for unisensory processing but there is abundant 

evidence for early, low level interactions between modalities (Powers, Hevey, & Wallace, 

2012; Seitz et al., 2006; Shimojo & Shams, 2001) which suggests that MI is able to affect 

perception and sensory learning at an extremely basic level. 

 These three perceptual processes – PL, SL, and MI – are typically studied and 

discussed independently. However, there is evidence for interactions among them. Barakat, 

Seitz, and Shams (2013) found that SL was also accompanied by PL, as measured by an 

improved ability for participants performing a shape detection task to detect the second 

shape of a pair compared to the first shape of a pair, even though the detection task 

presented the shapes without their statistical context. SL has also been shown to interact 

with MI in a study by Seitz, Kim, van Wassenhove, and Shams (2007). Using visual pairs, 

auditory pairs, and audio-visual pairs, they showed that participants learned all three types 



 131 

of associations and that these unimodal and crossmodal learning experiences occurred 

independently of each other. Some of the same researchers have also shown interactions 

between PL and MI (Seitz et al., 2006). In this study, they found that multisensory PL 

training facilitated visual learning and also decreased the amount of time that the PL 

required in order to demonstrate reliable behavioral results. Further work has shown that 

audio-visual pairs can also improve auditory perceptions (von Kriegstein & Giraud, 2006) 

and that congruent multisensory stimuli provide more perceptual learning than incongruent 

stimuli (Kim et al., 2008; von Kriegstein & Giraud, 2006). Together, this body of research 

strongly suggests that sensory learning may be optimized by including multiple strategies, 

including PL, SL, and MI. 

 In addition to behavioral measures, electroencephalographic (EEG) measures can 

provide insight into the interactions between PL, SL, and MI. Previous work studying PL 

with EEG has used evoked potentials (Bao, Yang, Rios, He, & Engel, 2010; Woodman, 

2010), pattern classification algorithms (Das, Giesbrecht, & Eckstein, 2010), and analyses 

of the alpha bandwidth, which occurs between 8-12Hz in the EEG power spectrum (Bays, 

Visscher, Le Dantec, & Seitz, 2015; Freyer, Becker, Dinse, & Ritter, 2013; Sigala, Haufe, 

Roy, Dinse, & Ritter, 2014). Alpha power analyses are of particular interest because of 

previous work showing they may be related to the amount of effort used during an 

experimental session (Bays et al., 2015). Romei, Gross, and Thut (2012) analyzed alpha 

power in a MI context and found that crossmodal phase synchronization served to influence 

the neural excitability in visual areas. While there exists SL research utilizing EEG (Abla, 

Katahira, & Okanoya, 2008; Abla & Okanoya, 2009), none have specifically looked at 
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power modulation in the alpha bandwidth. However, based on the body of research 

showing alpha modulation in response to PL and for MI, one might reasonably expect SL 

to correlate with alpha power in an informative manner. 

 Here we present data from a novel paradigm designed to investigate how PL, SL, 

and MI jointly influence perception and tested the paradigm with two sets of experiments. 

Across all experiments, participants performed a discrimination task (PL) on audio-visual 

stimuli (MI) that appeared in different locations according to controlled spatio-temporal 

statistics (SL). Behavioral data show some learning for position and statistical probability, 

and auditory benefits in the form of speeded RT and higher accuracy. EEG data suggests 

an SL alpha power relationship, where more probable locations contain more alpha power 

during the trial. Paradigms such as this have important implications for a wide variety of 

fields as the results can help elucidate underlying mechanisms driving different types of 

learning and also demonstrate where these different types of learning may intersect. 

 

Experiment 1 

Experiment 1 took place over the course of two one-hour sessions that occurred on 

consecutive days. It was designed to analyze whether there are behavioral interactions 

between PL, SL, and MI, whether neural correlates of any effects can be found, and to 

gather initial results before conducting the nine-day version of the experiment (Experiment 

2, below). 
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Methods 

Participants 

 Fifteen undergraduates at the University of California, Riverside (age range 18-22 

years, nine female) were included in this study. EEG was recorded from seven of these 

participants on the second day. Inclusion in data analyses for any participant required 

completion of both experimental sessions and procedures without technical errors, such as 

improperly affixed electrodes, or excessive muscular noise in the EEG. The seven 

participants from whom EEG was recorded were paid $10 an hour for their participation 

and the other eight participants received credit toward partial fulfillment of course 

requirements for an introductory psychology course. All participants gave written informed 

consent as approved by the Human Research Review Board and had normal or corrected-

to-normal vision. 

 An additional fifteen undergraduates at the University of California, Riverside (age 

range 18-22 years, seven female) were included in a control study (see Control Study 

section below). Inclusion required completion of both experimental sessions and 

procedures without technical errors. Participants received credit toward partial fulfillment 

of course requirements for an introductory psychology course, gave written informed 

consent as approved by the Human Research Review Board, and had normal or corrected-

to-normal vision. 
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Display Apparatus  

 An Apple Mac Mini (Apple, Inc., Cupertino, CA, USA) running OSX 10.5.6 

controlled the experiment. The stimuli were displayed on a 48.26cm wide Sony Trinitron 

(Sony Corp., Tokyo, Japan) CRT monitor with a resolution of 1600x1200 pixels and a 

refresh rate of 100 Hz. Participants sat 67cm from the screen with their heads restrained by 

a chinrest. An EyeLink 1000 eyetracking system (SR Research, Ltd., Mississauga, ON, 

Canada) was used with custom software to ensure that stimuli were only displayed while 

participants fixated on the center of the screen. Stimuli were created and controlled by 

custom code written in Matlab (The Mathworks, Inc., Natick, MA, USA), using the 

Psychophysics Toolbox (Brainard, 1997; Kleiner, Brainard, & Pelli, 2007). Mediating the 

connection between the monitor, the computer, and the EEG system was a Datapixx 

processor (Vpixx Technologies, Inc., Saint-Bruno, QC, Canada) which enables a 16-bit 

DAC, allowing for a 256-fold increase in the display’s possible contrast values, and which 

provides monitor-refresh-locked stimulus presentations for accurate timing of stimuli and 

response triggers. Responses were collected using a RESPONSEPixx button box (VPixx 

Technologies) that enables microsecond precision of response latency measurement. 

 

Session Order 

 The experiment took place over two one-hour sessions that occurred on subsequent 

days. The first session was a combined PL/SL/MI training session and the second session 

was a post-training test session during which EEG was recorded from seven participants 

(see sections below). 



 135 

 

PL/SL/MI Training 

 The combined PL/SL/MI training took place during the first session of the 

experiment. The session consisted of 1200 trials discriminating the orientation of a gabor 

grating. The trials were grouped into eight blocks and there was a thirty second break 

between each block. Each trial consisted of a 100ms presentation of a gabor grating at one 

of three locations, called the “trained locations” for that participant. These three locations 

were either 5º visual angle up and right of center, center, and 5º visual angle down and left 

of center, or they were 5º visual angle up and left of center, center, and 5º visual angle 

down and right of center. This resulted in one trained presentation position in the center of 

the visual field and two trained presentation positions in the periphery of the visual field 

for each participant. These two possible sets of trained locations were counterbalanced 

across participants. In all analyses, data from the peripheral locations are combined 

together and analyzed as a single peripheral location, and results are split by the central 

visual field presentations and the (combined) peripheral visual field presentations. 

A customized Markov chain determined the location of each presentation. This was 

calculated beforehand to counterbalance presentations at the three locations and ensured 

that from each position, one of the other positions was 60% likely to host the next trial, one 

was 30% likely to host the next trial, and one was 10% likely to host the next trial (Figure 

18). These probabilities were maintained for each participant across both sessions and are 

referred to as the “trained statistics” of the stimuli. 
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 The gabor gratings were presented on a grey background for 100ms with a 1350-

1450ms jittered ISI during which the participant responded as to whether the gabor was 

oriented towards the right or left (22.5º, 67.5º, 112.5º, or 157.5º) by pressing one of two 

buttons on the button box. The gabors were 3º visual angle in diameter, used a spatial 

frequency of 4 c/d, and were counterbalanced between four phase values (0º, 45º, 90º, or 

135º) with a sigma of 0.5º. The contrast of the gabor gratings was controlled by the QUEST 

procedure (Watson & Pelli, 1983), a Bayesian algorithm for determining thresholds, 

implemented in Matlab using the Psychophysics Toolbox. Each location received its own 

threshold estimate. 

 Auditory stimuli were also presented concurrently with the visual stimuli 94% of 

the time. These stimuli were ramped pure tones at 500Hz, 310Hz, and 200Hz, creating 

high, middle, and low tones. They could be presented from either the left, right, or both left 

and right speakers, and were presented according to three conditions. The “correct tone” 

condition occurred on 82% of trials and paired a tone with the spatial location of the visual 

stimulus according to pitch and azimuth. For example, the correct tone for a gabor 

presented in the upper right position would be a high tone out of the right speaker, the 

correct tone for a centrally presented gabor would be a middle tone out of both speakers, 

and the correct tone for a lower left position gabor would be a low tone out of the left 

speaker. The “incorrect tone” condition occurred on 12% of the trials and involved playing 

a tone that was incorrectly matched according to pitch. These were balanced according to 

the two possible incorrect pitches that could be played on a trial. The “silent” condition 

occurred on 6% of the trials and involved no tone being played for that trial. The auditory 
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stimuli were presented using speakers set up to the left and right of the computer monitor 

and covered with auditory-invisible black cloth.  

 

Post-Training EEG 

 On the second session of the experiment, a post-training EEG session was 

conducted. This session was similar to the training session with four main differences. 

First, EEG recordings were collected during these test sessions for seven of the 15 

participants. Second, there were 180 trials per block, or a total of 1440 trials in the session. 

Third, trials were balanced between having a sound or not having a sound, with no incorrect 

sound trials occurring. And fourth, each of the eight blocks utilized either trained or 

untrained positions and trained or untrained statistics. The trained positions consisted of 

the three locations the participant received during the training session and the untrained 

positions consisted of the two opposite corners of the screen plus the central location. For 

example, if a participant were trained on the upper left, center, and lower right locations, 

then the untrained locations would be the upper right, center, and lower left locations. The 

untrained statistics consisted of switching the 60% and 30% probabilities of the Markov 

chain controlling the next trial’s location. Thus, if from the central location the trained 

statistics would normally go to the lower left position 60% of the time and the upper right 

position 30% of the time, a block using the untrained statistics would go to the upper right 

position 60% of the time and the lower left position 30% of the time from the central 

location. Each of the eight blocks used one of the four combinations of trained and 

untrained positions and statistics and the blocks were presented in the following order: 1) 
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Trained locations/Trained statistics; 2) Trained locations/Untrained statistics; 3) Untrained 

locations/Trained statistics; 4) Untrained locations/Untrained statistics; 5) Untrained 

locations/Trained statistics; 6) Untrained locations/Untrained statistics; 7) Trained 

locations/Trained statistics; 8) Trained locations/Untrained statistics. 

 

Electroencephalography (EEG)  

 EEG was recorded using 64-active Ag/AgCl electrodes (ActiveTwo system, 

BioSemi, Inc., Amsterdam, Netherlands) at a rate of 1024 Hz. All electrodes were mounted 

in an elastic ActiveTwo cap according to the BioSemi layout and labeled according to the 

10/20 system (Oostenveld & Praamstra, 2001). For alpha bandwidth analyses, a bilateral 

selection of nine occipital and parietal electrodes was analyzed, corresponding 

approximately to sites Oz, O1, O2, PO7, PO8, PO9, PO10, P3, and P4 (Figure 19, 

highlighted regions), given that alpha power is most prominent in occipital channels and 

that we were analyzing a visual task. Horizontal (HEOG) and vertical (VEOG) 

electrooculograms were recorded, using additional electrodes affixed with adhesive disks 

at, respectively, the outer right and left canthi (HEOG) and above and below the right and 

left eye (VEOG). Conductive gel was applied to maintain the contact between the 

electrodes and the scalp (Signa Gel, Parker Laboratories, Inc., Fairfield, NJ, USA). 

 After recording, EEG data were initially processed using EMSE Suite 5.4 (Source 

Signal Imaging, Inc., San Diego, CA, USA). The data were first referenced to the average 

of all active electrodes (Keil et al., 2014) and filtered using zero phase-shift Butterworth 

high- and low-pass filters with half-amplitude cutoffs of 0.01 Hz and 40 Hz, respectively. 
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Ocular artifacts were corrected using a proprietary algorithm of the EMSE Suite which is 

designed to remove eyeblink noise without removing the underlying signal (Pflieger, 

2001). 

 After processing using EMSE Suite software, time-frequency analysis was 

conducted using Matlab and the FieldTrip toolbox (Oostenveld, Fries, Maris, & Schoffelen, 

2011). The data were segmented into three-second periods centered on each stimulus 

presentation and convolved with a Morlet wavelet. The frequencies of interest extracted 

were 2-20Hz and each wavelet had a width of seven cycles.  

 In order to prevent individual differences in raw alpha power (which can vary 

dramatically between individuals) from driving the results, all alpha values were 

normalized to a [0-1] scale before being analyzed. For each subject, the minimum and 

maximum alpha value across the EEG session was calculated. The minimum value was 

then subtracted from all alpha values and the result divided by the difference between the 

maximum and minimum values (i.e., the range). This transformed each subject’s alpha 

values such that the minimum value became 0 and the maximum value became 1, with all 

other values falling within the [0-1] range. 

 

Control Study 

 In addition to the fifteen participants run under the conditions above, fifteen more 

participants were run in a control study to examine whether the adaptive contrast affected 

SL. The control study was identical to all parameters described for Experiment 1 except 

that the contrast of the stimuli was held constant at 100% and there were no EEG recordings 
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on the second day. All other aspects of the methods were the same between the two 

experiments. None of the participants in the control study had previously partaken in any 

other version the experiment. 

 

Results 

Behavioral Results - PL 

 Standard measures of PL include decreases in threshold across training days and, 

depending on the paradigm used, greater effects for stimuli in trained positions versus 

stimuli in untrained positions. Because there was only one training session in this 

experimental design, we could not examine contrast thresholds across days. However, we 

could examine whether a single day of training was enough to produce a positional effect 

in the second session, where we predicted lower RTs and higher accuracy for stimuli in 

blocks using trained positions versus stimuli in blocks using untrained positions. These 

results can be seen in Figure 20, where the trials are also split up according to transition 

probability to examine whether there are any interactions with SL. The pattern of RT results 

(Figure 20A) is in the predicted direction for PL, with a lower average RT for trained 

positions (560.0ms) compared to untrained positions (577.1ms), although it does not reach 

statistical significance (2 (trained/untrained position x 3 (transition probability) repeated 

measures ANOVA, trained/untrained F(1,14)=2.80, p=0.12, transition probability 

F(2,28)=0.92, p=0.41, interaction F(2,28)=0.53, p=0.60). The average accuracy (Figure 

20B) between the trained position blocks (84.73%) and untrained position blocks (85.15%) 

did not show any statistically significant differences (2 (trained/untrained position x 3 
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(transition probability) repeated measures ANOVA, trained/untrained F(1,14)=0.028, 

p=0.87, transition probability F(2,28)=0.12, p=0.89, interaction F(2,28)=1.56, p=0.23), 

which implies there was no speed-accuracy trade-off with the lower RTs in the trained 

position blocks. There was no interaction between trained positions and transition 

probabilities for either RT or accuracy (see preceding ANOVA results). 

 

Behavioral Results - SL 

 SL typically occurs on a timescale of minutes and when RT is the dependent 

measure a predicted effect would be a lower response latency for higher probability 

transitions compared to lower probability transitions. Thus, we predicted to see effects in 

the second half of the training session, with a pattern of lowest RTs for trials at 60% likely 

positions, higher RTs for trials at 30% likely positions, and highest RTs for trials at 10% 

likely positions. This was examined in the training session in two ways – calculating the 

average RT over the second half of the session for each transition probability (after learning 

is assumed to have occurred); and by subtracting the average RT from the first half of the 

training session from the second half of the training session for each corresponding set of 

trials, i.e., by calculating the difference between the second half and the first half of the 

training session. This second method has the advantage of controlling for baseline 

differences between the trial types. Note that the pattern of RT effects for the difference 

between the second half and the first half would be the opposite of the raw RT effect. After 

learning has occurred then higher probability transitions should have a lower RT than lower 

probability transitions, which means the difference when subtracting the first half (a 
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baseline measure) from the second half of the session should be smaller, or more negative, 

for higher probability transitions and larger for lower probability transitions. 

Results from both methods can be seen in Figure 21. The average RT for each trial 

type in the second half of the training session (Figure 21A) does not demonstrate the 

predicted pattern (peripheral location means for 60%, 30%, and 10% trials, respectively: 

637.4ms, 635.5ms, 638.7ms; central location means for 60%, 30%, and 10% trials, 

respectively: 634.9ms, 643.9ms, 631.5ms), nor do differences between the trial types 

approach statistical significance at either location (peripheral location repeated measure 

ANOVA F(2,28)=0.13, p=0.88, partial η2=0.0093; central location repeated measure 

ANOVA F(2,28)=1.49, p=0.24, partial η2=0.096). 

However, the RT differences between the second half of the session and the first 

half of the session (Figure 21B) reveal a trend in the predicted direction for centrally 

presented trials and also a slowing for 10% trials in the peripheral locations. In the central 

location, there is an overall slowing of RTs compared to the first half of the session but 

60% trials slow the least (20.16ms), followed by 30% trials (32.38ms), and the most 

slowing occurring for 10% trials (39.14ms). This effect trends on significance when 

analyzed with a repeated measures ANOVA (F(2,28)=2.71, p=0.084, partial η2=0.16) and 

the difference between the 60% mean and the 10% mean reaches significance when 

analyzed with a post hoc Bonferroni corrected t test (t(14)=2.80, p=0.043, Cohen’s 

d=0.64). The RT differences in the peripheral locations did not reach significance, either 

with a repeated measures ANOVA (F(2,28)=1.95, p=0.16, partial η2=0.12) or with post 

hoc Bonferroni corrected t tests (all p>0.2). The pattern of means, however, demonstrates 
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more slowing for the 10% trials (5.92ms) than the 60% trials (-9.71ms) or the 30% trials (-

10.73ms). 

We also examined whether there were RT and accuracy differences related to the 

transition probabilities in the post-training session by looking at blocks that used trained 

statistical structures versus blocks that used untrained statistical structures (Figure 22). 

Here there was no effect for whether trained or untrained statistics were used, nor for the 

transition probability, in either RTs or in accuracy, as measured by a 3 (transition 

probability) x 2 (trained/untrained statistics block) repeated measures ANOVA for RT and 

for accuracy (RT: transition probability F(2,28)=0.22, p=0.81, trained/untrained 

F(1,14)=0.42, p=0.52, interaction F(2,28)=0.62, p=0.54; Accuracy: transition probability 

F(2,28)=0.11, p=0.90, trained/untrained F(1,14)=0.43, p=0.52, interaction F(2,28)=0.16, 

p=0.85). 

 

Behavioral Results - MI 

 MI typically manifests as an improvement for trials which contain multisensory 

stimuli as compared to unisensory trials. A predicted result here would be increased 

efficiency for trials with both auditory and visual stimuli as compared to trials with only 

visual stimuli. This effect is clearly seen in Figure 23, which shows trials in the second 

session in which auditory tones occurred compared to trials in which no tone occurred, split 

by transition probability to examine whether there are any interactions with SL. The 

average RT for trials with auditory stimuli (558.8ms) was significantly lower than the 

average RT for trials without auditory stimuli (578.2ms), and the average accuracy for 
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trials with auditory stimuli (88.85%) was higher than the average accuracy for trials 

without auditory stimuli (80.98%), with no interaction between sound and SL (2 (sound) x 

3 (transition probability) repeated measures ANOVA, RT: sound F(1,14)=6.44, p=0.024, 

transition probability F(2,28)=0.53, p=0.59, interaction F(2,28)=0.36, p=0.70; Accuracy: 

sound F(1,14)=34.73, p=0.000039, transition probability F(2,28)=0.12, p=0.89, interaction 

F(2,28)=0.44, p=0.65). 

 

EEG Data 

 As described in the Methods section, EEG data was analyzed by looking for 

differences in alpha power. Following Bays et al. (2015), a period of time from 250ms after 

the stimulus presentation to 500ms after the stimulus presentation was averaged over for 

each condition and compared. We predicted that if SL were correlated with alpha power 

then there would be more alpha power during 60% trials, less in 30% trials, and the least 

in 10% trials. These results can be seen in Figure 24. Although there is a weak pattern for 

the mean of the normalized alpha power of 60% trials (.1682) to be higher than that of 30% 

trials (.1642), which are higher than that of 10% trials (.1592), a repeated measures 

ANOVA revealed no significant differences between the three trial types (F(2,12)=0.02, 

p=0.98). 

 

Control Study SL Results 

 As described in the Methods section, a control study was conducted to investigate 

whether the adaptive contrast reduced SL. This experiment was identical in all respects 
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except that the stimuli were always presented at full contrast and there were no EEG 

recordings on the second day. Analyses of the second half of the first session were carried 

out as described above, with similar predictions. Figure 25 shows the results of these 

analyses. The raw RT means from the second half of the session (Figure 25A) generally 

follow the predicted pattern of faster 60% trials (peripheral mean 552.1ms, central mean 

549.9ms), followed by slower 30% trials (peripheral mean 556.0ms, central mean 

552.9ms),  and slower 10% trials (peripheral mean 557.6ms, central mean 563.0ms), but 

none of these differences reach statistical significance (Peripheral repeated measure 

ANOVA F(2,28)=0.32, p=0.72; Central repeated measure ANOVA F(2,28)=1.60, p=0.22). 

However, the RT difference between the second half and the first half of the session (Figure 

25B) shows highly significant results in the predicted pattern. Trials with a 60% transition 

probability showed the most negative mean difference (peripheral -27.9ms, central 

+34.6ms), followed by higher 30% trial differences (peripheral -15.9ms, central +44.1ms),  

and highest 10% trial differences (peripheral +4.6ms, central +56.5ms) and both sets of 

means were significantly different (Peripheral repeated measures ANOVA F(2,28)=11.12, 

p=0.00028, partial η2=0.44; central repeated measure ANOVA F(2,28)=3.51, p=0.044, 

partial η2=0.20). The implications of obtaining a clear SL result in the non-adaptive version 

of the experiment and not in the adaptive version of the experiment are expanded upon in 

the Results section. 
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Experiment 2 

Experiment 2 took place over the course of nine one-hour sessions. It was designed 

to analyze whether there are behavioral interactions between PL, SL, and MI using a novel 

training paradigm; whether neural correlates of any effects can be found; and whether the 

PL training can transfer to untrained visual acuity tasks. 

 

Methods 

Participants 

 Six undergraduates at the University of California, Riverside (age range 18-26 

years, four female) were included in this study. Inclusion required completion of all 

experimental sessions and procedures without technical errors, such as improperly affixed 

electrodes, or excessive muscular noise in the EEG. Participants were paid $10 an hour for 

their participation, gave written informed consent as approved by the Human Research 

Review Board, and had normal or corrected-to-normal vision. 

 

Display Apparatus  

 All equipment was identical to that used in Experiment 1. 

 

Session Order 

 The experiment took place over a total of nine sessions (Figure 26), each lasting 

one hour and taking place on a different day. Subsequent sessions did not necessarily take 

place on subsequent days but each participant was required to complete the nine sessions 
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within fourteen days of beginning. The first and last sessions were visual assessments (see 

section below), the second and penultimate sessions were EEG pre- and post-training (see 

section below), and the middle five sessions were combined PL/SL/MI training (see section 

below). 

 

Visual Assessments  

 The first and last session consisted of three visual assessments – a Landolt C test, a 

cutoff spatial frequency test, and an MN Read test. The Landolt C test consisted of 

discriminating the orientation of a briefly presented letter C on a computer screen. There 

were five possible presentation locations – centrally, 5º visual angle up and to the right of 

center, 5º up and to the left of center, 5º down and to the right of center, and 5º down and 

to the left of center. Each trial presented a white letter C in the Sloan font on a grey 

background for 100ms with a 1900ms ISI during which the participant responded as to 

whether the C was oriented at 0º, 90º, 180º, or 270º, but pressing one of four buttons on the 

button box. The orientation was counterbalanced across trials and there were 40 trials at 

each of the five locations, for a total of 200 trials. The font size of the letter at each position 

was controlled by a 3 down 1 up staircase in order to determine the participant’s threshold 

and each position initiated with a font size of 20. A trial could only initiate if the participant 

maintained fixation on a dot in the center of the screen and every 10 trials there was a three 

second break in which the participants could rest their eyes. 

 The cutoff spatial frequency test consisted of discriminating the orientation of a 

briefly presented gabor grating on a computer screen. There were five possible presentation 
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locations – centrally, 5º visual angle up and to the right of center, 5º up and to the left of 

center, 5º down and to the right of center, and 5º down and to the left of center. Each trial 

presented a gabor grating on a grey background for 100ms with a 1350-1450ms jittered ISI 

during which the participant responded as to whether the gabor was oriented towards the 

right or left (22.5º, 67.5º, 112.5º, or 157.5º) but pressing one of two buttons on the button 

box. The gabors were 3º visual angle in diameter, counterbalanced between four phase 

values (0º, 45º, 90º, or 135º), were presented at 50% contrast, and used a sigma of 0.5º. The 

orientation was counterbalanced across trials and there were 40 trials at each of the five 

locations, for a total of 200 trials. The spatial frequency of the gabors at each position was 

controlled by a 3 down 1 up staircase in order to determine the participant’s threshold and 

each position initiated with spatial frequency of 6 c/d. A trial could only initiate if the 

participant maintained fixation on a dot in the center of the screen and every 10 trials there 

was a three second break in which the participants could rest their eyes. Similar to 

Experiment 1, peripheral locations were combined for analyses of the Landolt C test and 

the cutoff spatial frequency test. 

 The MN Read test (Precision Vision, La Salle, IL, USA) is an acuity test requiring 

the participant to read sentences of different font sizes from a printed chart. Three 

measurements were obtained from this test – “reading acuity”, which is a measure of the 

smallest print size the participant was able to accurately read, “maximum reading speed”, 

which is a measure of the fastest the participant can read at any font size, and “critical print 

size”, which is a measure of the smallest print size the participant was able to read close to 

their maximum reading speed. Reading acuity and critical print size are measured in 
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“logMAR” units, where a smaller value indicates a smaller print size, and maximum 

reading speed is measured in words per minute. Participants placed their heads on a chin 

rest while performing this test, the chart was displayed 40cm from the participants’ head, 

and it used black text on a white background. 

 

PL/SL/MI Training 

 The combined PL/SL/MI training took place during the third through seventh 

sessions of the experiment. Each session was identical to the training session described in 

Experiment 1 with the exception of the spatial frequency of the gabor stimuli. Instead of a 

single spatial frequency, three spatial frequencies were used – 1 c/d, referred to as “low” 

spatial frequency, 4 c/d, referred to as “peak” spatial frequency, and the maximum spatial 

frequency value determined for the participant by the first visual assessment session, 

referred to as the “cutoff” spatial frequency. Each of these spatial frequency presentations 

were counterbalanced for position, transition probability, auditory tone, and orientation. 

There was a separate QUEST contrast threshold estimate for each combination of position 

and spatial frequency, resulting in nine contrast threshold estimates. 

 

Pre- and Post-Training EEG 

 On the second and eighth sessions of the experiment, i.e., the session before the 

training sessions began and the session after the training sessions ended, pre- and post-

training EEG sessions were conducted. These sessions are identical to the second session 

described in Experiment 1, including the use of a single spatial frequency – 4 c/d, or the 
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“peak” spatial frequency – in all trials (for further discussion on using the peak spatial 

frequency see the Discussion section). EEG was recorded from all participants in 

Experiment 2 during these sessions.  

 

Electroencephalography (EEG)  

 EEG recordings, processing, and analyses were conducted in an identical way to 

those described in Experiment 1 with one exception – when normalizing alpha power 

values to a [0-1] scale, the minimum and maximum alpha values for each participant were 

determined from across both of that participant’s EEG recording sessions instead of from 

a single session. 

 

Results 

Behavioral Results – PL 

 As described in Experiment 1, standard measures of PL include decreases in 

threshold across training days and greater effects for stimuli in trained positions versus 

stimuli in untrained positions. The final QUEST estimates for contrast threshold across 

training days can be seen in Figure 27, split by visual field location and spatial frequency 

and plotted in logarithmic units. Unfortunately decreases in threshold across training days 

were not statistically significant. There is a trend for the cutoff spatial frequency stimuli to 

decrease in the central location (Means across training days in logarithmic units: -0.84, -

0.92, -1.02, -0.90, -1.03; repeated measures ANOVA F(4,20)=2.42, p=0.082, partial 

η2=0.32) but no other threshold curves approached statistically significant differences (p 
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values from repeated measures ANOVA range from p=0.12 to p=0.74). However, when fit 

with linear functions, all threshold curves displayed negative slopes and Pearson’s r 

correlations between the contrast values and the training day (essentially measuring the 

goodness of fit of the points to a linear function) were all negative, ranging from r=-0.43 

to r=-0.70, although none of the correlation values were statistically significant either. 

 The effect of training on presentation positions can be seen in Figure 28, where the 

results are split by training session, trained or untrained trials, and, in order to examine SL 

interactions, transition probability. Although no effects reached statistical significance, 

there is a pattern that corresponds to lower RTs for trained positions after training has 

occurred compared to untrained positions (Figure 28B), which is in line with the predicted 

PL effect. A 2 (trained/untrained position) x 3 (transition probability) x 2 (pre-/post-

training session) repeated measures ANOVA did not show a significant interaction for 

position x session (F(1,5)=1.37, p=0.29) but a 2 (trained/untrained position) x 3 (transition 

probability) repeated measures ANOVA on the post-training session RT revealed a trend 

for lower average trained position RT (478.0ms) compared to average untrained position 

RT (491.0ms; main effect of position F(1,5)=4.727, p=0.082, partial η2=0.22). There were 

no significant or trending results pertaining to the accuracy data, which also implies there 

was no speed-accuracy trade-off for the lower trained position RTs after training. 

 The visual assessment sessions before and after training were designed to 

investigate whether our training paradigm could transfer visual improvements to untrained 

tasks. If transfer occurred then we predicted to see improvements in the Landolt C task 

such that font size was reduced, in the cutoff spatial frequency task such that spatial 
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frequency was increased, and in the MN Read test such that reading acuity and critical print 

size were decreased (which in logMAR units indicates smaller print sizes) and maximum 

reading speed was increased. There was a trend in the peripheral Landolt C data (Figure 

29) in the predicted direction, where pre-training average font size (16.88) was larger than 

the post-training average font size (14.43; t(5)=2.52, p=0.053, Cohen’s d=0.86). However, 

there was also a trend opposite the predicted direction in the central Landolt C data, where 

pre-training average font size (5.50) was smaller than the post-training average font size 

(6.00; t(5)=2.09, p=0.091, Cohen’s d=0.91). 

The cutoff spatial frequency data (Figure 30) show effects in the predicted direction 

for both locations, although only the peripheral location reached statistical significance. In 

the peripheral location, the average post-training cutoff spatial frequency (8.96 c/d) was 

significantly higher than the pre-training cutoff frequency (7.63 c/d; t(5)=5.69, p=0.0023, 

Cohen’s d=1.88), and in the central location the average post-training cutoff spatial 

frequency (18.37 c/d) was higher than the pre-training cutoff frequency (16.93 c/d) but this 

difference did not reach statistical significance (t(5)=1.01, p=0.36, Cohen’s d=0.42). 

The MN Read data (Figure 31) did not reveal any evidence of transfer. There were 

no significant differences in reading acuity (pre-training mean: 0.015 logMAR; post-

training mean: 0.0033 logMAR; t(5)=0.44, p=0.68, Cohen’s d=0.14), critical print size 

(pre-training mean: 0.17 logMAR; post-training mean: 0.17 logMAR; t(5)<0.001, p>0.99, 

Cohen’s d=0.00), or maximum reading speed (pre-training mean: 260.67 wpm; post-

training mean: 246.67 wpm; t(5)=0.47, p=0.66, Cohen’s d=0.30). It is worth noting that 

the MN Read task is the task most different from the training, both in dependent variable 
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and in method of administration, and thus the lack of transfer observed in this task is not 

entirely surprising. 

 

Behavioral Results – SL 

 As described in Experiment 1, a typical SL effect is a lower response latency for 

higher probability transitions compared to lower probability transitions after learning has 

occurred. Thus, we predicted to see effects in the second half of the training sessions, with 

a pattern of lowest RTs for trials at 60% likely positions, higher RTs for trials at 30% likely 

positions, and highest RTs for trials at 10% likely positions. This was examined separately 

for peripheral and central trials in each of the five training sessions (Figure 32). In addition, 

we examined RT in the first block of each EEG session, pre- and post-training, for 

comparison, although these sessions used different stimulus parameter and had lower 

overall RT. Unfortunately, in the peripheral location we did not observe the predicted SL 

effect in any of the training sessions, nor did we find an interaction between session and 

SL (mean 60% RT across sessions: 531.5ms; mean 30% RT across sessions: 529.6ms; 

mean 10% RT across sessions: 528.3ms; 3 (transition probability) x 5 (training session) 

repeated measures ANOVA main effect of transition probability F(2,10)=0.52, p=0.61; 

main effect of session F(4,20)=0.195, p=0.94; interaction F(8,40)=0.61, p=0.76). In the 

central location however, there was a significant main effect for transition probability 

(F(2,10)=5.72, p=0.022, partial η2=0.60), where the mean of the 10% trials (539.3ms) was 

greater than the mean of the 60% trials (529.7ms) or the 30% trials (526.5ms). There was 

a large drop in mean 10% trial RT during the third training session, but the interaction 
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between session day and transition probability was not statistically significant 

(F(8,40)=1.63, p=0.15) and this was likely random variation. SL was also examined across 

sessions by subtracting the first half mean RT from the second half mean RT, but as 

opposed to Experiment 1 this did not reveal any meaningful patterns and no F statistics on 

the data were significant or trending. 

In the pre- and post-training EEG sessions, trials with trained statistics were 

compared to trials using untrained statistics (Figure 33) with a 2 (trained/untrained 

statistics) x 3 (transition probability) x 2 (session) repeated measures ANOVA. There was 

a trending interaction between transition probability and session (F(2,10)=3.37, p=0.076, 

partial η2=0.50) which indicates that the differences between the different transition 

probabilities was different pre-training compared to post-training. However, the pattern of 

this interaction was not aligned with predicted SL effects – 10% trials showed the largest 

decrease in RT after training (mean pre-training: 496.2ms; mean post-training: 480.0ms; 

difference of -16.2ms), followed by 60% trials (mean pre-training: 484.8ms; mean post-

training: 472.6ms; difference of -12.2ms), and then 30% trials (mean pre-training: 

482.4ms; mean post-training: 482.0ms; difference of -0.4ms). No other SL effects were 

significant or trended on significance. 

 

Behavioral Results – MI 

 Comparable to Experiment 1, there was an MI effect in Experiment 2 demonstrating 

increased response efficiency on trials with sound compared to trials without sound (Figure 

34). A 2 (sound/no sound) x 3 (transition probability) x 2 (session) repeated measures 
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ANOVA revealed a significant main effect for sound, where there was lower mean RT for 

trials with sound (471.2ms) compared to trials without sound (495.7ms; F(1,5)=7.27, 

p=0.043, partial ηs=0.61) and higher accuracy for trials with sound (91.25%) compared to 

trials without sound (87.38%; F(1,5)=8.14, p=0.036, partial ηs=0.61). An interaction 

between sound and session would indicate that MI had changed as a result of training and 

while there was no significant interaction between sound and session for RT, (F(1,5)=0.60, 

p=0.47), the accuracy data showed a pattern of greater differences between sound and no 

sound trials after training (5.35%) compared to the differences seen before training (2.40%) 

that trended on significance (F(1,5)=4.84, p=0.079, partial η2=0.5). There were no 

significant interactions between sound and SL. 

 

EEG Data 

 As in Experiment 1, we predicted that SL effects would appear as differences in 

alpha power for different transition probabilities, such that higher transition probability 

trials would contain more alpha power after the stimulus appears compared to lower 

transition probability trials. EEG data was thus analyzed by looking for differences in alpha 

power averaged over the period of time 250ms-500ms after the stimulus appeared 

onscreen, named here the “post-stimulus interval”, an analysis based on methods in Bays 

et al. (2015). Figure 35 displays these data split by transition probability and session. A 3 

(transition probability) x 2 (session) repeated measures ANOVA using the mean alpha 

power from the post-stimulus interval did not reveal any statistically significant main 

effects or interactions (main effect of probability: F(2,10)=0.82, p=0.47; main effect of 
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session: F(1,5)=0.12, p=0.74; interaction F(2,10)=0.42, p=0.67). There was a pattern for 

the 30% trials to contain more alpha power during this interval in the post-training session 

(.30) than in the pre-training session (.21) but this difference was not significant, nor would 

it be compatible with our predictions for only the 30% trials to show a difference in this 

interval. 

 We also examined whether there was a general PL effect for task learning by 

following Bays et al. (2015) and looking at alpha for all visible trials before and after 

training (Figure 36). Statistics were performed by averaging alpha power over the 600ms 

before the stimulus was shown (the “pre-stimulus interval”) and over the period of time 

250ms-500ms after the stimulus appeared (the “post-stimulus interval”). Although there 

was a pattern of more alpha power in the pre-stimulus interval post-training (.53) compared 

to pre-training (.42) as seen in Bays et al. (2015), the difference did not reach statistical 

significance (t(5)=0.76, p=0.48, Cohen’s d=0.31). There was no significant difference in 

the post-stimulus interval post-training (.29) compared to pre-training (.23; t(5)=0.41, 

p=0.70, Cohen’s d=0.17), which agrees with the previous results of Bays et al. (2015) but 

does not provide evidence for those results. 

 

Discussion 

 In a series of experiments, we used a novel training paradigm to examine PL, SL, 

and MI; interactions between them; how alpha power informs the results; and whether 

learning transferred outside of the trained task. We found some evidence for PL, some 
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evidence for SL, strong evidence for MI, some transfer to untrained tasks, and a large 

amount of results that did not reach statistical significance.  

Evidence of PL was not as strong as expected although some results did suggest 

that PL occurred. RT for stimuli at trained positions was lower than at untrained positions 

in Experiment 1 and the same pattern appeared after training in Experiment 2. Given that 

there was only one day of training in Experiment 1, it is possible that this result of PL 

appears sooner than other PL results such as decreased thresholds. In Experiment 2, 

contrast thresholds did decrease for each spatial frequency and location across training days 

but not to the point of statistical significance. One possible explanation for this is improper 

estimation of contrast by the QUEST procedure. QUEST is a Bayesian method for 

estimating thresholds based on priors about the test population that are fed to the procedure 

as free parameters. If the priors that we chose to use did not accurately reflect parameters 

of our test population then QUEST may have reached incorrect estimations of their contrast 

thresholds on each day. Another possible explanation is that there were divided attentional 

effects resulting from the complex nature of the training paradigm. PL studies typically use 

stimuli and tasks that serve the sole purpose of producing PL effects. Training typically 

occurs in a single location with stimuli that vary on a single dimension. In our experiments, 

however, we use a paradigm that serves multiple purposes and contains multiple interacting 

parameters, including contrast, location, transition probabilities, and sound. There is little 

previous evidence to inform us as to how participants might react to a paradigm such as 

this and thus attentional effects, or roving effects, may play a very large role in the results. 

A third plausible explanation is that the results contained a large amount of variance due 
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to our sample size. Although our sample sizes (N=15 in Experiment 1, N=15 in the control 

study of Experiment 1, N=6 in Experiment 2) are typical for PL studies, if the underlying 

effects we are analyzing are not large, then our sample sizes may not have been sufficient 

to capture the effect. Our use of the peak spatial frequency in the pre-training and post-

training EEG sessions may have also obscured some PL effects. One might reasonably 

expect that the cutoff spatial frequency would demonstrate more PL effects due to the 

nature of there being more room for perceptual improvement for those stimuli. Thus in 

future versions of this experiment, using the cutoff spatial frequency for pre- and post-

training sessions may reveal additional aspects of PL. 

Transfer to untrained tasks was seen in the Landolt C test and the cutoff spatial 

frequency test, but not the MN Read test, of Experiment 2. In both the Landolt C results 

and the cutoff spatial frequency results there were improvements in the periphery, 

demonstrating that some visual acuity improved as a result of the training paradigm. The 

transfer of PL to untrained tasks is becoming well documented (Deveau, Lovcik, & Seitz, 

2014; Deveau, Ozer, & Seitz, 2014; Hung & Seitz, 2014) and our data provide more 

evidence for PL transfer. It is also worth noting that our use of QUEST produced a much 

higher ratio of difficult trials (near threshold) than if we had used multiple short staircases. 

A high ratio of difficult trials has been linked to greater location specificity in PL (Hung & 

Seitz, 2014) and it is possible that if we adjusted the number of trials at threshold that we 

might find more transfer.  

 Evidence of SL was produced in both experiments, most notably in the control 

study of Experiment 1 that used a non-adaptive contrast, although predicted patterns of 
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results were also seen in the RT differences of the adaptive version of Experiment 1 and in 

greater overall RTs for 10% trials in the second half of the training sessions in Experiment 

2. In both studies the separation of 10% trials was more clear than the separation of 60% 

and 30% trials, suggesting that the strongest effect of the statistical structure was that 

participants learned that stimuli shouldn’t appear in the same location twice (which is 

where all 10% presentations appeared). A number of factors may have affected learning of 

the statistical structure. Most SL studies are conducted using stimuli that are easy to see 

and presented centrally in the visual field. In fact we are aware of only one other study that 

has examined SL at threshold contrast levels (Bays et al., 2016). In that study, the 

researchers did not find strong RT results either. They did, however, find multiple patterns 

of RT after splitting the data up according to a post-learning test. The present paradigm did 

not lend itself to a similar analysis but it is well worth considering whether individual 

differences and multiple underlying processes may be obscuring SL effects in our data. 

Attention may also play a role in our SL effects. Although SL studies are often conducted 

with passive exposure or with cover tasks, attention is known to affect SL (Turk-Browne, 

Jungé, & Scholl, 2005) and also to be affected by SL (Zhao et al., 2013). If PL is drawing 

attention away from the statistical regularities then they may not be learned as well as they 

would otherwise, and if the statistical regularities are drawing attention away from the PL 

aspect of the study, then that might explain the smaller than expected PL effects. With 

respect to the greater effect for 10% trials compared to 60% or 30% trials, it may be 

possible that the difference between 60% trials and 30% trials in the Markov chain we 

constructed to control the location transitions was too subtle. However, this is belied by 



 160 

numerous studies of SL and of artificial grammar learning which have used transitional 

probabilities at least as complex as ours (Chalk et al., 2010; Cleeremans & McClelland, 

1991; Hunt & Aslin, 2001; Lieberman, Chang, Chiao, Bookheimer, & Knowlton, 2004; 

Reber, 1967; Seger, Prabhakaran, Poldrack, & Gabrieli, 2000). Further research will be 

required to determine the factors affecting SL in this paradigm. 

 Analyses of alpha power did not reveal any statistically significant results but did 

show patterns consistent with SL and with previous PL research. Alpha power has been 

used as a proxy for attentional resources (Bays et al., 2015; Freyer et al., 2013; Sigala et 

al., 2014) and thus unexpected stimuli were predicted to reduce alpha to a greater extent 

than expected stimuli. Alpha power in Experiment 1 followed this prediction with a pattern 

of higher alpha power for higher probability trial positions, although the fact that these 

differences begin before the stimulus onset is problematic. This could be explained by 

temporal spreading that occurs when converting the time domain EEG signal to the time-

frequency domain, or it could be that the pattern seen here is simply random variation and 

not reliable. In Experiment 2 there is additional evidence for SL when examining the 

pattern of alpha power for trial types in the post-training session (Figure 35D). Although 

not significant, there is less alpha power for 10% trial types after stimulus onset, which is 

in accordance with our predictions and the attentional resources explanation. This result 

also provides more evidence that the 10% probabilities were learned better than the 60% 

or 30% probabilities.  

 The alpha results also suggested that overall task learning that was not specific to 

any trial type may have occurred, as evidenced by a pattern of higher alpha power after 
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training compared to before training. This pattern replicates the results of Bays et al. (2015) 

and could mean that participants are able to perform the task in this experimental paradigm 

with fewer attentional resources after training than they were able to before training. There 

are several possible reasons why the comparable results in the present study did not reach 

statistical significance as they did in Bays et al. (2015). The use of auditory stimuli in the 

present study may have reduced alpha in both sessions due to the alerting nature of the 

tones. Alpha power is also known to modulate depending on which features of visual 

stimuli are being attended (Snyder & Foxe, 2010) and so variance may have arisen from 

different participants focusing on different aspects of the visual stimuli in the present study. 

 MI was most clearly seen in significantly decreased RT and increased accuracy for 

multisensory trials compared to visual-only trials in both experiments. Although this result 

may not be surprising, it demonstrates that participants were able to use information from 

both modalities and that this began early on in training, as evidenced by the visibility of 

the effect in the pre-training session of Experiment 2. The lack of further MI interactions 

with SL or PL could be due to a variety of issues, most notably the lack of many significant 

unisensory results for the visual stimuli. As it is unclear how strongly PL or SL occurred, 

it is also unclear as to whether MI interactions with them failed because of a lack of 

integration or because of a lack of learning in either of the individual modalities. 

In sum, our training paradigm showed PL effects, SL effects, multisensory effects, 

and some transfer to untrained tasks, which, while all promising, were not as strong as 

predicted. The complexity of the experiments leaves many possible explanations for the 

lack of results, including attentional effects, within-session fatigue, lack of power due to 
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low cohort sizes, and inability of participants to learn the statistical sequences. Future 

designs investigating the interactions of PL, SL, and MI, might benefit from simplifying 

the experimental design and investigating pieces of this paradigm individually in order to 

reduce variance before combining them further. 
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Figures 

 

 

Figure 18 – Example of a modified Markov chain controlling the spatial transition 
probabilities for one participant. After a stimulus presentation at a location, there were a 
set of probabilities dictating where the next stimulus presentation would occur. See text for 
further details. 
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Figure 19 – Overhead view of the 64 electrode placement using the BioSemi ActiveTwo 
system. Red highlighted regions denote electrodes used in the alpha power analyses, 
corresponding approximately to sites Oz, O1, O2, POz, PO3, PO4, PO7, and PO8. 
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Figure 20 – (A) RT for trained and untrained positions in the second session of Experiment 
1, split by transition probability. (B) Accuracy for trained and untrained positions in the 
second session of Experiment 1, split by transition probability. Blue bars denote trained 
positions; red bars denote untrained positions. Error bars denote +/- 1 within-subject SEM 
(Loftus & Masson, 1994). N = 15. 
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Figure 21 – Experiment 1 SL during training session. (A) RT in second half of the session 
split by transition probability and presentation location. (B) RT from the second half 
of the session minus the RT from the first half of the session, split by transition 
probability and presentation location.  Blue circles denote 60% trials, red squares 
denote 30% trials, and green diamonds denote 10% trials. Error bars denote +/- 1 
within-subject SEM. N = 15. 
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Figure 22 – (A) RT for trained and untrained statistics in the second session of Experiment 
1, split by transition probability. (B) Accuracy for trained and untrained statistics in the 
second session of Experiment 1, split by transition probability. Blue bars denote trained 
statistics; red bars denote untrained statistics. Error bars denote +/- 1 within-subject SEM. 
N = 15. 
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Figure 23 – (A) RT for trials with and without sound in the second session of Experiment 
1, split by transition probability. (B) Accuracy for trials with and without sound in the 
second session of Experiment 1, split by transition probability. Blue bars denote trials with 
sound; red bars denote trials without sound. Error bars denote +/- 1 within-subject SEM. N 
= 15. 
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Figure 24 – Alpha power for 60% trials (thick blue solid line), 30% trials (thick red dotted 
line), and 10% trials (thick pink dashed line) in the second session of Experiment 1. Thinner 
dashed lines denote +/- 1 within-subject SEM for the respective color. N = 15. 
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Figure 25 – Experiment 1 control study (non-adaptive contrast) SL during training session. 
(A) RT in second half of the session split by transition probability and presentation 
location. (B) RT from the second half of the session minus the RT from the first half of the 
session, split by transition probability and presentation location.  Blue circles denote 60% 
trials, red squares denote 30% trials, and green diamonds denote 10% trials. Error bars 
denote +/- 1 within-subject SEM. N = 15. 
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Figure 26 – Schedule of the experimental sessions for Experiment 2. Days 1 and 9 
consisted of visual assessments before and after training, Days 2 and 8 consisted of EEG 
recordings before and after training, and Days 3-7 consisted of the training sessions. See 
text for descriptions of each session type. 
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Figure 27 – Contrast threshold in logarithmic units as a function of training day, spatial 
frequency, and position. (A) Low spatial frequency, (B) peak spatial frequency, (C) cutoff 
spatial frequency. Blue curves denote peripheral trials; red curves denote central trials. 
Error bars denote +/- 1 within-subject SEM. N = 6. 
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Figure 28 – Trained vs. untrained positions, split by session and transition probability. (A) 
Mean RT in pre-training session; (B) Mean RT in post-training session; (C) Mean accuracy 
in pre-training session; (D) Mean accuracy in post-training session. Blue bars denote trials 
using trained positions, red bars denote trials using untrained positions. Error bars denote 
+/- 1 within-subject SEM. N = 6. 
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Figure 29 – Landolt C results, split by session and presentation location. Blue solid curves 
denote peripheral trials; red dashed curves denote central trials. Error bars (which may be 
obscured by the data markers) denote +/- 1 within-subject SEM. N = 6. 
 
 
  



 182 

 
Figure 30 – Cutoff spatial frequency results, split by session and presentation location. 
Blue solid curves denote peripheral trials; red dashed curves denote central trials. Error 
bars (which may be obscured by the data markers) denote +/- 1 within-subject SEM. N = 
6. 
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Figure 31 – MN Read results for each of the three administered tests. (A) Reading acuity 
(left) and critical print size (right), split by session. logMAR units measure print size, where 
smaller values indicate smaller print. (B) Maximum reading speed, measured in words per 
minute and split by session. In all plots blue bars denote pre-training sessions and red bars 
denote post-training sessions. Error bars denote +/- 1 within-subject SEM. N = 6. 
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Figure 32 – SL effects across session days in (A) peripheral trials and (B) central trials. 
The abscissa denotes session days, beginning with the pre-training session (EEG 1), 
continuing through the five training sessions, and ending with the post-training session 
(EEG 2). The pre- and post-training data come from the first block of the session which 
used trained statistics. The training session data come from the second half of each session. 
Solid blue curves denote 60% trials, red dotted curves denote 30% trials, and green dashed 
curves denote 10% trials. Error bars denote +/- 1 within-subject SEM. N = 6. 
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Figure 33 - Trained vs. untrained statistics, split by session and transition probability. (A) 
Mean RT in pre-training session; (B) Mean RT in post-training session; (C) Mean accuracy 
in pre-training session; (D) Mean accuracy in post-training session. Blue bars denote trials 
using trained statistics, red bars denote trials using untrained statistics. Error bars denote 
+/- 1 within-subject SEM. N = 6. 
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Figure 34 – Trials with sound vs. trials without sound, split by session and transition 
probability. (A) Mean RT in pre-training session; (B) Mean RT in post-training session; 
(C) Mean accuracy in pre-training session; (D) Mean accuracy in post-training session. 
Blue bars denote trials with sound, red bars denote trials without sound. Error bars denote 
+/- 1 within-subject SEM. N = 6. 
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Figure 35 – Alpha power split by transition probability and session. (A) 60% trials pre-
training (thick solid light blue curve) and post-training (thick dashed dark blue curve); (B) 
30% trials pre-training (thick solid light red curve) and post-training (thick dashed dark red 
curve); (C) 10% trials pre-training (thick solid light purple curve) and post-training (thick 
dashed dark purple curve); (D) All three trial probabilities post-training – 60% in thick 
solid blue, 30% in thick dashed red, 10% in thick dotted purple. These are the thick dashed 
lines from A-C on the same axes. Thin dashed lines around all curves denote +/- 1 within-
subject SEM in the respective color. N = 6. 
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Figure 36 – Alpha power for all visible trials before training (thick blue solid line) and all 
visible trials after training (thick red dotted line). Thinner dashed lines denote +/- 1 within-
subject SEM for the respective color. N = 6. 
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Tables of Means 

 

Chapter 3 - Experiment 1 & Control Study 
Variable M SD 
2nd Session Trained Pos. RT (ms)   
    60% Trials 561.0308 13.3617 
    30% Trials 560.4227 19.3603 
    10% Trials 558.5340 33.4332 
2nd Session Trained Pos. Acc. (%)   
    60% Trials 85.2963 7.1598 
    30% Trials 84.6296 5.8981 
    10% Trials 84.2592 6.2138 
2nd Session Untrained Pos. RT (ms)   
    60% Trials 578.4644 18.7343 
    30% Trials 582.9292 22.1594 
    10% Trials 569.7809 26.5703 
2nd Session Untrained Pos. Acc. (%)   
    60% Trials 83.9630 5.1462 
    30% Trials 85.1852 5.5432 
    10% Trials 86.2963 6.4151 
1st Session SL RT (ms)   
    Peripheral   
        60% 637.4259 88.9406 
        30% 635.4876 79.7204 
        10% 638.7044 78.4459 
    Central   
        60% 634.8689 83.7482 
        30% 643.8998 81.8824 
        10% 631.4805 92.1412 
1st Session SL RT Difference (ms)   
    Peripheral   
        60% -9.7113 60.3980 
        30% -10.7342 59.6054 
        10% 5.9244 64.9090 
    Central   
        60% 20.1598 56.6486 
        30% 32.2834 76.2953 
        10% 39.1377 60.3983 
2nd Session Trained Stat. RT (ms)   
    60% Trials 561.0308 13.3617 
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    30% Trials 560.4227 19.3604 
    10% Trials 558.5340 33.4332 
2nd Session Trained Stat. Acc. (%)   
    60% Trials 85.2963 4.3128 
    30% Trials 84.6296 4.3887 
    10% Trials 84.2592 5.7683 
2nd Session Untrained Stat. RT (ms)   
    60% Trials 562.1341 18.7343 
    30% Trials 564.1185 22.1594 
    10% Trials 570.7241 26.5703 
2nd Session Untrained Stat. Acc. (%)   
    60% Trials 84.0741 3.1796 
    30% Trials 83.6111 3.4774 
    10% Trials 84.0741 4.9183 
2nd Session Sound RT (ms)   
    60% Trials 560.8261 16.3374 
    30% Trials 559.8963 14.8213 
    10% Trials 555.6536 26.2104 
2nd Session Sound Acc. (%)   
    60% Trials 88.3518 2.5605 
    30% Trials 89.1204 2.9942 
    10% Trials 89.0741 4.0732 
2nd Session No Sound RT (ms)   
    60% Trials 575.4968 16.1138 
    30% Trials 582.2467 25.5017 
    10% Trials 576.7221 24.5597 
2nd Session No Sound Acc. (%)   
    60% Trials 81.1481 33.9186 
    30% Trials 80.5092 39.1359 
    10% Trials 81.2963 51.2675 
Alpha Power Post-stim. (Normalized)   
    60% 0.1682 0.2060 
    30% 0.1641 0.1694 
    10% 0.1592 0.1324 
   
Control Study   
1st Session SL RT (ms)   
    Peripheral   
        60% 552.1453 8.0863 
        30% 555.9562 10.7386 
        10% 557.6162 30.8726 
    Central   
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        60% 549.9104 11.1086 
        30% 552.8503 15.0847 
        10% 
 

563.0437 29.4956 
1st Session SL RT Difference (ms)   
    Peripheral   
        60% -27.9366 58.2737 
        30% -15.9276 61.3863 
        10% 4.6146 78.8075 
    Central   
        60% 34.6112 58.5193 
        30% 44.1153 65.3156 
        10% 56.4636 55.2169 

 
Table 6 – Means and within-subject standard deviations for analyses in Experiment 1 and 
the Control Study of Chapter 3, listed in order of discussion. SD is within-subjects SD, 
calculated according to Loftus and Masson (1994). 
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Chapter 3 - Experiment 2  
Variable M SD 
Contrast Threshold (Log Units)   
  Low Frequency   
    Peripheral   
      Day 1 -1.5104 0.0679 
      Day 2 -1.5148 0.0250 
      Day 3 -1.5533 0.0255 
      Day 4 -1.5758 0.0416 
      Day 5 -1.5382 0.0306 
    Central   
      Day 1 -1.6859 0.0464 
      Day 2 -1.6901 0.0343 
      Day 3 -1.6912 0.0420 
      Day 4 -1.7462 0.0823 
      Day 5 -1.6926 0.0431 
  Peak Frequency   
    Peripheral   
      Day 1 -1.2975 0.1462 
      Day 2 -1.4236 0.1892 
      Day 3 -1.4199 0.0680 
      Day 4 -1.3915 0.0701 
      Day 5 -1.3803 0.0329 
    Central   
      Day 1 -1.7167 0.1123 
      Day 2 -1.7676 0.1017 
      Day 3 -1.8445 0.0810 
      Day 4 -1.7545 0.0851 
      Day 5 -1.8027 0.0648 
  Cutoff Frequency   
    Peripheral   
      Day 1 -0.5337 0.1083 
      Day 2 -0.5856 0.0452 
      Day 3 -0.5509 0.0549 
      Day 4 -0.5972 0.1295 
      Day 5 -0.5371 0.0827 
    Central   
      Day 1 -0.8354 0.1679 
      Day 2 -0.9206 0.1331 
      Day 3 -1.0214 0.0736 
      Day 4 -0.9003 0.1010 
      Day 5 -1.0270 0.0755 
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Pre-Training Trained Pos. RT (ms)   
    60% Trials 491.5716 19.1737 
    30% Trials 484.4715 22.8189 
    10% Trials 495.3326 25.2292 
Pre-Training Trained Pos. Acc. (%)   
    60% Trials 87.5926 3.5489 
    30% Trials 86.8056 4.1408 
    10% Trials 89.8148 4.1154 
Pre-Training Untrained Pos. RT (ms)   
    60% Trials 485.9121 23.3753 
    30% Trials 483.7037 25.6062 
    10% Trials 481.1662 23.5253 
Pre-Training Untrained Pos. Acc. (%)   
    60% Trials 86.9444 1.0338 
    30% Trials 88.6574 1.1928 
    10% Trials 87.5000 4.1112 
Post-Training Trained Pos. RT (ms)   
    60% Trials 473.8574 13.5918 
    30% Trials 476.8781 7.6089 
    10% Trials 483.2454 19.3412 
Post-Training Trained Pos. Acc. (%)   
    60% Trials 91.2963 1.8171 
    30% Trials 91.4352 2.0004 
    10% Trials 92.5926 3.9226 
Post-Training Untrained Pos. RT (ms)   
    60% Trials 488.6619 10.3457 
    30% Trials 491.4284 15.9645 
    10% Trials 492.9812 19.3367 
Post-Training Untrained Pos. Acc. (%)   
    60% Trials 91.7592 2.9223 
    30% Trials 92.5926 2.6168 
    10% Trials 91.6667 1.4778 
Landolt C (Font Size)   
  Pre-training   
    Peripheral 16.8750 1.1884 
    Central 5.5000 0.2934 
  Post-training   
    Peripheral 14.4306 1.1884 
    Central 6.0000 0.2934 
Cutoff Spatial Frequency (c/deg.)   
  Pre-training   
    Peripheral 7.6300 0.2852 
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    Central 16.9307 1.7399 
  Post-training   
    Peripheral 8.9553 0.2852 
    Central 18.3676 1.7399 
MN Read - Reading Acuity (logMAR)   
    Pre-test 0.0150 0.0646 
    Post-test 0.0033 0.0646 
MN Read - Crit. Print Size (logMAR)   
    Pre-test 0.1667 0.0894 
    Post-test 0.1667 0.0894 
MN Read – Max.Read. Speed (wpm)   
    Pre-test 260.6667 73.1683 
    Post-test 246.6667 73.1683 
SL Across Sessions (ms)   
  Peripheral Location   
    60%   
      EEG 1 500.8094 21.0341 
      Train 1 528.8578 11.5306 
      Train 2 537.4980 10.8018 
      Train 3 521.8908 11.1664 
      Train 4 526.0350 9.3522 
      Train 5 543.0616 8.7993 
      EEG 2 470.5026 21.8080 
    30%   
      EEG 1 504.1224 44.5307 
      Train 1 528.5713 27.4825 
      Train 2 541.7506 22.8946 
      Train 3 524.4243 20.9159 
      Train 4 527.1979 13.2016 
      Train 5 525.8402 15.2987 
      EEG 2 462.1108 30.9111 
    10%   
      EEG 1 476.0950 103.5331 
      Train 1 529.7175 30.1054 
      Train 2 530.5827 33.2044 
      Train 3 523.1236 18.3298 
      Train 4 526.4572 26.4755 
      Train 5 531.7190 36.5006 
      EEG 2 465.4590 47.4203 
  Central Location   
    60%   
      EEG 1 451.1456 42.0682 
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      Train 1 536.1100 23.1739 
      Train 2 530.2895 21.1807 
      Train 3 518.7308 22.4374 
      Train 4 520.6253 17.9318 
      Train 5 542.5494 17.3578 
      EEG 2 423.0942 43.6161 
    30%   
      EEG 1 451.1164 89.0614 
      Train 1 530.3278 55.0211 
      Train 2 534.8408 44.0443 
      Train 3 516.9853 39.7894 
      Train 4 519.5781 28.4159 
      Train 5 530.7419 30.5178 
      EEG 2 422.6878 61.8222 
    10%   
      EEG 1 454.6990 207.0661 
      Train 1 554.3023 60.8597 
      Train 2 541.4753 67.3538 
      Train 3 501.5683 36.4990 
      Train 4 534.8003 56.4267 
      Train 5 564.2380 63.0380 
      EEG 2 422.2607 94.8406 
Pre-Training Trained Stats RT (ms)   
    60% Trials 491.5716 13.5861 
    30% Trials 484.4715 9.2721 
    10% Trials 495.3326 16.1311 
Pre-Training Trained Stats Acc. (%)   
    60% Trials 87.5926 2.1971 
    30% Trials 86.8056 2.9609 
    10% Trials 89.8148 5.3856 
Pre-Training Untrained Stats RT (ms)   
    60% Trials 478.1040 16.9731 
    30% Trials 480.1784 16.1533 
    10% Trials 497.2400 16.0532 
Pre-Training Untrained Stats Acc. (%)   
    60% Trials 87.9630 3.6226 
    30% Trials 87.2685 1.3563 
    10% Trials 85.6481 6.6969 
Post-Training Trained Stats RT (ms)   
    60% Trials 473.8574 12.6344 
    30% Trials 476.8781 8.5073 
    10% Trials 483.2454 19.6807 
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Post-Training Trained Stats Acc. (%)   
    60% Trials 91.2963 1.7402 
    30% Trials 91.4352 1.3004 
    10% Trials 92.5926 4.6234 
Post-Training Untrained Stats RT (ms)   
    60% Trials 471.2204 11.7358 
    30% Trials 487.1167 13.0912 
    10% Trials 476.7637 12.9488 
Post-Training Untrain. Stats Acc. (%)   
    60% Trials 90.9259 1.4862 
    30% Trials 92.1296 2.8088 
    10% Trials 88.8889 3.0192 
Pre-Training Sound RT (ms)   
    60% Trials 473.3302 12.4479 
    30% Trials 466.2922 16.9704 
    10% Trials 475.4521 15.0144 
Pre-Training Sound Acc. (%)   
    60% Trials 88.1944 2.2396 
    30% Trials 88.7731 1.0754 
    10% Trials 88.8889 2.7753 
Pre-Training No Sound RT (ms)   
    60% Trials 495.0648 13.4253 
    30% Trials 500.3668 17.0885 
    10% Trials 503.4415 17.3123 
Pre-Training No Sound Acc. (%)   
    60% Trials 86.6667 2.3769 
    30% Trials 85.8796 1.8000 
    10% Trials 86.1111 4.2912 
Post-Training Sound RT (ms)   
    60% Trials 469.9902 12.3600 
    30% Trials 472.9499 11.2806 
    10% Trials 469.0502 16.3169 
Post-Training Sound Acc. (%)   
    60% Trials 93.7037 2.3667 
    30% Trials 94.4444 3.8199 
    10% Trials 93.5185 2.2998 
Post-Training No Sound RT (ms)   
    60% Trials 484.7758 15.2574 
    30% Trials 493.5110 12.3413 
    10% Trials 497.2062 10.0210 
Post-Training No Sound Acc. (%)   
    60% Trials 88.9815 2.7007 
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    30% Trials 89.8148 2.6376 
    10% Trials 86.8056 3.8350 
Alpha Power Post-stim. (Normalized)   
  Pre-Training   
    60% 0.2486 0.1243 
    30% 0.2125 0.0970 
    10% 0.2151 0.1768 
  Post-Training   
    60% 0.2900 0.2324 
    30% 0.3043 0.2650 
    10% 0.2263 0.2789 
Overall Alpha Power (Normalized)   
  Pre-stimulus Interval   
    Pre-Training 0.4230 0.2449 
    Post-Training 0.5294 0.2249 
  Post-stimulus Interval   
    Pre-Training 0.2345 0.1012 
    Post-Training 0.2879 0.2372 

 
Table 7 – Means and within-subject standard deviations for analyses in Experiment 2 of 
Chapter 3, listed in order of discussion. SD is within-subjects SD, calculated according to 
Loftus and Masson (1994). 
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GENERAL DISCUSSION 

 The goal of this dissertation was to examine the mechanisms underlying sensory 

learning and perceptual processes, namely perceptual learning (PL), statistical learning 

(SL), and multisensory integration (MI), in order to address outstanding questions in the 

literature about whether the underlying mechanisms are unitary or multifaceted, and 

whether the mechanisms might intersect. In the first chapter we used a series of 

experiments to show that SL, often treated as a unitary process, may in fact comprise 

multiple processes and further, that those processes may act in competition with each other. 

In the second chapter we used a combination of PL training and EEG recordings to show 

that multiple attentional factors affect PL and that it is most likely not a unitary, low level 

process as some have hypothesized. In the third chapter, we designed a novel training 

paradigm that combined PL, SL, and MI and although we found that the data were able to 

confirm some of the results from the previous two chapters, a number of limitations 

prevented us from making strong conclusions. 

 The common thread among all three chapters is that the processes studied here are 

neither simple nor unitary but are instead complex and multifaceted. The double 

dissociation seen in behavior across the different SL tasks used in Chapter 1 is classical 

evidence for multiple underlying processes (Chun, 1997; Gabrieli, Fleischman, Keane, 

Reminger, & Morrell, 1995). The behavioral patterns demonstrate that different tasks can 

reveal different information about SL and not only are these sources of information not 

redundant but the suppression of each behavioral pattern by the other suggests that these 

processes may be in competition with one another. While we do not know of any model of 
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SL that accounts for this, the results are highly consistent with neurological evidence that 

relates to SL, such as the striatum and medial temporal lobe displaying competing 

activation during learning (Packard, 1999; Poldrack et al., 2001) and the frontal cortex and 

striatum displaying different time courses of learning (Pasupathy & Miller, 2005). 

Neuroimaging studies of SL have shown that the striatum, the medial temporal lobe, and 

the left inferior frontal cortex support SL (Durrant, Cairney, & Lewis, 2013; Karuza et al., 

2013; Schapiro, Gregory, Landau, McCloskey, & Turk-Browne, 2014; Schapiro, Kustner, 

& Turk-Browne, 2012; Turk-Browne, Scholl, Chun, & Johnson, 2009; Turk-Browne, 

Scholl, Johnson, & Chun, 2010), suggesting that the mechanisms underlying SL may 

express different patterns of learning. Others have also proposed that SL should be 

examined in terms of different time courses of learning instead of a single outcome measure 

(Karuza, Emberson, & Aslin, 2014) and have shown that SL can affect other perceptual 

and attentional processes (Barakat, Seitz, & Shams, 2013; Zhao, Al-Aidroos, & Turk-

Browne, 2013). Our behavioral results, together with previous behavioral and neurological 

results, suggest that SL is indeed a multifaceted learning process and thus treating SL as a 

unitary process disregards valuable information about it. The results further suggest that 

future research would benefit from using multiple behavioral measures of learning instead 

of a single outcome measure, as multiple measures can help to capture typically 

disregarded variance. 

Similarly, the increase in alpha power after PL training in Chapter 2 indicates that 

not all aspects of PL can be accounted for by low level learning processes. Instead, at least 

some aspects of PL appear to stem from higher level reallocation of attentional resources. 
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This is consistent with some models of PL that specifically incorporate attentional 

resources (Ahissar & Hochstein, 2004; Byers & Serences, 2012). The results also help to 

answer the open question of where activation and plasticity in response to PL occur. There 

is extensive neurological evidence for low level plasticity (Bao, Yang, Rios, He, & Engel, 

2010; Gilbert, Li, & Piech, 2009; Gilbert, Sigman, & Crist, 2001; Hua et al., 2010) but also 

behavioral evidence for higher areas of plasticity (Hung & Seitz, 2014; Jeter, Dosher, Liu, 

& Lu, 2010; Xiao et al., 2008; Zhang et al., 2010) and models which can account for the 

data without low level plasticity (Dosher, Jeter, Liu, & Lu, 2013; Petrov, Dosher, & Lu, 

2005). An elegant, data-driven explanation for these conflicting results is that PL is 

composed of multiple processes which occur at different stages of processing. The 

neurological results of our study, demonstrating overall increased alpha power, provide 

further evidence for this explanation. Our behavioral data clearly indicated greater learning 

for trained stimuli compared to untrained stimuli, yet the electrophysiological data 

indicated that attentional resources were used more efficiently across all trials after 

training, not solely trials with trained stimuli, suggesting that multiple learning processes 

were at work. It should also be noted that although trained stimuli demonstrated the largest 

behavioral improvements, untrained stimuli also showed improvement after training, once 

again suggesting that multiple processes may have been at work. Future PL research would 

benefit by considering these results and investigating which mechanisms of PL might be 

affecting the data, as this may help answer currently debated issues like location and 

stimulus specificity. 
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The combined PL/SL/MI paradigm used in Chapter 3 did not provide us with results 

that were as clear as we predicted, yet some aspects of the two studies provide us with 

evidence of the multifaceted nature of the perceptual processes. In Experiment 1 of Chapter 

3, different RTs to trained and untrained positions begin to appear after a single day of 

training even though PL studies typically require multiple days of training, which has been 

shown to be particularly true when training contrast perception (Furmanski, Schluppeck, 

& Engel, 2004; Li, Polat, Makous, & Bavelier, 2009; Yu, Klein, & Levi, 2004). As with 

models of SL, these different time courses of learning within PL could signify the presence 

of multiple regions of plasticity and multiple underlying processes. In Experiment 2 of 

Chapter 3, partial transfer of learning to the untrained cutoff spatial frequency task and 

Landolt C task suggests that all plasticity did not take place in low level areas, providing 

further evidence for multiple brain regions and processes supporting PL. Further, some 

explanations for our scarcity of significant results would imply that multiple processes 

were at work during PL. For example, the small effect sizes seen throughout both 

experiments could be a direct result of interference between SL, PL, and MI. If that were 

the case then it would imply that they share common or competitive mechanisms and are 

not isolated, unitary processes. This would, however, be contradictory to previous research 

which has shown the ability to combine PL and MI (Seitz, Kim, & Shams, 2006; Shams & 

Seitz, 2008) and SL and MI (Seitz, Kim, van Wassenhove, & Shams, 2007). Another 

explanation for the small effects seen in Chapter 3 is that the combination of so many 

parameters into a single paradigm created divided attentional effects. As discussed above 

in relation to Chapter 2, if attentional effects were at play in PL then it would imply that it 
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is not a unitary low level process and similarly if divided attention affected SL and MI then 

it might imply that there are different mechanisms within them that work with and without 

attentional resources. Providing some supporting evidence for this is the alpha power 

pattern seen in Experiment 2 of Chapter 3 which is similar to that seen in Chapter 2, where 

alpha power increased overall after training as compared to before training, although the 

effect in Chapter 3 was not as strong as in Chapter 2. As with many of the results of Chapter 

3, further experimentation is required to determine if any of these postulates are correct. 

The need for replication, further experimentation, and further analyses exist for all 

three sets of studies. Chapter 1 failed to sufficiently answer the question of whether SL is 

a result of associative processes, representational processes, or both. Prior evidence exists 

for both explanations of SL (Barakat et al., 2013; Turk-Browne et al., 2010) and our results 

seem to suggest that both may be at work but further research is required to clarify our 

results. Chapter 2 failed to answer the question of why alpha power would increase for the 

task in general but not correlate with trained stimuli specifically. Although there are 

possible explanations for this, such as the possibility that alpha power increases in a 

nonlinear fashion or that participants are able to regulate alpha in some way, our 

experimental design was not able to address the question and again, only further research 

would be able to add to the discussion.  

The need for further research and analyses is particularly strong for Chapter 3. 

There are numerous reasons why the results may not have been as informative as predicted, 

including the size of the cohorts, the parameters used for QUEST, the very use of QUEST 

instead of other methods to estimate contrast threshold, and the highly complex design and 
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combination of stimuli. The complex experimental design also means that there are 

numerous other analyses that could be informative. For example, if we were to determine 

a feature that we could use to classify the stimuli into “learned” and “non-learned” stimuli, 

as was done in Chapter 1, then we might also discover dissociable effects of learning within 

PL and/or SL, or interactions with MI. There are other analyses of interactions between 

PL, SL, and MI that could also reveal more about the three processes, for instance by 

looking at how SL is expressed at different stages of PL or vice versa. Additionally, the 

EEG data is a rich source of unrealized analyses. Previous unpublished data from our 

research has suggested that machine learning algorithms – computer-controlled 

mathematical algorithms designed to find patterns in highly complex datasets – may reveal 

learning patterns in EEG data that is not readily apparent in behavioral results (Bays & 

Seitz, unpublished). Applying algorithms such as those to the EEG data in Chapter 3 may 

reveal underlying processes that behavioral and alpha power analyses failed to show. 

Finally, the results of the control study of Experiment 1 of Chapter 3 suggest that future 

studies may benefit from simpler designs at first, e.g., combining PL and MI before adding 

a third process to the paradigm. Ultimately, only further research can inform us as to how 

these various parameters affected the results reported here. 

 

 Altogether, we have provided evidence that sensory learning processes and other 

perceptual processes should not be treated as simple, unitary mechanisms but instead 

should be investigated in terms of their manifold natures. Discussing the processes in terms 

of a single outcome measure obfuscates underlying multiple mechanisms and hinders 
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attempts to create models and test theories. In addition, understanding that the processes 

are complex and multifaceted paves the way to understanding how they might overlap with 

other learning processes in the brain. In this instance, embracing complexity does not create 

problems but instead helps to provide sought-after solutions. 
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Complete Tables of Means 

 
Chapter 1 - Experiment 1 Shape 1 Shape 2 
Variable M M SD 
Search Task RT (ms) 535.0016 519.9835 27.0906 
Search Learned RT (ms) 677.8779 684.3018 41.9448 
Search Learned Accuracy (%) 84.2453 83.9623 6.5993 
Search Non-learned RT (ms) 670.7070 645.7044 45.8544 
Search Non-learned Accuracy (%) 85.5696 87.7215 6.5374 

 
Table 1 – Means and within-subject standard deviations for the search task and the 
detection task as split by the search task in Experiment 1. Note that within-subject SD is 
calculated according to Loftus and Masson (1994) and involves subtracting a participant’s 
overall mean RT from each condition’s mean RT, thus resulting in the same within-subjects 
SD for each condition. 
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Chapter 1 - Experiment 2 Shape 1 Shape 2 
Variable M M SD 
Recog. Learned RT (ms) 601.0396 603.3661 33.4764 
Recog. Learned Acc. (%) 90.5755 87.1942 6.3290 
Recog. Non-learned RT (ms) 608.3596 579.8756 34.8195 
Recog. Non-learned Acc. (%) 91.0606 90.7576 6.1998 
Recog. Learned (Fam.) RT (ms) 616.7955 615.7430 36.8466 
Recog. Learned (Fam.) Acc. (%) 89.3590 84.7436 7.0569 
Recog. Learned (Rem.) RT (ms) 580.8928 587.5400 28.7532 
Recog. Learned (Rem.) Acc. (%) 92.1311 90.3279 5.2048 

 
Table 2 – Means and within-subject standard deviations for the detection task as split by 
the recognition task (Recog.) in Experiment 2 and as further split by Familiar 
(Fam.)/Remember (Rem.) ratings in the recognition task. Note that within-subjects SD is 
calculated according to Loftus and Masson (1994) and involves subtracting a participant’s 
overall mean RT from each condition’s mean RT, thus resulting in the same within-subjects 
SD for each condition. 
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Chapter 1 - Experiment 3 Shape 1 Shape 2 
Variable M M SD 
Search Task (Intact) RT (ms) 441.8604 424.6667 15.1232 
Search Task (Foil) RT (ms) 434.9080 422.0179 16.8743 
Search Task (Mismatched) RT (ms) -    429.8590 13.6318 
Detect. Learned (Intact) RT (ms) 561.0158 556.5837 44.9820 
Detect. Learned (Intact) Acc. (%) 88.7151 88.9944 10.4170 
Detect. Learned (Foil) RT (ms) - 571.1587 43.5238 
Detect. Learned (Foil) Acc. (%) - 90.0000 9.0451 
Detect. Learned (Mis.) RT (ms) - 564.1364 46.8164 
Detect. Learned (Mis.) Acc. (%) - 89.3855 9.4754 
Detect. Non-learn. (Intact) RT (ms) 553.5948 542.5806 46.4856 
Detect. Non-learn. (Intact) Acc. (%) 87.8981 88.2802 10.4046 
Detect. Non-learn. (Foil) RT (ms) - 549.0857 37.0857 
Detect. Non-learn. (Foil) Acc. (%) - 88.7898 8.9181 
Detect. Non-learn. (Mis.) RT (ms) - 553.7758 37.7127 
Detect. Non-learn. (Mis.) Acc. (%) - 90.5096 8.7767 

 
Table 3 – Means and within-subject standard deviations for the search task and the 
detection task as split by the search task in Experiment 3. The detection task split by the 
search task only included the second shapes of the intact and mismatched pairs. Note that 
within-subjects SD is calculated according to Loftus and Masson (1994) and involves 
subtracting a participant’s overall mean RT from each condition’s mean RT, thus resulting 
in the same within-subjects SD for each condition. 
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Chapter 1 - Supplemental Data  
Variable M SD 
Position 2 < 1 Learned RT 3.8019 1.0458 
Position 2 < 1 Non-learned RT 2.1772 1.0593 
Exp. 1 Detect. Task RT (ms)   
    Shape 1 674.5226 22.0731 
    Shape 2 666.7086 22.0731 
Exp. 1 Detect. Task Acc. (%)   
    Shape 1 84.8108 3.3529 
    Shape 2 85.5676 3.3529 
Exp. 2 Detect. Task RT (ms)   
    Shape 1 603.6415 13.7694 
    Shape 2 596.3334 13.7694 
Exp. 2 Detect. Task Acc. (%)   
    Shape 1 90.7317 2.8215 
    Shape 2 88.3415 2.8215 
Exp. 3 Detect. Task RT (ms)   
    Shape 1 (Intact) 557.2170 19.6873 
    Shape 2 (Intact) 550.0484 19.6873 
    Shape 1 (Foil) 560.7402 18.1728 
    Shape 2 (Foil) 561.0014 18.1728 
    Shape 2 (Mismatched) 559.0566 18.7134 
Exp. 3 Detect. Task Acc. (%)   
    Shape 1 (Intact) 88.3333 3.6446 
    Shape 2 (Intact) 88.6607 3.6446 
    Shape 1 (Foil) 89.6726 3.7797 
    Shape 2 (Foil) 89.4345 2.6689 
    Shape 2 (Mismatched) 89.9107 3.2004 
Exp. 1 Search Task Triplet RT (ms)   
    Shape 1 535.0016 33.7906 
    Shape 2 519.9835 23.4039 
    Shape 3 502.0861 21.0593 
Exp. 1 Detect. Task Triplet RT (ms)   
    Shape 1 (Learned) 668.9590 44.6678 
    Shape 2 (Learned) 672.9014 49.9690 
    Shape 3 (Learned) 682.8752 39.5317 
Exp. 1 Detect. Task Triplet Acc. (%)   
    Shape 1 (Learned) 86.2651 6.9939 
    Shape 2 (Learned) 85.6626 7.3337 
    Shape 3 (Learned) 86.9880 7.7871 
Exp. 1 Detect. Task Triplet RT (ms)   
    Shape 1 (Non-learned) 679.5779 50.6901 
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    Shape 2 (Non-learned) 663.6845 49.4496 
    Shape 3 (Non-learned) 666.2951 44.4885 
Exp. 1 Detect. Task Triplet Acc. (%)   
    Shape 1 (Non-learned) 83.6274 8.0554 
    Shape 2 (Non-learned) 85.4902 8.1072 
    Shape 3 (Non-learned) 85.4902 8.1072 
Exp. 2 Detect. Task Triplet RT (ms)   
    Shape 1 (Learned Familiar) 616.7955 39.8886 
    Shape 2 (Learned Familiar) 615.7430 44.4447 
    Shape 3 (Learned Familiar) 621.9238 41.2576 
Exp. 2 Detect. Task Triplet Acc. (%)   
    Shape 1 (Learned Familiar) 89.3590 8.7093 
    Shape 2 (Learned Familiar) 84.7436 7.9623 
    Shape 3 (Learned Familiar) 87.4359 8.9050 
Exp. 2 Detect. Task Triplet RT (ms)   
    Shape 1 (Learned Remember) 580.8928 37.6057 
    Shape 2 (Learned Remember) 587.5400 30.8788 
    Shape 3 (Learned Remember) 584.2880 37.7941 
Exp. 2 Detect. Task Triplet Acc. (%)   
    Shape 1 (Learned Remember) 92.1311 6.3053 
    Shape 2 (Learned Remember) 90.3279 6.3728 
    Shape 3 (Learned Remember) 90.9836 7.2374 
Exp. 2 Detect. Task Triplet RT (ms)   
    Shape 1 (Non-learned) 608.3596 39.9798 
    Shape 2 (Non-learned) 579.8756 42.1087 
    Shape 3 (Non-learned) 596.9038 43.5140 
Exp. 2 Detect. Task Triplet Acc. (%)   
    Shape 1 (Non-learned) 91.0606 6.5666 
    Shape 2 (Non-learned) 90.7576 7.1425 
    Shape 3 (Non-learned) 92.4242 5.8753 

 
Table 4 – Means and within-subject standard deviations for the Supplemental data of 
Chapter 1, listed in order of discussion within the Supplemental data section. Note that 
with the exception of the first two variables, all SD is within-subjects SD, which is 
calculated according to Loftus and Masson (1994) and involves subtracting a participant’s 
overall mean RT from each condition’s mean RT. For situations in which there are only 
two conditions this results in the same within-subjects SD for each condition. 
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Chapter 2 - All  
Variable M SD 
Orientation Offset Threshold (deg.)   
    Day 1 28.4414 7.8831 
    Day 2 24.5411 6.3218 
    Day 3 25.1930 9.0739 
    Day 4 22.9928 5.4176 
    Day 5 20.9841 4.7902 
    Day 6 20.9403 5.5054 
    Day 7 15.3559 8.8280 
    Day 8 11.9638 4.4865 
Pre-test RT (ms)   
    Trained 906.1055 41.7535 
    Untrained 892.1720 37.6136 
Pre-test Accuracy (%)   
    Trained 61.6267 1.4175 
    Untrained 64.3044 2.8019 
Post-test RT (ms)   
    Trained 695.3097 41.7535 
    Untrained 808.5520 37.6136 
Post-test Accuracy (%)   
    Trained 72.2555 1.4175 
    Untrained 64.3967 2.8019 
Pre-test Alpha Power (Normalized)   
    Pre-stimulus Period (Overall) 0.3864 0.1860 
    Stim. Processing Period (Overall) 0.0662 0.0752 
Post-test Alpha Power (Normalized)   
    Pre-stimulus Period (Overall) 0.6748 0.1126 
    Pre-stimulus Period (Trained) 0.6253 0.0910 
    Pre-stimulus Period (Untrained) 0.6342 0.1355 
    Stim. Processing Period (Overall) 0.1315 0.1030 
    Stim. Processing Period (Trained) 0.1107 0.1054 
    Stim. Processing Period (Untrained) 0.0854 0.0955 

 
Table 5 – Means and within-subject standard deviations for analyses in Chapter 2, listed 
in order of discussion. SD is within-subjects SD, calculated according to Loftus and 
Masson (1994). 
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Chapter 3 - Experiment 1 & Control Study 
Variable M SD 
2nd Session Trained Pos. RT (ms)   
    60% Trials 561.0308 13.3617 
    30% Trials 560.4227 19.3603 
    10% Trials 558.5340 33.4332 
2nd Session Trained Pos. Acc. (%)   
    60% Trials 85.2963 7.1598 
    30% Trials 84.6296 5.8981 
    10% Trials 84.2592 6.2138 
2nd Session Untrained Pos. RT (ms)   
    60% Trials 578.4644 18.7343 
    30% Trials 582.9292 22.1594 
    10% Trials 569.7809 26.5703 
2nd Session Untrained Pos. Acc. (%)   
    60% Trials 83.9630 5.1462 
    30% Trials 85.1852 5.5432 
    10% Trials 86.2963 6.4151 
1st Session SL RT (ms)   
    Peripheral   
        60% 637.4259 88.9406 
        30% 635.4876 79.7204 
        10% 638.7044 78.4459 
    Central   
        60% 634.8689 83.7482 
        30% 643.8998 81.8824 
        10% 631.4805 92.1412 
1st Session SL RT Difference (ms)   
    Peripheral   
        60% -9.7113 60.3980 
        30% -10.7342 59.6054 
        10% 5.9244 64.9090 
    Central   
        60% 20.1598 56.6486 
        30% 32.2834 76.2953 
        10% 39.1377 60.3983 
2nd Session Trained Stat. RT (ms)   
    60% Trials 561.0308 13.3617 
    30% Trials 560.4227 19.3604 
    10% Trials 558.5340 33.4332 
2nd Session Trained Stat. Acc. (%)   
    60% Trials 85.2963 4.3128 
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    30% Trials 84.6296 4.3887 
    10% Trials 84.2592 5.7683 
2nd Session Untrained Stat. RT (ms)   
    60% Trials 562.1341 18.7343 
    30% Trials 564.1185 22.1594 
    10% Trials 570.7241 26.5703 
2nd Session Untrained Stat. Acc. (%)   
    60% Trials 84.0741 3.1796 
    30% Trials 83.6111 3.4774 
    10% Trials 84.0741 4.9183 
2nd Session Sound RT (ms)   
    60% Trials 560.8261 16.3374 
    30% Trials 559.8963 14.8213 
    10% Trials 555.6536 26.2104 
2nd Session Sound Acc. (%)   
    60% Trials 88.3518 2.5605 
    30% Trials 89.1204 2.9942 
    10% Trials 89.0741 4.0732 
2nd Session No Sound RT (ms)   
    60% Trials 575.4968 16.1138 
    30% Trials 582.2467 25.5017 
    10% Trials 576.7221 24.5597 
2nd Session No Sound Acc. (%)   
    60% Trials 81.1481 33.9186 
    30% Trials 80.5092 39.1359 
    10% Trials 81.2963 51.2675 
Alpha Power Post-stim. (Normalized)   
    60% 0.1682 0.2060 
    30% 0.1641 0.1694 
    10% 0.1592 0.1324 
   
Control Study   
1st Session SL RT (ms)   
    Peripheral   
        60% 552.1453 8.0863 
        30% 555.9562 10.7386 
        10% 557.6162 30.8726 
    Central   
        60% 549.9104 11.1086 
        30% 552.8503 15.0847 
        10% 
 

563.0437 29.4956 
1st Session SL RT Difference (ms)   
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    Peripheral   
        60% -27.9366 58.2737 
        30% -15.9276 61.3863 
        10% 4.6146 78.8075 
    Central   
        60% 34.6112 58.5193 
        30% 44.1153 65.3156 
        10% 56.4636 55.2169 

 
Table 6 – Means and within-subject standard deviations for analyses in Experiment 1 and 
the Control Study of Chapter 3, listed in order of discussion. SD is within-subjects SD, 
calculated according to Loftus and Masson (1994). 
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Chapter 3 - Experiment 2  
Variable M SD 
Contrast Threshold (Log Units)   
  Low Frequency   
    Peripheral   
      Day 1 -1.5104 0.0679 
      Day 2 -1.5148 0.0250 
      Day 3 -1.5533 0.0255 
      Day 4 -1.5758 0.0416 
      Day 5 -1.5382 0.0306 
    Central   
      Day 1 -1.6859 0.0464 
      Day 2 -1.6901 0.0343 
      Day 3 -1.6912 0.0420 
      Day 4 -1.7462 0.0823 
      Day 5 -1.6926 0.0431 
  Peak Frequency   
    Peripheral   
      Day 1 -1.2975 0.1462 
      Day 2 -1.4236 0.1892 
      Day 3 -1.4199 0.0680 
      Day 4 -1.3915 0.0701 
      Day 5 -1.3803 0.0329 
    Central   
      Day 1 -1.7167 0.1123 
      Day 2 -1.7676 0.1017 
      Day 3 -1.8445 0.0810 
      Day 4 -1.7545 0.0851 
      Day 5 -1.8027 0.0648 
  Cutoff Frequency   
    Peripheral   
      Day 1 -0.5337 0.1083 
      Day 2 -0.5856 0.0452 
      Day 3 -0.5509 0.0549 
      Day 4 -0.5972 0.1295 
      Day 5 -0.5371 0.0827 
    Central   
      Day 1 -0.8354 0.1679 
      Day 2 -0.9206 0.1331 
      Day 3 -1.0214 0.0736 
      Day 4 -0.9003 0.1010 
      Day 5 -1.0270 0.0755 
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Pre-Training Trained Pos. RT (ms)   
    60% Trials 491.5716 19.1737 
    30% Trials 484.4715 22.8189 
    10% Trials 495.3326 25.2292 
Pre-Training Trained Pos. Acc. (%)   
    60% Trials 87.5926 3.5489 
    30% Trials 86.8056 4.1408 
    10% Trials 89.8148 4.1154 
Pre-Training Untrained Pos. RT (ms)   
    60% Trials 485.9121 23.3753 
    30% Trials 483.7037 25.6062 
    10% Trials 481.1662 23.5253 
Pre-Training Untrained Pos. Acc. (%)   
    60% Trials 86.9444 1.0338 
    30% Trials 88.6574 1.1928 
    10% Trials 87.5000 4.1112 
Post-Training Trained Pos. RT (ms)   
    60% Trials 473.8574 13.5918 
    30% Trials 476.8781 7.6089 
    10% Trials 483.2454 19.3412 
Post-Training Trained Pos. Acc. (%)   
    60% Trials 91.2963 1.8171 
    30% Trials 91.4352 2.0004 
    10% Trials 92.5926 3.9226 
Post-Training Untrained Pos. RT (ms)   
    60% Trials 488.6619 10.3457 
    30% Trials 491.4284 15.9645 
    10% Trials 492.9812 19.3367 
Post-Training Untrained Pos. Acc. (%)   
    60% Trials 91.7592 2.9223 
    30% Trials 92.5926 2.6168 
    10% Trials 91.6667 1.4778 
Landolt C (Font Size)   
  Pre-training   
    Peripheral 16.8750 1.1884 
    Central 5.5000 0.2934 
  Post-training   
    Peripheral 14.4306 1.1884 
    Central 6.0000 0.2934 
Cutoff Spatial Frequency (c/deg.)   
  Pre-training   
    Peripheral 7.6300 0.2852 
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    Central 16.9307 1.7399 
  Post-training   
    Peripheral 8.9553 0.2852 
    Central 18.3676 1.7399 
MN Read - Reading Acuity (logMAR)   
    Pre-test 0.0150 0.0646 
    Post-test 0.0033 0.0646 
MN Read - Crit. Print Size (logMAR)   
    Pre-test 0.1667 0.0894 
    Post-test 0.1667 0.0894 
MN Read – Max.Read. Speed (wpm)   
    Pre-test 260.6667 73.1683 
    Post-test 246.6667 73.1683 
SL Across Sessions (ms)   
  Peripheral Location   
    60%   
      EEG 1 500.8094 21.0341 
      Train 1 528.8578 11.5306 
      Train 2 537.4980 10.8018 
      Train 3 521.8908 11.1664 
      Train 4 526.0350 9.3522 
      Train 5 543.0616 8.7993 
      EEG 2 470.5026 21.8080 
    30%   
      EEG 1 504.1224 44.5307 
      Train 1 528.5713 27.4825 
      Train 2 541.7506 22.8946 
      Train 3 524.4243 20.9159 
      Train 4 527.1979 13.2016 
      Train 5 525.8402 15.2987 
      EEG 2 462.1108 30.9111 
    10%   
      EEG 1 476.0950 103.5331 
      Train 1 529.7175 30.1054 
      Train 2 530.5827 33.2044 
      Train 3 523.1236 18.3298 
      Train 4 526.4572 26.4755 
      Train 5 531.7190 36.5006 
      EEG 2 465.4590 47.4203 
  Central Location   
    60%   
      EEG 1 451.1456 42.0682 
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      Train 1 536.1100 23.1739 
      Train 2 530.2895 21.1807 
      Train 3 518.7308 22.4374 
      Train 4 520.6253 17.9318 
      Train 5 542.5494 17.3578 
      EEG 2 423.0942 43.6161 
    30%   
      EEG 1 451.1164 89.0614 
      Train 1 530.3278 55.0211 
      Train 2 534.8408 44.0443 
      Train 3 516.9853 39.7894 
      Train 4 519.5781 28.4159 
      Train 5 530.7419 30.5178 
      EEG 2 422.6878 61.8222 
    10%   
      EEG 1 454.6990 207.0661 
      Train 1 554.3023 60.8597 
      Train 2 541.4753 67.3538 
      Train 3 501.5683 36.4990 
      Train 4 534.8003 56.4267 
      Train 5 564.2380 63.0380 
      EEG 2 422.2607 94.8406 
Pre-Training Trained Stats RT (ms)   
    60% Trials 491.5716 13.5861 
    30% Trials 484.4715 9.2721 
    10% Trials 495.3326 16.1311 
Pre-Training Trained Stats Acc. (%)   
    60% Trials 87.5926 2.1971 
    30% Trials 86.8056 2.9609 
    10% Trials 89.8148 5.3856 
Pre-Training Untrained Stats RT (ms)   
    60% Trials 478.1040 16.9731 
    30% Trials 480.1784 16.1533 
    10% Trials 497.2400 16.0532 
Pre-Training Untrained Stats Acc. (%)   
    60% Trials 87.9630 3.6226 
    30% Trials 87.2685 1.3563 
    10% Trials 85.6481 6.6969 
Post-Training Trained Stats RT (ms)   
    60% Trials 473.8574 12.6344 
    30% Trials 476.8781 8.5073 
    10% Trials 483.2454 19.6807 
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Post-Training Trained Stats Acc. (%)   
    60% Trials 91.2963 1.7402 
    30% Trials 91.4352 1.3004 
    10% Trials 92.5926 4.6234 
Post-Training Untrained Stats RT (ms)   
    60% Trials 471.2204 11.7358 
    30% Trials 487.1167 13.0912 
    10% Trials 476.7637 12.9488 
Post-Training Untrain. Stats Acc. (%)   
    60% Trials 90.9259 1.4862 
    30% Trials 92.1296 2.8088 
    10% Trials 88.8889 3.0192 
Pre-Training Sound RT (ms)   
    60% Trials 473.3302 12.4479 
    30% Trials 466.2922 16.9704 
    10% Trials 475.4521 15.0144 
Pre-Training Sound Acc. (%)   
    60% Trials 88.1944 2.2396 
    30% Trials 88.7731 1.0754 
    10% Trials 88.8889 2.7753 
Pre-Training No Sound RT (ms)   
    60% Trials 495.0648 13.4253 
    30% Trials 500.3668 17.0885 
    10% Trials 503.4415 17.3123 
Pre-Training No Sound Acc. (%)   
    60% Trials 86.6667 2.3769 
    30% Trials 85.8796 1.8000 
    10% Trials 86.1111 4.2912 
Post-Training Sound RT (ms)   
    60% Trials 469.9902 12.3600 
    30% Trials 472.9499 11.2806 
    10% Trials 469.0502 16.3169 
Post-Training Sound Acc. (%)   
    60% Trials 93.7037 2.3667 
    30% Trials 94.4444 3.8199 
    10% Trials 93.5185 2.2998 
Post-Training No Sound RT (ms)   
    60% Trials 484.7758 15.2574 
    30% Trials 493.5110 12.3413 
    10% Trials 497.2062 10.0210 
Post-Training No Sound Acc. (%)   
    60% Trials 88.9815 2.7007 
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    30% Trials 89.8148 2.6376 
    10% Trials 86.8056 3.8350 
Alpha Power Post-stim. (Normalized)   
  Pre-Training   
    60% 0.2486 0.1243 
    30% 0.2125 0.0970 
    10% 0.2151 0.1768 
  Post-Training   
    60% 0.2900 0.2324 
    30% 0.3043 0.2650 
    10% 0.2263 0.2789 
Overall Alpha Power (Normalized)   
  Pre-stimulus Interval   
    Pre-Training 0.4230 0.2449 
    Post-Training 0.5294 0.2249 
  Post-stimulus Interval   
    Pre-Training 0.2345 0.1012 
    Post-Training 0.2879 0.2372 

 
Table 7 – Means and within-subject standard deviations for analyses in Experiment 2 of 
Chapter 3, listed in order of discussion. SD is within-subjects SD, calculated according to 
Loftus and Masson (1994). 
 
 




