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Abstract

We have developed embedded boundary methods to handle arbitrarily 
shaped topography to accurately simulate acoustic seismic wave 
propagation in the Laplace-Fourier domain. The purpose is to use this 
method to enhance accurate wave simulation near the surface. Unlike most 
existing methods such as the ones using curvilinear grids to fit irregular 
surface topography, we use a regular Cartesian grid system without suffering
from the staircasing error that occurs in conventional implementations. In 
this improved embedded-boundary method, we use the method of images, 
by imposing ghost nodes above the surface and approximating their acoustic
pressures using linear extrapolation, quadratic interpolation, or cubic 
interpolation, to account for an arbitrarily curved surface. Implementing this 
method instead of using curvilinear grids near the boundaries greatly 
reduces the complexity of preprocessing procedures and the computational 
cost. Furthermore, using numerical examples, we found the accuracy gain 
and performance of our embedded-boundary methods in comparison with 
conventional finite-difference implementation of the problem.

Keywords: acoustic, 3D, finite difference, frequency domain, modeling

Introduction

In acoustic seismic modeling, the objective is to describe the propagation of 
waves through the earth. Here, we consider wave propagation that is solved 
in the Laplace-Fourier domain. We start by discretizing the 3D wave equation
on a Cartesian grid xi,j,k=(ih,jh,kh) in space, where h>0 is the grid size. We 
let the Laplace frequency be complex valued s=σ+iω consisting of a Laplace 
damping factor σ and the angular frequency ω. The solution to the forward 
problem is gained by using a single frequency for a 3D acoustic-wave 
simulation (Hustedt et al., 2004). It is reduced from the 3D elastic wavefield 
simulator developed by Petrov and Newman (2012).

Special attention to the numerical treatment of the free-surface boundary for
topography is deserved because it does not follow naturally from a Cartesian
grid. For acoustic forward modeling, second-order finite-difference methods 
do not implicitly satisfy the free-surface condition as is the case with finite-



element methods. Accurately implementing the free-surface condition on an 
irregular interface is difficult due to the nonlocal nature of the finite-
difference schemes. This implies that acoustic velocities above the free 
surface are required to compute the pressure at or immediately below the 
surface (Fichtner, 2011).

A straightforward approach for the implementation of the free surface is to 
set the acoustic parameters at and above the free surface to zero. The 
method is commonly referred to as vacuum formulation or the staircase 
method. The free-surface boundary condition is thus not treated explicitly; 
instead, it is assumed to be implicitly fulfilled. Staircase-method applications 
can be found in Zahradník and Urban (1984), Zahradník et al. (1993), and 
Ohminato and Chouet (1997). The method is attractive because of its trivial 
implementation and the possibility to model topography. Bohlen and 
Saenger (2006) conclude that to model topography with a staircase method, 
more than 60 grid points per minimum wavelength are required in a second-
order scheme to obtain acceptable results.

Another solution is the curvilinear method that transforms the velocity-
pressure formulation system of equations from a curved to a rectangular grid
(Tessmer et al., 1992; Tessmer and Kosloff, 1994; Hestholm, 1999; Hestholm
and Ruud, 2000). At the free surface, the pressure and velocities are 
transformed into local systems in which the vertical coordinate axis is 
parallel to the normal of the local surface element. The free-surface 
conditions are then implemented by a “characteristic” treatment of the 
velocity and pressure components, before they are rotated back to the 
original system. More recent studies applied the embedded-boundary 
condition for a 2D finite-difference solution of the wave equation with 
success (Kreiss and Petersson, 2006; Li et al., 2010). The studies applied the 
embedded-boundary method to 2D frequency- and time-domain modeling 
problems. They investigate quadratic interpolation when computing the 
pressure above the free surface.

This paper describes an embedded-boundary method for the 3D acoustic-
wave equation with an irregular free-surface boundary on a Cartesian grid. 
By computing the pressure on either side of the interface, we can satisfy a 
zero acoustic pressure at the free surface, yielding superior results compared
with conventional implementations that model topography as a staircase 
approximation.

ACOUSTIC-WAVE EQUATION FORWARD MODELING IN LAPLACE-FOURIER 
DOMAIN

requency-domain modeling of wave propagation inside the earth has been 
studied extensively (see Lysmer and Drake, 1972; Marfurt, 1984; Zahradník 
and Urban, 1984; Pratt and Worthington, 1990; Jo et al., 1996; Štekl and 
Pratt, 1998; Hustedt et al., 2004; Operto et al., 2007). Most of the methods 
that have been developed for wave modeling in the frequency domain are 
based on solving the acoustic-wave equation by the finite-difference method:



On a uniform grid, the finite-difference methods provide an excellent 
compromise between accuracy and computational efficiency.

We consider the first-order hyperbolic system in a velocity-pressure 
formulation in the Laplace-Fourier domain, which can be derived from Petrov 
and Newman (2012). Let the 3D isotropic acoustic medium with density ρ 
and incompressibility κ occupy region Ω. The equations of motion inside Ω 
are given by

 (1)

where s is the complex number given by σ+iω, σ is the Laplace damping 
factor, ω is the angular frequency, and i=−1‾‾‾√. The velocities vx, vy, and 
vz are the velocity wavefield components; P is the acoustic pressure; m is 
the seismic moment density tensor; and the symbols ∂x, ∂y, and ∂z denote 
the partial differential operators ∂/∂x, ∂/∂y, and ∂/∂z, respectively. The 
Laplace-Fourier equations of motion (equation 1) are obtained by 
transforming the time-domain system of equations (Virieux, 1986) using the 
following Laplace-Fourier transform:

(2)

where g(t) includes the functions vx(t), vy(t), vz(t), and P(t).

For the numerical solution of equation 1, we used second- and fourth-order 
finite-difference schemes with 7 and 13 point stencils, respectively (Petrov 
and Newman, 2012). This system of equations must be augmented with 
boundary conditions. In the case of infinite media, the nonreflecting 
condition for wavefield components is applied at the boundaries of region Ω. 
We used the perfectly matched layer boundary conditions (Hastings et al., 
1996; Kim and Pasciak, 2010). However, at a free-surface boundary, one 
needs to incorporate the following boundary:

P=0. (3)

In simple topography settings, in which the free surface is a flat plane that 
coincides with the top plane of the finite-difference grid, this boundary 
condition may be realized without any staircasing error (Graves, 1996; 
Gottschammer and Olsen, 2001). However, when the free surface has a 
more complicated geometric structure, incorporating the free-surface 
boundary condition becomes more challenging because the finite-difference 



stencil will cross over the free surface as illustrated in Figure 1. In this 
setting, some algorithms perform adaptation of the finite-difference grid to 
the free surface (Hestholm, 1999; Hestholm and Ruud, 2000; Zhang and 
Chen, 2006; Zhang et al., 2012) or to construct the values of the wavefield 
on the exterior nodes if one wishes to keep the grid intact (Kreiss and 
Petersson, 2006; Lombard et al., 2008; Li et al., 2010).

Figure 1. Smooth curved free surface on a uniform Cartesian grid for a second-order finite-difference 
stencil. The white squares denote the ghost nodes required by the stencil, the black squares denote 
the stencil interior grid nodes, and the circles denote the points on the free surface that are boundary 
points.

EMBEDDED BOUNDARY METHOD

e consider a case in which the free surface is immersed within a regular 
finite-difference grid and assume a homogeneous media around the 
boundary. The free surface can be defined by the equation

Zs=f(x,y).Zs=f(x,y). (4)

We define grid nodes as interior nodes if they are inside the domain Ω and 
underneath the free surface, as shown in Figure 1. Nodes outside the domain
of interest, i.e., above the free surface, are defined as exterior nodes, and 
points on the free-surface boundary are defined as boundary points. The 
ghost nodes are defined to be grid points outside the domain of interest but 
still being requested by stencils. For example, the second-order finite-
difference scheme with seven stencil points requires only one layer of nodes 
above the surface (Figure 1).

With the above definitions, the problem of free-surface boundary treatment 
becomes the problem of updating the wavefield at the ghost nodes such that
the wavefield at boundary points is forced to be zero according to the 
boundary condition in equation 3. Because we know the exact values of the 
pressure at the boundary, the boundary condition may be realized as 
extrapolation or interpolation of the wavefield from the interior nodes to the 
ghost nodes via the boundary points. This method is called the embedded 
boundary method (Kreiss and Petersson, 2006; Lombard et al., 2008; Li et 
al., 2010).

The value of the pressure at the ghost nodes may be defined by the method 
of images (Griffiths, 2005; Jackson, 2007). For each ghost node Pg, we define
a ghost mirror point Pg,m below the surface inside the medium, where

(5)



The position and value of the ghost mirror Pg,m is defined by the distance 
from the surface and the surface form. For planar or spherical boundaries, 
the method of images ensures the realization of an exact boundary condition
(Morse and Feshbach, 1954). Thus, it is widely used for the free-surface 
boundary condition with a flat surface (Levander, 1988; Graves, 1996). For 
an arbitrary boundary, it becomes an approximation. However, when the 
distance between the ghost node and the boundary is essentially smaller 
than the wavelength and the radius of the curvature, the boundary may be 
considered as locally planar or spherical. Because realistic topography 
always has some curvature, we can assume the surface near each ghost 
node is part of some sphere. This assumption is more general than the 
planar form because it allows us to include the curvature in the definition of 
the position and value of the ghost mirror Pg,m. Furthermore, the spherical 
form goes to the planar form when the radius of the curvature goes to 
infinity. Nodes above the ghost nodes that are not required by stencils are 
set to zero.

Ghost mirrors location

To locate the position of the ghost mirror, we find the closest distance 
between each ghost node at (xg,yg,zg) and its interpolated surface f(x,y) 
(see Appendix A). By considering the normal vector from the surface and the
vector between the closest point on the surface and ghost node, we get the 
following system of nonlinear equations:

(6)

By solving the system for x and y using the steepest-descent method, we 
attain the location of the closest point at the surface relative to the ghost 
node (Rheinboldt, 1998). According to Figure 2, the normal is extended a 
distance ξR from the closest point at the boundary into the subsurface to 
locate ghost mirror Pg,m.

Figure 2. The 2D y-axis slice from the 3D second-order staggered grid. The blue line denotes the 
irregular surface, the black dashed line denotes the irregular surface normal at each ghost point, the 
magenta stars denote the ghost nodes, the orange squares denote the closest point in the surface that
is normal to the ghost node, the black stars denote the ghost mirrors, the green and red triangles 
denote the known acoustic pressures, and ξRξR, ξDξD, and ξIξI are the relative distances. The nodes 
have 50 m grid spacing.



For a planar free surface, the distance ξR between Pg and the surface is 
equivalent to the distance ξ′R′ between Pg,m and the surface. However, if 
the surface is curved, the two distances (ξR and ξ′R) are not equal (Figure 3).
Our algorithm accounts for curvature of the surface and corrects the location
of the ghost mirror Pg,m by assuming the free surface is locally spherical. 
Because we know the approximated topography f, we can find the mean 
radius for the curvature using

R=−2∇·n̂ =2·(1+(∂xf)2+(∂yf)2)3/2(1+(∂xf)2)∂yyf−2∂xf∂yf∂xyf+(1+
(∂yf)2)∂xxf,

(7)

where n̂ is the normal to the local surface f (Spivak, 1981). For the hill case 
in Figure 3a, the radius value is positive, whereas it is negative for the valley 
case in Figure 3b. The distance a between the curvature origin O and ghost 
node Pg can be found by

(8)

the distance ξ′R between the ghost mirror Pg,m and the surface is found 
using

(9)

and the ghost node Pg is related to the ghost mirror Pg,m by

(a|R|)Pg,m, (10)

where R is the radius of the curvature. For planar and curved surfaces, the 
acoustic pressure value at the ghost mirror Pg,m is necessary.

Figure 3. Method of images implementation. The red dot denotes the location of the ghost node, the 
green dot denotes the updated location of the ghost mirror due to the curved surface, RR denotes the 
radius of the curvature, ξRξR is the distance between the ghost node PgPg and the surface, ξ′RξR′ is 
the distance between the ghost mirror Pg,mPg,m and the surface, aa is the distance between the 
curvature origin OO and the ghost node PgPg, and bb is the distance between the curvature origin OO 
and the ghost mirror Pg,mPg,m.

Second-order scheme implementation

To calculate the acoustic pressure at the ghost mirror points Pg,m, we 
consider interpolation and extrapolation methods. Thus, the acoustic 
pressure at the first layer PI and the acoustic pressure at the second layer PII
below the surface are needed (see Figure 2). We know the acoustic pressure 



at the surface to be zero, and the acoustic pressure at PI and PII can be 
approximated using bilinear interpolation. We either use linear extrapolation,
quadratic interpolation, or a hybrid method to calculate acoustic pressures at
ghost mirror points Pg,m and hence their corresponding ghost nodes Pg (see 
Figure 2).

Quadratic interpolation needs three points to determine the ghost mirror 
acoustic pressure Pg,m. Figure 4 shows that to approximate the acoustic 
pressure of ghost nodes Pg, we use Lagrange quadratic interpolation on 
values 0, PI, and PII at locations 0, ξD, and ξD+ξI (Li et al., 2010). To improve
the accuracy of the quadratic interpolation, we use linear extrapolation.

Figure 4. Linear extrapolation (the blue line) and quadratic interpolation (the red line) are used to 
approximate the ghost node acoustic pressure Pg.

Linear extrapolation is considered to reduce perturbations caused by points 
further below the surface such as PII. It needs two points to locally determine
each ghost mirror point acoustic pressure Pg,m, which is located a distance 
ξR from the surface. Following from Figure 2, Figure 4 illustrates the linear 
extrapolation method. Thus, the ghost node’s acoustic pressure Pg can be 
found using linear Lagrange extrapolation on values 0, and PI at positions 0 
and ξD. We call it extrapolation because the distance ξR can be larger than 
ξD.

The hybrid method is a combination of the two previous methods. Depending
on the location of the ghost mirror Pg,m (Figure 2), grid spacing Δz, and a 
tuning coefficient α, it independently determines whether to use linear 
extrapolation or quadratic interpolation for each ghost node. Algorithm 1 
illustrates the hybrid method. The hybrid method uses linear extrapolation if 
the ghost mirror is between the surface and PI. However, if the ghost mirror 
is located between PI and PII, it decides whether to use linear extrapolation 
or quadratic interpolation depending on α, which ranges between zero and 
one. From the geometry in Figure 2, the maximum distance between PI and 
ghost mirror is Δz if the mirror is located between PI and PII. The hybrid 
method uses linear extrapolation if the ghost mirror is located between PI 
and PI+α*Δz; otherwise, if it falls between PI+α*Δz and PII, it uses quadratic 
interpolation.

Algorithm 1. Hybrid method used to determine whether to use linear 
extrapolation or quadratic interpolation for each ghost node.

Fourth-order scheme implementation



Due to the accuracy demands of the fourth-order finite-difference schemes, 
the acoustic-wave equation solution requires two layers of ghost nodes Pg 
above the surface. The first layer of ghost nodes is approximated using the 
hybrid method. The second layer of ghost nodes is located above the first 
layer. The acoustic pressures in the second layer are approximated using 
quadratic interpolation. Thus, three points are used to calculate the acoustic 
pressure at each ghost mirror Pg,m in the second layer. The first two points 
are PI and PII, which are found using bilinear interpolation. The third point PIII
arises from extending the normal line further in the subsurface. Similarly, we
use bilinear interpolation to approximate PIII. We also experimented using 
four points by including the zero acoustic pressure at the surface in addition 
to the three acoustic pressures PI, PII, and PIII. This will result in a Lagrange 
cubic interpolation. These two methods will be called the two-layer hybrid 
quadratic and cubic methods. We also experimented with only one hybrid 
layer by setting the second layer above the surface to zero. We call this the 
one-layer hybrid method.

RESULTS

We perform two simulations to test our embedded boundary methods for the
second- and fourth-order finite-difference schemes (Petrov and Newman, 
2012). The first simulation is done by solving the acoustic-wave equation in a
homogeneous model with oblique planar topography. To measure the 
accuracy, we rotate the solution and compare the results with the analytical 
solution for a flat free-surface model (Aki and Richards, 2002; Pujol, 2003). 
The relative error e1 for the oblique planar topography is defined by

(11)

where r∂Ω∈ a surface ∂Ω that is parallel to the free surface, Psim is the 
simulation result, and PA is the analytical solution.

The second simulation addresses a homogeneous model with hill 
topography. Unlike the first simulation, there is no analytical solution for this 
case, and the relative error e2 is calculated relative to the maximum norm in
the region Ω and is given by

(12)

where rΩ∈ region Ω and the denominator denotes the maximum value in the
region.

Oblique planar surface



In the oblique planar-surface case, we have a sloping surface in which we 
can rotate its solution to compare it with the analytical solution (see Figure 
5). The surface is sloping 42° clockwise from the horizontal. The minimum 
distance between the Ricker-wavelet source and the sloping surface is 890 
m. The complex frequency of the source is s=1+2i. We use the relative error 
e1 and average error ⟨e1⟩ to measure the accuracy of the oblique planar 
surface simulation.

Figure 5. (a) The analytical free-surface case. The inline in the green is parallel to the flat surface. (b) 
The oblique planar free-surface case. The inline in green is parallel to the oblique planar surface. The 
grid spacing is 50 m, and the source denoted in red is 890 m below the surface.

For the second-order scheme, we will compare a finite-difference solution 
that includes staircasing of topography in the simulation, as well as the 
embedded boundary conditions, based on linear extrapolation, quadratic 
interpolation, and the hybrid method with α=0.95. We use a high tuning 
parameter α to bias the hybrid method to linear extrapolation. Most ghost 
mirror points are located closer to PI than PII, and thus linear extrapolation 
better approximates the ghost mirror pressure Pg,m than quadratic 
interpolation. For this comparison, we will implement a homogeneous media 
with P-wave velocity VP of 2250 m/s, density ρ of 2300kg/m3, and grid 
spacing of 50 m. Figure 6a shows the relative error in pressure for the 
different simulation methods. All three embedded boundary methods provide
accurate and similar results for the oblique planar surface relative to the true
analytical solution. In general, the embedded boundary methods contain an 
average error of 1.3%, whereas the staircase methods have an average error
of 28.5% (Table 1).

Table 1. The second-order finite-difference scheme for the acoustic-wave 
equation in homogeneous media with mesh size 70×74×85. The source 
frequency is 2 Hz with damping coefficient 1(1/s).

Figure 6. Error for the second-order finite-difference scheme staircase and embedded boundary 
methods relative to the true analytical solution.

To ensure that our method is continuous and differentiable, we study the 
pressure gradient. The results of the normal gradient (normal velocity 



component) will be specifically illustrated because geophysical techniques 
measure normal velocity. Figure 6b and 6c shows that the average normal-
velocity error for our embedded boundary methods is approximately 1% with
respect to change in distance and depth.

Bohlen and Saenger (2006) conclude that to model topography with a 
staircase method, more than 60 grid points per minimum wavelength are 
required in a second-order scheme to obtain acceptable results. In Figure 7, 
we implemented an extreme case with approximately four points per 
wavelength at a frequency of 20 Hz with damping coefficient 1(1/s). To 
account for this increase in frequency, the velocity of the model was 
increased from 2250 to 3250m/s, and the grid spacing reduced from 50 to 15
m. The results show that our hybrid method produces results with an 
average error of approximately 3% when compared with the analytical 
solution (Figure 8).

Figure 7. Absolute pressure for the second-order finite-difference scheme true, staircase, and hybrid 
method solutions. The plot demonstrates the solution 50 m below the surface for a frequency of 20 Hz 
with damping 1(1/s).

Figure 8. Relative error e1e1 for the second-order finite-difference scheme staircase and hybrid 
method acoustic pressure relative to the true analytical solution. The plot demonstrates the error 50 m
below the surface for a frequency of 20 Hz with damping 1(1/s).

In the next numerical simulation, we demonstrate the solution of the 
acoustic-wave equation more accurately with a fourth-order finite-difference 
scheme. We use the same model setup as in the second-order finite-
difference scheme. The model is illustrated in Figure 5 — it is homogeneous 
with P-wave velocity VP of 2250 m/s, density ρof 2300kg/m3, and grid 
spacing of 50 m. The complex frequency of the source is s=1+2i. In this 
simulation, we compare the relative error in pressure between the staircase 
one- and two-layer hybrid methods with α=0.95. As shown in Figure 9, the 
two-layer method’s average error is 1.3%. The one-layer method achieves an
average accuracy of 5.4%. Similar to the previous simulation, the average 
accuracy of the staircase method is 23.5% (Table 2).
Table 2. The fourth-order finite-difference scheme for the acoustic-wave equation in a homogeneous 
media with mesh size 70×74×8570×74×85. The source frequency is 2 Hz with damping coefficient 
1(1/s)1(1/s).



Figure 9. Relative error e1e1 for the fourth-order finite-difference scheme staircase and embedded 
boundary methods relative to the true analytical solution.

Hill model

To further measure the accuracy, we test our schemes on a hill surface. In 
terms of source type, source location, P-wave velocity, and density, the same
configurations will be used as in the oblique planar simulations. As in the 
previous simulation, the complex frequency of the source is s=1+2i. We use 
relative error e2 and average error ⟨e2⟩ to measure the accuracy of the hill-
surface simulation. Figure 10 illustrates the hill surface used for this 
experiment. The red lines denote profiles that will be studied in this section.

Figure 10. (a) Hill topography with the red line denoting the central line profile. (b) Hill topography with
the red line denoting the edge line profile. The grid spacing is 50 m in all three components, and the 
source is located at (x,y,z)=(1200,1200,2600)m.

We use the second-order finite-difference scheme to the acoustic-wave 
equation. The tuning constant used for the hybrid method is α=0.95. We first
start by comparing the central line profile shown in Figure 10a. Similar to the
oblique planar simulation, all three embedded boundary methods have two 
orders of magnitude improvement over the staircase method (Table 1). 
Furthermore, all three embedded methods show approximately the same 
improvement (see Figure 11a). But for the edge line profile (Figure 10b), the 
linear extrapolation and the hybrid method provide more than two times 
better accuracy compared with the quadratic interpolation (Figure 11b and 
Table 1).

Figure 11. Relative error e2 for the second-order finite-difference scheme embedded boundary 
methods at the (a) central line shown in Figure 10a and (b) edge line shown in Figure 10b.

Spacing has been reduced for the staircase solution to demonstrate that 
when this happens, the higher resolution solution converges to the 
embedded-method solution with spacing of 50 m (Figure 12).



Figure 12. Absolute pressure solutions for the second-order finite-difference scheme embedded 
boundary methods with different spacings for the hill model central line at 50 m below the surface.

To study the effectiveness of our curvature method, we stretched the hill 
model to have a height of 1500 m instead of the 700 m in Figure 10. In 
Figure 13, we show that when the edge-line curvature radius is small, the 
error for the solution with curvature correction is reduced by up to two times 
compared with the error for the solution without the curvature correction.

Figure 13. Relative error e2 for the second-order finite-difference scheme embedded boundary 
methods at the edge line for a stretched hill with height 1500 m.

In Figure 14, we implemented an extreme case with approximately four 
points per wavelength at frequency 20 Hz with damping coefficient 1(1/s). 
The velocity and spacing have been changed as in the oblique planar case. 
The results show that our hybrid method produces results with two orders of 
magnitude improvement over the staircase method with frequency 20 Hz 
(Figure 15).

Figure 14. Absolute pressure for the second-order finite-difference scheme embedded boundary 
methods at the central line shown in Figure 10a at 100 m below the surface. The plot demonstrates 
the solutions for a frequency of 20 Hz with damping 1(1/s).

Figure 15. Relative error e2 for the second-order finite-difference scheme embedded boundary 
methods at the (a) central line shown in Figure 10a and (b) edge line shown in Figure 10b. The plot 
demonstrates the error for a frequency of 20 Hz with damping 1(1/s).



Now, the acoustic-wave equation is solved using a fourth-order finite-
difference scheme. We compare solutions for the central line and edge line 
profiles shown in Figure 10. Contrary to the oblique-planar model simulation, 
Figure 16 only shows marginal improvement when using the two-layer hybrid
methods over the one-layer hybrid method (Table 2).

Figure 16. Relative error e2 for the fourth-order finite-difference scheme embedded boundary methods
at the (a) central line shown in Figure 10a and (b) edge line profile shown in Figure 10b.

Solver convergence rates

Efficient convergence rates are essential for solving the forward problem 
because it is the driving engine in the solution of the inverse problem. Thus, 
the forward problem will be solved many times to reach the best-fit model 
for the data. Here, we study the convergence rates to decide which 
embedded boundary method is more computationally efficient. All the tests 
were conducted on a 2013 MacBook Pro with a 2.4 GHz dual-core Intel i5 
processor, 3 MB shared L3 cache, and 8 GB of 1600MHz DDR3L onboard 
memory. We use a Krylov subspace induced dimension reduction (IDR) 
iterative solver to solve the forward model at interior nodes (Sonneveld and 
van Gijzen, 2008). Direct solvers can also be used for small simulations or as 
a preconditioner for the iterative solver.

We start the first set of tests with second-order finite-difference schemes for 
a homogeneous medium. We compare between different topographies and 
embedded boundary methods. For the oblique-planar surface, there is no 
considerable difference in terms of number of iterations or convergence rate 
(Table 1). It is better to use the linear extrapolation method because it is 
slightly more accurate. However, the hill irregular surface shows a spike in 
the number of iterations and a corresponding increase in time for the linear 
extrapolation solution (Table 1). We have observed that the linear 
extrapolation takes more time to converge when there are more ghost points
closer to PII than PI. Thus, it is more efficient to implement the hybrid 
method with α=0.95. The hybrid-method results are similar in accuracy to 
the linear extrapolation but have better convergence rates as shown in Table
1. On the other hand, the quadratic interpolation is faster but has marginally 
less accuracy.

Because linear extrapolation is accurate but inefficient and quadratic 
interpolation is efficient but not as accurate, we experimented with different 



tuning ratios α to find the best compromise in efficiency and accuracy. In 
Figure 17, we show that α=0.95 provides a good trade-off. It is accurate 
relative to the linear extrapolation (α=1) and also efficient, as shown in Table
1.

Figure 17. Relative error e2 for the second-order finite-difference scheme 
hybrid method at the edge line for different tuning ratios α.

We compare tests for the fourth-order finite-difference schemes for a 
homogeneous medium. In these tests, we compare between the one- and 
two-layer hybrid methods as shown in Table 2. For the oblique-planar and hill
surfaces, the two-layer hybrid quadratic method is approximately 10 times 
slower than the one-layer hybrid method. Despite its slightly less accurate 
solution, the one-layer hybrid method is substantially more time efficient 
than the two-layer hybrid quadratic method. However, using a two-layer 
hybrid cubic method can reduce time inefficiencies. In fact, for the central 
hill profile, the solution times for the two-layer hybrid cubic are comparable 
with the one-layer hybrid method.

CONCLUSION

We report improved embedded boundary methods for 3D acoustic seismic 
wave-propagation modeling when arbitrarily free-surface topography is 
present. Unlike the classic staircase method and finite-difference algorithms 
that use structured curvilinear body-fitted grids, our embedded boundary 
methods — quadratic interpolation, linear extrapolation, and one- and two-
layer hybrid — use a regular Cartesian grid system, which greatly simplifies 
mesh generation and omits the need to change our current finite-difference 
formalizations. The free-surface boundary is enforced at the actual surface 
locations through the method of images, allowing for an accurate 
representation of an arbitrary free-surface geometry. As demonstrated with 
numerical experiments, our embedded methods significantly reduce the 
staircasing error. Our results showed that the hybrid method is efficient in 
terms of accuracy and performance for second-order finite difference, 
whereas the two-layer hybrid cubic method is more efficient for fourth-order 
finite-difference implementation. These methods are designed to choose 
between linear extrapolation and quadratic interpolation according to a 
tolerance variable without adversely affecting performance. We use a high 
tuning parameter αα to bias the hybrid method to linear extrapolation, for 
the increase in accuracy that linear extrapolation achieves over quadratic 
interpolation. Previous published works only take quadratic interpolation into
consideration, which makes their embedded methods dependent on nodes 



further below the surface. Our results show that linear extrapolation that 
depends on nodes close to the surface can produce better results. It 
achieves slightly more accurate results when compared with quadratic 
interpolation for the oblique planar surface. For the hill irregular surface, it is 
about two times better than quadratic interpolation. These algorithms can 
handle any surface topography under a regular Cartesian coordinate system.
Therefore, they have significant potential to become a powerful part of a 
forward-modeling engine used for full-waveform inversion.
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APPENDIX APIECEWISE FREE-SURFACE EQUATION

Using topography data points Ti,j, a piecewise quadratic topography 
equation fi,j(x,y) is approximated. The quadratic approximation in multiple 
variables is given by

fi,j(x,y)≈fi,j(x0,y0)+∂xfi,j(x0,y0)(x−x0)+∂yfi,j(x0,y0)(y−y0)+12!
[∂xxfi,j(x0,y0)(x−x0)2+2∂xyfi,j(x0,y0)(x−x0)(y−y0)+∂yyfi,j(x0,y0)

(y−y0)2],

(
A-
1)

where fi,j(x,y) is the approximated topography equation for the surface 
about the point (x0,y0) and the symbols ∂x, ∂y, ∂xx, ∂xy, and ∂yy, 
respectively, denote the partial differential operators ∂/∂x, ∂/∂y, ∂2/∂x, 
∂2/∂x∂y, and ∂2/∂y2, respectively. Furthermore, the piecewise equation A-1 is
bounded by

{xi−1<x<xi+1yi−1<y<yi+1.
(A-
2)

where i and j are the indices of the topography nodes. Thus, xi corresponds 
to i·Δx and yj corresponds to j·Δy. The coefficients of equation A-1 are found 
by the central finite-difference relationships. We use topography data points 
to calculate the coefficients of the equation:

∂xfi,j(x,y)≈Ti+1,j−Ti−1,j2Δx,∂yfi,j(x,y)≈Ti,j+1−Ti,j−12Δy,∂xxfi,j(x,y)≈Ti
+1,j−2Ti,j+Ti−1,jΔx2,∂xyfi,j(x,y)≈Ti+1,j+1−Ti−1,j+1−Ti+1,j−1+Ti−1,j

−14ΔxΔy,∂yyfi,j(x,y)≈Ti,j+1−2Ti,j+Ti,j−1Δy2.

(
A
-
3
)




