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Abstract

Characterizing local structure in complex oxides with quantitative scanning

transmission electron microscopy

by

Jack Y. Zhang

Perovskite oxides remain a material class with properties that can be difficult to

predict. Strong electron correlations, coupling between electron, lattice, spin and orbital

degrees of freedoms, combined with the versatility of the structure itself, result in a wide

range of properties, with unique emergent phenomena that occur only at heterointerfaces.

Structure plays an especially important role in determining the properties of perovskite

oxides. Small distortions in the lattice, particularly rotations or tilts of the oxygen

octahedra, can have large effects on the material’s electrical and magnetic properties.

One way we can tune these rotations is by growing thin film heterostructures, allowing

us to tailor the properties of these materials in ways not possible in the bulk. Therefore,

determining the local atomic structure in these films is critical for understanding the

structure-property relationships, and the origin of any emergent behavior that may exist

at an interface.

To that end, we utilize scanning transmission electron microscopy (STEM) to develop

a link between the atomic structure and electrical/magnetic properties of three different

systems: SrTiO3 quantum wells between GdTiO3 and SmTiO3, GdTiO3 quantum wells

between SrTiO3, and strained NdNiO3. Using real-space and diffraction techniques,

we obtain quantitative information on local octahedral rotations and observe the pres-

ence/absence of structural transitions. This information gives us new insight into the

driving forces behind the metal-insulator transition and magnetic behavior of the differ-

xi



ent material systems. We also continue the development of quantitative STEM for precise

and accurate determination of 3D dopant atom configurations by using variable detector

angles in the high angle annular dark field regime. By demonstrating the usefulness of

obtaining angle-resolved scattering data, we provide a new avenue for improving STEM

image contrast and atom visibility for future studies.
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Chapter 1

Introduction

The perovskite structure, ABX3, with different cations A and B, and anion X (usually

oxygen), contains a vast variety of compounds [1] due to the many combinations of an-

ions and cations that the structure can accommodate. This broad range of compounds

contains an incredibly diverse range of physical, electrical, and magnetic properties. Fur-

thermore, the ability to substitute most metallic ions found in the periodic table into

the perovskite structure allows one to uniquely tailor the structure to achieve unique

properties or enhance existing ones [2, 3].

The perovskite oxide subclass exhibits a wide range of physical properties, such as

piezoelectricity [4], high dielectric response [4], high temperature superconductivity [5],

colossal and giant magnetoresitance [6, 7], multiferroic [8] and Mott-insulating [9] prop-

erties, ferro-, ferri-, and antiferromagnetic properties [4, 9], temperature dependent metal

insulator transitions [10], and thermoelectricity [11]. These properties make perovskites

not only interesting from a scientific perspective, but also technologically significant in

importance industries such as catalysis, ferroelectric memory capacitors, advanced elec-

tronics, telecommunications, and energy conversion. As a result, perovskite oxides re-

main one of the most intensely studied class of materials in condensed matter physics,

chemistry, and materials science.
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Figure 1.1: (a) Ideal perovskite unit cell (b) Undistorted BO6 octahedra (c) Jah-
n-Teller type octahedra distortion (d) Cation displacement inside octahedra.

1.1 Role of Structure

The ideal perovskite structure, space group Pm3̄m, is shown in Figure 1.1, with

the A cations on the corners of the unit cell and the B cation in the center of the

octahedra formed by anions located at face-center positions. The multifaceted structural,

electronic, and magnetic properties of perovskite oxides arise from slight distortions of

this underlying prototype cubic lattice[12] [e.g. Fig. 1.1(c, d)]. Due to the strong electron-

lattice correlations in perovskite oxides, lattice distortions, and in particular, octahedral

rotations of the BO6 octahedra, can have a significant effect on the physical properties,

particularly the electrical and magnetic properties, of the material [13]. For example,

it was found that colossal magnetoresistance in manganese oxide compounds are largely

influenced by MnO6 octahedra deformations via the Jahn-Teller effect [14] and that the

electron bandwidth can be controlled in a Ca1−xSrxVO3 system by only varying the V-O-

V bond angle (VO6 octahedral rotation)[15]. In thin film heterointerfaces, the individual

properties of strongly-correlated oxides become even more interesting, with an enormous

number of possible combinations leading the way for novel behavior and new emergent
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phenomena [16]. Research into these materials will therefore require high-resolution

structural characterization, preferably on the local scale, to understand the mechanisms

behind the observed physical properties [17, 18].

1.1.1 Octahedral Tilts

Although the ideal perovskite is cubic (see Fig. 1.1), structural distortions can cause

the unit cell to become triclinic, monoclinic, orthorhombic, tetragonal or rhombohedral.

Most known perovskites are actually distorted from the prototypic structure [2]. The

three mechanisms of distortion from the cubic phase are: distortion of the octahedra,

such as elongation along one axis (e.g. Jahn-Teller distortion in KCuF3 [19]), cation dis-

placement within the octahedra (e.g. ferroelectric displacement of titanium in BaTiO3

[20]), and rotation of the octahedra while maintaining corner-sharing connectivity. Fig-

ures 1.1(b-d) depict these first two types of octahedral distortions.

Octahedral tilts are the most common distortion, and occur to reduce the overall

lattice energy (such considerations include the bonding nature, electronegativity, and

size of the atoms). A comprehensive analysis of the interatomic forces behind octahedral

tilts can be found in [21]. To maintain corner connectivity between BO6 octahedra in

adjacent unit cells, tilting one octahedron causes the neighboring octahedra to tilt in

certain ways; the particular type of tilt results in the different possible space groups. In

a previous work by Glazer, all possible combinations of octahedral tilts are indexed into

23 distinct tilt systems [22]. The Glazer notation is widely used in describing octahedral

tilts and will be used in this work.
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Figure 1.2: In Glazer notation, octahedral tilts can be described as a combination of
rotations along the three tetrad axes (left). Schematics for the zero tilt, a0a0a0, and
one-tilt systems, a+b0b0 and a−b0b0 (right).

Glazer Notation

In Glazer notation, each octahedra rotation can be described as a combination of tilts

about its three tetrad axes, as shown on the left in Figure 1.2. The rotation about each

axes is described by a letter (a, b, or c), according to the pseudocubic [100], [010], [001]

directions, and a superscript symbol (+, -, or 0). The letter signifies the degree of the

tilt about that axes, with different letters representing different magnitudes of rotation.

The symbol describes the phase of tilt in the adjacent octahedra along that direction,

since rotating an octahedra about one axis automatically constrains the tilts of adjacent

octahedra in the perpendicular directions, but adjacent octahedra in the same direction

can be tilted either in the same or opposite direction. A zero superscript indicates zero

tilt along that axis. For example, the a0a0a0 system signifies no rotations about each of

the three axes, or a cubic cell, while a+b0b0 indicates a one-tilt system, with in-phase tilts

along the [100] axis. Alternatively, a−b0b0 indicates a one-tilt system with out-of-phase
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tilts along the [100] axis. These three systems are shown to the right in Fig. 1.2, for

a 2 × 2 × 2 octahedra supercell. Note that due to corner connectivity constraints, the

octahedral tilt along the a axis automatically determines the tilt of adjacent octahedra

perpendicular to a. For the in-phase tilt, adjacent octahedra along a are rotated in the

same direction, while for the out-of-phase tilt, adjacent octahedra along a are rotated in

the opposite direction.

1.1.2 Octahedral Tilts in Heterostructures

The growth of heterostructures offers a powerful way to additionally tailor the struc-

ture and properties of perovskite oxides, often in new and unexpected ways [23, 18, 24].

Unique physical phenomena can occur in thin film heterostructures, as a result of epi-

taxial strain and interfacial effects [25, 26], as well as reduced dimensionality through

quantum confinement [27]. At interfaces, especially, we see the emergence of novel be-

havior not present in either of the bulk constituents [28, 29, 16], which offers significant

opportunities for new novel devices for electronic and photonic applications [30]. Under-

standing the effects that occur at these interfaces, such as lattice coupling and structural

coherency, is therefore key to understanding these emergent phenomena and a prerequi-

site for advanced materials design.

Both epitaxial coherency strain (the “clamping effect” as described by He [31] ) and

the presence of heterointerfaces is expected to modify the octahedral tilt rotations of

thin films from that of the bulk material. For example, May showed that compressive

and tensile strain induced different types of octahedral rotations in a LaNiO3 film [32],

confirmed by Hwang using an alternate approach [16]. Of particular interest is the oc-

tahedral behavior at the interface between two structurally different perovskites, such as

the GdTiO3 (orthorhombic)/SrTiO3 (cubic) interface. Due to the geometric constraint of
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corner connectivity between the BO6 octahedra, modification of the octahedral rotations

at an interface between structures with different octahedral tilts would be expected. It

is unclear which structure’s octahedra, or both, would be altered, and to what depth in

the film that modification would extend to.

Density-functional theory calculations by Rondinelli examing the proximity effects

a substrate with octahedral rotations had on a non-tilted film indicates that the sub-

strate can induce its octahedral tilt onto a film at the interface, with an exponential

decay to bulk film rotations away from the interface [25]. Another work by May studying

(LaNiO3)n (distorted perovskite)/(SrMnO3)m (cubic perovskite) superlattices showed ei-

ther the presence of large rotations or suppressed rotations depending on the superlattice

composition [33]. These studies highlight the importance of careful substrate selection

when growing oxide heterostructures, and how strain and symmetry can modify the

structure of the film. An understanding of how these octahedral rotations are modified is

crucial in controlling the electronic behavior of oxide heterostructures, as these rotations

couple to the electronic bandwidth, and could allow for specific tuning of novel properties

in these multifunctional perovskite oxides.

1.2 Measuring Octahedral Tilts

While critical in understanding the structure-property relationships, the measure-

ment of octahedral tilts has remained a difficult problem. Oxygen spacings are often

small and difficult to resolve using real space methods. Selected area electron diffrac-

tion (SAED) has been used to differentiate tilt systems [34] and aberration-corrected

ultrahigh-resolution transmission electron microscopy (TEM) has been used to visu-

alize oxygen displacements [17], but these techniques remain either qualitative in na-

ture, require extensive simulations, or require access to state-of-the-art instrumenta-
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tion/techniques. Other methods involve using synchrotron x-ray diffraction [32, 33] to

look for half-order peaks caused by octahedral tilts, but these suffer from an inability

to obtain local structural information, as the large probe size can only capture average

structural information from large regions of the sample. These difficulties have so far

precluded experimental octahedral characterization in any quantitative manner.

1.2.1 Transmission Electron Microscopy

To precisely characterize octahedral tilts and structural distortions locally, especially

at interfaces, new characterization techniques need to be developed that can resolve these

features on an atomic scale. Transmission electron microscopy (TEM) is well suited for

such atomic resolution locally resolved studies. The TEM is an unparalleled characteri-

zation tool that offers high spatial resolution over a broad range of techniques. Atomic

structure, crystal orientation, elemental composition, defect structure, and phase varia-

tion are just a few examples of the vast amount of potential information the instrument

can measure. The two main techniques for atomic resolution imaging, scanning transmis-

sion electron microscopy (STEM) and high resolution transmission electron microscopy

(HRTEM) are shown in Figure 1.3.

HRTEM uses a coherent parallel illumination system, while STEM uses a convergent

electron probe that rasters across the sample to build up an image pixel-by-pixel. STEM

has several advantages over conventional TEM. The use of a high angle annular dark field

(HAADF) detector in STEM to detect electrons that have been scattered to high angles

results in intuitive and directly interpretable images [35], as opposed to phase-contrast

imaging of HRTEM, where image interpretation is complicated by contrast reversals [36,

37, 38]. Instead, the image contrast in HAADF STEM is highly sensitive to the atomic

number of the atoms in the sample (Z-contrast images), and can be obtained in parallel
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Figure 1.3: Schematic difference between (a) HRTEM and (b) STEM.

with bright field (BF) data, electron diffraction, or electron energy loss spectroscopy

(EELS), an advantage no other characterization technique can provide.

In this thesis, we combine both real space imaging and diffraction techniques using

STEM to measure and quantify the octahedral rotations in perovskite oxide thin films.

Although oxygen atoms are too light to be directly observed in HAADF STEM [39], we

show that the octahedral tilts can be inferred by measuring the heavier and more visible

A-site cations, thereby avoiding the difficulties in analysis and interpretability of HRTEM.

We also utilize position averaged convergent beam electron diffraction (PACBED) [40]

to qualitatively verify the degree of octahedral tilt, and in conjunction with symmetry

constraints, determine the tilt systems of epitaxially grown films. PACBED is described

in greater detail in Appendix A, and can be obtained simultaneously with HAADF images

using a CCD camera, as shown in Fig. 1.3(b).
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1.3 Outline

This thesis dissertation is organized into four main chapters, each one covering a

separate materials system. Chapter 2 focuses on metal-insulator transitions (MITs) in

SrTiO3 quantum wells grown between the rare earth titanates, GdTiO3 and SmTiO3.

The changes in the local octahedral rotations are characterized by measuring the A-site

cation displacements using HAADF STEM, and related to the electronic properties to

give insight into the underlying physics behind the electronic transitions.

In Chapter 3, we use the same characterization technique to look at inverse structures,

GdTiO3 quantum wells grown between SrTiO3, in order to study how the octahedral

rotations in GdTiO3 are affected by interfacial constraints, along with the subsequent

magnetic response. Here, we also employ PACBED to confirm the structural distortions

we measure using HAADF STEM.

Chapter 4 returns to the subject of metal-insulator transitions, but now we focus on

the nickelate system, NdNiO3, which has a fundamentally different origin of the MIT.

Employing a liquid nitrogen cold stage holder, we use in−situ STEM to acquire PACBED

patterns from above and below the MIT temperature of strained NdNiO3 films. From

analysis of these patterns along with symmetry constraints from the epitaxial growth,

we arrive at a new understanding of the driving forces behind the MIT.

The last research Chapter, 5, details a new experimental technique, variable-angle

HAADF (VA-HAADF), for achieving greater contrast and visibility in quantitative STEM

by using multiple HAADF detectors in parallel, and offers experimental demonstration

for the method as applied to three-dimensional dopant depth determination. As the only

section that focuses solely on TEM technique development, this chapter has less over-

lap with any of the previous ones, which are more materials based, but presents a new

avenue for future TEM advancement. The adoption of VA-HAADF may be determined
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by hardware advances, but its usefulness has considerable potential far beyond dopant

imaging.

Finally, I conclude this dissertation in Chapter 6 with a summary of each topic, their

results, and possible future prospects.

1.4 Permissions and Attributions

1. The contents of Chapter 2 have previously appeared in Physical Review Letters,

110, 256401 (2013) [41] and Physical Review B, 89, 075140 (2014) [42]. It is

reproduced here with the permission of the American Physical Society.

� http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.110.256401

� http://journals.aps.org/prb/abstract/10.1103/PhysRevB.89.075140

2. The contents of Chapter 3 have previously appeared in Physical Review B, 88,

121104(R) (2013) [43]. It is reproduced here with the permission of the American

Physical Society.

� http://journals.aps.org/prb/abstract/10.1103/PhysRevB.88.121104

3. The contents of Chapter 4 have previously appeared in Scientific Reports, 6, 23652

(2016) [44]. It is distributed under a Creative Commons CC-BY license and repro-

duced here.

� http://www.nature.com/articles/srep23652

4. The contents of Chapter 5 have previously appeared in Scientific Reports, 5, 12419

(2015) [45]. It is distributed under a Creative Commons CC-BY license and repro-

duced here.

10

http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.110.256401
http://journals.aps.org/prb/abstract/10.1103/PhysRevB.89.075140
http://journals.aps.org/prb/abstract/10.1103/PhysRevB.88.121104
http://www.nature.com/articles/srep23652


Introduction Chapter 1

Several Figures have been adapted with permission from Ref. [46]. They are

Copyrighted by the American Physical Society.

� http://www.nature.com/articles/srep12419

� http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.111.266101
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Chapter 2

Metal-Insulator Transitions in Rare
Earth Titanates

2.1 Structure and Electronic Properties

Perovskite rare-earth titanates (RTiO3, where R is a rare-earth ion, including Y but

not Eu) are prototypical “Mott” insulators [47, 48], with strong electron-electron inter-

actions in the singly occupied Ti t2g orbital. These materials often feature some combi-

nation of structural distortion, magnetic, orbital, or charge ordering. For example, the

bulk rare-earth titanates all adopt the distorted orthorhombic GdFeO3 structure (space

group Pbnm, see Fig. 2.1), with rotated oxygen octahedra, or Ti-O-Ti bond angles away

from the ideal 180◦ angle in the cubic perovskite structure. These octahedral tilts and

rotations are intimately coupled to the electrical and magnetic properties. Electrically,

structural distortions would promote an insulating state, as the reduced Ti-O-Ti bond

angle results in reduced charge transfer between neighboring Ti t2g oribtals, which occur

via O 2p orbitals, thereby reducing the Ti 3d bandwidth [49]. Similarly, the nature of

the magnetic interaction (ferromagnetic or antiferromagnetic), magnetic ordering tem-

peratures, and critical doping densities needed for metallic conduction are all correlated

to the amount of octahedral tilt in the structure [49, 50, 9].
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Figure 2.1: Local structure at heterointerfaces are often different than the bulk, due
to interfacial connectivity requirements, which can be difficult to predict and lead to
new properties.

2.1.1 Thin Film Heterostructures

Thin film heterostructures additionally modify the structure of the film, through

epitaxial strain, interfacial connectivity, and reduced dimensionality effects [25, 51, 24].

Coherency strain imposed by the substrate can be accommodated by rotation of the

octahedra in addition to bond length expansion/contraction [51], while corner connec-

tivity requirements will lead to local distortions (i.e. rotations) at heterointerfaces, as

depicted in Fig. 2.1. Electrostatic doping can also be used to modulate carrier concen-

trations without introducing chemical disorder, while very thin films and quantum wells

offer additional methods for creating new states of matter through quantum-confinement

and reduced dimensionality [27]. Thin film heterostructures therefore offer a powerful

tool for separately controlling the contributions due to lattice distortions and electronic

configurations on the properties of the film.

2.1.2 SrTiO3 Quantum Wells

An example of electrostatic carrier doping can be found in the SrTiO3/RTiO3 system.

SrTiO3 is a prototypical perovskite at room temperature, with the ideal cubic Pm3̄m sym-

metry. It has drawn considerable interest in the past due to its incipient ferroelectricity,

high tunable dielectric constant [52], and soft-mode superconductivity [53]. When inter-
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faced with a RTiO3, a high density two-dimensional electron gas/liquid (2DEG/2DEL)

is formed at the interface (∼ 1/2 electron per interface unit cell, or 3× 1014 cm−2), with

the electrons residing in the d bands of SrTiO3 [54]. This sheet carrier density is due

to the charge discontinuity at the interface, and is independent of the film thicknesses.

In quantum wells, where a thin SrTiO3 layer is interfaced on both sides with a RTiO3,

a 2DEG is formed at each interface, with the three-dimensional electron carrier density

controllable by varying the SrTiO3 thickness.

Magnetism and signatures of electron correlation effects, including mass enhancement,

have been observed in these narrow, metallic quantum wells [55, 56]. Quantum wells

grown between GdTiO3 show an abrupt transition from a conducting to insulating state,

when the average thickness of the SrTiO3 is reduced from 3 to 2 SrO layers, while

quantum wells grown between SmTiO3 remain metallic all the way down to the extreme

limit of a single SrO layer, as seen in Fig. 2.2 [41, 42]. This is remarkable because

SrTiO3 is a nonmagnetic band insulator with cubic symmetry, a material that does not

exhibit correlation behavior or Mott physics in the bulk. Many questions naturally arise

concerning the origin of the metal-insulator transition in these quantum wells, as well as

why they only occur in the quantum wells confined between GdTiO3, but not in those

between SmTiO3.

Many other perovskite systems, such as LaNiO3 [10, 57, 58], NdNiO3 [59], and SrVO3

[60], also show metal-insulator transitions at reduced thicknesses in narrow quantum

wells and thin films. For materials that undergo a metal-insulator transition in these

narrow d-band electron systems, symmetry breaking of lattice, spin, or orbital degrees

of freedom generally plays a crucial role in promoting the insulating state. Density

functional theory (DFT) simulations of SrTiO3 quantum wells between GdTiO3 have

indicated that oxygen octahedral tilts are critical in promoting a Mott insulating state

in the thinnest quantum wells [61]. Therefore, key to understanding the driving force of
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Figure 2.2: Temperature dependent sheet resistance for GdTiO3/SrTiO3/GdTiO3

(left) and SmTiO3/SrTiO3/SmTiO3 (right) structures as a function of SrTiO3 layer
thickness. A metal-insulator transition occurs in GdTiO3/SrTiO3/GdTiO3 structures
when the SrTiO3 thickness is reduced to two SrO layers. Data is replotted from Ref.
[42].

the metal-insulator transition in these quantum wells is determining whether structural

distortions exist, and if so, how they are correlated to the the insulating state. For

example, what role does interfacial oxygen connectivity requirements or electronic effects

caused by the high-electron-density have on the distortion? Resolving such questions will

help to separate the effects of strong electron-electron interactions vs. disorder (which

can also cause localization) in these extreme-electron-density quantum wells.

To understand the relative roles of disorder, electron-electron, and electron-lattice

interactions, we explore the localization behavior in thin SrTiO3 quantum wells by sys-

tematically changing the external parameters of the system through choice of interfacial

material, GdTiO3 and SmTiO3. Both RTiO3s are prototypical Mott insulators in the

bulk, with a d1 electron configuration, and have the distorted orthorhombic perovskite

structure (space group Pbnm [62]), with octahedral tilts described by a+b−b− in Glazer

notation [22], although SmTiO3 has slightly smaller octahedral distortions [62]. The
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Figure 2.3: Oxygen coordination around central A-site cation, using a shifted unit cell.
(a) Undistorted unit cell with 12 equal length A-O bonds. (b) Short (red), medium
(yellow), and long (black) A-O bond lengths in the a−b+b+ octahedral tilt system.
The A-site cation can shift to a more favorable position along x and y (white arrow) to
reduce short bonds. (c) [110]O projection of local A-site oxygen coordination, showing
only short (red) and medium (yellow) bonds in the Pbnm structure without cation
displacement. The A-site can shift along x and y (white arrow). Numbers indicate
bond lengths in Å for bulk GdTiO3. (d) [110]O projection of local A-site oxygen
coordination after cation displacement, showing more equal bond lengths.
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two compounds also differ in their magnetic properties: GdTiO3 is ferrimagnetic while

SmTiO3 is antiferromagnetic at low temperatures [9]. Furthermore, the two titanates

exhibit different orbital ordering, at a higher temperature than the magnetic ordering

temperature: antiferro-orbital ordering in GdTiO3 and ferro-orbital ordering in SmTiO3

[63, 64, 65]. The orbital and magnetic properties of these systems are discussed in more

detail in Chapter 3, but have important implications in the present study as they couple

to the electron system in the quantum wells [55].

A key feature of the a+b−b− tilt system is the two degrees of freedom of the A-site

cation (x and y in Pbnm), allowing it to shift to a more favorable position in order to

optimize its local oxygen coordination [2, 21], as illustrated in Fig. 2.3. While direct

observation of oxygen atomic positions are not yet possible by HAADF STEM, these

cation displacements can be easily measured, and are directly related to the degree of

oxygen octahedral tilts in bulk rare-earth titanates.

2.2 A-Site Cation Displacements

We measure the A-site cation displacements in thin SrTiO3 quantum wells grown be-

tween thick layers of GdTiO3 and SmTiO3 using high angle annular dark field (HAADF)

STEM imaging. Bulk SrTiO3, which is cubic (a0a0a0 in Glazer notation) has no A-

site displacements nor octahedral tilts. Alternating layers of coherently strained SrTiO3

and GdTiO3/SmTiO3 were grown on (001) (LaAlO3)0.3(SrAl0.5Ta0.5O3)0.7 (LSAT) in a

multilayer structure by hybrid molecular beam epitaxy (MBE) [66, 67, 68], as shown

in Figure 2.4. The GdTiO3/SmTiO3 layers had constant thicknesses of 4 nm while the

SrTiO3 layers varied in thickness from half a unit cell (1 SrO layer) to 4 unit cells (8 SrO

layers), with a 10 nm buffer and cap on either side. The quantum wells are specified in

terms of the number of SrO layers they contained, as verified by TEM. This multilayer
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structure was grown specifically for the present investigation to match the quantum wells

used in previous electrical studies [56] while negating any possible variability in micro-

scope conditions from day-to-day operations.

TEM cross-section samples were prepared by focused ion beam in an FEI Helios

NanoLab, with final thinning using 5 kV Ga ions, and imaged on an FEI Titan S/TEM

with a field-emission source and super-twin lens (Cs = 1.2 mm) operated at 300 kV. A

Fischione Model 3000 HAADF detector was used for STEM imaging while diffraction

patterns were taken on a Gatan Ultrascan 1000 charge coupled device. Position averaged

convergent beam electron diffraction (PACBED) [40] was used for orientation determina-

tion and precise tilt alignment. PACBED simulations were carried out using the Kirkland

frozen phonon multislice simulation package [38]. A summary on PACBED formation

and different simulation approaches can be found in Appendix A and B, respectively.

A convergence semi-angle of 9.6 mrad was used in simulations and experiments. All

HAADF images were acquired with a 1024× 1024 frame size recorded at the same mag-

nification. A dwell time of 30 µs was used to obtain a high signal-to-noise ratio while

reducing the effects of drift. Centroid positions of each atomic column were extracted

using a custom algorithm utilizing the MATLAB image processing toolbox [69].

2.3 TEM Characterization

Figure 2.5(a) shows the orientation relationship of orthorhombic rare-earth titanate

on cubic LSAT. The preferred growth orientation, due to lower lattice mismatch, is

[110]O//[001]C, where the subscript indicates the orthorhombic or cubic unit cells, re-

spectively. Orientation variants, related by a 90◦ rotation about [001]C, are expected

[70, 68], as illustrated in Fig 2.5(a). Cross section samples imaged parallel to <100>LSAT

will contain both [110]O and [001]O projections. Figure 2.5(b) shows the bulk orthorhom-
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Figure 2.4: (a, c) HAADF-STEM images and (b, d) schematics of multilayer structures
with SrTiO3 quantum wells embedded in GdTiO3 and SmTiO3 layers. The brighter
regions in (a, c) are GdTiO3 or SmTiO3 layers, respectively, while darker regions are
SrTiO3 layers. The labels in (b, d) indicate the thicknesses of the SrTiO3 layers,
measured in number of SrO planes. The GdTiO3 and SmTiO3 layers were 4 nm thick.
Figure reproduced from [42] with permission from the American Physical Society.
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bic GdTiO3 unit cell viewed along the [110]O and [001]O direction, along with simulated

and experimental PACBED patterns, which are visibly distinct and can be used to dis-

tinguish the two orientations. PACBED has previously been shown to be sensitive to

small structural distortions [71, 72], and good agreement between the experimental and

simulated PACBED patterns in Fig. 2.5(b) indicates that the GdTiO3 has close to bulk-

like symmetry. The average in-plane strain of coherent GdTiO3 and SmTiO3 films in

this orientation is approximately −0.6% and −1.0%, respectively. Although films under

compressive in-plane strain should be more accurately described by tilt system a+a−a−

(monoclinic) [13], this difference lies in the precise values for the tilt angles, which are not

important for this study. Therefore the structural distortion in the rare-earth titanate

film will be referred in this chapter as “orthorhombic-like”.

2.4 Results of Quantum Wells in GdTiO3

Quantitative analysis of the A-site displacements was performed on [110]O domains,

as they are most easily resolved in this projection [see Fig. 2.5(b)]. An HAADF STEM

image from the superlattice containing GdTiO3 is shown in Fig. 2.6(b), with magnified

regions indicated by the red boxes shown in Fig. 2.6(a, c). These regions show represen-

tative sections in the 2 SrO quantum well and GdTiO3/SrTiO3 interface, respectively.

From Fig. 2.6(a), we can see Sr column displacements in the 2 SrO quantum well (the

red line serves as a guide for the eye), while Sr displacements in the first SrO interfa-

cial buffer layer are absent [see Fig. 2.6(c)]. A deviation angle, 180 - θ, where θ is the

angle formed between three successive A-site cations (centroid positions) is marked in

Figure 2.6(c), and serves as a measure of the degree of displacement. This deviation

angle is directly related to the degree of octahedra tilt, or Ti-O-Ti bond angle (for both

apical and basal angles), in the bulk rare-earth titanates, as plotted in Figure 2.7, and
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Figure 2.5: (a) Orientation relationships of orthorhombic GdTiO3 cell (black out-
line) grown on cubic LSAT (blue). Relationship on left, [110]O//[001]C has smaller
lattice mismatch and is the preferred growth orientation. (b) Projected view of
GdTiO3 [110]O and [001]C structure, respectively, along with simulated and exper-
imental PACBED patterns. Figure reproduced from Ref. [41] with permission from
the American Physical Society.
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Figure 2.6: (a) Magnified region of 1 u.c. SrTiO3 between GdTiO3 layers shows cation
displacements of Sr columns. Red line drawn to aid visualization. (b) HAADF STEM
cross section showing the overall structure of the sample. Bright layers correspond
to GdTiO3 due to the larger atomic number of Gd. (c) Magnified region at the first
SrTiO3/GdTiO3 interface showing Gd displacements along the growth direction in
alternating columns. θ represents the angle between three successive A-site cations.
First row of SrO in the buffer layer does not show Sr displacements. Figure reproduced
from Ref. [41] with permission from the American Physical Society.

serves as an indirect measurement of the octahedral rotations in the film.

Figure 2.8 shows the deviation angle for each AO layer, where A represents the A-

site cation, obtained by averaging over 18 separate images. Shaded (blue) regions in

the figure represent GdTiO3 layers, and are easily identified by higher intensities in the

HAADF images. The left and rightmost SrTiO3 regions in Figure 2.8 correspond to the

10 nm SrTiO3 cap and buffer, respectively, and serve as a reference and estimate of the

systematic error of the deviation angle measurement. The deviation angle in these layers

is not quite zero, as expected for an undistorted cubic perovskite, but close to 1.5◦, due

to a combination of scan distortions, sample drift, and any system noise that may alter

the atomic centroid positions from a perfect line. This same value is measured even in

unstrained SrTiO3 substrates and films.

It can be seen from Figure 2.8 that while the 8 SrO and 4 SrO layers show bulk-like

displacements, the thinnest quantum wells containing 1 or 2 SrO layers exhibit a much

22



Metal-Insulator Transitions in Rare Earth Titanates Chapter 2

Figure 2.7: Plot of deviation angles in bulk rare-earth titanates as a function of
Ti-O-Ti bond angles, showing inversely proportional relationship. Labels indicate the
rare-earth A-site cation.

Figure 2.8: Plot of deviation angle, 180 - θ, of each A-O layer across the sample. 3
u.c. SrTiO3 (4 SrO) show bulk-like angles (∼ 1.5◦) while angles in 2 SrO and 1 SrO
quantum wells show much higher angles (∼ 6◦). Error bars represent standard error
of the mean. Figure reproduced from Ref. [41] with permission from the American
Physical Society.

23



Metal-Insulator Transitions in Rare Earth Titanates Chapter 2

Figure 2.9: (a) HAADF STEM image of 4 u.c., 2 u.c., and 1 u.c. SrTiO3 quantum
wells. (b) Fourier transform of 2 SrO layers (64 x 1024 px) from each quantum well
and integrated intensity profiles (c) of the FT. Extra peaks appear in the FT from the
1 u.c. quantum well, indicated by arrows, which are absent in thicker layers. Figure
reproduced from Ref. [41] with permission from the American Physical Society.

larger deviation angle (∼ 6◦). The difference in Sr column displacements can be seen in

Fig. 2.6 as well as Fourier transforms (FTs) of the HAADF images. Figure 2.9 shows

representative regions of the 8, 4, and 2 SrO layer quantum wells, FTs of a 64 × 1024

pixel region (the width of 2 SrO layers) in the center of each quantum well [Fig. 2.9(b)]

and the corresponding integrated intensity profiles of each FT [Fig 2.9(c)]. Unambiguous

chemical determination of each A-O layer can be made from image intensities and show

clear, segregated SrTiO3/GdTiO3 layers. Extra half-order peaks are observed in the FT

of the 2 SrO quantum wells (indicated by arrows), which are not present in the thicker

quantum wells. These extra peaks are a result of Sr displacements parallel to the growth

direction, causing a doubling of the unit cell.

As illustrated in Fig. 2.1, the need to maintain oxygen connectivity across the

SrTiO3/GdTiO3 interface requires structural adjustments in either/both layers. Based on

the cation displacements from Figure 2.8, this adjustment mostly occurs in the GdTiO3.

The measured deviation angles in the interior of the GdTiO3 layers are close to those in

the bulk (16.3◦ in the [110]O projection), while ∼ 2−3 GdO layers adjacent to the SrTiO3
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show reduced cation displacements. This suggests that structurally, the octahedral tilts

in the GdTiO3 interface region are reduced, or the Ti-O-Ti bond angles are closer to 180◦.

The oxygen octahedra mismatch at the interface appears to be largely accommodated

in the GdTiO3, indicating “softer” bond angles in the GdTiO3 than the SrTiO3. The

reduced octahedral tilts in the interfacial GdTiO3 layers have major implications on the

local magnetic properties, which will be discussed in Chapter 3.

2.4.1 Ruling out Interfacial and Strain Effects

Looking at the thinnest quantum wells, we see that the 1 SrO and 2 SrO lay-

ers show significant Sr column displacements, indicating a structural transition to an

“orthorhombic-like” a+b−b− tilt system. While changes in the cation displacements of

the interfacial GdO layers were attributed to interfacial connectivity constraints, it ap-

pears that the large displacements in the thin SrO quantum wells are not (entirely) a

consequence of this effect because:

i. the GdO layers directly adjacent to the thinnest SrO quantum wells still show

reduced Gd displacements, indicating that the interfacial connectivity constraints

are still being largely accommodated in the GdTiO3, and

ii. SrO layers in the thicker quantum wells still show bulk-like displacements, even

when directly adjacent to GdTiO3.

It should also be stressed that the larger deviation angle in the 2 SrO quantum

well should not be attributed to interdiffusion. While interfacial roughness is likely

present, the effect it would have on the deviation angle would apply equally at all other

SrTiO3/GdTiO3 interfaces as well. This is clearly not the case, since as previously

pointed out, SrO layers directly adjacent to GdTiO3 in thicker SrTiO3 films show bulk
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displacements (points labelled X in Fig. 2.8). An exception can be seen in the layers

where SrTiO3 is grown on top of GdTiO3 (points labeled Y in Fig. 2.8). These layers show

a small increase in the deviation angle in the first SrO layer, due to interfacial roughness

(relative to GdTiO3 grown on SrTiO3). This difference in interfacial roughness has been

previously observed, and in general, α/β vs β/α interfaces are extremely common in

epitaxy.

The larger degree of intermixing at one interface is present in certain images as an

extra mixed layer (points labeled Y in Fig. 2.8), which is the reason the nominal 4 SrO

layer contains five data points. However, the deviation angle in these intermixed layers

are much smaller than the ones in the 2 SrO quantum wells. While MBE-grown films can

be grown with atomic layer precision, the presence of surface steps and roughness results

in a practical limit of ±1 atomic layer in cross-section projections through a sample with

finite thickness (20-30 nm for the samples in this study, estimated from PACBED). As a

result, extra GdO layers are also present in the first GdTiO3 layer on top of the SrTiO3

buffer layer. These limitations in controlling one atomic layer, however, do not impact

the prior analysis of cation displacements, but rather support the conclusion that the 2

SrO deviation angle is a significant measurement and not the result of interfacial disorder

or connectivity effects.

Epitaxial strain can also modify film structures, and compressively strained SrTiO3

is expected to become tetragonal [73], similar to the low temperature phase in the bulk.

However, the tetragonal phase does not exhibit Sr displacements, and no A-site shifts are

expected due to film strain. Comparing deviation angles in unstrained and compressively

strained SrTiO3 films (not shown here) verified that no Sr displacements are induced.
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2.4.2 Relating Structure to Extreme Electron Densities

Ruling out strain and interfacial effects as the origin of the Sr displacements in the

thinnest quantum wells, the observed symmetry lowering is most likely associated with

the extreme electron densities as the wells are reduced in thickness. Although electrical

measurements show localized behavior in the 1 and 2 SrO layer quantum wells (Fig.

2.2), Hall measurements indicate that these wells still contain the same electron density

of ∼ 6 × 1014 cm−2 (1 electron shared between three TiO2 planes for the 2 SrO layer

quantum well) [67, 74]. Meanwhile thicker quantum wells, which have a lower 3D elec-

tron density, are metallic. These metallic quantum wells do not have Sr displacements

(which are correlated to octahedral tilts), while the thin quantum wells that are insulat-

ing show large Sr displacements (and therefore indicate the presence of octahedral tilts).

The Sr displacements are indicative of a symmetry lowering distortion, most likely to an

“orthorhombic-like” structure similar to bulk RTiO3, and occurs precisely at the thick-

ness for which the metal-insulator transition is observed from dc transport measurements.

These parallels between the insulating quantum wells and bulk RTiO3, which are Mott

insulators, indicate that true “Mott” physics are occurring in the thinnest quantum wells,

and that the insulating state is being driven by on-site repulsion interactions caused by

the extreme electron densities.

2.4.3 Relationship to Polaronic Transport

The measured deviation angle in the 2 SrO quantum well (∼ 6◦) is significantly smaller

than that of any bulk RTiO3 (LaTiO3 has the smallest at 10.5◦). These deviation angles

are directly correlated to Ti-O-Ti bond angles, as shown in Figure 2.7 for bulk RTiO3.

By interpolating this empirical data with the cubic structure (0◦ deviation angle, 180◦

Ti-O-Ti bond angle), we obtain a Ti-O-Ti bond angle estimate of ∼ 160±5◦ for the 2 SrO
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Figure 2.10: Deviation angles (red circles) in each AO plane and corresponding nor-
malized HAADF intensities (blue squares), for regions containing two SrO and five
SrO layers [indicated by the white boxes in Fig. 2.4(a, c)]. SrO layers are highlighted
in gold. The dashed lines serve as guides to mark structural distortions (or lack of) in
the SrTiO3 wells. The dashed boxes indicate atomic planes of similar intensity. Figure
reproduced from Ref. [42] with permission from the American Physical Society.

layer quantum well. In bulk RTiO3, a lower activation energy for polaronic transport is

associated with larger Ti-O-Ti bond angles, with LaTiO3 (Ti-O-Ti bond angle of 154◦)

having the lowest activation energy (∼ 0.025 eV) [9]. The measured activation energy

of the 2 SrO quantum well is 0.02 eV [67], and consistent with the larger Ti-O-Ti bond

angle.

2.5 Results of Quantum Wells in SmTiO3

Deviation angles were measured in SrTiO3 quantum wells embedded in SmTiO3 using

the same procedure as described previously for quantum wells grown between GdTiO3.

Figure 2.10 shows the measured deviation angles (red circles), integrated across each

atomic plane, for the 2 SrO and 4/5 SrO quantum wells grown between both GdTiO3
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and SmTiO3 [regions indicated by white boxes in Fig. 2.4(a, c)]. The data in both

plots are averaged over multiple images from different regions of each sample to improve

the signal-to-noise ratio and improve sampling. Corresponding HAADF image intensity

profiles, where the intensity is averaged over a five pixel radius around each centroid

position and averaged for each atomic plane, are plotted above the deviation angles (blue

squares in Fig. 2.10). Since HAADF-STEM intensities are sensitive to atomic number

(Z) differences [75, 76, 77], the pronounced atomic number contrast of the A-site cations

(ZSr = 38, ZGd = 64, ZSm = 62) allows for straightforward identification of the atomic

layers from the image intensities. The SrO planes, identified by their lower HAADF

intensities in Fig. 2.4(a, c), are highlighted in yellow in Fig. 2.10.

From Figure 2.10, we can see that similar to GdTiO3, the deviation angles in the

interfacial SmTiO3 layers show reduced deviation angles, indicating that the structural

mismatch at the interface is accommodated by the RTiO3. In the center of the RTiO3

films, however, the deviation angles are larger, and closely match those expected from

the bulk values for a coherently strained film (15.7◦ for GdTiO3 and 14.7◦ for SmTiO3).

The smaller deviation angle in the SmTiO3 interior is due to smaller octahedral rotations,

and expected from the bulk structure. Similar to quantum wells grown between GdTiO3,

those embedded in SmTiO3 show no deviations from the cubic structure for all quantum

wells with thicknesses greater than 2 SrO (the apparent deviation angle of ∼ 1.5◦ is due

to noise and experimental instability, as described earlier). In the 2 SrO quantum wells,

however, while significant Sr displacements are observed in quantum wells embedded in

GdTiO3, the ones grown between SmTiO3 show only a very slight increase in the deviation

angle. This difference indicates that while octahedral distortions and an “orthorhombic-

like” structural change is occurring in the quantum wells grown between GdTiO3, those

grown between SmTiO3 remain close to cubic, with nearly 180◦ Ti-O-Ti bond angles.
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2.5.1 HAADF Intensity Profiles

The HAADF intensity profiles in Fig. 2.10 provide additional insight into the degree

of chemical intermixing at the SrTiO3/RTiO3 interface, and its potential effect on the

measured A-site displacements. GdxSr1−xTiO3 alloys remain cubic up to Gd concentra-

tions of x = 0.3 [78]; therefore large concentrations of Gd intermixing would be needed to

induce an orthorhombic distortion. HAADF STEM intensity is highly sensitive to Z, so

a Gd concentration of > 30% would be easily detectable in the image intensity (given the

∼15-20 nm sample thicknesses used here, even taking into account the contrast depen-

dence on the dopant position along the column direction [79, 80]). A similar argument

can be made for SmxSr1−xTiO3. While experimental data is not readily available, a sim-

ilar doping concentration, or larger, is expected based on closer ionic radii between Sm

and Sr [81, 82].

From the image intensities in Fig. 2.10 (normalized for each sample), the 2 SrO layer

quantum wells show similar intensities to the 5 SrO layer quantum wells (marked by

dashed boxes), indicating similar chemical composition between the two quantum wells.

The intensities in the center of the 5 SrO layer quantum wells are similar to intensities

from the buffer and capping layers after accounting for the TEM sample thickness (not

shown), and serves as a reference for pure SrTiO3 image intensities. An intermixed

atomic layer in the 5 SrO quantum well between GdTiO3, marked by an arrow in Fig

2.10, is clearly discernible from the HAADF intensity, and shows a small deviation angle.

By contrast, the intensities from the 2 SrO layer quantum well in the same sample are

lower than this intermixed layer (meaning it is less intermixed), yet show much higher

deviation angles (structural distortion). These observations show that:

1. the chemical composition between the 2 SrO and 5 SrO layer quantum wells (where

the metal-insulator transition occurs for those grown between GdTiO3 but not
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SmTiO3) are similar, and therefore the detected structural differences between them

cannot be attributed to a higher degree of intermixing in the thinner quantum wells.

2. the measured distortion in the 2 SrO quantum well grown between GdTiO3 is

significantly larger than what would be caused by disorder or intermixing at the

interface.

2.5.2 DFT Calculations

Density functional theory (DFT) calculations of periodic structures similar to the ex-

perimental quantum wells was carried out by Ru Chen from the Balents group at UCSB.

These calculations were carried out in the same experimentally observed orientation re-

lationship. Simulation superlattices consisted of 2 SrO layers embedded in four layers

of SmO or GdO, along with intervening Ti-O layers, e.g. (SrTiO3)2(SmTiO3)4. DFT

calculations were performed in the WIEN2K [83] implementation using the generalized

gradient approximation (GGA) [84], and used 2a× 2a× c unit cells, where a was set to

the experimental LSAT lattice constant of 3.86 Å. The expanded unit cell allows for every

possible tilt configuration. Structural optimization using the GGA+U approximation,

as described in [61], was performed for the atomic coordinates as well as the c/a ratio.

A U eff = 3.5 eV was used on the Ti d orbitals while U eff = 8.5 eV was used for the Gd

and Sm f orbitals, where U eff = U − J . Atomic relaxations on the superlattice were

performed until the Hellmann-Feynman forces on the atoms were <5 meV/Å.

Deviation angles in the same projection were calculated from the optimized DFT

structure, and compared to the experimental results in Figure 2.11. In general, the two

results are in close agreement. The DFT calculations showed that the Ti-O-Ti bond

angles (not shown) in the 2 SrO layers embedded in SmTiO3 are less distorted than

those in GdTiO3, which results in the smaller deviation angles. The main quantitative
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Figure 2.11: Comparison between experimental (circles) and calculated (DFT,
squares) deviation angles for 2 SrO layers (shaded) between (a) GdTiO3 and (b)
SmTiO3. Figure reproduced from Ref. [42] with permission from the American Phys-
ical Society.

difference between the DFT and experimental results are smaller calculated distortions

in the quantum wells between GdTiO3. This same trend occurs between bulk simulation

calculations and experimental values [62]: DFT slightly underestimates the orthorhombic

distortions in bulk GdTiO3 and slightly overestimates the orthorhombic distortion in bulk

SmTiO3. The difference in Ti-O-Ti bond angles between DFT and experimental results

is < 2◦.

2.6 Correlation Physics of Perovskite Titanates

Comparing Figs. 2.2 and 2.10, we see that the thinnest SrTiO3 quantum wells embed-

ded in GdTiO3 show a structural distortion, featuring (relatively) large octahedral tilts

and reduced Ti-O-Ti bond angles, which precisely correlates to the onset of the metal-

insulator transition in these films. Films grown between SmTiO3, which show metallic

behavior over all thickness ranges, are correlated with a (relative) lack of structural dis-

tortions, and Ti-O-Ti bond angles close to 180◦.

Although structural disorder (i.e. interfacial mixing, SrTiO3 thickness fluctuations)
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exists in both samples (as pointed out previously), and likely plays a role in low-temperature

transport measurements [56], the previous discussion on the effects of chemical disorder

and the results of Figs. 2.2 and 2.10 provide evidence that true Mott-Hubbard physics

is driving the metal-insulator transition. Specifically, we showed that the abrupt tran-

sition to an insulator by an increase in sheet resistance of several orders of magnitude,

caused by a thickness change of a single SrO atomic plane, is associated with an abrupt

structural transition that cannot be caused by disorder effects. While the TEM results

show compelling evidence that large octahedral tilts and reduced Ti-O-Ti bond angles

are directly correlated to the transition to an insulating state, the question remains why

this only occurs in the quantum wells embedded in GdTiO3, despite similar 3D electron

densities in the quantum wells between both materials.

2.6.1 Polaronic Transport

From the bulk titanates, we know that small differences in octahedral distortions

around a critical point can lead to large effects on the electrical properties of the mate-

rial. Octahedral distortions in these systems have multiple effects: lifting the t2g orbital

degeneracy, decreasing the Ti-O-Ti bond angles, and reducing the Ti 3d bandwidth.

While all bulk rare-earth titanates are insulating at all temperatures, a crossover oc-

curs between lightly doped, insulating SmTiO3 and GdTiO3 from large to small polaron

transport [9]. This behavior has been observed in insulating SrTiO3 quantum wells in

GdTiO3 [74]. A high density small polaron gas is formed in those structures, which con-

tain (relatively) large distortions, while quantum wells in SmTiO3 feature much smaller

distortions, and an electron gas that never localizes.
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2.6.2 Interfacial Coupling

Although it appears that the Ti-O-Ti bond angles play a crucial role in promoting

the insulating state in these high-electron-density quantum wells, identifying the under-

lying origin of the quantitative difference in the degree of the structural distortion is

complicated. Mechanical considerations due to interfacial coupling serves as a natural

starting point in comparing the two RTiO3 structures. In the bulk, GdTiO3 has slightly

smaller Ti-O-Ti bond angles than in SmTiO3 (145.76◦ basal, 143.87◦ apical for GdTiO3

vs 147.29◦ basal, 146.48◦ apical for SmTiO3, see Fig. 2.7). To maintain oxygen corner

connectivity (coherent bonding) at the interface, these distortions may couple to the Ti-

O-Ti bond angles in the SrTiO3 quantum well by influencing the degree of octahedral

tilt. However, as previously discussed, the data in Figs. 2.8 and 2.10 indicates that the

interfacial coupling is mostly accommodated by reduced distortions in the RTiO3 layers.

Furthermore, the difference in deviation angle between the 2 SrO layer quantum well

structures (∼ 3◦, Fig. 2.10) is significantly larger than the difference in deviation angle

between the two bulk RTiO3 structures (∼ 1◦, Fig. 2.7). These observations suggest that

the slightly larger octahedral tilts in bulk GdTiO3 is not the driving force for the larger

structural distortions in the embedded SrTiO3 quantum wells. There are additional fac-

tors promoting the larger distortions in these quantum wells, which incidentally, are also

not completely captured by the DFT calculations.

2.6.3 Orbital Ordering

One possibility is strong electron correlations in the quantum wells driving orbital

order which then couples to the structure. While GdTiO3 and SmTiO3 have different

magnetic behavior (ferrimagnetic and antiferromagnetic, respectively), and associated

orbital ordering, the magnetic ordering temperatures occur at much lower temperatures
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(∼ 32 K and 45 K, respectively [9]) to be able to affect the room temperature structure

(for more discussion on magnetic ordering and orbital ordering, see Ch. 3). According to

Takubo, however, a crossover temperature significantly above the Neél temperature exists

in SmTiO3, where the antiferro-orbital order changes to ferro-orbital order [63], which

does not occur for GdTiO3. It is possible then, that coupling with the antiferro-orbital

ordering in GdTiO3 favors a more structurally distorted state in the SrTiO3 quantum

wells. This example highlights the strong interplay between spin and orbital fluctuations

with the lattice, a characteristic feature in correlated perovskite oxides. The crossover

temperature occurs below room temperature in bulk SmTiO3, but it could potentially be

shifted to higher temperatures due to epitaxial strain in thin films. While the question of

whether orbital ordering occurs above the magnetic ordering temperature is still under

debate [85], the results in this chapter support a view of strong electron correlations in

the SrTiO3 quantum wells driving the structural distortion, at least to a certain degree.

2.7 Conclusions

In summary, we have shown using HAADF STEM that high-electron-density SrTiO3

quantum wells undergo a metal-insulator transition below a critical thickness only if

“orthorhombic-like” distortions are sufficiently large. This metal-insulator transition is

associated with a symmetry-lowering structural distortion, and appears to be driven by

the strong correlations in the extreme-electron-density quantum wells. These results in-

dicate that the transition is an intrinsic phenomena, with Mott-Hubbard physics playing

a leading part and disorder contributing at most a secondary role. Specifically, even a

single SrO layer embedded in SmTiO3, the most “disordered” possible quantum well, re-

mains metallic. The degree of the distortion can be controlled by the choice of interfacing

RTiO3, but cannot be predicted from simple geometric lattice considerations, suggesting
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that more complex underlying physics (e.g. strong electron correlation and orbital order)

are influencing the structure in the quantum wells.
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Chapter 3

Magnetism in GdTiO3

From Chapter 2, we observed that at GdTiO3/SrTiO3 interfaces, approximately 1-3 GdO

planes at the interface showed a significant reduction in Gd displacements, which are cor-

related with octahedral tilts, while the interior of the GdTiO3 showed displacements in

good agreement with bulk values. Thus the need to maintain oxygen octahedral con-

nectivity at the interface due to structural dissimilarity (see Fig. 2.1) is accommodated

by the GdTiO3. This suggests that by controlling the thickness of a GdTiO3 film grown

between SrTiO3, we can modify the octahedral tilts in the entire GdTiO3 film, which is

likely to impact the magnetic properties of the film, since those are closely tied to the

octahedral tilts. In this chapter, we study the “inverse” structures from Chapter 2, thin

orthorhombic GdTiO3 grown between cubic SrTiO3. Using the same TEM characteriza-

tion techniques that were described previously, along with magnetization measurements,

we relate the atomic structure of confined GdTiO3 to its magnetic properties.

3.1 Magnetism and Orbital Ordering

The rare-earth titanates (RTiO3) are strongly correlated Mott insulators, and adopt

the orthorhombic GdFeO3 structure (space group Pbnm, see Fig. 2.5) in the bulk, which

removes the t12g orbital degeneracy [50, 85, 86]. The GdFeO3 structure is common in
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Figure 3.1: Magnetic ordering temperatures [9] as a function of Ti-O-Ti bond angles
[62] in bulk rare-earth titanates. Rare-earth ion is indicated next to each data point.
Ferromagnetic (FM) and antiferromagnetic (AFM) regimes are indicated below the
respective Curie/Néel temperatures. Lines are drawn as an aid to the eye, indicating
the general trend in bulk RTiO3.
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perovskites, and feature the a+b−b− octahedral tilt system in Glazer notation [22]. The

degree of the GdFeO3-type distortion affects the Ti-O-Ti bond angles, which is intimately

linked with the magnetic ordering in RTiO3. In the bulk, the Ti-O-Ti bond angle can

be systematically varied by choice of rare-earth ion, and appears to be a primary factor

in determining the magnetic ground state and ordering temperature [50, 86, 62, 9], as

shown in Figure 3.1. A change of the Ti spin states from ferromagnetic (FM) to G-type

antiferromagnetic (AFM) occurs between R = Sm and Gd.

Two distinct types of orbital ordering have been reported in the titanates, as shown in

Figure 3.2, and are both compatible with Pbnm symmetry. Antiferro-oribtal ordering [Fig

3.2(a)] involves the alternate occupation of α | dxy〉+β | dyz〉 and α | dxy〉+β | dzx〉 orbitals

in the ab plane of the orthorhombic structure, and is associated with the ferromagnetic

titanates (those with larger octahedral rotations). Ferro-orbital ordering [Fig 3.2(b)]

involves the occupation of (| dxy〉+ | dyz〉+ | dzx〉)/
√

3 orbitals, and is found in the

antiferromagnetic titanates (those with smaller octahedral rotations) [63]. Both types of

orbital polarization also contain small lattice distortions of the TiO6 octahedra (marked

by arrows in Fig 3.2): long and short Ti-O bonds for antiferro-orbital ordering and

a trigonal distortion with long and short O-O bonds for ferro-orbital ordering. While

the magnetic behavior and orbital ordering seems strongly linked to the GdFeO3-type

distortion, the relative roles of the orbital-lattice coupling and structural distortions in

determining the FM to AFM threshold is still under significant debate [63, 62, 87, 88].

3.2 Controlling Octahedral Tilts

Thin film heterostructures allow for precise ways of tuning octahedral rotations and

distortions, using epitaxial strain mismatch and oxygen interfacial coherency constraints,

without introducing disorder from chemical substitution [24, 72]. In that regard, they
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Figure 3.2: (a) Antiferro-orbital ordering for ferromagnetic ground state, showing
alternate occupation of α | dxy〉 + β | dyz〉 and α | dxy〉 + β | dzx〉 orbitals. The
dxy orbitals are omitted for clarity. (b) Ferro-orbital ordering for antiferromagnetic
ground state, showing occupation of (| dxy〉+ | dyz〉+ | dzx〉)/

√
3 orbitals.

present distinct advantages for studying the orbital-lattice coupling, their effects on the

magnetic ground state, and offer new insights into the underlying materials physics not

possible with bulk studies.

It was shown in Chapter 2 that octahedral tilts in interfacial layers of GdTiO3 are

reduced by interfacing with cubic SrTiO3. To study how these octahedral tilts are modi-

fied as a function of film thickness, GdTiO3 films and GdTiO3/SrTiO3 superlattices were

grown on (001) (La0.3Sr0.7)(Al0.65Ta0.35)O3 (LSAT) by hybrid molecular beam epitaxy

(MBE) [68, 66]. A 20 nm film of GdTiO3 was grown directly on LSAT to represent

the bulk structure. Superlattices containing 3.5 (10 GdO layers), 2.4 (7 GdO layers),

and 2.0 (6 GdO layers) nm of GdTiO3 between 5 nm of SrTiO3 spacers were also grown

on LSAT, and contained either five or ten GdTiO3 layers to achieve approximately the

same volume amount of GdTiO3 as the 20 nm sample. While MBE provides atomic level

thickness control on the single monolayer level, substrate miscut and surface steps are

always present, and cause uncertainties in the layer thickness of ∼ ±1 atomic plane in

the growth direction. All thicknesses given here represent the average number of atomic

planes, as verified by TEM, and only regions containing GdO layers with the nominal
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Figure 3.3: (a) HAADF-STEM image of a 20 nm GdTiO3 film showing Gd displace-
ments. The angle θ is measured between three successive Gd columns. A schematic of
the bulk unit cell is superimposed. (b)-(d) Representative images of 3.5, 2.4, and 2.0
nm thick films. Figure reproduced from Ref. [43] with permission from the American
Physical Society.

thickness were selected for further analysis. All superlattice samples also had 10 nm of

SrTiO3 as a buffer and cap layer.

3.3 TEM Characterization

TEM cross sections were prepared by focused ion beam (final thinning using 5 kV Ga

ions) and imaged on a field-emission FEI Titan S/TEM with a super-twin lens (Cs = 1.2

mm) at 300 kV. Images were acquired using a 1024 × 1024 frame size and 30 µs dwell.

The convergence angle was 9.6 mrad. Orientation domains in GdTiO3 films are present
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due to the lattice mismatch and preferred growth direction on LSAT (see Fig. 2.5) [68].

For this study, all images were taken along [110]O, since this is the orientation that can

best distinguish the A-site displacements.

Figure 3.3 shows representative HAADF STEM images of each GdTiO3 film. A de-

viation angle, 180 - θ, where θ is the angle between three successive A-site cations, is

indicated in Fig. 3.3(a) for the 20 nm thick GdTiO3 sample. A schematic unit cell

of GdTiO3 is also overlaid in Fig. 3.3(a), showing the alternating displacement of the

A-site cations along the growth direction. The A-site positions were quantitatively deter-

mined by extracting the centroid positions from multiple HAADF images using a custom

MATLAB algorithm.

Figure 3.4 shows the deviation angles, averaged along each AO plane (where A is the

A-site cation) in the growth direction, for each GdTiO3 sample of different thickness. The

shaded regions indicate the GdTiO3 layers, which can be easily identified by the HAADF

image intensities. The deviation angle of the 20 nm GdTiO3 film, ∼ 15◦, is averaged

over four images (∼ 100 atomic rows) and represented by the dashed line. This value is

similar to that of bulk GdTiO3 and serves as a reference for bulk-like strained GdTiO3.

As discussed in Chapter 2, SrO planes show no Sr displacements, since SrTiO3 is cubic,

so the apparent deviation angle (∼ 1◦) is due to experimental noise and instability, and

serves as a measure of the error.

From Fig. 3.4, approximately one to three GdO planes at the SrTiO3 interface show

reduced deviation angles in all samples, as expected from the results of Chapter 2. More

surprisingly, each of the GdTiO3 quantum wells (3.5, 2.4 and 2.0 nm) also showed reduced

deviation angles in the films’ interior, not just at the interface. The 3.5 and 2.4 nm films

both show a constant deviation angle at the center: a slightly reduced deviation angle

from the bulk (∼ 14◦) for the 3.5 nm film, and a significantly reduced value (∼ 11◦)

for the 2.4 nm film. The 2.0 nm film (six GdO layers) has a maximum deviation angle
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Figure 3.4: Deviation angles for each AO plane across SrTiO3/GdTiO3/SrTiO3 in-
terfaces with different GdTiO3 thicknesses. The angle for the 20 nm film is indicated
by the dashed line and is an average over ∼ 100 GdO planes. Shaded regions indicate
the extent of the GdTiO3 film for each sample, determined from the HAADF image
intensities. Figure reproduced from Ref. [43] with permission from the American
Physical Society.

of ∼ 10◦ in the central GdO layer, but has continuously decreasing angles toward the

interface.

3.4 PACBED

To confirm that the Gd displacements in the GdTiO3 quantum wells correlate with

octahedral tilts, as they do in the bulk (see Fig. 2.7), position averaged convergent beam

electron diffraction (PACBED) was done on the GdTiO3 films. An overview of how

PACBED patterns are formed is given in Appendix A. PACBED has been used previously

to determine small structural distortions, including octahedral tilts in the nickelates

[72, 40, 71]. PACBED simulations were carried out for [110]O GdTiO3 structures with

varying degrees of octahedral tilts and Gd displacements using the Kirkland multislice

code [38]. An overview of simulation methods can be found in Appendix B. For more
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Figure 3.5: Simulated “GdTiO3” PACBED patterns for different Gd displacements
and octahedral tilts (TEM foil thickness is 18.8 nm). The numbers indicate the
degree of distortion, with 0 signifying no distortion, 1 the distortion in GdTiO3, and
1/2 corresponding to the intermediate distortion. The top-left panel corresponds to
the cubic structure, while the bottom-right panel is bulk GdTiO3. Figure reproduced
from Ref. [43] with permission from the American Physical Society.
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details on the PACBED procedure, including difficulties and subtleties in generating the

structures, see Appendix C.

Figure 3.5 shows these simulations using structures containing a combination of no

distortion (indicated by 0), bulk-like distortion (indicated by 1), or an intermediate degree

of distortion (indicated by 1/2). From the symmetry and features of the simulated

PACBED patterns, we see that in this orientation, the patterns are more sensitive to the

octahedral tilts (columns), while the effects of the Gd displacements are minor (rows).

Patterns without octahedral tilts (top row) contain a dark concave octagonal shape in the

central disk, with four “cross-shaped” regions at the corners. Meanwhile, patterns with

bulk-like octahedral tilts (bottom row) appear squarer, with a “lens-like” or “football-

shaped” feature in the center, and triangular corners instead of crosses. These features

are consistent regardless of Gd displacements (columns), indicating that PACBED can

be used for separate characterization of octahedral tilts vs Gd displacements.

Experimental PACBED patterns were acquired from the central regions of each

GdTiO3 film, from an area of approximately four pseudocubic unit cells [slightly larger

than the primitive orthorhombic unit cell in the [110]O projection, see Fig. 2.5(b)]. Fig-

ure 3.6 compares the simulated and experimental PACBED patterns from the different

thickness GdTiO3 films and SrTiO3. For the simulations, the octahedral tilts were varied,

with the degree of tilt based on the measured deviation angles for that particular film

(Fig. 3.4), and interpolated to tilt angles from bulk rare-earth data (Fig. 2.7). Bulk

Gd displacements were used for all GdTiO3 simulated patterns, since it has little effect

on the features in the [110]O projection (Fig. 3.5). The top halves of each simulated

pattern is convolved with a Gaussian function, to account for the experimental point

spread function, and show good qualitative agreement with the experimental pattern.

From Fig. 3.6, as the GdTiO3 film becomes thinner (smaller deviation angles and hence

less octahedral tilts), the PACBED pattern becomes more “SrTiO3-like” (i.e. cubic).
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Figure 3.6: Experimental (top row) and simulated (bottom row) PACBED patterns
of GdTiO3 and SrTiO3. The thickness labels indicate the GdTiO3 layer thickness
from which the experimental data was acquired. Simulated patterns use the expected
octahedral tilts from measured deviation angles. Gd displacements were taken to
be bulk-like for all GdTiO3 simulations. The top half of simulated patterns include
Gaussian convolution to account for detector point spread function, and show a better
match to experimental patterns. Figure partially reproduced from Ref. [43] with
permission from the American Physical Society.
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This confirms that the lower deviation angles in the thinner GdTiO3 films are indeed

correlated with lower octahedral tilts, as expected from bulk data.

We note, that while the quantification of oxygen octahedral tilts has been accom-

plished in the nickelate systems using PACBED [71, 72], octahedral tilt quantification in

the current structures are more challenging: different preparation techniques and sample

instability leads to less than ideal surface conditions, which creates a diffuse background

in the PACBED pattern, hindering quantification. The tilt system is also different, and

simulations show that changes in the PACBED pattern between small differences in oc-

tahedral tilts are difficult to resolve. Excellent qualitative agreement between PACBED

patterns containing different degrees of octahedral tilts and experimental patterns are ob-

tained, however, indicating that using Gd displacements to indirectly measure octahedral

tilts is valid.

3.5 Magnetic Measurements

Bulk magnetization measurements were made in a superconducting quantum inter-

ference device magnetometer (Quantum Design) with the magnetic field in the plane

of the film. Figure 3.7(a) shows the magnetization for each GdTiO3 sample of varying

thickness as a function of temperature, under a constant field of 100 Oe. The shapes of

the thicker layers (> 2.0 nm) are indicative of ferromagnetism, with the Curie tempera-

ture (TC) marked by the arrows at the upturn in the magnetization. The TC of the 20

nm film (∼ 30 K) agrees well with that in the bulk [62, 9, 89], while thinner films show

decreasing TC until the 2.0 nm film no longer shows ferromagnetism. Figure 3.7(b) shows

magnetization as a function of magnetic field, measured at 2 K. Hysteresis indicative of

ferromagnetism is clearly seen in the 20, 3.5, and 2.4 nm films. The 2.0 nm film was not

hysteretic, indicating the absence of ferromagnetism, and is not shown.
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Figure 3.7: (a) Magnetization as a function of temperature for samples with GdTiO3

films of various thicknesses recorded on cooling under a field of 100 Oe. The arrows
indicate TC. The data from the 20 nm sample is from Ref. [68]. (b) Magnetization as
a function of magnetic field at 2 K. Figure reproduced from Ref. [43] with permission
from the American Physical Society.

The magnetization measurements were from the entire sample, and includes the dia-

magnetic and paramagnetic signals from the LSAT substrate, the SrTiO3 layers, and a

Ta backing layer. Isolating the GdTiO3 response was not possible due to the superlattice

structure, and although all measured samples were similar in size and contained roughly

the same amount by volume of GdTiO3, small size and thickness variations in the sub-

strate and backing layers are unavoidable, and thus cannot be subtracted out. Therefore,

any conclusions about volume dependent parameters, such as saturation magnetization

cannot be reliably made. However, the TC and coercivity are properties of only the FM

GdTiO3, and independent of the sample amount.
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Figure 3.8: Measured deviation angles (open diamonds, top graph) for GdTiO3 films
with different film thicknesses. The FM stability region is indicated. The angles are
an average of the center regions in the 3.5 and 2.4 nm quantum wells, and the peak
value for the 2.0 nm quantum well. The arrow represents the estimated uncertainty
of ±1◦, estimated from the SrTiO3 deviation angle measurements, shown only on the
20 nm film data for clarity, but applies to all measurements. The bottom graph (open
circles) shows the deviation angles for bulk rare-earth titanates [62] with different
rare earth ionic radii [82]. Filled triangles estimate the effects of coherent substrate
strain and microscope scan asymmetry (∼ 2% difference between x and y directions,
measured from cubic samples). Both change the measured lattice parameters and,
hence, deviation angles. The FM and AFM stability regions are indicated. Figure
reproduced from Ref. [43] with permission from the American Physical Society.
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3.6 Influence of Octahedral Tilts

Figures 3.4 and 3.7 shows that the reduction in octahedral tilts in the GdTiO3 cor-

responds to a decrease in the TC. This behavior is analogous to the trend in bulk

RTiO3, which also show a decrease in TC as octahedral rotations are reduced (Fig. 3.1).

Both systems can be understood in terms of band ferromagnetism [90], since reduced

octahedral distortions (i.e. Ti-O-Ti bond angles closer to 180◦) correspond to increasing

bandwidth. A quantitative comparison between the film and bulk data, however, reveals

some significant differences.

The magnetic phase diagram for GdTiO3 films and the bulk RTiO3s as a function

of deviation angle is shown in Figure 3.8. In the bulk, the deviation angles (octahedral

tilts) vary as a function of the rare-earth ion, while film thickness is used to control the

distortion in the epitaxially grown samples. Circles in the bottom graph represent the

measured values for single crystals [62] while triangles estimate the effect of substrate

strain and the imaging distortions present in the current study. In bulk, the AFM to FM

transition occurs for a deviation angle of approximately 15◦, between Gd and Sm (see

Fig. 3.1). In contrast, for the films, the critical deviation angle for FM to vanish occur at

∼ 10.5± 1◦. The arrow in the top graph represents the estimated uncertainty (from the

deviation angle measurement of cubic SrTiO3), and is present for each data point. This

critical angle of 10.5◦ is comparable to that of LaTiO3, which is AFM, has the smallest

octahedral tilts out of all the rare-earth titanates, and is barely insulating.

While bulk data seems to strongly suggest that the degree of the GdFeO3 distortion

is the main external driving force of the magnetic ordering in both pure and mixed rare-

earth compounds, Fig. 3.8 indicates that the FM (and associated antiferro-orbital) or-

dering is not as strongly dependent on the orthorhombic distortion as previously thought.

Rather, these results suggest a direct interaction between orbital ordering (which is cou-
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pled to the magnetism) and the lattice, with the degree of orthorhombic distortion playing

a lesser (independent) role. Reports of structural anomalies that occur at the magnetic

ordering temperature [62], and orbital ordering changes in the AFM titanates at the

ordering temperatue [63] also suggest a direct lattice-orbital coupling.

The FM rare-earth titanates (such as GdTiO3) thus seem to be well described by

narrow band, insulating, single electron models [91, 92, 93] with a FM ground state.

In these systems, antiferro-orbital ordering, along with intra-atomic exchange leads to

ferromagnetism below the orbital ordering temperature. The 4f 7 electron configuration

on the Gd ion ensures that there are no orbital angular momentum contributions from

the Gd, suggesting that the interatomic exchange field, even at low Ti-O-Ti bond angles,

favors the FM ground state.

The FM ground state vanishes in the 2.0 nm film, which is also the only film that does

not contain any continuous planes with the same Gd displacements (octahedral tilts, see

Fig. 3.4). The vanishing TC in the thinnest films could be due to the structure, which

makes long-range, coherent orbital ordering [87] difficult, similar to what is observed in

alloys such as La1−xYxTiO3 [62] or Sm1−xGdxTiO3 [90]. These interfacial effects also of-

fer an explanation for the so-called “magnetic dead layers,” which are widely-reported in

many perovskite films. If they are indeed a result of distortions from interfacial connec-

tivity constraints, properly designed heterostructures with smaller interfacial mismatch

could be used to mitigate the effect.

3.7 Conclusions and Outlook

By analyzing cation displacements in GdTiO3 films grown between cubic SrTiO3

using STEM, and bulk magnetization measurements, we showed that the octahedral tilts

in GdTiO3 can be reduced, and is concomitant with a reduction in the TC. A FM to
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non-FM transition is induced in the thinnest GdTiO3 film. The FM state in the films

persists to smaller deviation angles than in the bulk rare-earth titanates, indicating that

the magnetic ground state is strongly controlled by the lattice-orbital coupling, and only

to second order depends on the amount of GdFeO3-type distortion.

Although a reduction in deviation angle is expected at the interface in GdTiO3, due to

oxygen connectivity requirements, an open question remains as to why deviation angles

are reduced in the interior of films thicker than (twice) the expected interfacial thickness

region. This could be due to long range structural coherency effects, or even coupling

between the two high-density two-dimensional electron gases located at each interface.

The last two Chapters both demonstrate local control of octahedral tilts in perovskite

oxides by proper choice of interface materials and film thicknesses. Through unique het-

erostructuring, new physical phenomena can be studied and controlled in ways not pos-

sible in the bulk. We hope that this work helps provide new insights into understanding

complex oxide interfaces, and promotes new ways to create functional materials systems

through proper materials selection and design.
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Chapter 4

Metal-Insulator Transitions in
Nickelates

Metal-insulator transitions (MITs) of correlated transition metal oxides have long been

a central subject in condensed matter physics [49, 94]. Understanding MITs can help

develop the theoretical framework for other exotic related phenomena (i.e. high TC super-

conductivity), and controlling its behavior is key for developing useful device applications.

Identifying the underlying mechanism in these transitions is often difficult however, as the

many competing forces between electronic, structural and spin degrees of freedom can of-

ten compete or cooperate simultaneously. As a result, the subject continues to be a topic

of strong debate, even for seemingly simple materials systems [95, 96, 97, 98, 99, 100, 101].

4.1 Origin of MIT in Nickelates

An example of such a system is the rare-earth nickelates (RNiO3, whereR is a trivalent

rare-earth ion, except for La), a prototypical strongly correlated material which undergoes

a metal-insulator transition below a certain temperature. Similar to the RTiO3s, RNiO3s

also adopt the distorted GdFeO3-type structure (space group Pbnm, see Fig. 4.1). This

structural distortion is characterized by octahedral tilts in all three cartesian axes, which

directly control the Ni-O-Ni bond angles. In bulk RNiO3, the amount of the structural
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Figure 4.1: Bulk RNiO3 orthorhombic structure showing octahedral tilts, which de-
crease the Ni-O-Ni bond angles (left). Phase diagram of bulk RNiO3, showing mag-
netic and electrical transition temperatures as a function of rare-earth ionic radius
(right). Transition temperatures from Refs. [102, 111, 112]; ionic radii from [82].

distortion is determined by the rare-earth ionic radii, with smaller radii leading to larger

distortions, which increases the MIT temperature (TMIT) [102], as seen in Fig. 4.1.

Hydrostatic pressure [9, 103, 104] and epitaxial strain [105, 106, 107, 108, 109, 110] has

also been applied in the bulk and thin films, respectively, to modify TMIT. The direct

correlation between the ionic radius and TMIT can be strongly attributed to the Ni-O-Ni

bond angles in the distorted structure, which are crucial in determining the electronic

bandwidth and magnetic exchange interactions.

Early studies attributed the MIT in the RNiO3s to a bandwidth-controlled charge

transfer gap [102, 113]. With the larger rare-earth ions, such as Nd and Pr, magnetic

ordering occurs concomitantly to form an insulating antiferromagnetic ground state [114],

while for smaller ions, the magnetic ordering temperature occurs below the MIT (Fig.

4.1). Structural anomalies that occurred at the MIT were identified as a slight change

in the unit cell volume, caused by a change in the Ni-O bond lengths, with no change in
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lattice symmetry [102]. However, any orbital ordering that would match the magnetic

wave vector, or signs of Jahn-Teller effects, the two common mechanisms for breaking

the twofold degeneracy of the singly occupied eg orbital in narrow band oxides, were not

detected [114, 115, 116].

More recently, however, high-resolution measurements have revealed that the struc-

tural changes that occur at the MIT are better characterized as a structural phase

transition from orthorhombic Pbnm to monoclinic P21/n [117]. This subtle symmetry

change, evidenced by signatures of two inequivalent Ni sites, points to a charge ordered

(CO), or charge disproportionation (CD) ground state, and a lifting of the eg degeneracy:

2e1
g → e1−δ

g + e1+δ
g [118, 119, 120]. The CO ground state is also referred to as a bond-

length ordered state, as it is characterized by alternating NiO6 octahedra with different

Ni-O bond lengths, since the nominal charges on the Ni sites may not vary significantly

(e.g. δ ≈ 0.2 − 0.3 � 1 according to [117]). In the literature, the terms charge/bond

order, charge/bond length disproportionation is often used interchangeably, as I do in the

present Chapter. Figure 4.2 shows a schematic of the CO structure. These new findings

have provided important insight into the origin of the MIT in the nickelates, and offer

structural parameters for theoretical calculations. However, the relative importance of

the electronic, magnetic, and structural parameters in driving the MIT remain uncertain.

4.2 Strain Effects in Thin Films

Thin films offer additional tuning parameters for controlling structure, not available

in the bulk, and have been proposed as a mechanism for separating the lattice from the

electronic and magnetic effects. One such example is in LaNiO3, where strain has been

used to alter the octahedral tilt patterns in thin films, thereby affecting its electronic

structure and band degeneracy as well [32, 16].
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Figure 4.2: Schematic representation of the charge ordered/charge disproportionation
ground state. Two inequivalent NiO6 octahedra (colored blue and orange, respec-
tively), have different bond lengths, which alternate between nearest neighbors.

Similarly, recent efforts have been made to utilize epitaxial constraints to controllably

modify the structure of NdNiO3 films in an effort to disentangle the different competing

mechanisms responsible for the MIT and identify the primary factor. For example,

ultrathin (15 unit cells) NdNiO3 films on NdGaO3 grown by Meyers et al. showed an

MIT and bulk-like magnetic ordering, but x-ray absorption spectroscopy (XAS) and

resonant x-ray scattering (RXS) did not detect any symmetry lowering in the structure

[121]. They therefore suggested that the magnetic ordering independently drives the MIT.

Upton et al. also dismiss any charge ordering/disproportionation mechanism involving

symmetry changes, instead proposing Ni 3d and O 2p hybridization, as well as Ni charge

redistribution to Nd 5d states as underlying mechanisms [122]. These results are in

contrast to other experimental [120, 123, 124] and theoretical work [97, 125, 126] based

on charge/bond length disproportionation on the Ni sites.

A key issue in this debate relies on the structural symmetry of the NdNiO3, and the

ability to detect this subtle change in strained films as they go through the MIT. The
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charge disproportionation model requires a structure with two inequivalent Ni sites, such

as the low temperature monoclinic phase in the bulk. This distortion in bulk NdNiO3 is

very small [117], and would be even more challenging to detect in ultrathin films, where

the signal would be much weaker. In addition, structural information from the opposite

case, i.e. when the MIT does not occur, such as in compressively strained films, could

also provide insight into the microscopic reasons for the MIT.

In this Chapter, we analyze the structure of compressive and tensile strained NdNiO3

thin films, grown on YAlO3 and NdGaO3, respectively, using position averaged conver-

gent beam electron diffraction (PACBED) in scanning transmission electron microscopy

(STEM). PACBED has been previously used to analyze extremely small structural dis-

tortions [127, 71, 72], such as octahedral tilts and ferroelectric displacements, and can be

obtained from unit cell length scales. A summary of PACBED formation can be found

in Appendix A. We use a liquid nitrogen cold-stage holder to obtain PACBED patterns

above and below TMIT. From PACBED, we show that tensile strained films (grown on

NdGaO3), which exhibits a MIT, undergoes a structural transition, while compressively

strained films (grown on YAlO3), which are metallic at all temperatures, do not. We

combine these results with symmetry arguments and geometric constraints to provide a

remarkably simple, yet complete picture of the MIT in these films and reasons for its

suppression.

In addition to understanding the temperature-driven MIT, many other aspects of

this material system, such as non-Fermi liquid phases [128, 107, 9] and tuning the Fermi

surface to mimic those of the cuprate superconductors [129, 130], are strongly dependent

on the interplay between structural and electronic degrees of freedom. Elucidation of the

mechanisms behind the MIT in the nickelates could potentially extend to insights into

these other fascinating phenomena as well.
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Figure 4.3: Resistivity as a function of temperature for NdNiO3 films grown on
NdGaO3 (solid line) and YAlO3 (dashed line) substrates. A MIT occurs on the
NdGaO3 grown film at ∼ 130 K. Green vertical line marks cold stage temperature
(∼ 105 K). Corresponding STEM images for the film grown on NdGaO3 at room
and cryo temperatures are shown on the right. Arrows mark the approximate inter-
face between the film and substrate. Images were acquired using fast acquisition and
cross-correlated over many frames for higher signal-to-noise.

4.3 Transport in Strained NdNiO3 Thin Films

NdNiO3 films were grown on NdGaO3 and YAlO3 substrates by RF magnetron sput-

tering in an Ar/O2 gas mixture at a 9 mTorr growth pressure, as described in [105]. The

films were 15 unit cells (∼ 6 nm) thick, as confirmed by TEM, and fully strained to the

substrate (0.85% tensile and −3.5% compressive for NdGaO3 and YAlO3, respectively),

as verified by high-resolution x-ray diffraction. In-plane longitudinal resistivity measure-

ments as a function of temperature were made in a Quantum Design Physical Properties

Measurement System (PPMS).

Figure 4.3 shows resistivity curves of both films, along with corresponding STEM

images at room and cryo temperatures for the film grown on NdGaO3. The images were

acquired using a high angle annular dark field (HAADF) detector with a convergence

semi-angle of 9.6 mrad. The arrows in the image mark the approximate interface between

the film and substrate. From the resistivity, we see that the film grown on YAlO3 shows
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metallic behavior across all temperatures, while an MIT is observed in the film grown

on NdGaO3, occurring at ∼ 150 K, with a hysteresis of ∼ 25 K. This TMIT is consistent

with other similarly reported films in the literature [121], but is lower than bulk NdNiO3

(∼ 200 K [111, 102]), as is typical for constrained films.

A Gatan liquid nitrogen cold stage holder is used to bring the specimen temperature

to 105 K (green line in Fig. 4.3, well within the insulating regime for the film that

undergoes an MIT. In the compressively strained film, grown on YAlO3, we see a complete

suppression of the MIT, which is consistent with other reports in the literature [106, 107,

131].

4.4 Orientation Relationships

Both substrates, NdGaO3 and YAlO3, are Pbnm orthorhombic perovskites with the

growth direction oriented along (110)O, where the subscript indicates the orthorhombic

unit cell. Figure 4.4 shows the orientation relationship of the NdNiO3 film on a (110)O

surface, where the subscripts s and f denote the substrate and film, respectively. All

directions are given in orthorhombic notation. We note that while the (001)O//(110)O

orientation has similar lattice mismatch as (110)O//(110)O, structural mismatch at the

interface due to different oxygen octahedral arrangements make this orientation unlikely.

From Fig. 4.4, the film is epitaxially constrained along the ab ([11̄0]) and c ([001])

orthorhombic axes, but the a and b lattice parameters change to accomodate the strain,

forming a characteristic angle, γ, that deviates from the 90◦ angle in the bulk. A general

2× 2× 2 pseudocubic supercell containing the original orthorhombic unit cell is outlined

in blue.
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Figure 4.4: Schematic of an orthorhombic film grown on a (110) oriented orthorhombic
substrate. The lattice parameters of the orthorhombic substrate are indicated by
subscript “s”. An expanded 2×2×2 pseudocubic unit cell is marked in the film, with
arrows tracing the traditional a and b orthorhombic lattice parameters, denoted by
subscript “f”. The angle between these two directions are denoted by γ.

4.4.1 Transmission Electron Microscopy and PACBED

Transmission Electron Microscopy (TEM) cross-sections were prepared using a fo-

cused ion beam with final milling energies of 5kV Ga ions along both the [001]O and

[11̄0]O projections for each sample. A 300 kV FEI Titan S/TEM (Cs = 1.2 mm) was

used for HAADF STEM imaging and PACBED acquisition, with a 9.6 mrad convergence

semi-angle for high resolution imaging. Both 9.6 and a reduced 3.4 mrad angle was used

for position averaged convergent beam electron diffraction (PACBED). Room tempera-

ture imaging and PACBED was done on an FEI double-tilt holder while a Gatan 636

double-tilt LN2 holder (operating at a measured 105 K) was used for low temperature

experiments. The temperature remained stable throughout the data acquisition.

PACBED patterns are similar to conventional TEM diffraction patterns, except the

convergent semi-angle of the probe spreads each diffraction beam from a point to a disc.
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Figure 4.5: Unit cell schematic of the two cross-section views of NdNiO3, along with
simulated and experimental PACBED patterns of orthorhombic Pbnm films, showing
similar features.

A larger convergence angle results in a larger disc, and greater disc overlap. The data

is acquired serially in STEM mode rather than in parallel, as is the case for conven-

tional CBED. The intensities of the different diffraction discs overlap to create unique

looking patterns, but the reflections still maintain the point group (or more accurately

Laue group) symmetry of the structure. An artificial color table has been applied to

all PACBED patterns in this work, to better highlight the intensity variations in the

patterns.

PACBED of NdNiO3 projected in the [001]O and [11̄0]O directions produces patterns

with distinct features, similar to those previously observed in Chapters 2 and 3, for

orthorhombic films grown on cubic substrates. Figure 4.5 shows PACBED patterns

from the simulated NdNiO3 bulk structure and experimental patterns from a NdGaO3

substrate and GdTiO3 film. Patterns along [11̄0]O contain a square-like feature in the

central disc, while those along [001]O show a diagonal intensity stripe. These features are

accurately reproduced in the simulations, and experimentally observed in other perovskite

structures with the same tilt structures and space group, as seen in Fig. 4.5.

One use for the distinct PACBED patterns is simple identification of the zone axis
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by visual inspection. The present study focuses on the [001]O projection (orange arrow

in Fig. 4.4), since PACBED patterns from [11̄0]O did not show sensitivity to the struc-

tural changes seen in [001]O. While PACBED has been used to detect small structural

distortions [71, 72, 127], the overlap of large diffraction discs can hide subtle symmetry

changes. Therefore, we employ low-angle PACBED (LA-PACBED) in this Chapter to

reduce the size of the diffraction discs in order to better distinguish them and again

additional insight into the film structure. For all LA-PACBED patterns, a film area of

∼ 12 × 12 unit cells was scanned. The reduction in the convergence semi-angle (9.6 to

3.4 mrad) in LA-PACBED results in a decrease in the resolution of the HAADF STEM

image. However, the film and substrate could still be differentiated using the smaller

convergence angle during the LA-PACBED acquisition.

4.5 NdNiO3 Films Grown on NdGaO3

4.5.1 Room Temperature Structure

Figure 4.6(a) shows experimental LA-PACBED patterns from the substrate and

film areas of NdGaO3/NdNiO3, at room temperature, with a simulated pattern of bulk

NdNiO3 for comparison. The simulation was carried out using the Kirkland multislice

code [38], at 0 K for speed. An overview of simulation methods are given in Appendix B.

A Sobel edge filter was applied to each pattern and displayed in Fig. 4.6(b) to highlight

sharp changes in the intensity and better distinguish the diffraction discs. Relevant discs

are indexed in the orthorhombic notation.

In the larger angle PACBED patterns (9.6 mrad, Fig. 4.5), we noted that a charac-

teristic diagonal intensity stripe exists in the central beam when looking down [001]O.

We see a similar bright band running diagonally in the LA-PACBED in Fig. 4.6 for the
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Figure 4.6: (a) Simulated LA-PACBED patterns for bulk NdNiO3 (∼ 23 nm), and
experimental LA-PACBED patterns for the NdGaO3 substrate and the NdNiO3 film
on NdGaO3 at room temperature. (b) LA-PACBED patterns from (a) after a Sobel
edge filter, with enhanced contrast to allow for identification of the diffraction discs.
Selected diffraction discs are indexed in orthorhombic notation. The insets show
the experimental 200 discs. The NdGaO3 substrate shows very similar features and
intensities as the simulation, while the NdNiO3 film shows a different symmetry than
the substrate and bulk structure. (c) Low temperature LA-PACBED patterns from
the NdGaO3 substrate and NdNiO3 film. While the substrate pattern is similar to its
room temperature counterpart, the low temperature film displays a different symmetry
from both the room temperature film and the substrate. (d) LA-PACBED patterns
from (c) after a Sobel edge filter. Asymmetry between 110 and 11̄0 diffraction disc
intensity is clearly visible.
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Figure 4.7: Cubic perovskite lattice (left) with TiO6 octahedra at the corners of the
unit cell. Rotating each octahedra by θ in the plane of the page (right) reduces the
two in-plane lattice parameters by cos θ. Unit cells, shaded in blue (larger) and orange
(smaller), respectively, have different lattice parameters.

simulated bulk NdNiO3 structure, and substrate NdGaO3. Furthermore, clear differences

in diffraction features can be seen between 200 and 020 discs for the same patterns: a

bright region of intensity can be clearly seen in 200 near the central beam, as well as over-

lapping 310 reflections, but are barely observable in 020. Insets of the 200 and 020 discs

for the experimental patterns are highlighted in Fig. 4.6(b). These asymmetric features

are caused by the octahedral rotations and A-site (Nd) cation displacements character-

istic of the orthorhombic Pbnm structure, and are a close match with the bulk NdNiO3

simulation. In contrast, the LA-PACBED pattern of the NdNiO3 film on NdGaO3 shows

similar intensity features and variation between 200 and 020, indicating that the strained

film has different symmetry from the bulk structure as well as the substrate.

We can also see from Fig. 4.6(a) that the 200 and 020 disc spacing, which correspond

to the a and b orthorhombic lattice parameters (see Fig. 4.4), are clearly different for the

NdGaO3 substrate, as expected, but are equal for the NdNiO3 film (although it should

be noted that bulk a and b lattice parameters of NdNiO3 are almost identical as well).

Equal a and b lattice parameters are expected for a tensile strained orthorhombic film

[13]: as the film is constrained along [11̄0]O and [001]O, the strain is accommodated by
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Figure 4.8: Measurement of γ in NdNiO3 films on NdGaO3. Large (> 90◦) γ indicates
reduced octahedral tilts along the growth direction ([110]s, see Fig. 4.4). Reduced
γ in NdNiO3 at low temperature indicates increased rotations compared to room
temperature. Measured γ in NdGaO3 substrate is ∼ 90◦ for both temperatures, as
expected.

an increase in γ (the angle between a and b, Fig. 4.4), and a reduction in octahedral tilts

along the growth axis, [110]O. The reduction in octahedral tilts is due to oxygen corner-

connectivity constraints; octahedral tilts around a cartesian axis will cause a reduction

in the lattice parameters perpendicular to that axis, as illustrated in Figure 4.7, or in the

present case, the opposite effect will occur. We note that these structural changes occur

in the film as a result of the strain state, whether the substrate is cubic or orthorhombic.

The angle γ can be accurately measured from the LA-PACBED patterns, as the

center of the diffraction discs can be easily determined from the overlapping features.

Figure 4.8 shows the measurement of γ from the NdNiO3/NdGaO3 diffraction patterns,
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with γ = 90.2◦ for the NdGaO3 substrate and 93.2◦ for the NdNiO3 film. The large

increase in γ in the film indicates that the octahedral tilts about the growth direction,

[110]O, are either mostly or completely suppressed.

4.5.2 Low Temperature Structure

Figure 4.6(c) shows LA-PACBED patterns of the NdNiO3/NdGaO3 sample at 105

K. While the substrate pattern shows similar features as the room temperature pattern

(expected since NdGaO3 does not undergo a structural change at low temperatures [132],

we see a noticeable change in the NdNiO3 film. Most prominently, a strong asymmetry

in intensity can be observed between the 110 and 11̄0 reflections, which can be seen as

bright overlaps in the central disc, especially noticeable in the edge-filtered patterns in

Fig. 4.6(d). This difference in the LA-PACBED pattern indicates a reduction in film

symmetry, most likely a transition to monoclinic P21/n, similar to what occurs in the

bulk at low temperature. Synchrotron powder diffraction of polycrystalline NdNiO3 also

reports similar peak splittings between 404̄/404 reflections as a sign of the monoclinic

transition [117]. We also see from Fig. 4.8 that γ decreases to 91.1◦ at low temperatures

in the NdNiO3 film, which indicates that the octahedral rotations about the growth

direction ([110]O) increases, consistent with P21/n symmetry (a three tilt system [2]).

4.6 NdNiO3 Films Grown on YAlO3

Figure 4.9 shows LA-PACBED patterns of the compressively strained NdNiO3 film

grown on YAlO3. Similar compressively strained films are reported to be monoclinic

(P21/m) [13]. The patterns from the substrate are similar to the NdGaO3 substrate pat-

terns at both temperatures; even though the intensities are different, due to the different

scattering strength of the atoms, they possess similar symmetry elements. From the
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Figure 4.9: LA-PACBED patterns of substrate and film NdNiO3/YAlO3 at room
temperature and at 105 K. The substrate shows similar features to the NdGaO3

substrate. The film does not show any structural change at low temperature.

LA-PACBED of the NdNiO3 film, we do not observe any noticeable differences between

the room and low temperature patterns, although the 220 and 22̄0 reflections (using

orthorhombic indices) may have slightly different intensities.

Overall, the patterns from the film grown on YAlO3 had considerably weaker diffrac-

tion intensities. This may have been due to TEM sample preparation and beam damage,

since the film contained structurally disordered regions, as observed in HAADF STEM

(not shown), likely as a result of the very large compressive strain (−3.6%).

4.7 Space Group and Octahedral Tilts of Strained

NdNiO3

Figure 4.10 illustrates the space group and Glazer tilt configuration [22] of bulk

NdNiO3 (a) and the most likely configurations for tensile (b) and compressively (c)

strained films at room temperature. The orange axes represent the projected direction

([001O]) of all images and diffraction patterns presented in this Chapter. The bulk struc-

ture is well known, and detailed in the literature, while the tilt configurations for both

the tensile and compressively strained films are determined from geometric considera-
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Figure 4.10: Schematic of the expanded 2×2×2 pseudocubic unit cell for (a) bulk, (b)
tensile strained, and (c) compressively strained NdNiO3 films, showing relationships
between key features in the orthorhombic/monoclinc lattice parameters, and the most
probable Glazer octahedral tilts.

tions based on the epitaxial constraints of the substrate and the film lattice parameters

[13, 2, 133]. A detailed analysis in determining the tilt systems of similarly strained films

can be found in [13].

For the tensile strained film, the original primitive orthorhombic unit cell (Pbnm)

becomes best described using a centered orthorhombic cell (Cmcm). The phases of the

octahedral rotations remain the same as in the bulk, but their magnitudes change, with

negligible tilt along the growth direction ([110]O), for reasons mentioned earlier. Here,

we use the convention of denoting the axis of zero tilt the a-axis. This configuration is

the same as proposed by Vailionis [13], and the in-phase and out-of-phase tilts are likely

different (this difference has no bearing on the tilt system or space group). In particular,

the in-phase tilt along the projected viewing direction ([001]O) is probably small.

Figure 4.11 shows simulated LA-PACBED of NdNiO3 with certain distortions from

the bulk structure, such as the absence of cation displacements or octahedral tilts. The

simulations indicate that the similarity in intensity between 200 and 020 reflections in the

tensile strained experimental NdNiO3 pattern, as well as the absence of 120 reflections

[Fig. 4.6(a)], are likely indications of reduced octahedral tilts.
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Figure 4.11: Simulated LA-PACBED of (a) bulk NdNiO3, (b) bulk NdNiO3 without
cation displacements, (c) bulk NdNiO3 without octahedral tilts, and (d) bulk NdNiO3

without cation displacements and octahedral tilts. Sample thickness for all simulations
is 23 nm.

For the compressively strained film, the most likely octahedral tilt rotation and space

group is shown in Fig. 4.10(c). The angles, γ and α, are consistent with angle measure-

ments from the experimental LA-PACBED patterns in Fig. 4.9 (γ = 88.1◦, α = 89.4◦).

While a rigorous determination of the space group symmetry, based on electron

diffraction (e.g. CBED [134]) is possible, it could not be done for the present study

due to experimental challenges, such as the thinness of our samples and holder stability

issues. However, the present analysis still presents compelling evidence for the structural

symmetry of the films studied, and the proposed octahedral tilt patterns (Fig. 4.10)

are consistent with both previous literature [13] as well as geometric arguments of the

allowed tilts within their respective space groups [2].

4.8 Role of Lattice Symmetry in the MIT

Comparing the different structures between strained and bulk NdNiO3 (Fig. 4.10),

it seems curious that the compressively strained film does not undergo an MIT, even

though it is the same crystal system (monoclinic) as the low temperature bulk insulating

phase, and also has a similar tilt pattern as bulk NdNiO3. To explain this observation,
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Table 4.1: Space groups for selected three and two-tilt systems with and without ordering [2].

Tilt system Tilt system Space group Space group
number symbol (no ordering) (1:1 ordering)

Three-tilt systems
8 a+b−c− P21/m (#11-1) P1̄ (#2)
9 a+a−c− P21/m (#11-1) P1̄ (#2)
10 a+b−b− Pnma (#62) P21/n (#14-2)
11 a+a−a− Pnma (#62) P21/n (#14-2)

Two-tilt systems
15 a0b+c+ Immm (#71) Pnnn (#48)
16 a0b+b+ I4/mmm (#139) P42/nnm (#134)
17 a0b+c− Cmcm (#63) C2/c (#15-1)
18 a0b+b− Cmcm (#63) C2/c (#15-1)

we first point out that the expected space group of the compressively strained film is

P21/m, which is not the same as the low temperature bulk space group P21/n. Although

the difference seems small, its effect becomes clear when we consider the presence of

ordering.

4.8.1 Effect of Ordering on Space Groups

The space group of a perovskite structure can be uniquely determined based on its

Glazer tilt system [22, 2]. In many cases, octahedral tilts are also accompanied by

some type of ordering on the cation site, which always results in a reduction of structural

symmetry; at the least, translational symmetry will be lost if neighboring octahedral sites

are no longer equivalent. The ordering can take any form: cation ordering of different

atoms, spin/orbital/charge ordering, or bond length disproportionation, but its effect on

lowering the original symmetry of the structure is the same.

Table 4.1 (data from [2]) shows the space group of relevant three and two-tilt systems,

as well as the symmetry reduction that occurs when a 1:1-type ordering occurs (such as in
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Fig. 4.2). As observed in bulk nickelates, order in the Pbnm space group (Pnma in Table

4.1) results in a symmetry reduction to P21/n. Introducing order into the P21/m space

group would similarly reduce the symmetry of the unit cell, to triclinic P1̄. However,

epitaxial constraints from a cubic or (110) orthorhombic substrate, with 90◦ in-plane

angles, makes this impossible; any expitaxially strained film is bound to contain higher

symmetry elements than the triclinic system. Therefore, by symmetry considerations,

compressively strained films on cubic or orthorhombic substrates are unable to reduce

to an ordered structure upon cooling. These simple considerations could answer the

question on why compressively strained films have been observed to remain metallic and

do not undergo an MIT, and is consistent with a charge/bond length order driven MIT.

4.8.2 Structural Transition in Tensile Strained NdNiO3

The difference between room and low temperature LA-PACBED patterns (Fig. 4.6)

for the tensile strained NdNiO3 film shows clear evidence that the MIT is accompanied

by a symmetry-lowering structural distortion. From Table 4.1, we see that ordering

for the orthorhombic Cmcm space group results in a reduction to monoclinic C2/c.

However, we noted earlier that the reduction of γ in the low temperature LA-PACBED

indicates an increase in the octahedral rotations about the growth direction (Fig. 4.8).

A re-introduction of tilts along this axis means that the structure returns to a three-tilt

system, making P21/n the likely space group of the low temperature tensile strained

films.

From Fig. 4.10(b), we can see that tensile strained films grown on [110] orthorhom-

bic substrates have 2-fold rotational symmetry along each of its cartesian tilt axes. If

these films were grown in tension, on cubic substrates such as (LaAlO3)0.3(Sr2AlTaO6)0.7

(LSAT) or SrTiO3, the diad axis along the growth direction would change to a tetrad
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axis, meaning that the unit cell would possess tetragonal symmetry. While this may

seem trivial, the space group symmetry limits the Glazer tilt system the structure can

possess, and the most likely tilt pattern with a tetragonal space group would be a0b+b+

(Table 4.1), meaning that the out-of-phase tilt in Fig. 4.10(b) would change to in-phase.

Although such a change might be expected to have a large effect on the bandwidth and

electronic properties of the film, transport measurements [107] suggest otherwise: films

grown on cubic LSAT and SrTiO3 show MITs which vary systematically with the degree

of strain, but do not show any anomalous behavior due to different substrate symmetry.

These observations further support the view that the symmetry lowering structural dis-

tortion is a key requirement for the MIT to take place; the exact starting symmetry of

the high temperature structure is not as important as long as it allows a transition to

an ordered structure with lower symmetry. This occurs for tensile strained films, but is

geometrically prohibited for compressively strained films.

4.9 Conclusions and Broader Impacts

In this Chapter, we used LA-PACBED, a STEM diffraction technique, to detect subtle

symmetry changes due to epitaxial film strain and the presence/absence of an MIT in

ultrathin NdNiO3 films. Tensile strained films showed a structural transition below the

MIT, while compressively strained films did not show a structural change, and did not

undergo an MIT. While transport measurements show that the degree of epitaxial strain

varies the MIT transition temperature, the strain state also affects the high temperature

(above the MIT) symmetry and octahedral tilt pattern. Tensile strained films become

orthorhombic (Cmcm) with Glazer tilt pattern a0b+c−, while compressively strained films

are monoclinic (P21/m) with tilt pattern a+b−c−, similar to the octahedral tilt system

of bulk NdNiO3 (a+b−b−). Thus even at room temperature, epitaxially strained NdNiO3
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has a different structure than in the bulk, and this modified structure should be used

as the starting model in future theoretical work involving the MIT and other associated

phenomena of coherently strained films.

Our results present a remarkably simple understanding of the MIT in NdNiO3 thin

films: the MIT only occurs in films with a high temperature space group that will

permit a symmetry reduction to an ordered state. This occurs in tensile strained films,

which undergo an MIT, but not compressively strained ones, which remain metallic at

all temperatures, due to geometric constraints. More generally, these results present

clear evidence for charge ordering, or bond length disproportionation, being intimately

linked to the insulating state of RNiO3s. This transition is highly reliant on the high

temperature “parent” space group symmetry, which can be tuned by epitaxial strain.

Lastly, we note that the present results could also provide insight into the nature of

the non-Fermi liquid phase observed in RNiO3 films for when the MIT is suppressed.

In particular, these films would have a lower symmetry starting structure, which may

be incompatible with reaching a long-range ordered state. The non-Fermi liquid phase

could therefore be potentially caused by such a suppressed or “frustrated” ground state,

which is limited to only local or short-range fluctuations in magnetic or bond length order

parameters.
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Variable-Angle HAADF

This Chapter is different from the others in that it is focused on transmission electron

microscopy (TEM) technique development, rather than materials properties or physics.

Here, I develop a new technique called variable-angle high angle annular dark field (VA-

HAADF), a technique which utilizes the angular dependence of electron scattering to

improve sensitivity in scanning TEM (STEM) imaging. I provide simulation and experi-

mental demonstration of the effectiveness of this new method, specifically, as applied for

precise and accurate determination of three-dimensional (3D) dopant depth locations.

However, the general concepts behind VA-HAADF can be applied in STEM to enhance

overall contrast and improve image analysis in a wide range of applications.

In this chapter, I first provide an overview of quantitative STEM, and its imple-

mentation in determining the position of substitutional dopants in crystalline materials.

Then I introduce the concept of variable-angle HAADF, and demonstrate its applicabil-

ity in increasing the contrast in STEM imaging. A detailed review of the quantitative

STEM procedure is given in Appendix D while additional supporting information and

calculations for VA-HAADF are provided in Appendix E.
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5.1 Quantitative STEM

High angle annular dark field (HAADF) scanning transmission electron microscopy

(STEM) is a popular and widely employed technique for atomic resolution imaging.

Strong scattering of the incident probe electrons by the sample nucleus results in image

intensities that are highly sensitive to the atomic number (Z) [135], producing intuitive

and directly interpretable images. For example, the Z-contrast allows individual dopant

atoms to be detected in crystals, using both HAADF imaging [136, 137, 138, 139, 80,

140, 141, 142] or electron energy loss spectroscopy (EELS) [143, 144, 145, 146].

A schematic of the STEM imaging mode is shown in Figure 5.1(a), where the ADF

detector lies in the back focal plane to detect electrons that have been scattered by the

sample. The scattered electrons are incoherently integrated over the detector geometry

to form the STEM intensity signal for each probe position (image pixel). Images formed

using an ADF detector with sufficiently high inner angle [147, 148, 149, 150] (HAADF)

can be described by an incoherent imaging model, allowing simple determination of the

actual specimen structure.

Additionally, the use of a convergent“point” probe and an annular detector also allows

parallel acquisition of diffraction or elemental (EELS) data, by using a CCD camera

or spectrometer located within the inner angle of the ADF detector [Fig. 5.1(a)], for

complementary structural analysis. Different experimental setups can be used to acquire

simultaneous information in parallel from a combination of ADF and bright field (BF)

detectors, CCD camera, or EELS spectrometer.

More recently, quantitative interpretation of HAADF STEM images have been achieved

by using the detector response function [created by scanning the incident beam across

the detector, see Fig. 5.1(b)], to normalize the scattered electron intensity to the incident

beam [35, 69]. This procedure places image intensities on an absolute scale [Fig. 5.1(c)],
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Figure 5.1: (a) Schematic of STEM imaging mode, with ADF detector in the diffrac-
tion plane below the sample. (b) Image of actual HAADF detector, captured by
scanning the probe across the detector surface, showing the intensity response of each
point on the detector. (c) HAADF image of SrTiO3 normalized to the incident beam.
Inset on top right shows schematic of Sr and Ti columns in the projected [100] direc-
tion.

which allows for direct comparison between experimental and simulated image intensi-

ties. Near perfect agreement has been achieved for atomic resolution HAADF images,

with sensitivity within single atom precision [151]. Direct quantitative analysis of STEM

image intensities is now routine [152, 153, 154], and has been used to provide important

structural information such as elemental composition [152, 155], thickness [39, 156], and

direct atom counting [151]. An overview of the quantitative STEM procedure used in

this chapter can be found in Appendix D.

The advancement of quantitative microscopy is crucial for the development of new

materials. As devices shrink to increasingly smaller scales, new techniques will be needed

with the resolution to adequately characterize those materials. Quantitative STEM does

just that, allowing us to probe materials at the atomic level and extract quantitative

information in ways that were previously impossible. Of particular importance is the

study of interfaces and defect structures. As materials approach the nanoscale, their

properties become dominated by interfaces and defects. For example, the performance

of current generation silicon transistors and devices are already mainly controlled by
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individual dopant atoms [157, 158, 159]. Quantitative STEM offers a way to precisely

locate and analyze these interfaces and defects, providing important atomic information

on the local structure, such as which types of atoms and how many of them are present,

and where specific atoms are located.

5.2 3D Dopant Depth Determination

While current hardware advancements on spherical aberration (Cs) lens correctors in

TEM now allow for sub-angstrom lateral resolution [160, 161, 162, 163], obtaining three-

dimensional (3D) depth information is significantly more challenging. Approaches in-

volving through-focus series, depth sectioning, or confocal microscopy [137, 164, 165, 166]

remain limited in resolution, due to finite depth-of-focus limitations, while tomographic

reconstructions [167, 168] are also resolution limited and require the acquisition of many

images at different sample tilts.

Alternatively, quantitative STEM has recently been employed to determine the 3D

arrangement of dopant atoms in a host matrix [46, 169]. In the study by Hwang et

al., Gd dopant atoms were located in a SrTiO3 matrix, as seen in Figure 5.2(a-c) [46].

Their approach compared the experimental intensities of A-site (Sr/Gd) and B-site (Ti-

O) columns with simulated intensities containing a certain number and configuration

of dopant atoms [Fig. 5.2(d, e)]. Using statistical analysis based on an experimentally

determined noise or “error” function [a 2D gaussian fit to the experimental data spread,

see inset of Fig. 5.2(d)], the number and location of dopant atoms in each column can be

calculated, with an uncertainty of a unit cell or less. An example of two regions containing

dopant atoms is shown in Figure 5.3(a, b), where the expected value and uncertainty of

the dopant depth position is indicated in Fig. 5.3(c, d). While the result is remarkably

promising, and a prime demonstration of the capabilities of quantitative STEM, many
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Figure 5.2: (a) HAADF STEM image of 3.4% Gd-doped SrTiO3. White box indicates
location of dopant. Intensity maps of Sr (b) and Ti-O (c) columns unambiguously
show lateral position of dopant atom based on image intensity. Scale bars indicate the
intensity value normalized to the incident beam. (d) Experimental plot of Sr and Ti-O
column intensities for undoped SrTiO3, before (green open circles) and after (black
triangles) background subtraction. The inset shows the 2D error function calculated
from the experimental data spread. Experimental data for Gd-doped SrTiO3 is shown
by red data points, with a fit for undoped SrTiO3 shown by the solid black line, and the
experimental error indicated by dashed lines. (e) Multislice simulations (blue circles)
of all possible dopant configurations, for a column containing one or two dopants in
a 5 unit cell (u.c.) thick region. The labels (numbers) indicate the dopant position
in the column, with 1 being the closest to the top surface, and 5 being the closest to
the bottom surface. Figure is adapted with permission from Ref. [46]. Copyrighted
by the American Physical Society.
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challenges remain in increasing the robustness of the analysis and increasing its adoption

for more general use.

Due to dynamical scattering of the electron beam, the probe intensity will undergo

“channelling”, or intensity oscillations through the depth of a sample aligned along a

zone-axis. Figure 5.3(e) [46] plots the electron probe intensity as it propagates through a

Sr column in SrTiO3, showing this oscillatory behavior. This same effect is what causes

the column intensities to be sensitive to the dopant depth position [170, 171, 172, 80].

Currently, the approach used by Hwang et al. [46] has been purposefully limited to the

monotonically increasing portion of the first probe intensity oscillation [∼ 3.9 nm for

the particular microscope and dopant/host combination, Fig. 5.3(e)]. Such thin samples

can be difficult to make, depending on the material system, and would need to be even

thinner for aberration-corrected microscopes with larger convergence angles [80]. While

Ishikawa et al. [169] used thicker samples, their dopant/host system (Ce-doped AlN) has

a much higher atomic number difference. Their analysis is limited to one full intensity

oscillation, and only takes into account a single dopant in each column.

In general, depth-resolved information from STEM will require thin samples to en-

hance dopant visibility [136, 80], with larger Z-differences between the dopant and host

atoms also serving to enhance contrast [80, 145, 173]. However, determining dopant lo-

cations from image intensity alone can often be difficult since intensities from different

dopant configurations can often be very similar, particularly when taking into account

multiple dopants per column [see Fig. 5.2(e)].

The primary limitation for accurate dopant depth identification is inherent exper-

imental noise, such as from the detector, sample instability under the electron beam,

sample contamination, surface amorphous layers, sample imperfections, etc [174, 175].

In the study by Hwang [46], all these different sources were accounted by a single “error”

function, estimated from the experimental data spread [see inset of Fig. 5.2(d)]. When
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Figure 5.3: (a, b) Sr intensity maps (left) and HAADF STEM images (right) of
two regions containing dopant atoms, where dopant columns are labelled A-F. (c, d)
Schematics showing the dopant atom configurations from (a, b), respectively, with
dopant depth positions and uncertainties indicated by yellow labels. The most prob-
able dopant positions are shown in red. (e) Probe channeling characteristics for
Cs-corrected and non-corrected probes. The probe is positioned above a Sr column in
SrTiO3 along [100]. Figure is adapted with permission from Ref. [46]. Copyrighted
by the American Physical Society.
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intensity differences between different atomic configurations are small, the experimental

noise function can easily span multiple configurations, resulting in ambiguous determina-

tion of the actual depth position. For example, certain configurations of the Gd dopants

from [46] had an uncertainty range that spanned multiple positions, even when the cal-

culated precision was less than a unit cell (e.g. in Fig. 5.3(d), the dopant atom in the

center is at position 1.5 ± 0.6). Additionally, due to how the positions are calculated,

certain configurations are prone to generating erroneous position estimates.

In principle, reducing the experimental noise function will lead to improved identifica-

tion of dopant atoms using quantitative STEM. This could be done, for example, through

the development of higher brightness gun sources or more stable imaging environments.

However, these approaches are costly, may involve major hardware upgrades, and face

inherent limitations, such as beam damage.

Currently, ambiguous depth determination for certain atomic configurations, as well

as sample thickness and dopant/host Z-difference constraints limit the accessibility of

the technique to certain ideal samples. In order to relax these constraints and attempt

to employ more widespread adoption of the technique, we need to improve the dopant

contrast in STEM and reduce the uncertainty in the depth measurement. To that end,

we demonstrate the usefulness of a new technique, variable-angle HAADF (VA-HAADF).

5.3 Angular Dependence of Electron Scattering

A key principle behind the development of HAADF STEM is the annular geometry

of the detector: by changing the effective distance of the detector from the sample, or

“camera length”, only electrons scattered beyond a selected angular regime are collected

[147]. Using a detector with sufficiently large inner angle [147, 148, 149, 150] is usually

desirable; although the signal is much lower, since only a small percent of electrons are
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Figure 5.4: (a) Schematic showing how beam channeling along an atomic column can
result in angle-dependent scattering in STEM. Atoms further down a column “see”
a more focused probe and consequently scatter more to higher angles. (b) Simulated
multislice results showing scattered intensity as a function of annular detector angle
(in 30 mrad segments, as exemplified by the gray box). Figure reproduced from Ref.
[45].

scattered to these higher angles, the resulting image is formed from incoherently scattered

electrons, and are therefore not subject to contrast reversals. The choice of angular

regimes has long been known to have a strong influence on the resulting image, and this

concept has been advanced over the years to capture additional information. For example,

the exact Z-number dependence of ADF imaging varies according to the detector inner

angle [147, 176]. Annular bright field imaging takes advantage of this property by using

a small collection angle to image light atoms which scatter less strongly [177, 178, 179],

while segmented detectors [178] have been used to image microscopic electric fields based

on anisotropic electron scattering [180].

VA-HAADF works on this same principle of using selective angular regimes for de-

tecting changes in electron scattering strength, thereby offering an alternative route to

enhancing contrast in STEM. For the case of impurity atoms in a matrix, the angular
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dependence of the electron scattering depends on the dopant depth position. A simplified

view, ignoring the depth dependent probe intensity oscillations [Fig. 5.3(e)], is shown in

Figure 5.4(a). Dynamical scattering causes the incident beam (gray) to be “channelled”

along an atomic column, resulting in atoms deeper in the sample to see a more focused

probe. A dopant atom closer to the bottom of the sample (red) would scatter the incident

electrons to higher angles (since more electrons are traveling closer to the nucleus in the

focused probe) relative to a dopant atom nearer to the entrance surface (blue). Thus,

the angular sensitivity of dopant depth scattering can be exploited by selecting certain

angular ranges to more easily identify different dopant atom configurations.

In real materials, however, dynamical scattering effects are more complicated, and

image simulations must be employed for quantitative analysis. Figure 5.4(b) shows mul-

tislice calculations of the scattered intensity for different detector angular ranges, in 30

mrad steps (width of gray box). The scattered intensity from two different dopant con-

figurations, one with a dopant atom near the top (blue) and one near the bottom surface

(red), are plotted, and show a significant intensity difference for the angular range be-

tween 40-100 mrad. Thus, a detector with angular resolution would be more sensitive to

the dopant depth from the measured signal intensity.

The idea behind VA-HAADF is to use multiple detectors with different angular

regimes to combine the depth information from dopant scattering in order to significantly

reduce the uncertainty in the dopant depth position measurement. In this Chapter, we

collect HAADF signals from two different detector configurations (different angular re-

gions), and combine the information to uniquely identify certain dopant configurations

that are indistinguishable using a single setting. Using simulations and experiments, we

demonstrate significant improvements in 3D dopant imaging by using multiple collec-

tion angles. We show that the resulting calculations yield values closer to the correct,

discretized positions, with lower uncertainty.
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5.4 VA-HAADF Experimental Setup

5.4.1 Sample and Preparation

We studied SrTiO3 films doped with Gd atoms (substitutional doping on Sr sites)

at a nominal 4% concentration. Films were grown by hybrid molecular beam epitaxy

(growth details in [10]). An undoped SrTiO3 single crystal substrate was also used as a

calibration sample to determine the experimental noise and to model the “error function”

(more details below). TEM samples were prepared in plan-view geometry by mechanical

wedge polishing at a 1◦ angle.

5.4.2 Microscopy Conditions

HAADF STEM images were taken on a FEI Titan operated at 300 kV (Cs=1.2 mm),

with a 9.6 mrad convergence angle. The images were recorded using 512 × 512 pixels

with a 50 µs dwell time, resulting in ∼ 160 atomic columns per image.

Two different detector angular regions were accessed by selecting separate camera

lengths. Camera lengths of 100 and 130 mm, referred to as detector 1 and detector 2,

respectively, were used in succession for each image. Centering and calibration of each

detector was performed prior to the experiment, including accurate measurements of the

inner and outer angles (60-390 mrad and 47-306 mrad for 100 and 130 mm camera lengths,

respectively). Both detector inner angles are sufficiently large to be adequately described

by the incoherent imaging model [181, 182, 183], which is important for retaining all

the benefits of HAADF STEM. The contrast of the undoped columns is similar in both

angular regimes [184], and therefore the changes in the ratio of intensity between Sr and

Ti-O columns can be attributed to the presence of Gd dopants on Sr sites.

Image intensities were normalized to the incident probe intensity separately for each
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detector configuration, according to:

Ixy =
Ixy − Io
Ip − Io

(5.1)

where Ixy is the normalized image intensity at position (x, y), Ixy is the measured intensity

at position (x, y), Io is the detector offset (blank beam intensity), and Ip is the incident

probe intensity. The general quantification procedure is detailed in [69], although the

present study used the FEI acquisition software as opposed to a digital signal analyzer.

An extended summary of the procedure, as well as differences from [69] is given in Ap-

pendix D. To account for the detector non-uniformity [185], the incident probe intensity,

Ip, is obtained by averaging the signal between 60-120 mrad and 47-141 mrad for detector

1 and detector 2, respectively.

Atomic column intensities (ISr and ITi for Sr and Ti-O columns, respectively), were

extracted using a custom MATLAB script. The intensity within a small circular region,

with radius 1/4 the length of a unit cell (∼ 10 pixels), was averaged around each atomic

column centroid position to obtain an integrated intensity value. These integrated inten-

sities are less sensitive to defocus and coherence effects, and allow for more robust com-

parisons to simulations over peak intensities [186]. As noted in [46], due to the extreme

thinness of the samples (∼ 2 nm), the surface amorphous layers will contribute a signifi-

cant portion of the measured signal. This signal is difficult to remove experimentally, so

a constant background intensity, IB=0.003, was subtracted from the experimental values

for comparison with simulations, to account for the surface contribution. This value was

determined by experimental fitting of the SrTiO3 calibration sample, as seen in Fig. 5.5

for detector 2.
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Figure 5.5: Experimental fitting of SrTiO3 data (green open circles) to simulated
data points (blue circles) in ISr vs. ITi space, with different subtracted background
intensities, IB, for detector 2.

5.4.3 Simulation Conditions

Frozen phonon image simulations of Gd-doped SrTiO3 were carried out using the

Kirkland program suite [38] for all possible dopant configurations involving zero, one, or

two Gd dopants. An overview of different simulation methods are given in Appendix B.

Two different collection angles were simulated, to match the experimentally determined

detectors (60-390 mrad and 47-306 mrad). Simulated structures were all five unit cells

thick, Ti terminated, and did not include the possibilities of Sr or Gd adatoms. The frozen

phonon simulations used a 1024×1024 pixel mesh with a 15.62×15.62 Å supercell (4×4

unit cells). The sample thickness was purposefully chosen, and limited below 4 nm to

avoid ambiguity caused by the probe intensity oscillations due to channelling along a zone

axis, which would complicate unique identification of the dopant depth position. Five

unit cells (∼ 2 nm) was chosen as the thinnest region where large enough sampling data

could be collected, while also limiting the total number of simulated dopant configurations

needed (16). To further reduce computation times, simulations were calculated at 0 K,

and thermal diffuse scattering effects due to finite temperature were included by using a

calibrated intensity ratio, as described in more detail in Appendix D.
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5.5 VA-HAADF of Gd-doped SrTiO3

Figure 5.6(a) shows experimental (green points) and simulated (blue circles) intensi-

ties for Sr and Ti columns (ISr vs. ITi) in the undoped SrTiO3 calibration sample. The

experimental data is fit to the simulated points by subtracting a constant background

intensity, IB = 0.003, over the shown thickness range, between three and six unit cells

(Fig. 5.5). The same IB was used for both detectors (left and right columns, respec-

tively). The residual of the experimental data to a fit of the simulated points are shown

Fig. 5.6(b). A Gaussian “error function” can be modeled to each set of residuals, which

represents the random experimental variability and noise of each data set.

Figure 5.6(c) shows an extended portion of ISr vs. ITi space with simulated undoped

SrTiO3 (blue circles) and Gd-doped SrTiO3 configurations (yellow regions). Exact dopant

configurations have been calculated for the 5 u.c. case, as shown in yellow circles, while

the approximate locations of the other thicknesses can be well estimated. Gd dopants

strongly affect the Sr column intensities, as expected, while having little effect on Ti

intensities. Therefore, the Ti intensities around each Sr column gives better indication

of the local thickness and whether dopants are present.

The Guassian error function for each set of measurements, modeled after the residuals

in Fig. 5.6(b), is overlaid (in blue) on the 5 u.c. SrTiO3 simulation, but would also equally

apply to any other simulation point. While this error function serves as a catch-all for any

random errors, any other systematic sources of error could fall outside this error function,

errors such as the probe and detector calibration, non-uniform surface amorphous regions,

and detector non-uniformity. Calibration errors can be mostly mitigated by careful fitting

to a calibrated data set, such as SrTiO3 in the present case, but the presence of variable

thickness surface layers could non-uniformly alter the intensities of certain columns in an

unpredictable way. While surface amorphous layers are unavoidable and sure to exist, we
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Figure 5.6: (a) Experimental and simulated ISr vs. ITi for the undoped SrTiO3 of
3 to 6 u.c. thicknesses for detector 1 (left) and detector 2 (right). Experimental
data points are after subtraction of a constant background, IB = 0.003. (b) Residual
of experimental data with fit to simulated points. (c) ISr vs. ITi for simulated
undoped and Gd-doped SrTiO3 for detector 1 (left) and detector 2 (right). Individual
configurations for 5 u.c. thick samples are shown for the Gd-doped SrTiO3 while
rectangular bars mark the general areas in other regions where doped configurations
would appear. A 2D Gaussian, with standard deviation calculated from the residual
of the data in (b), is superimposed on the undoped 5 u.c. position. Figure partially
reproduced from Ref. [45].
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Figure 5.7: Magnified region of simulated ISr vs. ITi for 5 unit cell thickness for
detector 1 (left) and detector 2 (right). Individual dopant configurations are labeled
according to the position(s) of the dopant(s). The dopant positions are shown in the
inset. Figure reproduced from Ref. [45].

currently do not have any way to estimate how much variability in thickness there might

be. However, since we only focus on one particular thickness (5 u.c.), which is fit to a

calibrated data set (SrTiO3), we do not expect the variability in the amorphous layer to

be significant compared to the random variability in the measurement, as encapsulated

by the Gaussian error function.

In the current study, we focus only on sample thicknesses of 5 u.c., and include

simulations of all possible dopant configurations containing zero, one, or two Gd dopants

per Sr column. Columns containing three or more dopants are highly unlikely for this
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thickness and nominal dopant concentration (4 at. %) [46]. This thickness region is

magnified in Fig. 5.7, which shows all 15 doped configurations (5 single, 10 double) for

each detector. The labels in blue denote the position of the Gd dopant along the atomic

column, with 1 indicating the top surface and 5 the bottom surface, as shown in the inset

on the right. A single number represents one dopant, while two numbers indicate two

dopants in the column.

From Fig. 5.7, we can identify significant qualitative differences between the two

detectors. For instance, the dopant configuration 4,5 and 3,5 using detector 1 have

virtually the same intensities, and would be virtually indistinguishable, while they have

a large intensity separation with detector 2. Several other such examples exist, where

one configuration would be much more difficult to distinguish using a particular detec-

tor, such as single-dopant configurations 4, 5, and the double-dopant configuration 2,5.

It is important to note that neither detector is universally better for all configurations.

Therefore combining the information from two or more detectors is key to improving the

accuracy and precision of quantitative intensity measurements for dopant depth calcula-

tions.

5.6 VA-HAADF Calculations

The general procedure used here for quantitative determination of the dopant depth

can be separated into two steps: first, determine the number of dopants in the column,

and second, determine the location of the dopant(s). In both steps, we calculate the

probability that the column contains x dopants or is located at y based on the exper-

imentally determined error function. The only difference between the two steps lies in

which configurational probabilities contribute to the final probabilities. The basic princi-

ple of calculating configurational probabilities, based on an error function, is first outlined
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below.

Figure 5.8 shows a general schematic of a simplified calculation. Consider an experi-

mental data point (green) in ISr vs. ITi space, and three simulated points (yellow) rep-

resenting three possible dopant configurations, as shown in Fig. 5.8(a). An experimental

Gaussian error function (blue) is overlaid over each simulated point (it can alternatively

be thought to occur only on the experimental point). The probability of the experimental

data point corresponding to a particular calculated configuration, i, is given by:

pi =
normi(t)∑
n

normn(t)
(5.2)

where t is the distance between the experimental and simulated point (black lines),

normalized to the standard deviation of the Gaussian error function (blue), and normi(t)

represents the value of the Gaussian probability distribution function for a given distance

t. The subscript, i, represents an experimental point, while n represents each dopant

configuration considered. The experimental Gaussian error function is modeled as a

normal distribution, with mean, µ, at the simulated intensity value for each configuration,

and standard deviation, σ, determined experimentally from the calibration sample [Fig.

5.6(b)]. 2D projections of the error function for each simulated position is shown in

Fig. 5.8(b), with µ, σ, and ti indicated. The values for normi(t) can be found using

any statistical software. The calculation of the configurational probability, pi, for each

simulated position, is shown schematically in Fig. 5.8(c) for this simple case.

5.7 Determining the Number of Dopants

The calculation to determine the number of dopants in a column is similar to the

example given above, in that we are interested in the most probable configuration of an
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Figure 5.8: (a) Experimental (green) and simulated (yellow) data points in ISr vs.
ITi space, with overlaying Gaussian error function (blue). The distances between the
experimental and simulated points, normalized to the error function, are labelled by
ti. (b) 2D projection of the error function for each ti. Error function is modeled as a
normal distribution with mean, µ and standard deviation, σ. The value of normi(t)
for each ti is indicated by colored stars. (c) Calculation of pi, as given by Eqn. 5.2,
for the example data shown in (a).
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Figure 5.9: Probabilities of detecting 0, 1, or 2 dopants in each dopant configuration,
given the experimental error function determined from Fig. 5.6(b). Each group of
three bars represents (from left to right) the probabilities for detector 1, detector 2,
and combining the information from both detectors. Figure reproduced from Ref.
[45].

experimental data point between three simulated configurations: the closest (in terms of

normalized distance, t) zero, single, or doubly doped case. Only the closest simulated

position for each of the cases are used, and the resulting configurational probabilities are

calculated similar to Fig. 5.8(c) to give probabilities of having zero, one or two dopants

in each column. A more detailed example calculation is given in Table E.1.

The configurational probabilities can be calculated for each detector separately, but

we can also calculated a combined probability incorporating the information from both

detectors simultaneously, by treating each one as an independent measurement. Treating

each measurement as independent is valid if we assume the spread around each discrete

configuration (error function) is due to random noise. The calculation now becomes a

compound probability of two independent events: for the example illustrated in Fig. 5.8,

normi(t) of each detector would be multiplied together to give a compound normc
i(t) for

the combined detector calculation.
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Figure 5.9 illustrates the results of the calculations, detailed above, for having zero,

one, or two dopants for each simulated configuration, after incorporating the experimen-

tal error function at each simulated point. Each group of three bars represents a certain

dopant configuration, labelled in the same notation as in Fig. 5.7, while the bars repre-

sent, from left to right, the calculation for detector 1, detector 2, and using the combined

information. For each detector and configuration, the probabilities of having zero, one,

and two dopants are indicated by the color of the bar, with the length indicating the

degree, up to a cumulative probability of 1. The calculations were carried out assuming

the experimental point was located at the position of the labeled configuration.

From Fig. 5.9, we see that a column containing two dopants in positions 2,3 or

1,3 would show a nearly even probability split between having 1 or 2 dopants, given

the experimental error function, using either detector. For columns with one dopant,

configurations 5 or 4 would show nearly an even probability split if only one detector

(1 or 2, depending on which case) is used. While the number of dopant atoms in most

configurations can be accurately determined with a single detector setting, to reasonable

certainty, certain configurations cannot, as shown by Fig. 5.9. However, if we consider the

probabilities from using the combined detector information (rightmost column), we see

a dramatic improvement in the accuracy of the technique; the probability of calculating

the correct number of dopant atoms is greatly increased for each dopant configuration.

Table 5.1 summarizes the results for the four dopant configurations discussed above.

While one detector might be better for a certain configuration (i.e. detector 2 for single

dopant configuration 5 ), using combined probabilities results in systematic improvements

for all configurations. Figure 5.9 shows that the correct number of dopants can be

identified for every configuration, to a reasonable confidence level, when the combined

probabilities from both detectors are used.
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Table 5.1: Probabilities of determining the correct number of dopants for select dopant
configurations, using detector 1, detector 2, and the combined information from both
detectors. The improvement is the percent increase of the combined detector over the
best performing single detector. Table reproduced from Ref. [45].

5.8 Determining the Depth of Dopants

After determining the number of dopants in a column, we determine the depth po-

sition of the dopant(s) by calculating the expectation value of the dopant position, ac-

cording to:

µ =
∑
i

zipi (5.3)

where z represents the atom position and p is given from Eqn. 5.2. Here, however,

the subscript, i, refers to the subset of configurations matching the determined dopant

number. For example, if we determined we had 1 dopant in the column, zi and pi would

be limited to the 5 single dopant configurations, while if there were 2 dopants, zi and

pi would be the subset of the 10 doubly doped configurations. The uncertainty of the

position is similarly calculated as:

σ =

√∑
i

pi(zi − µ)2 (5.4)
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Similar to determining the number of dopants in a column, the combined detector infor-

mation is treated as a compound probability of independent events, and the respective

values of normc
i(t) for both detectors are multiplied together in Eqn. 5.2, with all sub-

sequent calculations the same. An example calculation for the dopant depth is given in

Table E.2 of Appendix E.

Just as we calculated the number of dopants in a column (Fig. 5.9), we also calculate

the dopant position and uncertainty for an experimental point that lies at each simulated

position, incorporating the experimental error function. By knowing in advance the

location of the dopant, we are able to see how the uncertainty and accuracy is affected

by the different detector settings for the different dopant configurations. Figure 5.10

visually depicts the results from two cases, a single (a) and doubly doped (b) column,

respectively. The positions (points) and uncertainties (bars) for each configuration are

indicated next to the structural model, in yellow, for both the individual detectors as

well as for the combined detector information.

For the single doped column in Fig. 5.10(a), we see that using detector 1, the closest

calculated position is incorrect, while the uncertainty range spans three different atomic

positions. Detector 2, meanwhile, gives the correct calculated position with a smaller

uncertainty that does not overlap any other nearby positions for the same case. In other

dopant configurations, however, the reverse may be true: detector 1 could give the correct

position and/or smaller uncertainties. In Fig. 5.10(b), we see that once again, detector

2 has a smaller uncertainty than detector 1, although this time, the results from both

detectors span multiple atomic positions. The closest calculated position using detector

1 is also incorrect.

The third column in Fig. 5.10 shows the results from treating each detector as an in-

dependent measurement and combining their probabilites together. We see a significant

reduction in the uncertainty for both configurations, as well as more accurate measure-
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Figure 5.10: Calculated positions and uncertainties for (a) a single dopant located
at position 4 and (b) two dopants located at positions 4 and 5. From left to right,
filled yellow points and error bars represent the position and uncertainty of detector 1,
detector 2, and the combined detector information, respectively. For (b), both atom
positions and uncertainties are given and plotted separately. Figure reproduced from
Ref. [45].
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Table 5.2: Performance metrics for detector 1, detector 2, the combined detectors, and
the improvement of the combined detector over the best performing single detector,
grouped by number of dopants in the column. Row 1 indicates the configurational
probability of the actual dopant position. Row 2 indicates the uncertainty range
(standard deviation) of the calculated position. Row 3 indicates the distance between
the calculated position and the actual position. Row 4 indicates the percent of data
points (out of 100,000 simulated points) that, when rounded to the nearest position,
are correctly identified. Row 5 indicates the percent of data points that are within
the uncertainty range of the calculated position. Table reproduced from Ref. [45].

ments.

5.8.1 Performance Metrics

There are many possible metrics to judge how well each detector performs. We

consider the following:

� Configurational probability - the calculated probability of the actual position of

the dopant, with a higher value being better

� Uncertainty - the average uncertainty, or standard deviation (Eqn. 5.4) of the

calculated position, with a lower value being better

� Average error - the difference between the calculated position of the dopant and

the actual position, with a lower value being better
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These metrics are summed up in the first three rows of Table 5.2, as an overall

average across all 15 dopant configurations, grouped separately for single and doubly

doped atomic columns. The improvement column in Table 5.2 indicates the percent

increase from using the combined detector information over the best performing single

detector for that particular metric. We see that the combined detector probabilities

results in a substantial improvement across all three performance metrics mentioned

above. The last two rows involve Monte Carlo-type simulations and are discussed below.

5.8.2 Additional Simulations

To this point, all the experimental data points used for the calculations have been

placed at the simulated positions (Fig. 5.7). Real measured data points will not just

be located at these discrete positions, however, but could lie anywhere in ISr vs. ITi

space. To simulate this experimental scatter more realistically, we generated 100,000

data points around each simulated location, using the experimental error function to

determine the data point location. We then perform the same calculations for determining

the expected atom position and uncertainty at each of these generated data points. From

these calculations, we can introduce two additional performance metrics:

� % Correct - the percentage of simulated data points (generated based on the ex-

perimental error function) around each dopant configuration which results in a

calculated position that matches the actual position (higher percentage is better),

and

� % In range - the percentage of simulated data points (generated based on the

experimental error function) around each dopant configuration which results in a

calculated position that lies within the uncertainty range of the actual position

(higher percentage is better).
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These two metrics are summarized in the bottom two rows of Table 5.2, as an average over

all 15 dopant configurations, for the individual and combined detector settings. Results

from each individual dopant configuration are listed in Table E.2 of Appendix E.

From Table 5.2, we see that the improvement in the number of correctly determined

simulated data points using the combined detector settings is significant: 19% for 1

dopant and 14% for 2 dopants. The improvement from the data points that lie within

the uncertainty range of the actual position is much more modest (∼ 3%), but this is

because the uncertainty range is being simultaneously lowered. Nonetheless, simulta-

neously reducing both the uncertainty range and the average error results in a better

likelihood of unambiguously determining a single most likely dopant configuration. At

the same time, the calculated result is more likely to be correct.

Finally, we note that while we observe a simultaneous improvement in both the overall

precision and accuracy of dopant depth determination by using the combined detector

probabilities, Table 5.2 only summarizes the results averaged over all possible dopant

configurations, and individual configurations can vary in terms of visibility and ease of

determination. For example, the percentage of simulated data points correctly identified

as the actual dopant position can vary from near perfect (99.9% for the 4,5 configuration

using the combined detector) to undetectable (0% for configuration 1 using detector

2), as tabulated in Table E.2. These calculations help provide a realistic idea of which

configurations can be most successfully resolved, and by using which detector settings.

Therefore, once an experimental dopant is measured and its position calculated using the

analysis detailed above, Table E.2 can be used to determine a confidence level for that

calculation.
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5.9 Experimental HAADF

The experimental data shown in Fig. 5.6(a) was analyzed and filtered using custom

MATLAB scripts to find doped atomic columns in regions appropriate for the current

study: 5 u.c. thickness and local uniformity. Figure 5.11 shows HAADF images from two

such regions in the Gd-doped SrTiO3 sample. Each region was imaged using two different

detector settings in succession (∼ 36 s apart), and aligned by eye based on common

features, such as thickness variations or edge features. The lateral offset between the

images from an eye-based alignment matched well with drift estimates based on the drift

present in each image, as well as prior drift tracking using multiple image acquisition.

Due to contrast differences between the different detector settings, not every bright Gd-

containing column in one detector setting will result in an equally bright column in the

other setting.

The white squares/triangles in Fig. 5.11(a) indicate the two Gd-containing columns

in each image that are analyzed here to determine the effectiveness of using multiple

detectors. These atomic columns are plotted in ISr vs. ITi space for the two detectors

in Figure 5.11(b), using corresponding black squares/triangles. The simulated dopant

configurations are also shown and labeled, while a dashed line indicates a linear fit to

the undoped SrTiO3. We can see that qualitatively, while the doped column marked by

the triangle appears to be at position 4 using detector 1, it seems much more likely to

be at position 3 when taking into account detector 2. Similarly, the dopant marked by

the square is also close to positions 3 and 4 using detector 1, but is more likely to be

located at 4 when taking both detectors into account.

The calculation for the number of dopants and dopant depth position for both regions

in Fig. 5.11 is given in Table 5.3. The left side of the Table shows the calculated prob-

abilities of the possible number of dopants using each detector, and with the combined
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Figure 5.11: (a) HAADF STEM images of two regions containing dopant atoms in
Gd-doped SrTiO3 for detector 1 (left) and detector 2 (right). White squares/triangles
indicate the doped column of interest. A low band pass filter was applied to the
images. The quantitative analysis was performed on the unfiltered, raw data. (b)
Simulated ISr vs. ITi dopant configurations compared to experimental values shown
in (a). Selected dopant configurations are labeled for each detector. Figure reproduced
from Ref. [45].
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Table 5.3: Calculated probabilities for the number and location of dopants for the two
atomic columns marked by squares (region 1) and triangles (region 2) in Fig. 5.11.
Table reproduced from Ref. [45].
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detector information, while the right side shows the individual probabilities of where the

dopant is located in the column, given the number of dopants that had been previously

determined. The expected value and uncertainty is calculated in both regions for each

detector, and is graphically plotted on the right side of Fig. 5.11(a).

For the doped column in region 1 (square), we see that detector 2 alone would not

have been able to distinguish between 1 or 2 dopants, while the probability from the com-

bined detectors is much more convincing, indicating a single dopant atom with 78.7%

probability. Meanwhile, detector 1 alone would have calculated an incorrect position

(assuming the correct position is 4, which seems most likely). Both detectors, when an-

alyzed individually, also had large uncertainties that spanned multiple dopant positions.

By using the combined detector information, however, the uncertainty in the probability

measurements is significantly reduced, and only one position falls within the uncertainty

range. According to Table E.2, a single dopant in this position has a 72.7% chance of

yielding a calculation within the correct uncertainty range.

The results from the analysis of the column in region 2 is similar, with reduced

uncertainties using the combined detector information, although the final result from

both detectors still yields two possible dopant positions (2 or 3 ). From visual inspection

of Fig. 5.11(b), however, position 3 seems more likely.

5.10 Summary and Conclusions

To summarize, we have shown significant improvements in precision and accuracy

in the 3D determination of dopant depth information by using variable-angle HAADF

imaging combined with quantitative STEM. The use of variable angles has been shown

to improve both the accuracy and precision of the number of dopants, as well as their

position, the latter of which is a conditional probability, calculated once the number of
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dopants is determined. We have demonstrated this improvement using both simulations

and experimental data. Using multislice simulations, we showed that the difference in

atomic scattering by dopant atoms at different depths can be exploited by selecting

different angular regions on the same detector. While one particular detector is not

unilaterally better than the other, the acquisition of multiple detector data (angular

regions) and the use of compound probabilities will significantly improve dopant visibility

and quantification.

In general, configurations that are ambiguous or difficult to determine in one detector

regime can be resolved in the other. For example, given the experimental noise of the

present study, the probability of determining the correct number of dopants was > 63%

for all sixteen possible configurations (including zero dopants) when using both detector

information, while only 18/32 (56%) configurations met that requirement for a single

detector. In addition, the calculated position is ∼ 17% more likely to be the actual

position, since calculated positions from a single detector can be erroneous, even when

the uncertainty is small.

5.10.1 Outlook

The present study only used two angular regimes due to practical experimental con-

straints, but it was sufficient to prove the usefulness of VA-HAADF, even with the angular

regimes not being specifically optimized for the experiment. Going forward, we propose

that the method can and should be extended to include additional angular ranges, which

is limited only by the detector hardware limitations, and to remain within the HAADF

imaging regime to retain the analytical benefits of HAADF. As shown in Fig. 5.7, dif-

ferent angular ranges can have dramatic effects on the scattered intensities of a specific

atomic configuration. Furthermore, the development of VA-HAADF using a parallel ac-
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quisition mode would provide many additional benefits, such as minimization of drift

between acquisition that makes locating the same area difficult in the absence of appar-

ent features, avoiding beam damage caused by multiple exposures from serial acquisition,

and avoiding changing the sample in subtle ways between acquisitions, such as changes

in the amorphous layers or surface/impurity atom hopping. To that end, the develop-

ment and implementation of new hardware, such as segmented [178, 187, 188, 189] or

pixelated [190, 191] HAADF detectors is paramount. Such detectors would be necessary

to implement VA-HAADF for any number of detectors and angular ranges with parallel

input, but would still need to have the response characteristics required for quantitative

HAADF-STEM [69]. We highlight again that VA-HAADF provides a new way to obtain

complementary information about the structure of a material, which is useful not only

for dopant depth identification, but would also serve to generally improve STEM image

contrast and improve interpretability for the analysis of strain, defects, and enhanced

structural information.
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Summary and Outlook

Deciphering the relationship between the structure and properties of a material is a funda-

mental tenet of materials science. Through characterization, we can analyze a material’s

atomic structure and elemental composition, and track how structural changes affects

the macroscopic properties, and ultimately, the performance of the material. In this

dissertation, I used new methods in scanning transmission electron microscopy (STEM)

to locally characterize oxygen octahedral tilts in complex oxide thin films at the atomic

level, a long-sought goal in condensed matter physics. While oxygen octahedral are no-

toriously difficult to characterize, and are not directly observable in HAADF STEM, I

used a combination of real-space imaging and reciprocal-space diffraction to characterize

the oxygen octahedral tilts in thin perovskite films grown by molecular beam epitaxy.

The effect of octahedral tilts on the structure and properties in three separate materials

systems were studied in this dissertation.

While determining structure-properties relationships is a central goal of materials

scientists, characterization techniques are the tools to examine the structure of those

materials. Recent advances in theory and hardware of transmission electron microscopy

have made the TEM a widely popular tool for atomic structure characterization, with

quantitative studies now routine. In this dissertation, I also developed a new procedure

for improving image contrast in quantitative STEM by using multiple detectors, and
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applied it to increase the precision and accuracy of determining the depth of dopant

atoms from a 2D image.

The goals and questions addressed from these four main studies are listed below.

1. SrTiO3 quantum wells grown between GdTiO3 and SmTiO3, and how the metal-

insulator transition is related to the quantum well thickness.

2. GdTiO3 quantum wells grown between SrTiO3, and how the magnetic properties

are affected by the quantum well thickness.

3. NdNiO3 thin films strained in tension and compression, and what drives the metal-

insulator transition as a function of temperature.

4. Gd-doped SrTiO3, and improvement of the precision and accuracy of dopant depth

determination using quantitative STEM.

I now summarize the individual projects that have been covered in this thesis, their re-

sults and possible future outlook. In Chapter 1, I introduced the multifaceted perovskite

system, which contains an incredibly diverse set of properties and structural variations.

Its chemical flexibility and ability to accommodate nearly all the elements in the peri-

odic table makes it one of the most studied compounds in materials science and solid

state chemistry. Among perovskite oxide subgroup, small distortions of the prototypic

cubic structure can lead to significant effects on the electrical and magnetic properties,

due to strong electron-lattice coupling. In particular, octahedral tilts and rotations are

the most common type of distortion that occurs, and corner connectivity requirements

offer researchers exciting possibilities to tailor the materials’ properties using epitaxial

constraints. While these tilts are difficult to measure on a local level, we outline an ap-

proach using new transmission electron microscopy methods to obtain local atomic-level
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information on octahedral tilts. Such new characterization techniques are critical for un-

derstanding the underlying physics of complex oxide interfaces, and would help promote

new ways to create functional materials systems through materials selection and design.

In Chapter 2, we studied the role of extreme electron density on the electrical and

structural properties of SrTiO3 quantum wells. SrTiO3, embedded between the rare-

earth compounds GdTiO3 and SmTiO3, contain a confined, high-density (∼ 6 × 1014

cm−2) two-dimensional electron gas (2DEG). As the thickness of the SrTiO3 quantum

well is reduced, and the 2DEG is shared between fewer and fewer layers of TiO2, dif-

ferent electrical properties emerge from the quantum wells grown between GdTiO3 and

SmTiO3. Quantum wells embedded in GdTiO3 show a metal-insulator transition when

the SrTiO3 thickness is reduced to two SrO layers and below, while quantum wells em-

bedded in SmTiO3 remain metallic even at a single SrO layer. Using HAADF STEM

to measure Sr-column displacements in the quantum wells, we characterized a deviation

angle, θ, which represents a symmetry-lowering distortion from the normally cubic bulk

SrTiO3 structure. We found that a structural distortion was present in the quantum

wells that became insulating, but was absent or very weak in all quantum wells that were

metallic, regardless of whether embedded in GdTiO3 or SmTiO3. These results indicate

the importance of the “orthorhombic-like” distortion in promoting the insulating state.

The electron-electron interactions in the quantum wells should be similar for the same

thickness SrTiO3, regardless of the surrounding material, which points to more complex

physics, such as orbital order, influencing the structure in the quantum wells.

In Chapter 3, we used the same techniques from Chapter 2 to study the structure

and magnetic behavior of ferrimagnetic GdTiO3 thin films sandwiched between cubic

SrTiO3. Specifically, we relate the cation displacements measured in STEM to the oxygen

octahedral tilts, observable by position averaged convergent beam electron diffraction

(PACBED), and attempted to tailor the structure of bulk GdTiO3 by interfacing it with
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SrTiO3. We saw that by decreasing the GdTiO3 film thickness, GdFeO3-type structural

distortions were reduced, concomitant with a reduction in the Curie temperature, until

the films became non-ferrimagnetic. Comparing the structure of the GdTiO3 films to the

structure of the bulk rare-earth series, we saw that ferrimagnetism persisted in the films

to smaller deviations from the cubic perovskite structure than expected. These results

indicate that the ferrimagnetic ground state only depends on the amount of the GdFeO3-

type distortion to second order, and is controlled by the narrow bandwidth, exchange

and orbital ordering model.

In Chapter 4, we explored the different electrical behavior in strained NdNiO3 films,

and their relationship with the lattice symmetry as a function of temperature and strain,

to arrive at new insights into the nature of the MIT in the rare-earth nickelates. Bulk

NdNiO3 undergoes a temperature-driven metal-insulator transition, which can be con-

trolled by epitaxial strain. In tensile strained films, the temperature of the MIT is lowered

as the strain increases, until films become insulating at all temperatures for large ten-

sile strains, whereas compressively strained films, above a minimum thickness, remain

metallic at all temperatures. Using low-angle position averaged convergent beam electron

diffraction in a scanning transmission microscope, we characterize the structure of com-

pressive and tensile strained NdNiO3 films above and below the MIT temperature. We

find that even at room temperature, the epitaxial strain affects the film space group sym-

metry and octahedral rotations, to be different than those of bulk orthorhombic NdNiO3.

We also show that the MIT, which only occur in the tensile strained films, is associated

with a symmetry-lowering structural distortion. Compressively strained films, which

do not undergo an MIT, do not show a symmetry change at low temperatures. From

space group symmetry analysis, we show that the present results support the charge-

disproportionation model for explaining the MIT in rare earth nickelates, and present

a simple geometric argument to explain the metallic behavior of compressively strained
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NdNiO3 films. The results could also provide additional insight into the non-Fermi liquid

phase observed in these films.

In Chapter 5, I discuss a new technique for improving general contrast in transmission

electron microscopy, variable-angle high-angle annular dark-field (VA-HAADF) imaging.

Here, we analyzed Gd-doped SrTiO3 films, where the Sr columns contained from zero

to two Gd dopant atoms, and imaged them in HAADF mode using two different detec-

tor collection angles. We showed that VA-HAADF significantly increased the precision

and accuracy of 3D dopant depth determination, from both image simulations and ex-

perimental results. By using compound probabilities of the combined information from

multiple detectors, calculations of the dopant depth position is less prone to error, and

the uncertainty in the dopant depth is significantly reduced. Certain atomic configura-

tions that are indistinguishable with a single detector setting can be uniquely identified

using VA-HAADF. While developed in this dissertation for precise and accurate de-

termination of three-dimensional dopant atom configurations using a single quantitative

zone-axis STEM image, VA-HAADF can be extended to wider general applications where

enhanced STEM contrast and atom visibility is needed.

The work in this dissertation have resulted in several important findings about the

driving forces behind metal-insulator transitions in oxides. Many unanswered questions

still remain, however, such as the different electrical behavior between SrTiO3 quantum

wells sandwiched between GdTiO3 and SmTiO3. Such questions are beyond our present

capability to answer, and underscore the rich complexity in these systems. By corre-

lating cation displacements with octahedral tilts, however, we have enabled new ways

for researchers to locally quantify these difficult to observe tilt patterns in the future.

In addition, our use of LA-PACBED to determine structural transitions in the NdNiO3

system offers a demonstration of the capabilities of STEM diffraction to extract difficult

to determine structural information, particularly in experimentally unstable conditions,
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such as those from using a liquid nitrogen cryo holder. Newer electron sources should

also improve the gun brightness, and thus allow us to further decrease of the conver-

gence angle (less disc overlap and potentially more information) without a loss in spatial

resolution.

Finally, I would like to highlight the successful implementation of VA-HAADF in im-

proving the depth resolution of dopants from the last study. Although the demonstration

in the current thesis contains many experimental inefficiencies (such as serial acquisition

and a single HAADF detector), we have provided clear proof-of-concept of the many

advantages the technique can provide. While parallel improvements in STEM hardware,

such as brighter guns and more stable holders, can also provide a similar increase in

image contrast, such improvements are becoming incrementally more difficult, while new

detector designs have been mostly untapped. As such, we reiterate the importance of

the development of hardware to take advantage of the angular dependence of electron

scattering for detector manufacturers. Future capabilities from improved detectors could

include vacancy imaging, improved knowledge on chemical composition, or enhanced

strain contrast. Meanwhile, the VA-HAADF technique can be incorporated into existing

systems, and introduces a new avenue for continuing STEM contrast improvement and

pushing the boundaries of quantitative STEM.
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PACBED Formation

Position averaged convergent beam electron diffraction (PACBED) patterns are formed

by incoherently summing CBED patterns over many different probe positions within the

unit cell (experimentally by scanning the beam during diffraction pattern acquisition).

This incoherent averaging destroys the fine detail present in the coherent interference

of the original pattern, but benefits from better count rates (lower noise) and reduced

sensitivity to instability (specimen drift).

The formation of CBED patterns is well understood and can be readily simulated

following numerous approaches [192, 38]. The basic image formation process is described

below.

Starting from the Schrödinger equation for fast electrons (using the relativistic mass

and wavelength of electron):

∂ψ(x, y, z)

∂z
= [

iλ

4π
∇2
xy + iσV (x, y, z)]ψ(x, y, z) (A.1)

where ψ(x, y, z) represents the electron wavefunction that varies slowly with z (dis-

tance into the sample), λ is the relativistic wavelength of the incident electron, σ is the

interaction parameter (describes degree of interaction between electron and potential,

decreases with increasing electron energy), and V (x, y, z) is the specimen potential.
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Following the multislice formulation [38], the formal operator solution can be written

as:

ψ(x, y, z + ∆z) = exp[
iλ

4π
∆z∇2

xy + iσv∆z(x, y, z)]ψ(x, y, z) (A.2)

where v∆z(x, y, z) is the projected potential of the specimen between z and z + ∆z.

Equation A.2 can be rewritten in discretized form (conducive for computer compu-

tation) by taking the Fourier transform:

Ψ(g, z + ∆z) =
∑
h

Sg,h(z)Ψ(h, z)) (A.3)

where Ψ represents the reciprocal space wavefunction, g,h are reciprocal lattice vec-

tors of the sampling mesh used in the computer calculation, and S is the Fourier trans-

form of the exponential term in equation A.2, now represented as the so-called scattering

matrix [193, 192].

The incident wavefunction of the electron probe can be represented as a plane wave,

or in reciprocal space:

Ψ(h, z = 0) = A(h)exp[−iχ(h)]exp[−2πih ·R] (A.4)

where R is the position of the probe, A(h) is the aperture function (1 inside the aperture,

0 outside) and χ(h) is the aberration function of the objective (probe-forming) lens.

Using equations A.3 and A.4, the intensity, I, of the CBED pattern for a certain

probe position R is:

I(ql + G,R, t) (A.5)

=

∣∣∣∣∣∑
H

SG,H(ql, t)T (ql + H)exp[−2πi(ql + H) ·R]

∣∣∣∣∣
2
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where ql represents a vector in the first Brillouin zone, G and H represent non-

zero reciprocal lattice vectors (Fourier transform of g and h respectively), and T () =

A()exp[−iχ()], the complex amplitude of the incoming probe.

By integrating equation A.5 over all positions in the unit cell, the average intensity,

Ī, in the PACBED pattern can by calculated by:

Ī(ql + G, t) (A.6)

=
1

Ac

∫
Ac

I(ql + G,R, t)dR

=
∑
H

|SG,H(ql, t)T (ql + H)|2

where Ac represents the area of the unit cell.

An important feature from this equation is that the features in PACBED patterns

are independent of the probe-forming lens aberration as well as spatial coherence, or

finite effective source size. Equation A.6 models the propagation of waves through the

sample, and only describes the elastic contribution to the PACBED pattern. Inelastic

scattering can be included in Bloch wave simulations as an absorption effect by adding an

imaginary component to the crystal potential [193, 194]. In multislice implementations,

diffuse thermal scattering can be accounted for by using the frozen phonon model. For

a description of the different simulation methods, see Appendix B. In practice, thermal

scattering results in the addition of an inelastic background across the diffraction pattern.

This background contribution has some partial structure, which is most familiarly seen in

Kikuchi patterns. However, most of the useful identifiable features in PACBED patterns

are dominated by elastic scattering.

Although PACBED patterns are independent of lens aberrations, the convergence

angle plays a critical role in the formation of the patterns. Larger convergence angles
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(∼20 mrad) result in larger diffraction discs, which causes disc overlaps that wash out

the features of interest [40]. Due to this limit in the convergence angle, PACBED is best

suited for non-aberration corrected STEM. In practice, PACBED patterns can be taken

by rapidly scanning the STEM probe in the TEM while acquiring the diffraction pattern

using the CCD camera with a long exposure time (several seconds).
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Simulation Approaches

The two most popular methods for simulating TEM images and diffraction patterns are

Bloch wave and multislice methods. Both methods incorporate dynamical (multiple)

scattering.

B.1 Bloch Waves

The Bloch wave method, as formalized by Bethe [195], involves Fourier expanding the

crystal potential and electron wavefunction to components (Bloch waves) that match the

underlying specimen lattice periodicity. By applying the appropriate boundary conditions

and solving for the eigenvalues of the Bloch wave coefficients, the exit wavefunction can

be obtained by the linear superposition of the different Bloch waves.

While Bloch wave solutions can provide valuable insight on the imaging process,

contain information about all thicknesses in the same calculation, and can be solved by

hand for a small number of Fourier components, N (a.k.a. beams or Bloch waves), the

computer memory requirements scale as N2 while computer time scales as N3 [38]. Real

specimens requiring large N quickly makes solving the matrix solutions impractical, even

for a computer.
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Figure B.1: Decomposition of a thick specimen by the multislice method. (a) Original
thick specimen, (b) specimen divided into thin slices, where (c) each slice is treated
as a transmission step followed by a propagator (vacuum between slices). (d) Optics
interpretation of the multislice propagator. The wavefunction in the x, y plane at
height z propagates to the x, y plane at z + ∆z. Each point on the wavefront at z
emits a spherically outgoing wave, all of which combine at each point in the x, y plane
at z + ∆z.

B.2 Multislice

The multislice method, first developed by Cowley and Moodie [196], is graphically

represented in Figure B.1. The original specimen is divided into thin, two-dimensional

slices along the electron beam direction, Fig. B.1(a-c). The incident electron beam in

an x, y plane is alternately transmitted through a slice and propagates along z, through

vacuum, to the next slice (by Fresnel diffraction). Each slice is represented by a trans-

mission function (projected atomic potential from z to z + ∆z), and is thin enough to

be considered a simple phase object. Additionally, each slice along the beam direction

does not have to be the same thickness or follow the periodicity of the original specimen,

118



Simulation Approaches Chapter B

allowing the simulation of amorphous and defect structures. The propagator function

p(x, y,∆z) can be associated with Fresnel diffraction over the distance ∆z. Figure B.1(d)

shows the classical optic interpretation of this propagation. Every point on a wavefront

(position z) generates an outgoing spherical wave, which propagates to the position of

the next wavefront (z + ∆z) and interferes with one another.

The multislice method makes use of the Fast Fourier Transform (FFT) algorithm,

which greatly increases its efficiency. Storage requirements for the multislice method

scales as N , while the computer time scales as Nlog2N [38], making it usually much

more efficient for calculating dynamical images and diffraction patterns.

B.3 Frozen Phonon

In actual experiments, usually conducted at room temperature, thermal energy causes

the atoms in the specimen to slightly vibrate from their equilibrium positions. These

vibrations are quantized as phonons, and lead to a diffuse background intensity in the

diffraction pattern between the normal allowed diffraction positions (reciprocal lattice

points). This is referred to as thermal diffuse scattering (TDS).

Typical electrons in a TEM travel at relativistic speeds (∼ 1.5× 1010 cm/s) and take

only about 0.7 × 10−16 s to travel through a typical thickness sample [38]. This is a

much smaller time than the period of oscillation of each atom due to thermal vibrations

(typical phonon frequencies are ∼ 1012 − 1013 Hz). Hence, each imaging electron can be

approximated as seeing a different configuration of atoms, each atom slightly displaced

due to TDS. Because the atoms in each configuration are not correlated in their move-

ment, an incoherent time average over all atomic configurations can be done to model

the effect of TDS in the image. This can be incorporated into multislice simulations

by randomly offsetting the position of each atom using a Gaussian distribution, and is
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known as a frozen phonon simulation.

Due to this Monte Carlo style integration, the frozen phonon model is computationaly

demanding, but is generally considered the most theoretically realistic [192, 197]. Despite

only modeling elastically scattered electrons, Van Dyck has shown that it is equivalent

to a full quantum-mechanical treatment of the inelastic phonon scattering process [198].

B.4 Simulation of Non-orthogonal Structures

A caveat of using FFT is that the structure being transformed must have orthogonal

axes. While this is the case for [100]O GdTiO3 (and all Pbnm space groups), it is not

the case for [110]O, due to the different a and b unit cell parameters [forms 86.93◦ angle

between [110] and [1̄10], Figure B.2(a)]. Figure B.2(a, b) illustrates the transformation

matrixes needed to orient the orthorhombic c-direction along [110]O as well as the ge-

ometry to derive the equations given in B.1. From B.1, the transformation from the

original black axes to the desired red axes can be carried out through a 2-step matrix

multiplication, given by equation B.2. The second transformation matrix in B.2, to go

from the a to a’ axes can be obtained through inspection.

a′′ = |z| a′ − |y|
|c′| |x| = |a′| cosβ

|y| = x
sinβ

= |a′| cotα |z| = |a′|
cosα

(B.1)


a′′

b′′

c′′

 =


1

cosα
0 − |a

′|
|c′| tanα

0 1 0

0 0 1



−1 1 0

0 0 1

1 1 0



a

b

c

 (B.2)
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Figure B.2: (a) Diagram of orthorhombic unit cell showing the original axes (black),
intermediate axes with [110]O as c-direction (blue, prime), and final orthogonal axes
(red, double-prime). (b) Geometry of axes transformation from blue (prime) to red
(double-prime). β angle corresponds to 86.93◦ shown in (a). (c) Creation of supercell
followed by matrix transformation results in empty space (white area) under final axes
coordinates. Supercell needs to be subsequently limited (blue region for orthogonality)
to the grey area. Angles have been exaggerated for illustration purposes.
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While these transformations create the necessary orthogonal conditions, the unit cell

is no longer translatable under these new coordinate axes. Using the original unit cell

would result in larger and larger errors as the thickness or repeat number increases.

Therefore, a supercell of many unit cells must be created prior to transformation. After

transformation, this supercell contains empty space along the edges, as illustrated by the

ac plane shown in Figure B.2(c). Only the areas marked in grey contain atoms, so the

supercell needs to be cut to within the marked blue region. All [110]O PACBED patterns

in this thesis were calculated this way. This process results in the inability to quickly

generate a large thickness series of PACBED patterns along [110]O, as each thickness

must created as a superstructure manually, and calculated wavefunctions cannot be saved

between thickness slices.
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Generating Structures for PACBED

C.1 Introduction

Position averaged convergent beam electron diffraction (PACBED) is a scanning

transmission electron microscopy (STEM) technique used to determine TEM specimen

thickness and tilts [40] as well as local structural information [127, 16, 72]. PACBED

formation is well understood and can be simulated using a number of available software.

In this thesis, we use the Kirkland program suite [38].

Many of the physical properties exhibited by ABO3 perovskite oxides are resultant

from distortions or rotations of the BO6 octahedra. A great deal of effort has been placed

into characterizing these rotations [34, 17, 32, 199], but accurate knowledge of octahedral

rotations, especially at the local level, remains challenging. Previous experiments [16, 72]

have successfully utilized PACBED in characterizing local octahedral tilts, by comparing

experimental patterns with a series of simulated structures. Generating such structures

is the focus of this Chapter.
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Figure C.1: Ideal perovskite unit cell is composed of corner connected octahedra.

C.2 Octahedral tilts

The ABO3 perovskite unit cell is composed of corner connected BO6 octahedra; the

ideal unit cell structure is shown in Fig. C.1. Most perovskites, however, feature one of

three main distortions: displacements of the cations, distortions of the octahedra, and

most commonly, tilting of the corner-connected octahedra. A common classification of

the different tilt types in perovskites is the Glazer notation [22], which classifies structures

according to the octahedral rotation around its three tetrad axes (see Fig. C.2.) Due to

corner-connectivity constraints, tilting of one octahedron in a unit cell will determine the

tilts of the other octahedra in the crystal.

C.2.1 Generating structures with octahedral tilts

A custom MATLAB code was written to generate the most common tilt type (or-

thorhombic a+b−b−), although it can also be easily tailored to generate any other rotation

type. In general, an octahedron tilting about one of its cartesian axes will expand the unit

cell along the perpendicular axes (and the parallel one, depending on if it’s an in-phase

124



Generating Structures for PACBED Chapter C

Figure C.2: Each octahedral tilt can be classified as a combination of rotations around
its three tetrad axes.

or out-of-phase tilt). For a general 3-tilt system, an expanded unit cell of 2 × 2 × 2 is

sufficient to fully describe the unit cell (although a smaller unit cell may exist, finding the

primitive cell is not necessary). The MATLAB code takes three unit cell parameters and

input tilts (c, b, a, γ, β, α respectively), and generates atomic positions in a number of for-

mats (for visualization in VESTA and as input files for Kirkland multislice simulations).

Input unit cell parameters should reflect the expanded output unit cell (i.e. double the

unit cell of the untilted primitive cell). This output format is similar to the program

POTATO used by Woodward [2], except POTATO uses tilt angles and B-O bond dis-

tances as input, while unit cell parameters are more appropriate for our purposes, due

to epitaxial constraints in our films.

The following describes the procedure for generating a tilted structure, given input

tilt parameters α, β, γ:

125



Generating Structures for PACBED Chapter C

� Starting coordinates for initial untilted octahedra are



0 1 0

1 0 0

0 0 1

0 −1 0

−1 0 0

0 0 −1


(C.1)

representing the six oxygens in Fig. C.2. Positions are given as fractional coor-

dinates, with origin at the B-cation center. Unit length represents half of the

pseudocubic unit cell length.

� Initial octahedron is replicated eight times, one for each octahedron in the expanded

unit cell. Each octahedron is the same at this point, except with a different B-cation

coordinate shift (e.g. (1
4
, 1

4
, 1

4
), (1

4
, 3

4
, 3

4
), etc).

� The first tilt, rotation γ about c, is applied to all octahedra by matrix addition.

Depending on the octahedra cell position (shift coordinate), either a clockwise

(CW) or counter-clockwise (CCW) tilt is applied.

CWc =



u1 0 0

0 −v1 0

0 0 0

−u1 0 0

0 v1 0

0 0 0


CCWc =



−u1 0 0

0 v1 0

0 0 0

u1 0 0

0 −v1 0

0 0 0


(C.2)
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Figure C.3: Octahedral rotation around c-axis. Black and orange lines denote CW
and CCW rotation, respectively. u1 and v1 are related to the tilt degree and unit cell
parameters.

Figure C.3 illustrates the rotation made by the octahedra around the c-axis, with

the black and orange lines showing a CW and CCW rotation, respectively. The

values u1 and v1 are determined by θ (γ) according to:

θ = tan−1 u1

|b|
= tan−1 v1

|a|
(C.3)

Note: all three tilts are independent, and therefore CW or CCW tilts on any single

octahedron is arbitrary. However once one octahedron has been tilted, all remaining

octahedron must tilt according to the tilt system (a+b−b− in this case). Table C.1

shows each octahedron in the expanded unit cell and its corresponding coordinate

shift and tilt direction (we have chosen CW CW CW for octahedra 1 in this case).

� After the first tilt, a coordinate transformation, X, is applied to each octahedron

by matrix multiplication to keep the axes colinear to each B-O bond. Either a CW
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Table C.1: Tilts of octahedra

Octahedra Shift γ α β
1 1

4
, 1

4
, 3

4
CW CW CW

2 3
4
, 1

4
, 3

4
CCW CCW CCW

3 3
4
, 3

4
, 3

4
CW CW CW

4 1
4
, 3

4
, 3

4
CCW CCW CCW

5 1
4
, 1

4
, 1

4
CW CCW CCW

6 3
4
, 1

4
, 1

4
CCW CW CW

7 3
4
, 3

4
, 1

4
CW CCW CCW

8 1
4
, 3

4
, 1

4
CCW CW CW

or CCW operation is performed to match the tilt direction of the previous step.

The X matrices are:

XCW =


1 −v1 0

u1 1 0

0 0 1

XCCW =


1 v1 0

−u1 1 0

0 0 1

 (C.4)

Following the coordinate transformation, the octahedral positions should all resem-

ble their original inputs (only 0, 1, and -1). Note: all matrix multiplications refer

to post multiplication.

� A second tilt is applied via matrix addition for rotation around the a-axis:
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CWa =



0 0 −w2

0 0 0

0 v2 0

0 0 w2

0 0 0

0 −v2 0


CCWa = −CWa (C.5)

v2 and w2 are related to θ (β) by:

θ = tan−1 v2

|c|
= tan−1 w2

|b|
(C.6)

Note: it might be more appropriate to use |b′| instead of |b| in the equation above,

since |b′| is slightly longer (see Fig. C.3, |b′| =
√
|b′|2 + v2

1). This occurs since we are

keeping the unit cell parameters constant, and therefore the B-O bond distances

will vary as the octahedra rotates. Subsequent tilts will similarly lengthen the

coordinate axes along the two perpendicular directions. For equal tilts around all

three axes, and cubic unit cell parameters, it becomes apparent that the octahedral

bond lengths will distort asymmetrically depending on the order of the axes we

choose to rotate around. The cause of this effect was pointed out by Glazer [22],

who noted that the separate tilt operations do not belong to an Abelian group, and

therefore the tilt order affects the final atomic arrangement. However for small tilt

angles (< 15◦), this sequence dependence is only a second-order effect [22]. Indeed,

tests incorporating elongated axes with structures up to ∼ 7◦ tilts show negligible

129



Generating Structures for PACBED Chapter C

(sub-picometer) differences in final atomic positions. Therefore for ease, we use

initial lattice parameters, |a|, |b|, |c|, for u, v, w calculations.

� A second coordinate transformation, Y, is applied via matrix multiplication. CW

and CCW matrices for Y are:

Y CW =


1 0 0

0 1 −w2

0 v2 1

Y CCW =


1 0 0

0 1 w2

0 −v2 1

 (C.7)

Following the coordinate transformation, the octahedral positions should all resem-

ble their original inputs (only 0, 1, and -1).

� The third tilt, rotation around the b-axis, is applied via matrix addition, according

to:

CWb =



0 0 0

0 0 w3

−u3 0 0

0 0 0

0 0 −w3

u3 0 0


CCWb = −CWb (C.8)

with

θ = tan−1 u3

|c|
= tan−1 w3

|a|
(C.9)
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Figure C.4: Structure corresponding to 7.5+6.5−6.5− with a = c = 7.72, b = 7.88
along in-phase (left) and out-of-phase (right) directions.

� Atomic positions are transformed back to the original coordinate system by multi-

plying with Y−1X−1.

� Atomic positions are divided by four (each B-O bond distance is 1
4

the length of

the expanded unit cell) and each octahedron is shifted (see Table C.1) to create

the final structure. Figure C.4 shows an example structure created with α=6.5 and

γ=7.5 along the in-phase (c) and out-of-phase (a, b) axes.

C.2.2 Approximations, Constraints and Errors

In the previous section, we assume octahedra maintain 90◦ inner angles during rota-

tion. Since unit cell parameters are constrained due to substrate coherency (confirmed

by out-of-plane x-ray measurements), internal B-O bond angles vary according to tilt

type and degree. So far, all the atomic coordinates have been transformed to fit inside

an expanded cell composed of the original cubic cell. The Fast Fourier Transform al-

gorithm used in the Kirkland program suite [38] requires orthogonal axes, which fixes

the angles between the cell axes, while the rest of the cell parameters are set by the

film growth. A result of this constraint for Pbnm structures along [110]O is detailed

at the end of Appendix B, and also causes octahedra along the a-axis to not properly

131



Generating Structures for PACBED Chapter C

line up, as illustrated in Fig. C.5. This error arises since in the a+b−b− tilt system, the

two out-of-phase axes (a and b in this case) in the pseudocubic unit cell are inclined to

one another, according to the rules formulated by Glazer [22]. Indeed, if the cartesian

coordinates in Fig. C.5 are transformed so that the a-axis rotates by angle θ, such that

θ = tan−1 ∆
0.5

(red line in Fig. C.5), no mismatches in the octahedra coordinates occur.

This is represented mathematically as pre-multiplying the final coordinates by:


1 tan θ 0

0 1 0

0 0 1

 (C.10)

To incorporate this angle into multislice simulations, one would need to create a

supercell of the desired dimensions and then transform back to cartesian coordinates.

While the supercell would be translatable along c, the in-phase axis, imaging the crystal

along an out-of-phase axis would require a separate supercell for each sample thickness,

impractical for a large range of thicknesses [see Fig. B.2(c)]. Therefore, an approximate

structure is used, with orthogonal pseudocubic cells. The mismatch at the octahedra

corners along a are resolved by using the average position. The estimated positional

errors associated with this approximation is small, on the order of a couple picometers

for the example in Fig. C.4 (∼ GdTiO3 bulk-level distortions, the largest needed for

practical purposes). The angle between a and b for this structure is 2.85◦.
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b
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Δ

Δ

Δ

Figure C.5: Tilted octahedra (black lines) along the a-axis are offset (red lines) by
distance ∆.
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Quantitative STEM Procedure

In the following section, I outline the procedure used for the quantitative STEM analysis

as described in Chapter 5. This procedure was first developed by Prof. James LeBeau

[69], and have been subsequently edited for improved speed and ease of use. I first

summarize the differences in the original procedure to those used here, and then provide

a more detailed outline of the current quantitative STEM procedure.

D.1 Differences From Original Procedure

There are two main differences between the procedure used in [69] and the one used

in this dissertation. The first difference is that the FEI imaging software is used for the

image acquisition in the present study, as opposed to the National Instruments LabVIEW

SignalExpress software. LabVIEW SignalExpress was originally used to record the data

from an external dynamic signal analyzer (DSA), connected to the secondary parallel

output of the ADF detector. The DSA benefits from 24-bit resolution, as opposed to

16-bit resolution of the native FEI software, allowing for much greater dynamic range

(16.8 million shades of gray compared to 65,536). However, the image acquisition process

is longer and more complicated, and requires more post-processing.

For the present studies, where serial image acquisitions were needed, along with small

134



Quantitative STEM Procedure Chapter D

microscope adjustments in between each acquisition, the speed and ease of the FEI

software made it much more appealing. Test experiments by Jinwoo Hwang showed that

the difference between using the reduced bit-depth data (FEI software) was many times

lower (10 − 1000× lower) than the experimental error function, making the reduction

in dynamic range negligible in the final quantitative analysis. Other groups [200] have

also successfully used the 16-bit data from the native FEI software for their quantitative

analysis, while achieving a good match with image simulations.

The other main difference in the present study involves the methodology in calculating

the simulated HAADF images. For past studies [69], where the local maximum or centroid

intensity is used, and structures are homogenous, the speed of image simulations could be

greatly increased by only calculating a 1-dimensional line intensity profile, with relatively

few pixels in between. For example, to compare the experimental intensities of Sr and

Ti columns in SrTiO3 with simulated values, only a simple line profile, as shown in

Figure D.1(a), is needed to extract the necessary column intensities. This intensity can

be plotted as a function of thickness, as shown in Figure D.1(b), so that only 1 image

simulation is needed for an entire thickness range. This type of calculation has the

additional benefit of reusing the exit wave function at each thickness slice as the starting

wave function for the next thickness slice, greatly reducing computation times.

For the current dopant studies however, several new requirements are needed. Since

we are now averaging over an area around each column rather than extracting a single

intensity value, a 2-dimensional image needs to be simulated in order to obtain a radial

average, greatly increasing the number of pixels needed in the simulation. Furthermore,

because a dopant atom destroys the translational symmetry of the structure, a supercell

input structure is required. Using a supercell has a large effect on the image simulation,

since now the exit wave functions at the end of each thickness slice can no longer be

reused. This means a unique structural model needs to be generated for each thickness
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Figure D.1: (a) Unit cell of SrTiO3 along [100]. (b) 1-dimensional line simulation
of SrTiO3 along the dotted line in (a), showing intensity (horizontal dimension) as a
function of sample thickness (vertical dimension). (c) 2-dimensional image simulation
of doped SrTiO3 using an expanded 4×4 unit cell, with the dopant atom in the center.
Sample thickness is 5 unit cells.

film and dopant position, such as the one shown in Fig. D.1(c). The result of these

changes in the simulation requirements means that a simulation that once took a matter

of hours for a whole thickness series will now take up to several weeks to complete.

Even running multiple jobs on a network cluster is not efficient enough for the full scale

calculations needed for the 3D dopant study of Chapter 5.

To save computation time, multislice calculations for all the structural dopant con-

figurations were performed at 0 K, rather than using computationally expensive frozen

phonon simulations at room temperature. The effect of thermal diffuse scattering (TDS)

was accounted for afterwards, by multiplying the column intensities with a scaling factor,

S:

S =
ITDS
InoTDS

(D.1)
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where ITDS and InoTDS are the averaged column intensities including TDS and not

including TDS, respectively. The scaling factor S was calculated for an undoped SrTiO3

sample at the same thickness (5 unit cells), using multislice simulations with and without

TDS. While this calculation ignores the differences in the Debye-Waller factors between

Sr and Gd, the effect would be very small, as the averaged column intensities are not

sensitive to thermal vibrations [186].

D.2 Quantitative STEM Procedure

Below I outline the experimental method for quantitative STEM used for the dopant

study in this thesis.

D.2.1 Experimental Parameters

The experimental parameters of the microscope are described in Chapter 5 and reit-

erated here. All images were acquired on a field-emission FEI Titan S/TEM microscope

(Cs=1.2 mm), operated at 300 kV with a 9.6 mrad convergence angle. The gun lens was

set to standard STEM imaging conditions (gun lens = 6, extraction voltage = 4400 V),

and a spot size of 10 was used. Images were recorded using 512× 512 pixels with a 50 µs

dwell time. Camera lengths of 100 and 130 mm (corresponding to inner angles of ∼ 60

and 47 mrad) were used for each set of images.

D.2.2 ADF Detector Settings

Brightness and contrast settings on the FEI control software are first set to maximize

the dynamic range of the detector without signal clipping. This is achieved by first using

the deflection coils in STEM diffraction mode (“diffraction shift” in the software) to move
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the zero-beam disc within the hole of the ADF detector. The approximate location of

the hole in the ADF detector should be known. If not, the detector centering step can

be done first. Also, using smaller camera lengths can be useful in this step (I generally

use 100 mm). Then, while scanning over an empty region, the brightness is adjusted

so that the mean intensity reads approximately 10. This value can be increased if it

appears certain pixels are below the dark noise current (the minimum intensity values

are not changing as brightness is increased). Next, the deflection coils are used to bring

the zero-beam directly onto the detector, and the contrast controls are adjusted so that

the maximum intensity values just saturate (reach approximately 65536).

D.2.3 ADF Detector Centering

The ADF detector must be well-centered along the optic axis for the scattered elec-

trons to be detected uniformly over the detector. As detailed in [69], while the shadow

of the detector can be observed on the viewing screen and CCD camera, this shadow

does not accurately represent the edge of the detector. To locate the inner edge of the

detector, in STEM diffraction mode, the zero-beam disc is used to trace the edge by

using the deflection coils and observing an increase in detector signal.

Similar to the previous procedure, the zero-beam disc is first moved inside the hole of

the detector (signal level should be around 10, or whichever value it was set to from the

previous step). A circle the size of the zero-beam disc can be drawn on the viewing screen

with the Gatan software. Using the deflection coils (“diffraction shift”), the beam is then

moved around the detector until a small signal is observed (I usually use ∼ 100). At each

location with the same output signal, the beam location can be marked with a circle,

until an image of the detector edge is built up, as shown in Figure D.2. A larger circle is

drawn to show the approximate edge of the detector, and the center of the detector can
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Figure D.2: Tracing the inner edge of the ADF detector using the zero-beam disc on
the CCD camera, for 100 mm and 130 mm camera lengths. The approximate edge of
the detector is shown by the large circle, while the center of the detector is marked
with a smaller circle the size of the convergent beam.

be determined and similarly marked. Since the convergence angle of the probe is known

(9.6 mrad in this case), the inner detector angle can be determined.

For VA-HAADF, this procedure is done twice, once for each camera length. The

center of the detectors are slightly different for each camera length, due to differences in

the projector lens settings, so the diffraction beam needs to be re-centered in between

image acquisitions, anytime the camera length is changed. This can be easily done by

keeping a copy of the detector center (Fig. D.2) on the CCD viewing screen for each

camera length, and visually re-centering the diffraction pattern, or by observing the “user

diffraction shift” values for each camera length (on the “system info” panel) when the

diffracted beam is centered, and realigning the diffraction shift to those centered values

whenever they are changed.
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D.2.4 Image Intensity Normalization

After calibrating the detector settings and position, an image of the detector is needed

to record its response. This can be achieved by switching out of diffraction mode, so that

an image of the probe is now on the screen, and scanning this electron probe across the

detector (scanning a region without a sample). A blanked image should also be taken at

this time, as a noise floor calibration. For VA-HAADF, this procedure is done for both

camera lengths.

After the detector image is taken, HAADF imaging can be carried out as usual, by

switching back to diffraction mode and re-centering the zero-beam diffraction disc if any

movement has occurred. For VA-HAADF, successive images are taken at different camera

lengths, while adjusting the diffracted disc to the detector center every time the camera

length is changed. Due to sample drift, swift setup of the imaging conditions between

each successive acquisition will aid in correlating the two images together. Estimates

of the sample drift between each image can be approximated by the distortion in each

image caused by drift, or through a quick-acquisition image series.

Image intensities can then be normalized to the incident probe intensity during post-

acquisition processing, according to:

Ixy =
Ixy − Io
Ip − Io

(D.2)

where Ixy is the normalized image intensity at position (x, y), Ixy is the measured intensity

at position (x, y), Io is the detector offset (blank beam intensity), and Ip is the incident

probe intensity. To account for the detector non-uniformity [185], the incident probe

intensity, Ip, is obtained by averaging the signal between 60-120 mrad (2× the inner

angle) and 47-141 mrad (3× the inner angle) for detector 1 and detector 2, respectively.

A detailed discussion of why this is necessary is described in [185], but this method
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essentially uses an “effective” outer angle to counterbalance the lower detector sensitivity

near the inner edge of the detector, where most of the scattered electrons are detected.

The post-acquisition processing is done using custom MATLAB scripts. Image in-

tensities of the blanked beam images are averaged to obtain Io, while elliptical regions

of interest, corresponding to the desired inner and outer angles, are selected for each

detector image and averaged to obtain Ip. Image intensities are then normalized to the

incident beam by linear transformation, according to Eqn. D.2.
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Appendix E

VA-HAADF: Additional
Calculations and Tables

E.1 Dopant Number Calculation

Supplementary Table E.1 lists the dopant number calculations for the atom in region

1 using detector 1 from Fig. 5.11 of Chapter 5. The distance t is calculated between the

listed experimental point and each simulated configuration, normalized by the standard

deviation of the error function. The values for normi(t) can be found using any statistical

software.
∑
norm(t) is calculated separately for the 0, 1, and 2 dopant cases. Most

probabilistic values of norm(t) for 0, 1, or 2 dopants are listed in the next column.

Values for pi are calculated according to Eq. 5.2, using the corresponding
∑
norm(t),

while the probabilities of having 0, 1, or 2 dopants in the column are calculated with Eq.

5.2 using values only from the most probabilistic column.

E.2 Dopant Position Calculation

The calculation for the position of the dopant marked by squares in Fig. 5.11 is given

in Table E.2. The expected value is given as the sum of zipi while the uncertainty is

the square root of the sum of the third column. The calculation for detector 2 is done
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Table E.1: Values for calculating the individual configurational pi and the probabilities
of having 0, 1, or 2 dopants in the square column from Fig. 5.11. Table reproduced
from Ref. [45].
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Table E.2: Calculation for the position of the dopant, from the atom column marked
by squares in Fig. 5.11. Table reproduced from Ref. [45].

the same way, while for the combined detector, respective values of normc
i(t) for both

detectors are multiplied together and all subsequent calculations remain the same.
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Table E.3: Calculation results from 100,000 randomly scattered simulated points
around each dopant configuration, grouped by number of dopants in the atomic col-
umn. Results are given for each individual detector as well as the combined setting.
For each configuration: row 1 is the average calculated position and uncertainty for all
data points around that configuration; row 2 is the percent of points with calculated
positions that round to the actual dopant position; row 3 is the percentage of points
with calculated positions that lie within the uncertainty range of the actual dopant
position. Table reproduced from Ref. [45].
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