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A Relativistic Klystron* 

Roger Marks 

Lawrence Berkeley Laboratory 
University of California 

Berkeley, CA 94720 

September 1985 

Abstract 

LBL-2091B 

Theoretical analysis is presented of a relativistic klystron; i.e. a 

highly-relativistic bunched electron beam which is sent through a succession 

of tuned cavities and has its energy replenished by periodic induction 

accelerator units. Parameters are given for a full-size device and for an 

experimental device using the FEL at the ETA; namely the ELF Facility. 

*This work was supported by U.S. DOE under Contract No. DE-AC03-76SF00098. 
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I. Introduction 

The TBA is a long beam into which DC energy is periodically injected and 

from which radiation is periodically extracted. The original concept of 

Sessler1 envisions extraction by FEL interaction. A modification suggested by 

Panofsky2 would replace the FEL by Klystron interaction. Many of the 

principles of the original TBA carry over to the Klystron TBA. This report is 

a discussion of the theory of such a device and issues involved in design. 

The basic idea is to transport a highly-relativistic bunched beam through 

a succession of tuned cavities, each of which extracts a small proportion of 

the total beam energy. Periodically, an induction accelerator replenishes the 

energy. We are thinking here of beam parameters similar to those suggested in 

the traditional TBA - 1 kA at 20 MeV, propagation for several kilometers. We 

would like to generate radiation in the wavelength range 1-3 em. 

The first necessity is a modulated beam. This is somewhat of a problem at 

relativistic energies, especially since emittance is critical. This is an 

issue which shall not be treated in this report, except for the mention of 

several possibilities. One is a laser-modulated photocathode, as used in the 

lasertron. Another is a ractrack-type buncher. A third is an FEL operating 

solely as a buncher; this may not be a desirable means of modulation in an 

actual TBA but could prove useful as an experimental source. 

The next relevant topic is the cavity structure. Klystons have well-known 

deficiencies at short wavelengths. The bunch size must be less than half a 

wavelength. The holes in the cavity through which the beam travels (we ignore 

grid possibilities due to emittance growth) must be less than - 3/4 of a 

wavelength in diameter to ensure cutoff. And the cavity ("gap") length must 

be much less than a wavelength, assuming a dominant cavity mode. 
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The cavity size is fairly critical. To extract even a small percentage of 

the power of the beam under consideration in a distance much less than a 

wavelength requires intense electric fields which exceed practical breakdown 

limits. Additionally, the resonant frequency of the dominant cavity mode is a 

function of the cavity radius only, and a high-order radial mode must be 

chosen if the cavity radius is to be reasonably large. 

Fortunately, an alternative exists. Since the electrons move at 

essentially c, one need only utilize a traveling-wave structure of the same 

phase velocity. This is most easily achieved by employing a cylindrical 

cylinder with diameter several times the wavelength. Of course, such a 

structure stores most of its energy in radial fields, and if one were 

interested in large single-pass extraction efficiency, a coupled-cavity 

slow-wave structure would probably be superior. However, since only small 

fractions of the beam energy are to be removed in a given cavity, we entertain 

the hope that the simplest cavity configuration may prove effective. 

Another important issue is debunching, caused by differential energy loss 

and by space-charge effects. We shall demonstrate below that, although the 

latter are important, they can be counteracted by the former. 

These and other significant subjects are discussed below. At the end, we 

present a set of parameters apropos to two distinct physical devices. The 

first is a long, 20 MeV TBA. The second is a proposed experimental device 

operating at 1 em using as a current source the 3 MeV bunched beam emerging 

from the ELF free-electron laser. Such an experiment can verify models of 

beam-cavity interaction, demonstrate a difficult beam_transport line, and test 

the ability of the cavity electric field to counteract space-charge effects. 
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II. Beam-Cavity Interaction 

We are interested in computing the interaction between an axially-

symmetric, longitudinally-bunched axial current and an azimuthally-symmetric 

cavity (Figure la) at a steady-state angular frequency w. The cavity is not 

closed but connected to infinitely-long cylindrical beam pipes. We assume the 

pipe radius a is small enough to insure cutoff of propagation, at the given 

frequency, of all modes except the dominant TE11 ; since this mode lacks 

azimuthal symmetry, we assume that it is not excited. The next mode is the 

TM01 , which is certainly excited and has a cutoff wavelength ~c = a/.383. The 

penetration length of the evanescent mode is ~[~/~c) 2-l]-l/2 times the 

wavelength ~. We assume that a ~ .35 ~; this insures a penetration length 

less than 0.36 ~. 
· -iwt Suppressing a time dependence of the form e , the electric field obeys 

the wave equation 

-41fiw J 4 n 
2 + 1fvp c - ( 1 ) 

subject to the conditon that~ x ~ = 0 on the walls. 

Define modes of the empty cavity as solutions to the eigenvalve problem 

2 

v2e. 
w. 

+_l. e. = 0 -J c2 -J 

v • e. = 0 -J 

~ x e. = 0 on the walls. -J 

( 2) 

If S formed a closed surface, we could readily establish that an infinite 

set of modes satisfy these relations; furthermore that the wj are real and 

that the e. are orthogonal in the sense -J 
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• 

3 * {e., e.) = Jd V e. • e. = 0 for w. ~ w. {3} _, -J _, -J 1 J 

More significantly the !j form a complete set. To satisfy the requirement [of 

a closed surface], we assume that the pipes are shorted by a conducting plate 

at some large distance from the cavity. We assume that the existence and 

location of the plates does not materially affect the problem as long as the 

plates are far enough from the cavity to insure that modes of interest have 

vanishingly weak fields there. Taking the modes to be orthonormal, we expand 

f. = a.e. and solve for a., with the result: 
J-J J 

411' 
{ -i ... (~j ,.J.) + c 2 (~j.Vp)} {4) a. = J 2 - 2 w w. 

J 

One can readily establish that the axial component of the modal field has 

the Fourier integral expansion: 

eJ.Z{r,z) = l_ I~ A.{p) I
0
{r/p2 - k~)eipz dz {r <a) 

211' -co J J 
( 5} 

with the inverse 

(6) 

Using {5) and the fact that v • !j = 0, one determines a form for the radial 

modal field. One can then find expressions for {!j,Vp) and {!j'~). Assuming 

the charge moves only axially, not radially, one determines that. (!j,Vp) = 0. 

Consistent with this assumption, let ~be the time-dependent current and 

let 
- A 
~ = z f{r)g(t-z/v) (7) 

where g{t} is a periodic function. Then the component at frequency w is 

J "" 2f{ ) iwz/v _ = z• r ge ( 8} 

where 

(9} 
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Using the expression (5) for ejz' one can evaluate (gj,~) and arrive at the 

result: 

* * -i 1611' w f.A.g 
J J 

a. = 2 2 (10) 
J w - w. 

J 

where 

Aj :: Aj (~) and ( 11) 

fj 
co 

I0 <r Jev> 2 - (;t) 2) dr - I
0 

r f(r) (12) 

Note that f., while formally a real quantity, becomes complex if w. 
J J 

becomes complex. This is a convenient and conventional method of allowing for 

cavity loss; we do not attempt to justify the method mathematically but simply 

assume that it is valid as long as the imaginary components are small compared 

to the real. 

III. Specification of Current and Cavity 

We assume a time-dependent current ~: 

~ = 
I e(b - r)g (t - z/v) 

OL 

211' where g (x) is a periodic function of period -- and 
a w 

{ 1 -a ~ X ~OL 
g (X) = 

a 

0 a ~ X 
11' -11' 

~X< -a <--w' w 

(see Figure lb). This is simply a series of charge cylinders traveling 

axially at velocity v; I is the average beam current. Then 
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v 

= 

g = I sin(lan) 
'21r (an 

For w ~ wj and v ~ c, fj ~ 1. For bunch length much less than 

wavelength, sin(lan) ~ 1. 
(an 

(15) 

(16) 

Now consider a specific cavity-namely a cylinder of length d, radius R, 

coaxial with the beam pipe. (see Figure lb) For analytical purposes, we 

assume that the field in the region r ~a (a is the pipe radius) is identical 

to that in a closed cylindical cavity of length d. The validity of this 

assumption depends on the penetration length of the cutoff fields into the 

beam pipe being much less than the cavity length d, as well as the pipe radius 

a being much less than the scale length for field variation in the radial 

direction. TM cavity modes have the form: 

eJ.Z(r,z) = E J (Xom r) cos (n~Z) { 
0 

< Z < d 
o o R d a < r < R 

(where J
0

(X
0

m) = 0), which can be evaluated at r=a and used to match 

expression (5), valid for r <a. There results: 

__ w_l_v ___ e-i~ {i sin} (wd) 
<~>2 _ <v>2 cos 2v 

Where the top (bottom) of the bracketed expression is chosen if n is even 

(odd). 

( 17) 

(18) 

E is determined by normalization. Assuming expression (17) to be valid 
0 

for all r (for normalization purposes), then 
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= 
4 3 d R4 J2(x > 11' 1 om { 

eo = 1 
E: = 2 n (n ~ o) 

where the resonant wavelength ~ of the closed cylinder mode satisfies: mn 

= 

We can clarify the expression for A by defining·& such that mn 

A 
mn 

11'V 
d =- (n + &); w then 

= 2 Eo Jo (Xom *) 
Io<a) <v>2 - <~n>2> 

v/(J) 
2 

1 - (.JL) 
n+& . 

(19) 

(20) 

(21) 

( 22) 

Collecting expressions for g and A , the field amplitude coefficient is mn 
now 

Amn 
-i 1611' E

0
v 

J (X ~) 
sin <¥> Mmn I (23) = 

2 2 o om R 1 - (n )2 (J) - (J) mn n+& 

where the factor Mmn' defined by 

sin(~) • 
2Il (bJ(~) 2 - (Wfnn) 2 1 

M = v c (24) mn ~ 

bJ<v>2- <~n>2 Io<a) <v>2 _ (Wfnn) 2 
c 

is composed of factors typically of order unity. 

IV. Tuning 

The resonant denominator in (23) indicates the need for tuning to the 

modal resonant frequency. We assume the mode to have a resonant frequency 

wmn = 211'c ( 1 - L) 
xmn 2Q 

(25) 

where ~mn is given by (20) and Q >> 1. 211'C Let (J) =~ mn ( 1 + 6/2) where 
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,~ 

~ 

6 << 1 ; 

1 = -ig (~mn)2 
2 2 1 - iQ6 21fC 

(26) 
(o) - (o) mn 

Thus 

1 g ~ 2 
2 - = 

jl 
( mn) 

2 (Q6)2 21fC (o) wmn + 
(27) 

is maximum for IQ61 << 1. It may, however, be preferable to choose a larger 

value of 6, say 161 ~ Q, in order to shift the phase of the field in order 

to stabilize the beam. The phase of the field is actually real for Q6 << 1 

due to the factor i in (23). 

Now insert (19) and (26) into (23): 

.[27 r2 Jo(Xom i>Mmn sin(1f6) ~2 - 1 £n : ~mn Q £ 

~~ amn 1 - iQ6 Xom Jl(Xom>c 
I (n + 6) 1/2 - ~2 

( 28) 

where we have introduced 13 = v/c < 1 and 

(29) 

is the phase velocity (divided by c) of the cavity mode (driven at its 

resonant frequency) viewed as a wave traveling in the z-direction. In the 

case n=o, the quotient involving pp is replaced by 1. 

In conjuction with (28), one needs to keep in mind the relations 

d = ~ (n + 6) (30) 

and 

(31) 

j ~~ - 1 
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1 As & approaches its minimum value in n[p- 1], ~P goes to 1 and R 

becomes infinite. On the other hand, we would like & = 1 to maximize 

. (11'&) s1n 2 . It appears that &=1 is a reasonable choice, with n >> & so that 

~ ~ 1. p 

V. Power 

The stored energy in a particular cavity mode is 

The Q is defined by 

1 2 
U = 811' lamn I . 

u Q-(a)- p 

(32) 

(33) 

where P is the power lost. We assume that essentially all of this power is 

usefully extracted, with negligible wall loss. Thus the power extracted is 

which in the present case is 

Q 

VI. Choice of Mode 

~2 - 1 ] 2 p 
~2 ~2 

p 

2 11'8 
sin r 
n + & 

(35) 

A standard Klystron operates in the mode n = 0. However, our expression 

for A indicates that for~~ 1, higher order modes may be used. The mn 
expression ~~ - ~2 in the denominator is actually a synchronism parameter 

which can be minimized by making ~ as large and ~ as small as is possible. p 

Unfortunately, this effect is canceled by the term ~~ - 1 in the numerator. 

This term is specific to the cylindrical cavity and comes from the mode 

normalization; it reflects the fact that, as ~P ~ 1, field energy moves out 

of longitudinal and into ineffective radial fields. 
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There remain several persuasive arguments for choosing n > 0. One is 

the size of a cavity with n = 0. For maximum power, d/~ = 0.37p. The cavity 

can of course be lengthened at the expense of power, but the result is to 

successively accelerate and decelerate electron bunches with an obviously 

negative effect on beam integrity. Likewise, the cavity radius is 

R = ~~m ~mn For m=l, this is barely larger than the beam pipe radius and 

clearly too small. One can address this problem by moving to larger m, but 

the term J
0

(X
0
m ~) continues to keep the field weak in the beam region. 3 

Neither length nor width increases affected the total electric field required 

to extract a given amount of power. This is the fundamental problem with 

m = 0. The interaction is required to take place over a short distance, which 

requires large fields. Consider am m = 0 cavity designed to extract 1% of the 

energy of a 20 MeV beam. Regardless of the cavity dimensions, the relevant 
' 

interaction takes place over only one half of a wavelength. For 1 em 

radiation, this implies a peak field strength of at least 63 MV/m. The 

absence of perfect beam overlap and the fact that the strongest fields exist 

away from the beam can easily result in a maximum field strength of several 

times this size. These fields suggest a major breakdown problem. 

On the other hand, the n > 0, the interaction takes place more gently, 

as the beam continually loses its energy while it remains in synchronism with 
4 n+~ the field; additional length is not just wasted space. Also, as -n- goes to 

its minimum value at a given wavelength, R increases without limit while we 

remain in them= 1 mode. Thus small radial dimensions are avoidable. 5 

One final and perhaps vitally important advantage of n > 0 modes is the 

fact that the phase of the field can be arranged to provide a net longitudinal 

bunching force to counter the effect of space-charge debunching. This will be 

elaborated upon below. 
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It is conceivable that an alternative cavity could combine the advantages 

of extended interaction and essentially longitudinal fields - namely, a 

coupled-cavity slow-wave structure. At wavelengths of interest, this would be 

a delicate and expensive object to contruct, but it could be useful when large 

single~cavity extraction efficiencies are important. This is not the case in 

the problem at hand. 

VII. Choice of 0 

All of the previous analysis concerned the steady-state solution. The 

fields actually build up in time with the factor 1 - e-t/(tf), where the 

filling time tf = 2Q/w. For Q = 300 at 30 Ghz, tf = 3.2 ns. Thus a 15 ns 

pulse brings the fields to 99% of their steady-state level. When one 

considers that the steady-state power is proportional to Q and that the 

transient power goes as (l-e-t/tf) 2, the maximum power at the end of a pulse t 

seconds long is actually attained for tf ~ 1.25 t. However, it may prove 

advantageous to suffer the somewhat reduced power levels (by a factor of about 

2) in order to achieve the phase stability and mode purity of the steady state. 

An important issue in choosing the Q is one•s ability to construct a 

cavity with enough loss to an external circuit. Let us view the cavity as a 

length of waveguide and open holes in its wall to couple to a second 
I 

waveguide. What coupling factor in the waveguides corresponds to a particular 

Q in the cavity? The power PT traveling in one direction along the cavity 

axis moves at a group velocity of essentially c. Its energy per unit length 

is U/2d, where U is the total stored energy (the other half belongs to the 

oppositely- directed traveling wave). cU Hence PT ~ 2d. The power extracted 

is P = wu/Q, so 
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... 

assuming we couple from only one traveling wave. For n=20 and 0=300, 

P/PT = 0.42 and the coupling factor is 10 log(PT/P} = 3.8 dB. If we couple 

from both traveling waves, we need 21% from each (6.8 dB}. This may be 

difficult to arrange. One suggestion is to lay a single-mode rectangular wave 

guide parallel to the cylindrical cavity. Holes are cut at the points of peak 

current along the length of the cavity, but only at alternate peaks since the 

guide wavelength is about twice the cavity wavelength. The cylinder may have 

a circumference of 12 ~. the waveguide a width 1/2 ~- Thus many waveguides 

can be attached, hopefully bringing the Q down to a useful level. The 

computation of the Q of a given coupler design requires further study. 

One more issue related to the Q is the stimulation of adjacent modes. We 

saw earlier that the tuning bandwidth is of order 1/Q. If w ~ w , then the mn 

power in a mode of resonant frequency wm•n•= wmn(l + ~} is down from the 

fundamental mode power by about 

2 2 2 
+ {Q6}2 w - wmn 1 1 

2 2 
~ Q£ ~ 

Q£ w - wm•n• 

When (3p ~ 1, then n..rc 
wmn ~ d so £ ~ ~· 6£ ~ ~Q which is typically 

much less than 1. Modes of nearby m may also be important. Consider as 

example ~0 , 19 = 1 em, 6 = 1, n = 19, 13 = 1. The d = 10 em, R = 1.23 em. 

We find ~0 , 20 = 0.95 em, ~0 , 18 = 1.05 em, ~1 , 19 = 0.84. However, if 6 = 

0.2, then ~1 , 19 = 0.96 em. In this worst case, the power in the adjacent 
1 mode is 20 the power in the fundamental. 
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VIII. Bunch Degradation 

There are two primary sources of energy spread: space-charge repulsion 

and differential energy·loss due to finite phase spread of the bunch. 

As a simple space-charge model, consider a bunch of charge q which is 

uniformly distributed in a sphere of radius R. 1 as measured in the charge 1 s 

inertial reference frame. It is readily seen that the sphere expands 

uniformly; the time required for it to double its radius is 

~3 
t 1 

= [ 2 + 1 R.n (2 {2 + 3)] = 1.62 m!__ 2 Z q qe 
I 

where t 2 is measured in the beam frame. The time in the lab frame is 
I 

t 2 = yt2; in that frame, the charge packet has length R. = R. 1 /y, radius 

b = R. 1
• Hence 

t2 = 1.62;;;;:; = 1.15 y512 R. c 

3 A 
where I = me ~ 17 kamps and I = ~ is the peak current, averaged over 

alf e 2R. 

the bunch length. 

A In a beam line, the bunches are spaced A apart and R. is perhaps 6• so 

(37) 

(38) 

that the first harmonic of the current is significantly degra·ded by the time 

the bunch length doubles. Note also that we have taken the initial radius to 

R.A be yR.~, the final radius twice this. In fact, in order to get through a 

beam pipe of radius a < .35A, the transverse dimensions must be considerably 

smaller. In other words, the assumption of spherical (beam frame) bunches of 

given length strongly overestimates the radial dimensions, so we expect the 

calculation to also overestimate the debunching time. • A S1nce for I = 1 kamp, 

the sphere-model predicts that bunches travel only about 140A (y=B) or BOOOA 
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,.., 

(y=40) before beginning to merge, it is clear that space-charge debunching can 

be a severe problem. 

A potential solution is to locate the bunch at a bunch-stable phase of the 

wave. Consider the equation for the energy U of a z-directed particle of 

charge e: 

With the approximation z(t) = v(t-t ), we can integrate: 0 . 

Im ( -i~t 6U = ev aj -m ejz(r,v t-t0 ])e dt 

where ejz(r,z) is given by (5). Evaluation of the integral leads to: 

or alternately 

6U = -ev I (2~r) 
o YAP 

In pondering this expression notice that the radial dependence is 

(39) 

(40) 

(42) 

extremely weak for even moderately large y; little energy spread develops as 

a function of radius. 

Note also that Arg(l - iQ6) is the phase of the electric field; the phase 

of the particle in the center of the current bunch is zero. Assume the phases 

~t0 of the remaining particles are distributed symmetrically about zero. 

When Q6 = 0 (Fig. 2a), the center particle (t
0 

= 0) loses the maximum energy 

(e and fjg are both negative) and all particles within -~/2 < ~t0 < ~12 lose 

energy. When Q6 >> 1 (Fig. 2b), the phase of the field is shifted back by 

~/2; now particles with ~t > 0 gain energy, those with ~t < 0 lose 
0 0 

energy. In a symmetric distribution, the field gains no net energy. The 

fields in this 
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case tend to divide the bunch. The choice Q6 << -1 shifts the field phase 

forward ~12 from the resonant position, providing bunch compression. 

To get an idea how much the field can counteract space-charge forces, 

consider a bunch of length w6t = ~/2, with the field phase equal to 

~/4 (Q6 = -1) (Fig. 2c). Consider the electron at wt
0 

= ~12. It sees a 

force eEm to the left due to the field, and a space-charge force to the 

right. Consider as an example a 20 MeV beam from which one would like to 

extract 1% of the power over an interval of 10 em. The average electron sees 

a field of E = 2/~ Em. It must traverse a potential of 6V = dE = 0.2 MV av av 

in order to lose 1% of its energy; thus E = ~ E = ~ 0.2 MV ~ 3 MV/m. 
m '2" av '2" 0. I m 

This longitudinal field is independent of reference frame. On the other hand, 

consider the space-charge field in the particle•s reference frame, modeling 

the charge as a sphere in that frame as was done earlier. By those methods, 

one obtains the space-charge field Esc 

current averaged over the bunch length 
A 

2! = - where ybc' 
and b is the 

~ >../3. At >.. = 1 em and I = 1 KA, E = 0.4 MV/m. sc 

A 
again I is the peak 

charge width (radius), b 

In this case, there is a 

net decelerating force at the right edge of the beam which is stronger than 

the (net decelerating) force at the left edge. Thus the bunch must be 

compressed. 

The charge sphere model is not quite appropriate for this example. In the 

lab frame, bunches may be cylinders of length >../3 and radius also >../3. In 

the beam frame, the length is expanded by y. For y=40, one should use a 

long- cylinder model to compute the field. Such a computation results in the 
A 

. E ~I express1on sc = ybc· The difference is not enough to change the conclusion, 

which is that space-charge debunching can be counteracted by detuning. 

Questions remain, however. One concerns the required ratio between the cavity 

length and the drift space length in order to achieve net containment of 
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bunches. A second concerns the rate of particle loss from such bunches. A 

third issue is the start-up delay caused by debunching in the early part of a 

pulse. Further detailed study, including computer simulation, is indicated in 

this area. 

IX. Beam Transport 

The most obvious method of beam transport is a series of focusing magnets 

with a cavity or induction unit located at each focal point. The condition 

that the beam pass through two holes of radius a - .35~ separated by 

perhaps d=lO~ sets a limit on the emittance: & < a2/d- 12~ mrad. The 

drawback to this method is that the bunches spend a large proportion of their 

time out of a cavity. Alternatives require lowering the beam emittance or 

increasing the wavelength. A transport system designed for an emittance of 10 

mrad-cm features a cavity-to-cavity spacing of 0.75 m. 6 
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X. Example 

Following is a list of parameters for a sample cavity: 

A. = 1 em 

m = 1 

n = 19 

& = 

d = 1013 em 

R = 1. 2213 em 

a = 0.35 em 

b = 1/3 em 

Q = 300 

Q~ = -1 

A. = 0.997 em mn 
(&)(lL = 1 

M = 0.84 mn 
a J (X -) = 0. 88 o om R 

{ 

13 = 0.99: 

13 = 1: 

1£.1 < 75 Ia kVIm 

P = 12 kW a 

P = 1. & 1! }
Ia = average current in amps 

kW 
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length is validated. 

6. A. C. Paul, private communication. 
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Figure la: Configuration of Section II 

" 

Figure lb: Specific Cavity of Section III 
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Figure 2a: Q~ = 0 
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Figure 2b: Q~ >> 
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Figure 2c: Q~ = -1 
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