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Network science and engineering provide a flexible and generalizable tool set to describe and manipulate complex
systems characterized by heterogeneous interaction patterns among component parts. While classically applied
to social systems, these tools have recently proven to be particularly useful in the study of the brain. In this
review, we describe the nascent use of these tools to understand human cognition, and we discuss their utility in
informing the meaningful and predictable perturbation of cognition in combination with the emerging capabilities
of neurofeedback. To blend these disparate strands of research, we build on emerging conceptualizations of how the
brain functions (as a complex network) and how we can develop and target interventions or modulations (as a form
of network control). We close with an outline of current frontiers that bridge neurofeedback, connectomics, and
network control theory to better understand human cognition.
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The notion that engineering principles are criti-
cal for advancing the frontiers of modern neuro-
science is not new. Indeed, the marriage of these
two disciplines is now commonly known as neuro-
engineering.1 The purview of this discipline is
particularly large, including the use of theoret-
ical, computational, and experimental tools to
reveal fundamental principles of neural structure
and function across species.2–5 It also includes
efforts to “engineer” the brain in reverse—creating
technological systems that perform brain-like
computation—and forward—altering brain struc-
ture and modulating brain function in a targeted
and theoretically predictable manner.6 Such engi-
neering approaches were recognized in 2013 as key
tools for tackling the challenges of mapping the
brain.7 In humans specifically, the discipline seeks
to reveal the foundations of cognition.

A natural confluence of many of these lines of
inquiry lies in brain–machine interfaces (BMIs),
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which capitalize on emerging instruments for both
hardware and software in sensing, signal process-
ing, and machine learning.4,8,9 And within the class
of all BMIs, one noninvasive tool that receives
attention for its potential to inform our under-
standing of human cognition is neurofeedback.10

Experimental paradigms including neurofeedback
begin with the subject receiving sensory or behav-
ioral feedback that is based on the current state of
his/her brain activity—as measured by imaging or
electrophysiology—in real time.11 The participant
then attempts to modulate that activity signal, either
increasing it or decreasing it, in response to prompts
from the experimenter. With training, many partic-
ipants are able to learn to modulate the activity in
specific brain regions on command.

Historically, neurofeedback training has been
developed to assist individuals in the use of
BMIs to overcome disabilities, injuries, or men-
tal illness.10,12–18 For example, if one could control
the activity of the hand motor cortex using men-
tal imagery, that signal could be used to control a
robotic hand.4 Or, in the case of mental illness, if one
could control a region of the brain whose function
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is altered by the illness, one might have meaningful
relief from undesired symptoms.19 Yet, while clinical
applications have remained paramount in the use
of these tools over the last decade or more, recent
evidence suggests that neurofeedback can in fact
also be used to probe the fundamental principles
of cognition that explain how the brain relates to
behavior.20,21

The promise of neurofeedback in revealing
principles of cognition builds on the fact that—in
essence—it is a perturbative approach. Unlike the
lesion approaches that were ubiquitous in early
studies of neuroanatomy,22 which led to the field
of brain mapping,23–25 neurofeedback enables the
investigator to modulate brain activity in a targeted
manner by offering the participant a view into the
activity of a small volume of neural tissue. As a
tool, neurofeedback offers several advantages over
stimulation-based perturbation techniques, such
as transcranial magnetic stimulation—subjects can
learn to modulate activity on demand without
the need for external stimulation hardware, and
these learning effects can be sustained over several
days.26 Interestingly, such perturbative approaches
are in fact the bread and butter of mathematics and
physics, where they are used to examine the general
structure of the dynamic landscape surrounding
a point (see, for example, Refs. 27 and 28). The
major benefit of a perturbative approach is that it
facilitates generalization of an observation, and by
extension the construction of a mechanistic theory.
This ability to probe both the canonical form and
the broader landscape of a dynamical system has
proven fundamentally important in developing
mechanistic theories in theoretical physics.

In cognitive neuroscience, the potential to use a
perturbative approach like neurofeedback becomes
particularly interesting when viewed in light of the
emerging field of connectomics.29–31 Because the
brain is not simply a collection of independent units
but is instead a complex network of interconnected
elements,32,33 manipulating the activity in one area
can have nontrivial effects on other areas—even far
from the modulated source.34 Far from the mysteries
of quantum mechanics, this action at a distance is a
direct consequence of the complex pattern of struc-
tural wiring that links brain areas.35–37 Given this
complexity, it is natural to ask, “What distributed
network of brain areas is affected when a participant
modulates the activity in a single brain region? Can

participants learn to modulate two regions at once,
or large groups of brain areas? What do the answers
to these questions tell us about the distributed com-
putations that support complex cognitive processes?
How would we choose the target region for neuro-
feedback to elicit a specific change in a large-scale,
distributed functional network?”

Answering these questions requires a paradigm
shift in our conceptualization of how the brain func-
tions (as a complex network) and how we develop
and target interventions or modulations (network
control). In this review, we begin by briefly sum-
marizing the use of neurofeedback to probe cogni-
tion, and we discuss the insights that these studies
have offered into higher level cognitive processes in
humans. Next, we highlight both the challenges and
potential inherent in acknowledging that altering
the activation of a single region can have nontrivial
effects throughout the network. To better under-
stand these widespread effects, we briefly describe
the principles of network science and the organi-
zational structure currently known to characterize
the human connectome. These data lead us into the
question of how to perturb the human brain via neu-
rofeedback to move the brain from an initial state to
a predictable target state. We describe the utility of
network control theory in offering a mathematical
framework in which to ground such questions, and
we offer an outline of current frontiers that bridge
neurofeedback, connectomics, and network control
theory to better understand human cognition.

Neurofeedback for cognition: a primer

Like many other quintessentially complex ques-
tions in science, understanding how brain function
relates to cognition requires a principled empirical
approach. Most current efforts implement “open-
loop” forms of inquiry, in which an input stimulus
is used to elicit a measurable response in neuro-
physiology or behavior. At their core, open-loop
methods enable neuroscientists to map the effects
of a behavioral perturbation on the observed neu-
ral dynamics and, conversely, to map the effects
of a neural perturbation on the observed behavior.
In the forward direction (perturbing stimuli), one
might measure the difference in neural response
between different degrees of fearful stimuli. In
the reverse direction (perturbing neurophysiology),
one might lesion a neural circuit and measure the
change in emotional response to those same stimuli.
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Figure 1. Open-loop perturbation of brain and behavior. Neuroscience has long exercised an open-loop approach to probe the
characteristics of neural systems. By perturbing behavior and measuring change in neural dynamics or—in reverse—perturbing
neural dynamics and measuring change in behavior, this method is used to generate a map between neural dynamics and behavior.
For example, consider the following set of experiments investigating the neural basis behind the perception of shapes: to generate a
forward mapping between stimulus and neural response, one might measure the change in neural activity of specific brain regions
to visual perturbations of object shape; to generate a reverse mapping between neural response and stimulus, one might measure the
change in perception of shape due to perturbation of neural activity (perhaps through lesioning or neurostimulation). The forward
and reverse mapping are limited in their ability to describe how neural activity and behavior change together on a dynamical
continuum. Neurofeedback enables investigators to close the loop around forward and reverse mapping approaches—in real time.

Together, the two types of open-loop experiments
provide a forward mapping of behavior to neural
dynamics and a reverse mapping of neural dynamics
back to behavior. While these techniques offer par-
ticular utility in addressing open questions in cog-
nitive neuroscience, they do not provide a means
for addressing how function and behavior change
concurrently, as a function of brain state. Indeed,
to address this question, one must turn to “closed-
loop” approaches (Fig. 1).

Closing the loop with neurofeedback
Neurofeedback enables closed-loop scientific
inquiry by allowing the subject to directly perturb
brain dynamics based on information about his/her
current brain state or to indirectly perturb brain
dynamics based on feedback about his/her current
behavioral state. While both approaches enable the
subject to modulate brain activity, they differentially
test distinct aspects of cognition by affording flexi-
bility in the design of the feedback signal,11 which
we address further below.

To test whether a subject’s ability to directly
modulate target brain regions improves task per-
formance, investigators can present sensory feed-
back that scales with the amplitude of brain activity.

The use of this technique has revealed that sub-
jects can learn to regulate the activity of subcor-
tical areas, including the amygdala38–40 and basal
ganglia,41 and extended areas of the limbic system,
including the insula20,42 and parahippocampus.43

Interestingly, participants can also learn to mod-
ulate the primary sensory motor cortex (primary
motor area,44 premotor cortex,45 and supplemen-
tary motor area43,46) as well as higher-order areas,
including the anterior cingulate cortex,20,42 ven-
tral tegmental area,47 frontal and parietal cognitive
control areas,48 anterior midcingulate cortex,43,46

and frontal cortex.43,46 Importantly, subjects who
learned to successfully modulate regional activity
demonstrated improved performance on a variety
of cognitive tasks, including tasks eliciting cogni-
tive processes critical for memory,39,48 mood,38,49

motor imagery,26,43–46,50 and perception of pain.42

Thus, neurofeedback affords flexibility in target-
ing distinct functional brain regions associated with
different facets of cognition that include sensation,
movement, emotion, attention, and learning.

While direct modulation of a neurophysiological
signal is a natural place to start, one might also be
interested in indirectly perturbing behavioral states
and observing concurrent changes in brain activity.
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Consider examining how the brain dynamically
recruits different areas to perform easy versus
difficult behavioral tasks—investigators can alter
task complexity on the fly based on the amount of
activity in the target brain region. To perform this
real-time decoding and mapping of brain activation
to behavior, neuroscientists have begun employing
machine learning tools that link general linear
models with multivariate pattern analysis.11,51,52

Briefly, a typical neurofeedback study utilizing
these tools would implement the following general
process: train a statistical model that discriminates
patterns of brain activation in response to different
stimuli, present the subject with a stimulus, ask the
subject to perform a mental operation based on the
stimulus, decode the altered pattern of brain activity
using the statistical model, adjust the stimulus on
the basis of the new brain state, and have the subject
repeat the mental operation. The ability to perturb
behavioral state based on underlying brain dynam-
ics has immense utility in revealing functional
mechanisms underlying changes in behavior.53

Indeed, recent applications of this technique have
yielded critical insights into the mechanisms of
attention54,55 by altering task complexity during
decoded states of attentional lapses.56

Learning strategies in neurofeedback training
Exactly how participants learn to regulate regional
activity in response to neurofeedback remains
incompletely understood. To date, efforts have
focused on two complementary strategies. In the
first, the participant is provided with cognitive tasks
that facilitate the activation of the target region,
while in the second, the participant is simply pro-
vided with the feedback of regional activation and
encouraged to identify his/her own strategy to mod-
ulate it. The two techniques have distinct advantages
in the study of human cognition.

The earliest work in this field implemented the
first approach by providing subjects with instruc-
tions to perform mental imagery by imagining the
perceptual experience associated with the functional
role of the target brain region.21,42,50 For example,
to activate motor processing areas, one might pic-
ture oneself moving a limb, while to activate atten-
tion processing areas, one might concentrate on the
given task. Evidence suggests that, when given such
instructions, subjects display improved modulation
of the target brain area within a day of training.26

Put simply, learning to self-regulate brain activity is
akin to learning any other skill.41 When given phys-
iological feedback in addition to a recommended
modulation strategy, evidence suggests that subjects
display increased performance on related cognitive
tasks in comparison to the scenario in which sub-
jects are only given the modulation strategy.42

Nonstrategic training of neurofeedback
Despite the apparent utility of a cognitive modu-
lation strategy, it is also useful to understand to
what degree subjects can volitionally modulate brain
dynamics. Can subjects simply learn to modulate
brain activity when given no pointers as to how to
enhance the activity of the target region? Such a
capability would be vital in modulating brain activ-
ity or connectivity in regions for which we cannot
articulate a strategy. These possibilities open up a
new realm of scientific investigation that could be
particularly helpful in the study of neurological and
psychiatric disorders with potentially discordant
mappings of functional brain areas57 or in tuning
the temporal architecture of brain activity in healthy
individuals.58 Studies demonstrate that, even when
explicit instructions or strategies are not provided,
subjects can search for an effective strategy to self-
regulate functional brain dynamics.26,38,47,57 Such
open-ended experimentation is especially powerful
for investigating how subjects employ unique strate-
gies to modulate brain dynamics.38,40,57 Indeed, it is
of interest to explicitly map individual variability in
the chosen control strategy to the subjects’ ability
to modulate target brain areas. Understanding the
relationship between cognitive strategy and effective
modulation could inform experimental approaches
to fine-tune the mapping between cognitive pro-
cesses and functional brain regions (Fig. 2).

Probing cognitive abilities and disabilities
Broadly, direct and indirect neurofeedback are
profoundly robust in their ability to modulate brain
dynamics. Furthermore, they provide a systematic
approach to query functional mechanisms of cog-
nition that are often elusive in open-loop methods
of investigation. By engineering the feedback signal,
neurofeedback investigators can flexibly design
novel experimental paradigms to study the role of
cognition in single brain areas or across multiple
brain areas in tandem. This practice has already
demonstrated the ability to direct neurofeedback
to more focal targets39,40,44,59–61 or to perturb
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Figure 2. Probing cognitive state with neurofeedback. Indirect
perturbation of behavioral state using neurofeedback is a pow-
erful technique to probe the cognitive state space in individuals.
Suppose that one wanted to learn the neural basis underlying
spatial reasoning ability using a mental manipulation task. (A)
The experimenter could present the subject with a circle and
a star shape, and ask the subject to observe the stimuli and
mentally imagine the circle morphing into a star. Meanwhile, a
statistical model could be trained to capture the voxel activation
pattern pertaining to the imagined shapes. (B) To probe and
quantify the subject’s thought process associated with mental
manipulation, the experimenter might display the circle to the
subject and ask the subject to use his or her mind to manipu-
late the object into a star. Using the shape-based model of voxel
activation, the experiment could decode the mentally visual-
ized shape from the voxel activation pattern—in real time—and
feed the current state of the imagined shape back to the sub-
ject. By tracking how subjects explore the cognitive state space
while learning how to perform mental operations during a task,
investigators could map how individuals use different cogni-
tive strategies to accomplish the task and could further map the
distinct neural drivers of these strategies.

dynamics across more distributed targets.43,46,62

In addition, the difficulty of the neurofeedback
training can be titrated to affect a specific change
on both attentional circuits and regions devoted
to internally directed cognition.63 Particularly
exciting applications to cognition include the
revelation of associative learning in early visual
areas,64 visual perceptual learning induced by
decoded functional magnetic resonance imaging
(fMRI) neurofeedback,65 and the sensitivity of
these learning processes to the subject’s state.66,67

In addition to functioning as a probe for healthy
human cognition, neurofeedback can also be used
to identify and potentially treat cognitive disabili-
ties. Particularly in populations with impaired men-
tal health, neurofeedback enables the clinical study
of mechanisms of dysfunction in neurologic and
psychiatric disorders, and it also has the potential
to provide noninvasive therapies to minimize the
symptoms of such disorders.53 Indeed, soon after
its introduction in the late 1960s,12,13 neurofeed-
back was popularized in clinical contexts. Studies
demonstrated its therapeutic potential in managing
epilepsy,14,15 treating attention-deficit/hyperactivity
disorder,16,18 and enhancing rehabilitation follow-
ing stroke.17 Initially, these pioneering studies were
limited to electroencephalography (EEG), but with
more recent advances in other noninvasive imaging
techniques, the tools have been translated to real-
time fMRI.68 Over the last few years, neurofeed-
back with real-time fMRI has been used to study
schizophrenia,57,60 depression,39 obesity,61 and
addiction.62,69 While direct neurofeedback is used
to improve patients’ ability to self-regulate target
brain areas and reduce clinical symptoms,70 indirect
neurofeedback is used to study functional dynam-
ics underlying the different cognitive strategies used
by healthy subjects and patients to modulate activity
in dysfunctional brain regions.57,71 By using indirect
neurofeedback to map cognitive differences between
healthy subjects and patients, clinicians may be able
to use behaviorally driven approaches to better diag-
nose individuals with disabilities and mental illness.

Advancing neurofeedback technology
Neurofeedback has yielded critical insights into cog-
nitive function and dysfunction and is now ripe for
innovation as neuroscience evolves toward under-
standing cognition in the broader context of brain
networks.33 Indeed, the emerging view of the brain
as a network in the mathematical sense has been
supported by a growing empirical ability to mea-
sure brain activity over a variety of spatial and tem-
poral scales.30,32 Novel imaging technologies have
continued to elucidate a hierarchical organization
of the brain,72,73 ranging from the scale of individ-
ual neurons and neuronal populations to that of
specialized large-scale functional areas.74 Bridging
the computational units at each scale are complex
patterns of structural links facilitating the transmis-
sion and processing of information that support
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cognition and behavior.29 This hierarchical, multi-
scale network architecture of the brain brings with it
unique opportunities for the use of neurofeedback
in understanding cognition.

Although prior work demonstrated that neuro-
feedback is effective in modulating dynamics of
(1) individual neurons at submillimeter resolution
and fast time scales,75,76 (2) millimeter-scale neu-
ronal populations through oscillatory rhythms,58

and (3) macroscale functional domains at slow
time scales,59,68 modulating the way in which brain
regions functionally interact is now becoming a
tractable frontier. Using statistical models to mea-
sure functional connectivity and to construct an
effective feedback signal for modulation, several
studies demonstrated that subjects can directly per-
turb functional interactions between brain regions
with fMRI-77–81 and EEG-based neurofeedback.82–84

Moreover, the feedback signal can be adapted to per-
turb the dynamics of individual connections80,81 or
large groups of connections77–79 simultaneously.

While neurofeedback can perturb dynamics at
different stages and spatial scales of functional
processing, equally important is understanding how
perturbations can have far-reaching impact on func-
tional dynamics in non-targeted brain areas. Several
studies identify changes in functional connectivity
between the neurofeedback target and other brain
regions.26,47,60,61,85–90 Other studies demonstrate
changes in functional connectivity between pairs of
regions completely outside of the area targeted by
neurofeedback.26,85,87–89,91 Moreover, the observed
changes in functional connectivity can be complex:
upregulating or downregulating target brain regions
may increase functional interactions between some
brain regions and may decrease functional
interactions between other brain regions.87

Taken together, these findings underscore the
potential complexity of the effect of neurofeedback
on the brain. Yet, to date, little attention has been
given to establishing a framework for predicting the
impact of neurofeedback on broader network func-
tion. Building such a framework is critical for the
improvement of feedback paradigms built to iden-
tify neurophysiological drivers of cognition and to
treat neurological and psychiatric disorders while
minimizing side effects. In the following section, we
discuss the potential utility of network neuroscience
in providing just such a framework.

Network neuroscience

At the confluence of neuroscience, engineering, and
physics lies network neuroscience, a burgeoning field
that offers a framework for describing brain cir-
cuitry at macro- and microscales.92 Drawing upon
fundamental tools from graph theory,93,94 network
scientists identify important features among ele-
ments of a system and measure similarity between
these elements—based on these features—to syn-
thesize models that describe an “ecosystem” of inter-
related parts.95,96 These models can be probed and
perturbed to understand how an individual element
or a group of elements influences the system as a
whole.97,98 This formalism can be used to study how
elements of the brain (nodes) structurally or func-
tionally link (edges) to one another and support
behavior and cognition in health and disease.99,100

To construct brain graphs,30 one can measure struc-
tural links between brain regions, such as those
composed of macroscale white-matter fibers or
microscale synaptic connections. Alternatively, one
can measure functional links between brain regions,
such as those estimated by similarity in brain
dynamics. The pattern of edges between nodes can
then be studied mathematically as a graph.30,32,33

Mathematical underpinnings of network
science
Formally, a graph G consists of a set of N nodes
V and a set of N × (N − 1) edges E .93,94 To tabu-
late the strength of edges between network nodes,
one can construct an N × N adjacency matrix A in
which the entry at row i and column j refers to the
weight of the edge between node i and node j . Mul-
tilayer networks extend the notion of a static graph
to a higher-dimensional graph101 —where nodes or
edges change with condition or time, as in the case
of dynamic functional brain networks101–106 —and
are represented by an N × N × T adjacency ten-
sor with N nodes and T layers.107 Using the adja-
cency matrix formulation, one can compute local,
mesoscale, and global statistics to quantify the topo-
logical and topographical properties of brain graphs
(Fig. 3). On the whole, these graph statistics can pro-
vide information about how neural information is
represented, processed, and communicated between
brain regions.

Local graph measures tell us about the nature
of connections from a given node or between
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Figure 3. Multiscale topology in brain networks. Brain networks have unique organizing principles at local, meso-, and global scales
that provide information about how neural information is represented, processed, and communicated between brain regions. Brain
networks are modeled as a collection of nodes—representing regions of interest with presumably coherent functional responsibilities
—and edges—structural connections or functional interactions between brain regions. (A) Node centrality describes the importance
of individual nodes in terms of their connectivity relative to other nodes in the network. Nodes with more connections or stronger
edges tend to be hubs (red), while nodes with fewer connections tend to be isolated (blue). (B) Clustering coefficient, a measure of
connectivity between the neighbors of a node, is another local measure of network topology. Unlike network topologies with strong
hubness qualities, as in (A), networks with strong clustering coefficient demonstrate a high density of triangles that is believed to
facilitate local information processing. (C) Modularity is a mesoscale topological property that captures communities of nodes that
are tightly connected to one another and weakly connected to nodes in other communities. Modular organization underlies a rich
functional specialization within individual communities. Here, nodes of different communities are colored red, blue, or pink. (D)
Networks with core–periphery structure exhibit a set of tightly connected nodes (core; red) sparsely connected to a set of isolated
nodes (periphery; blue). This organization is in stark contrast to the modular organization in (C). The core–periphery architecture
is a characteristic of networks that integrate information from isolated regions in a central area. Adapted with permission from
Ref. 127.

neighbors of that node. One simple, yet impor-
tant, local statistic of a node is centrality—how
influential a node is in the context of the broader
network.95 Centrality can take many forms, such
as degree, the number of edges connected to the
node (Fig. 3A), or betweenness, the number of short-
est paths between any two nodes that must cross
the node in question. Degree centrality has been
particularly useful in identifying hubs of neural
processing that interact with many different brain
regions.97,108,109 A second local statistic that is often
used to describe brain graphs is the clustering coef-
ficient —the fraction of a node’s neighbors that are
also connected to one another110 (Fig. 3B). The
clustering coefficient describes topological organi-
zation thought to underlie local processing of neural
information.111,112

At the mesoscale, one can quantify the tendency
of brain regions to form communities —tightly con-
nected groups of nodes that have more connections
to one another than to other groups of nodes113,114

(Fig. 3C). This modular architecture is thought
to support the brain’s segregation into function-
ally specialized units.33,115,116 Brain graphs can also
exhibit core–periphery structure, in which a densely
interconnected group of core nodes is connected
to a sparsely interconnected group of peripheral
nodes117,118 (Fig. 3D). The core–periphery network
structure has been studied for its role in explain-
ing domain-general versus domain-specific process-
ing of brain areas,119 in which specialized neural
processing in peripheral regions is integrated by
a strongly connected core to support higher-order
cognition in learning104,120 and language.106

Finally, global statistics provide a summary of
network topology. For brain networks, the charac-
teristic path length —average shortest path between
all node pairs95—is thought to measure how eas-
ily neural information can be transferred between
brain regions. Brains with shorter path lengths are
thought to transfer information more efficiently
than brain networks with longer path lengths,121
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thereby leading to greater intelligence.122 A similar,
dynamical measure of information transfer that has
been of recent interest is synchronizability —the ease
with which dynamics at each node can synchronize
based on the arrangement of edges.123 Synchroniz-
ability has also been studied in the context of graph
robustness and vulnerability to random and tar-
geted attacks to nodes.124 In brain networks, syn-
chronizability is thought to be maintained between
a critical boundary of order and disorder.125

It is important to remember that each statistic is
sensitive to network phenomena of a specific scale,
and a comprehensive, multiscale quantification of
brain network topology requires integration of the
output of these measures.120 For instance, local
information processing at hub nodes might be pro-
jected broadly to mesoscale modules for function-
specific processing that might require globally short
path lengths to ultimately integrate and bind the
information of each module.100 This framework can
be used to query how different elements across mul-
tiple scales of network architecture contribute to the
processes underlying human cognition.126

Cognitive network neuroscience
Graph theoretic approaches for understanding cog-
nition have become increasingly popular over the
past decade, largely due to their utility in describ-
ing the interregional relationships between neural
processing units elicited by cognitively demanding
tasks.105 Application of graph theory to noninvasive
brain imaging in humans has yielded critical insight
into mechanisms of intelligence, linguistic process-
ing, attention, decision making, learning, memory,
and cognitive control.100,126 Pragmatically, it is use-
ful to separate these insights into those produced by
structural brain networks35,128 and those produced
by functional brain networks.97,125

First, structural brain networks constructed from
diffusion-weighted imaging of white-matter fiber
pathways35,36 describe the fundamental scaffolding
upon which functional brain networks operate.115

Because of their potential role in constraining
functional brain dynamics,129,130 structural brain
networks are thought to play important roles in
shaping our basic cognitive abilities—such as pro-
cessing speed, working memory, motor skills, and
task switching.126 For example, longitudinal struc-
tural imaging has revealed localized changes in net-
work microarchitecture associated with learning

new skills,131,132 and moreover that the strength of
structural connections between task-relevant brain
regions predicts individual differences in the rate at
which those skills are learned.133 The relevance of
structural connectivity for cognition extends to clin-
ical cohorts. For example, patients with anatomical
disruptions caused by traumatic brain injury exhibit
structural network changes—such as a lengthen-
ing of the shortest path length—that are associated
with decreased performance on tasks that required
switching and inhibition of cognitive resources.134

While structural brain networks reveal important
correlates of cognitive ability, a more nuanced dis-
section of cognitive processing also requires the use
of functional imaging methods. Functional brain
networks provide a glimpse into network processes
(as opposed to structures) that support cognitive
function. One recent study highlighted the impor-
tance of functional network topology for cognition
by tracking longitudinal changes in the behavior of
patients with traumatic brain injury; patients with
lesions in brain regions that connected to several
functional modules exhibited more widespread cog-
nitive deficits compared with patients with lesions in
network hubs.135 Patients with traumatic injury also
exhibit distributed increases in connectivity during
the Stroop task—which requires switching of cog-
nitive resources—that is associated with reduced
performance on the task.136 In healthy individu-
als, differences in global connectivity from specific
cognitive control areas predict fluid intelligence.137

Beyond the performance of a single task, evidence
suggests that functional brain networks also recon-
figure as individuals traverse different cognitive
states125 and that the flexibility of this reconfig-
uration can be used to predict learning in future
training sessions.36

Together, these studies underscore the role of net-
work topology and network dynamics as fundamen-
tal mechanisms of cognition. Such insights lay the
groundwork for exploring how neurofeedback can
be used to perturb network properties and thereby
more effectively probe drivers of cognition.

Linking neurofeedback to network
neuroscience
In the preceeding sections, we explored state-of-the-
art capabilities in neurofeedback to perturb brain
dynamics, and we introduced a robust framework in
network neuroscience for studying the interactions
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between brain dynamics and the structural net-
works from which these dynamics originate. Here,
we begin to address how the thoughtful integration
of neurofeedback and network neuroscience could
enhance the study of cognition.

In principle, network neuroscience can be used
to identify target brain regions for neurofeedback.
Evidence suggests that neurofeedback is differen-
tially effective in distinct brain areas.138 While ini-
tial interpretations suggested that this differential
effectiveness is due to the inherent differences in
the types of cognitive processes that brain regions
perform, a second possible explanation is that brain
areas are differentially sensitive to neurofeedback
based on their connectivity profile. It is intuitively
plausible, for example, that regions of the brain that
are densely functionally connected with one another
(such as the default mode) will be easier to control
as a collective—owing to the breadth of potential
control mechanisms139 and cognitive strategies—
than regions of the brain that are sparsely function-
ally connected (such as the frontal pole). It will be
interesting in the future to determine whether the
connectivity profile of a region, or the complexity
of the information it processes, is a better predictor
of its response to neurofeedback.

Beyond informing our understanding of the
impact of neurofeedback on specific brain areas,
network neuroscience can also be used to predict
the impact of targeted neurofeedback on other
brain regions. For example, structural connectivity
or resting-state functional connectivity could
pinpoint network hubs, such as cognitive con-
trol areas,140–142 that interact with many other
brain areas and serve as a potential target for
modulating distributed brain dynamics with
neurofeedback. Such a capability could be used to
study self-regulating brain dynamics143 in cognitive
control regions and their effective control of other
brain areas as humans switch between distinct
tasks.142 A similar approach might be employed to
investigate whether modulating brain regions that
integrate functionally distinct network modules142

could help subjects better learn tasks that require
cooperative or competitive interactions between
separate cognitive domains140—such as visuomotor
interactions in novel skill acquisition.144

More generally, our ability to connect network
topology to cognition offers a critical opportunity
to model and predict the effects of neurofeedback on

cognition. Simultaneously, advancements in neuro-
feedback can be used to investigate network drivers
of cognition: by designing the appropriate feedback
signal, neurofeedback can be engineered to modu-
late not only brain regions but also specific brain
networks. This capability opens new doors to test
the ability of subjects to modulate specific network
properties: Could a subject be trained to modulate
the flexibility of a functional module, the participa-
tion of a brain region in multiple modules, or even
the characteristic path length of the global network?
Our ability to modify the feedback signal to accom-
modate network statistics could have substantial
impact on our understanding of how perturbation
of network structure affects cognitive ability. Such
a capability would also inform the design of novel
intervention strategies for patients with neurologi-
cal disorders or psychiatric disease characterized by
disrupted patterns of functional connectivity.

Caveats and future directions
While the prospect of linking neurofeedback and
network neuroscience is promising, it is also impor-
tant to adopt a measured approach in which we
acknowledge the pitfalls and limitations inherent
in the techniques. First, a note on interpretability:
network statistics quantify graph properties from
the theoretical perspective of statistical mechanics
and information processing, and thus they require
a conceptual leap if connected to neurophysiologic
phenomena.145,146 For instance, the relationship
between connectivity derived from functional
imaging and the amount that two brain regions are
in fact communicating147 remains undetermined.
Or consider the shortest path between areas in
a brain graph: Does the brain utilize shortest
paths?130 Or does it preferentially utilize longer
paths or walks?37,133 Although novel technologies
are needed to help bridge these areas of scientific
understanding, we remain optimistic that network
neuroscience will provide a dynamical systems-level
characterization and understanding of behavioral
and cognitive processes.

A second crucial caveat relates to the importance
of distinguishing between correlation and causa-
tion. A substantial body of work now demonstrates
that network measures can be good predictors of
cognitive ability based on their degree of correlation
to performance metrics. However, these predictions
do not equate to causation. In fact, explicitly
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identifying causation will require a coupling
between neurofeedback and network-based
approaches to the study of cognition: by mod-
ulating network topology with neurofeedback
and evaluating the concurrent change in task
performance, we can begin to understand causal
effects of network architecture on cognition.

A third and very fundamental consideration
relates to the question of whether neurofeedback
can be truly targeted to a single region or whether it
only ever activates a distributed network. In truth,
knowing the degree to which a specific neurofeed-
back paradigm targets a single region versus many
regions remains challenging, and this uncertainty is
an important consideration for studies seeking to
combine network approaches and neurofeedback
training. For example, prior work demonstrates
the ability of subjects to regulate brain activity in
spatially confined brain regions.59 Specifically, they
show that, with training, activation was significantly
increased within a predefined target area (somato-
motor cortex) relative to the rest of the brain, an
observation that suggests that spatial specificity may
be achieved with neurofeedback. More recent work
confirmed the hypothesis that functional connectiv-
ity from the target brain region (ventral tegmental
area) to adjoining brain regions is directly caused by
volitional activation of the target and not mediated
by practice with or without false neurofeedback.47

Thus, they reason that changes in network con-
nectivity are due to the successful perturbation of
the target and not associated with the task. This
observation, however, still leaves open the ques-
tion of whether increased functional connectivity
occurred in successful perturbations during train-
ing or as a result of posttest perturbation. Other
work has developed techniques to study the differ-
ential effects of perturbation during training and
perturbation after training (transfer) on functional
connectivity.89 Comparing functional connections
stemming from the neurofeedback target, they
found more distributed changes during training
and specific changes during transfer. These studies
present evidence that (1) neurofeedback can activate
spatially confined brain regions, (2) target activation
and the resulting increase in functional connectivity
can be directly related to successful neurofeedback,
and (3) methodological innovations are capable of
teasing apart changes in functional connectivity due
to training perturbations versus transfer perturba-

tions. Nevertheless, it will be important in the future
to understand the degree of targeting possible in any
given neurofeedback training paradigm, as well as in
any given subject, when considering informing such
experiments with predictions from network science.

Perhaps most importantly, the possibility of
revealing causal relationships between network
architecture and cognition with neurofeedback also
supports the potential to build computational mod-
els or theories of brain network function from
first principles.148,149 Setting aside characterization
and description, and even setting aside correla-
tive approaches to link brain network function to
observable behavioral variables, models and theo-
ries provide mechanistic understanding150 and the
ability to generalize inferences to unseen scenarios.
What might such a model or theory look like? In
the following section, we discuss the potential util-
ity of network control theory in providing just such
a model.

Network control theory: a tool to predict
impact of modulation

Network control theory is a mathematical model-
ing framework that addresses the question of how
energetic input to a node in a network affects
the dynamics of the networked system.151,152 Stem-
ming from early work in the 1970s on structural
controllability,153 the theory is built on two pillars: a
model of the system’s dynamics and an estimate of
the system’s network structure.154 In contrast, graph
theory stands on only one of these pillars (the net-
work structure) and is devoid of the other (a model
of system dynamics). These differences in the nature
of the two theories directly affect how they can be
used:142,155 graph theory provides descriptive statis-
tics of a network’s organization, while network con-
trol theory provides a prediction of how the change
in energy at a node will alter the system’s dynamics.
While graph theory offers tools for characterization,
network control theory posits a mechanism for sys-
tem function.

Traditionally, network control theory stems from
the older field of simply control theory, which
has been used to inform the control of robotic,
technological, and mechanical systems. The simple
difference between control theory and network con-
trol theory is that network control theory deals with
the application of control theory to systems charac-
terized by complex interconnection patterns.151,152
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These patterns significantly affect the control strate-
gies that a system can perform or respond to and
further affect the energy required for certain con-
trol goals. In the realm of neuroscience, network
control theory therefore differs from neural control
engineering more generally156 in its explicit treat-
ment of brain network architecture.

A few relevant concepts and tools
In a brain, questions of control can be separated
into two types: (1) how does the brain control
its own dynamics and (2) how can brain dynam-
ics be controlled via external intervention. When
applied to the former question, network control
theory can offer insights into cognitive control,157

decision making, and other forms of executive
function.142,158 When applied to the latter, network
control theory can inform the use of neural modu-
lation via neurofeedback or brain stimulation,34,159

the development of cognitive tasks for explicit tun-
ing of brain dynamics, and the understanding of
how sensory stimuli impact those dynamics.

To address both types of questions regarding
internal and external control, one needs to begin
by writing down the two pillars of the theory: a
model of the system’s dynamics and an estimate
of the system’s network structure. A simple first
step is to use a discrete-time, time-invariant, noise-
free model of system dynamics129,160 and a struc-
tural network estimated from diffusion imaging
tractography in humans,35 representing the white-
matter pathways crisscrossing cortical and subcorti-
cal areas. Of course, these choices are accompanied
by model assumptions and caveats associated with
the empirical data, both of which need to be
acknowledged. (See next section for an explicit treat-
ment of these topics.) Nevertheless, they remain a
useful starting point for the application of the theory
to human neuroscience.

Within this framework, network control theory
offers a few important concepts and tools. The first
important concept is that of controllability, which
indicates whether a system can be moved from a
specified initial state to a specified final state with
finite energy and in finite time.151 In initial applica-
tions of these algorithms to noninvasive structural
neuroimaging data in humans, evidence suggests
that the human brain is practically impossible to
control from energy injected into a single brain
region.142 This result motivates a more nuanced

En
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t

Dynamical network states

Average control node

Modal control node

Figure 4. Brain network controllers drive transitions between
dynamical states. To accomplish behavioral and cognitive goals,
brain networks internally navigate a complex space of dynam-
ical states. Stable brain states may lie in basins of local mini-
mum energy—requiring the brain to expend metabolic energy
to move over high-energy peaks when transitioning from the
current state to the next state. Within the space of possible
dynamical states, there are easily accessible states and harder-to-
reach states; in some cases, the accessible states are healthy, while
in other cases they may contribute to dysfunction, and similarly
for the harder-to-reach states. Two commonly observed control
strategies in complex systems are average control and modal
control. In average control, highly central nodes navigate the
brain toward easy-to-reach states. In contrast, modal control
nodes tend to be isolated brain regions that navigate the brain
toward hard-to-reach states that may require additional energy
expenditure.142 Adapted with permission from Ref. 127.

assessment of whether there are particular control
strategies that are possible for the brain and whether
the system is controllable with a larger number of
input sites.

In the engineering literature, common control
strategies include (1) average controllability, which
describes the ease with which the system can be
moved to nearby states on the energy landscape; (2)
modal controllability, which describes the ease with
which the system can be moved to distant states on
the energy landscape; and (3) boundary controlla-
bility, which describes the ease with which mod-
ules in the network can be coupled or decoupled.152

In applications to human diffusion imaging data,
these concepts have proven useful in offering struc-
tural explanations for the areas that affect cogni-
tive control142,158 and the impact of stimulation to
the target brain region.34 An even finer account
of the brain’s dynamics can be obtained by study-
ing the exact transitions from one brain state to
another, with assumptions on the need to mini-
mize energy of transitions and minimize the dis-
tance that the brain traverses through state space to
affect the transition155 (Fig. 4). Applications of these
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algorithms to human diffusion imaging data have
offered an explanation for the anatomical structure
of the brain’s default mode network155 and a predic-
tion of which regions in the network are most likely
to assist in a given state transition.155,161

Limitations, caveats, and extensions
of network control theory
Because network control theory is fundamentally
a modeling endeavor, it is important to consider
model assumptions, model validation, and model
extension. First, it is important to acknowledge
that the model can only be as accurate as the data
used to construct it, and thus one must deal with
the inherent limitations associated with construct-
ing the anatomical network from diffusion imag-
ing data.162–164 Second, when considering a linear
model of system dynamics,153 the assumption is that
brain network dynamics are linear. In the brain,
these linear models have preliminary support in
empirically measurable dynamics,129,160 but fur-
ther work is needed to delineate the breadth of
their applicability. Moreover, it is important to note
that, if using this linear approach to model non-
linear dynamics (e.g., those observed in EEG and
MEG data), the assumption of linearity neverthe-
less remains true over short time horizons and in
the vicinity of the operating point.165

If one wishes to expand beyond short time
horizons and states surrounding the operating
point, then one must consider nonlinear models
of brain dynamics.166 Which nonlinear models
might be relevant while remaining theoretically
tractable? This is an open question, but one
particularly useful approach might be to use system
identification to extract the appropriate nonlinear
model from real data.167 Better understanding of
control strategies for appropriate nonlinear models
of brain dynamics could be particularly important
in understanding large-scale circuit function sup-
porting cognition. For example, synchronization
dynamics are thought to play a critical role in facil-
itating the transfer of information between brain
regions at the mesoscale,168 but principles of the
brain’s endogenous regulation of synchronization
remain far from understood. One hypothesis from
theoretical physics is that these networks employ
a push–pull control strategy in which antagonistic
desynchronizing and synchronizing nodes regulate
the transfer of information through the network.169

By analyzing the functional network topology of
focal and distributed (clinically known as secondar-
ily generalized) seizures, recent work demonstrates
that desynchronizing and synchronizing brain
regions antagonistically regulate the ability for
seizures to synchronize network dynamics.143 Thus,
control strategies like push–pull control may be
relevant for homeostatic regulation of (nonlinear)
synchronization dynamics in the human brain.

Beyond nonlinear extensions, other interesting
questions to consider include the possibility that
some regions of the state space are inaccessible
or pathological,154 that the brain may be under-
actuated in certain states,170 and that control can
be implemented by distributed as well as focal
strategies.159 Moreover, although structural control-
lability theory153 is inherently built on knowledge
about the structural connections in a network, it will
be interesting in the future to extend these models
to statistically estimate the set of either structural
or extrasynaptic171 connections that are being uti-
lized at a particular moment in time and how that
set might change as humans perform a cognitively
effortful task.

Putting it all together: neurofeedback,
network neuroscience, and control

What does network control theory add to the con-
versation between neurofeedback and network neu-
roscience? Far from being a third wheel, network
control theory in fact offers the theoretical frame-
work in which to predict how the activation of a
region (or connection or subgraph) by neurofeed-
back will affect brain network dynamics, moving
the brain into a new mental state and thereby alter-
ing intrinsic cognitive processes. Thus, in essence,
network control theory offers a theoretical back-
bone on which to begin formulating ideas about
the mechanisms of cognition and begin developing
theoretically grounded interventions to target their
modulation.

To be a bit more concrete, one could use network
control theory to simulate the impact of a change
in energy at one (or several) regions (or connec-
tions) on the subsequent brain network dynam-
ics. Using this approach, one could identify the
constellation of regions and connections that—
when brought to a specific pattern of activation—
would have a predictable effect on brain state
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Figure 5. Self-regulating brain network controllers for cognition. Neurofeedback could be used to teach individuals how to
modulate brain activity in important control points that drive changes in dynamical brain state—an experimental tool that would
offer tremendous opportunities for studying “cognition dynamics,” or the ability to perform specific tasks based on the current
brain state. Furthermore, this approach might be used to train individuals with specific cognitive deficits to better manage their
ability to perform certain types of tasks. (A) Suppose that individuals could be trained to upregulate the brain’s average controller
(red node) to assist in navigating different brain states associated with a specific task, such as opening up and reading a book. (B)
If the subject has difficulty with switching between tasks—such as reading and doing math—he/she might be trained to upregulate
his/her brain’s modal controller (blue node) to switch more efficiently. (C) If the subject has difficulty with comprehension or
reading aloud, he/she might be trained to upregulate his/her brain boundary controllers between functional modules associated
with language and speech.

(Fig. 5). Then, one could use neurofeedback to pro-
duce that pattern of activation, validate the pre-
dicted subsequent effect on brain state dynamics,
and observe the associated change in cognitive func-
tion. In essence, this approach enables a closed loop
between theory and experiment, providing a frame-
work in which to develop more general theories
of brain function, explain existing empirical data,
suggest new directions for empirical research, and
inform experimental hypotheses.

Indeed, the confluence of these three disparate
disciplines—network control theory, neurofeed-
back, and network neuroscience—offers much
promise in advancing our understanding of human
cognition. Both neurofeedback and network neuro-
science are well-developed fields at this point, and
they are ripe for integration. Network control theory
is the newest field of the three, and its integration will
require careful development, characterization, and
validation to reach its full promise. Nevertheless, the
potential payoff in terms of obtaining a basic, mech-

anistic understanding of human cognition, seems at
this point to be well worth the effort.
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