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Abstract

Autoregressive Text-to-Image Model for Protein Localization Prediction

Emaad Khwaja

Accurately predicting cellular activities of proteins based on their primary amino acid se-

quences would greatly improve our understanding of the proteome. we present CELL-E,

a text-to-image transformer model that generates 2D probability density images describing

the spatial distribution of proteins within cells. Given an amino acid sequence and a refer-

ence image for cell or nucleus morphology, CELL-E predicts a more refined representation

of protein localization, as opposed to previous in silico methods that rely on pre-defined,

discrete class annotations of protein localization to subcellular compartments.
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Chapter 1

Introduction

1.1 Background

In recent years, advancements in sequencing technologies have allowed for the comprehen-

sive cataloging of proteins and their amino acid sequences across a wide range of organisms

[3]. Despite this progress, the exact functions and cellular dynamics of many proteins re-

main unclear. In order to gain a deeper understanding of these proteins, researchers have

sought ways to predict their properties, including structure, interactions, subcellular localiza-

tion, and trafficking patterns, from their amino acid sequences. This type of computational

analysis has the potential to shed light on the “dark matters” of the proteome and enable

large-scale screening before expensive experimental validation. These tools have numerous

applications in biomedical research, such as drug design and therapeutic target discovery [4].

In these studies, our focus is on predicting subcellular localization of proteins from their

amino acid sequences, with nuclei images providing spatial context for their cellular func-

tions. The localization of a protein to a specific subcellular compartment can be driven by

either active transport or passive diffusion in conjunction with specific protein-protein in-
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teractions, often involving localization “signals” in the amino acid sequence [5–7]. In many

cases, however, the exact mechanisms for sequence recognition and trafficking are not yet

fully understood [8]. For example, there is ongoing debate about the mechanism behind

the import of proteins via the nuclear localization sequence (NLS) [9]. Given these chal-

lenges, machine learning utilizing existing knowledge of protein localization has become a

particularly useful tool.

Although computational prediction of protein subcellular localization from primary amino

acid sequences is an active area of research, most works train the model with class annotation

of subcellular compartments (e.g., nucleus, plasma membrane, endoplasmic reticulum, etc.)

[10] which are available from databases such as UniProt [11]. This approach has two major

limitations. First, many proteins are present in different and variable amounts across mul-

tiple subcellular compartments. Second, protein localization could be highly heterogeneous

and dynamic depending on the cell type and cell state (including cell cycle state). Neither of

these two aspects have been captured by existing discrete class annotations. Consequently,

machine-learning-based protein localization prediction still has limited applications. Fur-

thermore, to assist mechanistic discoveries, it is highly desirable for the machine learning

models to be explainable.

To investigate the relationship between sequence and subcellular localization, we present

CELL-E, a text-to-image transformer model which predicts the probability of protein local-

ization on a per-pixel level from a given amino acid sequence and a conditional reference

image for the cell or nucleus morphology and location (Fig. 1.1). It relies on transfer learning
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via amino acid embeddings from a pre-trained protein language model and two quantized

image encoders trained from a live-cell imaging dataset. By generating a two-dimensional

probability density function (2D PDF) atop the reference image, CELL-E naturally accounts

for multi-compartment localization and the cell type/state information implicitly encoded

by the cell morphology. We demonstrate the capability of CELL-E to predict localization

of proteins, identify changes in localization due to mutations, and uncover sequence features

correlated with the specification of subcellular protein localization.

CELL-E 

Transformer

MVCFRLFPVPGSGLVLV

CLVLGAVRSYALELNLT

DSENATCLYAKWQMNF

TVRYETTNKTYKTVTI

SDHGTVTYNGSICGDD

QNGPKIAVQFGPGFSWI

ANFTKAASTYSIDSVSF

SYNTGDNTTFPDAEDK

GILTVDELLAIRIPLND…

Protein Sequence Nucleus Image Predicted Localization

Figure 1.1: Given an amino acid sequence and a reference nucleus image, CELL-E makes
a prediction of protein localization with respect to the nucleus as a 2D probability density
function, shown as heatmap, with color indicating relative confidence for each pixel.

1.2 Related Work

Protein Localization Prediction

While traditional supervised approaches, such as stochastic modeling, have been limited

by feature representation or computation time, deep learning has proven to be a powerful
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tool in predicting localization [12]. With the ability to optimize millions of parameters,

deep neural networks have shown the ability to represent complex patterns in a manner

that traditional manual feature extraction cannot [13, 14].The success of language models in

protein prediction tasks suggests that patterns dictating these structures are buried within

residue sequences [15, 16].

Protein localization is typically framed as a class prediction task. 1D localization predic-

tors take the primary sequence as input and produce a fixed-length vector, with each entry

corresponding to a subcellular location and the values being probability values. However,

these methods have limitations [17, 18]. Discrete classifications for contiguous regions of the

cell, such as the nuclear membrane, can be ambiguous and may have flawed annotations in

established datasets. [19]. Additionally, these methods do not account for the influence of

local cellular geometries [20–23] and cell states [24, 25] on transport dynamics. For example,

one would expect significantly high amounts of transcription factors for DNA replication in

the S-phase of the cell cycle, but not during cell separation in mitosis [26]). Furthermore,

discrete classifications for regions of the cell which are contiguous like the nuclear membrane,

endoplasmic reticulum, and parts of the Golgi apparatus can be spatially ambiguous and

have flawed annotation within established datasets (Fig. 1.2)
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Figure 1.2: Left: Images of ADP ribosylation factor 1 (green) from Human Protein Atlas [1].
Right: Left image with nucleus channel (blue) and ER channel (channel) visible. Although
the HPA localization label is “Cytosol, Membrane,” protein signal is clearly present in the
nucleus (red box) and ER (white box).

Protein Language Models

Natural language processing (NLP) has found applications in amino acid sequence en-

coding, due to the long contextual dependencies of amino acids in a protein’s folded three-

dimensional structure [27]. Self-supervised models from the NLP field have demonstrated

excellent performance in predicting protein properties from amino acid sequence inputs [28–

31]. These models are trained on millions of amino acid sequences from databases such

as BFD [32], UniRef [33], Pfam [34], and Protein Data Bank [35]. The language models
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have proven effective in downstream tasks like structure prediction, evolutionary analysis,

and protein engineering [16], with LSTM and attention-based models achieving particularly

impressive results [36]. UniRep is an LSTM model that predicts the next amino acid in a

variable length sequence [37], while BERT uses bidirectional masked language modeling to

predict the identity of masked tokens throughout the sequence [38]. Facebook’s Evolutionary

Scale Model (ESM) is a state-of-the-art masked-language model model, pre-trained with 250

million amino acid sequences and over 700 million parameters [29].

Text-To-Image Generation

Ramesh et. al. [39] demonstrated true zero-shot text-to-image generation with their

model, DALL-E. Unlike previous models, DALL-E utilized an autoregressive framework,

which was trained on a joint distribution of text and image tokens, enabling it to make novel

image predictions with high fidelity. In contrast, earlier models based on variational autoen-

coders (VAE) [40] or Generative Adversarial Networks (GAN) [41] performed poorly when

generating images outside of the training data, resulting in distorted images and artifacts

[42–44].
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Chapter 2

The CELL-E Model

2.1 Dataset

Data availability in this domain is a large obstacle. DALL-E was trained on 250 million

text-images pairs. amino acid sequence databases for which there are corresponding cellular

images are comparatively smaller. For example, the largest publicly available dataset with

annotated protein images in human cells, Human Protein Atlas (HPA), contains 12,003

unique proteins with just 82,000 immunofluorescence staining and confocal microscopy (ICC-

IF) images [1]. Additionally, image captions are often much shorter than full amino acid

sequences sequences. CogView and DALL-E relied on text encoding which were only 256

word tokens in length. amino acid sequences can contain upwards of 600 amino acid residues,

where any portion could have functional and localization-critical domains [45]. Another

difference is NLP utilize dictionaries which contain thousands of possible words, whereas

a protein language model only needs to encode at least 20 entries for the canonical amino

acids.

In this work, we chose to use the OpenCell dataset [46] for training and validation because



8

of its strong image quality, uniformity of imaging and cell conditions, and availability of

consistent morphology reference images. OpenCell contains a library of 1,311 CRISPR-

edited HEK293T human cell lines, each with one target protein fluorescently tagged via the

split-mNeonGreen2 system. For each cell line, the OpenCell imaging dataset contain 4-5

confocal images of the tagged protein with accompanying DNA staining as the reference

for nuclei morphology. The cells were imaged alive, which collectively represents a more

accurate depiction of protein distribution within the cell than immunofluorescence.

The OpenCell dataset was selected because the split-fluorescent protein fusion system

allows for tagging endogenous genomic proteins, maintaining local genomic context, and the

preservation of native expression regulation [46]. This last point is specifically important

when compared to the previously mentioned HPA, which contains ∼ 10× more proteins and

images. ICC-IF, which is the technique used for obtaining HPA images, requires several

rounds of fixation and washing [47]. This means the proteins are not observed in a live

cell, are subject to signal loss, artifacts, and/or relocalization events, and therefore does not

represent the true nature of protein expression and distribution within a cell [48].

Each protein entry in OpenCell is accompanied by multiple high-resolution 3D confocal

images containing multiple cells [46]. Having multiple live cells enables the potential for

protein distribution to be captured at several time points within a cell’s lifetime. To reduce

computational cost for out demonstration, we converted a 3D z-stack into a 2D maximum

intensity projection [49], which still clearly depicts most subcellular structures and allow

subtle subcellular protein localization differences to be distinguished from the OpenCell
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images [46].

Training and validation sets were generated by randomly splitting the OpenCell dataset

by protein 80%-20% training-validation For every stage of training, models were blind to

sequences, nuclei, and protein images contained within the validation set. We utilize data

augmentation techniques such as random horizontal and vertical flips on images during

training.

2.2 Model Architecture

Overview

CELL-E (Fig. 2.6) is inspired by the text-to-natural-image generation model of DALL-E

[39]. We found that the method from (author?) [39] does similarly allow for truly zero-shot

protein image prediction (Fig. 2.1), however our goal for image generation extends beyond

visual fidelity and includes a degree of spatial accuracy. This is crucial for capturing the

dynamic process of protein abundance in cells, which fluctuates with respect to cell state and

environmental factors. To overcome this challenge, our proposed model includes conditioning

on a nucleus image channel as a spatial reference (Fig. 2.2). Similar to DALL-E, our model

autoregressively learns text and image tokens as a single stream of data. On the other hand,

While the goal of general text-to-image models is to produce images with high perceptual

strength, they do not necessarily aim for quantitative accuracy [39, 50, 51]. Therefore,
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Figure 2.1: DALL-E-like model with only amino acid sequence as the input. The sequence
(left column) is used as input. The middle 3 columns show separate predicted images from
random initialization. The true protein image is shown in the right column.

CELL-E was designed with the following considerations:

1. Transfer learning. Training CELL-E requires a library of cellular images and cor-

responding morphological reference images for a large number of proteins. For this

purpose, we utilized the recently established OpenCell library[46], which contains a

library of 1,311 CRISPR-edited HEK293T human cell lines, each having one target
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Figure 2.2: CELL-E model with Protein Threshold VQGAN replaced with Protein Image
VQGAN. We note morphological and localization similarity with the ground truth images
in the generated output images.
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protein fluorescently tagged and imaged by confocal microscopy with accompanying

DNA staining as the reference for nuclei morphology. The high image quality and

consistency makes OpenCell a good choice as the training and validation dataset (See

Section 2.1 for more information). Still, data availability in this domain remains a

large obstacle. For example, DALL-E was trained on 250 million text-images pairs

[39], orders of magnitude larger than the OpenCell dataset. We utilize transfer learn-

ing by incorporating frozen embeddings from a pre-trained protein language model

as the input representation of the amino acid text sequence. This approach reduces

the number of learned paramaters, thereby alleviating the burden for CELL-E to also

learn the amino acid sequence space. This allows training to be concentrated on the

relationship between sequence and image tokens. We evaluated multiple protein lan-

guage models (see Supplementary Information and Table A.2) and eventually chose

the BERT-based model from Rao et. al. [16], which we refer to as the TAPE model,

for subsequent work.

2. Morphological reference. In our initial efforts, we found that a transformer using

just the amino acid tokens and protein image tokens is capable of generating cell-like

images from the amino acid sequence alone (Fig. 2.1). However, quantifying protein

localization information in the generated images is challenging. Furthermore, an es-

timation of a single snapshot of protein localization is not necessarily a quantifiable

indication of global behavior. Therefore, in addition to amino acid tokens and protein
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image tokens, we add a 3rd embedding space to include tokens representing the overall

cell morphology from a reference image (See Fig. 2.2.). The reference image provides

the model with information regarding the localization of subcellular structures and

compartments. Moreover, cell morphology implicitly provides the cell type and cell

state context for CELL-E predictions.

3. Image model. Instead of the Vector Quantized Varational Autoencoder (VQVAE)

previously used to analyze OpenCell imaging data [52], we chose to use Vector Quan-

tized Generative Adversarial Network (VQGAN) [53] which produces images with com-

paratively higher spatial frequency. To simplify the task of the protein image VQGAN,

we let it predict per-pixel binary representations of protein localization (i.e., a thresh-

olded image) (Fig. 2.4). This allows us to use the marginal probabilities predicted for

each image token from CELL-E to create a weighted sum on the image tokens. This

latent space linear combination is then used to generate a continuous 2D probability

density function of protein localization, which resembles a gray-scale image (Fig. 2.7).

We note that the same model can also be trained to output gray-scale images directly

(See Section 1.2 and Fig. 2.2).

2.3 Modular Training Paradigm

We use a multi-phase training approach similar to DALL-E, but our model also uses

pre-trained language-model input embeddings for the amino acid text sequences via TAPE:
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• Phase 1 AVector Quantized-Generative Adversarial Network (VQGAN) [53] is trained

to represent a single channel 256×256 nucleus image as a grid comprised of 16 × 16

image tokens (Fig. 2.3), each of which could be one of 512 tokens.

• Phase 2 A similar VQGAN is trained on images corresponding to binarized versions

(Fig. 2.4) of protein images. These tokens represent the spatial distribution of the

protein (Fig. 2.5).

• Phase 3 The VQGAN image tokens are concatenated to 1000 amino acid tokens for

the autoregressive transformer which models a joint distribution over the amino acids,

nucleus image, and protein threshold image tokens.

The optimization problem is modelled as maximizing the evidence lower bound (ELBO)

[40, 54] on a joint likelihood distribution over protein threshold images u, nucleus images x,

amino acids y, and tokens z for the protein threshold image:

Theorem 1.

pθ,ψ(u, x, y, z) = pθ(u | x, y, z)pψ(x, y, z)

This is bounded by:
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Theorem 2.

ln pθ,ψ(u, x, y) ≥ E
z∼qϕ(z|u)

[ln pθ(u | x, y, z)]− KL(qϕ(x, y, z | u), pψ(x, y, z))

where qϕ is the distribution 16 × 16 image tokens from the VQGAN corresponding to

the threshold protein image u, pθ is the distribution over protein threshold generated by the

VQGAN given the image tokens, and pψ indicates the joint distribution over the amino acid,

nucleus, and protein threshold tokens within the transformer.

We utilized 4×NVIDIA RTX 3090 TURBO 24G GPUs for this study. 2 GPUs were

utilized for training VQGANS via distributed training. Only a single GPU is ever used to

train CELL-E models.

Our computer also contained 2×Intel Xeon Silver and 8×32768 mb 2933MHz DR×4

Registered ECC DDR4 RAM.

Amino Acid Embedding

For language transformers, it is necessary to learn both input embedding representations

of a text vector as well as attention weights between embeddings [36]. In practice, this

creates a need for very large datasets [55]. The OpenCell dataset contains 1,311 proteins,

while the human body is estimated to contain upwards of 80,000 unique proteins [56]. It is

unlikely that such a small slice could account for the large degrees of variability found in

nature.
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In order to overcome this obstacle, we opted for a transfer learning strategy, where fixed

amino acid embeddings from a pre-trained language model exposed to a much larger dataset

were utilized. We found the strongest performance came from TAPE embeddings [16]. Uti-

lizing pre-trained embeddings had the two-fold benefit of giving our model a larger degree

of protein sequence context, as well as reducing the number of trained model parameters,

which allowed us to scale the depth of our network.

We tried training using random initialization for amino acid embeddings (See Section 4.3),

however, we noted overfitting on the validation set image reconstruction and high loss on val-

idation sequences. We also experimented with other types of protein embeddings, including

UniRep [15] and ESM1-b [29].

Nucleus Image Encoder

Training both image VQGANs maximizes ELBO with respect to ϕ and θ. The VQ-

GAN improves upon existing quantized autoencoders by introducing a learned discriminator

borrowed from GAN architectures [53]. The Nucleus Image Encoder is a VQGAN which

represents 256× 256 nucleus reference images as 256 16× 16 image patches. The VQGAN

codebook size was set to n = 512 image patches.

VQGAN code was obtained from Esser et. al. [53], which was available via MIT license

(Copyright (c) 2020 Patrick Esser and Robin Rombach and Björn Ommer).

The model was trained on random 256× 256 crops of 512× 512 nuclei images. The model
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was initially trained solely using mean-squared error reconstruction loss. After 50,000 steps,

∼ 7 epochs, the discriminator loss term was introduced. This terms helps with reducing the

blurriness typically associated with VAEs. 512 discrete image codes were learned. Training

occurred until the model reached convergence (at 344 epochs).

Protein Threshold Image Encoder

The protein threshold image encoder learns a dimension reduced representation of a

discrete binary PDF of per-pixel protein location, represented as an image image. We adopt a

VQGAN architecture identical to the Nucleus VQGAN. The VQGAN serves to approximate

the total set of binarized image patches. While in theory a discrete lookup of each pixel

arrangement is possible, this would require ∼ 1.16 × 1077 entries, which is computationally

infeasible. Furthermore, some distributions of pixels might be so improbable that having a

discrete entry would be a waste of space.

Protein images are binarized with respect to a mean-threshold, via:

ūi,j =


1, ui,j ≥ µ,

0, ui,j < µ,

∀ pixels u ∈ image U of size i×j, where µ is the mean pixel intensity in the image (Fig. 2.4).

The 16×16 image patches learned within the VQGAN codebook therefore correspond to

local protein distributions. In Section 2.3, we detail how a weighted sum over these binarized

image patches is used to determine a final probability density map.
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Figure 2.3: 512 image patches extracted from the nucleus reference VQGAN
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Protein Image Thresholded Image

Thresholding Process

Figure 2.4: Example of thresholding process to convert protein image (left) to thresholded
ground truth image (right) for CELL-E model

The model was trained on random 256 × 256 crops of 512 × 512 nuclei images. Adam

Optimizer was used with learning rate set to 4.5 × 10−6. The model was initially trained

solely using mean-squared error reconstruction loss. After 50,000 steps, ∼ 7 epochs, the dis-

criminator loss term was introduced. This terms helps with reducing the blurriness typically

associated with VAEs. 512 discrete image codes were learned. Training occurred until the

model reached convergence (at 371 epochs).
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Figure 2.5: 512 image patches extracted from the protein threshold VQGAN
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Figure 2.6: Graphical depiction of CELL-E. Solid lines correspond to pre-trained compo-
nents. Gray dashed lines are learned in Phase 1 and 2 (Reference Image and Protein
Threshold VQGANs). Black dashed lines correspond to components learned in Phase 3.
A start token is prepended to the sequence and the final protein image token is removed.
The amino acid sequence embedding from the model is preserved, and embedding spaces for
the image tokens are cast in the same depth and concatenated with the amino acid sequence
embedding. The transformer is tasked with reproducing the original sequence of tokens (e.g.,
the input sequence with start token shifted to the right one position).

CELL-E Base Transformer

The transformer (pϕ) utilizes an input comprised of amino acid tokens, a 256×256 nucleus

image crop, and the 256× 256 corresponding protein image threshold crop. In this phase, ϕ

and θ are fixed, and a prior over all tokens is learned by maximizing ELBO with respect to

ϕ. It is a decoder-only model [57].
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25%
60%

15%
0%

Figure 2.7: Simplified example of probability map calculation. Each circle corresponds to
an image token within the quantized VQGAN embedding space. Each PDF patch (yellow)
is obtained as a weighted sum over all protein threshold image VQGAN codebook vectors.

The model is trained on a concatenated sequence of text tokens, nucleus image tokens,

and protein threshold image tokens, in order. Within the CELL-E transformer, image to-

ken embeddings were cast into the same dimensionality as the language model embedding

to in order to maintain the larger protein context information, however the embeddings

corresponding to the image tokens within this dimension are learned (See Fig. 2.6).

Amino acid sequences were converted to indices via the selected language tokenizers.

Unless otherwise stated, all results in this work utilized the IUPAC tokens and TAPE lan-

guage embeddings. CELL-E uses encodings from TAPE, There are 30 possible codebook

values for amino acids within this model, with 25 corresponding to amino acids and 5 corre-

sponding to special tokens (i.e. padding). amino acid sequence length was limited to 1000

amino acids, which is longer than 96% of sequences within the dataset. For amino acid se-
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quences shorter than 1000 amino acids, an end token (if utilized by the language model) was

appended, followed by padding tokens. For amino acid sequences longer than 1000 amino

acids, we randomly cropped a 1000 length subsection. If the right end of the crop ended

before the true end of the amino acid sequence, no end token was applied. A start token

is then prepended to all 1000 length sequence. The TAPE model used represents input

embeddings as vectors with dimension n× 768, where n is the number of amino acids. The

sequence embedding for the TAPE based models therefore had embedding vector sizes of

1001 × 768. Input amino acids were tokenized and their embeddings were retrieved from

the language models. This input embedding is fixed. We also explored other embeddings

(UniRep, ESM1b, One-hot encoding, and chemical descriptors) in Table A.2.

The images were passed through the encoders of their respective VQGANs to obtain

codebook tokens, and the final protein threshold image token is removed. We utilized data

augmentation techniques including random cropping and random flips, just as was performed

when training the VQGAN models. Within the CELL-E transformer, image token embed-

dings were cast into the same dimensionality as the language model embedding to in order to

maintain the larger protein context information, however the embeddings corresponding to

the image tokens within this dimension are learned. This ultimately creates a full sequence

embeddings 1512× 768 (1001× 768 for text, 256× 768 for nucleus images and 255× 768 for

protein threshold images) (Fig. 2.6). A rotary positional embedding [58] is then applied to

the input embeddings.

We noted improved performance by shifting embeddings over by 1 (time-shifting [59]) in
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the feature dimension, but only for image tokens. Image token embeddings were shifted one

position from the top and one position from the left.

A full attention scheme [60] is used where future tokens are masked in order to retain

full sequence and image context. The output of the attention layers is passed through a

block consisting of a linear and softmax layer to produce logits for predicted tokens at each

position. Selective masking is applied so the model is unable to select anything but amino

acid tokens for amino acid positions, nucleus image tokens for the nucleus image positions,

and protein image tokens for the protein image positions.

Cross-entropy loss is used to measure the model’s ability to reconstruct the original

input vector (without the prepended start token and including the removed final protein

threshold image token). The cross entropy is initially scaled by the length of the input, but

further weighting is placed to emphasize the output protein image threshold tokens. We

used weightings of 1
9
for the amino acid tokens, 1

9
for nucleus image tokens, and 8

9
for the

protein threshold image tokens.

The main CELL-E model had a depth of 32, indicating 32 consecutive attention and feed

forward blocks, and 16 attention heads with dimension = 64. We used attention and feed

forward attention dropout both = .1 during training. The language embedding was fixed.

Model convergence occurred at 130 epochs and these weights were used for study.



25

Probability Density Maps

Within the training data, the corresponding protein image is merely a snapshot in time

and could be markedly different if taken at another time point. For this reason, we do not be-

lieve a image prediction without confidence provides scientific utility. We utilize the learned

distribution of sequence and image pairings to generate a continuous 2D probability den-

sity function of protein localization by having the model predict per-pixel binary probability

representations of protein localization, which can then be linearly combined.

When generating images, the model is provided with the amino acid sequence and nucleus

image. The transformer autoregressively predicts the protein-threshold image. In order to

select a token, the model outputs logits which contain probability values corresponding to

the codebook identity of the next token. The image patch vi is selected by filtering for the

top 25% of tokens and applying top-k sampling with gumbel noise [61].

Ordinarily, the final image is generated by converting the predicted codebook indices of

the protein threshold image to the VQGANs decoder. However, to generate the probability

density map v̄, we include the full range of probability values corresponding to image patches,

p(vi), obtained from the output logits. The values are clipped between 0 and 1 and multiplied

by the embedding weights within the VQGAN’s decoder, wi:

Theorem 3.

v̄ = w · p(v) =
n∑
i=1

wi p(vi)

This output is normalized and displayed as a heatmap (Fig. 2.7).
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Chapter 3

Results

3.1 Image Reconstruction

Fig. 3.2 and Fig. 3.3 show the CELL-E predictions for several proteins in the validation

dataset. High similarities can be seen between the predictions and the ground truth. Even

though the reference images only depict the nuclei, which is a limitation of the OpenCell

training data, CELL-E can reasonably paint the shape of the cell for cytoplasmic proteins.

Interestingly, the case of Mitogen-Activated Protein Kinase 9 (MAPK9) contains a cell in

metaphase (top row of Fig. 3.2). CELL-E correctly predicts the round shape of its distri-

bution around the mitotic chromosomes instead of the more expanded distribution for the

adjacent interphase cell. This result suggests that CELL-E can indeed capture cell state

information from the morphological reference images.

We used several metrics to evaluate the reconstruction performance of CELL-E, summa-

rized in Table 3.1. Among the metrics, nucleus proportion accuracy measures how close the

estimated proportion of pixel intensity within the nucleus is to the ground truth thresholded

image. We believe this is the most relevant metric as it is not obscured by small spatial
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Nucleus Image Protein Image Overlay

Figure 3.1: Nucleus Image (left), Protein Image (middle), and Overlay (Right). The alpha
value for the protein channel in the right column is set to .7. Overlay is used as the “Original
Image” in Fig. 3.2 and Fig. 3.3.

variations and nucleus boundaries can be obtained from the reference images. Description of

other metrics and more information on the evaluation procedure can be found in Section 3.1.

Using these metrics, we performed ablations studies to optimize our model architecture and

choice of protein language embedding (see Section 4.3, Fig. 4.5 and Table A.2).

To assess performance, we generated a single prediction per image found in the OpenCell

set. Each image was randomly cropped and flipped similar to training, but cropped regions

and flips were maintained between models.
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Figure 3.2: Prediction results of several types of proteins from the validation set, unseen to
the model during training. The nucleus channel is depicted in grayscale, and the protein
channel is shown as an overlay in red (Fig. 3.1 for clarification). The thresholded image
(Column 2) is designated “Ground Truth” because those are the types of images exposed to
the model during training. The predicted probability map is obtained from a weighted sum
of potential image patches and normalized to 1.

Metrics

Nucleus Proportion Accuracy

To calculate the proportion of intensity in the nucleus, we first create a mask (Fig. 3.4 of

the nucleus channel using Cellpose [62]. We take a sum over the predicted 2D PDF pixels
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Figure 3.3: More prediction results from the validation set. We observe a high degree of
spatial awareness from the model, notably in UDP-xylose-acetylglucosamine Transporter,
which accurately predicts signal between cell nuclei with high confidence.
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Table 3.1: Image Accuracy

Train Validation
CELL-E VQGAN CELL-E VQGAN

Nucleus Proportion Accuracy 0.94± 0.05 0.99± 0.01 0.81± 0.18 0.99± 0.01
Predicted Threshold Pixel Accuracy 0.77± 0.06 0.87± 0.08 0.77± 0.05 0.88± 0.08
Predicted 2D PDF Pixel Accuracy 0.68± 0.10 0.63± 0.10
Structual Similarity Index Measure 0.32± 0.21 0.55± 0.25 0.25± 0.16 0.56± 0.25

Inception Score 2.77± 0.07 4.17± 0.17 2.13± 0.07 3.87± 0.17
Fréchet Inception Distance 107 15 156 23

Performance is reported as mean ± standard deviation where applicable. The VQGAN columns
indicate the value of these metrics evaluated on the ground truth threshold image passed through

the protein threshold VQGAN. As CELL-E selects tokens from this VQGAN to produce its
outputs, these values represent the best possible performance for our model.

found within the nucleus mask, and divide this by the sum of pixels across the image.

For the the ground truth, we use a similar masking calculation, but consider the values

of the ground truth protein image. These values are subtracted to calculate a mean-average

error (MAE). Since the maximum possible value is 1 and minimum possible value is 0, we

report accuracy as 1 - MAE.

Predicted Threshold Pixel Accuracy

We simple calculate a pixel-wise MAE between the predicted protein threshold image of

CELL-E and the ground truth protein threshold image.
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Figure 3.4: Masking procedure depicted.

Predicted 2D PDF Pixel Accuracy

This metric is similar to Predicted Threshold Pixel Accuracy, except we evaluate the

difference using the predicted 2D PDF, rather than the predicted protein threshold image.

We expect this number to be less accurate as tokens with less confidence will reduce the

pixel value, while all values in the protein threshold image are 0 or 1.

SSIM

Structural similarity index measure (SSIM) is a measure of local perceptual similarity be-

tween images. It considers neighboring pixels to evaluate loss contextually by incorporating

luminance and contrast information. SSIM values range between 0, indicating no similarity,

and 1, indicating maximum similarity.
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IS

Inception score (IS) is often used to evaluate the image outputs of GANs as a measure

of “realisticness.” It rewards image variety and similarity to real-life data. Performance

evaluation is based on the magnitude of the IS score.

FID

Fréchet Inception Distance (FID) is another popular metric for evaluating the quality of

images from generative models. It compares the distributions between generated and ground

truth images as the squared Wasserstein metric between two multidimensional Gaussian

distributions. For this study FID was scored against the training or validation sets when

applicable, rather than the entire OpenCell dataset.

3.2 1D Prediction Comparison

While CELL-E is not specifically trained as a discrete localization classifier, we also

performed naive comparison between CELL-E model and 1D protein localization classifiers

MuLoc [63] and Subcons [64] specifically trained with annotated protein localizations. We

focused on nuclear classification using a simple classification criteria on CELL-E output (see

Section 3.1), and the results are summarized in Table 3.2. We observed a relatively high

degree of accuracy from this method compared to the task-specific models. CELL-E was

a close second for validation set proteins despite not seeing localization annotations during



33

training.

Table 3.2: Nuclear Localization Prediction Accuracy

Train Validation
VQGAN 0.99± 0.08 0.99± 0.09

CELL-E 0.89± 0.31 0.72± 0.45
MuLoc 0.71± 0.45 0.79± 0.41
Subcons 0.43± 0.49 0.69± 0.46

VQGAN indicates the accuracy evaluated on the ground truth threshold image passed
through the VQGAN image encoder. As CELL-E selects tokens from this VQGAN to

produce its outputs, these values represent the best possible performance for our model.

Nuclear Localization Prediction

The ground truth label for nuclear localization was designated by masking the nucleus,

but computing the proportion of intensity on the ground truth thresholded protein image. If

> 50% of this intensity was contained within the area of the nuclear mask, the assigned label

would be positive for nuclear localization. Otherwise, the protein would be designated as

non-nuclear. For the predicted label, we took a summation over the masked and unmasked

regions of the predicted 2D PDF. If > 50% of pixel intensity for the 2D PDF was found in the

nucleus, it was classified as a nuclear localizing protein. The protein localization prediction

models were provided the amino acid sequence and were considered to predict nuclear if

present in the localization prediction. These predictions were also compared against our

naïve labels.
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Overall we see CELL-E is a fairly strong performer in all categories. In Section 4.3, we

performed ablation studies with respect to the nucleus proportion accuracy on the validation

set to understand the performance improvement introduced from each model component. We

noted that a completely sequence-blind model was able to predict nucleus proportion with

accuracy = .7140. This is likely due to class imbalance in the OpenCell dataset, which

contains ∼ 55% nuclear proteins. We do still observe a ∼ 10% increase prediction accuracy

with the inclusion of sequence information.



35

Chapter 4

Discussion

4.1 Extra-domain Prediction

As a first test to show that CELL-E can recognize specific, functional sequence features,

we let it predict the images for Green Fluorescent Protein (GFP), which is non-native to

human and does not contain known localization signals, as well as GFP appended with

two commonly used NLS’s KRPAATKKAGQAKKKK from nucleoplasmin [65] and PAAKRVKLD from

N-Myc [66]) that drive nuclear localization of a protein. We also appended a randomly

generated sequence as a control. A randomly chosen nuclear image from the OpenCell dataset

was used as the morphological reference. CELL-E does not localization of GFP (or random

sequence + GFP) to a specific subcellular compartment with high confidence, whereas the

two NLS-GFP fusions are clearly predicted to be localized within the nucleus (Fig. 4.1).

Therefore, CELL-E has the potential to perform computational insertion screenings for the

functional sufficiency of putative localization sequence features.

We visualize these results within a UMAP of joint CELL-E sequence-image encodings

(Fig. 4.2) and observe a transition from a cytosolic region to a nuclear region upon appending
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GFP Predicted Random Sequence + GFP Nucleoplasmin NLS + GFP c− Myc NLS + GFP

Figure 4.1: Predicted localization of GFP and modified-GFP sequences.

the NLSs.

CELL-E’s performance seems to be currently limited by the scope of the OpenCell

dataset, which only accounts for a handful of proteins within a single cell type and imaging

modality. As the OpenCell project is an active development, we expect stronger perfor-

mance as more data become available. The availability of brightfield (e.g., phase-contrast)

images as the morphological reference will also likely improve the prediction of cytoplasmic

protein localization compared to using nuclei images. Furthermore, the utility of the model

comes in terms of linking embedding spaces of dependent data. One could imagine follow up

experiments where rather than images being the prediction, other signatures such as protein

mass spec could be predicted. Additionally, other sources of information, such as structural

embeddings could be incorporated to bolster CELL-E’s capabilities.
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GFP

Rand. Seq.

+ GFP

Nucleoplasmin NLS 

+ GFP

c-Myc NLS

+ GFP

Figure 4.2: UMAP of encodings. We observe a largely nuclear protein “neighborhood” (left)
and a cytoplasmic neighborhood (right). Prepending the NLS to GFP causes a shift towards
the nuclear protein neighborhood.

4.2 Reproducing Experimental Results in silico

Next, we examined whether CELL-E can identify NLS in a protein by computationally

performing truncation/deletion studies. For this purpose, we chose DNA Topoisomerase I

(TOP1), whose N-terminal intrinsically disordered region (amino acid (aa) 1-199) is essential

for its nuclear localization [67]. An experimental study generated a series of deletion mutants
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eGFP aa 1-199 aa 1-67 aa 148-199

aa 158-199 aa 148-187 aa 148-157 aa 1-199, △148-157 aa 1-187, △148-157

aa 69-146 aa 84-146 aa 1-140 aa 140-146

aa 125-146 aa 1-765 aa 1-765, △148-157 aa 1-765, △117-146 aa 1-765, △188-198

aa 1-146

aa 117-146

Construct Localization

eGFP Cytoplasm

aa 1-199 Nucleus/Nucleolus

aa 1-146 Nucleus

aa 1-67 Cytoplasm

aa 148-199 Nucleus/Nucleolus

aa 158-199 Cytoplasm

aa 148-187 Nucleus

aa 148-157 Nucleus

aa 1-199, 148-157 Nucleus/Nucleolus

aa 1-187, 148-157 Nucleus

aa 69-146 Nucleus

aa 84-146 Nucleus

aa 117-146 Nucleus

aa 1-140 Cytoplasm

aa 140-146 Cytoplasm

aa 125-146 Cytoplasm

aa 1-765 Nucleus/Nucleolus

aa 1-765, 148-157 Nucleus/Nucleolus

aa 1-765, 117-146 Nucleus/Nucleolus

aa 1-765, 188-198 Nucleus/Nucleolus

Figure 4.3: CELL-E’s predicted localization (images) of eGFP fusions from [2] and corre-
sponding localization annotations (table) from the original paper. In the table on the right
hand side, green indicates agreement between CELL-E and experimental results, while red
indicates disagreement. aa 1-199 contains the entire N-terminus region. aa 1-146 only con-
tains Motifs I and V. aa 1-67 only contains Motif-I. aa 148-199 contains Motif II, III, IV
and V.

for this region and imaged the subcellular localization in HeLa cells when fused to eGFP

[2]. To computationally reproduce this study, we fed the exact sequences of the deletion

mutants to CELL-E. As shown in Fig. 4.3, the predictions were largely consistent with the

experimental data, recapturing the inability for aa 1-67 to drive nuclear localization despite

containing a putative NLS, as well as the sufficiency of aa 148-199 as an NLS.
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Lastly, we demonstrate a more direct approach than computational insertion or deletion

studies to identify putative sequence features responsible for protein localization. Specifically,

we split the generated image patches into two groups, one with the target protein being

present and the other being absent based on the average pixel intensity within the 16 × 16

image patch. Then, we calculated the difference of attention weights for each amino acid

token to contribute to the two groups. Fig. 4.4 highlights the amino acids with higher

weights for the “present” group. The highlighted amino acids include the three putative

NLSs (Motifs II, III, and IV) in the experimentally verified aa 148-199 range, as well as part

of the new aa 117-146 NLS identified in [2]. On the other hand, the putative NLS (Motif

I) in the experimentally invalidated aa 1-69 range are not activated. The attention map

also suggest that aa 89-107 (KIKKE) could be another NLS in this protein. We must point

out that the calculation of attention map was simply based on a protein being “present” or

“not present” in image patches and did not specify “nuclear localization” at all. Therefore,

it should be capable of serving as a general approach to discover putative sequence features

driving protein localization to a variety of subcellular compartments.

To obtain Fig. 4.4, we first split the 16×16 generated threshold image patches into 2

groups, one where protein is primarily determined to be present ūi,j > .75 and another

where background tokens are primarily selected ūi,j < .25. For each respective group, we

calculate a median of the attention matrices and used attention rollout [68] to recursively

multiply across 32 layers. The final layers of both groups are then compared. We initially

look at tokens with higher weightings for the present protein group, and discard the rest.
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Sequence
N-Terminus

MSGDHLHNDSQIEADFRLNDSHKHKDKHKDREHRHKEHKKEKDREKSKHSNSEHKDSEKKHKEKEKT

PLKRPRDEDDADYKPKKIKTEDTKKEKKRKLEEEEDGKLKKPKNKDKDKKVPEPDNKKKKPKKEEE

KHKDGSSEKHKDKHKDRDKEKRKEEKVRASGDAKIKKEKENGFSSPPQIKDEEDDGYFVPPKEDIK

Motif I

Motif V

Motif II Motif III Motif IV

Nucleus Image Predicted Threshold Selected Tokens

aa 1-67

aa 68-133

aa 134-199

Figure 4.4: Attention weights for significant tokens when patches containing a large per-
centage of protein are selected (bottom-right figure). Previous computationally identified
putative NLSs are boxed in black (top figure). These are aa 59-65 (Motif I, KKHKEKE), aa
150–156 (Motif II, KKIKTED), aa 174–180 (Motif III, KKPKNKD), and aa 192–198 (Motif IV,
KKKPKKE). Additionally, the new NLS identified in Mo et. al.[2], Motif V (aa 117-146), is
highlighted.

bo.huanf
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4.3 Ablation Studies

Model Hyperparameters

In order to gauge the importance of each component of the model, we performed ablation

by training several versions of the model with the same initialization. We specifically chose

to look at performance in nuclear proportion accuracy over the validation set (Fig. 4.5).

On the top row, performance from the VQGAN is used as a reference of possible top

performance, just as in Table 3.1. The second row depicts our main CELL-E (with depth

= 32 and a fixed language embedding) used for this study. We found the performance in both

cross-entropy and nuclear proportion accuracy increased with model depth when compared

to similar models of smaller depth (third, fourth, and fifth rows).

To understand the effect of using fixed language models, we trained 2 versions of CELL-E

of same depth. The first (second row, light blue) had a fixed language embedding, while the

second (seventh row, red) was free to change during training. We also introduced a model

with a randomly initialized language embedding (sixth row, light green). While we note

fairly high performance from the unfixed models on the training data, they performed quite

poorly on the validation, indicating severe overfitting. This is a result of the comparatively

small number of proteins represented within the OpenCell dataset when compared to the

large pFam database used to train TAPE.

We also trained a versions of the model which did not use a nucleus input (second to last

row, pink) like DALL-E, and a model that only used a nucleus input and no sequence (last
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Protein Threshold VQGAN

Transformer Depth = 32
Fixed Embedding

Transformer Depth = 26
Fixed Embedding

Transformer Depth = 20
Fixed Embedding

Transformer Depth = 15
Fixed Embedding

Transformer Depth = 26
Unfixed (Random Init.) Embedding

Transformer Depth = 26
Unfixed (BERT) Embedding

Transformer Depth = 32
No Nucleus

Transformer Depth = 32
No Sequence

M
o
d
e
l

Nucleus Proportion Accuracy

Figure 4.5: Ablation Plot. “Fixed” and “Unfixed” embedding refer exclusively to the amino
acid embeddings. Image embeddings are always unfixed. Mean values and standard deviation
are marked in black. ∼ 150 points are randomly selected for display out of 1303 total
predictions per model.
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row, purple), although a start token was still prepended.

Overall, we observe a distributional shift to the right, indicating more accurate predic-

tions, as the depth of the transformer is scaled. Full results for both training and validation

sets can be seen in Table A.2. We also evaluated the performance of CELL-E using different

protein embedding spaces. These were configured such that they were either at the same

depth as the TAPE model, or the depth was scaled as deep as possible such that the GPU

memory was saturated during training. All model were trained until convergence on the

validation set.

Language Embedding

Alongside language embeddings, we also used one-hot and amino acid chemical descrip-

tors as embedding features. The amino acid chemical descriptors come from Osorio et. al.

[69], which contains amino numerical descriptions of amino acid properties from various

literature sources [70–79]. Using one-hot and amino acid descriptors allowed us to scale

to deeper model depths, but we did not see much improvement from doing so using these

embeddings. These encodings likely do not contain sufficient information complexity about

local environments that TAPE, UniRep, and ESM1b contain. While we do not see a consis-

tent top performer on the training data, TAPE-based models generally performed the best

across all metrics on the validation set, indicating a higher degree of generalizability.
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Train-Validation Split Sequence Diversity

In machine learning applications which utilize amino acid sequence, it is recommended to

cluster proteins based on similarity in order to create a distributional shift between a training

and validation (and/or test) set. Oftentimes, redundancy in subsequences between both sets

may results in memorization of training sequences and inflated performance metrics [80].

To investigate the effect of this on CELL-E, we performed a clustered split using a

procedure identical to the one used by [10] to create, a standard dataset used in benchmarking

protein localization prediction. This model relies on PSI-CD-HIT [81]. In short, we clustered

proteins based on a value cutoff of a designated percentage of identity for which the alignment

must cover 80% of shorter sequences. We retrained CELL-E with train/validation splits with

clustered with varied threshold percentages of sequence identity, ranging from 15% to 95%

for 130 epochs. Our random split used for the main CELL-E effectively represents clustering

based on 100% identity.

We did not observe any patterns in cross-entropy loss during training of the main trans-

former model in response to different cutoff values for sequence identity.
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Figure 4.6: Cross-entropy loss, the metric used to evaulate performance, is shown after 130
epochs.
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Table A.1: Depicted Results Localization Annotations

Figure Protein Name OpenCell Annotation
Fig. 3.2 Mitogen-Activated Protein Kinase 9 Cytoplasmic, Nucleoplasm

Fig. 3.2 Ribosome Biogenesis Protein NSA 2
Homolog

Nucleolus - GC

Fig. 3.2 Caspase-7 Cytoplasmic, Nucleoplasm, Aggre-
gates

Fig. 3.3 DNA Topoisomerase 2-Alpha Chromatin, Nucleoplasm, Nuclear
punctae, Nuclear Membrane

Fig. 3.3 Ankyrin Repeat Domain-Containing
Protein 17

Cytoplasmic, Nucleoplasm

Fig. 3.3 Golgi Reassembly-Stacking Protein 2 Golgi

Fig. 3.3 UDP-xylose and UDP-N-
acetylglucosamine Transporter

Vesicles, Golgi
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