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Transformations among pure multipartite entangled states via local operations are
almost never possible

David Sauerwein,1, ∗ Nolan R. Wallach,2, † Gilad Gour,3, ‡ and Barbara Kraus1, §

1Institute for Theoretical Physics, University of Innsbruck, 6020 Innsbruck, Austria
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3 Department of Mathematics and Statistics, and Institute for Quantum
Science and Technology (IQST), University of Calgary, AB, Canada T2N 1N4

Local operations assisted by classical communication (LOCC) constitute the free operations in
entanglement theory. Hence, the determination of LOCC transformations is crucial for the under-
standing of entanglement. We characterize here almost all LOCC transformations among pure states
of n > 3 d–level systems with d > 2. Combined with the analogous results for n-qubit states shown
in G. Gour, B. Kraus, N. R. Wallach, J. Math. Phys. 58, 092204 (2017) this gives a characterization
of almost all local transformations among multipartite pure states. We show that non-trivial LOCC
transformations among generic fully entangled pure states are almost never possible. Thus, almost
all multipartite states are isolated. They can neither be deterministically obtained from local uni-
tary (LU)-inequivalent states via local operations, nor can they be deterministically transformed to
pure fully entangled LU-inequivalent states. In order to derive this result we prove a more general
statement, namely that generically a state possesses no non-trivial local symmetry. We show that
these results also hold for certain tripartite systems. We discuss further consequences of this result
for multipartite entanglement theory.

I. INTRODUCTION

Entanglement lies at the heart of quantum theory and
is the essential resource for many striking applications
of quantum information science [1–6]. The entanglement
properties of multipartite states are moreover fundamen-
tal to important concepts in condensed matter physics
[7]. This relevance of entanglement in various fields of sci-
ence has motivated great research efforts to gain a better
understanding of these intriguing quantum correlations.

Local operations assisted by classical communication
(LOCC) play an essential role in the theoretical and ex-
perimental investigation of quantum correlations. Spa-
tially separated parties who share some entangled state
can utilize it to accomplish a certain task, such as tele-
portation. The parties are free to communicate classi-
cally with each other and to perform any quantum op-
eration on their share of the system. To give an exam-
ple, party 1 would perform a generalized measurement
on his/her system, sends the result to all other parties.
Party 2 performs then, depending on the measurement
outcome of party 1, a generalized measurement. The out-
come is again sent to all parties, in particular to party
3 who applies a quantum operation, which depends on
both previous outcomes, on his/her share of the system,
etc.. Any protocol which can be realized in such a way
is a LOCC protocol. This physically motivated scenario
led to the definition of entanglement as a resource that
cannot be increased via LOCC. Stated differently, entan-
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glement theory is a resource theory where the free opera-
tions are LOCC. In particular, if |ψ〉 can be transformed
to |φ〉 via LOCC, then E(|ψ〉) ≥ E(|φ〉) for any entangle-
ment measure E. Thereof it also follows that studying all
possible LOCC transformation among pure states leads
to a partial order of entanglement.

In the bipartite case, simple necessary and sufficient
conditions for LOCC transformations among pure states
were derived [8]. This is one of the main reasons why bi-
partite (pure state) entanglement is so well understood,
as those conditions resulted in an elegant framework that
explains how bipartite entanglement can be character-
ized, quantified and manipulated [2]. In particular, the
optimal resource of entanglement, i.e. the maximally en-
tangled state, could be identified. It is, up to Local Uni-
tary (LU) operations, which do not alter the entangle-
ment, the state

∑
i |ii〉. This state can be transformed

into any other state in the Hilbert space via LOCC.
Many application within quantum information theory,
such as teleportation, entanglement-based cryptography,
or dense coding utilize this state as a resource.

In spite of considerable progress [2, 9], an analogous
characterization of multipartite LOCC transformations
remains elusive. The reasons for that are manifold.
Firstly, the study of multipartite entangled states is
difficult, and often intractable, due to the exponential
growth of the dimension of the Hilbert spaces. Secondly,
multipartite LOCC is notoriously difficult to describe
mathematically [10]. Thirdly, there exist multipartite
entangled states, belonging to the same Hilbert space,
that cannot even be interconverted via stochastic LOCC
(SLOCC) [11] and thus there is no universal unit of mul-
tipartite entanglement.

Apart from LOCC transformations, other, more
tractable local operations were considered. Local unitary
(LU) operations, which as mentioned before, do not alter
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the entanglement, have been investigated [12]. SLOCC
transformations, which correspond to a single branch of a
LOCC protocol have been analyzed [11]. Both relations
define an equivalence relation. That is, two states are
said to be in the same SLOCC class (LU class) if there

exists a g ∈ G̃ (g ∈ K̃) which maps one state to the other,

respectively. Here, and in the following G̃ (K̃) denote the
set of local invertible (unitary) operators, respectively.
Clearly, two fully entangled states, i.e. states whose
single-subsystem reduced states have full rank, have to
be in the same SLOCC class in case there exists a LOCC
transformation mapping one into the other. That is, it
must be possible to locally transform one state into the
other with a non-vanishing probability in case the trans-
formation can be done deterministically. Apart form LU,
and SLOCC, where a single local operator is considered,
transformations involving more operators, such as LOCC
transformations using only finitely many rounds of clas-
sical communication [13], or separable operations (SEP)
[14] have been investigated. Considering only finitely
many rounds of classical communication in a LOCC pro-
tocol is practically motivated and led to a simple char-
acterization of (generic) states to which some other state
can be transformed to via such a protocol. However, it
has been shown that there exist transformations which
can only be accomplished with LOCC if infinitely many
rounds of communication are employed [15]. SEP trans-
formations are easier to deal with mathematically than
LOCC. However, they lack a clear physical meaning as
they strictly contain LOCC [10, 16]. Any separable map

ΛSEP can be written as ΛSEP (·) =
∑
kMk(·)M†k , where

the Kraus operators Mk = M
(1)
k ⊗. . .⊗M

(n)
k are local and

fulfill the completeness relation
∑
kM

†
kMk = 1l. In [19]

necessary and sufficient conditions for the existence of a
separable map transforming one pure state into another
have been presented. Clearly, any LOCC protocol as ex-
plained above, corresponds to a separable map. However,
not any separable map can be realized with local oper-
ations and classical communication [16] and there exist
even multipartite pure state transformations that can be
achieved via SEP, but not via LOCC [17].

Thus, despite all these efforts and the challenges
involved in characterizing and studying LOCC, the
fundamental relevance of LOCC within entanglement
theory makes its investigation inevitable in order to
reach a deeper understanding of multipartite entangle-
ment. Already the identification of the analog of the
maximally entangled bipartite state, the Maximally
Entangled Set (MES) requires the knowledge of possible
LOCC transformation. This set of states, which was
characterized for small system sizes [17, 20, 21], is
the minimal set of states from which any other fully
entangled state (within the same Hilbert space) can be
obtained via LOCC. The investigation of LOCC trans-
formations, in particular for arbitrary local dimensions,
might also lead to new applications in many fields of
science, e.g. new ways to use quantum networks, which

now become an experimental reality, or new theoretical
tools in condensed matter physics.

Instead of investigating particular LOCC transforma-
tions we follow a different approach, which is based on
the theory of Lie groups and algebraic geometry (see also
[18]). This new viewpoint allows us to overcome many
of the usual obstacles in multipartite entanglement the-
ory described above. It enables us to characterize, rather
unexpectedly, all LOCC (and SEP) transformations, i.e.
all local transformations, among pure states of a full-
measure subset of any (n > 3)-d–level (qudit) system
and certain tripartite qudit systems. We show that there
exists no non-trivial LOCC transformation from or to
any of the states within this full-measure set. We call a
local transformation non-trivial if it cannot be achieved
by applying LUs, which can of course always be applied.
To be more precise, we show that a generic state |ψ〉
can be deterministically transformed to a fully entangled
state |φ〉 via LOCC (and even SEP) if and only if (iff)
|φ〉 = u1 ⊗ . . .⊗ un|ψ〉, where ui is unitary; that is, only
if |ψ〉 and |φ〉 are LU-equivalent. As LU-transformations
are trivial LOCC transformations, all pure multi-qudit
states are isolated. That is, they can neither be determin-
istically obtained from other states via non-trivial LOCC,
nor can they be deterministically transformed via non-
trivial LOCC to other fully entangled pure states. This
also holds if transformations via the larger class of SEP
are considered.

We derive this result by using the fact that the exis-
tence of local symmetries of a state are essential for it to
be transformable via LOCC or SEP (see [18, 19] and Sec.
II). We prove that for the aforementioned Hilbert spaces
there exists a full-measure set of states which possess no
non-trivial symmetry. These results are a generalization
of those presented in [18], where (n > 4)-qubit (d = 2)
states are considered. However, a straight forward gen-
eralization beyond qubit states was impossible, as in [18]
special properties of the qubit case, for instance the exis-
tence of homogeneous SL–invariant polynomials (SLIPs)
of low degree, were utilized. Note that, due to these
special properties of qubit-states, it was unclear whether
indeed a similar result holds for arbitrary dimensions.
As the statement is not true for less than five qubits, it
could furthermore have been, that the number of par-
ties for which almost all states have a trivial stabilizer
depends on the local dimension, i.e. that n depends on
d. We show here, however, that this is not the case by
employing new tools form algebraic geometry. Clearly,
the investigation of higher local dimensions is central in
quantum information processing, where for e.g. in quan-
tum networks the parties have access to more than just
a single qubit. Moreover, in tensor network states, which
are employed for the investigation of condensed matter
systems, the local dimension is often larger than two.

A direct consequence of this result is that the maxi-
mally entangled set (MES) [20] is of full measure in sys-
tems of n > 3 qudits (and certain tripartite systems).
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The intersection of states which are in the MES and
are convertible, i.e. which can be transformed into some
other (LU–inequivalent) state are of measure zero. These
states are the most relevant ones regarding pure state
transformations. Prominent examples of these states are
the GHZ-state [24] or more generally stabilizer states [4].
Hence, the results presented here do not only identify
the full–measure set of states which are isolated, but also
indicate which states can be transformed.

As generic LOCC transformations are impossible, it is
crucial to determine the optimal probabilistic protocol to
achieve these transformations. Given the result presented
here, the simple expression for the corresponding opti-
mal success probability presented in [18] also holds for a
generic state with arbitrary local dimensions. Moreover,
we will show that the fact that almost no state possesses a
non-trivial local symmetry can be used to derive simple
conditions for two SLOCC-equivalent states to be LU–
equivalent. Furthermore, we also show that our result
leads to some new insight for the situations where more
than one copy of a state is considered. In particular, a
lower bound on the rate, with which n copies of a state
|ψ〉 can be transformed into m copies of a state |φ〉 can
be derived. This bound holds for arbitrary states, i.e.
even those which are not generic, and arbitrary numbers
of copies, n, m.

The rest of this paper is organized as follows. In Sec.
II we present the main result of the paper and emphasis
the physical consequences thereof. In particular, we will
first state that there exists a full–measure set of states (of
almost all Hilbert spaces with constant local dimension),
with the property that the local stabilizer of any state in
this set is trivial (Theorem 1). We then recap why local
symmetries play such an important role in state trans-
formations and that Theorem 1 implies that generically
there is no state transformation possible via LOCC. We
then derive simple necessary and sufficient conditions for
LU–equivalence of two states, which belong to the same
SLOCC class of a generic state. Regarding probabilistic
transformations, the result presented here, allows to ex-
tend the simple formula for the optimal success probabil-
ity of converting a generic state into another, to arbitrary
local dimensions BK: We will discuss the multi-copy
case..

In Sec. III A we introduce our notation and briefly
recap the results presented in [18], where qubit systems
were considered. In Sec. III B we develop these meth-
ods further and employ new tools from the theory of Lie
groups and algebraic geometry to show that whenever
there exists a critical state whose unitary stabilizer is
trivial then the stabilizer of a generic multipartite state
is trivial (Theorem 12). In Sec. III C we then present ex-
amples of n–qudit systems for all local dimensions (d > 2)
and any number of subsystems (n > 3) of states which
have these properties. In particular, we prove there that
the stabilizer of these states is trivial. Combined with the
results presented in [18] this shows that the stabilizer of
a generic state, i.e. of a full measure subset of states, of

n > 4 qubits and n > 3 qudits is trivial. This result also
holds for three qudits with local dimension d = 4, 5, 6.
In Sec. IV we illustrate and discuss the picture of mul-
tipartite pure state transformations that emerges if we
combine this work with previous findings on bipartite
[8], 3-qutrit [17] and qubit systems [18, 20]. In Sec. V
we present our conclusions.

II. MAIN RESULTS AND IMPLICATIONS

Let us state here the main results of this article and
elaborate one its consequences in the context of entan-
glement theory.

We consider pure states belonging to the Hilbert space
Hn,d ≡ ⊗nCd, i.e. the Hilbert space of n qudits. When-
ever we do not need to be specific about the local dimen-

sions, we simply write Hn instead of Hn,d. As before, G̃
denotes the set of local invertible operators on Hn. Our
main result concerns the group of local symmetries of a
multipartite state |ψ〉, also referred to as its stabilizer in

G̃, which is defined as

G̃ψ ≡
{
g ∈ G̃

∣∣∣ g|ψ〉 = |ψ〉
}
⊂ G̃. (1)

We prove that for almost all multi-qudit Hilbert spaces,
Hn,d, there exists a full-measured set of states whose sta-
bilizer is trivial. Recall that a subset of Hn is said to be
of full measure, if its complement in Hn is of lower di-
mension. Stated differently, almost all states are in the
full-measured set and its complement is a zero measure
set.

The main result presented here is given by the follow-
ing theorem.

Theorem 1. For any number of subsystems n > 3 and
any local dimension d > 2 there exists a set of states

whose stabilizer in G̃ is trivial which is open, dense and
of full measure in Hn,d. Such a set of states also exists
for n = 3 and d = 4, 5, 6.

That is, almost all multi-qudit states |ψ〉 have only

the trivial local symmetry, i.e. G̃ψ = {1l}. This result
has deep implications for entanglement theory. In or-
der to explain them, we briefly review the connection
between the local symmetries of multipartite states and
their transformation properties under LOCC and SEP.

As mentioned in the introduction, we say that |ψ〉
can be transformed via SEP into |φ〉 if there exists

a separable map ΛSEP (·) =
∑
kMk(·)M†k such that

ΛSEP (|ψ〉〈ψ|) = |φ〉〈φ|, where the Kraus operators Mk =

M
(1)
k ⊗ . . . ⊗M (n)

k are local and fulfill the completeness

relation
∑
kM

†
kMk = 1l. The transformation is possi-

ble via LOCC if ΛSEP can be implemented locally. It is
clear that a fully entangled state |ψ〉 can only be trans-
formed into an other fully entangled state |φ〉 if these
states are SLOCC equivalent, i.e. |φ〉 = h|ψ〉 for some

h ∈ G̃. In [19] it was shown that a fully entangled
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state |ψ〉 can be transformed via SEP to |φ〉 = h|ψ〉 iff
there exists a m ∈ N and a set of probabilities {pk}mk=1

(pk ≥ 0,
∑m
k=1 pk = 1) and {Sk}mk=1 ⊂ G̃ψ such that

∑
k

pkS
†
kHSk = r1l. (2)

Here, H = h†h ≡
⊗
Hi, and G = g†g ≡

⊗
Gi are local

operators and r = |||φ〉||2
|||ψ〉||2 . This criterion for the exis-

tence of a SEP transformation can be understood as fol-
lows. LetMk denote the local operator which maps |ψ〉 to
|φ〉 = h|ψ〉, i.e. Mk|ψ〉 = ckh|ψ〉 for some ck 6= 0. Hence,
h−1Mk must be proportional to a local symmetry of |ψ〉.
Using then the completeness relation

∑
kM

†
kMk = 1l

leads to the necessary and sufficient conditions in Eq.
(2) for the existence of a separable map transforming
one fully entangled state into the other.

As LOCC is contained in SEP, it is evident from this re-
sult that the local symmetries of a state play also a major
role in the study of LOCC transformations. However, in
order to characterize LOCC transformation among fully-
entangled states using Eq. (2) one has to determine their
local symmetries, find all solutions of Eq. (2) and check
if the corresponding separable measurement can be im-
plemented locally. Each one of these steps can be highly
nontrivial. Our main result (see Theorem 1) allows to ac-
complish all these steps for almost all multipartite qudit
states and thereby provides a characterization of deter-
ministic SEP and LOCC transformations for almost all
qudit states. This is one of the reasons why Theorem 1
has such deep implications in entanglement theory, as we
explain below.

In [18] some of us proved a similar result as stated in
Theorem 1 for qubit states. There, so-called SL-invariant
polynomials (SLIPS) [32] were used to identify a full-
measure subset of all (n > 4)-qubit states that have triv-
ial stabilizer. As the special characteristics of the qubit
case, for instance the existence of SLIPS of low degree,
cannot be utilized for higher dimensions, this proof does
not hold beyond qubit states. However, due to the char-
acteristics of qubit states, it was unclear whether indeed
a similar result holds for arbitrary dimensions. Moreover,
as the analog of Theorem 1 is not true for less than five
qubits, it could have been, that the number of parties for
which almost all states have a trivial stabilizer depends
on the local dimension, i.e. that n depends on d. Theo-
rem 1 shows that this is not the case. In order to tackle
the case of arbitrary local dimensions, we employ in this
work new tools from the theory of Lie groups and ge-
ometric invariant theory without explicitly using SLIPs
(see subsequent sections). We also show in Sec.III that
the new results encompass the qubit case.

Let us now discuss the consequences of Theorem 1 in
the context of entanglement theory.

A. Nontrivial deterministic local transformations
are almost never possible

In [18] it was shown that states with trivial stabilizer
are isolated. That is, a state with trivial stabilizer can
neither be obtained from LU-inequivalent states via SEP,
nor can it be transformed to LU-inequivalent fully entan-
gled states via SEP. The same holds for transformations
via LOCC. Indeed, for such a state the only solution to
Eq. (2) is H = 1l, which means that |ψ〉 is LU equiv-
alent to |φ〉. It was then shown in [18] that this holds
for almost all states of n > 4 qubits. Theorem 1 ensures
that the same holds true for almost all multi-qudit states,
which is stated in the following theorem.

Theorem 2. [18] Let Hn,d be one of the multipartite
qudit Hilbert spaces in Theorem 1 and let |ψ〉 ∈ Hn,d
be a fully entangled n-partite state with trivial stabilizer,

i.e. G̃ψ = {1l}. Then, |ψ〉 can be deterministically ob-
tained from or transformed to a fully entangled |φ〉 via
LOCC or SEP iff |ψ〉 and |φ〉 are related by local uni-

tary operations; that is, iff there exists a u ∈ K̃ such that
|ψ〉 = u|φ〉.

Recall that K̃ denotes the group of local unitary op-
erators. On the one hand, this result shows that, rather
unexpectedly, a characterization of LOCC transforma-
tions of almost all multi-qudit states is possible. On
the other hand, it proves that these transformations are
generically extremely restricted and non-trivial transfor-
mations are generically impossible. That is, the parties
who share a generic state cannot transform it via LOCC
deterministically into any other (LU–inequivalent) state.
Moreover, this even holds for transformations via the
more powerful separable operations. This result might
also be the reason why there has been so little progress
on multipartite state (or entanglement) transformations
via local operations.

As the MES is defined as the minimal set of states
which can be transformed into any other state in the
Hilbert space [20], Theorem 2 implies that the MES
of (n > 3)-qudits is of full measure. Note that this
is in strong contrast to the bipartite case, where a
single state, namely the maximally entangled state
|Φ+〉 =

∑
i |ii〉 can be transformed into any other

state in the Hilbert space with LOCC. In Sec. IV we
discuss in detail the picture of multipartite pure state
transformations that emerges if we combine our find-
ings with previous results on the subject (see also Fig. 1).

Theorem 2 also has implications for the construction
of entanglement measures. Recall that an entanglement
measure for pure states is a function E : H → R≥0 such
that E(ψ) ≥ E(φ) holds whenever the transformation
from |ψ〉 to |φ〉 can be performed deterministically
via LOCC. Since generic multi-qudit states cannot be
reached via non-trival deterministic LOCC, one only
has to verify if E is invariant under LU-transformations
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and nonincreasing under LOCC transformations to and
within the zero-measure subset of states with nontrivial
stabilizer, e.g. to states that are not fully entangled.

B. A characterization of optimal probabilistic local
transformations for almost all multi-qudit states

Given the fact that it is not possible to transform
generic states via local transformations into any other
state, it is crucial to determine the optimal probability
to achieve these conversions. Note that if both, the ini-
tial and final states, are fully entangled, this probability
is only nonzero if they are elements of the same stochas-
tic LOCC (SLOCC) class [11]. In [18] some of us found
an explicit formula for this probability for qubit–states.
Theorem 3 shows that this formula indeed holds for ar-
bitrary local dimensions.

Theorem 3. [18] Let Hn,d be one of the multipartite qu-
dit Hilbert spaces in Theorem 1, let |ψ〉 ∈ Hn,d be a nor-
malized fully entangled n-partite state with trivial stabi-

lizer, i.e. G̃ψ = {1l}, and let |φ〉 = h|ψ〉 be a normalized
state in the SLOCC class of |ψ〉. Then the maximum
probability to convert |ψ〉 to |φ〉 via LOCC or SEP is
given by

pmax(|ψ〉 → |φ〉) =
1

λmax(h†h)
, (3)

where λmax(X) denotes the maximal eigenvalue of X.

Due to Theorem 1 this theorem gives a simple ex-
pression for the optimal probability pmax(|ψ〉 → |φ〉) to
locally transform a generic (n > 3)-qudit state |ψ〉 into
another fully entangled state |φ〉. These results also hold
for tripartite d-level systems with d = 4, 5, 6. It should
be noted here that the optimal success probability was
only known for very restricted transformations prior to
these results (see e.g. [19, 38] and references therein).
Theorem 2 and Theorem 3 now provide a characteriza-
tion of all deterministic and optimal probabilisitc local
transformations for almost all multi-qudit states.

Note that the optimal success probability given in Eq.
(3) is optimal for transformations via LOCC and via
SEP. This shows that, despite the fact that there are
pure state transformations that can be achieved via SEP
but not via LOCC [17], the two classes of operations
are equally powerful for transformations among generic
(n > 3)-qudit states. The reason for this is that the op-
timal SEP protocol is a so-called one-successful-branch
protocol (OSBP), which can always be implemented via
LOCC in one round of classical communication. As sug-
gested by the name, a OSBP is a simple protocol for
which only one measurement branch leads to the final
state, while all other branches lead to states that are
no longer fully entangled (see [18]). This optimal proto-
col to transform |ψ〉 into |φ〉 = h|ψ〉 via LOCC, where

h = h1 ⊗ . . . ⊗ hn ∈ G̃, is implemented as follows. The
first party applies a local generalized measurement that
contains an element proportional to h1. Similarly, party
2 applies a local generalized measurement that contains
an element proportional to h2 etc. The successful branch
is the one where all parties managed to apply the op-
erator hi. Due to the fact that the local measurements
have to obey the completeness relations one can show
that the maximal success probability is given as in The-
orem 3. Note that this protocol can of course also be
performed if the corresponding state has nontrivial sym-
metries. That is, the success probability given in Eq. (3)
is always a lower bound on the success probability.

Due to Theorem 2, the optimal success probability can
only be one if the states are LU–equivalent. Let us ver-
ify that this is indeed the case. Given the premises of
Theorem 3 we make the following observation.

Observation 4. The optimal success probability as given
in Theorem 3 is equal to one iff H ≡ h†h = 1l.

This can be easily seen as follows. As |ψ〉 and |φ〉 =
h|ψ〉 are both normalized we have that

λmax(H) = maxχ
〈χ|H|χ〉
〈χ|χ〉

≥ 〈ψ|H|ψ〉
〈ψ|ψ〉

= 1. (4)

Due to Eq. (3) the success probability is one iff the max-
imal eigenvalue of H is one. We hence obtain that |ψ〉 is
an eigenstate of H, i.e. H|ψ〉 = λmax(H)|ψ〉. However,

as H is in G̃ and as |ψ〉 does not have any non-trivial
local symmetry it must hold that H = 1l.

C. A simple method to decide LU-equivalence of
generic multi-qudit states

Since local unitary transformations are the only triv-
ial LOCC transformations of pure states, i.e. the only
transformations that do not change the entanglement of
a state, it is important to know when two states are LU-
equivalent. That is, given two states |ψ〉, |φ〉 one would

like to know whether there exists a local unitary u ∈ K̃
such that |ψ〉 = u|φ〉. In general this is a highly non-
trivial problem (see e.g. [12]). However, we show now
that the results in this article also allow us to solve the
LU-equivalence problem for generic multi-qudit states, as
stated in the following theorem.

Theorem 5. Let |ψ〉, |φ〉 ∈ Hn be both states in the
SLOCC class of a state, |ψs〉, with trivial stabilizer, i.e.

G̃ψs = {1l}. That is, |ψ〉 = g|ψs〉 and |φ〉 = h|ψs〉. Then
|ψ〉 is LU–equivalent |φ〉 iff g†g = h†h.

Proof. As before we use the notation G = g†g and H =
h†h. First, note that G = H holds iff g = uh for some
local unitary u ∈ K. Hence, |ψ〉 = g|ψs〉 = uh|ψs〉 =
u|φ〉 and therefore the states are LU–equivalent. The
other direction of the proof can be seen as follows. If
|ψ〉 = g|ψs〉 = uh|ψs〉, then g−1uh = 1l must hold, as |ψs〉
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does not possess any non-trivial local symmetry. Thus,
we have that G = H.

This strong implication follows only from the fact that
|ψs〉 has trivial stabilizer, which implies that the standard
form g|ψs〉 with which a state in the SLOCC class of |ψs〉
can be represented, is unique. That is, the only g′ such
that g|ψs〉 = g′|ψs〉 is g = g′, as otherwise (g′)−1g would
be a symmetry of the state |ψs〉. Due to the results (see
Theorem 1) presented here, Theorem 5 applies to almost
all multi-qudit states.

Let us now generalize this result to the situation where
it is known that the two states are in the same SLOCC
class, but the local invertible operator transforming one
into the other (for the states above the operator hg−1) is
unknown. To this end, we introduce now the notion of
critical states. A state is called critical if all of its single
subsystem reduced states are proportional to the com-
pletely mixed state [19]. Prominent examples of critical
states are Bell states, GHZ states [24], cluster states [3],
graph states [25], code states [1], and absolutely maxi-
mally entangled states [26]. The set of all critical states
in Hn,d, denoted Crit(Hn), plays an important role in
entanglement theory as the union of all SLOCC classes
of critical states is of full measure in Hn,d [27]. For more
details and properties of critical states we refer the reader
to the subsequent section.

Let us note that the standard form, |ψ〉 = g|ψs〉, of a
generic state, corresponds to the normal form introduced
in [28]. The numerical algorithm presented in [28] can be
used to find the normal form a generic state, i.e. a local

invertible g ∈ G̃ and a critical state |ψ〉 such that |ψ〉 =
g|ψs〉. Due to the Kempf-Ness theorem (see Appendix
B), there exists, up to local unitaries, only one critical
state in a SLOCC class. Hence, computing the normal
form for two states in the same SLOCC class leads to
|ψ〉 = g|ψs〉 and |φ〉 = h|ψ′s〉, where |ψ′s〉 = u|ψs〉, with
u a local unitary. The question we address next is when
are these two states LU–equivalent. The necessary and
sufficient condition is given by the following lemma.

Lemma 6. Let |ψ〉, |φ〉 ∈ Hn be both states in the
SLOCC class of a critical state, |ψs〉 with trivial stabi-
lizer. Let further |ψ〉 = g|ψs〉 and |φ〉 = h|ψ′s〉 be the
normal forms of the states derived with the algorithm
presented in [28]. Then |ψ〉 is LU–equivalent to |φ〉 iff
the local unitary u which transforms |ψ′s〉 into |ψs〉, i.e.
|ψs〉 = u|ψ′s〉 (which must exist and is unique) fulfills
G = u†Hu.

Due to Theorem 1 this theorem again applies to al-
most all multi-qudit states. It provides an easy way to
solve the, a priori highly nontrivial, problem of deciding
LU equivalence of two generic states that are SLOCC
equivalent.

Proof. If: Let G = u†Hu. Then there exists a unitary
v such that g = vhu. As all operators, u, h, and g
are local and invertible, v is a local unitary operator.
Hence, |ψ〉 = g|ψs〉 = vhu|ψs〉 = vh|ψ′s〉. Only if: If
there exists a local unitary, v transforming |φ〉 into |ψ〉
we have |ψ〉 = g|ψs〉 = v|φ〉 = vh|ψ′s〉 = vhu|ψs〉. The
last equality follows from the uniqueness of the critical
states in a SLOCC orbit. As |ψs〉 does not possess any
non–trivial local symmetry it must hold that g = vhu.
Therefore, we have G = u†Hu.

D. Multi-copy transformations and asymptotic
conversion rates

Let us briefly discuss which consequences the results
presented here have in the case where transformations of
many copies of a state are considererd. First of all, note
that the fact that |ψ〉 has only trivial local symmetries
does not imply that the same holds for multiple copies
of this state. In fact, any k copies of a state |ψ〉, i.e.
|ψ〉⊗k, do have local symmetries, namely a local permu-
tation operator (SWAP) applied to all parties. Hence,
our proof that almost all multi-qudit states are isolated
does not generalize to the multicopy case as it was based
on the fact that these states have trivial local symme-
tries. Indeed, it has recently been shown in [29] that
there are cases where two copies of a state can be trans-
formed to states which are not reachable in the case of a
single copy. Hence, the MES can be made smaller even
if only two copies of the state are considered.
However, since we know the optimal probability to lo-
cally transform a single copy of a generic state |ψ〉 into
a fully entangled state |φ〉, it is straighforward to obtain
a lower bound on the optimal probability to transform k
copies of |ψ〉 into m ≤ k copies of a fully entangled state
|φ〉 = g|ψ〉 via LOCC, namely

pmax(|ψ〉⊗k → |φ〉⊗m) ≥
k∑

j=m

(
k

j

)
pmax(|ψ〉 → |φ〉)⊗j(1− pmax(|ψ〉 → |φ〉))⊗k−j

(5)

Although this bound follows trivially from our results on
single copy transformations it can provide new insights
into the many copy case. This is examplified if one con-
siders the asymptotic limit of k →∞, where one is inter-
ested in the optimal rate R(|ψ〉 → |φ〉) at which asymp-
totically many copies of a state |ψ〉 can be transformed
into copies of a state |φ〉, which is defined as
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R(|ψ〉 → |φ〉) = sup

{
r | lim

k→∞

(
inf

ΛLOCC
‖ΛLOCC(|ψ〉〈ψ|⊗k)− |φ〉〈φ|⊗brkc‖1 → 0

)}
. (6)

Here, the infimum is taken over all LOCC maps and

‖X‖1 = Tr(
√
X†X) denotes the trace norm of X. It was

recently shown in [30] that for tripartite states |ψ〉, |φ〉 it
holds that

R(|ψ〉 → |φ〉) ≥ min

{
S(ρ

(1)
ψ )

S(ρ
(2)
ψ ) + S(ρ

(3)
ψ )

,
S(ρ

(2)
ψ )

S(ρ
(2)
φ )

,
S(ρ

(3)
ψ )

S(ρ
(3)
φ )

}
,

(7)

where ρ
(i)
ψ = Trl 6=i(|ψ〉〈ψ|) (and similar for |φ〉). Little

is known on lower bounds on R(|ψ〉 → |φ〉) for states of
more than three parties. However, we prove the following
lemma.

Lemma 7. Let |ψ〉, |φ〉 ∈ Hn be two multipartite entan-
gled states and let pmax(|ψ〉 → |φ〉) denote the optimal
success probability to transform |ψ〉 into |φ〉 via LOCC.
Then the asymptotic LOCC conversion rate from |ψ〉 to
|φ〉 fulfills,

R(|ψ〉 → |φ〉) ≥ pmax(|ψ〉 → |φ〉). (8)

We provide the proof of this lemma in Appendix A.
For a normalized generic multi-qudit state |ψ〉 (i.e. with
trivial stabilizer) and a normalized state |φ〉 = h|ψ〉 we
can insert the expression of Eq. (3) for pmax(|ψ〉 → |φ〉)
into Eq. (8) and we obtain the following bound,

R(|ψ〉 → |φ〉) ≥ 1

λmax(H)
. (9)

Note that, even in the tripartite case (e.g. for three
4-level systems), one can easily construct examples
where the bound in Eq. (9) is better than the bound in
Eq. (7), while there are also tripartite states for which
the opposite holds.

Let us finally mention that the results presented here
guide us very naturally towards several research direc-
tions, which are discussed in the conclusion.

III. MATHEMATICAL CONCEPTS AND
PROOF OF THE MAIN RESULT

In this section we present the proof of our main result,
Theorem 1. In fact, we prove Theorem 1 by deriving
results that are stronger than actually required. How-
ever, we believe that these tools are also useful in other
contexts and should therefore be presented in the main
text of this article. We first introduce in Sec. III A our
notation and the main mathematical tools that we use.

Furthermore, we summarize some of the results which
were presented in [18]. In Sec. III B we first give a con-
cise outline of the proof of Theorem 1. We then continue
with a presentation of the detailed proof. In Sec. III C
we give examples of states with trivial stabilizer, which
are required to complete the proof.

A. Notations and preliminaries

Throughout the remainder of this paper we use the
following notation. We consider the following 4 different
groups all acting on Hn:

G ≡ SL(d,C)⊗ · · · ⊗ SL(d,C) ⊂ SL(Hn) (10)

K ≡ SU(d)⊗ · · · ⊗ SU(d) ⊂ SU(Hn) (11)

G̃ ≡ GL(d,C)⊗ · · · ⊗GL(d,C) ⊂ GL(Hn) (12)

K̃ ≡ U(d)⊗ · · · ⊗ U(d) ⊂ U(Hn) (13)

Note that G̃ = C×G, where C× = C\{0} and that K̃ =

G̃ ∩ U(n). That is K̃ = {zu|u ∈ K, |z| = 1}.
Given a subgroup H ⊂ GL(Hn), the stabilizer sub-

group of a state |ψ〉 ∈ Hn with respect to this group is
defined as

Hψ ≡
{
h ∈ H

∣∣∣ h|ψ〉 = |ψ〉
}
⊂ H. (14)

If we refer to the stabilizer of a state |ψ〉 without explic-

itly mentioning the corresponding group, we mean G̃ψ.
Moreover, the orbit of a state |ψ〉 under the action of H
is defined as

H|ψ〉 ≡
{
h|ψ〉

∣∣∣ h ∈ H} . (15)

Note that the orbit contains states that are not neces-
sarily normalized, and any orbit H|ψ〉 is an embedded
submanifold of Hn. Hence, any orbit H|ψ〉 has a dimen-
sion, which we denote by dim(H|ψ〉).

In Sec. II we briefly mentioned the set of critical states,
Crit(Hn), in Hn which contains all states whose single-
subsystem reduced states are proportional to the com-
pleteley mixed stated. Denoting by Lie(G) the Lie alge-
bra of G, this set can also be expressed as

Crit(Hn) ≡ {|φ〉 ∈ Hn| 〈φ|X|φ〉 = 0,∀X ∈ Lie(G)}.(16)

As mention in Sec. II the union of all orbits (in G) con-
taining a critical state, i.e. G · Crit(Hn), is open, dense,
and of full measure in Hn [19, 23]. Moreover, the sta-
bilizer of any critical state is a symmetric subgroup of
GL(Hn), i.e. it is Zariski-closed (Z-closed) (see e.g. [23]
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for the definition of the Zariski topology) and invariant

under the adjoint [18]. The latter means that, if g ∈ G̃ψ,

for |ψ〉 ∈ Crit(Hn), then g† ∈ G̃ψ.
Let us now briefly recall how some of us proved in [18]

that there exists an open and full measure set of states
in the Hilbert space corresponding to n-qubit states with
n ≥ 5, which contains only states with trivial stabilizer

in G̃. In order to do so, we define the following subset of
critical states,

C ≡
{
|ψ〉 ∈ Crit(Hn)

∣∣∣ dim(G|ψ〉) = dim(G)
}
. (17)

That is, C consists of all critical states whose orbits (un-
der G) have maximal dimension (i.e. the dimension of
G). Due to the identity G|ψ〉 ∼= G/Gψ it follows that
|ψ〉 ∈ C if and only if (iff) |ψ〉 is critical and Gψ is a finite
group (or equivalently dim(Gψ) = 0). Using algebraic
geometry and the theory of Lie groups we showed in [18]
the following important properties of this subset.

Lemma 8. [18] The set C defined in Eq.(17) has the
following properties:

(i) Gψ = Kψ for all |ψ〉 ∈ C.

(ii) The set GC ≡ {g|ψ〉 | g ∈ G ; |ψ〉 ∈ C} is open with
complement of lower dimension in Hn.

(iii) C is a connected smooth submanifold of Hn, and K
acts differentiably on C.

The principal orbit type theorem [31] (see also Ap-
pendix B) was then central to the proof that the set of
states whose stabilizer in G is trivial is open and of full
measure. Defining the set

C0 =
{
|ψ〉 ∈ C

∣∣ Gψ = {1l}
}

(18)

we proved that if C0 is not empty, then C0 is open, dense,
and of full measure in C [18]. Moreover, in this case,
the set GC0 =

{
g|ψ〉

∣∣ |ψ〉 ∈ C0, g ∈ G
}

is open, dense,

and of full measure in GC. Clearly, any state |φ〉 in GC0

has a trivial stabilizer in G. Using now that GC is open
and of full measure in Hn (see property 2 in Lemma 8),
we also have that GC0, which contains only states with
Gψ = {1l}, is open and of full measure in Hn. As can be
seen from the proofs in [18] this result holds for arbitrary
multipartite quantum systems (as long as it can be shown
that C0 is not empty). In particular, we have [46]

Lemma 9. If there exists a state |ψ〉 ∈ C0, then the set{
|φ〉 ∈ Hn

∣∣ Gφ 6= {1l}} (19)

is of measure zero in Hn.

For n ≥ 5 we presented in [18] a n–qubit state |ψ〉,
which is contained in C0. Hence, for n ≥ 5 a generic n–
qubit state has only a trivial stabilizer (in G). In order to
define the set A containing states with trivial stabilizer in
G̃ (not only G) which is also open and with complement

of lower dimension in Hn, we used for the qubit case ho-
mogeneous SL–invariant polynomials (SLIPs) [32]. With
these SLIPs we were able to identify a full measure sub-
set A ⊂ GC0 with the desired property that for any state
|φ〉 ∈ A, G̃φ = {1l}.

As mentioned before, Lemma 9 holds for arbitrary
qudit-systems. Note, however, that in order to obtain
the strong implications in entanglement theory (see Sec.
II and IV) it is required to prove that the stabilizer in

G̃ (and not only in G ) is trivial. Hence, the last step of
the proof, as outlined above, is essential here. However,
it is precisely this step, which cannot be easily general-
ized to arbitrary local dimensions. Hence, we will employ
new proof methods in the subsequent section to prove di-
rectly the existence of a set A, which contains only states

whose stabilizer in G̃ is trivial, and which is open and of
full measure in Hn.

B. Genericity of states with trivial stabilizer

Using Lemma 8, we prove now one of the main results
of this paper. We have already presented this theorem
and its profound implications in entanglement theory in
Sec. II. Let us restate it here to increase readability.

Theorem 1. For any number of subsystems n > 3 and
any local dimension d > 2 there exists a set of states

whose stabilizer in G̃ is trivial which is open, dense and
of full measure in Hn,d. Such a set of states also exists
for n = 3 and d = 4, 5, 6.

We show in the following that, in order to prove
Theorem 1 for given values of n and d, it will eventually
be enough to find only one critical state |ψ〉 ∈ Hn,d with
trivial unitary stabilizer. Due to that we believe that the
techniques used here are also useful in other contexts.
Hence, despite the fact that the proof is technical we
present it here.

Let us first give an outline of the proof of Theorem 1.
First, we consider the set of critical states, Crit(Hn)
(see also Eq. (16)). We show that if a critical state has
only finitely many local unitary symmetries then there
exists no further local (non-unitary) symmetry of this
state (see Lemma 11). We then use this together with
the results from [18] and tools from geometric invariant
theory to prove the following statement (see Theorem
12). If there exists one critical state |ψ〉 ∈ Hn with
trivial unitary stabilizer, then there exists a set A ⊂ Hn
of states with trivial stabilizer in G̃ that is open and of
full measure in Hn. Due to this theorem it is sufficient
to find one criticial state with trivial stabilizer in Hn,d to
proof Theorem 1 for these values of n and d. Finally, we
explicitly construct such states and therefore complete
the proof of Theorem 1 (see Secs. III C, App. C).
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Let us now present the details of the proof of Theo-
rem 1. We first show that the set of critical states with
finite stabilizer in K̃ coincides with the set of critical
states with finite stabilizer in G̃, as stated in the follow-
ing lemma.

Lemma 10. The following subset of critical states,

C̃ =
{
|ψ〉 ∈ Crit(Hn)

∣∣∣ dim(K̃|ψ〉) = dim(K̃)
}

(20)

coincides with the set{
|ψ〉 ∈ Crit(Hn)

∣∣∣ dim(G̃|ψ〉) = dim(G̃)
}
. (21)

Proof. This lemma is a direct consequence of a much
stronger theorem (Theorem 2.12) proven in [23]. This
theorem states that if H is a symmetric subgroup of
GL(Hn) and the so–called maximal compact subgroup
of H is K ′ = H ∩ U(Hn), then Lie(H) = Lie(K ′) +
iLie(K ′). That is, H = K1e

k2 , where K1 ∈ K ′ and

k2 ∈ Lie(K ′). In [18] it was shown that G̃ψ is a sym-

metric subgroup of GL(Hn). As shown in [23], K̃ is a

maximal compact subgroup of G̃ and so is K̃ψ of G̃ψ
[47]. Thus, we have that Lie(G̃ψ) = Lie(K̃ψ)+iLie(K̃ψ).

Hence, if K̃ψ is finite, then also G̃ψ is finite. Using now

that H|ψ〉 ∼= H/Hψ, for H = G̃, K̃, we obtain that C̃
coincides with the set of critical states whose stabilizer is
finite in G̃, which proves the assertion.

Using the lemma above we are now in the position to

prove that if a critical state has a finite stabilizer in K̃ (or

equivalently in G̃), then all symmetries in G̃ are unitary.
That is, we prove now the following lemma.

Lemma 11. For any state |ψ〉 ∈ C̃, with C̃ given in Eq.
(20), it holds that

K̃ψ = G̃ψ. (22)

Proof. Due to Lemma 10 we have that C̃ is a subset of
C. Hence, Lemma 8 (i) implies that for any state |ψ〉 ∈
C̃ Gψ = Kψ. To prove now that this equivalence also

holds for K̃ψ and G̃ψ we consider |ψ〉 ∈ C̃ and g ∈ G̃ψ.
We show that g must be unitary. The Hilbert-Mumford
theorem (see e.g. [23, 33]) implies that for any critical
state, |ψ〉, there exists a homogeneous SLIP f of some

degree m such that f(|ψ〉) 6= 0. Now, if g ∈ G̃ψ we
can write it as g = zg′, where 0 6= z ∈ C and g′ ∈ G.
Hence, f(|ψ〉) = f(g|ψ〉) = zmf(g′|ψ〉) = zmf(|ψ〉). As
f(|ψ〉) 6= 0 this implies that zm = 1. Using now the polar

decomposition of g, i.e. g = u
√
g†g, with u ∈ K̃, the

Kempf–Ness theorem (see Appendix B) implies, as g†g is

positive, that
√
g†g|ψ〉 = |ψ〉. Hence, also u has to be a

stabilizer of |ψ〉. In particular, u ∈ K̃ψ. Moreover, as z

is only a phase, we have that
√
g†g =

√
(g′)†(g′) ∈ Gψ.

Using now thatGψ = Kψ we have that g = u
√
g†g ∈ K̃ψ,

which proves the statement.

With Lemma 11 it is now easy to see that the following
sets all coincide:

(i)

C′ =
{
|ψ〉 ∈ C

∣∣∣ K̃ψ = {1l}
}
. (23)

(ii) {
|ψ〉 ∈ Crit(Hn)

∣∣∣ K̃ψ = {1l}
}
. (24)

(iii) {
|ψ〉 ∈ Crit(Hn)

∣∣∣ G̃ψ = {1l}
}
. (25)

We now use these results to prove the following theo-
rem, which states that, if C′ is non-empty then our main
theorem, Theorem 1, is implied.

Theorem 12. If there exists a state |ψ〉 ∈ C′, i.e. if there

exists a critical state |ψ〉 such that K̃ψ = {1l}, then there
exists an open and full–measure (in Hn) set of states

whose stabilizer in G̃ is trivial. More precisely, if C′ 6= ∅,
then the set of states

A = GC′ = {g|ψ〉 | |ψ〉 ∈ C′, g ∈ G} , (26)

which contains only states with trivial stabilizer in G̃, is
open and of full measure in Hn.

Proof. First of all, note that K̃ is a compact Lie group,
which acts differentiably on the connected smooth sub-
manifold C of Hn (see (iii) of Lemma 8). Hence, the
principal orbit type theorem (see Appendix B) can be
applied. This theorem implies that the set

C′ =
{
|ψ〉 ∈ C

∣∣∣ K̃ψ = {1l}
}

=
{
|ψ〉 ∈ C

∣∣∣ G̃ψ = {1l}
}
(27)

is, if it is non-empty, open and of full measure in C. Note
that, in the last equality in Eq. (27) we used Lemma 11.
According to (ii) of Lemma 8 we have that GC is open
and of full measure in Hn. Therefore, for any open and
full measure set of C the union of the orbits of all states
in this set is also open and full measure in Hn. Using
now that for any |φ〉 ∈ A there exist g ∈ G and |ψ〉 ∈ C′
such that G̃φ = gG̃ψg

−1, we have that for any |φ〉 ∈ A it

holds that G̃φ = {1l}, which completes the proof.

In the subsequent section we explicitly present states
in C′ for the Hilbert spaces specified in Theorem 1, which
completes the proof of this theorem. In Sec. II the im-
plications of this result in the context of entanglement
theory are discussed. Let us stress here that our results
also encompass the results of [18], where it was shown
that almost all (n > 4)-qubit states have trivial stabi-
lizer. While no example of a state with trivial stabilizer
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was given in [18], our results allow us to construct states
with this property, as we show in the following section.
Let us further remark here that Theorem 12 holds for ar-
bitrary multipartite quantum systems. However, in this
work we only use it for homogeneous systems, i.e. sys-
tems composed of subsystems with equal dimension.

C. Critical states with trivial stabilizer in G̃

In this section we present critical states with trivial
stabilizer. First, we introduce a critical state which is
defined for n = 5, n > 6, and any d ≥ 2 and give an
outline of the proof that its stabilizer is trivial. The
proof itself is given in Appendix C. It will become
evident from the construction of this state that the cases
n = 3, 4, 6 have to be treated separately. However, also
for these cases we construct states with trivial stabilizer
in Appendix C. This completes the proof of Theorem 1
as it shows that the set C′ is non-empty for the systems
mentioned in this theorem.

Let us introduce the following notation before we de-
fine the state with the desired properties for n = 5, n > 6
and d ≥ 2. Let Sn denote the symmetric group of n ele-
ments. For a permutation σ ∈ Sn we define the operator
Pσ via Pσ|i1〉⊗. . .⊗|in〉 = |iσ−1(1)〉⊗. . .⊗|iσ−1(n)〉, for all
(i1, . . . , in) ∈ {0, . . . , d−1}n. We call a state |ψ〉 symmet-
ric if Pσ|ψ〉 = |ψ〉 for all σ ∈ Sn. Furthermore, we define
for an arbitrary state |φ〉 ∈ Hn,d the set of all distinct
permutations of |φ〉 as π(|φ〉) = {Pσ|φ〉 | σ ∈ Sn} and
the symmetrization of |φ〉 as |π(|φ〉)〉 =

∑
|χ〉∈π(|ψ〉) |χ〉.

Using this notation, we define for 0 ≤ k ≤ n and
j ∈ {1, . . . , d− 1} the (unnormalized) state

|Dk,n(j)〉 = |π(|j〉⊗k|j − 1〉⊗n−k)〉. (28)

We are now ready to introduce the critical n-qudit state
(n = 5, n > 6) for which we show that it has trivial
stabilizer, namely

|Ψn,d〉 =

d−1∑
j=0

cj |j〉⊗n +

d−1∑
j=1

|Dk,n(j)〉, (29)

where c0 =
√(

n−1
k−1

)
+ 1, ci = 1 for 0 < i < d − 1

and cd−1 =
√(

n−1
k

)
+ 1, with k the smallest natu-

ral number such that 3 ≤ k ≤ n − 2, n 6= 2k and
gcd(n, k) = 1. Here, gcd(n, k) denotes the greatest
common divisor of n and k. The existence of k is
obvious for n = 5 and is proved for n > 6 in Appendix
C. The condition gcd(n, k) = 1 is crucial to ensure
that the state |Ψn,d〉 has only trivial symmetries as we
shall see later. Recall that |Ψn,d〉 is critical if all of its
single-subsystem reduced states are proportional to the
identity. A straightforward calculation shows that |Ψn,d〉
indeed fulfills this property for n = 5, n > 6. Note
further that |Ψn,d〉 is not defined for n = 2, 3, 4, 6 since

there is no k with the properties described after Eq. (29).

Note that for (n > 4)-qubits the existance of states
with trivial stabilizer was shown in [18]. However, no
examples of states with this property were given. The
mathematical methods developed in this article allow
us to explicitly construct such states, namely the states
{|Ψn,2〉}n=5,n>6 [48]. This shows that our work also in-
cludes, and in fact extends, the results for qubits obtained
in [18]. To explicitly give an example of a qubit state with
trivial stabilizer, consider the 5-qubit state,

|Ψ5,2〉 =
√

7|00000〉+ |00111〉+ |01011〉+ |01101〉
+ |01110〉+ |10011〉+ |10101〉+ |10110〉
+ |11001〉+ |11010〉+ |11100〉+

√
5|11111〉.

The following lemma shows that |Ψn,d〉 has trivial sta-
bilizer for n = 5, n > 6 and d ≥ 2. It is a combination of
Lemma 13 and Lemma 19 in Appendix C 1 a, where we
prove this statement for n > 6 and n = 5, respectively.

Lemma 13. For n = 5, n > 6 and d ≥ 2 the stabilizer

of |Ψn,d〉 is trivial, i.e. G̃Ψn,d = {1l}.

In the following we give an outline of the proof of this
lemma, which is divided into four main steps.

First, we note that it is sufficient to show that K̃Ψn,d =

{1l} as Lemma 11 then implies that also G̃Ψn,d = {1l}
holds. In the second step, we show that any v ∈ K̃Ψn,d

is of the form v = u⊗n for some u ∈ U(d). The proof
of this statement is presented in Appendix C 1 a. It thus
remains to show that the only u ∈ U(d) that fulfills the
equation

u⊗n|Ψn,d〉 = |Ψn,d〉 (30)

also fulfills u⊗n = 1l. In the third step, we show that
Eq. (30) can only be fulfilled if u is diagonal, i.e. if
u =

∑
i ui|i〉〈i|. We show this in Appendix C 1 a by con-

sidering the 2-subsystem reduction of Eq. (30). In the
fourth step, we reinsert u =

∑
i ui|i〉〈i| into Eq. (30) and

see that it is equivalent to

uni = 1 for i ∈ {0, . . . , d− 1}, (31)

uki u
n−k
i−1 = 1 for i ∈ {1, . . . , d− 1}. (32)

Now, recall that gcd(n, k) = 1. This can be used to show
that the only solution of Eqs. (31-32) is u = ωmn 1l, where
ωn = exp(2πi/n) and m ∈ N. Hence, u⊗n = 1l holds.
This completes the proof of Lemma 13.

IV. MULTIPARTITE PURE STATE
TRANSFORMATIONS

Combining our result with previous works, the fol-
lowing picture of multipartite pure state entanglement
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transformations emerges (see Fig. 1). For bipartite pure
states (region A in Fig. 1) all deterministic and probabil-
isitc LOCC transformations are characterized [8, 36] and
SEP = LOCC holds [37]. Entangled bipartite pure states
can always be transformed via non-trivial deterministic
LOCC, regardless of their local dimensions. Moreover,
they can always be obtained from the maximally entan-
gled state. Hence, this (up to LUs) single state consti-
tutes the maximally entangled set of bipartite states.

Three qubits (region B in Fig. 1) are the only multipar-
tite system for which all deterministic LOCC transforma-
tions between pure states are characterized [38]. They are
moreover the only tripartite system for which it is known
that all fully entangled pure states can be transformed
to other fully entangled states via non-trivial determin-
istic LOCC. Moreover, SEP = LOCC for deterministic
transformations within the GHZ class, i.e. for determin-
istic transformations between generic states [39]. Fur-
thermore, the MES, i.e. the minimal set from which all
other states can be deterministically obtained via LOCC,
is of measure zero, albeit uncountably infinite [20]. This
situation changes drastically when the local dimension is
increased by only one.

Generic 3-qutrit states (region C in Fig. 1) are iso-
lated, despite the fact that their stabilizer is nontrivial
[17]. The MES is of full-measure. Moreover, SEP 6=
LOCC for deterministic transformations of 3-qutrit pure
states [17].

Regarding three-partite states we show that, already
for 4−, 5−, or 6-level systems (in region D in Fig. 1), al-
most all pure states have trivial stabilizer and are there-
fore isolated (see Theorem 1). We further derive the op-
timal probabilistic protocol for transformations between
generic states and find that SEP = LOCC for these con-
versions. An open question is whether these results ex-
tend to tripartite systems of any local dimension d > 3
(region E in Fig. 1) or not.

Four-qubit pure states (region F in Fig. 1) generically
have finite, non-trivial stabilizer and their MES is of full
measure [20, 21]. Furthermore, SEP = LOCC for trans-
formations among generic pure states, which were char-
acterized in [22]. However, almost all states are isolated
[20].

Finally, our work shows that almost all qudit states
of n > 3 qudits (region D in Fig. 1) have trivial stabi-
lizer (see Theorem 1) and are therefore isolated. That
is, almost all qudit states are in the MES. We further
determine the optimal protocol for probabilistic transfor-
mations among these states and find that SEP = LOCC
holds in these cases. This shows in particular that the
results of [18], which is devoted to (n > 4)-qubit systems
(region G in Fig. 1), can be generalized to arbitrary local
dimension.

FIG. 1: Summary of results on the symmetries of n-partite
systems with local dimension d. The picture is divided into
different regions (A to G) that were treated separately in the
literature. The colors give information on the stabilizer of
states in the corresponding system: blue (all states have non-
compact stabilizer; regions A [8], B [20, 38]), green (generic
states have finite, nontrivial stabilizer; regions C [17], F [20]),
red (generic states have trivial stabilizer; D (see Th. 1), G
[18]), grey (generic states have finite stabilizer [19, 23]; un-
known if it is trivial; region E). The implications of these and
other results in entanglement theory are summarized in the
main text.

V. CONCLUSION

In this work, we used methods from geometric invari-
ant theory and the theory of Lie groups to prove that
almost all pure (n > 3)-qudit states and almost all three
d-level states, for d = 4, 5, 6, have trivial stabilizer. Com-
bined with the characterization of local transformations
of states with trivial stabilizer provided in [18], this has
profound implications in entanglement theory. It allows
us to characterize all transformations via LOCC and via
SEP among almost all (n > 3)-qudit pure states. We
find that these transformations are extremely restricted.
In fact, almost all (n > 3)-qudit pure states are isolated.
Due to the results presented here, the simple expression
for the optimal success probability for probabilistic lo-
cal transformations presented in [18] is shown to hold
among generic states. The optimal SEP protocol is a so
called one-successful-branch protocol (OSBP), i.e. a sim-
ple protocol for which only one branch leads to the final
state, which can also be implemented via LOCC. Fur-
thermore, we discussed implications of our result for the
construction of entanglement measures for pure multi-
qudit states. All of these results also hold for three d-level
systems, where d = 4, 5, 6.

This work shows that, in the context of local state
transformations, only a zero-measure subset of the
exponentially large space of (n > 3)-qudit states is
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physically significant. That is, the most powerful states
are very rare. This is consistent with investigations in
other fields of physics, e.g. condensed matter physics,
where it has been shown that under certain conditions
only a zero-measure subset of all quantum states is
physically relevant [7] . These results therefore suggest
that the physically relevant zero-measure subset of
states, such as matrix-product states [7], projected-
entangled pair states [42] (with low bond dimension), or
stabilizer states [4], should be investigated more deeply.
As transformations between fully entangled states of
homogeneous systems are almost never possible, it
would moreover be interesting to study transformations
of generic states of heterogeneous systems. The methods
developed in Sec. III B can be applied for arbitrary
multipartite systems. However, interestingly, for certain
heterogeneous systems, one can show that generic
states always have non-trivial local symmetries [43].
Our results further suggest that more general local
transformations should be considered. This includes the
more-copy case and transformations between states of
different local dimensions or number of subsystems e.g.
transformations from n-qubit states to (n − k)-qubit
state, where 1 ≤ k ≤ n − 1. Finally, the fact that
almost all qudit states have trivial stabilizer and the
mathematical tools that we developed to prove this
could also be relevant in other fields of physics, such as
condensed matter physics.
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Appendix A: Proof of Lemma 7

In this appendix we proof Lemma 7, which we restate
here to improve readability.

Lemma 7. Let |ψ〉, |φ〉 ∈ Hn be two multipartite entan-
gled states and let pmax(|ψ〉 → |φ〉) denote the optimal
success probability to transform |ψ〉 into |φ〉 via LOCC.
Then the asymptotic LOCC conversion rate from |ψ〉 to
|φ〉 fulfills,

R(|ψ〉 → |φ〉) ≥ pmax(|ψ〉 → |φ〉). (A1)

Proof. We show that the single copy LOCC protocol with
success probability pmax(|ψ〉 → |φ〉) applied to many
copies individually achieves the rate given as lower bound
in Eq. (A1). This LOCC protocol transforms one copy
of |ψ〉 into the desired final state |φ(0)〉 ≡ |φ〉 with
probability p(0) = pmax(|ψ〉 → |φ〉) and into a sep-
arable state |φ(1)〉 with probability p(1) = 1 − p(0).

Applying this protocol to k copies of |ψ〉 leads to a
state |Ψ(x)〉 ≡ |φ(x1)〉 ⊗ . . . ⊗ |φ(xk)〉 with probabil-
ity p(x) = p(x1) . . . p(xk), where we used the notation
x = (x1, . . . , xk). For any ε > 0 and k ∈ N we define the
following set of states,

T (ε, k) ≡
{
|Ψ(x)〉 | x ∈ {0, 1}k, 2−k(H+ε) ≤ p(x) ≤ 2−k(H−ε)

}
,

(A2)

where H = −p(0) log(p(0))− p(1) log(p(1)) and the loga-
rithm is taken to base two. In classical information the-
ory the sequences x ∈ {0, 1}k corresponding to states
|Ψ(x)〉 ∈ T (ε, k) are referred to as ε-typical sequences
(see e.g. [1]). A well-known result is the following (see
e.g. [1], Theorem 12.2, (1)),

lim
k→∞

∑
x:|Ψ(x)〉∈T (ε,k)

p(x) = 1. (A3)

Hence, for any ε > 0 the probability that a state in T (ε, k)
is created in the LOCC transformation described above
approaches one for large k.
Now, let 0 < r < p(0). It is easy to see that there is
an ε̃ > 0 (that only depends on r) such that, for suffi-
ciently large k, any state in T (ε, k) contains at least brkc
copies of |φ(0)〉 = |φ〉 and can therefore be transformed
to |φ〉⊗brkc via LOCC. Combining this Eq. (A3) we see
that, in the limit of k →∞, the state |ψ〉⊗k is determin-
istically transformed to some state in T (ε̃, k), which can
then be transformed via LOCC to |φ〉⊗brkc. That is, for
any 0 < r < p(0) there exists a sequence of LOCC maps,
{Λr,k}∞k=1, s.t.

lim
k→∞

‖Λr,k(|ψ〉〈ψ|⊗k)− |φ〉〈φ|⊗br
′kc‖ = 0. (A4)

Since this holds for any 0 < r < p(0) = pmax(|ψ〉 → |φ〉)
it follows from the definition of the asymptotic conversion
rate (see Eq. (6)) that R(|ψ〉 → |φ〉) ≥ pmax(|ψ〉 →
|φ〉).

Appendix B: Kempf-Ness theorem and Principal
orbit type theorem

In this Appendix we review two theorems that are
central to our work, the Kempf-Ness theorem and the
principal orbit type theorem, and discuss where they
are used in the main text. We also briefly review some
implications of the Kempf-Ness theorem in the context of
entanglement theory. For further details the interested
reader is referred to [18] and [23].

Let us first review the Kempf-Ness theorem. In the
main text we introduced the set of critical states in Eq.
(16) as

Crit(Hn) ≡ {φ ∈ Hn| 〈φ|X|φ〉 = 0,∀X ∈ Lie(G)}.
(B1)
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Note that a state |ψ〉 ∈ Hn is critical iff all of its lo-
cal density matrices are proportional to the identity [19].
That is, a state is critical if every subsystem is maxi-
mally entangled with the remaining subsystems. As men-
tioned in the main text, many well-known quantum states
are critical, and the union of the G-orbits of all critical
states is dense and of full-measure in Hn. Critical states
have many other interesting properties mentioned below.
Some of these can be derived from the Kempf-Ness theo-
rem, which provides a characterization of critical states.

Theorem 14. [27] The Kempf-Ness theorem

1. |φ〉 ∈ Crit(Hn) iff ‖g|φ〉‖ ≥ ‖|φ〉‖ for all g ∈ G.

2. If |φ〉 ∈ Crit(Hn) and g ∈ G then ‖g|φ〉‖ ≥ ‖|φ〉‖
with equality iff g|φ〉 ∈ K|φ〉. Moreover, if g is
positive definite then the equality condition holds
iff g|φ〉 = |φ〉.

3. If |φ〉 ∈ Hn then G|φ〉 is closed in Hn iff Gφ ∩
Crit(Hn) 6= ∅.

The second part of the theorem implies that each
SLOCC orbit contains (up to local unitaries) at most
one critical state. Thus, critical states are natural
representatives of SLOCC orbits. They are the unique
states in their SLOCC orbits for which each qubit is
maximally entangled to the other qubits [19]. The
Kempf-Ness theorem was also important in the proof
of [18] to show that g ∈ G̃ψ iff g† ∈ G̃ψ for a critical

state |ψ〉. Together with the fact that G̃ψ is Z-closed
(which follows from the definition) this shows that

G̃ψ is a symmetric subgroup of GL(dn) (see e.g.
[23] for the definition of the Zariski topology). This
property is central to the proof of Lemma 11 in this work.

In order to state the principal orbit type theorem we
first introduce some definitions and notation. We further
discuss how a subgroup H ⊂ GL(Hn) induces a preorder
on the the set of all H-orbits of states in Hn. The prin-
cipal orbit type theorem then provides conditions under
which this preorder gives rise to a maximal element.

Let |ψ〉, |φ〉 ∈ Hn be two states. Then Hψ and Hφ

are said to have the same type if there exists a h ∈ H
such that Hφ = hHψh

−1, i.e. if they are conjugate in H.
Clearly, the stabilizer of |ψ〉 and h|ψ〉 are conjugate for
any h ∈ H, namely

hHψh
−1 = Hhψ. (B2)

Hence, Hψ and Hφ are of the same type iff there exists
h ∈ H such that Hφ = Hhψ. However, the fact that Hψ

and Hφ have the same type does not imply that there
is a h ∈ H such that |ψ〉 = h|φ〉, i.e. it does not imply

that they are in the same H-orbit. For example, the G̃-
stabilizer of generic 4-qubit states has the same type as
{σ⊗4

i }3i=0 [20], despite the fact that two 4-qubit states
are generically SLOCC inequivalent and thus not in the

same G̃-orbit [40].

We further say that H/Hψ has a lower type than
H/Hφ, denoted as

H/Hψ ≺type H/Hφ, (B3)

if Hφ is conjugate in H to a subgroup of Hψ. It is easy
to see that ≺type induces a preorder on the set of all
H-stabilizers.

That this preorder also induces a preorder on set of
all H-orbits can be seen as follows. Note that H|ψ〉 is
isomorphic to the left coset of Hψ in H for all |ψ〉, namely

H|ψ〉 ∼= H/Hψ. (B4)

We can therefore say that H|ψ〉 is of lower type than
H|φ〉, denoted as

H|ψ〉 ≺type H|φ〉, (B5)

if H/Hψ ≺type H/Hφ holds.
The following theorem, called principal orbit type the-

orem (POT theorem), shows that under certain very gen-
eral conditions this preorder possesses a maximal ele-
ment. This key theorem can be found in [31], as a com-
bination of Theorem 3.1 and Theorem 3.8.

Theorem 15. [31] The principal orbit type theo-
rem Let C be a compact Lie group acting differentiably
on a connected smooth manifold M (in this paper we
assume M ⊂ Hn). Then, there exists a principal or-
bit type; that is, there exists a state |φ〉 ∈ M such that
C/Cψ ≺type C/Cφ for all |ψ〉 ∈ M. Furthermore, the
set of |ψ〉 ∈ M such that Cψ is conjugate to Cφ is open
and dense inM with complement of lower dimension and
hence of measure 0.

The following example illustrates how powerful the
POT theorem is. Suppose |ψ〉 ∈ Hn is a (not necessarily

critical) state with trivial unitary stabilizer, K̃ψ = {1l}.
Then the POT theorem applied to C = K̃ and M = Hn
directly implies that the set of states with trivial unitary
stabilizer is of full measure in Hn.

However, in this work we show that the stabilizer

in G̃ is generically trivial. As G̃ is a noncompact Lie
group, the POT theorem cannot be applied directly. It
is nevertheless central to the proof of Theorem 12, where
we applied it to the compact Lie group C = K̃ that acts
differentiably on the connected smooth manifold M = C
(see Lemma 8, (iii)).

Appendix C: Criticial states with trivial stabilizer

In this appendix we provide examples of critical states
with trivial stabilizer for n = 3 and d = 4, 5, 6, for n = 4
and d > 2 and for n ≥ 5 and d ≥ 2. That is, we give
examples of criticial states with trivial stabilizer for all
Hilbert spaces described in Theorem 1, and for (n > 4)-
qubit systems. Combined with Theorem 12 this com-
pletes the proof of Theorem 1 that almost all pure states
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in these Hilbert spaces have trivial stabilizer. For n > 3
we present these states in Sec. C 1. The states with n = 3
have to be constructed differently and are presented in
Sec. C 2.

1. Critical (n > 3)-qudit states with trivial
stabilizer

In this section we present critical states with trivial
stabilizer for n = 4, d > 2 and n > 4, d ≥ 2. As we will
see, it is easy to show that these states are indeed crit-
ical, i.e. that their single-subsystem reduced states are
proportional to the completely mixed state. In contrast
to that, the proof that their stabilizer is trivial is more
involved and the details of the proof depend on n and
on d. However, since we consider only permutationally
symmetric states the main steps of this proof are the
same for all n > 3. For the sake of readability we outline
these four main steps before we present the details in
the subsequent subsections. The main ingredients to
show that a permutationally symmetric, critical state
considered here, say |ψn,d〉 ∈ Hn,d, has trivial stabilizer,
are the following.

(1) Since |ψn,d〉 is critical it is sufficient to show that

K̃ψn,d = {1l} holds, i.e. that |ψn,d〉 has a trivial
unitary stabilizer, as Lemma 11 states that then

also G̃ψn,d = {1l} holds.

(2) We show that a unitary B fulfills B ⊗ B−1 ⊗
1l⊗n−2|ψn,d〉 = |ψn,d〉 iff B = c1l for some phase

c. It was shown in [34] that then any v ∈ K̃ψn,d

can be express as v = u⊗n for some u ∈ U(d) (see
also Lemma 17 below for details).

(3) It remains to show that for any unitary u ∈ U(d)
the equation

u⊗n|ψn,d〉 = |ψn,d〉 (C1)

implies that u⊗n = 1l. The corresponding equation
for the reduced state of the first two subsystems,

ρ
(1,2)
n,d = Tr3,...,n(|Ψn,d〉〈ψn,d|) reads,

(u⊗ u)ρ
(1,2)
n,d (u† ⊗ u†) = ρ

(1,2)
n,d .

This equation can be used to show that u has to be
diagonal. However, the details of this proof depend
on n and d.

(4) In the last step we show that the only diagonal
unitary u that fulfills Eq. (C1) also fulfills u⊗n = 1l.

This shows that K̃ψn,d = {1l} and completes the
proof.

The remainder of this section is devoted to the details
of this proof. In Sec. C 1 a we consider the case n = 5
and n > 6 and d ≥ 2. In Sec. C 1 b we consider the case
n = 4, d > 2 and in Sec. C 1 c the case n = 6 and d ≥ 2.

a. A critical n-qudit state, n = 5, n > 6, with local
dimension d ≥ 2 and trivial stabilizer

In this section we show that the critical state |Ψn,d〉
introduced Eq. (29) of Sec. III C is well-defined and has
trivial stabilizer for n = 5, n > 6 and d ≥ 2. That is, we
prove Lemma 13 of the main text.

Let us first recall the following definitions made in
Sec. III C of the main text. For |φ〉 ∈ Hn,d we define
the set of all distinct permutations of |φ〉 as π(|φ〉) =
{Pσ|φ〉 | σ ∈ Sn} and the symmetrization of |φ〉 as
|π(|φ〉)〉 =

∑
|χ〉∈π(|φ〉) |χ〉. Using this notation, we de-

fine the (unnormalized) state

|Dk,n(j)〉 = |π(|j〉⊗k|j − 1〉⊗n−k)〉, (C2)

for 0 ≤ k ≤ n and j ∈ {1, . . . , d− 1}. These states fulfill

〈Dk,n(j)|Dk′,n(j′)〉 =

(
n

k

)
δk,k′δj,j′ . (C3)

For l ∈ {1, . . . , n − 1} we can express |Dk,n(j)〉 in the
bipartite splitting of any l subsystems and the remaining
n− l subsystems as

|Dk,n(j)〉 =

min{l,k}∑
q=0

|Dq,l(j)〉|Dk−q,n−l(j)〉. (C4)

In Sec. III C we then defined for n = 5, n > 6 and
d ≥ 2 the state

|Ψn,d〉 =

d−1∑
j=0

cj |j〉⊗n +

d−1∑
j=1

|Dk,n(j)〉, (C5)

where c0 =
√(

n−1
k−1

)
+ 1, ci = 1 for 0 < i < d − 1 and

cd−1 =
√(

n−1
k

)
+ 1, with k the smallest natural number

such that 3 ≤ k ≤ n− 2, n 6= 2k and gcd(n, k) = 1.

Let us first show that k as described above always ex-
ists for n = 5, n > 6 and that |Ψn,d〉 is therefore well-
defined. For n ∈ N the Euler totient function φ(n) is
defined as the number of all natural numbers j that are
smaller than n and fulfill gcd(n, j) = 1, i.e.

φ(n) = |{j ∈ N| j < n, gcd(n, j) = 1}|. (C6)

It is straightforward to see that k as defined below Eq.
(C5) always exists if φ(n) ≥ 5. We now prove that k
exists if n = 4 and n > 6. If n is not divisible by 3
then k = 3. If n is divisible by 3 and 5 then Euler’s
formula for φ(n) (cf. [35]) implies that φ(n) ≥ 5. Fi-
nally, if n is divisible by 3 but not 5 and n ≥ 9 then k = 5.

Let us now show some properties of |Ψn,d〉 that will
be useful in the proof that it has trivial stabilizer. Note
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first that, due to Eq. (C4), we can express |Ψn,d〉 in the
bipartition of any l subsystems with the rest as

|Ψn,d〉 =

d−1∑
j=0

cj |j〉⊗l|j〉⊗n−l

+

d−1∑
j=1

min{l,k}∑
q=0

|Dq,l(j)〉|Dk−q,n−l(j)〉. (C7)

Note further that the following useful lemma on sym-
metric states has been shown in [34].

Lemma 16. [34] Let |ψ〉 be symmetric. Suppose |ψ〉 has
the property that

B ⊗B−1 ⊗ 1l⊗n−2|ψ〉 = |ψ〉 iff B = b1l, (C8)

for some b ∈ C\{0}. If g ∈ G̃ψ then g = h⊗n for some
h ∈ GL(d,C).

This result can be easily understood as follows. Let
|ψ〉 be symmetric and let P(1,2) denote the operator that
permutes subsystems 1 and 2. Note that if g = g1⊗ . . .⊗
gn ∈ G̃ψ then g−1|ψ〉 = |ψ〉 and P(1,2)gP(1,2)(P(1,2)|ψ〉) =
P(1,2)|ψ〉 hold. Using that P(1,2)|ψ〉 = |ψ〉 this implies

that g−1P(1,2)gP(1,2)|ψ〉 = |ψ〉, i.e.

g−1
1 g2 ⊗ g−1

2 g1 ⊗ 1l⊗n−2|ψ〉 = |ψ〉. (C9)

Now, if Eq. (C8) holds, this implies that there is a c1,2 ∈
C\{0} such that g1 = c1,2g2. As |ψ〉 is symmetric the
same argument can also be used to show that there is a
ci,j ∈ C\{0} such that gi = ci,jgj for all i 6= j and thus

g = h⊗n for some h ∈ GL(d,C). Note that if g ∈ K̃
then g−1

1 g2 in Eq. (C9) is unitary. Hence, in order to

show that any unitary symmetry v ∈ K̃ψ is of the form
v = u⊗n for some u ∈ U(d) it is thus sufficient to show
that Eq. (C8) holds for any unitary B. We use this to
prove the following lemma.

Lemma 17. If v ∈ K̃ fulfills v|Ψn,d〉 = |Ψn,d〉 then v =
u⊗n for some u ∈ U(d).

Proof. |Ψn,d〉 is permutationally symmetric. Due to
Lemma 16 it is thus sufficient to show that the only so-
lution to

B ⊗B−1 ⊗ 1l⊗n−2|Ψn,d〉 = |Ψn,d〉, (C10)

where B ∈ U(d), is B = b1l for some complex number
b 6= 0.

In order to show this, we first apply for i ∈ {0, . . . , d−
1} the operator 1l⊗2⊗〈i|⊗n−2 to both sides of Eq. (C10).
Decomposition (C7) for l = 2 is very useful in calculating
the resulting equation. For k < n− 2 we obtain

(B ⊗B−1)|i〉⊗2 = |i〉⊗2 for i ∈ {0, . . . , d− 1}.

In the case of k = n− 2 we get

(B ⊗B−1)|0〉⊗2 = |0〉⊗2,

(B ⊗B−1)(ci|i〉⊗2 + |i− 1〉⊗2)

= ci|i〉⊗2 + |i− 1〉⊗2 for i ∈ {1, . . . , d− 1}.

It is then straightforward to see that these equations can

only be fulfilled if B is diagonal, i.e. B =
∑d−1
i=0 bi|i〉〈i|.

Analogously we can apply 1l⊗2⊗〈Dk−1,n−2(i)| to both
sides of Eq. (C10) for i ∈ {1, . . . , d− 1} and see that

(B ⊗B−1)|D1,2(i)〉 = |D1,2(i)〉 for i ∈ {1, . . . , d− 1}.

Using that |D1,2(i)〉 = |i〉|i − 1〉 + |i − 1〉|i〉 it is easy
to see that these equations imply bi = bj = b for all
i, j ∈ {0, . . . , d− 1} and hence B = b1l.

With these results we are in the position to proof
Lemma 13 in the main text, namely that |Ψn,d〉 has
trivial stabilizer for n > 4, n 6= 6, d > 2. We first prove
this result for n > 6 (see Lemma 18). After that, we
provide the proof for n = 5 (see Lemma 19)) which is
slightly different.

We first consider the case of n > 6 qubits and prove
the following lemma.

Lemma 18. For n > 6 and d ≥ 2 the stabilizer of |Ψn,d〉
is trivial, i.e. G̃Ψn,d = {1l}.

Proof. Due to Lemma 11 and Lemma 17 it remains to
show that for any unitary u ∈ U(d) the equation

u⊗n|Ψn,d〉 = |Ψn,d〉 (C11)

implies that u⊗n = 1l. We first show that Eq. (C11)
implies that u is diagonal and then that u⊗n = 1l.

Considering the reduced state of the first two subsys-

tems, ρ
(1,2)
n,d = Tr3,...,n(|Ψn,d〉〈Ψn,d|), Eq. (C19) implies

that

(u⊗ u)ρ
(1,2)
n,d (u† ⊗ u†) = ρ

(1,2)
n,d . (C12)

Note that for n > 6 we have that k < n − 2, where
k is defined below Eq. (C5) [49]. This fact simplifies

the computation of ρ
(1,2)
n,d (in contrast to the case n = 5,

where k = 3; see Lemma 19). It is then easy to see that

ρ
(1,2)
n,d = α(|0〉〈0|⊗2 + |d− 1〉〈d− 1|⊗2) + β

d−2∑
j=1

|j〉〈j|⊗2

+ γ

d−1∑
j=1

|D1,2(j)〉〈D1,2(j)| (C13)
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with

α =

(
n− 1

k − 1

)
+

(
n− 2

k

)
+ 1,

β =

(
n− 2

k

)
+

(
n− 2

k − 2

)
+ 1,

γ =

(
n− 2

k − 1

)
.

Using Eq. (C12) we now prove that u is diagonal. In
order to do so, we first show that u|0〉 = u0|0〉 for some
phase u0. As Eq. (C13) is the spectral decomposition of

ρ
(1,2)
n,d and since α > β > γ (in fact, α = β + γ, as the

state is critical), the following equation must hold,

u⊗ u|00〉 = φ0|00〉+ φd−1|d− 1d− 1〉, (C14)

for some coefficients φ0, φd−1. Note that the local oper-
ator u ⊗ u cannot change the Schmidt rank of a state.
Hence, the state on the right-hand side of Eq. (C14)
must have Schmidt rank 1. That is, either u|0〉 = u0|0〉
or u|0〉 = u0|d − 1〉 holds for some phase u0. It is easy
to see that only the former can fulfill Eq. (C11). Hence,
u|0〉 = u0|0〉 holds.

Next, we show that if u|k〉 = uk|k〉 for k < i then also
u|i〉 = ui|i〉 holds, for i ∈ {1, . . . , d − 1}. We consider
the eigenspace to eigenvalue γ, which is spanned by the
states {|D1,2(i)〉}d−1

i=1 . Using that u|i − 1〉 = ui−1|i − 1〉
we obtain,

u⊗ u|D1,2(i)〉 = ui−1(u|i〉|i− 1〉+ |i− 1〉u|i〉),

for i ∈ {1, . . . , d − 1}. This state has to be an element
of the eigenspace to eigenvalue γ. It is easy to see that
this is only possible if u|i〉 = ui|i〉. Combined with
u|0〉 = u0|0〉 we have that u is diagonal.

We show next that for any diagonal u fulfilling Eq.
(C11) it must hold that u⊗n = 1l. Using the notation

u =
∑d−1
i=0 ui|i〉〈i|, it is straightforward to show that Eq.

(C11) is equivalent to

uni = 1 for i ∈ {0, . . . , d− 1}, (C15)

uki u
n−k
i−1 = 1 for i ∈ {1, . . . , d− 1}. (C16)

Note that u is only uniquely determined up to a global
phase ωmn , where ωn = exp(2πi/n) and m ∈ N. As
un0 = 1 we can choose u0 = 1 without loss of general-
ity. Equations (C15-C16) then reduce to

uni = 1 and uki u
n−k
i−1 = 1 for i ∈ {1, . . . , d− 1}. (C17)

We now prove inductively that these equations together
with u0 = 1 imply that ui = 1 for all i. That is, we
show that ui−1 = 1 implies that ui = 1. Due to Eq.
(C17) we have that ui−1 = 1 implies that uki = 1. As
gcd(n, k) = 1, a well known result form number theory

implies that, there exist a, b ∈ Z such that an + bk = 1.
Hence, we have

ui = uan+bk
i = 1. (C18)

We hence proved that ui = 1 for all i, which implies
u⊗n = 1l. This proves the assertion.

In the proof for n > 6 (where k < n − 2) we used
Eq. (C13). Let us now consider the case n = 5 (where
k = 3 = n− 2) for which we need to prove the statement
differently.

Lemma 19. The stabilizer of |Ψ5,d〉 is trivial for d ≥ 2,

i.e. G̃Ψn,d = {1l}.

Proof. Due to Lemma 11 and Lemma 20 it is again suf-
ficient to show that any unitary u that fulfills

u⊗5|Ψ5,d〉 = |Ψ5,d〉 (C19)

fulfills u⊗5 = 1l.

We first consider the necessary condition

(u⊗ u)ρ
(1,2)
5,d (u† ⊗ u†) = ρ

(1,2)
5,d , (C20)

where ρ
(1,2)
5,d = Tr3,4,5(|Ψ5,d〉〈Ψ5,d|). Let Kd denote the

kernel of ρ
(1,2)
5,d and let K⊥d denote the orthogonal com-

plement of Kd. Clearly, Kd and K⊥d have to be invariant
under u ⊗ u. In fact, |ψ〉 ∈ Kd iff (u ⊗ u)|ψ〉 ∈ Kd (and
similarly for K⊥d ). In the following we use this to prove
that u is diagonal. Before that we have to characterize
Kd and K⊥d . It is straightforward to see that the follow-
ing holds.

Kd = Q⊕ S−, (C21)

K⊥d = P ⊕ S+, (C22)

where

Q = span{|i〉|j〉|0 ≤ i, j ≤ d− 1, |i− j| > 1}, (C23)

S− = span{|i〉|i− 1〉 − |i− 1〉|i〉}d−1
i=1 . (C24)

P = span{|i〉|i〉}d−1
i=0 , (C25)

S+ = span{|D1,2(i)〉}d−1
i=1 . (C26)

Let us first prove that u|0〉 = u0|u〉 for some phase u0.
Let π⊥ denote the projector onto K⊥d , i.e.

π⊥1,2 =

d−1∑
i=0

|i〉〈i|⊗2 +
1

2

d−1∑
i=1

|D1,2(i)〉〈D1,2(i)|. (C27)

As K⊥d is invariant under u⊗ u it holds that

(u⊗ u)π⊥1,2(u† ⊗ u†) = π⊥1,2. (C28)

For d = 2 it is easy to see that this equation and Eq.
(C19) can only be fulfilled if u|0〉 = u0|u〉 for some phase
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u0. For d > 2 let π⊥1 = Tr2(π⊥1,2) denote the reduced

state of π⊥1,2, i.e.

π⊥1 =
3

2
(|0〉〈0|+ |d− 1〉〈d− 1|) + 2

d−2∑
i=1

|i〉〈i|. (C29)

Then Eq. (C28) implies that

uπ⊥1 u
† = π⊥1 . (C30)

It is easy to see that Eq. (C30) can only be satisfied
if u|0〉 ∈ span{|0〉, |d − 1〉}. Combining this with the
fact that (u ⊗ u)|00〉 ∈ K⊥d , we see that (u ⊗ u)|00〉 ∈
span{|00〉, |d−1d−1〉}. However, as u⊗u cannot change
the Schmidt rank of a state either u|0〉 = u0|0〉 or u|0〉 =
u0|d − 1〉 for some phase u0. It is easy to see that the
former cannot fulfill Eq. (C19) and thus u|0〉 = u0|0〉
holds.

Next, we show that if u|k〉 = uk|k〉 holds for k < i,
then also u|i〉 = ui|i〉 holds, where i ∈ {1, . . . , d − 1}.
Using that u|i− 1〉 = ui−1|i− 1〉 we get that

(u⊗ u)|D1,2(i)〉 = ui−1(u|i〉|i− 1〉+ |i− 1〉u|i〉) ∈ K⊥d .

The state on the right-hand side can only be an element
of K⊥d if u|i〉 = ui|i〉. Combined with the fact that
u|0〉 = u0|0〉 we see that u is diagonal.

That u⊗5 = 1l holds for diagonal u can then be proven
in the same way as it was done in the proof of Lemma
18 for n > 6.

Note that this proof method could also be used to show
that |Ψn,d〉 has trivial stabilizer for n > 6. However, we
think that the proof for n > 6 presented after Lemma 18
is more concise.

b. A critical (n = 4)-qudit state with local dimension d > 2
and trivial stabilizer

In this section we consider 4-qudit systems with local
dimension d > 2. We define the (unnormalized) state

|Φ4,d〉 =
√

15c0|0〉⊗4

+

d−1∑
i=1

ci
{
|D3,4(i)〉+ |D2,4(i)〉 − 3|i〉⊗4

}
, (C31)

where

ci =
1

3

√
1−

(
− 4

15

)d−i
, for i ∈ {0, . . . , d− 1}. (C32)

It is easy to show that this state is critical. In what
follows we prove that |Φ4,d〉 has only trivial symmetries.

Note that the following lemma holds.

Lemma 20. If v ∈ K̃ fulfills v|Φ4,d〉 = |Φ4,d〉 for d > 2
then v = u⊗4 for some u ∈ U(d).

The proof is similar to the proof of Lemma 17 and will
be omitted. Using this lemma, we prove the following
lemma.

Lemma 21. For d > 2 the stabilizer of |Φ4,d〉 is trivial,

i.e. G̃Φ4,d
= {1l}.

Proof. Due to Lemma 11 and Lemma 17 it remains to
show that for any unitary u ∈ U(d) the equation

u⊗4|Φ4,d〉 = |Φ4,d〉 (C33)

implies that u⊗4 = 1l. We first show that Eq. (C19)
implies that u is diagonal and then that u⊗4 = 1l.

Considering the reduced state of the first two subsys-

tems, ρ
(1,2)
4,d = Tr3,4(|Φ4,d〉〈Φ4,d|), Eq. (C33) implies that

(u⊗ u)ρ
(1,2)
4,d (u† ⊗ u†) = ρ

(1,2)
4,d . (C34)

Let us denote by Kd the kernel of ρ
(1,2)
4,d and by K⊥d

the orthogonal complement of Kd. In Observation 22
we show that Kd = Q ⊕ S− and K⊥d = P ⊕ S+, where
Q,S−, P, S+ are given in Eqs. (C23-C26). The proof
that u is diagonal can then be completed as in the proof
of Lemma 19 and will therefore be omitted.

Using that u =
∑d−1
i=0 ui|i〉〈i|, Eq. (C33) is equivalent

to

u4
i = 1 for i ∈ {0, . . . , d− 1}, (C35)

u3
iu

1
i−1 = 1 for i ∈ {1, . . . , d− 1}. (C36)

u2
iu

2
i−1 = 1 for i ∈ {1, . . . , d− 1}. (C37)

Similar to the proof of Lemma 13 we set, without loss
of generality, u0 = 1. It is then straightforward to see
that Eqs. (C35-C37) only have the solution ui = 1 for
i ∈ {0, . . . , d − 1}. Hence, we proved that u⊗4 = 1l
holds.

Here, we prove the following observation used in the
proof of Lemma 21.

Observation 22. Let Q,S−, P and S+ be as defined in

Eqs. (C23 - C26). Then the kernel of ρ
(1,2)
4,d is Kd =

Q⊕ S− and the orthogonal complement of the Kernel is
K⊥d = P ⊕ S+.

Proof. Note that |ψ〉 ∈ Kd iff

1,2〈ψ|Φ4,d〉1,2,3,4 = 0, (C38)

where we explicitly labeled on which subsystems these
states are define. Using this, it is easy to see that
Q⊕S− ⊂ Kd. As Cd⊗Cd = Q⊕S−⊕P⊕S+ it is therefore
sufficient to show that P ⊕S+ does not contain any non-
trivial element of Kd, i.e. (P ⊕ S+)∩Kd = {0}, in order
to prove the observation. That is, we have to show that
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an element |ψ〉 =
∑d−1
k=0 α

∗
k|k〉|k〉 +

∑d−1
i=1 β

∗
k |D1,2(k)〉 ∈

P ⊕ S+ fulfills Eq. (C38) iff αk, βk = 0 for all k.
First, it is easy to see that Eq. (C38) implies that
βk = −αk/2 for k ∈ {1, . . . , d − 1}. Using this and
the notation ~α = (α0, . . . , αd−1)T , it is straighforward
to show that Eq. (C38) is equivalent to the system of

linear equations

M~α = 0, (C39)

where

M =



√
15c0 c1 0 0 . . . 0 0 0 0
c1 −4c1 c2 0 0 . . . 0 0 0
0 c2 −4c2 c3 0 . . . 0 0 0
...

. . .
...

...
...

0 0 0 0 0 . . . cd−2 −4cd−2 cd−1

0 0 0 0 0 . . . 0 cd−1 −4cd−1


.

As M is a tridiagonal matrix its determinant det(M) can
be computed via the following reccurence relation (see
e.g. [44]).

f(k) = −4ck−1f(k − 1)− c2k−1f(k − 2), (C40)

for k ∈ {2, . . . , d},
f(1) =

√
15c0, f(0) = 1, (C41)

where det(M) = f(d). Using the definition of {ck}d−1
k=0

one can show that {|f(k)|}dk=1 is monotonically in-
creasing and hence det(M) = f(d) 6= 0 holds. That
is, M is invertible, (P ⊕ S+) ∩ Kd = {0} and therefore
Kd = Q⊕ S−, which proves the assertion.

c. A critical (n = 6)-qudit state with trivial stabilizer for
d ≥ 2

In this section we present a state in (Cd)⊗6, d ≥ 2,
with trivial stabilizer. Before that, we introduce for 2 ≤
j ≤ d− 1 the (unnormalized) state

|φ6(j)〉 = |π(|j〉|j − 1〉⊗3|j − 2〉⊗2)〉, (C42)

where |π(|ψ〉)〉 =
∑
|φ〉∈π(|ψ〉) |φ〉 and π(|ψ〉) =

{Pσ|ψ〉 | σ ∈ Sn} as in the main text. For d > 3 we
then introduce the (unnormalized) critical state

|Φ6,d〉 =

√
194

5
|0〉⊗6 +

√
11

5
|D5,6(1)〉+

d−3∑
j=2

|j〉⊗6

+
√

21|d− 2〉⊗6 +
√

51|d− 1〉⊗6 +

d−1∑
j=2

|φ6(j)〉.

(C43)

Note that this state is not defined for d = 2 and not
critical for d = 3. However, for these case we can define
the critical states,

|Φ6,2〉 = 2|0〉⊗6 + |D1,6(1)〉+ |D3,6(1)〉,

|Φ6,3〉 = 3|0〉⊗6 + |D5,6(1)〉+
1√
2
|φ6(2)〉+

√
15|2〉⊗6.

Note that, for d > 3, the state |Φ6,d〉 can also be ex-
pressed as

|Φ6,d〉 = c0|0〉⊗2|0〉⊗4 + c1|1〉⊗2|D3,4(1)〉+ c1|D1,2(1)〉|1〉⊗4 +

d−3∑
j=2

|j〉⊗2|j〉⊗4 +

d−1∑
j=2

{|j − 2〉⊗2|D1,4(j)〉

+ |j − 1〉⊗2|αj〉+ |D1,2(j)〉|D2,4(j − 1)〉+ (|j〉|j − 2〉+ |j − 2〉|j〉)|D3,4(j − 1)〉+ |D1,2(j − 1)〉|βj〉}
+ cd−2|d− 2〉⊗2|d− 2〉⊗4 + cd−1|d− 1〉⊗2|d− 1〉⊗4. (C44)

Here, we defined |αj〉 = |π(|j〉|j − 1〉|j − 2〉⊗2)〉, |βj〉 = |π(|j〉|j−1〉⊗2|j−2〉)〉 and c0 =
√

194
5 , c1 =

√
11
5 , cd−2 =
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√
21 and cd−1 =

√
51. This decomposition will be conve-

nient in later considerations.
Let us now show that |Φ6,d〉 has trivial stabilizer for

d > 2. For that, the following lemma is useful.

Lemma 23. If v ∈ K̃ fulfills v|Φ6,d〉 = |Φ6,d〉 then v =
u⊗6 for some u ∈ U(d).

The proof is similar to the proof of Lemma 17 and will
be omitted. We are now in the position to prove that
|Φ6,d〉 has trivial stabilizer for d > 2.

Lemma 24. For d ≥ 2 the stabilizer of |Φ6,d〉 is trivial,

i.e. G̃Φ6,d
= {1l}.

Proof. Due to Lemma 11 and Lemma 23 it is again suf-
ficient to show that any unitary u that fulfills

u⊗6|Φ6,d〉 = |Φ6,d〉 (C45)

fulfills u⊗6 = 1l. We divide the proof into three parts. In
parts (a) and (b) we consider the cases with d > 3. In
part (c) we provide a proof of the theorem for d = 3.

(a) u is necessarily diagonal for d > 3
We consider the case d > 3. From Eq. (C45) we get the
following necessary condition,

(u⊗ u)ρ
(1,2)
6,d (u† ⊗ u†) = ρ

(1,2)
6,d , (C46)

where ρ
(1,2)
6,d = Tr3,...,6(|Φ6,d〉〈Φ6,d|). Let us first deter-

mine ρ
(1,2)
6,d .

With the help of decomposition (C44) one can easily
show that the 2-subsystem reduced state of |Φ6,d〉 for
d > 3 reads

ρ
(1,2)
6,d =

214

5
|0〉〈0|⊗2 + 17

d−3∑
j=2

|j〉〈j|⊗2

+ 33|d− 2〉〈d− 2|⊗2 + 51|d− 1〉〈d− 1|⊗2

+
71

5
|D1,2(1)〉〈D1,2(1)|+ 18

d−2∑
j=2

|D1,2(j)〉〈D1,2(j)|

+ 6|D1,2(d− 1)〉〈D1,2(d− 1)|+ 4

d−1∑
j=3

(|j〉|j − 2〉

+ |j − 2〉|j〉)(〈j|〈j − 2|+ 〈j − 2|〈j|)
+R, (C47)

where

R = (4c21 + 16)|11〉〈11|
+ 4c1 [|11〉(〈20|+ 〈02|) + c.c.]

+ 4(|20〉+ |02〉)(〈20|+ 〈02|),

where c.c. denotes the complex conjugate. Note that

the only part of ρ
(1,2)
6,d that is not yet diagonalized is

the operator R. The only nonzero eigenvalues of R are

2
5 (41 ±

√
881). As a consequence, we can directly get a

basis of all eigenspaces with eigenvalues different from
2
5 (41 ±

√
881), 0 from Eq. (C47) . For example, the

states |0〉⊗2, |d − 2〉⊗2, |d − 1〉⊗2 span the 1-dimensional

eigenspaces of ρ
(1,2)
6,d with eigenvalues 214

5 , 33, 51, respec-
tively. Note further that u ⊗ u maps an eigenspace of

ρ
(1,2)
6,d to a given eigenvalue to itself. Combining these

observations one can easily see that

u|0〉 = u0|0〉, (C48)

u|d− 2〉 = ud−2|d− 2〉, (C49)

u|d− 1〉 = ud−1|d− 1〉, (C50)

for some phases u0, ud−1, ud−2. For d = 4 this already
implies that u is diagonal. For d > 4 we can consider the
eigenspaces to nonzero eigenvalues that have dimensions
larger than 1 to show that u is diagonal.

Using that u|d − 2〉 = ud−2|d − 2〉 (see Eq.(C49)) it
remains to show that if u|k〉 = uk|k〉 holds for k > i,
then also u|i〉 = ui|i〉 holds, where i ∈ {2, . . . , d − 3}.
Using that u|i+ 1〉 = ui+1|i+ 1〉 we get the following,

(u⊗ u)|D1,2(i+ 1)〉 = ui+1(|i+ 1〉u|i〉+ u|i〉|i+ 1〉).
(C51)

Note that u ⊗ u maps the eigenspace of ρ
(1,2)
6,d to eigen-

value 18, spanned by {|D1,2(j)〉}d−2
j=2 , to itself. Hence,

Eq. (C51) can only be fulfilled if u|i〉 = ui|i〉 for some
phase ui. Combined with Eqs. (C48-C50) we have that
u|i〉 = ui|i〉 for i ∈ {0} ∪ {2, . . . , d− 1}. As u is unitary,
this also implies that u|1〉 = u1|1〉 for some phase u1 and
therefore u is diagonal.

(b) u⊗6 = 1l is the only solution for d > 3
Using that u =

∑
i=0 ui|i〉〈i| for d > 3 it is easy to see

that Eq. (C45) is equivalent to

u6
i = 1 for i ∈ {0, . . . , d− 1} (C52)

u0u
5
1 = 1 (C53)

uiu
3
i−1u

2
i−2 = 1 for i ∈ {2, . . . , d− 1}. (C54)

As in the proof of Lemma (13) we can set, without loss
of generality, u0 = 1. According to Eqs. (C52-C54) this
implies u5

1 = 1 and u2u
3
1 = 1. Taking the 6-th power

of the second equation we obtain u6
2u

18
1 = u3

1 = 1. The
only solution to u3

1 = u5
1 = 1 is u1 = 1. Using that

u0 = u1 = 1 in Eq. (C54) we finally obtain ui = 1 for
i ∈ {0, . . . , d− 1}. Hence, u⊗6 = 1l for d > 3.

(c) u⊗6 = 1l is the only solution for d = 2

Using that u ⊗ u leaves eigenspaces of ρ
(1,2)
6,2 invariant it

is straigthforward to see that u is diagonal. Reinserting
this into Eq. (C45) shows that indeed u⊗6 = 1l.
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(d) u⊗6 = 1l is the only solution for d = 3
In this case it is easy to see that

ρ
(1,2)
6,3 = 11|0〉〈0|⊗2 + 10|1〉〈1|⊗2 + 15|2〉〈2|⊗2

+ 7|D1,2(1)〉〈D1,2(1)|+ 3|D1,2(2)〉〈D1,2(2)|
+ 2(|02〉+ |20〉)(〈02|+ 〈20|)
+ 2
√

2[(|02〉+ |20〉)〈11|+ c.c.] (C55)

Using that u⊗ u maps eigenspaces of ρ
(1,2)
6,d with a given

eigenvalue to themselves it is easy to see that u|0〉 = u0|0〉
and u|2〉 = u2|2〉 for some phases u0, u2. As u is unitary

this implies that u =
∑2
i=0 ui|i〉〈i|. This form can then

be reinserted into Eq. (C45) to verify that u⊗6 = 1l is in
fact the only solution of this equation.

2. A way to construct critical tripartite states with
trivial stabilizer for d > 3

In this section we present a method to look for critical
tripartite states with trivial stabilizer in G̃. It is partic-
ularily useful if one wants to find nonsymmetric states
with these properties. We then employ this approach
to explicitly construct such a state for local dimension
d = 4, 5, 6.

a. On the symmetries of certain tripartite states

Let |ψ〉 ∈ (Cd)⊗3 be a critical state. Due to Lemma 11
we know that |ψ〉 does not have any nontrivial symme-
tries iff it does not have any nontrivial unitary symme-
tries. In what follows we derive necessary and sufficient
conditions for some |ψ〉 that allow to determine when this
is the case. We consider the following critical states in
(Cd)⊗3,

|ψ〉 =
1√
d

d−1∑
j=0

|j〉 ⊗ (Uj ⊗ 1l)|φ+〉, (C56)

where |φ+〉 = 1√
d

∑d−1
i=0 |ii〉, and the operators {Ui}d−1

i=0

are unitaries that fulfill Tr(U†i Uj) = dδij , i.e. that are
orthogonal. Suppose V1⊗V2⊗V3 is a unitary symmetry,
i.e.

V (1) ⊗ V (2) ⊗ V (3)|ψ〉 = |ψ〉. (C57)

We use the notation V (1) =
∑
ij V

(1)
ij |i〉〈j|. With the

help of decomposition (C56) and using that 1l⊗A|φ+〉 =
AT ⊗ 1l|φ+〉 for all matrices A it is then easy to see that
Equation (C57) is equivalent to∑

j

V
(1)
ij (V (2)UjV

(3)T ⊗ 1l)|φ+〉 = (Ui ⊗ 1l)|φ+〉 ∀i.

(C58)

Using that (A⊗ 1l)|φ+〉 = (B ⊗ 1l)|φ+〉 iff A = B, we can
rewrite (C58) as∑

j

V
(1)
ij Uj = V (2)†Ui(V

(3))∗ ∀i. (C59)

These equations are equivalent to Eq. (C57). Let us use

the notation Wi ≡ V (2)†Ui(V
(3))∗. Then a direct conse-

quence of Eq. (C59) is the following necessary condition,

WiW
†
i = 1l +

∑
j 6=k

V
(1)
ij V

(1)
ik

∗
UjU

†
k = 1l ∀i. (C60)

That is, ∑
j 6=k

V
(1)
ij V

(1)
ik

∗
UjU

†
k = 0 ∀i (C61)

has to hold.

b. Special critical states with trivial stabilizer

From now on, we consider critical states for which Eq.
(C59) admits a particularily simple form. More precisely,
we consider states for which U0 = 1l and for which the
unitaries {UiU†j }i6=j are linearly independent. The sec-

ond condition implies that Eq. (C61) can only be fulfilled

if V
(1)
ij V

(1)
ik

∗
= 0 for all i and for all j 6= k, i.e. only if

V (1) has exactly one nonzero entry in each row. That

is, only if V
(1)
ij = eiφiδi,σ(i), where σ ∈ Sd is a permuta-

tion. In the particular case we are considering, Eq. (C59)
therefore simplifies to

eiφiUσ(i) = V (2)†UiV
(3)∗ ∀i. (C62)

Due to Eq. (C62) it holds that V (2)† =

eiφσ−1(0)V (3)TUσ−1(0)
†. Reinserting this into Eq. (C62)

and using the notation Ũ ≡ Uσ−1(0) and φ̃i ≡ φσ−1(0)−φi
we obtain

Uσ(i) = eiφ̃iV (3)T Ũ†UiV
(3)∗ ∀i. (C63)

In the following section we use the insights gained in
this section to explain in detail how a tripartite state
with local dimension d = 4 and trivial stabilizer can be
explicitly constructed. After that we show how the same
method can be applied to d = 5 and d = 6.

c. A critical tripartite state with local dimension d = 4 and
trivial stabilizer

Let us construct a critical tripartite state with local
dimension d = 4 and trivial stabilizer. Our goal is to
find unitaries {U0, U1, U2, U3} such that Eq. (C62) is
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only fulfilled for σ = id and V (3) = eiα31l for some α ∈ R.
These conditions then imply that V (1)⊗ V (2)⊗ V (3) = 1l
as we show now.

Recall that V
(1)
ij = eiφiδi,σ(i). As σ = id the unitary

V (1) is a phase gate. Using that V (3) = eiα31l in Eq.
(C62) it is moreover easy to see that V (2) = e−i(φi+α3)1l.
Hence the phases eiφi cannot depend on i and therefore
fulfill eiφi = eiα1 for some α1 ∈ R. Thus, V (1) = eiα11l.
Hence, we have that V (1) ⊗ V (2) ⊗ V (3) = 1l.

In the following we show that the conditions σ = id
and V (3) = eiα31l are fulfilled if we choose

U0 = 1l, (C64)

U1 =
1

10
T1diag(6 + 8i,−6− 8i,−6 + 8i, 6− 8i)T †1 ,

(C65)

U2 =
1

102
T2diag(96 + 28i, 96− 28i,−96 + 28i,−96− 28i)T †2 ,

(C66)

U3 =
1

103
×

diag(936 + 352i,−936− 352i,−936 + 352i, 936− 352i),
(C67)

where

T1 =
1

2

 1 1 1 1
1 −i −1 i
−1 1 −1 1
−1 −i 1 i

 ,

T2 =
1

2


i i 1 −1

1+i√
2
− 1−i√

2
− 1+i√

2
1−i√

2

−i i 1 1
1+i√

2
1−i√

2
1+i√

2
1−i√

2

 .

Note that T1 and T2 transform the computational ba-
sis into the eigenbasis of the generalized Pauli operators
X4Z

2
4 and X3

4Z4, respectively, where

X4 =

3∑
k=0

|k + 1 mod 4〉〈k|,

Z4 = diag(1, i,−1,−i).

Hence, the unitaries in {Ui} have the same eigenbases
as the matrices in {1l, X4Z

2
4 , X

3
4Z4, Z4}. However, their

spectra are different. The choice {1l, X4Z
2
4 , X

3
4Z4, Z4}

would give rise to nontrivial solutions of Eq. (C62) and
therefore to nontrivial symmetries. One can show that
the same happens if one choses any other subset of gen-
eralized Pauli operators to define the unitaries {Ui}3i=0.

It is straightforward to show that the unitaries
{U0, U1, U2, U3} fulfill the requirements necessary for Eq.
(C63) to be valid. That is, they are all mutually orthog-

onal and the unitaries {UiU†j }i 6=j are linearly indepen-
dent. In what follows we show that the only choice of
Ũ = Uσ−1(0) that can fulfill Eq. (C63) is Ũ = 1l. It is

straightforward to see that Eq. (C63) can only be ful-

filled if for any i ∈ {0, 1, 2, 3} the spectrum of Ũ†Ui is
proportional to the spectrum of Uσ(i). It is however easy
to see that this necessary condition cannot be fulfilled for
Ũ 6= 1l. For example, for Ũ = U1 the spectrum of Ũ†U3 is
not proportional to the spectrum of any of the unitaries
in {Ui}. Consequently, Ũ = 1l is the only way to satisfy
Eq. (C63), which then simplifies to

Uσ(i) = eiφ̃iV (3)TUiV
(3)∗ ∀i. (C68)

As the spectra of the {Ui} are not proportional to each
other, the only way to fulfill Eq. (C68) is if σ = id. It is

moreover easy to see that eiφ̃0 = 1 and eiφ̃j ∈ {−1,+1}
for j ∈ {1, 2, 3}.

As eiφ̃1 ∈ {−1,+1} holds, we square Eq. (C68) for
i = 1 and obtain

U2
1 = V (3)TU2

1V
(3)∗. (C69)

Note that the spectrum of U2
1 is degenerate as we have

U2
1 = − 1

25
T1diag(7− 24i, 7− 24i, 7 + 24i, 7 + 24i)T †1 .

Hence, Eq. (C69) can only be fulfilled if V (3)T is of
the form

V (3)T = T1BT
†
1 , (C70)

where the unitary matrix B is a block diagonal matrix,
i.e. B = diag(B1, B2), where B1, B2 are unitary 2 × 2
matrices. Using the form of V T3 given in Eq. (C70) it

is easy to show that Eq. (C68) with eiφ̃j ∈ {−1,+1}
for all j can only be fulfilled if eiφ̃j = 1 for all j and if

V (3)T = c1l for some c 6= 0.

In summary, we showed that σ = id and V (3) = c1l for
some c 6= 0. As outlined at the beginning of this section
these conditions can then be used to show that indeed
V (1) ⊗ V (2) ⊗ V (3) = 1l is the only solution. Hence, the
state corresponding to the unitaries {U0, U1, U2, U3} in
Eqs. (C64 - C67), i.e. the state

|ψ〉 =
1

2

4∑
j=0

|j〉 ⊗ (Uj ⊗ 1l)|φ+〉, (C71)

has trivial stabilizer in G̃.

d. Tripartite states with d = 5, 6 and trivial stabilizer

In this section we use the techniques presented in
the previous section to prove that there exist critical
tripartite states with local dimension d = 5, 6 and trivial
stabilizer.
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As in the case of d = 4 we explicitly construct unitaries
{Ui}d−1

i=0 for d = 5, 6 that are diagonal in the eigenbasis
of certain generalized Pauli operators. We then prove
that the {Ui} are orthogonal and show that the unitaries

{UiU†j }i 6=j are linearly independent. This shows that Eq.

(C62) can be used to prove that the corresponding critical
quantum state has trivial stabilizer. Analogously to the
case of d = 4, we show that σ = id and V (3) = c1l for
some c 6= 0 is the only solution of Eq. (C62) for these

choices of unitaries {Ui}. Since the matrices {UiU†j }i 6=j
are linearly independent this then shows that the state

|ψ〉 =
1√
d

d−1∑
j=0

|j〉 ⊗ (Uj ⊗ 1l)|φ+〉, (C72)

is critical and has trivial stabilizer in G̃.

Let us now present these unitaries {Ui}d−1
i=0 for d = 5, 6.

Recall that for every d ≥ 2 and for any k = (k1, k2) ∈
{0, . . . , d− 1}2 a generalized Pauli operator is defined as

Sd,k = Xk1
d Z

k2
d , (C73)

where

Xd =

d−1∑
k=0

|k + 1 mod d〉〈k|,

Zd =

d−1∑
k=0

ωkd |k〉〈k|,

and ωd = exp(2πi/d). As shown in [41] the matrix Ud,t
transforms the computational basis into the eigenbasis of
Sd,(1,t) for t ∈ {0, . . . , d− 1}, where

Ud,t =
1√
d

d−1∑
i,j=0

(ωjd)
d−i(ω−td )

∑d−1
l=i l|i〉〈j|. (C74)

The unitaries {Ui}d−1
i=0 for which we show that the state

in Eq. (C72) is critical and has trivial stabilizer in G̃ are
then the following.

d = 5 :

U0 = 1l,

U1 = U5,1diag(eiβ1 , e−iβ1 , eiα1 , e−iα1 ,−1)U†5,1,

U2 = diag(−1, eiβ2 , e−iβ2 , eiα2 , e−iα2),

U3 = S5,(1,3),

U4 = S5,(3,1),

with α1 = π/3, α2 = π/6 and βi = arccos(1/2− cos(αi))
for i = 1, 2.

d = 6 :

U0 = 1l,

U1 =
1

10
U6,0diag(6 + 8i, 6− 8i,−6 + 8i,−6− 8i, i,−i)U†6,0,

U2 =
1

100
diag(96 + 28i,−96− 28i, i,−i, 96− 28i,−96 + 28i),

U3 = S6,(1,1),

U3 = S6,(2,3),

U3 = S6,(4,2).

It is easy to verify that for these choices of {Ui} the

unitaries {UiU†j }i 6=j are linearly independent. Following
the same argument as in the previous section one can
then show that |ψ〉 (given in Eq. (C72)) is critical with
trivial stabilizer.
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