
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
RATMAC PRIMER

Permalink
https://escholarship.org/uc/item/97z50102

Author
Munn, R.J.

Publication Date
1980-10-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/97z50102
https://escholarship.org
http://www.cdlib.org/

LBL-11847 .;:: _
TR-804

PUTATION
E ISTRY

L

October 1980

Prepared for the U.S. Department of Energy under Contract W-7405-ENG-48 and for the
National Science Foundation under Interagency Agreement CHE-7721305

I

r

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain cmrect information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any wananty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

RATMAC Primer

by

R. J. Munn

J. M. Stewart

A. P. Norden

M. Katherine Pagoaga

Division of Agricultural and Life Sciences
University of Maryland

College Park, Maryland 20742

October 1980

National Resource for Computation in Chemistry
Lawrence Berkeley Laboratory

University of California
Berkeley, California 94720

Copyright 1979
University of Maryland
Computer Science Center

College Park, Maryland 20742

General permission to republish, but not for profit, all or
part of this manual is granted provided that the copyright
notice is given and that reference is made to this
publ ation, and to the fact that reprinting privileges are
granted by rmission the University Maryland.

Acknowledgements

Partial support for this manual was provided by the
National Science Foundation under Grant CHE~7721305.

Additional support for the pr ect was provided by the
NRCC through the Basic Energy Sciences Division of the U.S.
Department of Energy under Contract W-740 ENG-48.

The computer time for this project was supported
through the ilities of the Computer Science Center of the
University of Maryland.

This ument has been prepared using TEXT, a machine
independent document processing system, which is written in
RATMAC. TEXT is available from Computer Science Center,
University Maryland, College Park. The features of TEXT
are described in CN-26 which is available from the Program
Library at the Computer Science Center.

Print story

First edition, August 1979

Second ition, October 1980

iii

Disclaimer

The RATMAC preprocessor is based on two programs,
RATFOR and MACRO, described in the book Software Tools by
B. W. Kernighan and P. J. Plauger (Addison~Wesley Publ1shing
Company) . The user of RATMAC is urged to purchase and read
this excellent text. In addition to describing the syntax
of both RATFOR and MACRO, the book contains many excellent
software weapons that should be in any programmer#s armory.

RATMAC is a combination of RATFOR and MACRO. Although
RATMAC has been exhaustively tested as a unit, no warranty,
expressed or implied, is made by the current authors as to
the accuracy and functioning of RATMAC, its subprograms,
related program material, or operating instructions.

No responsibility is
connection with the use,
these programs.

assumed by the authors in
attempted use, or application of

It would be appreciated if acknowledgement
of RATMAC be made in published work The main
should be to Kernighan and Plauger with
acknowledgement to the current authors.

iv

the use
reference
a minor

I

Dec is

File

TABLE OF CONTENTS

A ief summary the concept of structured
programming and preprocessors is given. RATFOR
and RATMAC structured languages are described.

Structures

Illustrations statement blocks, {}; looping
constructs, DO, FOR, WHILE, REPEATP and loop
modifying structures, NEXT, BREAK are shown.

uctures

The decision control structures
IF ••• ELSE are elaborated.

Features

IF ••• ELSE

Additional atures RATMAC including
character set, program
RATMAC generated

format,
FORTRAN

cross~re rencing,

acters, .digraphs,
defined.

and quoted
, reserved

strings are

ion

The INCLUDE command is introduced.

Constants

The DEFINE and MACRO: features
are illustrated.

the pr ocessor

Macros

MACRO: ature and its merits are set th.

Built-in Macros . . .

An

A description of the RATMAC built~in
macros; MACRO:, XMACRO:, SAVE:, INCR:, ARITH:,
LENSTR:, SUBSTR:, IFELSE:, CHR:, ORD:, FLAGON:,
and FLAGOFF: is provided.

ternat Mechanism

An alternate method accomplishing the INCLUDE
re is ted.

v

1

6

20

30

31

34

36

42

Macros With Macros 43

Recursive and non~recursive macros are
illustrated.

Some Examples Macros 47

Additional useful macros and their functions are
introduced.

Two Complete Examples 57

The RATMAC code, the genera FORTRAN, and the
ggram execution results for each two RATMAC

p~ograms are displayed.

RATMAC Error Messages 83

The RATMAC error messages are elaborated.

INDEX 85

vi

RATMAC Primer

oduction

FORTRAN is one of the oldest and most widely available
high level programming languages. Its popularity as a
scientific programming language has meant that its structure
has been rather static with dramatic changes occurring only
after considerable discussion and thought.

On the other hand, software development, in general,
has proceeded rapidly in the last decade and FORTRAN has
tended to look increasingly "old fashioned". In particular,
it lacks many of the control structures associated with
structured programming. A number of attempts have been made
to augment the ANSI standard FORTRAN with appropriate
control and other structures. The resulting FORTRAN
dialects are often called structured or rational FORTRAN.

Structured programming is a style of programming that
has become increasingly popular in the last decade. The
seminal letter entitled "GO TO statement considered harmful"
CACM 11,3 (March 1968) p. 147 by E. W. Dijkstra is
considered by many to have been the catalyst of this
popularity. By December 1974 ACM Computing Surveys printed
a review issue on this subject.

In a narrow sense, structured programming is
programming with a limited well~defined set of flow control
constructs. Each construct has a single entrance and a
sing exit. This latter statement means that the GO
statemen~o beloved of FORTRAN devotees, is not among the
constructs available to the programmer. This has led to the
somewhat simplist definition of structured programming as
"GO TO-less programming".

In a broader sense, structured programming is a
discipline. It encourages the programmer to design in a
top-down sense with care being taken to modularize and
isolate functions. In addition, it promotes well-defined
data structures with carefully thought out inter s
between functions.

The net result in 1 cases is code that is easy to
write initially, easy to modify subsequently, and eas r
someone unfamiliar with the details of the code to
understand. It is hard to give a non-trivial example that
illustrates all of these characteristics.

Page 1

Introduction

The program below, which will be developed later in
complete detail, is meant to simulate a basic calculator
that has a stack and operates with reverse Polish notation.
When presented with a string of operands (real numbers) and
(binary) operators, the program evaluates the expression.
For example, the string:

3.0 (enter) 2.0 + 10. I

would produce the result 0.5, i.e. ((3+2)/10=0.5).

The "program"

get first term in expression

WHILE (not the end of expression)
{
IF (term is an operand)

push the operand on the stack
ELSE IF (term is an operator)

{
IF (too few values on stack)

output message ("Poorly
ELSE

}

{
pop operands from stack
perform operation
yush result onto the stack

ELSE
output message
("Illegal item in expression")

Jet next term in expression

STOP

is:

initialize

start WHILE loop

operand?

operator?

error
formed expression")

OK evaluate

error

The structured programming constructs in the above
program are the "WHILE" loop, the "IF ••• ELSE IF ••• ELSE"
decision structures, and the statement block definition
braces, { ••• }.

The single entrance~single exit concept of structured
programming is illustrated by the "WHILE" loop. It is
entered at a single point; its associated statement block is
executed repeatedly so long as the entrance condition
remains true. It is exited from a single point when the
entrance condition becomes false.

Page 2

In a simi
entered at the
true condition is
then execut If
statement k
executed.

R,O, TMAC P r r

ion, the IF ... ELSE IF ... ELSE in is
and control ses the chain until a

associated statement block is
ition is , then the
th trailing ELSE is

In both constructs, the
well~defined.

ogram flow is ~obvious~ and

The above ~program" illustrates the top-down design
The problems of how the expression is accessed,
stack is constructed, and what an output message

have been pushed down to a lower design level. These
are details which are not important at the top level, they
clutter the design. Of course, they will have to be dealt
with eventually. At that point, however, further details
the program may be pushed down to an even lower level. In
this way a set of ~primitive~ functions can often be
established that can be used over and over in a variety of
programming situations.

Structured FORTRAN dialects, while powerful, have a
serious drawback in that they are not transportable directly
from machine to machine. To overcome this difficulty, the
designer of such a dialect has to supply a processor that
will translate the dialect into standard ANSI FORTRAN. In
the interests of inter-machine tability, such a processor
is written in ANSI FORTRAN. A bootstrap process can then be
used to install the processor on any machine with an ANSI
FORTRAN compiler.

The use a structured FORTRAN language obviously
involves at least one additional step in the ~compi tion"
process. The structured language has to be translated into
ANSI FORTRAN be e it can be compiled into machine

This extra

* *

* * * RATMAC

* SOURCE
* CODE

* RATMAC * ANSI
FORTRAN

*
*
*
*

* -------------->*
* eprocessor *

*
************ *************

that
general,
written in
the code is

step is easily justified. The quality of the
is written in a structured FORTRAN will, in
demonstrably rior to the equivalent code
standard FORTRAN. By superior, it is meant that
easier to write initially, easier to debug,

Page 3

Introduction

easier to maintain and document, and is of comparable
efficiency. In addition, once a structured FORTRAN language
is adopted, the user is not limited to just adding new
control structures. Features such as macros and file
inclusion can also be added.

One of the most successful structured FORTRAN languages
is RATFOR, rational FORTRAN, produced by Brian W. Kernighan
and P. J. Plauger. This success can be traced to a number
of factors. First, it is a well-defined language which is
easy_ to learn. Second, it has a bootstrap which is easy to
implement on any machine with a FORTRAN compiler. Third, it
has associated with it the excellent text, Software Tools,
by Kernighan and Plauger, which contains an nvaluable
collection of well-documented programs written in RATFOR.

The language RATMAC is a direct descendant of RATFOR.
RATMAC has all of the characteristics of RATFOR, but is
augmented by a powerful recursive macro processor which is
extremely useful in generating transportable FORTRAN
programs. A macro is a collection of programming steps
which are associated with a keyword. This keyword uniquely
identifies the macro, and whenever it appears in a RATMAC
program it is replaced by the collection of steps. This can
be a powerful programming tool as will be shown below.

For example, the macro definition:

MACRO: (LOGTST:,ASC&XIN<=$11 !ASC&XIN>=$1)

can be used in the following fashion:

IF(LOGTST: (XTAB(7)))

The string LOGTST: is recognized as a macro name, and
XTAB(7) is recognized as a macro argument. The net result
is LOGTST: is replaced by its definit and $1 is replaced
by the first (and only) argument.

The result is equivalent to coding:

IF(ASC&XIN<=XTAB(7) I !ASC&XIN>=XTAB(7))

Page 4

or the more s rd~

IF(ASC.AND.XIN.LE.XTAB(7) .OR .
. NOT.ASC.AND.XIN.GE.XTAB(7))

Rl\TlV1AC Pr r

It is convenient to consider the RATFOR atures of
RATMAC ately from the macro features. In tr one set

atures can be used without making use of the other
set. In what follows, the enh control structures will
be dealt with be re the macro facilities are considered.

In this primer it is assumed that the reader has made
use a conventional ANSI FORTRAN compiler and is familiar
with the syntax of FORTRAN.

Page 5

uctures

Statement ks

One characterist of structured languages is that they
contain few statement labels and fewer GO TO#s. The absence
of such features to group executable statements means that
an alternative mechanism must be found. In RATMAC this is
accomplished with the use of statement brackets. All
statements within a pair statement brackets are regarded
as a single unit. In RATMAC, the statement brackets are
left and right braces { }. Unfortunately, not all
charac~er sets contain such characters. In such an event,
two digraph equivalents $(and $) are used in of the
braces. The following piece of RATMAC code contains two
explicit statement groups:

{
X=ANS
ANS=O.O # zero answer

1
X=~l7.5*X; AND=-2.0
}
I=I+l # increment counter

The code also contains an implied statement block I=I+l. An
implied statement block is defined as a single statement not
within statement brackets.

In general, angular brackets, < and > will be used to
denote syntactic units within RATMAC. In this primer, the
construct <statement block> will denote a general statement
block.

above RATMAC code looks much like standard FORTRAN
code th minor embellishments. However, some cosmet

atures should be mentioned immediately.

1. RATMAC is free
on an input line.

; statements may anywhere

2. Any line may contain a comment. Any characters
following a hash mark, #, are ignored.

3. Multiple statements may apear on a line; a semicolon
is used to separate them.

Page 6

RATMAC Pr r

i Constructs

RATMAC contains four looping constructs, they are the
DO, FOR, WHILE, and REPEAT loops.

DO

The DO loop in RATMAC is very similar to the familiar
DO loop standard FORTRAN. Its syntax is:

DO <loop control>
<statement block>

For example, a piece RATMAC code to sum N numbers stor
in array A would be:

SUM=O.O # initialize sum
DO J=l,N

SUM=SUM+A(J) # accumulate sum

This code is very reminiscent of the corresponding FORTRAN
code, only the DO statement label is missing. The range
the loop is the statement block; in this case, the single
statement SUM=SUM+A(J).

Cons r now the slightly more complex code for
accumulating the sums necessary to do a least squares
analysis on two vectors, X andY, of length N. The RATMAC
code would be:

Here
delimi

SUMX=O.Ou SUMY=O.O; SUMXY=O.O
SUMX2=0.0; SUMY2=0.0
DO K=l,N

{
SUMX=SUMX+X(K); SUMY=SUMY+Y(K)
SUMX2=SUMX2+X(K)*X(K); SUMY2=SUMY2+Y(K)*Y(K)
SUMXY=SUMXY+X(K)*Y(K)
}

DO statement k encompasses the five statements
by statement brackets.

Page 7

Control Structures

The RATMAC DO has all of the properties (and
deficiencies) of the FORTRAN DO. It will be as general or
as limited as the DO allowed by a given FORTRAN compiler:
For example, to sum backwards we could write the following
code if a negative DO increment is allowed by the compiler:

SUM=O.O
DO J=N,l,-1

SUM=SUM+A(J)

If a negative increment is not allowed, RATMAC will process
the statement as written but a FORTRAN failure will result.

A very important syntactic
RATMAC follows: FORTRAN does
character significant. Thus:

D 0

is equivalent to

DOJ=l,N

restriction
not consider

J=l,N

concerning
the blank

RATMAC is not so permissive. A keyword such as DO must not
contain imbedded blanks and it must end in a non-alphabetic
character; such as a blank. Thus:

DO J 1 N

is allowed while

DOJ=l,N

is not allowed.

Note: The itioning the statement brackets, {},
following a DO loop structure is restr ted. The opening
statement bracket may not appear on the same line as the DO
command. This restr ion is necessary since there is no
general way of detecting the of the <loop control>
unit.

Page 8

RATMAC Pr r

FOR

The FOR loop of RATMAC is a powerful looping construct
th none of the limitat associated with the familiar DO

loop" The syntax of the FOR loop is:

FOR(<initialization>;<condition>;<reinitialization>)
<statement block>

A simple example that simulates the standard DO statement~
first shown above, would be:

SUM=O.O
FOR(I I<=N; I=I+l)

SUM=SUM+A(I)

The loop initialization statement is I=l; the condition
under which the loop is executed is I<=N; and the
reinitialization that is made at the end of each loop is
I=I+l.

While this example apparently simulates the equivalent
DO loop, it does not in one extremely important case;
namely, that when N is zero or negative. In such a case the
DO loop is always executed once, whereas the FOR is not
executed at all. In addition, on exiting such a "counting"
FOR loop, the index I is well-defined.

If the FOR loop were limited to such "counting"
it would not represent a significant improvement over

loops
DO

the
and

loop. The power the FOR loop lies in the fact that
three components: <initialization>, <condition>,
<reinitialization> can be anything that the user
For tance:

J=NSTART
FOR{A=~3.5; A<=27.2; A=A+O.l)

B(J) (J)
J=J+l
}

As another example, consider the problem of finding the
position the first and the last non~blank characters in a
line of 80 Al characters. The following RATMAC, used in

unction with a FORTRAN 66 compiler, the trick:

Page 9

Control Structures

INTEGER BLANK,LINE(80) ,BEGIN,END
DATA BLANK/fl PI # blank Al character
FOR(BEGIN=l; BEGIN<=SO & LINE(BEGIN)==BLANK;

BEGIN=BEGIN+l)
empty statement

FOR (END=BEGIN; END<=8 0 & L,INE (END) 1 =BLANK i
END=END+l)

END=END-1 # point END to non-blank

A number of points are worthy of note. First, the FOR
statement is not complete on a single line. RATMAC detects
this (it is looking for a balancing right parenthesis) and
takes appropriate action. Second, the condition has become
a complicated logical statement; one part to stop at the end
of the line and the other to stop on an appropriate
character. Third, the statement within the statement block
is empty (signified by the semicolon). Fourth, the logical
operator has been replaced by the following more evocative
representations:

& is .AND.
-- is .EQ.
>= is .GE.

> is .GT.
<= is .LE.

< is .LT.
!= is .NE.

1 is .NOT.

Other representations of the rema1n1ng logical operators
will appear shortly. It is not, however, mandatory that
these symbols be used instead of the dotted logical
operators of FORTRAN.

The reader should study the above example carefully.
Note that the boundary cases are taken care quite
naturally, they are the all blank card, BEGIN=81 and END=80
and the card with no blank acters, BEGIN=l and END=80.

The code, however, does have a flaw. It will fail if
the text on the card contains imbedded blanks. The
following code corrects the flaw, is simpler, and will
execute more quickly:

Page 10

RATMAC Primer

FOR(BEGIN=l; BEGIN<=80 & LINE(BEGIN)==BLANKu
BEGIN=BEGIN+l)

FOR(END=80;END>O & LINE(END)==BLANK;
END=END-1)

While this code works correctly, it still contains a flaw
which makes the code non~standard. Can you spot the flaw?
Does BEGIN reaching 81 and END reaching 0 cause any oblem?
What would LINE contain if BEGIN=81 and END=O after
execution?

The problem lies in the logical condition in the FOR
loop. ANSI FORTRAN does not ify the order of evaluat

such an expression. Thus, when BEGIN reaches 81 the test
LINE(8l)==BLANK may be performed fore the test BEGIN<=80.
Since LINE(81) is not defined, this may lead to program

ilures on some machines.

Consider now a more realistic problem. LINE(l) through
LINE(80) contains a set of Al characters and we wish to know
how many "words" the card contains and where each "word"
begins and ends. A "word" is a sequence of non~blank
characters.

INTEGER BLANK,BEGIN(40) ,END(40) ,LINE(80)
INTEGER I,J
DATA BLANK/~ ~/

BEGIN(l)=l # initialize first value
FOR(I=l; BEGIN(I)<=80; I=I+l) #count words

{
FOR(J=BEGIN(I); J<=80 & LINE(J)==BLANK9J=J+l)

null
BEGIN(I)=J # save start of word
FOR(;J<=80 & LINE(J) !=BLANK;J=J+l)

END(I)=J-1
BEGIN(I+l)=J+l

save end of word
initialize next cycle
since LINE(J) is blank
we can skip it
end of I loop
t correct count

Page 11

Control Structures

WHILE Loop

The WHILE loop is related to the FOR loop and each can
be defined in terms of the other. The syntax of the WHILE
loop is:

WHILE(<condition>)
<statement block>

<statement block> is executed repeatedly while <condition>
is true. It is entirely equivalent to the FOR statement:

FOR(;<condition>;)
<statement block>

Consider the following problem ~ a fi , NFILE, contains an
unknown number of card images lowed by an end-of-file.
We want to count and print the images. The following
using the WHILE construct and designed for FORTRAN 77 will
perform the task:

CHARACTER LINE(80)
INTEGER KNT,NFILE,I,NOUT
LOGICAL EOF
DATA KNT/0/,EOF/.FALSE./
DATA NFILE/10/,NOUT/6/
WHILE(!EOF)

{

I initi ize
I sample values
do until EOF flips

READ(NFILE,l,END=99) (LINE(I) ,I=l,80) # read line
1 FORMAT(80Al)
WRITE(NOUT,2) (LINE(I) ,I=l,80} I NOUT is printer
2 FORMAT(lX,80Al)
KNT=KNT+l # count line
GO TO 98 I skip over EOF code
99 EOF=!EOF I flip EOF
WRITE(NOUT,3) NFILE,KNT I write sign
3 FORMAT(~O FILE~ ,I2,ftCONTAINSfl,I5,flLINESfl)
98 CONTINUE
}

STOP
END

I end WHILE loop

f

Some notes: The character I is the rational representation
the logical operator .NOT •• Statement labels are allowed

in RATMAC but are rarely required; FORMAT and the
end-of-file statement are notable exceptions. The numbers
on a FORMAT or label statement may anywhere on a
line. The label must be terminated by a non-alphanumeric
character such as a blank.

Page 12

RATMAC Primer

REPEAT

The final loop construct in RATMAC is the REPEAT loop
which has two variants. The syntax for each is as follows:

and

REPEAT
<statement block>

REPEAT
<statement block>

UNTIL(<condition>)

The former is an "infinite" loop. <statement block> will be
executed indefinitely (in practice such an infinite loop
will be broken in some manner to shown later). The
latter loop is a conditional loop. It differs from the
WHILE loop in that the exiting condition test is made at the
end of the loop. The body of a REPEAT loop is always
executed at least once.

The previous example can be rewritten using the REPEAT
statement.

First, with the "infinite" REPEAT (we do not repeat the
initialization or format statements}:

REPEAT # do ever!

END

{
READ(NFILE,l,END=99) (LINE(I) ,1=1,80)
WRITE(NOUT,2) (LINE(I) ,I=l,80)
KNT=KNT+l
GO TO 98
99 WRITE(NOUT,3) NFILE,KNT
STOP # stop infinite loop
98 CONTINUE
} # end REPEAT loop

Page 13

Control Structures

Using the REPEAT .•. UNTIL code, the program becomes:

REPEAT
{
READ(NFILE,l,END=99) {LINE(I) ,I=l,80)
WRITE(NOUT,2) (LINE(I) ,I=l,80)
KNT=KNT+l
GO TO 98
99 WRITE(NOUT,3) NFILE,KNT

EOF=!EOF # flag end-of-file
98 CONTINUE
}

UNTIL(EOF)
STOP
END

One of the powerful features top-down structured
programming is that control structures have a single
entrance and a single exit. This feature makes it extremely
easy to follow the flow control a program.
Occasionally, however, it is convenient to modify a loop
structure either by exiting the loop other than by the usual
<condition> test or by terminating a particular loop
iteration prematurely.

RATMAC provides two commands to do this9 they are BREAK
and NEXT, respectively. These commands do violence to the
bas principles structured code and should be used
sparingly if at all.

BREAK

The BREAK statement causes an immediate exit from a
loop. The loop may be a FOR; DO, REPEAT, or WHILE
structure. The BREAK exits from a si le structure; to
exit from a series of nested loops, BREAK~s, one
within of each loop, is r

Page 14

The
structure
initia
immediate
command.

RATMAC Primer

NEXT

NEXT statement causes the current cycle of a loop
to be terminated and the next one to be

Simplistic ly, it can be regarded as an
trans r to the of the loop enclosing the

Examples of the use of the BREAK and NEXT commands will
be ferred until the decision control structures have been
introduced.

Page 15

Decision Structures

The basic structure that controls the flow of a RATMAC
program is the construct:

IF (<condition>)
<true block>

ELSE
<fa block>

<condition> is a logical condition that can assume the
values to be true or false. The statement block <true
block>o is executed if the condit is true, otherwise the
statement block <false block> is executed. Many varients of
the basic control structure are available. If there is no
fofalsefl branch to be executed, then the ELSE may be omitted:

IF (<condition>)
<true block>

The statement blocks may themselves contain subordinate
control structures. The following construct is a common
one:

IF (<conditionl>)
<blockl>

ELSE IF (<condition
<block2>

ELSE IF (<condition3>)
<block3>

ELSE
<block>

This basic construct can be regarded as a linear multi~way
branch.

Example: Assume once again that if given a line
alphabetic character the number letters and d its, the
number of blanks, and the number of other characters is to
be counted. Since it is not desired to be constrained to a
particular character code, the existence of an in r
function, ICHAR, will be assumed. This function returns a
unique integer corresponding to an character. The
program to do this task in FORTRAN 66 would

Page 16

define storage

INTEGER LINE(80) #
INTEGER ACHAR,ZCHAR,ZERO,NINE #
INTEGER KALPHA,KBLANK,KOTHER #
INTEGER BLANK
DATA KALPHA/0/,KBLANK/0/,KOTHER/0/
DATA BLANK/~ fl/
DATA ACHAR/~A~/,ZCHAR/PZP/,ZERO/~Ofl/,NINE/~9p/
FOR (I=l; I<=80; I+I+l)

IF (LINE(I)==BLANK) # blank?
KBLANK=KBLANK+l

RATMAC Primer

ELSE IF(ICHAR{LINE(I))>=ICHAR(ACHAR)& #letter or digit?
ICHAR(LINE(I))<=ICHAR(ZCHAR) I # I is logical .OR.
ICHAR(LINE(I))>=ICHAR(ZERO)&
ICHAR(LINE(I))<=ICHAR(NINE))

KALPHA=KALPHA+l
ELSE

KOTHER=KOTHER+l #other

The reader may be concerned at this point about the
scope of the FOR loop. Are some statement block defining
brackets required? The answer is no. From the point of
view RATMAC, the whole IF ... ELSE IF ••. ELSE structure is a
single, albeit extended, statement. A second feature
concerns the test for the letter/d it type. The condition
is an extended one which cannot be comple on a single
input line (it could be shortened and made more efficient by
defining some auxill variables) . RATMAC is programmed to
take care of this and will test for continuation lines. The
mechanism RATMAC uses to teet such cases is a balanced
parenthesis count. Note that this mechanism only applies to
RATMAC statements (i"e. those that contain a RATMAC
keyword) . Ordinary FORTRAN statements will not
automat ly continued. If an ordinary non~RATMAC
statement needs to continued, two mechanisms are
provided. The first is that a line ending in a comma is
automatically conti the mechanism will
discussed when digraphs

Now r modificat the ic
e blank acters is not to be

, in counting is to stop when a #
acter is detec in arr LINE. salient

could be modified as follows:

Page 17

Decision Control Structures

INTEGER SHARP
DATA SHARP/"'#_./
FOR (I= 1 ; I<= 8 0 ; I= I+ 1)

IF(LINE(I)==SHARP) # terminate
BREAK # get out of loop at

ELSE IF (LINE(I)==BLANK) # blank
NEXT # no need to look at

this character further
ELSE IF # alphanumeric

ELSE # other

The BREAK statement is used to prematurely terminate
the FOR loop. The NEXT command is used to skip processing
of an uninteresting character.

The IF ••• ELSE structure can be ambiguous. Consider the
indented code patterns:

and

IF (conditionl)
IF (condition2)

<block2>
ELSE

<block3>

IF (condi tionl)
IF (condition2)

<block2>
ELSE

<block3>

In the first form, the indentation implies that the
ELSE is associated with the first IF, and in the second one
it implies that the ELSE is associatd with the second IF. A
convention adopted in RATMAC is that in such an ambiguous
situation, an ELSE is associated with the st unELSE_.d
IF.

The various sible outcomes such a test structure
are:

condition 1 condition 2 Action
true true block 2
false true no action
true false block 3
false false no action

Page 18

RATMAC Primer

Thus, the second indented structure is the correct one
as interpreted by the RATMAC pre-processor. Of course, the
structure may be made explicit using block delimiter
brackets. For example, if structure one is actually the
desired structure, the following could be written:

IF ~conditionl)

IF (condition2)
<block2>

}
ELSE

<block3>

Most writers of structur programs believe that
statement brackets make the program structure more clear to
the original coder and any subsequent readers. The use of
statement brackets will avoid ambiguity.

Page 19

Mi Features

Character Set

RATMAC is
character set.
letters.

designed to function with the full ASCII
It will accept both upper and lower case

The case of the RATFOR
REPEAT, UNTIL, BREAK, NEXT,
unimportant. The letters can
case, or any mixture of cases.

keywords: DO, FOR, WHILE,
IF, ELSE, and INCLUDE is
be all upper case, all lower

The case of the built-in macro
a more restrictive set of rules.
upper case or all lower case. A
allowed.

names and DEFINE follow
The letters must be all
case mixture is not

User defined DEFINE and macro names must be used
exactly as they are defined if they are to be recognized.

On a given computer which does not accept all of the
ASCII characters it may be necessary to substitute some
the unavailable characters with digraphs. The available
digraphs are described below.

The input to a RATMAC
may appear anywhere on
encouraged to make use of
structural indentation.

ram Format

program is free form. Statements
an input line and users are
space and tab characters

A comment may appear on any line by using the hash, #,
mark. The hash mark and the remainder of the input line are
ignored by RATMAC. The 11 C", comment, line should not be
used in RATMAC . It will be mispositioned by RATMAC
(i.e. it will start in column 7 as do normal FORTRAN
statements) .

Page 20

RATMAC Primer

Blanks are signif ant in RATMAC. Keywords may not
contain imbedded blanks - they will not be recogniz
they must with a non-alphabetic character - a blank is
satis tory this pu This feature may be used to
advantage if a keyword has a meaning to your compiler. For
instance, the word DEFINE is used in some FORTRAN
implementations. Writing word DEFINE as DEF INE will
ensure that RATMAC will not recognize the word but the local
compiler will. RATMAC keywords are reserved; they should
not be used as FORTRAN variables. (It should be noted that
the ANSI FORTRAN standard beyond FORTRAN 77 will probably
make blanks significant).

The details of running a RATMAC program are very
machine-dependent and operating system-dependent. Briefly,
RATMAC is expecting its initial input from the system
standard input unit, taken as unit 5 in the distributed
version. Two output streams are oduced by RATMAC. The
first, appearing on unit 6, is human readable and contains
echoed input, generated FORTRAN output, and any diagnostic
messages. The second stream, appearing on unit 7 in the
distributed RATMAC, cnntains the generated FORTRAN and
can be sent directly to a FORTRAN compiler compilation.
The log unit numb~rs are rating system dependent and
may rent on tern from the standard
distribut tern. It is also rtant to note that the
statements whi are ~sed r to r must

t.o ei r the FORTRAN 66 or 77 ANSI
st rd - whi r is i used on the ine.

followi
tern:

is a

,T OUTRAT,F///256
CH .RATMAC

@ADD,E OUTRAT.

ic 11 runstream 11 on a UNIVAC 1100

0 s
ou t fi

. execute RATMAC

s generated "runstream"
• to tern

. additional commands (if any)

Page 21

Miscellaneous Features

RATMAC Gener FORTRAN

The FORTRAN code gonerated by RATMAC is deliberately
made unattractive. All non~essential blanks are eliminated
from the code. This is done to discourage the user of
RATMAC from maintainino the generated FORTRAN rather than
the original RATMAC Occasionally it becomes necessary
to cross-re renee the RATMAC code with the generated
FORTRAN. RATMAC offers two direct methods such
cross~referencing.

enc by Line Number

RATMAC maintains internally a line count on the
generated FORTRAN code. This line count is printed on the
human readable RATMAC output (assuming the s option is on;
see FLAGOFF: and FLAGON: below) at the beginning of each
line following the input line number and current brace
count. The FORTRAN line count is reset to 1 every time an
END statement is encountPred. Thus, line number diagnostics
from your compiler can be linked directly to the RATMAC
listing (the line number may be in error by one or two since
RATMAC assumes each line output is FORTRAN code when in fact
some may be operating system control lines).

enc by Comments

By judicious use of the C option FLAGON: and
FLAGOFF: (see below) the user is able to insert 1
non-empty RATMAC comments into the generated FORTRAN code.

FORTRAN Generated RATMAC Constructs

The final non~direct method of cross~referencing RATMAC
and its output is by direct ingn the FORTRAN
output. The following summary the that is

Page 22

RATMAC Primer

generated by RATMAC to emulate its control structures. L,
Ll, L2, . etc. are sequential labels generated
internally by RATMAC.

Note that RATMAC may, on occasion, eliminate
unnecessary CONTINUE statements. This is done when RATMAC
can detect the formation of "dead" or unreachable code.

becomes:

DO Statement

DO <limits statement>
<statement block>

DO L <limits statement>
<statement block>

L CONTINUE
Ll CONTINUE

becomes:

FOR Statement

FOR (<initialization>;<condition>;<reinitialization>)
<statement block>

CONTINUE
<initialization>

L IF(.NOT. (<condition>)) GO TO L2
<statement block>

Ll GO TO L
L2 CONTINUE

WHILE Statement

WHILE (<condition>)
<statement block>

Page 23

Miscellaneous Features

becomes:

CONTINUE
L IF(.NOT. (<condition>)) GO TOLl

<statement block>
GO TO L

Ll CONTINUE

becomes:

L

Ll
L2

becomes:

REPEAT Statement

REPEAT
<statement block>

CONTINUE
CONTINUE

<statement block>
GO TO L
CONTINUE

REPEAT ••• UNTIL Statement

REPEAT
<st3tement block>

UNTIL (<condition>)

CONTINUE
L CONTINUE

<statement block>
Ll IF(.NOT. (<condition>)) GO TO L
L2 CONTINUE

NEXT BREAK Statements

The NEXT statement generates a GO TO label where label
is the generated statement number immediately lowing
<statement block> in a DO, FOR, WHILE, or REPEAT

Page 24

RATMAC Primer

The BREAK statement generates a GO TO label where label
is the generate0 statement number immediately after the loop
structure.

The following shows the NEXT and BREAK statements in a
REPEAT .•• UNTIL loop:

becomes:

L

Ll
L2

becomes:

REPEAT
{
<stat.ement block 1>
NEXT
<statement block 2>
BREAK
<statement block 3>
}

UNTIL (<condition>)

CONTINUE
CONTINUE

<statement block 1>
GO TO Ll

<statement block 2>
GO TO L2

<statement block 3>
IF(.NOT. (<condition>)) GO TO L
CONTINUE

IF Statement

IF(<condition>)
<statement block>

IF(.NOT. (<condition>)) GO TO L
<statement block>

L CONTINUE

becomes:

IF ••• ELSE Statement

IF(<condition>)
<true statement block>

ELSE
<false statement block>

IF(.NOT. (<condition>)) GO TO L
<true statement block>

Page 25

Miscellaneous Features

GO TO Ll
L CONTINUE

< se statement block>
Ll CONTINUE

Reserved Characters in RATMAC

RATMAC makes extensive use of special characters. The
meaning of the special characters may be overridden or
avoided by using the digraph equivalents (see below).

The following is a complete list of reserved special
characters:

hash mark: used to start a RATMAC comment

semi~colon: used to separate multiple
statements

colon: used to terminate a macro name

> greater: used in a relational operator > or >=

< less: used in a relational operator < or <=

exclamation point: used as
(.NE.) or

A caret: same meaning as 1

logical negation
! (.NOT.)

\ backslash: used as a logical .OR. operator

bar: same meaning as \

& ampersand: used as a logical .AND. operator

RATMAC

in

" double quote: used to delimit a Hollerith string that
is subject to DEFINE and MACRO expansion

"' single quote: used to delimit a Hol
is not subject to
expansion

rith string
DEFINE or

that
MACRO

square brackets: used to otect a string from MACRO
or DEFINE examination

{ } curly brackets: used to define a statement block

Page 26

RATMAC Primer

Digr s

Character set limitations on many computers demand the
introduction of digraphs. A digraph consists of an "escape"
character fol by digraph identification character.
The s n, $, is RATMAC escape character. The set
of digraph characters available in RATMAC can conveniently
be divided into two distinct groups:

Group 1: Digraphs for characters with a special
meaning in RATMAC. Use of a digraph from this
group override the usual RATMAC interpretation of
the digraph symbol (i.e. > is not translated to
• GT.) .

Diagraph Output Character

$> >

$< <

$:

$$ $

$ ({

$) }

$,

$L

$N used internally

$R

$S used internally

$ [

$]

$# #

Page 27

Miscellaneous Features

Group 2: Digraphs for statement editing

Digraph Meaning

$P Position next output character
in position 1 of output line

$B An essential blank in an output line

$# Treat the next line as a continuation
of the current line

Quoted Strings in RATMAC

RATMAC allows the user to use quoted string constants.
These constants are often used in statements such as:

Because certain FORTRAN 66 dialects use different
punctuation a "Q" option is provided to automatically
process quoted strings. If the Q option is switched off
using the FLAGOFF: macro, then quoted strings are converted
automatically to the usual Hollerith form nH •...

The quotes used to delimit a string constant may be
ei a single quote or a double quote. On output the
double quoted form will be converted to the single quote
form. The single and double quote rm dif r in r
very significant way. The text string with sing quotes is
never scanned for macro or defines while a text string with
double quotes is scanned macro and defines.

For example:

macro: {MADXIM:,lOO)

#Maximum dimension is MAXDIM:#

is output intact, whereas

"Maximum dimension is MAXDIM:"

is output as

flMaximum dimension is lOOfl

Page 28

RA'I'lViAC P:r r

A stri constant may not be continued onto a
s 1 ne. If a matching quote is not found on the
initial line, RATMAC supplies one automatically.

This ends the description of the elementary command
syntax of RATMAC. The examples at. the end of the imer
contain some actual subroutines written in RATMAC. The next
section of the primer is concerned with the string
man lation features of RATMAC, DEFINE, and MACRO.

Page 29

Fi Inclus

It is quite common in large programs for certain blocks
of code to appear in a number of places. COMMON blocks are
an obvious example. RATMAC provides a mechanism, the
INCLUDE command, for luding such blocks of code with a
single command. This shortens a program and also makes its
maintenance easier. The mechanism for implementing the
INCLUDE command is very machine-dependent. The
machine~independent version of RATMAC implements the command
with the following svntax:

INCLUDE <logical unit number of file>

When an INCLUDE command is met, the RATMAC input unit is
switched from its current unit to the unit ified by
<logical unit number of file>. Subsequent input is taken
from this file until an end-o file is detected, input then
reverts to the original input unit at the next line. A file
is rewound after it has been read so that it may be
INCLUDE~d many times.

INCLUDE~d files may include the INCLUDE command up to a
depth of five. Recursive use of this ature is not
allowed.

It is the user#s responsibility to assure that the
logical units specified are available to RATMAC and that
they contain the appropriate information.

Page 30

RATMAC Primer

The user of RATMAC is encouraged to make extensive use
of the symbol constant feature. Two such features are
available~ DEFINE and MACRO:. DEFINE is simplistic and
less efficient to use than MACRO:. It is included mainly to
make RATMAC and RATFOR completely compatible. users are
encouraged to make use of the MACRO: facility described
later. It will accomplish exactly the same function as the
DEFINE and more, but, at a lower preprocessing overhead.

The syntax of the DEFINE command is:

DEFINE(<name>,<arbitrary string>)

<name> is an identif
letters and digits.
arbitrary characters.

r (of up to 132 characters) containing
<arbitrary string> is a string of
For example:

DEFINE(EOF,~l)

DEFINE(BITSPERWORD,36)
DEFINE(VERSION,PDP)
DEFINE(MAXDIM,2000)
DEFINE(BLANK,fl fl)

The aim in all cases is to replace an obscure or machine
dependent string by a more evocative one. In addition, the
value of a string may be localized in a single place where
it is easily changed. For example, if at some time in the
future the end-of~file flag had to be changed to 128, then
the following change in the DEFINE command would imply a
global change throughout the program:

DEFINE(EOF,l28)

The change would be
program through the
recompilation.

accomplished simply by rerunning the
RATMAC pre-processor, followed by

A DEFINE command may refer to another defined string.
This is often a useful feature, but it has a number of
pitfalls including the introduction of an unintended
recursion. Consider the following two DEFINE commands
followed by the invocat of "one":

Page 31

Symbolic Constants

DEFINE(one, the number before two)
DEFINE(two, the number after one)

A token is a string of letters/digits or a speci character
such as a blank. The token "one" is recognized as a
"defined name" and its definition is substituted. The
definition string is then subjected to analysis and the
token "two" is found. This in turn is recognized as a
"defined name" and the definition fetched and scanned. The
name "one" is found and the process repeats forever.

Another difficulty arises when an attempt is made to
try to redefine a name in a DEFINE command. For example, if
ARGFLAG is defined as follows:

DEFINE(ARGFLAG,$)

and subsequently an attempt is made to redefine it with the
DEFINE:

DEFINE(ARGFLAG,!)

then the syntax of the DEFINE command is violated. In the
second DEFINE, ARGFLAG is recognized as a 11 defined token"
and replaced by its definition, $. Thus, the net effect is
to construct a DEFINE command:

DEFINE($,!)

which is illegal since $ is not an alphanumeric token.

To overcome this problem, RATMAC uses the character
pair [and] as string protection brackets. A string
characters placed in square brackets is not scanned
defined tokens (nor macro tokens, see below). However, the
outer level of square brackets is stripped during the scan.

Consider the DEFINE command:

DEFINE(title, The Wizard of Id)

Page 32

RATMAC Pr r

Then the string:

The [title] is title

would result in:

The title is The Wizard of Id

Obviously we can use the string protection brackets when we
define a name. Thus:

DEFINE ([ARGFLAG] , !)

will oduce a redefinition of ARGFLAG, changing it from $
to ! without producing an error message.

33

Macros

The MACRO: feature provided in RATMAC has all of the
atures of the DEFINE command plus many more. The basic

syntax of the MACRO: definition command is:

MACRO: (<macro name>,<macro definition>)

where <macro name> is an alphanumeric token which is
terminated by a colon and <macro definition> is an arbitrary
string of characters. An underline character is considered
to be an alphanumeric character if it appears in a macro
name. The following are examples of macros:

MACRO: (EOF:,-1)
MACRO: (CHARS_PER_WORD:,4)

A macro is invoked by using its name at some appropriate
point in a RATMAC program. The macro name is then replaced
by the definition string in the FORTRAN output

So far, the MACRO command and the DEFINE command have
identical properties. The MACRO command in practice is more
efficient since macro names are easily recognized and
non-macro names need not be looked for in RATMACfls internal
macro tables. Once a DEFINE command is processed by RATMAC,
the pre-processor is forced to look up ever variable name
in its internal tables. This is a time consuming process in
a long program with many variables.

The threefold power of the macro facility is:

1. Arguments a macro name may have
arguments.

associated

2. Built-in macros - RATMAC has several very useful
built-in macros.

3. Recursion - a macro may invoke
including itself.

Page 34

other macros

Macro Arguments

The arguments of a MACRO are
combination $n where n is an integer
Consider the MACRO definition:

RATMAC Primer

represented
between 1

by the
and 9.

MACRO: (READLINE:,READ($1,$2,END=$4)$3)

The invocation in a RATMAC program:

READLINE: (5,10,BUFFER,999)

will producd the FORTRAN code:

READ(5,10,END=999)BUFFER

The MACRO definition:

MACRO: (MAX: ,MAXO ($1,$2))

followed by:

MAX : (I +J , J ~ K + 1)

produces:

MAXO (I+J ,J-K+l)

Page 35

Built~in ros

RATMAC comes with a number of built~in macros which
have proven very useful in the preparation of programs.
user defined macros are such an important ature of RATMAC
that another section of the primer is devoted to their
preparation and use.

Defining Deleting

MACRO:, XMACRO:, and SAVE:

MACRO: has been discussed in its simplest form
previously. XMACRO: is used to delete a macro from the
internal tables within the RATMAC pre~processor. The syntax
of XMACRO: is:

XMACRO: ([<macro name>])

The string protection brackets are not strictly part of
the syntax, but in most cases are necessary to prevent the
macro <macro name> from being evaluated (i.e. being replaced
by its definition).

The macro SAVE: is used to save all macros defined
be e and including the one named as an argument. All
macros defined after the macro named as an argument are

leted. The syntax of SAVE: is as lows:

SAVE: ([<macro name>])

This macro is useful in returni a set RATMAC to
some "base" level after temporary macros have been defined.
For example, consider the following:

MACRO: (..•....)
MACRO: (LAST_PERMANENT_MACRO:,) #

.
additional code and temporary macros

SAVE: ([LAST_PERMANENT_MACRO:]) #delete all temporary macros

Page 36

RATMAC Primer

such constructs are useful in co-operative programming
efforts since temporary macros can be made "local" to a
piece of code with little effort on the user~s part.

Arithmet

INCR:

Another pair of macros, INCR: and ARITH:, are used to
provide a simple in r arithmetic facility. The macro
INCR: has a single numeric argument. On invocation the
macro is replaced by the a ument incremented by one.
For example, suppose we have the following sequence:

MACRO: (MAXCARD:,80) #size of input line
INTEGER LINE(INCR: (MAXCARD:))

The second line of RATMAC produces:

INTEGER LINE(8l)

A non-numeric argument is taken to be zero.

ARITH:

The ARITH:
ility, it

multiplication,
operands. The

macro provides a more sophisticated
subtraction, can perform addition,

division, and tiat on in r
of ARITH: is:

ARITH: (and>,<operator>,<operand>)

where <operator> is +, -, *, ;, or **
suppose we have two macros:

Page 37

As an example,

Built~in Macros

then

MACRO: (BITSPERWORD:,36)
MACRO: (BITSPERCHAR:,9)

UNIVAC word
ASCII code

MACRO: (CHARSPERWORD:,ARITH: (BITSPERWORD:,/,BITSPERCHAR:))

followed by the invocation:

INTEGER UNPACK(CHARSPERWORD:)

would produce:

INTEGER UNPACK(4)

Character ing Man ion

LENSTR:

RATMAC provides five string manipulation macros. The
simplest, LENSTR: (<string>), returns the length, in
characters, of the string, <string>. Thus:

LENSTR:(abcdefghijklmnopqrstuvwxyz)

has a replacement value of 26.

SUBSTR:

The macro SUBSTR: is a substring selection macro. Its
syntax is:

Page 38

RATMAC Primer

SUBSTR: (<string>,<start>,<length>)

where <string> is the string to be selected and <start> is
the starting character position in the string0 The
character positions are numbered 1,2, ••• from left to
right. <length> specifies the number of characters to be
extracted. For example:

SUBSTR: (1234567890,3,5)

is the string 34567.

SUBSTR: is quite permissive in its arguments. If
<length> is omitted (together with the preceding comma) or
if it is too big, the rest of the string is used. If
<start> is out of range in the string, then the null string
is returned.

IFELSE:

The macro IFELSE: is a string selector macro; it has
four arguments. Its syntax is:

IFELSE: (<stringA>,<stringB>,<stringC>,<stringD>)

If <stringA> and <stringB> are identical, character for
character, then <stringC> is substituted for the macro
invocation. If they are not identical, then <stringD> is
substituted.

In the lowing example, a macro, CHPW:, is set to 1
or 4 depending on the finition a macro, PACKING:

MACRO: (PACKING:,YES) #turn on packing
MACRO: (CHPW:,IFELSE: (PACKING:,YES,4,1)) #select

Page 39

Built~in Macros

CHR: and ORD:

The built~in macros, CHR: and ORD:, have the following
syntax:

CHR: (<decimal ASCII code value>)

ORD: (<ASCII character>)

The two macros are used for conversion between the graphic
representation of an ASCII character and its decimal numeric
equivalent. For example:

CHR: (32) is replaced by a blank

ORD: (a) is replaced by 97

Preprocessor Control

FLAGON: and FLAGOFF:

are FLAGON: and
a single upper

Two related macros
argument for both macros is
These two macros are used
of RATMAC. The letters and
FLAGON: (<letter>) are:

FLAGOFF: • The
case letter.

operation
used in

to control the mode
their meanings when

A Do not pass generated FORTRAN directly to the
compiler (this option may not be implemented on all
machines) •

C Pass non-empty RATMAC comments to the output FORTRAN
as standard "C" comments.

D Print out a line~by~line description of each macro
as it is evaluated.

L List the generated FORTRAN output on the standard
output unit.

Page 40

RATMAC Pr r

M List 1 of the currently defined macros (with their
definitions) at run termination.

Q Do not translate quoted strings ~
the Hollerith form, nH •...

or " " to

R Pass all code through the RATFOR section of RATMAC
unchanged.

S List the input lines on the standard output unit.
Each line is preceded by a line number, a statement
block bracket count, and a generated FORTRAN line
number.

Initially, flags Q, R, and S are turned on. The R flag
is useful for taking advantage of the macro ature of
RATMAC without adopting the RATFOR control structures. With
the R option turned off, lines of FORTRAN are passed
directly to the output file after the expansion of any
macros in the line. This is also useful for passing FORTRAN
statements, unchanged, through the RATMAC preprocessor.

Page 41

An INCLUDE Mechanism

The INCLUDE mechanism may or may not be implementable
on your machine in a convenient way. This section deals
with achieving the same effect using the MACRO: command.
Consider the following MACRO: command:

MACRO: (SYSCOM:,COMMON/SYSBLK/A(MAX) ,B(MAXPl) #
COMPLEX A #
DOUBLE PRECISION B) #

The COMMON block can be inserted anywhere in the FORTRAN
code by invoking the name SYSCOM: in the RATMAC code.

The only limitation imposed on this use of MACRO: is
the RATMAC-imposed limit on the length of the defined string
(250 characters in the distributed version). However, this
limitation is easily avoided by the use of string protection
brackets. Consider the following three MACRO: commands:

MACRO: (SYSCOMPARTl:,COMMON/SYSBLK/A(MAX) ,B(MAXPl)) #
MACRO: (SYSCOMPART2:,COMPLEX A#
DOUBLE PRECISION B) #
MACRO: (SYSCOM:, [SYSCOMPARTl: SYSCOMPART2:]) #

Invocation of SYSCOM: produces exactly he same results as
before, but the definitions are split among three MACRO:fts
making available 750 (3 X 250) characters of definition.
The interested reader should implement the above MACRO:#s
with and without the string protection brackets in the last
MACRO:. With no string protection brackets, an error
message results. In this example the # which indicates the
end of the line is important since all the blanks at the
right hand end of the lines are stored. Leaving the # off
will cause the 750 characters available to be used up very
quickly.

Page 42

RATMAC Pr r

Macros Wi in Macros

The Non~recursive Case

Macros may contain other macros as part of their
definition. A question that immediately arises is: At what
stage is a macro evaluated? Consider the following sequence

macros and an invocation:

MACRO: (Sl: ,ABCDE)
MACRO: (S2:,Sl:FGHIJ)
MACRO: ([Sl:] , VWXYZ)

S2:

This produces the string ABCDEFGHIJ. The
associated with the definition of S2:
immediately and the subsequent redefinition of

macro Sl:
is evaluated
Sl: has no

feet on S2:

Compare this with the following sequence:

MACRO: (Sl:. ,ABCDE)
MACRO: (S2:, [Sl:]FGHIJ)
MACRO: ([Sl:] ,VWXYZ)

followed by the invocation S2:. The result now is the
string VWXYZFGHIJ. When S2: is invoked, the definition
string found is Sl:FGHIJ (remember a layer of string
protection brackets is stripped each time a protected string
is examined). The token Sl: is recognized as a macro and
the current definition (i.e. VWXYZ) is substituted.

String protection brackets are useful
circumstances. They can be used to conserve space
macro tables, stave off evaluation of a macro, and
evaluation of a macro whose arguments are defined
arguments on an outer macro.

in many
in the
prevent
by the

For example, in the first definition of S2: above, the
definition string is 10 characters long, ABCDEFGHIJ. In the
second definition of S2:, the definition string is only 8
characters long, Sl:FGHIJ.

Page 43

Macros Within Macros

Consider the following macros whi can be used to
change a dimension on an array depending on whether PACKING:
is defined as YES or otherwise.

MACRO: (PACKING:,YES) #turn on packing
MACRO: (CHPW:,IFELSE: (PACKING:,YES,4,1))
MACRO: (DIM:,ARITH: (ARITH: (ARITH: ($1,~,1) ,/,CHPW:) ,+,1))

The RATMAC statement:

INTEGER LINE(DIM: (80))

might be expec to produce:

INTEGER LINE(20)

In fact, it produces the unwanted:

INTEGER LINE(l)

The reason for this lies in the macro invocation:

AR I TH : ($1 , - , 1)

The first argument is not defined (it will be when DIM: is
invoked), so zero is used.

The problem is easily corrected by using string
protection brackets:

MACRO: (DIM: F [ARITH: (ARITH: (ARITH: ($1,-,1) ,/,CHPW:) ,+,1)])

In this case, the arithmetic will not be performed until
DIM: is invoked; at which time $1 is well~defined so that
INTEGER LINE(20) will be produced.

Page 44

RATMAC Primer

The Recursive Case

Macros may invoke themselves recursively. In
case, string protection brackets are mandatory.
example, consider the following macro to generate
factorial of a number. The macro makes use of
relationship:

factorial(n) = n*factorial(n~l)

and

factorial(O) = 1

this
For
the
the

Recursion is terminated when factorial(O) is reached. In a
macro, the recursion is terminated by the IFELSE: macro.
The following definitions perform the evaluation:

MACRO: (M:,[ARITH:($1,*,$2)]) #define some auxilliary
MACRO: (D:, [ARITH: ($1,-,1)]) # macros
MACRO: (FACTORIAL:, [IFELSE: ($1,0,1, [M: ($l,FACTORIAL: (D: ($1)))])])

The outer set of string protection brackets is required
to prevent the evaluation of the IFELSE: when FACTORIAL: is
defined. The inner set is required to prevent the
evaluation of M: {$l,FACTORIAL: (D: ($1))) when the IFELSE: is
being evaluated at invocation time.

Macros calling other macros tend to be complex. Errors
most equently encountered involve unbalanced brackets and
parentheses. Debugging of macros may be most easily
undertaken using the D option with the FLAGON: macro. This
option prints out the macro evaluation stack as each closing
parenthesis on a macro invocation is detected. The printout
gives the macro definition, followed by the name, followed
by the macro arguments, one to a line.

The form of macro arguments is quite permissive.
However, a number of problems can arise if the argument
contains certain special characters. An argument containing
a comma, an unbalanced parenthesis, or a square bracket,
interferes with the macro scanning mechanism.

Page 45

Macros Within Macros

A comma
distinguished
the former in
macro call:

used as an argument character can be
from an argument delimiting comma by placing

string protection brackets. For example, the

ZAP: (A [,] B)

has a single argument A,B. An alternative solution would be
to use the appropriate d raph:

ZAP:(A$,B)

Note that only commas not in balanced parentheses need be
treated in this fashion. For example:

ZAP : (A (I , J))

has a single argument: A(I,J)

Unbalanced parentheses can use the digraph
mechanism. For example, to supply a left parenthesis as
an argument, we could write:

ZAP: ($L)

Page 46

RATMAC Primer

Some Macros

This section scusses a series of macros that can be
used to isolate the machine-dependence of a given program.

The macro IFDEF: is a three argument macro. The first
argument is a macro name (less the terminating colon). If
the macro name is currently defined, then the macro is
replaced by argument two1 otherwise, by argument three.

For example, the invocation:

IFDEF: (MACRO,YES,NO)

results in YES (assuming the system macro, MACRO: has not
been deleted) .

The macro IFDEF: works by comparing the macro name and
its definition using IFELSE:. If the macro is defined, the
name and definition will be different. If the macro is not
defined, no substitution will occur, and the name and its
pdefinition~ will be the same. The macro definition is:

MACRO: (IFDEF:, [IFELSE: ([$1:] ,$1: ,$3,$2)])

The next example concerns the generation a sequence
of numbers given a "seed" number. Such a macro is useful
for generating unique statement labels.

Assume that a macro, SEED:, is available which will
supply a seed integer to start a sequence:

MACRO: (SEED: ,2000)

The macro MAKENUM: is now defined in the following way. A
new macro SEED: is defined with a value which is the current
value SEED: reduced by the value the argument. This
new macro SEED: is the invoked to produce the number. The
definition is:

MACRO: (MAKENUM:, [MACRO: ([SEED:] ,ARITH: (SEED:,-,$l))SEED:])

Page 47

Some Examples of Macros

The invocation:

MAKENUM: (2)

produces:

1998

A subsequent invocation:

MAKENUM: (5)

produces:

1993

We can now use MAKENUM: and SEED: to produce a macro
that will generate an error message through a macro
invocation:

MESSAGE: (LUN,THIS IS A MESSAGE ON LOGICAL UNIT LUN)

The first argument will be the logical unit, the second is
the message string.

The definition macro MESSAGE: is:

MACRO: (MESSAGE:, [WRITE($l,MAKENUM: (1))
SEED: FORMAT(lX,vu$2 11

)])

Assuming a value SEED: equal to 2000 when MESSAGE: is
invoked, the following code will be produced:

WRITE(LUN,l999)
1999 FORMAT(lX,~THIS IS A MESSAGE ON LOGICAL UNIT LUN~)

Macro definitions can be cascaded easily. For example,
suppose a macro FATALMESSAGE: is needed. It is to have the
same characteristics as MESSAGE: that it is
terminal. A sui table definition of FA'rALMESSAGE: would be:

MACRO: (FATALMESSAGE:, [$(MESSAGE: ($1,$2) 1CALL EXIT$)])

Page 48

RATMAC Primer

The invocat

FATALMESSAGE: (lO,FATAL ERROR ~ STACK OVERFLOW)

oduces:

$ (
WRITE(l0,1998)

1998 FORMAT(lX,~FATAL ERROR~ STACK OVERFLOW~)
CALL EXIT
$)

The reader should note carefully the inclusion of the
statement block brackets in the definition string. A macro
invocation may occur as part of a control structure and it
is then important that all of the code lines generated by
the macro be included in the scope of the control
structure.

Another use of a macro is in extending the commands of
the basic language. For example, a number of rational
FORTRAN dialects have a feature called procedures. A

ocedure is a block of that is internal to a
subroutine and can executed r atedly from various
points within the subroutine. There s no mechanism
passing arguments to a procedure. Three macros called
EXECUTE:, STARTPROC:, and ENDPROC: will be developed which
will simulate the built~in procedure mechanism available in

structured FORTRAN languages.

The basic mechanism to be used is the following: The
EXECUTE: macro will generate an ASSIGN label to variable
statement, an unconditional jump to the procedure and a
labelled CONTINUE the return from the procedure.
STARTPROC: will generate a labelled CONTINUE as the entry

int of ocedure. ENDPROC: will generate a GO TO
ed on the ASSIGNfld jump variable. course, it is

desirable to have EXECUTE: statements whi can be nested.

The pr ing statements
unique labels are rated and

ls. Before dealing with
procedures in generating easily
programs will be demonstra

gloss over problems of how
how to keep track of these

such problems, the use of
understood and maintained

is simulation a tor
that operates usi
that an array

reverse Polish notation. It is assumed
i r es which define the expression

Page 49

Some Examples Macros

to be evaluated
required. The
code:

is available.
following table

Eight integer codes are
gives the meaning of each

MACRO: CODE MEANING

OP: 0 operand is in co,rresponding
position of array REANUM

SUB: l binary subtraction

ADD: 2 binary addition

MUL: 3 binary multiplication

DIV: 4 binary division

EXP: 5 exponentiation

ASG: 6 assignment - display result

EOL: 7 end of expression

The basic structure of the program is very easy to write.
It is:

WHILE(NOT END OF EXPRESSION)
$ (
IF(OPERAND)

PUSH ON STACK
ELSE IF (OPERATOR)

$ (
POP OPERANDS FROM STACK
DO OPERATION
PUSH RESULT ON STACK
$)

ELSE
ERROR

GET NEXT PROGRAM UNIT
$)

It is trivial to translate the program into RATMAC assuming
that the EXECUTE: macro is available. The translated
program is:

Page 50

WHILE(PRGSTR(PTR) !=EOL:)
$ (

RATMAC Pr r

IF(PRGSTR(PTR}==OP:) # operand
$ (
EXECUTE: (PUSHONSTACK)
$)

ELSE IF(PRGSTR(PTR)>=SUB:&PRGSTR(PTR)<=EXP:)
$ (
EXECUTE: (POPOFFSTACK)
OP2=0P
EXECUTE: (POPOFFSTACK)
OPl=OP
EXECUTE: (DOOPER)
EXECUTE: (PUSHONSTACK)
$)

ELSE IF(PRGSTR(PTR)==ASG:)
$ (
WRITE(STDOUT:,l)STACK(NSTK)
1 FORMAT(fl CURRENT VALUEfl ,Gl2.6)
$)

ELSE
$ (
MESSAGE: (STDOUT:,ILLEGAL ITEM IN STRING)
$)

PTR=PTR+l
$)

The overall structure of the program is relatively clear
since it follows the general outline closely. It is obvious
that the program is in the array PRGSTR and the current
"operation" is pointed to by an index PTR. The following
assumption in the operator test has been made: a single
range test will identify an operator. This obviously limits
the integer values that can be assigned to represent
operators.

With the basic "top" level of the program developed,
the development of the three procedures required to
implement the nitty~gritty operations can now proceed. Some
conventions must be adopted. STACK is assumed to be a real
array and NSTK is assumed to be an integer variable. STACK
will be used to hold intermediate results and NSTK will
record the position of the last entry in the stack.
Initially NSTK is zero. The three procedures can be written
as follows:

First, "PUSHONSTACK"

STARTPROC: (PUSHONSTACK)
NSTK=NSTK+l # increment stack pointer
STACK(NSTK)=REANUM{PTR) #get operand

ENDPROC: (PUSHONSTACK)

Page 51

Some Examples of Macros

Second, 11 POPOFF STACK 11

STARTPROC: (POPOFFSTACK)
IF(NSTK>O) # enough operands?

$ (
OP=STACK(NSTK)
NSTK=NSTK~l

$)
ELSE # no - error off with message

$ (
FATALMESSAGE: (STDOUT:,ILL-FORMED EXPRESSION)
$)

ENDPROC: (POPOFFSTACK)

Third, nDOOPER"

STARTPROC: (DOOPER)
IF(PRGSTR(PTR)=~SUB:)

REANUM(PTR)=0Pl-OP2
ELSE IF(PRGSTR(PTR)==ADD:)

REANUM(PTR)=0Pl+OP2
ELSE IF(PRGSTR(PTR)==MUL:)

REANUM(PTR)=0Pl*OP2
ELSE IF(PRGSTR(PTR)==DIV:)

$ (
IF(OP2==0.0)

$ (
FATALMESSAGE:STDOUT:,DIVISION BY ZERO)
$)

ELSE
REANUM(PTR)=OP1/0P2

$)
ELSE IF(PRGSTR(PTR)==EXP:)

$ (
IF(OPl<=O.O)

$ (
FATALMESSAGE: (STDOUT:,EXPONENTIATION ERR)
$)

ELSE
REANUM(PTR)=0Pl**OP2

$)
ELSE # this cannot happen

$ (
FATALMESSAGE: (STDOUT:,SOMETHING WRONG)
$)

ENDPROC: (DOOPER)

This completes the program. The pr e mechanism has
allowed a fairly complex piece code to be broken up into
four blocks, each one assigned a specific task. Of course,
this could be done by using appropriately fined
subroutines. But, the procedures mechanism avoids the
overhead of a subroutine call and alizes all of the code
in one routine.

Page 52

RATMAC Primer

A final point remains; the placement of the procedure
Any convenient unreachable rt of the code is

acceptable. The most obvious place in a routine is between
the RETURN or STOP statement and the END statement. The
procedure must be defined ter the first EXECUTE:
invocation. The order in which the procedures are placed is
also important. The ENDPROC: macro deletes macros
associated with the procedure so it cannot be referenced by
a subsequent EXECUTE:. Thus if a procedure executes another
procedure, the "calling" procedure must be defined before
the "called" procedure.

Having written the program, the
unwritten pieces are the macros requir
mechanism. The definition of EXECUTE: is:

only remaining
to implement the

MACRO: (EXECUTE:, [IFDEF: ($1,, [[MACRO: ([$1:] ,MAKENUM: (l))]]) $#
ASSIGN MAKENUM: (1: TO J $1:~ GOTO $1:; SEED: CONTINUE])

Although this macro looks formidable, it is relatively
simple in ration. The first line checks to see whether a
macro corresponding to the procedure name already exists.
If the macro exists, nothing happens. If if does not, a
label is generated using MAKENUM: and is saved by defining a
macro based on the procedure name.

The second line produces a second statement label and
generates an ASSIGNfld GO TO, followed by an unconditional
transfer, followed by a labelled CONTINUE. Assuming a SEED:
value of 2000, the invocation:

EXECUTE: (PROC)

would generate:

ASSIGN 1998 TO Jl999
GOTO 1999

98 CONTINUE

and would define a macro PROC: with a definition 1999. Note
that it has been assumed that the user is not currently
using a variable Jl999 in the program. By defining the
prefix letter through a macro, it would be possible to
eliminate such a possible conflict.

Page 53

Some Examples of Macros

The STARTPROC: and ENDPROC: macros are simple to
implement. They are:

MACRO: (STARTPROC:,$1: CONTINUE)
MACRO: (ENDPROC: ,GOTO J $1: [XMACRO: ([$1:])))

The invocation:

STARTPROC: (PROC)

generates:

1999 CONTINUE

while the invocation:

ENDPROC: (PROC)

produces:

GOTO Jl999

and removes the macro PROC: from the macro tables.

Another use macros is in the debugging phase of
program development. It is quite common practice to insert
diagnostic print statements in a program for debugging
purposes. When the debugging phase is over, the print
statements are removed. Such removal can be time consuming
and quite often the print statements need to be reinserted
at some later time.

The next example shows how a macro, DEBUG:, can be used
to insert diagnostic printouts and subsequently remove them.

Macro DEBUG: may have a maximum of nine arguments (the
maximum allowed by the macro processor) . The first argument
will be an identification string, the second argument will
be a format statement, the remaining seven arguments will be
program variables to be printed.

Page 54

For example:

DEBUG: (LOOP ONE,2Fl2.2,AVAR,SUM)

will generate:

WRITE(STDOUT:,l999) AVAR,SUM
1999 FORMAT(lX,~LOOP ONEP ,2Fl2.2)

RATMAC Primer

where STDOUT: is the s rd output unit number. The macro
DEBUG: is quite straight rward. The only problem is
deciding how many arguments are present and distinguishing
the first variable name {which will be inserted without a
leading comma) from subsequent variable names (wh h will be
inserted with a i comma). macro MAKENUM: is used
to rate a unique statement label r the format.

The definition of DEBUG: is:

MACRO: (DEBUG: , [MAKENUM: (1) FORMAT (lX, 11 $1 uo, $ 2)
WRITE(STDOUT:,SEED:)ARG: ($3)CARG: ($4)CARG: ($5)CARG: ($6)$#
CARG : ($ 7) CARG : ($ 8) CARG : ($ 9)])

The two auxilliary macros ARG: and CARG: are very similar.
They test the argument passed to them the null value.
If the value is null, then nothing is generated; if it is
not, then an ument (possibly preceded by a comma) is
generated.

The definitions of ARG: and CARG: are:

MACRO: (ARG:, [IFELSE: ($1,, ,$1)])
MACRO: (CARG: , [I FELSE: ($1, , , $, $1)])

Note that the digraph $, has been used to stop IFELSE: from
becoming ed in counting arguments. A blank has also
been generated r each variable name. This is to stop
the variable name and the macro name from being concatenated
resulting in non~recognition of the macro name.

Page 55

Some Examples Macros

After the debugging phase is over, the debug code can
be quite simply elimina by replacing DEBUG: by a new
DEBUG: macro with the following definition:

MACRO: (DEBUG:,) #null DEBUG:

The debug statements are never physically removed from the
program and can be reactivated by returning to the full
debug definition, re-preprocessing the needed subroutines,
and recompiling the program.

Page 56

RA.TMAC Primer

Two

This primer is concluded with two complete examples.
The first is an interpolation sub~program, INTERP. INTERP
can be used to interpolate in a sorted table of real
numbers. Two methods, a binary search and a sequential
search, are provided to locate suitable table values for the
interpolation routine. A listing of the RATMAC code, the
generated code and a copy the test output is shown. The
example shows how "job-control" lines may be interspersed in
the code. In addition, a simple use of "internal
procedures" is shown.

The second example is a simple line-oriented file
editor with the ability to insert, replace, and delete lines
from a fi . The line editor is included to illustrate the
use of "top-down" design, and "internal procedures" to aid
in the design procedure.

Example I: A RATMAC
Inte

MACRO: (CTRLSTMT:, [$P@FOR,IS $1/$2]) #UNIVAC JCL LINE
MACRO: (SEED:, 2000)
MACRO: (MAKENUM:, [MACRO: ([SEED:] ,ARITH: (SEED:,-,$l))SEED:])
MACRO: (IFDEF:, [IFELSE: ([$1:] ,$1: ,$3,$2)])
MACRO: (EXECUTE:, [IFDEF: ($1,, [[MA.CRO: ([$1:] ,MAKENUM: (1))]]) $#
ASSIGN MAKENUM: (1) TO J $l:v GOTO $l:1 SEED: CONTINUE])
MACRO: (STA.RTPROC:,$1: CONTINUE)
MACRO:(ENDPROC:,GO TO J $1: [XMA.CR0:([$1:])])
MA.CRO: (DEBUG: r [MAKENUM: (1) FORMAT (1X, 11 $1 n, $ 2)
WRITE(STDOUT:vSEED:)A.RG: ($3)CARG: ($4)CARG: ($5)CARG: ($6)$#
CARG : ($ 7) CARG : ($ 8) CARG : ($ 9)])
MACRO: (STDOUT:,6) #PRINTER UNIT
MACRO: (A.RG: , [IFELSE: ($ (1, , , $1)])
MACRO: (CARG:, [IFELSE: ($1v, ,$,$1)])

: (
SUBROUTINE INTERP(XIN,YOUT,XTAB,YTAB,MAXTAB,NSRCH,BSRCH,NORDER)
REAL XTAB(MAXTAB) ,YTAB(MAXTAB)
LOGICAL BSRCH
I
THIS ROUTINE PERFORMS A. NORDER (ASSUMED EVEN) POINT
INTERPOLATION IN TABLES XTAB/YTAB OF LENGTH MAXTA.B

I XIN SPECIFIES THE POINT TO BE INTERPOLATED; YOUT IS THE

Page 57

Example I

INTERPOLATED VALUE
** NOTE ** XIN MUST LIE WITHIN THE TABLE RANGE
THE ROUTINE ASSUMES THAT XTAB IS SORTED IN EITHER
ASCENDING OR DESCENDING ORDER

IF BSRCH IS .TRUE. A BINARY SEARCH IS USED TO LOCATE
APPROPRIATE VALUES FROM THE TABLES

IF BSRCH IS .FALSE. A LINEAR SEARCH STARTING AT INDEX
NSRCH IS INITIATED TO LOCATE THE VALUES. NSRCH IS UPDATED
DURING THE SEARCH PROCESS

BSRCH = .TRUE. IS APPROPRIATE FOR "RANDOM" INTERPOLATION
BSRCH = .FALSE. IS APPROPRIATE FOR "PROGRESSIVE"
INTERPOLATION

LOCAL VARIABLES

LOGICAL ASC # FLAGS SORT MODE OF XTAB

DEFINE A USEFUL LOGICAL CONSTRUCTION

MACRO: (LOGTST:, (ASC&XIN<=$1\ !ASC&XIN>=$1))

SET ASC

IF(XTAB(l) < XTAB(MAXTAB))

ASC = .TRUE. # ASCENDING
ELSE

ASC = .FALSE. # DESCENDING
NHALF=NORDER/2
NUP=MAXTAB~NHALF

CLASSIFY INTERPOLATION

IF(MAXTAB<=NORDER) # TWO FEW VALUES - DO BEST WE CAN

$ (
MP=l; MU=MAXTAB
$)

ELSE IF(LOGTST: (XTAB(NHALF))) #TOO CLOSE TO LOW END
$ (
OF TABLE - ADJUST
INTERPOLATION
MP=l; MU=NORDER
$)

ELSE IF(!LOGTST: (XTAB(NUP))) #TOO CLOSE TO TOP END
OF TABLE ~ ADJUST
INTERPOLATION
$ (
MP=MAXTAB+l-NORDER; MU=MAXTAB
$)

ELSE IF(BSRCH) # BINARY SEARCH
$ (
MP=l
MU=MAXTAB
REPEAT

Page 58

$ (
K=(MP+MU)/2
IF(LOGTST: (XTAB(K)))
MU=K~l

ELSE
MP=K+l

DEBUG: (BINARY,2El2.6$,I4,XIN,XTAB(K) ,K)
$)

UNTIL(MP>MU)
MP=MU~NHALF+l

MU=MP+NORDER~l

$)
ELSE

$ (

RATMAC Primer

IF(NSRCH<l \ NSRCH>MAXTAB) # NSRCH OUT OF RANGE
NSRCH=(l+MAXTAB/2) # ADJUST IT

WHILE(lLOGTST: (XTAB(NSRCH)))
NSRCH=NSRCH+l # SEARCH FORWARD

WHILE(LOGTST: (XTAB(NSRCH~l)))
NSRCH=NSRCH~l # SEARCH BACKWARDS

MP=NSRCH-NHALF
MU=MP+NORDER-1
DEBUG: (SEQUENTIAL,2El2.6[,] ,I4,XIN,XTAB(NSRCH) ,NSRCH)
$)

NSRCH=MP+NHALF~l # UPDATE NSRCH EVEN
BSRCH = .TRUE.

DO INTERPOLATION

YOUT=GRANGE(XIN,MP,MU,XTAB,YTAB)
RETURN
END

CTRLSTMT: (GRANGE)
FUNCTION GRANGE(XIN,MIN,MAX,XTAB,YTAB}
REAL XTAB(l) ,YTAB(l)

DOES LAGRANGE INTERPOLATION

GRANGE=O.O
FOR(I=MINu I<=MAX9 I=I+l)

$ (
PROD=YTAB(I)
STO=XTAB(I)
FOR(J=MIN; J<=MAX; J=J+l)

IF(I!=J)

$)

(XIN-XTAB(J))/(STO-XTAB(J))
GRANGE,GRANGE+PROD

RETURN
END

Page 59

Example I

CTRLSTMT: (MAIN)
LOGICAL BS
DIMENSION X(201) ,Y(201) ,U(201) ,W(201)
N=201
NS=O

GENERATE TWO SETS OF TABLES

FOR(I=-100; I<=lOO; I=I+l)

$ (
X(I+lOl)=I
U(I+lOl)=-I
Y(I+l0l)=I**4-I**3
W(I+lOl)=-Y(I+lOl)
$)

GENERATE TABLE USE BINARY SEARCH

M=4 # ORDER OF INTERPOLATION
BS=.TRUE.
EXECUTE: (PRINTABLE)
BS=.FALSE.
EXECUTE: (PRINTABLE)
STOP
STARTPROC:(PRINTABLE)
WRITE(STDOUT:,l) BS
1 FORMAT(~l TEST OF INTERP BINARY SEARCH>p ,L2)
FOR(I=l; I<=lOu I=I+l)

$)

$ (
XX=I*I
XX=XX+O.S
UU=-XX
YCAL=XX**4-XX**3
WCAL=-YCAL
CALL INTERP(XX,YOUT,X,Y,N,NS,BS,M)
WRITE(STDOUT:,2) I,NS,XX,YOUT,YCAL
2 FORMAT (lX, 2 (2X, I 3) , 3 (2X, E 2 0. 7))
CALL INTERP(UU,WOUT,U,W,N,NS,BS,M)
WRITE(STDOUT:,2)I,NS,UU,WOUT,WCAL
WRITE(STDOUT:,3)
3 FORMAT(lX)

ENDPROC: (PRINTABLE)
END

Page 60

RATMAC Primer

FORTRAN

@FOR,IS INTERP/
SUBROUTINEINTERP(XIN,YOUT,XTAB,YTAB,MAXTAB,NSRCH,BSRCH,NORDER)
REALXTAB(MAXTAB) ,YTAB(MAXTAB)
LOGICALBSRCH
LOGICALASC
IF(.NOT. (XTAB(1) .LT.XTAB(MAXTAB)))GOT023000
ASC=.TRUE.
GOT023001

23000 CONTINUE
ASC=.FALSE.

23001 CONTINUE
NHALF=NORDER/2
NUP=MAXTAB~NHALF

IF(.NOT. (MAXTAB.LE.NORDER))GOT023002
MP=l
MU=MAXTAB
GOT023003

23002 CONTINUE
IF(.NOT. ((ASC.AND.XIN.LE.XTAB(NHALF) .OR •• NOT.ASC.AND.XIN.GE.XT

*HALF))))GOT023004
MP=l
MU=NORDER
GOT023005

23004 CONTINUE
IF(.NOT. (.NOT. (ASC.AND.XIN.LE.XTAB(NUP) .OR •• NOT.ASC.AND.XIN.GE

*B(NUP))))GOT023006
MP=MAXTAB+l~NORDER

MU=MAXTAB
GOT023007

23006 CONTINUE
IF(NOT. (BSRCH))GOT023008
MP=l
MU=MAXTAB

23010 CONTINUE
K=(MP+MU)/2
IF(NOT. ((ASC.AND.XIN.LE.XTAB(K) .OR •• NOT.ASC.AND.XIN.GE.XTAB(K

*GOT023013
MU=K-1
GOT023014

23013 CONTINUE
MP=K+1

230 CONTINUE
99 FORMAT(1X,#BINARY~ ,2E12.6,I4)

WRITE(6,1999)XIN,XTAB(K) uK
23011 IF(.NOT. (MP.GT.MU))GOT023010
23012 CONTINUE

MP=MU~NHALF+1

MU=MP+NORDER~l

GOT023009
23008 CONTINUE

IF(NOT. .LT.1.0R.NSRCH.GT.MAXTAB))GOT023015
NSRCH=(1+MAXTAB/2)

Page 61

Example I

23015 CONTINUE
23017 IF(.NOT. (.NOT. (ASC.AND.XIN.LE.XTAB(NSRCH) .OR •. NOT.ASC.AND.XIN.

*TAB(NSRCH))))GOT023018
NSRCH=NSRCH+l
GOT023017

230)8 CONTINUE
23019 IF(.NOT. ((ASC.AND.XIN.LE.XTAB(NSRCH~l) .OR •• NOT.ASC.AND.XIN.GE.

*(NSRCH-1))))GOT023020
NSRCH=NSRCH-1
GOT023019

23020 CONTINUE
MP=NSRCH-NHALF
MU=MP+NORDER-1

1998 FORMAT(1X,PSEQUENTIAL~ ,2E12.6,I4)
WRITE(6,1998)XIN,XTAB(NSRCH) ,NSRCH

23009 CONTINUE
23007 CONTINUE
23005 CONTINUE
23003 CONTINUE

NSRCH=MP+NHALF-1
YOUT=GRANGE(XIN,MP,MU,XTAB,YTAB)
RETURN
END

@FOR,IS GRANGE/
FUNCTIONGRANGE(XIN,MIN,MAX,XTAB,YTAB)
REALXTAB(1) ,YTAB(1)
GRANGE=O.O
I=MIN

23021 IF(.NOT. (I.LE.MAX))GOT023023
PROD=YTAB(I)
STO=XTAB(I)
J=MIN

23024 IF(.NOT. (J.LE.MAX))GOT023026
IF(.NOT. (I.NE.J))GOT023027
PROD=PROD*(XIN-XTAB(J))/(STO-XTAB(J))

230?7 CONTINUE
23025 J=J+1

GOT023024
23026 CONTINUE

GRANGE=GRANGE+PROD
23022 I=I+1

GOT023021
23023 CONTINUE

RETURN
END

Page 62

uiS
LOGICALBS
DIMENSIONX(20l) ,Y{20l) ,U(20l) ,W(20l)
N=20l
NS=O
I=~lOO

23029 IF(.NOT. (I.LE.100))GOT023031
X(I+101)=I
U(I+101)=~I

Y(I+101)=I**4~I**3
W(I+101)=~Y(I+l01)

23030 I=I+l
GOT023029

23031 CONTINUE
M=4
BS=.TRUE.
ASSIGN1996TOJ1997
GOT01997

1996 CONTINUE
BS=.FALSE.
ASSIGN1995TOJ1997
GOT01997

1995 CONTINUE
STOP

1997 CONTINUE
WRITE(6,1)BS

RA TJV1AC P r r

1 FORMAT(~1 TEST OF INTERP BINARY SEARCH># ,L2)
I=1

23032 IF(.NOT. (I.LE.10))GOT023034
XX=I*I
XX=XX+O.S
UU=~XX

YCAL=XX**4~XX**3
WCAL=~YCAL

CALLINTERP(XX,YOUT,X,Y,N,NS,BS,M)
WRITE(6,2)I,NS,XX,YOUT,YCAL

2 FORMAT(1X,2(2X,I3) ,3(,E20.7))
CALLINTERP(UU,WOUT,U,W,N,NS,BS,M)
WRITE(6,2)I,NS,UU,WOUT,WCAL
WRITE (6, 3)

3 FORMAT(lX)
23033 I=I+1

GOT023032
23034 CONTINUE

GOTOJ1997
END

Page 63

_, _____ -- -------

TEST OF INTERP BINARY SEARCH> T
BINARY .150000+01 .000000 101 H

BINARY .150000+01 .500000+02 151
BINARY .150000+01 .250000+02 126
BINARY .150000+01 .120000+02 113
BINARY .150000+01 .600000+01 107
BINARY .150000+01 .300000+01 104
BINARY .150000+01 .100000+01 102
BINARY .150000+01 .200000+01 103

1 102 .1500000+01 .1125000+01 .1687500+01
BINARY -.150000+01 .000000 101
BINARY -.150000 1 -.500000+02 151
BINARY -.150000+01 -.250000+02 126
BINARY -. 50000+01 -.120000+02 113

(I) BINARY - 150000+01 -.600000+01 107
0'1 BINARY -.150000+01 -.300000+01 104
,!:>. -.150000+01 -.100000+01 102

BINARY -.150000+01 - 200000+01 103
1 102 -.1500000+01 -.1125000+01 -.1687500+01

BINARY . 50000+01 .000000 101
BINARY .450000+01 .500000+02 151
BINARY .45000 1 .25000 02 126
BINARY .450000+01 .12000 02 113
BINARY . 5000 01 .600000+01 107
BINARY . 50000+01 .300000+01 104
BINARY .450000+01 .400000+01 105
BINARY .450000+01 .500000+01 106

2 105 .4500000+01 .3183750+03 .3189375+03
BINARY -. 50000+01 .000000 101
BINARY - 450000+01 -.500000+02 151
BINARY -.450000+01 - 250000+02 126
BINARY -.450000+01 -.120000+02 113

BINARY -.45000 1 -.60000 1 107
BINARY -.45000 1 -.300000+01 104
BINARY -.45000 1 -.400000+01 5
BINARY -. 450000+0,1 -. 50000 01 106

2 105 -.450000 01 -.318375 03 -.3189375+03

BINARY .95000 1 .000000 101
BINARY .950000+01 .50000 2 151
BINARY .950000+01 .25000 2 126
BINARY .950000+01 .120000+02 113
BINARY .950000+01 .60000 01 107
BINARY .950000+01 .90000 1 1
BINARY .95000 01 . 000 02 111

3 110 .950000 1 .7287125+04 .7287687+04
BINARY -.950000+01 .000000 101
BINARY -.950000+01 -.50000 151
BINARY -.95000 1 -.25000 126
BINARY -.95000 1 -.12000 113
BINARY -.95000 1 -.60000 107

0) BINARY -.95000 1 -.90000 110
lJ1 BINARY -.95000 1 -.10000 02 111

3 110 -.950000 1 -.7287125+04 -.7287687+04

BINARY . 500 02 .000000 101
BINARY . 500 02 .50000 02 151
BINARY .16500 02 .250000+02 126
BINARY .16500 2 .120000+02 113
BINARY .165000+02 . 000 02
BINARY . 5000+02 .15000 02 116 ;::cJ

BINARY 5000+02 .160000+02 ~ . 1-3
BINARY . 5000+02 . 000 02 :5:

~ 4 117 .1650000+02 .6962737+05 .6962794+05 ()

BINARY -.16500 .000000 101 Md
BINARY -. 500 -.50000 2 151 1"1

BINARY -.16500 -.25000 2 126
BINARY -. 500 -.12000 2 113 1"1
BINARY -. 500 -.18000 2 1

BINARY -.16500 2 -.15000
BINARY -.16500 2 -.16000
BINARY -.165000+02 -.17000 2 118

4 117 -.1650000+02 -.6962737+05 -.6962794+05

BINARY .25500 2 .000000 101 H

BINARY .25500 2 .500000+02 151
BINARY .255000+02 .250000+02 126
BINARY .255000+02 .37000 2 138
BINARY .255000+02 .310000+02 132
BINARY .25500 2 .28000 02 129
BINARY .25500 2 .26000 02 127

5 126 .255000 2 .406243 6 .4062437+06
BINARY -.255000+02 .000000 101
BINARY -.25500 2 -.50000 2 151
BINARY -.25500 2 -.25000 2 126
BINARY -.255000+02 -.37000 2 138
BINARY -.255000+02 -.31000 2 132

ro BINARY -.255000+02 -.28000 02 129
0'1

BINARY -.255000+02 -.260000+02 127
0'1 5 126 -.255000 02 -.4062431+06 -.4062437+06

BINARY .365000+02 .000000 101
BINARY .365000+02 .50000 02 151
BINARY .365000+02 .250000+02 126
BINARY .36500 2 .370000+02 138
BINARY .365000+02 .310000+02 132
BINARY .365000+02 .34000 2 135
BINARY .36500 2 .350000+02 136
BINARY .365000+02 .36000 2 137

6 137 .3650000+02 .172626 7 . 26263+07
BINARY -.36500 .000000 101
BINARY -.36500 -.50000 2 151
BINARY -.36500 -.25000 2 126
BINARY -.36500 02 -.37000 2 138
BINARY -.365000+02 - 310000+02 132

BINARY -.365000+02 -.34000
BINARY -.36500 2 -.35000
BINARY .36500 2 -.360 2 137

6 137 -.3650000+02 - . 26262+07 -.1726263+07

BINARY • 495000+02 .000000 101
BINARY .495000+02 .500000+02 151
BINARY .49500 02 .25000 02 126
BINARY 495000+02 .37000 02 38
BINARY .49500 2 .43000 2 144
BINARY • 9500 2 .46000 2 7
BINARY 5000+02 .48000 02 9
BINARY .49500 2 .490000+02 150

7 150 .4950000+02 .5882437+07 .5882438+07
BINARY -.49500 02 .000000 101
BINARY -.495000+02 -.50000 02 151
BINARY -. 95000+02 -.25000 02 126
BINARY -.49500 02 -.370000+02 138
BINARY -.495000+02 -.43000 02 144

m BINARY -.495000+02 -.460000+02 147
-.J BINARY -.49500 2 -.48000 02 149

BINARY -.49500 02 -.49000 02 150
7 150 -.495000 02 -.588243 7 -.5882438+07

BINARY 645000+02 .000000 101
BINARY .645000+02 .500000+02 151
BINARY .64500 2 .75000 02 6
BINARY .645000+02 .62000 02 163
BINARY .64500 02 .68000 02 169 :::0
BINARY .64500 02 .65000 2 166 :l>'

1-3 BINARY .645000+02 .63000 2 164 :s:
BINARY .645000+02 .640000+02 165 :l>'

(J

8 165 .645000 02 . 0393 08 . 0393 08 l1j
BINARY - 64500 2 .000000 101 !"'!

BINARY -.64500 2 -.50000 2 151
BINARY -.645000+02 -.75000 02 6

H
BINARY -.645000+02 -.620000+02 163

BINARY -.64500 02 -.68000 02 9
BINARY -.645000+02 -.650000+02 166
BINARY -.64500 02 -.630000+02 164
BINARY -.645000+02 -.640000+02 165

8 165 -.6450000+02 -.1703934+08 -.1703934+08
H

BINARY .815000+02 .000000 101
BINARY .815000+02 .500000+02 151
BINARY .81500 2 .750000+02 6
BINARY .815000+02 .88000 02 189
BINARY .815000+02 .810000+02 182
BINARY .81500 02 .840000+02 5
BINARY .815000+02 .820000+02 183

9 182 .8150000+02 .4357814+08 .4357814+08
BINARY -.815000+02 .000000 101
BINARY -.81500 02 -.50000 2 151
BINARY -.815000+02 -.750000+02 176
BINARY -.815000+02 -.88000 2 189
BINARY -.81500 02 -.8 000+02 182

0"\ BINARY -.81500 02 -.84000 02 185
co BINARY -.815000+02 -.82000 02 183

9 182 -.8150000+02 -.4357814+08 -.4357814+08

10 199 .1005000+03 .1010000+09 .1010000+09
0 199 -.1005000+03 -.1010000+09 -.1010000+09

TEST OF INTERP BINARY SEARCH> F
.150000+01 .200000+01 103

1 102 .150000 01 .1125000+01 .168750 1
SEQUENTIAL -.150000+01 -.200000+01 103

1 102 -.1500000+01 -.1125000+01 - . 87500+01

. 45000 1 .500000 1 106
2 105 • 50000 1 .3183750+03 .3189375+03

-.450000+01 -.50000 01 106
2 105 -.4500000+01 -.318375 03 -.3189375+03

.950000+01 . 000 2 1
.9500000+01 .7 7125+04 .7287687+04

-.95000 01 -.10000 2 111
-.9500000+01 -.7 7125+04 -.7287687+04

.165000+02 .17000 118
4 117 .165000 .696 37+05 .6962794+05

AL -.16500 2 -.17000 2 118
4 117 -.1650000+02 -.6962737+05 -.6962794+05

.25500 02 .26000 2 127
5 126 .255000 02 .4062431+06 .406243 06

-.25500 02 -.260000+02 127
5 126 -.2550000+02 -.4062431+06 -.4062437+06

.36500 02 .37000 138
6 137 .365000 . 2626 07 .17 263+07

-.36500 02 -.37000 138
ro 6 137 -.365000 - . 26262+07 - . 26263+07
0'1
1.0 .495000+02 .500000+02 1

7 150 .4950000+02 .588243 07 .588243 07
-.49500 02 -.50000 02 151

7 150 -.495000 02 -.588243 07 -.588243 07

.645000+02 .650000+02 6
8 165 .645000 2 . 03934+08 . 03934+08

-.64500 02 -.65000 02 6
8 165 -.645000 02 - . 03934+08 - . 03934+08

::tl
:J>'

.81500 02 .820000+02 183 8
::s:

9 182 .8150000+02 .4357814+08 .4357814+08 :J>'

AL .81500 02 -.82000 02 3
()

9 182 -.815000 2 -.4357814+08 -.4357814+08 1-0
r;

10 199 .1005000+03 .101000 09 . 10000+09
10 199 -.100500 3 -.1010000+09 -.101000 09 r;

NORMAL EXIT. EXECUTION TIME: 330 MILLISECONDS.

II: A RATMAC
to a S Fi

:ram
ito:r

The file editor is signed to copy an input file to an
output file. During the copy process, the file is modifi~f
by commands entered via a standard input unit, STDIN:. A
command has the general format:

*X,<initial line>,<final line>

The asterisk must be the first character on the input line.
X is a. single letter from the set
R(replacement), D(deletion), and E(end
<initial line> and <final line> are integer
used to identify the lines of the input
modified. A typical modification stream might

*I,l7
this text
and this text
and this text

insert after line 17

I (insertion) ,
commands) •

line numbers
file to be

be:

**
*R,54,57

this line terminates the insert text
replaces lines 54 through 57

with this text

**
*D,59
*D,65,102

delete a single line
delete a group of lines

Using procedures and top down design, the program four
"levels". The top level is the procedure MAIN which in nine
lines defines the control flow of the editing process. It
pushes down to a lower level isions on how instructions
are read and decoded, or how the files are read or written.
The second level contains the procedures
INTERPRET INSTRUCTION, READ INSTRUCTION, and COPY REST,
which also put off to a lower level decisions on how iles
are read and written. The third level contains some utility

ocedures, while the fourth level, CTOI, END OF FILE,
WRITE LINE, READ LINE, PUT LINE, and GET LINE contain the
"primitives 11 that-interface -with the I/0- system of the
computer.

Each procedure is short and has a single function which
is easy to understand.

Page 70

RATMAC Primer

RATMAC Line itor

A SIMPLE LINE ORIENTED EDITOR

COMMANDS

*I ,M
*D,M,N
*R,M,N
**

INSERT FOLLOWING TEXT AFTER MTH LINE
DELETE LINES M TO N

*E

*I,2

REPLACE LINES M TO N BY FOLLOWING TEXT
TERMINATE INSERTION OR REPLACEMENT TEXT
END EDITING PROCESS

INSERTED LINE
**
*R,7,10

NEW REPLACEMENT LINE
**
*D,20,30
*E

MACRO:(CTRLSTMT:,$P@[FOR,IS]$B$1/$2)

CTRLSTMT:(EDITOR,
MACRO: (STDIN:,S) # STANDARD INPUT
MACRO: (STDOUT:,6) # STANDARD OUTPUT

IF AN ARGUMENT IS PRESENT
GENERATE, ARGUMENT

MACRO: (CARG:, [IFELSE: ($1,, ,$,$1)])

IF AN ARGUMENT IS PRESENT
GENERATE ARGUMENT

MACRO: (ARG:, [IFELSE: ($1,, ,$1)])

THE MACRO DEBUG: IS A GENERAL PURPOSE DEBUGGING MACRO

ARGUMENT 1 IS AN IDENTIFICATION MESSAGE
ARGUMENT 2 IS A FORMAT

ARGUMENTS 3 THRU 9 ARE VARIABLES TO BE DUMPED

MACRO: (DEBUG: u [MAKENUM: (1) FORMAT(1X,n$1 11 ,$2)
WRITE(:,SEED:)ARG: ($3)CARG: {$4)CARG: ($5)CARG: ($6)$#
CARG: ($ 7) CARG : ($ 8) : ($ 9)])

PROCEDURE EXECUTION MACRO

MACRO: (EXECUTE:, [IFDEF: ($1,, [: ([$1:] ,.MAKENUM: (1))]]) $#
ASSIGN MAKENUM: (1) TO J $1:< GOTO $1:; SEED: CONTINUE])

Page 71

Example II

DEFINE START OF
PROCEDURE

MACRO: (STARTPROC:,$1: CONTINUE)

DEFINE THE END OF A
PROCEDURE

MACRO: (ENDPROC:,GOTO J $1: [XMACRO: ([$1:])])

EXAMINES IF
A MACRO IS
DEFINED

MACRO": (IFDEF: I [IFELSE: ([$1:] ,$1: ,$3,$2)])

MACRO: (SEED: D 2000)
MACRO: (MAKENUM:, [MACRO: ([SEED:] ,ARITH: (SEED:,~,$l))SEED:])
MACRO: (MESSAGE:, [WRITE($l,MAKENUM: (1))
SEED: FORMAT(lX, 11 $2n)J)
MACRO: (CHARACTER:,INTEGER) #MAP CHARACTER ONTO INTEGER
MACRO: (GETVALCHAR:,FLD(0,6,$1)) # UNIVAC SPECIFIC
MACRO: (HUGE:,lOOOOO) #A HUGE NUMBER OF LINES TO END FILE
MACRO: (IN:,9) #EDITOR INPUT FILE
MACRO: (OUT:,lO) #EDITOR OUTPUT FILE
MACRO: (MAXCARD:,80) #CHARACTERS ON A CARD

CHARACTER: INSTR(MAXCARD:), NCL(MAXCARD:)

LOGICAL EOFSTI
LOGICAL NOEND
LOGICAL EOFIN
DATA LN0/0/ # INITIAL LINE NUMBER
DATA EOFSTI,NOEND,EOFIN/.FALSE.,.TRUE.,.FALSE./

PROGRAM DRIVER

EXECUTE: (MAIN)

~ MAIN EDITOR PROCEDURE -

STARTPROC: (MAIN)
EXECUTE: (GET LINE)
EXECUTE: (READ INSTRUCTION)
REPEAT -

$ (
EXECUTE: (INTERPRET INSTRUCTION)

EXECUTE: (WRITE LINE)-
EXECUTE: (READ INSTRUCTION)
$) -
STOP
ENDPROC: (MAIN)

Page 72

- PROCEDURE TO EXECUTE AN INSTRUCTION -

STARTPROC: (INTERPRET INSTRUCTION)
EXECUTE: (COPY) # GET TO FIRST LINE
IF(KEY=="I")

$ (
EXECUTE: (PUT LINE)
EXECUTE: (INSERT)
$)

ELSE IF (KEY=="R")
$ (
EXECUTE: (INSERT)
EXECUTE: (SKIP)
$)

ELSE IF (KEY=="D")
$ (
EXECUTE: (SKIP)
$)

ELSE IF (KEY=="E")
$ (
EXECUTE: (COPY REST)
$) -
ELSE
$ (
MESSAGE: (STDOUT:,ERROR IN INSTRUCTION)
EXECUTE: (COPY REST)
$) -

ENDPROC: (INTERPRET INSTRUCTION)
-

RATMAC Primer

~ PROCEDURE TO READ AN INSTRUCTION AND DECODE IT ~

STARTPROC: (READ INSTRUCTION)
-
READS A LINE FROM STARDARD INPUT AND INTERPRETS INSTRUCTION

READ(STDIN: ,1,END=2) (INSTR(I) ,I=1,80)
1 FORMAT (8 OA1)
GO TO 3
2 INSTR(1)="'*"'
INSTR(2)="E"
INSTR(3)="' "'
3 CONTINUE
KEY=INSTR(2)
IPT=3
IF(INSTR(IPT)=="' ,"')

$ (
IPT=I
EXECUTE: (CTO I)
M=NUMBER
$)

ELSE
M""LNO

IF(INSTR(IPT) "',"')

Page 73

Example II

$ (
IPT=IPT+l
EXECUTE: (CTO I)
N=NUMBER
$)

ELSE
N=M

DEBUG: (INSTRUCTION,l(Al,3I4) ,INSTR(2) ,LNO,M,N)
ENDPROC: (READ INSTRUCTION)
-

- PROCEDURE TO INSERT A BLOCK OF TEXT IN FILE FROM STDIN:

STARTPROC: (INSERT)

READS LINES FROM STDIN: AND PUTS THEM IN A FILE

TERMINATES WHEN PNOENDft BECOMES FALSE

DEBUG: (START INSERT ,3(2X,I4) ,LNO,M,N)
NOEND=.TRUE.
EXECUTE: (READ LINE)
WHILE (NOEND)-

$ (
EXECUTE: (PUT LINE)
EXECUTE: (READ LINE)
$) -

EXECUTE: (GET LINE)
DEBUG: (END INSERT ,3(2X,I4) ,LNO,M,N)
ENDPROC: (INSERT)

- PROCEDURE TO COPY REMAINDER OF FILE TO OUTPUT FILE -

STARTPROC: (COPY REST)
-
COPIES REST OF INPUT FILE TO OUTPUT FILE

DEBUG: (COPY REST ,3(2X,I4) ,LNO,M,N)
M=HUGE: # SET LAST LINE TO A HUGE NUMBER
EXECUTE: (COPY)
EXECUTE: (END OF FILE)
DEBUG: (END COPY REST ,3(2X,I4) ,LNO,M,N)
STOP -
ENDPROC: (COPY REST)
-

- PROCEDURE TO COPY A BLOCK OF LINES FROM FILE TO OUTPUT F

STARTPROC: (COPY)

COPIES FROM INPUT FILE TO OUTPUT FILE

DEBUG:(START ,3I4,LNO,M,N)
WHILE(LNO<M)

$ (

Page 74

EXECUTE: (PUT LINE)
EXECUTE: (GET~LINE)
$) ~

DEBUG: (END COPY,3I4,LNO,M,N)
ENDPROC: (COPY)

RATMAC Primer

~ PROCEDURE TO SKIP A BLOCK OF LINES ON THE INPUT FILE -

STARTPROC: (SKIP)

SKIPS LINES ON INPUT FILE

DEBUG: (START SKIP,3I4,LNO,M,N)
WHILE(LNO<=N)

$ (
EXECUTE: (GET LINE)
$) -

DEBUG: (END SKIP,3I4,LNO,M,N)
ENDPROC: (SKIP)

~ PROCEDURE TO TRANSLATE A CHARACTER STRING TO AN INTEGER

STARTPROC: (CTOI)
WHILE(INSTR(IPT)==~ ~)

IPT=IPT+1
NUMBER=O
DEBUG: (CTOI START,1(A1,I4) ,INSTR(IPT) ,IPT)
REPEAT$(

K=FLD(0,6,INSTR(IPT))-FLD(0,6,~0~)
IF(K<O \ K>9)

BREAK
IPT=IPT+1
NUMBER=10*NUMBER+K
$)

DEBUG: (END CTOI,2I4,NUMBER,IPT)
ENDPROC: (CTOI)

~ PROCEDURE TO READ A REPLACEMENT LINE FROM STDIN: ~

STARTPROC: (READ LINE)
-
READS A LINE FROM STDIN

IF (! EOFSTI)

$ (
READ(STDIN: ,1,END=12) (NCL(I) ,I=1,80)
GO TO 13
12 EOFSTI=.TRUE.
13 CONTINUE
$)

IF(NCL(1)==~*fl & NCL(2)==~*~)
NOEND=.FALSE.

DEBUG: (READ LINE ,80A1, (NCL(I) ,I=1,80))

Page 75

Example II

ENDPROC: (READ LINE)
-

~ PROCEDURE TO WRITE THE CURRENT FILE LINE TO STDOUT: ~

STARTPROC: (WRITE LINE)
DEBUG: (WRITE LINE ,3(2X,I4) ,LNO,M,N)
WRITE(STDOUT:~l4) LNO, (NCL(I) ,I=l,80)
14 FORMAT(~ CURRENT LINE #,I8,1X,80Al)
ENDPROC: (WRITE LINE)
-

- PROCEDURE TO WRITE AN EOF ON THE OUTPUT FILE -

STARTPROC: (END OF FILE)
ENDFILE OUT: - -
REWIND OUT:
DEBUG: (END OF FILE,I4,LNO)
ENDPROC: (END OF FILE)
- -

- PROCEDURE TO GET A LINE FROM THE INPUT FILE -

STARTPROC: (GET LINE)
-
GETS A LINE FROM FILE IN: - STORED IN NCL

LNO=LN0+1
IF (!EOFIN)

$ (
READ{IN:,1,END=10) (NCL(I) ,I=1,80)
GO TO 11
10 EOFIN=.TRUE.
LNO=HUGE:+1
11 CONTINUE
$)

DEBUG: (FILE IN ,L2$,I4$,80A1,EOFIN,LNO, (NCL(I) ,I=1,80))
ENDPROC: (GET LINE)
-

- PROCEDURE TO PUT A LINE INTO THE OUTPUT FILE -

STARTPROC: (PUT LINE)
-
PUTS NCL INTO FILE OUT:

DEBUG: (FILE OUT ,80A1,(NCL(I) ,I=1,80))
WRITE(OUT: ,1) (NCL(I} ,I=1,80)
ENDPROC: (PUT LINE)
END -

Page 76

RATMAC Primer

,IS EDITOR/FOR
INTEGERINSTR(80) ,NCL(80)
LOGICALEOFSTI
LOGICALNOEND
LOGICALEOFIN
DATALN0/0/
DATAEOFSTI,NOEND,EOFIN/.FALSE.,.TRUE.,.FALSE./
ASSIGN1998TOJ1999
GOT01999

1998 CONTINUE
99 CONTINUE

ASSIGN1996TOJ1997
GOT01997

96 CONTINUE
ASSIGN1994TOJ1995
GOT01995

1994 CONTINUE
23000 CONTINUE

ASSIGN1992TOJ1993
GOT01993

1992 CONTINUE
ASSIGN1990TOJ1991
GOT01991

1990 CONTINUE
ASSIGN1989TOJ1995
GOT01995

1989 CONTINUE
23001 GOT023000
23002 CONTINUE
DIAGNOSTIC CONTROL CAN NEVER REACH THE NEXT STATEMENT

STOP
DIAGNOSTIC CONTROL CAN NEVER REACH THE NEXT STATEMENT

GOTOJ1999
1993 CONTINUE

ASSIGN1987TOJ1988
GOT01988

87 CONTINUE
IF(.NOT. (KEY.EQ.~Ifi)) 23003
ASSIGN1985TOJ1986
GOT01986

85 CONTINUE
ASSIGN1983TOJ1984
GOTO 84

83 CONTINUE
GOT023004

23003 CONTINUE
IF(.NOT. {KEY.EQ.fiRP))GOT023005
ASSIGN 82TOJ 84
GOT01984

82 CONTINUE
ASSIGN1980TOJ1981
GOT01981

80 CONTINUE

Page 77

Example II

GOT023006
23005 CONTINUE

IF(.NOT. (KEY.EQ.~D~))GOT023007
ASSIGN1979TOJ1981
GOT01981

1979 CONTINUE
GO'r023008

23007 CONTINUE
IF(.NOT. (KEY.EQ."'E~))GOT023009
ASSIGN1977TOJ1978
GOT01978

1977 CONTINUE
GOT023010

23009 CONTINUE
WRITE(6,1976)

1976
0

,FORMAT (1X, "'ERROR IN INSTRUCTION"')

1975
23010
23008
23006
23004

ASSIGN1975TOJ1978
GOT01978
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
GOTOJ1993

1995 CONTINUE

1
READ (5 , 1, END= 2) (INSTR (I) , I= 1, 8 0)
FORMAT (80A1)
GOT03

2 INSTR(1)="'*"'
INSTR(2)=""E""
INSTR(3)="' "'

3 CONTINUE
KEY=INSTR (2)
IPT=3
IF(.NOT.(INSTR(IPT) .EQ "',"'))GOT023011
IPT=IPT+1
ASSIGN 7
GOT01974

1973 CONTINUE
M=NUMBER
GOT023012

23011 CONTINUE
M=LNO

23012 CONTINUE

1974

IF(.NOT. (INSTR{IPT) .EQ."',"'))GOT023013
IPT=IPT+1
ASSIGN 72TOJ1974
GOT01974

1972 CONTINUE
N=NUMBER
GOT023014

23013 CONTINUE
N=M

23014 CONTINUE
1971 FORMAT(lX,"'INSTRUCTION"" ,l{A1,3I4))

WRITE(6,197l)INSTR(2) ,LNO,M,N

Page 78

GOTOJ1995
1984 CONTINUE
1970 FORMAT(1X,fl START INSERT fl ,3(2X,I4))

WRITE(6,1970)LNO,M,N
NOEND=.TRUE.
ASSIGN1968TOJ1969
GOT01969

1968 CONTINUE
23015 IF(.NOT. (NOEND))GOT023016

ASSIGN1967TOJ1986
GOT01986

67 CONTINUE
ASSIGN1966TOJ1969
GOT01969

1966 CONTINUE
GOT023015

23016 CONTINUE
ASSIGN 65TOJ1997
GOT01997

1965 CONTINUE
1964 FORMAT(1X,fl END INSERT fl ,3(,I4))

WRITE(6,1964)LNO,M,N
GOTOJ1984

1978 CONTINUE
1963 FORMAT(1X,fl COPY REST fl ,3(2X,I4))

WRITE(6,1963)LNO~M,N
M=100000
ASSIGN1962TOJ1988
GOT01988

1962 CONTINUE
ASSIGN1960TOJ1961
GOTO 61

60 CONTINUE
19 FORMAT(1X,fl END COPY REST fl ,3(2X,I4))

WRITE(6, 59)LNO,M,N-

RATMAC Primer

DIAGNOSTIC CONTROL CAN NEVER REACH THE NEXT STATEMENT
GOTOJ1978

1988 CONTINUE
1958 FORMAT(1X,#START

WRITE(6, 58)LNO,M,N
4)

23017 IF(.NOT.(LNO.LT.M))GOT023018
ASSIGN 57TOJ1986
GOTO 86

1957 CONTINUE
ASSIGN 5
GOT01997

1956 CONTINUE
GOT023017

23018 CONTINUE

1997

1955 FORMAT(,~END COPY# ,3I4)
WRITE(6, 55)LNO,M,N
GOTOJ 88

81 CONTINUE
1954 FORMAT(1X,#START SKIPfl ,3I4)

WRITE(6, 54)LNO,M,N

Page 79

1e II

230 IF(.NOT. (LNO.LE.N))GOT023020
ASSIGN1953TOJ1997
GOT01997

1953 CONTINUE
GOT023019

23020 CONTINUE
1952 FORMAT(lX,~END SKIP"' ,3I4)

WRITE(6, 52)LNO,M,N
GOTOJ198l

1974 CONTINUE
23021 IF(.NOT. (INSTR(IPT) .EQ."'))GOT023022

IPT=IP'I'+ l
GOT02302l

23022 CONTINUE
NUMBER=O

51 'FORMAT (lX u "'CTOI START"' u l (Al, I 4))
WRITE(6,195l)INSTR(IPT) ,IPT

23023 CONTINUE
K=FLD(0,6,INSTR(IPT))-FLD(0,6,"'0"")
IF(.NOT. (K.LT.O.OR.K.GT.9))GOT023026
GOT023025

23026 CONTINUE

23024
23025
1950

IPT=IPT+l
NUMBER=lO*NUMBER+K
GOT023023
CONTINUE
FORMAT(lX,"'END CTOI"', 4)
WRITE(6,1950)NUMBER,IPT
GOTOJ 74

1969 CONTINUE
IF(.NOT.(.NOT.EOFSTI))GOT023028
READ(5,1,END=12) (NCL(I) ,I=1,80)

12
13
23028

GOT013
EOFSTI=.TRUE.
CONTINUE
CONTINUE
IF(.NOT. (NCL(1) .EQ."'*"' .AND.NCL(2) .EQ."*"'))GOT023030
NOEND=.FALSE.

23030 CONTINUE
1949 FORMAT (1X,"' READ LINE "', 80A1)

WRITE(6, 49) (NCL(I) ,I=1,80)
GOTOJ1969

1991 CONTINUE

14

48 FORMAT(1X,"' WRITE LINE"' ,3(2X,I4))
WRITE(6,1948)LNO,M,N
WRITE(6,14)LNO, (NCL(I) ,I=1,80)
FORMAT("' CURRENT LINE "',I8,1X,80A1)
GOTOJ1991

1961 CONTINUE
ENDFILE10
REWIND10

1947 FORMAT(1X,"'END OF FILE"' ,I4)
WRITE(6,1947)LNO
GOTOJ1961

1997 CONTINUE
LNO=LN0+1

Page 80

10

11
23032
1946

1986
1945

IF (.NOT. (.NOT.EOFIN))GOT023032
READ (9, 1, END= 10) (NCL (I) , I= 1, 8 0)
GOT011
EOFIN=.TRUE.
LN0=100000+1
CONTINUE
CONTINUE
FORMAT(1X,p FILE IN ~,L2,I4,80A1)
WRITE(6,1946)EOFIN,LNO, (NCL(I) ,I=1,80)
GOTOJ1997
CONTINUE
FORMAT(,# FILE OUT fo ,80A1)
WRITE(6,1945) (NCL(I) ,I=1,80)
WRITE(10,1) (NCL(I) ,I=1,80)
GOTOJ1986
END

RATMAC Primer

END OF COMPILATION: 3 DIAGNOSTICS.

THE FOLLOWING TEXT WILL ILLUSTRATE THE COMMANDS
OF THE LINE EDITOR. THE END OF THIS LINE SHOULD
HAVE 2 NUMBERED LINES INSERTED AFTER IT.
LINES A AND B SHOULD BE DELETED.
A
B
c
D
LINES X AND Y SHOULD BE REPLACED BY R1 AND R2.
X
y

z

*I,3
1 FIRST INSERTED LINE
2 SECOND INSERTED LINE
**
*D,5,6
*R,10,11
R1

**
*E

it Text

Page 81

Example II

Text

THE FOLLOWING TEXT WILL ILLUSTRATE THE COMMANDS
OF THE LINE EDITOR. THE END OF THIS LINE SHOULD
HAVE 2 NUMBERED LINES INSERTED AFTER IT.
1 FIRST INSERTED LINE
2 SECOND INSERTED LINE
LINES A AND B SHOULD BE DELETED.
c
D
LINES X AND Y SHOULD BE REPLACED BY Rl AND R2.
Rl
R2
z

Page 82

RATMAC Pr r

RATMAC Error

The general format of an error message is:

***** ERROR AT LINE XXX
<ERROR MESSAGE>
<ADDITIONAL DIAGNOSTIC INFORMATION>

A trace-back
appropriate.

through INCLUDE~d files is
XXX is a RATMAC line number.

also given if

The following table lists the error messages:

MESSAGE EXPLANATION

missing left parenthesis self-explanatory

missing parenthesis in CONDITION II

illegal break

illegal next

missing quote

unexpected brace EOF

unbalanced parentheses

invalid FOR clause

for stack ,
check reinit clause

INCLUDE~s nested to deeply

cannot open INCLUDE

token too long

name too long

finit too long

a quote string must
be complete on a
single input line

self-explanatory

obably a missing
closing right
parenthesis

self-explanatory

check file
availability

Page 83

self-explanatory

macro name too long

macro definition
too long

FATAL

no

no

no

no

no

no

no

no

yes

no

no

no

yes

yes

RATMAC Error Messages

too many definitions too many macro
definitions

no

warning: possible label confil t user lab~l >=23000 no

illegal ELSE

stack overflow in parser

illegal right brace

unexpected EOF

undefined macro

call stack overflow

arg stack overflow

evaluation stack overflow

illegal macro name

XMACRO not found

illegal flag

DEFINE missing left en thesis

DEFINE non~alphanumeric name

DEFINE missing comma

DEFINE missing right parenthesis

ELSE but no IF no

too complicated a yes
control structure
in RATFOR

left brace missing? no

Ratmac unfinished no
when an end~of~file
was found

self~explanatory no

too many nested yes
macro cal

too many and/or too yes
long macro arguments

not enough space to yes
evaluate a macro

missing terminating no
colon

tried to delete an no
undefined macro

FLAGON: or FLAGOFF: no
ument must be an

upper case letter

self~explanatory no

li no

no

ii yes

Page 84

Arguments, Macro, 35
ARITH:, 37
Blocks, Statement, 6
BREAK, 14
Character

Set, 20
String Manipulation, 38

Characters, Reserved, 26
CHR:, 40

INDEX

Code, RATMAC Generated FORTRAN, 22
Comments, Cross~referencing, 22
Constants, Symbolic, 31
Constructs, Looping, 7
Control, Pr ocessor, 40
Cross~referencing

Comments, 22
Line Number, 22

Decision Control Structures, 16
aphs, 27

DO
Loop, 7
Statement, 23

Example
File Editor, 70
Interpolation in a Table, 57

Explicit Statement Block, 6
Features, Miscellaneous, 20
File Editor Program, 70
Fi Inclusion, 30
FLAGOFF:, 40
FLAGON:, 40
FOR

Loop, 9
Statement, 23

Format, Program, 20
FORTRAN Code

RATMAC Constructs, 22
RATMAC Generated, 22

IF Statement, 25
IF ••. ELSE Statement, 25
IFELSE:, 39
Implied Statement k, 6
INCLUDE, Alternative, 42
Inclusion, File, 30
INCR:, 37
Interpolat in a Table Program, 57
LENSTR:, 38
Line Number Cross~re rencing, 22
Loop

DO, 7
FOR, 9
Modify , 14
REPEAT, 13

Page 85

RATMAC Primer

Index cont.

WHILE, 12
Looping Constructs, 7
Macro

Arguments, 35
definition of, 4

MACRO:, 36
Macros, 34

ARITH:, 37
Built-in, 36
CHR:, 40
Examples, 47
FLAGOFF:, 40
FLAGON:, 40
IFELSE: , 39
INCR:, 37
LENSTR:, 38
MACRO:, 36
Non-recursive, 43
ORD:, 40
Recursive, 45
SAVE:, 36
SUBSTR:, 38
Within Macros, 43
XMACRO:, 36

NEXT, 15
NEXT and BREAK Statements, 24
Non-recursive Macros, 43
ORD:, 40
Preprocessor Control, 40
Program

Example I - Interpolation, 57
Example II -File Editor, 70
Format, 20
Running, 21

Quoted Strings in RATMAC, 28
RATMAC

Quoted Strings,
Recursive Macros, 45
REPEAT

Loop, 13
Statement, 24

REPEAT ••• UNTIL Statement, 24
Reserved Characters, 26
SAVE:, 36
Set, Character, 20
Statement

Blocks, 6
BREAK, 24
DO, 23
FOR, 23
IF, 25
IF ••• ELSE, 25
NEXT, 24
REPEAT, 24
REPEAT ••• UNTIL, 24
WHILE, 23

Page 86

Index cont.

Strings, Quoted, 28
Structures

Decision Control 1 16
Modifying Loop, 14

SUBSTR:, 38
Symbolic Constants, 31
Underline Character, 34
WHILE

Loop, 12
Statement, 23

XMACRO:, 36

RAT1V1AC Primer

Page 87

