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Lawrence Radiation Laboratory
University of Califoraia
Berkeley, Caiitornia

December 19, 1961

In this note we use Regge‘a continuation to complex angular

1,2 in order to define and describe pardclea or msonances

momentum _
that do'nbt'correspond to a,uaua; Breit-Wigner type pole of the partial-
‘wave amplitudes. From the peint of view of the analytic structure of the

' & matrix regarded as a simultaneous function of angular momentum and
energy, however. there is only a qua.ntita.tive diiierenca between these

. and- ordinary particles. Thdre are at leaat two definite examples of

such resonances, namely thleiil =0, n-w, S-wave "virtusl state"> and the
well ;Ez_nown singlet n-p, S-wave "virtual state, ® both near the threshold,
The general aituaﬁon is described heie. which is valid for any value of
angular momentum and energy. ‘and it ie suggested that some of the

. highezr- s;ain raeomces recently observed in strong interactions might
belong to this ca.tegory. Fut.hermore. we determine the conneetion
between range and scattering parameters and the trajectory in the complex
; angular-momantum plane of poles of the 5 matrix that carrespond to

virtual particles. This trajectozjy in turn is related to high-energy

cross sections for processes in which these particles are exchanged in
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the cross channel, 2.3

Our considerations are based on the fact that the total two-body
elae@c-acmrmg ampl‘stude can be written, using a Wataon-&ammerfeld
transformation in the cé{nplex 2 -plane, y as a auxix of~~in general few-«
pole térms plis's a regular reMer. The pole terms control the
asymptotic béhgwior of the amplitude, and also the bound states and
resonances in the partial-wave amplitudes. One can thus separate expli-
citly the singular parts of the a@lim&es. This procedure ie a substitute

for the use of subtractions in the dispersion relations. For a given set

of quantum numbers, the fioles are separated by more than one unit of
angular momeatum, Therefore, in the vicinity of a bound state or
resonance, the total amplitude may be épproximated by a Regge-pole

term of the Eo_rm. 6

Alq, cose) = flq) P‘:‘(q}(-cos-e) / sin malq), (1) .
where g.(q) is the position of the pole of the § matrix in the complex-
2 plane as a function of the momenmu; q. The partial-wave projections

of Eq. (1) are

Mlq.2) = 1 gla)/ {Ia(q) -2] falq) + £ + 1]} . (2)
which clearly shows the pole in the £ plane at! = alq). For q2< 0,.
a{q) is a real and increasing function of q; for qz >0, a{q) has a positive
imngm;r-y paré. | ‘
We first diccuss the threshold behavior of a{q). It will be shown
that the bebavior of phase-shifts near threghold is consistent with a square-

3

root singularify, of a(q‘z) at q” = 0, Therefore near qz =Q n(r;xqz) can be

written in the form

alq) = agl0) + (-1 Zday/da)y + 1/2 (ePag/aqP)y 2. (3)
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2 >0, the 1maginary and real parts of a are given

re spectively by

1= Q(ﬁaxfdQ)o

ag = eR(O) + 1/2 (&% nR/dq )0 q . ' (4a)
These expressions have axso been verified. numericauy and for the
triplet n-p scattering and giw exactly the deuteron binding energy in
mrme of the scattering parametera. 7 Once the three parameoters in
Eq. (3) are determined, the behavior of all partial ~wave amplitudes
due o t‘b‘sAvpole term (1) and near qz s G are bb,éained by inserting
Eqas. (4) into Eq. (2). | We do not write the general expression here, but
if aR(O) is very close to the integer A=9 and we have q (dz R/dq )O << i,
we obtain . ' ' '

| Alg)E(8/n) /la {01+ ca® + iq(aa,/dq)OI | (s)

. where ¢ = (1/2) & o.R/&q o * (dmx/dq)o. Equation (5) is precisely the

amplitude corresponding to the effectivenrange approximation

q cotd = gal}* +’rq2/z. and we obtain by comparison

(ag{OWtday/dq)] = -1/a,

£y

#10)/ap0) = aw,

" dzaR /dqz)o /(dﬂx??‘i’o *2(day/dq), = ~r.

If we neglect the curvature (d?'aa/dqz)e fbr the time being, we find

(dar/dqly = Liaggo) = - L X, o) = -3, (6)

where a is the scattering length, and r is the effective range.

We give now a quiée indepemient calculation of the parameters of
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Eq. {6), using the range of the forces involved. If we take as a 'model a
short~-range patentia‘l. a que well qf range r, and strongth

={w/2 e) /x4 z.Z not quite strong enough to make an S-wave bound
state, the position of the pole in the 2 plane is given by cR(O)a -we /4,
The scattering 1engfﬁhra is related to ¢ by a = z:e/ue . Hencve we have

agl0) =« } i (day/dqly = o1 MO) = - F rp (7

The two estimates agree mxighiy. Thelr difference gives us the curvature

of the trajectary

«R/dq )9 Iv-"o"ofz - ). | (8)
Both for singlet and triplet n-p Regge poles as well as for the I = 0, |
ww pole, the curvature as &mrmine& from the effectiva. range formula
is négatiire. il. e. the trajectories turn at the _threaimld. This behavior
expi-eases the fact that thére -are no S-wave resconances without an S-wave
bound state. For trajectories near £ =} (or higher), tﬁe situation is

different., Here we ¢an have & P-wave rescnance without a P-wave

- bound state and in thia case we expect the curva.ture to be poaitive, The

real part of ¢ as a function of 8 or q is shown in Fig. 1, and the
patametera are given in Table I. It is important to note that the para-
meters of the vcusp depend only on the range of the forces and notion
scattering length, Therefore one would expect a::pwximt@lﬁ the same
cusp at all thresholds.. Below the threahold. q is less than gero, and
a{q) ie real and is given by

o= agla) ¢ apl0) - (-g%) /2 «da,/dq) + didap/agh)y 4 (9)

Thia expreséionanows us to'_eztrapolate a to the point & =0 or qz = mﬂz.

in the case of the 7-7n, I = 0 pole '(or the so-called ABC pole).
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The quantity o ABC( 6 = 0) is also shown in Table I. The exchange of

the I = 0, w-w gystam in the crossed channel rosuits in a total cross section in

the forward dir_ecti@n'which varies as E*‘Ma)).~ where E is the labor-

atory encrgy. 2,5

Using the above method. we ca.n,also aiacnas the threshold behavior

ofa Regge tra&ectory very close to an :nteger &, Aga.in, if we assume

that i the single pcle dominatas the fth partial -wave in question, we can

compare the amplitude (2) with that correspoadiag to the effective-mnge

' £ormuﬁla.qu_v+ 1cosﬁ.s a }' + rq /2 . Then near q = 0 we find that

ap = aR(Q) + qu, oy = quﬂ *1ooraw ag{0) + B( quzﬁ 2 1)/3' + Aq
This discontinuity ie auperimposed upon a gencrally smooth grajectory
at the threshold. Note that Blg) is real near the threshold. |
We now discuss the general siMﬁan where a resonance is observed

without the trajectory of the pole crossing an integer value of £ or 3I. |
First, the threshold can occur, in principle, ‘close to an integer 2% 0
’I‘his case may be expected to be qualitative’&y the same as the case ﬂ = 0
discussed above. More iatomsting ia the following aituation. In the case
of resonances, the function o,R(E) is an incmasing function of E even above
the threshold, except possibly for a aman cusp at the threshold. When _ |

aplE) becomes equal to an integer, Eq. (2) gives a Breithigmr resonance
if “R( E’) is assumed to vary hnea.rly with E locally near E.. 5 we couaider
the case where the e.R(E) curve turns very claese to a physical integer. &

In this case the expansion of a.R(E) 18 df:the form

| (2 42 2,,
aR(E) 2 aR(E.r) + 3 (E-Et) (d aR/dE Y4 oo
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the partial-wave amplitude is given by

(2/n) BEEVI(22 + INdPag/aER) ],

(1)
(E-E? + a\(r'/z) +C '

AMES) £

where /2 ¢ z«;x/(d aR/dE dor and C is a very small constant. This
amplitude corresponds to two energy poles E=z - B, 4 N‘/z)(x - i).
'.‘I’herefore. if in BEq. (11) a single-pcle term is taken iiterany as the tota.l
amplitude. one obtains a reaonance cross section that ia approximately
given by 1/[(E-Er) + (F/Z) ]. If we take one of the -energy poles only,
the resonance shape becomes l/[(EwEr - mé)z + /I‘/ﬂ. Buch a resonance
can be of importance oniy if the curvature at ehé turning pdint is sman
No examples 61’ resonances of this type are known at present, At any
rate, the virtual particles, although somewhat different in cha.racter. .
~ are special manifeatations of the poles of the B-mtrix in the complex
a.ngular -momenmm plme. _ '

I should like to thank Proieseor Geoﬁrey F Chew for many

discussions, suggeations. and euccuragement. ,
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Parameters of the Regge poles a = a(qa) near threshold

q = 0.. Above threshold the irhagmary part of a behaves as

ay 5(!1@1/4@9 q. and the real part as °i1 = apl0) + -%{dzaR/dqz)qu. The
residue of the {:ole is essentially given Byﬁ(o), and al(s = o) will determine

the povée?t of the total cross section in the crosqed ehaxmel'e_..'

Pole agla =2 0) {da;/dq)y (d%ap/dq"), Blo) - als=0)
-1 (e 2 | -1
| {m ") (mwr ) (m ")
wew, 120% -1/16  1/8 -1/32 . -n/4 ~3/16
_ nep, ‘sob‘ -2.5%10"%  0.42 -0.39 . -2,87 --
n-p, %8, 6x107 .36 20.18 221 -
a. Evaluated from Eq (7) on the basis of a sca,tterm,g length

(aea reference 2) and an assumed range

Ry 1/2 m_"). Hore afe = 0) is evaluated from Eq. (10),

a®2m -1
N

8 = %{q + 1),
Evaluated from range and sca:tering parameters fitted by a

square-well potential {ses reference 3). For the triplet state,

the approximate expression for the position pf the trajectory at

the threshold is aR(q = 0) % {1/3) EBl/zro. ’wheré Ep is the

binding energy and r, the range of the forces (see reference 7).

0
The calculations for this case are :;onrelativiet‘ié.
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FIGURE LEGEND
Fig. 1. Trajectory of. the Regge poles near threshold. The real part
of a is plotted égainét {a)s = 4(q2 + 1) in the case of I = 0, for a
4w virtual particle, aad (b) qz in the case of n-p singlet and triplet
poles, ‘ ‘
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