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Executive Summary

A model reference adaptive fuzzy logic controller (MRAFLC) is designed and
simulated for a full-sized test vehicle to achieve control of the lateral motion of the
vehicle. The purpose of this research is to design a fuzzy logic controller (based on an
implicit model of the vehicle) such that changes in operating conditions are addressed in
the controller. The changes in operating conditions of interest include vehicle speed and
road surface conditions.

The structure of the FLC is modularized as a feedback and preview rule base.
The parameters of the FLC are tuned automatically using the MRAFLC adaptive tuning
scheme. The goal is to make the output of the closed-loop system, under fuzzy logic
control, follow a reference output, generated by a fuzzy system. The first step is to
define the FLC in a form that enables it to be adjusted on-line. Using Lyapunov theory a
supervisory control term is constructed such that the closed-loop system under fuzzy
logic control will maintain stability in the sense that the states of the vehicle are bounded
by a maximum value prescribed by the control designer. An additional Lyapunov
analysis is performed to place sufficient conditions on the stability of the adaptation law,
ensuring that the output error term is bounded.

The improvement of the performance in lateral motion control in the presence of
changing operating conditions using the MRAFLC control design is supported in
simulation. A detailed nonlinear model of the vehicle is used for simulation.
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1 Introduction

In this report a formulation is made for a model reference adaptive fuzzy logic
control (MRAFLC) algorithm and applied to automatic steering control of a vehicle. The
goal is to make the output of the closed-loop system, under fuzzy logic control, follow a
reference output, generated by a fuzzy system. This research is an extension of a manually
tuned fuzzy logic controller where the theory, design, and experimental results are detailed
in [2].

Motivated by a need for a systematic method to generate and modify fuzzy rule
based controllers gave rise to learning approaches. This approach began with the
self-organizing controller (SOC) [ 16,171. The SOC consists of two levels of fuzzy rule
bases. The first rule base is the standard fuzzy control rule base, which consists of control
inputs in the antecedents (“IF” part) and control outputs in the consequents
(“THEN” part). The second level contains a fuzzy rule base consisting of metu-rules,
which attempt to assess the performance of the closed-loop control system and
appropriately modify the standard fuzzy control rule base. Another interesting approach is
to conduct learning from information based on an inverse fuzzy model of the open-loop
system [8,9]. Several papers propose automated tuning methods for FLCs based on
neural networks [3,18], gradient methods [ 131, and genetic algorithms [4,14]. Although
these methods showed improvement over manually tuned FLCs, they usually treat one
design stage at a time.

Stable adaptive controllers are well established for continuous system
models [6,10,1 l] and discrete system models [ 1,121, using Lyapunov’s direct method to
ensure stability. With respect to fuzzy control systems, there has been limited research on
the stability of such systems [5,7], where the analysis assumes the existence of an explicit
mathematical model of the plant to be controlled. In the continuous time domain, an
interesting stability analysis was conducted by Wang for adaptive fuzzy controllers for
nonlinear systems which requires only parameter bounds of the plant to be controlled [21].

In the following sections the FLC law is defined and stability is discussed for the
vehicle modeled with the linear model (see appendix B). The control terms generated
from the fuzzy rule bases are implemented discretely, but the supervisory control term,
constructed such that the states of the vehicle remain bounded, must be implemented
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continuously. A method to adapt a FLC in the discrete time domain, following the
guidelines of Wang [21], is developed. The objective of this method is to adjust the
parameters of an existing FLC for a plant such that the output of the closed-loop control
system follows the output of a reference model. Although the linear model of the vehicle
is used for the MRAFLC formulation, the explicit parameters of this model are not
required for the adaptation. Only bounds on the model parameters are required in order to
achieve convergence of the error between the plant output and the model reference output
to a lower limit. The model reference output is generated by a fuzzy system. Finally, the
theory is supported by simulation results.

2 Stability Analysis

The objective of this section is to establish a condition such that stability of the
closed-loop system is achieved in the sense that the state variables are bounded. The
control law will be defined in a form that enables its parameters to be adjusted on-line, as
discussed in the following section. Then, a coordinate transformation will be performed
on the fourth order linear model of the vehicle (see appendix B). Using Lyapunov theory,
a supervisory control term will be constructed such that the states of the new coordinate
system will be shown to be bounded, thus, showing that the states of the linear model are
also bounded.

The stability analysis will refer to figure 1.

Vehicle Model

Figure 1: Closed-loop Control Block Diagram
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The feedback FLC term can be expressed as

where 8(k) E 5Rnr,  @X(k)) E Wr, with n, as the number of fuzzy rules, and t,v in figure 1 is
the sampling time. The choice of this form for s@(k) will be made clear in the

formulation of the adaptive method in the following section. A zero-order-hold (ZOH) is
used to generate 6,b (t) from sfl (k) . Thus, for {t 1 t,ykI t< t,(k+l)}, s,(t) =6,(k).

The state vector, x(t), for the vehicle is the input to the FLC, given by

x(t):=[x,, X2’ x3, XJ :=[y,, y,, e--E,, k-&JT . (2)

The discrete samples of x(t) taken at sample times of t.y, are defined as

ii(k) := x(fk) . (3)

The goal of stability is to specify an upper bound, M,, such that the Euclidean
norm of x(t) satisfies

II ()I1x t $l4,<-. (4)

The column vector 8(k) is defined as

e(k) :=-b,(k>}~,  =[e,(k), e,(k), . . . e,(k)]T . (5)

The ~1, x 1 vector 8(k) represents the singleton consequent values of each rule
(i.e., the s-th element of 8(k) is the singleton consequent value for the s-th rule). The
~1, x 1 function vector, @t(k)), consists of the information which describes all the

membership functions. Using the linear vehicle model, each of the four inputs to the FLC
is described by five fuzzy subsets or linguistic values. The number of fuzzy rules, n,,
combine multiplicatively and will be n, = 54 = 625. Let py (Ti(k)) denote a membership
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function which maps a scalar base variable into a range [0, 11, for the i-th input variable
(i = 1,2,3,4), and for the s-th rule (s = 1, . . . n,.).

The column function vector c( sZ( k)) is defined as

(6)

with the fuzzy basis function [20] defined as

for s = 1,2, . . . n, . (7)

The term fiCL;(x,(k))  ’ hm t e numerator is the rule truth (i.e., the degree to which
i=l

the s-th rule is true on a scale of [0, 11) of the s-th rule (the t-norm used is the product
rule). The denominator is a normalizing factor as it is the summation of all the rule truths.

Note that the following properties can be established:

5,(w) E [WI 7

[ l,l,..., l]c(SI(k)) = 1 , and
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In order to analyze the stability of the system, a model of the vehicle must be
defined. The fourth order linearized model developed appendix B without external
disturbances chosen for this purpose is described by the following differential equation:

C9)

or in matrix form

ir=Ax+b6,  , (10)

where A E 9l4x4 , b E ‘3’ are defined as in equation (9) and the individual elements are

defined in appendix B, with x(t) defined by equation (2).

Since the 4 x 4 controllability matrix [b Ab A2b A3b] is of rank 4, the

pair (A, b) is controllable and a coordinate transformation can be made such that the
system is in controllable canonical form. Thus, there exists a nonsingular matrix,
T E ‘34x4, such that a new coordinate system can be defined as

z ( t )  :=[z,, z,, z,, z,]’ :=Tx(t) . (11)

In the z-coordinate space, the dynamic equations become

i=A,z+b,6, , (12)
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where A, = TAT-l and bC = Tb. Explicitly, AC and b, are defined as

(13)

where b E % and ui for i = 1,2,3,4 are the coefficients of the characteristic polynomial of

the open loop plant, defined as

det(s1 - A) = s4 + u4s3 + u3s2 + u,s + a, .

Now the dynamics of the system can be described by the simplified expression

z,(~) = (-u4z4  - u,z, - a,z, - qz,) + b6, ,

(14)

(15)

where z,c4)  represents the fourth time derivative of z,.

Using the vehicle parameters defined in appendix B, the coefficients of
equation (15) are computed as:

a, = a2 = 0 )

a3 = 4cs2(2k2 +E,2)-ol  42J2) + 2c,(z2 -z,) ) and
mIzvx2 4

a4 =Z!jk($+!!+C)  .

The functionf(z(t))  is defined to be

(16)

f (z(t)) = -~[;+z~;z2Jz4-[
4CV2(2k2  +~22)-(4  42J2) 2CS(Z -I,)

mIzv,2 + ; lz3 . (17)



or

Thus, the dynamic equation becomes

Zl (4) = f( z( t)) + b6, .

Let a Lyapunov function candidate be defined as

v(z(t)) := +z(t)‘z(t) = +llz(t)ll;

v(z(t>)=+(zf +z; +zf +z;) .

Differentiating with respect to time yields

(18)

(1%

(20)

(21)

and the following inequality can be established:

where the substitution 6, = 6, (t) + 6,Y (x(t)) has been made (i.e., the input, 6,, to the

vehicle has a feedback FLC control term, s,(t), and a supervisory control term, 6,(x(t)) .

The next step is to construct a supervisory control term, &,(x(t)), such that if x(t)
ever reaches a boundary specified by IIx(f)l12 I M,, then v I 0 is always maintained,

keeping x(t) from going beyond this boundary. In order to accomplish this, some

knowledge about the parameter uncertainty bounds of the vehicle is required. Specifically,
an upper bound function, f”(z(t)), such that If( z( t))l < f” (z(t)), and a lower bound

constant, b,, such that 0 < b, I b, must be known. Since f(z(t)) and b are functions of
vehicle parameters, the precise values for the function, f ” (z( t)), and the constant, b,, can

be determined by using the extreme values of the vehicle parameters (i.e., of m, Z,, C,Y, I,,
I,, and vX), such that If(z(t))l I f”( z(t)) and 0 c b, 5 b are satisfied.
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Thus, knowing that b, > 0 and z(t) = TX(~), and assuming that Iz,J f 0, let the
supervisory control, 6,s (x( t)) , be defined as

~,yM~))  = -I,dz,  >
i
I$&)l+ ~z,z,l+~z,z,~  + Iz,l+lf”(z(t))~Iz Ib

1bL ’ (23)
4 L

where, for a specified constant v, I, is defined as

z, =
1; if V(z(t)) 2 V
0; if V(z(t)) c V ’

Examining v( z( t)) for the case of I, = 1 yields

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(24)

(25)

or

V(z(t)) IO . (26)

This ensures that if the initial conditions of z are such that V(z(0))  I v, then
V(z(t))  I V for all time. Thus, Ilz(t)ll, is bounded, and therefore Ilx(t)ll, = /~-‘z(t)ll~  is

bounded. If M, c 00 is specified to achieve IIx(t)l12 I M,, then this condition is ensured if

we take T (which is in terms of vehicle parameters m, Zz, (YV, Z,, Z,, and VJ and choose
extreme values of the vehicle parameters to obtain
hrmn((TL)TT,-l)~h,,((~-l)~T-l)  for all T.

a Tr such that
Then we must maintain z(t) such that

IIz(# 2 (Ln((Y >’ K-YM,, where h,,(Q) denotes the minimum eigenvalue of the

square matrix, Q. Thus, in the above formulation, v must be chosen such that
v = h,,,.((~-‘)‘~-‘)Mx2. The assumption that Iz,I + 0, is a valid assumption (except for

a set  with zero measure) since 6,V(x( t)) will only be implemented when

IIz($ = IlTdt>l12 = &&-l)i T-‘)M,, and since z, is a linear combination of x(t),

where x(t) # 0, z, will never be zero over a finite time interval.
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In order for this stability condition to be satisfied, the supervisory control term,
&,(x(t)), must be implemented continuously. Although the FLC feedback control term in
the time domain, 6, (t) , will jump due to the ZOH of the discrete implementation, the

states z(t) will remain continuous. Thus, the construction of 6,(x(t)) using Lyapunov

theory is valid.

3 Adaptive Problem Formulation

The block diagram in figure 2 shows the flow of signals for the model reference
adaptive fuzzy logic controller (MRAFLC). In the following section each block in the
diagram will be defined under the assumption that the physical plant to be controlled is the
vehicle modeled by the linear model (see appendix B). It should be noted that states of
the linear model will remain bounded by the continuous implementation of the supervisory
control term, 6,Y (x( t)) , as described in the previous section.

y,,,(k)

Vehicle Model

8(k)  = 8(k-1)  + y&i(k-1)) e(k)

Figure 2: Block Diagram of the MRAFLC

The purpose of the next analysis will be to derive an expression for the incremental
propagation of the state sequence, E(k), according to the above figure. Since the linear
system is described by ri = Ax + b6,, given by equation (lo), the solution of x(t) can be

written as

x(t) =e*‘x(O)+e*‘~~e-*‘bs,(z)dz . (27)
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Thus, the following two solutions can be written for consecutive samples of x(t):

~(t,~k) = eA’jkx(0) +eA~~‘~~te-A’bG,(~)dz and (28)

X( t,v (k + 1)) = eAf’(k+l)~(  0) + eA~~(k+1)6:‘(Xt1)e-A~b~,  (z)& . (29)

Multiplying both sides of equation (28) by eAts and subtracting the result from
equation (29) yields, after some manipulation,

f&k+‘)
~(t,~(k+l))=e*‘~x(t~~k)+e*‘~(~“)~~  e-*‘bG,(z)&

s (30)

or

x( t,y (k + 1)) = eAfsx( gk) + I,,‘,(k+l)e*(r,(k+‘)-r)b~~(~)~~ . (31)

By a suitable choice for a change of variables, CJ = ts(k+l)-z,  the integral term can

be modified to form

~(t,(k+l))=e*“x(t,~k)+~~e*“bG,(t,~(k+l)-cr)& . (32)

Since 6, has two components, s,(t) = s,(t) +6,V(x(t)), and for s,(t) = 6,(t,k)

for {t I t,yk I t < t, (k + 1)) from the ZOH, we have

x(~~(k+1))=eA”x(t,~k)+(~~eA~~~)Gf,(t,~k)+~~eA”bG,(t,(k+1)-o)~~  . (33)

Let x and b be defined such that

(34)
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The model of the plant to be controlled can be expressed as a propagation of a
sequence, E(k), where the sampling time is f, and noting that zfh (k) = 6, ( t,vk),

SZ(k+l)=~~(k)+iiG,,(k)+~~e*“bG,(r,(k+l)-o)da and

y,(k) = cx(k) , (36)

(35)

where x E %4x4, 55E%“,cE9X4,andF(k)E914,yp(k)E%.

The terminology for the coefficients of A, b, and c are defined as

A := {?&} (i-th row for i = 1,2,3,4, andj-th column for i = 1,2,3,4) ,

----
bT :=[b,,b,,b,,b,] , and

c := [O,O,O,l] , (37)

where 6, and qj are scalars which depend on the vehicle parameters and operating

conditions.

The sampled state vector for the vehicle is given by

Recall that the feedback controller can be expressed as

6,(k) = e’(k)@X(k))  , (39)

where CI( k) E Wr , c( X( k)) E Wr, and nr is the number of fuzzy rules.
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The adjustable column vector 8(k) is defined by equation (5), and the function
vector 6(X(k))  is defined by Eqns. (6) and (7). The membership functions are assumed to
be fixed during adaptation. Therefore, the vector &,(x(k)) is not adapted in this
formulation. The purpose of adapting 0(k)  and not adapting 5(x(k))  will be clear in the

Lyapunov analysis where we show the convergence of the output errors to a lower limit in
the MRAFLC.

The reference model is given by a fuzzy system, where n, is the number of fuzzy
rules, as

y,(k)  :=$@$k-1))  , (40)

w h e r e  y,(k)E 3, 6(X(k)) ’ d f dis e me as in Eqns. (6) and (7). The fuzzy system for the

reference model and the fuzzy system for control have the same input variables.
Furthermore, the function vector, t(SZ(k))  , and thus, the membership functions of the two

fuzzy systems are the same. This enables the algorithm to pinpoint which rules, along with
their respective firing strengths, are responsible for the error in output.

The column vector r\ is defined as

The model is designed by the control engineer. In the case of lateral motion
control, the designer considers a state of the vehicle one step in the past (i.e., at F(k - 1))

and decides on the proper motion of the vehicle in terms of the yaw rate. The designer
adjusts the consequent parameters, ‘t-l, such that a reference yaw rate is inferred from the

past state of the vehicle. Thus, the designer formulates a linguistic reference model,
incorporating such aspects as rise-time and damping, as well as strategy regarding how the
human would like the motion of the vehicle to move in order to address ride quality.
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Suppose there exists a control sequence 6* (k), (an ideal control sequence), such

that with control commands coming only from the FLC (i.e., S,Y(x(t))  = 0 for
{tl tskWq(k+l)}), y,(k+l)=y,(k+l). Then, we have from Eqns. (35), (36),

and (40)

yp(k+1)=c(~x(k)+b6*(k))=qT5(H(k))=y,(k+1) . (42)

Note by equation (37) we have

cii=ba, . (43)

Recalling the definition of an element of the i-th row and j-th column of A as A,,

we have

c~=[A,,,A,,,xJ4,] * (44)

Substituting Eqns. (43) and (44) into equation (42) and solving for 6* (k), we have

qT 5(X(k)) - $i4&
6*(k) = i=l

b,
(45)

where b4 > 0.

Since the definitions of the membership functions, &(x,(k)), and thus, 5(X(k)),

are fixed, the only adjustable parameter in the controller, equation (39), is 8(k). For
analytic purposes, we make a definition for the best choice of the parameter vector 8 as 8*,

by the following:

(46)

The choice of M,, can be considered a constraint on the desired control law (i.e.,

II II8” 2 5 M, < -) and is determined by the designer.
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Also, we define the minimum approximation error [21] as:

w(k) :=(e*)‘@K(k))-6*(k) . (47)

For analytic purposes, an upper bound on the magnitude of w(k) is denoted as wu,
defined such that

w” 2 supi ,,-,, $M w kIx* x I ( )I . (48)

The term wu represents the “worst case” resolution of the FLC. Theoretically, the
term w” can be made as small as desired by increasing the number of fuzzy subsets which
describe each linguistic variable, and thus, increasing the number of rules [ 191.

Using the control law of equation (39), the actual plant output becomes (see
Eqns. (35) and (36) )

ya(k+l)=c(;j;x(k)+be7(k)S(x(k))+~~eA~b~,~(t,~(k+l)-~)~~)  . (49)

Having defined the propagation of y,(k) and y,,(k), the next step is to form an
expression for the error propagation. An error equation is defined using Eqns. (40) and
(49) as

We add and subtract 6*(k) to get

e(k + 1) = qT 5(X(k)) -

Kx(k) +r;(e’(k)k(Z(k))  I ”+ o eA”b6,(t,v(k+l)-o)dc-S*(k)+S*(k)))
(51)
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or

e(k + 1) = qT 5(x(k))  - c&i(k)

-c~e’(k)5(SZ(k))+c~~eA”bB,~(t,~(k+1)-o)do+cb6*(k)-c~~*(k)  .
(52)

Using equation (47) to eliminate the first occurrence of 6* (k), we get

e( k + 1) = r\r @X(k)) - cKZ( k) - cb( e( k) - e*)T i$St( k)) +

cI,:‘eAab8,y(t,T(k+l)-a)da-cbw(k)-cb6*(k)  .
(53)

Substituting 6*(k) from equation (45), and noting Eqns. (43) and (44), we have

e(k+l) =q’c(i7(k))-c&(k)-b,(8(k)-8*)T5(F(k))

+c~~eA”bs,~(t,~(k+1)-o)do-b,w(k)-17TS(x(k))+c~~(k)  ’
(54)

Canceling terms and defining the vector e(k) := 8* - 8(k), we get the final

expression for the propagation of the error,

e(k+l) =64~r(k)~(~(k))-h,w(k)+c~~eA”b~s(ts(k+1)-cs)d~ . (55)

Note that if the closed-loop system satisfies IIx(t)l12 < M, for {t I t.vk I t < t,y (k + l)},

then S,(x(t))  = 0 for {t I t,k _< t < t,v (k + 1)} , and the error propagation term simplifies to

e(k+l)  =b,QT(k)@X(k))-h,w(k) . (56)

4 Lyapunov Analysis for Error Convergence

The purpose of this Lyapunov Analysis is to show that the magnitude of the output
error term approaches a positive lower limit, eL, specified by the control designer.
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Furthermore, a condition is placed on ‘y, a positive scalar parameter which determines the
rate of adaptation.

The analysis begins by defining a Lyapunov function candidate to include an
output error term, e(k), and an error term between the “best choice” for the consequent
vector and the actual consequent vector, $(k) := 8* - 8(k),

V(k) := e2(k)+ ‘T(k)‘(k) = e2(k) +$$(k)ll:  . (57)
Y

This Lyapunov function can be graphically visualized by V-level curves in figure 3.
A lower limit on e(k) is specified by the control designer denoted as eL. The role of e, is
that adaptation only occurs when Ie(k)l  > eL . The assumption is that if le( k)l I e, , then the

closed-loop produces an output close enough to the reference model output to satisfy
design specifications. The only restriction on eL is that it be larger than the component of
the output error term due to the limit on the degree of resolution of the fuzzy system used
for control. In other words, using a FLC to approximate an optimal control sequence,
F(k), we cannot expect to achieve error terms smaller than what the resolution of the FLC
will allow. This analysis will investigate what happens to V(k) when Ie(k)l  > e, .

>

e(k)

Figure 3: V-level Curves
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The forward difference function, AV(k) : = V(k + 1) - V(k), becomes

AV(k) = e2(k + 1) + cpw + Mk + 1) _ e2(k) _ @T(k)@(k) (58)
Y Y *

The following adaptation law is proposed:

@(k + 1) = Q(k) - y 5(x(k)) e(k + 1) . (5%

Noting that $(k) : = 8* - 8(k), this adaptation law corresponds to the adaptation

of 8(k) as seen in figure (2), given by

B(k+l)=B(k)+y@z(k))e(k+l)  . (60)

Substituting the adaptation law of equation (59) into equation (58), we have

AV(k) = e2(k + 1) + (~~(k)-YgT(x(k))e(k+1))(~(k)-y5(x(k))e(k+l))
v

_ e2(k) _ 4f(k)+(k)
Y

1
. (61)

Since cf(k)c(%(k)) = cT(S;l(k))@(k),  we have

AV(k) = e2(k + 1) + @‘(k)@(k) _ WI+-(k) 5(‘51@)) e(k + 1) +
Y Y

y2 k%(k)) 5(x(k)) e2 (k + 1)
and

_ e2(k) _ +T(k)@(k)
(62)

Y Y

AV(k) = e2(k + 1) - e2(k)

-2+T(k)5(K(k))e(k+l)+y~T(%(k))~(K(k))e2(k+1)  .
(63)

At this point, an intermediate Lyapunov analysis is performed to investigate the
term $(k). Consider a Lyapunov function



V (k) .= oT(k)e(k) = .-$(k)ll”9 . Y Y 2-

The forward difference function, AV$ (k) : = VQ (k + 1) - Vo(k) , becomes

AV,(k) = QT(k + I)@@ + 1) _ 4f(k)@(k)
Y Y *

As in the analysis for AV(k), we can arrive at

AV (k) = $f(k)@(k) _ 2Y@T(k)@x(k))e(k+1)
$ +

Y Y

y2 5’(Si(k))S(si(k))e2(k+l)  _ QT(k)@(k)
Y Y
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(64)

(65)

(66)

and

AV~(k)=-2~T(k)5(x(k))e(k+l)+y5’(x(k))S(Si(k))e2(k+1)  .  ( 6 7 )

It is assumed that we are achieving 11x( t)l12  < M, for {t ( t.vk I t c t, (k + l)}. If

II ()I1xt 2=A4x for any {t I t,?k  I t < t,v(k+  l)} then S,(x(t))  # 0 for some

{ It t,k I t < t,! (k + l)} and adaptation is turned off at this instance, k. Looking at the

second term of equation (67), -2Q*(k)~(E(k))e(k+l)  and noting that adaptation only
occurs when Ie( k + 1)I > eL , the goal is to show that 2$T(k)c(Z(k))e(k+1)  is always
positive. Knowing $(k) : = 8* - 8(k), we have

2QT(k)5(?Z(k))e(k+1)=  2e(k+l)5[(Bi*  -e,(k))&(E(k))] .
i=l

(68)

Suppose we have e(k + 1) > eL or, in other words, y, (k + 1) > y,,(k + 1). Due to

the relationship between $, and yP, (which represents the yaw rate of the plant since
c = [O,O,O,l]), e(k + 1) > eL implies that the actual feedback control term from the FLC,
sfh (k) , was less than the control needed to achieve y,(k). Thus, we have

s,,(k)= kei(k)ci(x(k))  <~e~(k)&(~(k))  , (69)
i=l i=l
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from which we can deduce that

cf(k)&,(E(k))  = &;(k)&(Z(k)) -$ili(k)ci(%(k))  > 0 . (70)
i=l i=l

Thus, we have

2$T(k)c(?i(k))e(k+  1) > 0 . (71)

If we suppose e(k + 1) < -eL, we can similarly deduce that

4+-(k)t(~(k)) < 0 . (72)

Thus, for every le( k + 1)1> eL, we have

2$T(k)c(X(k))e(k  + 1) > 0 . (73)

Returning to forward difference function, AV,(k) of equation (67), we can
establish that AV,(k) < 0 when

(74)

or recalling that c’( X( k)) c( X( k)) I 1 from equation (8)

(75)
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Noting that adaptation only occurs when le( k + I)) > eL , we can recall equation (56)

to establish the inequality

(cf(k)@E(k))l> let+ ‘)I - w”
b4” ’

(76)

where F4’ is defined such that g4” 2 b4 over the range of vehicle parameters and road

surface conditions and wu is defined in equation (48).

Thus, equation (75) is satisfied if

(77)

where % - w ’ > 0 as will be explained further in the analysis.
b4”

This condition states that during adaptation (which only occurs when
le(k + 1)1> eL) the term llQ(k)ll,  will decrease.

Returning to the Lyapunov function V(k) of equation (57), and its forward
difference function AV(k), last modified in equation (63), with the condition on y from
equation (77), AV(k) is bounded by

AV(k)Ie2(k+1)-e2(k) . (78)
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Now, assuming we achieve Ilx(t)/, < M, for {t I tsk I t < t, (k + l)}, we substitute

the expression for e(k+l) from equation (56) to get

and with the definitions of w” and G4”,

AV(k) ~(~~(lo’(k)S(jT(k))l+w”))2 -e2(k) (80)

Furthermore, since I$‘( k) 5(X( k))l 5 ll$(k>l12  /5( $k))JI, and Ilt(~(k))ll,  5 1 from

equation (8) we have

AV(k)&~(ll$(k)l12 +w”))~  -e”(k) . (81)

It can be concluded that AV(k) I 0 will occur when

e2(k) 2 (~~(l~‘(k)S(jT(k))l+W’))’ (82)

or

I&>1 2 %#b(k>l12 + bzw” e (83)
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Figure 3 can be supplemented by adding the line e(k) = &“IIQ(k)l12 + &“w”, to

obtain figure 4. It can be seen here that eL must be chosen such that eL 2 &“w”, because
the resolution of the FLC can not guarantee that Ie(k)l  < &“w” can be achieved.

>
e(k)

Figure 4: V-level Curves; Signal Flow

Arguments will be presented for the case when e(k) > 0, although symmetric
arguments can be made for e(k) < 0. Suppose that at some instance e(k) 4 e,. The error

is small, as desired, but may increase as the control system propagates. However, since
adaptation does not occur when le(k)l I eL , the term ll$(k)ll,  does not change.

Suppose that e(k) does increase such that at some instance e(k) > e,, so adaptation
does occurs. Satisfying the constraint on the learning rate, y, in equation (77), /@(k)ll, will

decrease. Although e(k) may decrease as desired, this Lyapunov analysis provides only a
sufficient condition that AV(k) I 0 if e(k) goes beyond the line e(k) = &” llQ(k)/, + 6:~“.
However, if e(k) does go beyond the line e(k) = &,“ll4(k)/, + &,“w”, the propagation of

e(k), given by equation (56), shows that e(k) will be pushed back to the line or to the left
of the line, e(k) = &“/$(k)ll, + 6:~“. This fact coupled with the fact that ll$(k)ll,  is

indeed decreasing at every propagation step, shows that in two propagation steps of e(k),
e(k) will also decrease. This decrease in e(k) will occur until le(k)l I eL. Thus, figure 5
shows the boundedness of e(k) and ll$(k)ll, denoted by the blackened region when the

system is initialized at either points 1 or 2, and furthermore, Ie(k)l  approaches eL. In
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addition, given sufficient excitation of the system, Il$(k)ll, will approach to the point where

the lines e(k) = e, and e(k) = ~~lI+(k)ll,  +b4-“w” intersect, which is at ~~$(k)l[,  = 5 - w”.
4

>
-eL eL e(k)

&“w  v

Figure 5: Error bounds

Note that if the system is at some instance at point 3 on figure 5, the propagation
of e(k+l) as given by equation (56), will push the point to the left of the line,
e(k) = &“)@)(I2 + &“w”, and the above arguments will apply.

A remark needs to be made about the assumption that ((x(t)(l, c M, for

{tl t,k<t<t,(k+l)}. If 11x(t)112=A4X forany {tl t,TkItct~y(k+l)} then 6,(x(t))#O  for

some ft I tsk I t < t.v(k + l)}. At this instance k, adaptation is turned off, since there is now

way to guarantee that ll$(k)ll,  will decrease at that instance. However, assuming that

IIxt 2( II = M, only on some time intervals {t I t,k < t < t, (k + l)} , then adaptation will occur

on the other intervals. Thus, the arguments above regarding propagation of Q(k) and e(k)

continue to hold. There appears to be a design tradeoff which depends on the choice of
44,. If M, is chosen to be larger, then llx(t)ll,  = 44, will only rarely occur, if at all.
However, the region where the states are bounded, ((x(t)ll, I M,, will also be larger. Thus,

it is more difficult for the FLC to approximate the optimal control, 6”(k), and the
adaptation will take longer.
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5 Application to FLC Vehicle Guidance

In this section the MRAFLC is formulated specifically for the feedback and
preview rule bases for lateral control of a vehicle. The adaptation for the feedback and

preview rule bases are not implemented simultaneously. The initial rule bases before
adaptation are the rule bases resulting from the manually tuned rule bases [2].

5.1 Feedback Rule Base

Figure 6 shows the block diagram for the feedback rule base adaptation scheme.

Of(k) = @(k-l) + yf cf (F(k-1)-x,(  k-l)) e(k)

Figure 6: Feedback MRAFLC Block Diagram

The feedback rule base investigated using this adaptation scheme uses full-state
feedback, equation (2), which has the following input variables:

r (1T, k 1 r Ykk) 1
x,(k)T(k):= _
x3(k)

%(t.A
= &k) - sd(t,k) *I Ji(t,k)-&(t,k)

(84)

10x, k
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The feedback fuzzy rule base infers a feedback front wheel steering angle
command given by

6,(k) = @‘(k) c+(k)) . (85)

The vector of fuzzy basis functions is given by

G36)

where nfi is the total number of feedback fuzzy rules in the rule base and 5: (X(k)) are

defined by

fiP~CziCk,)
t;@(k)) := n/l, i=‘4

@+(k))) fors = lT2’ ‘** n’ * (87)
i=l

The term &(x,(k)) is the membership function for the i-th input variable

(i = 1,2,3,4), and for the s-th rule (S = 1, . . . nJ. The membership functions for this

adaptation investigation are precisely defined in appendix A.

The adaptable consequent singleton parameters for the feedback rule base are
given by
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The MRAFW for the feedback rule base is designed to follow the relative yaw
rate, k,(t,sk)-~,(t,yk),  (’i.e., the actual yaw rate with respect to a desired yaw rate set by

the road curvature, Ed = vx
/

p ). The model is given by the following fuzzy system:

~,,(t,vk)-~,(t,vk)=qfT~f(~(k-l)-Z,(k-l))  .

where the consequent singletons of the model fuzzy system are given by

(89)

(90)

Recalling equation (59) and Q(k) : = 8* - 8(k)  the adaptation law for the feedback

rule base is given by

ef(k)=8f(k-1)+f~f(Z(k-1)-i7,(k-l))e(k)  , (91)

where the model reference error term is given by

e ( k )  :=(E,(t.~k)-~d(t,~k))-(~(t,~k)-~d(tsk))=~,(t,~k)-~(t,sk)  .  (92)



27

5.2 Preview Rule Base

The formulation for the adaptation of the preview rule base is similar to that of the
feedback rule base. The initial preview rule base before adaptation is the preview rule
base resulting from the manually tuned preview rule base of [2]. Figure 7 shows the block

diagram for the preview rule base adaptation scheme.

Processing-;Ifor t2
t,(k

PC ’ Pn

1

I’
I

vehicle location, vX -
e. (t,)) - kd (trk)

Figure 7: Preview MRAFLC Block Diagram

The preview rule base has only one input variable, the time for the vehicle to reach
the next curve transition, t2, defined as:

t,(k) :=
curve transition location - vehicle location

7
vx

(93)

where v, is the longitudinal velocity.
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The preview fuzzy rule base infers the parameters p, and p,, which are used in an
expression to calculate a preview front wheel steering angle command. The fuzzy systems

which determine p, and p, are given by

p,(k) = enT(kkP(t2(k))  - (95)

(94)

The expression to calculate a preview front wheel steering angle command, $, is
given by

The vector of fuzzy basis functions are given by

5+2(k)) := (5I)(t2(k))l~~ 7

(96)

(97)

where rzPr is the total number of preview fuzzy rules in the rule base, and cp( t*(k))  is

defined by

&‘(t,(k)) := p9(t2(k))

$‘(t,(k))
I=1

for s = 1,2, . . . nP, . (98)

The term p,‘(t,(k)) is the membership function for the input variable, t2, for the

s-th rule (s= 1, . . . nJ. The membership functions for this adaptation investigation are

precisely defined in appendix A.



29

bY

The adaptable consequent singleton parameters for the preview rule base are given

W(k) := {e:(k)):I; and (99)

en(k) :=-b:(k)};;  * (100)

The MRAFLC for the preview rule base is designed to follow the relative yaw
rate, k,,, ( t,yk) - id ( t,vk). The model is given by the following fuzzy system:

i,(t,vk)-Ed(tsk)=qpT~p(t2(k-1))  . W)

where the consequent singletons of the model fuzzy system are given by

The adaptation law for the preview rule base is given by

W(k)=8’(k-1)+yP~p(t2(k-1))e(k)  and

W(k)=W(k-1)+yP~P(t2(k-l))e(k)  ,

(102)

(103)

(104)

where the model reference error term is given by

e(k):=(~,(t.~k)-~,(t,~k))-(~(t,k)-E,(t,~k))=E,(t,k)--(t,~k)  . (105)

6 MRAFLC Simulation Results for Vehicle Guidance

In this section the simulation results of the FLC algorithms for lateral vehicle
guidance tuned by the model reference adaptive method (MRAFLC) are presented. The
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first section shows the results of the feedback rule base, and the second section shows the
results of the preview rule base.

6.1 Feedback Rule Base

The simulations for the feedback controllers are performed without using any
preview information. The model reference adaptive fuzzy logic controllers (MRAFLC)
are tuned for the feedback rule base during simulations where the vehicle starts at a
0.1 meter lateral error, and its lateral motion is regulated on a straight roadway. The
MRAFXC is being adapted continuously throughout the simulations at time steps of
0.01 seconds with an adaptation rate, y, equal to 0.6, which was chosen based on

performance of the simulations, and will be shown in the discussion of the simulation
results to satisfy the proper conditions. The specified limit of the output error term
(e = E, - i:, i.e., actual relative to modeled yaw rate) , eL, is specified as 0.01 rad/sec (see

section 4). The typical yaw rate magnitudes range up to 0.04 rad/sec. The term eL can
not be made too small as that would place an overly restrictive constraint on the
adaptation rate y, which as seen in section 4, must satisfy

(106)
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The term by, defined in the previous sections, (which is the upper bound of the

4-th element of the 4 x 1 column vector, b, discussed in section 2), is determined to be
gy = 0.4sec.? by using extreme values of vehicle parameters and road surface conditions.

As defined in section 2, w” is defined such that  for  the input  vector
E(k)=[y,(t,k),  Tr(t,yk), c(t,sk)-&Ed(t,yk),  i(t,k)-Ed(t,Yk)]7,with t,Y=O.Ol s e c o n d ,

SUPx  llill a4I 2 1
16’ - e*y(qk))l I w” ) (107)

qT 5(X(k)) - $%&Ti
where 6* = id

b, ’
of which 8*, r\, 5(X(k)) , &, and & are precisely

defined in section 2. Since the term 8* is not available, the term, w”, is estimated

numerically by

(108)

where the calculation of 6*1 -eT(k) S(‘j(k))l is performed after adaptation at discrete

points, sZj, where control action occurred. In the following simulations, a numerical

calculation of WV will be obtained using the term e(k) instead of 8”. Since e(k) approaches
8” during adaptation, the estimation of wU which satisfy the definition of w” is improved as
the adaptation progresses.

With specified or calculated values for eL, FJ, and w”, along with the largest value

of (&)( kta en as 0.035 rad/sec in the simulations, the choice of y can be justified in the

following simulations using equation (106). It can be noted in the simulation discussions
that the results consistently show that w” << eL/gF by a magnitude of 10, implying good

resolution of the FLC. The term M, is chosen large enough such that for the following
simulations IIx(t)l12 < M, is satisfied. This results in 6,s (t) = 0 for all t, providing a true test

of the quality of the fuzzy reference model and the validity of the convergence properties
of the MRAFLC discussed in the previous sections.

The effectiveness of this adaptation scheme to properly tune the controller is best
demonstrated considering the nominal speed of v, = 20.0 m/s, where the goal is to fine
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tune the controller. The effectiveness of the MRAFLC in addressing changing operating
conditions is shown by simulations of an increased vehicle speed to v, = 30.0 m/s, and of a
slippery road condition at v, = 20.0 m/s.

Figure 8 shows the simulation results for a “nominal” system, using the feedback
rule base of the FLC which uses the fuzzy controller with x1 as its input. The longitudinal
velocity, vX, equals 20.0 m/s, and the cornering stiffness for all four tires, C,, equals
42,000 N. The simulation results compare the responses of the original fuzzy logic
controller before adaptation, with the initial response of the adaptation method of the
MRAFLC on the feedback rule base. Furthermore, after the vehicle was simulated at
different initial conditions, allowing for approximately 20 seconds of adaptation, the
resulting response of the adapted MRAFLC is shown along with the FSLQ controller for
additional comparisons. The purpose of showing the response after 20 seconds of
adaptation is to demonstrate the capability of the MRAFLC to tune a roughly designed
FLC such that the adapted FLC improves its performance.

After the 20 seconds of adaptation, w” was estimated to be w” = 0.002 rad.,
resulting in a requirement of y < 1.4. Thus, the choice of y = 0.6 is justified. The worst
error measurement after the 20 seconds of adaptation was lel= 0.006 rad / sec., which

satisfies the specification of eL = 0.01 rad/sec. Observing the steering angle command
response, the adaptation method is seen to reduce the oscillations of 6,, which results in
smoother ride comfort as seen in the yaw rate and lateral acceleration responses. Also,
observing the tracking error response curves, the over damping characteristics of the
original rule base are eliminated by the adaptation method.

Figure 9 shows the simulation results of the comparison between the actual yaw
rate and the reference yaw rate generated from the model reference fuzzy system. From
this figure, the estimate of the error measurement after the 20 seconds of adaptation can
be observed to be lel= 0.006 rad / sec.
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FTC/No A d a p t i n g ; FLUMRAFLC  ( i n i t i a l )  - - - ;
FLUMRAFLC  (after adapting 20 sec.) ; FSLQ - - -

0 1 2 3 4 5 6

0.1

g3 0.05

I.5

2 0I-

3

-0.05
0

Time (set)

1 2 3
Time (set)

4 3 b

Time (set)

3
Time (set)

Figure 8: Closed-loop Simulation for FLC using x with and without adaptation by
MRAFLC, and FSLQ (nominal conditions)
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MRAFLC Reference - ; FLC(x,)/MRAFLC (after adapting 20 sec.) .,

1

0.5

3
-e 0
s
0
2
5 -0.5
*

-1

-1.5
0 62 3 4 5

Time (set)

Figure 9: Actual Yaw Rate Compared to Model Reference Yaw Rate

Figure 11 shows the simulation results to show the effect of choosing y to be too

large. The original rule base is the same original rule base used for the adaptation of the
“nominal” system in the previous simulation. The MRAFLC was tested by choosing y to
be 20, which violated the sufficient condition of y < 1.4. Observing the steering angle

command, the control system exhibits highly oscillatory, unstable behavior.

Figure 11 shows the simulation results for the vehicle traveling at a “high speed”.
At the simulation time of t = 0.5 seconds, the longitudinal velocity of the vehicle is
increased from v, = 20.0 m/s to v, = 30.0 m/s (with about a 1 second time lag) . The

original rule base is the same original rule base used for the adaptation of the “nominal”
system. As can be seen by the dotted line, the original FLC design, designed for lower
velocities, resulted in very large oscillations of 6,, which in turn, resulted in very
oscillatory behavior of the closed-loop system. Observing the steering angle command
response, the adaptation method is seen to significantly reduce the oscillations of 6,,
resulting in smoother ride comfort as seen in the yaw rate and lateral acceleration
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responses. Thus, it appeared that the adaptation required approximately 2 seconds to
achieve a smooth steering angle command.

Figure 12 shows the simulation results for the vehicle traveling on a
“slippery road”. At the simulation time of t = 0.5 seconds, the cornering stiffness is
decreased from C,V = 42,000 N to Cy = 24,000 N. Again, the original rule base is the same

original rule base used for the adaptation of the “nominal” system. Slippery road
conditions caused the closed-loop response of the original rule base controller to have
very large oscillations, as can be seen by the dotted line. Observing the steering angle
command response, the adaptation method is seen to significantly reduce the oscillations
of 6,, resulting in smoother ride comfort as seen in the yaw rate and lateral acceleration

responses, and improved tracking. Thus, it appeared that the adaptation required
approximately 2 seconds to achieve a smooth steering angle command, after the vehicle
encountered slippery road conditions.
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FLUNo Adapt ing ; FLUMRAFLC
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1, I
8
-g 0.5

@2 0
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2

-1 0 1 2 3 4 5 6
Time (set)

Figure 10: Closed-loop Simulation for FLC using x with and without adaptation by
MRAFLC with large y, exhibiting instability
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FLUNo A d a p t i n g  ; FLCIMRAFLC
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8WY
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0 1 2 3 4 5 6

Time (set)

0 1 2 3 4 5 6
Time (set)

Time (set)

Time (set)

Figure 11: Closed-loop Simulation for FLC using x with and without adaptation by
MRAFLC, (high speed)
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FLC/No Adapt ing ; FLUMRAFTLC

0 1 2 3 4 5 6
Time (set)

Time (set)

Time (set)

f “:” , , , , , ]
0 1 2 3 4 5 6

Time (set)

Figure 12: Closed-loop Simulation for FLC using x with and without adaptation by
MRAFLC, (slippery road)
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6.2 Preview Rule Base

In this section the preview controller using the MRAFLC is investigated. The
simulations are performed using preview information regarding upcoming road curvature.
The MRAFLC is tuned for the preview rule base during simulations where the vehicle
starts at a 0.0 meter lateral error, and regulating its lateral motion on the curved track of
figure 13. The feedback rule base of the FLC using the fuzzy controller with x as its input,
was fixed during the preview adaptation. The MRAFLC is being adapted continuously
throughout the simulation at time steps of 0.01 seconds with a adaptation rate, y, equal to
0.6. This adaptation scheme is demonstrated considering the nominal speed of
v, = 20.0 Ids.

Figure 13: Simulation Test Track

Figure 14 shows the simulation results for a “nominal” system. The longitudinal
velocity, v,, equals 20.0 m/s, and the cornering stiffness for all four tires, C,Y, equals
42,000 N. The simulation results compare the responses of the original fuzzy logic
controller before adaptation, with the initial response of the adaptation method of the
MRAFLC on the preview rule base. Furthermore, after the vehicle was simulated over
five curved sections, which is 10 seconds of adaptation since there is a 1 second preview
window for both the beginning and end of each curve, the resulting response of the
adapted MRAFLC is shown along with the FSLQ controller for additional comparisons.
The purpose of showing the response after 10 seconds of adaptation is to demonstrate the
capability of the MFWFLC to tune a roughly designed preview FLC such that the adapted
FLC improves its performance. Observing the lateral error response, the tracking
performance is improved as the preview rule base is adapted. The overshoot at curve
transitions is reduced and the average lateral error around the curved sections is reduced.
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FLC/No Adapting ; FLUMRAFLC  ( i n i t i a l )  - - - - ;
FLUMRAFLC  (after adapting 5 sec.) ; FSLQ - - -

4 5 6 7 8 9 10
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Figure 14: Closed-loop Simulation for FLC using x with and without adaptation by
MRAFLC, and FSLQ/Prev. (nominal conditions)
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7 Conclusion

An adaptive scheme of tuning the closed-loop control system was developed based
on a model reference. The overall adaptive control system is called a model reference
adaptive fuzzy logic controller (MRAFLC). The adaptation of the controller parameters
by the MRAFLC is conducted on-line. The goal of this method is to adjust the parameters
of the controller such that the output of the vehicle follows a desired output. The desired
output is generated by a fuzzy system which has as its inputs, the states of the vehicle in
the past, and as its system output, the desired output of the vehicle.

The simulation results showed that the adaptation law can shape the response of
the closed-loop system to follow the response of a reference fuzzy system. A Lyapunov
analysis was used to investigate the existence of a bound on the error between the desired
and actual output of the closed-loop system. The results provided conditions on the
adaptation law such that bounds on the output error could be achieved.
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Appendix A: Membership Definitions

NIL

-. 3 0 y (meters) .3

NIL

-.os 0 E - 5 (radians) .05

NIL

-.I5 0 j (metershec)
.I5

NIL

-.18 0 k -i (radianskec) .18

Figure A.l: Membership Functions, /.L for x

0 t 2 (seconds) 1

Figure A.2: Membership Functions, /J, for t2
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Appendix B: Linear Model of Vehicle

The linear model is derived by linearizing the nonlinear model [ 151, retaining only
the motions of lateral translation and yaw rotation. The required assumptions are as

follows:

1.

2.
3.

4.

the roll, 4, and pitch, 8, rotational motions and the vertical, z, translational motion can lx
neglected,
the longitudinal velocity, vx, of the vehicle is constant,
the side slip angle, p, and error in yaw angle, E - Q, is small (note that nd is dependent on the
road geometry, and
the super elevation, 1: and gradient, A, angles in the roadway are small.

Figure B.l shows the schematic of the linear model of the vehicle relative to the
reference roadway.

Figure B.l: Schematic of the Linear Model
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The nomenclature for the linear model is reduced to the following:

Y, :
E:
E, :

v, :

PI
6, :
m :

I, :

444) :

cl,Kr) :

lateral displacement of the vehicle c.g. from center of road
yaw angle displacement of the unsprung mass of the vehicle
desired yaw angle displacement of the vehicle, set by the road reference
vehicle speed in the longitudinal direction
radius of curvature of the road
actual front wheel steering angle
mass of the vehicle
moment of inertia of the sprung mass in the z direction
distance from the c.g. to the front (rear) axle
cornering stiffness of the front (rear) tires

The linear model can be expressed as a fourth order equation in state space form as

follows:

where

2csfB, = - , and
m

,

A
2

= @2cl,r - Kvf ) .
m




