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ABSTRACT OF THE DISSERTATION 
 

Identification of Context-Specific Genomic Regulatory Mechanisms Contributing to Human 

Cardiometabolic Disorders 

 

by 

 

Kristina Marie Garske 

Doctor of Philosophy in Human Genetics 

University of California, Los Angeles, 2021 

Professor Päivi Elisabeth Pajukanta, Chair 

 

Obesity is an important driver of many cardiometabolic disorders (CMDs), including type 

2 diabetes (T2D) and multiple types of dyslipidemias. Genome-wide association studies 

(GWAS) have identified genetic variants associated with body mass index (BMI) in humans, but 

the genes and genomic regulatory mechanisms underlying these associations are not well-

understood. Furthermore, gene-environment interactions (GxEs) likely play a role in driving the 

population variance in BMI, as well as downstream comorbidities. Understanding the biology 

underlying genetic associations requires studying the relevant cell- and tissue-types, as variants 

will likely only function in cell-types in which they regulate gene expression. However, 

determining in which cell-types and under what environmental conditions the variants function is 

not a trivial task. Functional fine-mapping of individual loci is laborious and time-intensive. This 

issue has produced a bottleneck in understanding the hundreds of loci that have been associated 

with CMDs. One way to prioritize strong candidates for future characterization of gene function 
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is to first fine-map the cell- and context-specific genomic regulatory mechanisms through which 

variants function, thereby providing evidence of the variant having a role in a given context. 

Adipose tissue is the main site of fat storage in the body, and is thus highly responsive to the 

obesogenic environment. It must expand to accommodate excess nutrients, and it produces 

signaling molecules that regulate food intake and energy expenditure. Thus, genetic variants that 

regulate these and other important adipose tissue processes likely play a role in the etiology and 

pathophysiology of obesity.  

The projects in this dissertation were designed with the goal of identifying genes and 

genomic regulatory mechanisms underlying the genetic risk for obesity and related 

comorbidities. I studied the key adipose tissue cell-types that are responsible for energy 

homeostasis: adipocytes, the energy-storing fat cells, and their progenitors, preadipocytes. In the 

second chapter, we fine-mapped BMI GWAS variants to those that are likely functioning in 

adipocytes. We performed promoter Capture Hi-C in human primary adipocytes to identify the 

physical interactions between gene promoters and their regulatory elements. We then linked the 

BMI GWAS variants to adipose gene expression by identifying cis-eQTLs in 335 subcutaneous 

adipose tissue biopsies from the METabolic Syndrome In Men (METSIM) cohort. By screening 

the adipocyte-specific promoter-interacting regions for these variants, we identified four 

examples of BMI GWAS variants and 38 additional candidate genes that likely function in 

adipocytes via promoter interactions to affect BMI in humans. 

Work in the third chapter was motivated by the hypothesis that GxEs affect adipose tissue 

expansion and thus contribute to variation in BMI. Given the known correlation of high dietary 

saturated fat intake with BMI, I sought to extend this knowledge and demonstrate that causal 

genomic regulatory mechanisms in response to saturated fat intake in adipocytes affect variation 
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in BMI. Genetic variants exhibiting significant interaction effects are difficult to detect in 

humans, for reasons including the multiple-testing burden for genome-wide GxE scans and the 

heterogeneity of our environments. To circumvent these issues, I first performed a controlled, in 

vitro treatment of human primary adipocytes with dietary saturated or monounsaturated fatty 

acids. I quantitatively assessed the genomic responses to this lipid challenge via changes in the 

accessible chromatin landscape in the adipocytes. Only the genetic variants that landed in the 

lipid-responsive genomic regulatory elements were selected for a GxE scan in the large UK 

Biobank (UKB) cohort. By prioritizing and restricting the GxE search space in this way, we 

identified 38 significant GxE variants that exhibit adipocyte-origin genomic regulatory 

mechanisms responding to dietary saturated fat to affect BMI in humans. 

It is important to address not just the etiology of obesity, but its pathophysiological 

mechanisms as well. A pro-inflammatory environment develops in the adipose tissue in obesity, 

which is then thought to contribute to systemic low-grade inflammation and downstream obesity 

comorbidities. In chapter four, I leveraged a BMI-discordant monozygotic (MZ) twin cohort 

(DBMI³3 kg/m2) to determine the contribution of preadipocyte genomic dysregulation to 

systemic inflammation in humans. Preadipocytes can mount an immune response to the pro-

inflammatory signals from adipose tissue macrophages, at the expense of differentiating into 

adipocytes. However, the mechanisms underlying this dysregulation are not fully known. 

Furthermore, it is not clear whether the preadipocyte mechanisms are causal for inflammation, or 

simply reactive to the environment. By studying the chromatin accessibility and gene expression 

profiles in the MZ twin PAd, I showed that increased BMI alters the higher-order genomic 

programming of PAd. The reprogrammed regions exhibit a stronger accumulation of low p-value 

GxE variants that interact with BMI to affect the inflammatory marker C-reactive protein (CRP) 
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in the UKB, thus providing evidence of PAd-origin genetic and genomic mechanisms 

contributing to systemic inflammation in humans.  

In summary, by integrating various levels of epigenomic, transcriptomic, and genetic 

information across multiple cohorts with deep phenotyping, we have prioritized genes and 

genomic regulatory mechanisms in human adipose tissue cell-types that are important for obesity 

and obesity pathophysiology. The improved molecular understanding of genetic causes and 

GxEs underlying obesity and its comorbidities will inform prevention and treatment methods in 

precision medicine, toward reducing cardiovascular disease risk in humans.  
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Chapter 1  

 

Introduction and background 
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1.1 Obesity and cardiometabolic disorders 

Obesity is associated with an increased lifetime risk of cardiovascular disease (CVD) and an 

increased prevalence of type 2 diabetes (T2D), hypertension, and multiple types of dyslipidemias 

(Virani et al., 2021). The CDC estimates that ~40% of United States adults are obese, with ~70% 

of adults being at least overweight (Virani et al., 2021). Obesity is defined as having a body mass 

index (BMI) >30 kg/m2, and overweight as 25<BMI<30. Obesity is a complex trait that develops 

as a result of genetic and environmental factors, as well as their interactions. Some of the 

complexity in understanding obesity comes from incomplete knowledge of which factors are 

causal and which are reactive to the metabolic dysregulation present in the disease state. Various 

metabolic abnormalities are associated with each other and can affect each other bidirectionally, 

which can make it difficult to differentiate causation from reaction (Hotamisligil, 2006; 

Nordestgaard et al., 2007; Tchang, Saunders and Igel, 2021). Both causation and reaction 

mechanisms contribute to disease, but methods for identifying them and the biological 

implications of the results may be different. Because our genetics are set at birth, genomic 

approaches using genetic variants can help provide evidence of causality. This will be discussed 

in section 1.2 below. On the other hand, the effects of obesity on the development of other 

CMDs and some cancers (Fock and Khoo, 2013) clearly highlight the need for understanding the 

pathophysiological mechanisms that occur in obesity to drive these comorbidities, including the 

body’s response to the obese state. This will be discussed in section 1.4 below.   

 The cause of obesity can be mainly attributed to higher energy intake than energy 

expenditure, leading to the storage of this excess energy as fat in the adipose tissue. Exceptions 

include hypothyroidism, Cushing’s disease, growth hormone deficiency, and some medications, 

among others (Fock and Khoo, 2013). The most commonly prescribed treatment for class I 
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obesity (30 kg/m2<BMI<35 kg/m2) is a healthy diet and exercise (Fock and Khoo, 2013; Tchang, 

Saunders and Igel, 2021). However, this regimen is difficult for patients to comply with, in an 

environment that makes unhealthy food more affordable and accessible than healthy food, 

combined with the relatively sedentary lifestyles of Western or urban cultures. Insights from 

genetic studies surrounding the biological mechanisms that drive obesity can aid in the 

development of treatments, which can be combined with diet and exercise plans to reduce the 

prevalence of obesity.  

Defining obesity as a state of disease can be complicated. The cut point of a BMI>30 

kg/m2 to define obesity is sensitive to differences in ethnicities and the lean-to-fat mass ratio 

(Virani et al., 2021). Not everyone with a BMI at or above this cut point will exhibit 

metabolically unhealthy profiles (e.g., insulin resistance or dyslipidemias) (Blüher, 2020). This 

may be due to a delay in the development of obesity comorbidities, rather than the complete 

protection from them (Blüher, 2020). One of the main and initial indicators of poor metabolic 

health in obesity is chronic low-grade inflammation, which is thought to originate at least in part 

as a result of pro-inflammatory signals from adipose tissue in response to chronic overnutrition 

(Hotamisligil, 2006). However, the mechanisms underlying the initial pro-inflammatory state are 

unknown. Given the close link between inflammation and the development of obesity 

comorbidities, the identification of drivers of the initial inflammatory state in obesity is of 

particular importance (Hotamisligil, 2006).  

In summary, obesity is a complex trait that develops as a result of both genetics and 

environment, plus their interactions. It is associated with an increased risk for CMDs and CVD 

(Virani et al., 2021). The alarming prevalence of obesity and overweight in the U.S. strongly 
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urges the development of additional treatment and prevention options to reduce obesity rates and 

related cardiovascular risk.  

 

1.2 Genome-wide association studies and the biological underpinnings of obesity 

Estimates for the heritability of BMI range from between 30 and 75% (Virani et al., 2021). In 

one of the largest genome-wide association studies (GWAS) for BMI to date, 97 genome-wide 

significant (GWS) variants were deemed to account for only 2.7% of the variance in BMI (Locke 

et al., 2015). Even when the contributions from all HapMap3 SNPs are assessed, only 31-54% of 

the heritability of BMI can be explained (Locke et al., 2015).  

Despite the small amount of variance explained by individual variants contributing to 

BMI, polygenic risk scores (PRSs) developed using either just 97 GWS variants (Locke et al., 

2015), or the genome-wide summary statistics from the same GWAS from Locke et al. (Khera et 

al., 2019), showed a significant positive correlation between high PRS groups and the true mean 

BMI of the individuals in that group. Furthermore, Khera et al. showed that the individuals in the 

highest decile of the BMI PRS are at an increased risk of having type 2 diabetes (72% increased 

risk), hypertension (38% increased risk), or coronary artery disease (28% increased risk). 

Importantly, the main clinical utility of a PRS lies in the prediction power and the availability of 

a treatment or prevention plan based on those predictions. The utility of a BMI PRS may 

currently be limited by the existence of few prevention and treatment options aside from diet and 

exercise. Thus, fine-mapping of BMI GWAS loci to understand the causal mechanisms 

underlying obesity and related CMDs is necessary for the development of additional, 

personalized treatment and prevention plans.  
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Most GWAS variants are located within non-coding regions of the genome, which 

suggests altered gene regulation, rather than changes in the amino acid sequence of the protein, 

as a mechanism largely contributing to the etiology of complex traits (Maurano et al., 2012). In 

the simplest form of gene prioritization in a GWAS locus, the index gene is the nearest gene to 

the associated variant, or a candidate gene in the locus with prior knowledge indicating it might 

be relevant for the associated trait. However, the nearest gene is not always the most likely 

causal gene at the locus. To fine-map GWAS loci, a number of factors must be considered. First, 

linkage disequilibrium (LD) among genetic variants occurs as a result of low recombination 

frequencies between variants that are located close together on the linear genome. This causes 

them to be inherited together and leads to a correlation in genotypes among the variants in LD. 

This means a GWAS variant “tags” other SNPs that are in tight LD (usually defined as R2>0.8) 

with it, making it difficult to uncover which variant(s) is the true causal variant underlying the 

GWAS signal.  

Second, demonstrating the causality of the gene(s) through mechanistic studies is 

important but time-consuming and laborious. GWAS provide the first clues that some gene or set 

of genes in an associated locus are important for a trait, yet there remains a lot of work to be 

done to truly identify and confirm causal mechanisms. Prioritizing one or a very small number of 

genes for the mechanistic studies at a GWAS locus is thus an important goal. 

Third, the highly polygenic nature of complex traits has led to the identification of tens to 

hundreds of associated loci in well-powered GWAS for different traits, making a locus-by-locus 

approach to following up GWAS inefficient. There has been a huge effort to define the genome-

wide gene regulatory landscapes (functional genomics, i.e., histone modifications and 

transcription factor binding) and assess the effects of genetic variation on these molecular 
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signatures across human cell and tissue types (Dunham et al., 2012; Roadmap Epigenomics 

Consortium et al., 2015). These data provide an essential genome-wide, biological layer of 

information between a GWAS signal and the downstream mechanistic gene studies. They not 

only provide clues as to which cell-types may be functioning in disease, but they can also aid in 

the filtering of many variants in LD with each other, by restricting to only those variants that 

land in the functional elements. Converging evidence from the integration of various levels of 

these functional datasets can be a powerful way to identify highly likely causal mechanisms at a 

locus, which can then be assessed at the gene mechanism level. 

In summary, GWAS have revealed that complex traits are affected by genetic variants 

with very small effects on the population variance in the trait. Most of these variants are 

implicated in gene regulation, given their enrichment in non-coding, functional elements of the 

genome (Maurano et al., 2012). Demonstrating the causality of a given variant or set of variants 

in a trait-associated locus is time-consuming and laborious, and given the number of associations 

for these traits, fine-mapping on a locus-by-locus manner is prohibitively slow. Instead, 

functional genomics assays provide a more high-throughput functional fine-mapping approach to 

identify strong molecular priors for genomic regulatory mechanisms and gene pathways that lead 

to disease. 

 

1.3 Functional genomics and cellular genomic programming 

As GWAS strongly implicate gene regulation in the genetic etiology of CMDs and other 

complex traits, a burst of technologies that use high-throughput sequencing approaches to assay 

for functional elements in the genome has dominated recent advancements in genetics research. 

These functional elements range from local epigenetic signatures that drive or inhibit gene 
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expression to the higher-order genome structure. The combined effects of these functional 

elements ensure that genes are properly expressed for cells to perform their specialized functions. 

This is referred to as cellular genomic programming, and it is hypothesized that many GWAS 

variants act through altering these mechanisms, discussed in section 1.2 above.  

One mechanism that is important for gene regulation is the physical interactions of distal 

regulatory elements with their target gene promoters (Mifsud et al., 2015; Schoenfelder et al., 

2015). To identify these interactions, various forms of chromosome conformation capture (3C) 

techniques have been developed (Grob and Cavalli, 2018). Hi-C is a variant of 3C that involved 

the high-throughput sequencing of all interactions at the genome-wide level (Lieberman-Aiden et 

al., 2009). This is powerful as it provides an agnostic view into the genome-wide organization of 

the chromatin. Because Hi-C libraries essentially represent the entire genome, it is expensive to 

sequence deep enough for high resolution and regional enrichment of regulatory sequences. This 

makes Hi-C better suited for understanding the higher-order regulatory environment at genomic 

loci, rather than individual gene regulation (Lieberman-Aiden et al., 2009; Schoenfelder et al., 

2015). This includes identification of blocks of regions that tend to self-interact, topologically 

associating domains (TADs) (Dixon et al., 2012; Nora et al., 2012); or the broadly active (A) and 

inactive (B) compartments that the genome is separated into (Lieberman-Aiden et al., 2009; Rao 

et al., 2014). While TADs have been shown to be largely invariant across cell-types and even 

across species at megabase-scale (Dixon et al., 2012), the A/B compartments have been shown 

to be more cell-type-specific (Dixon et al., 2015). Extensive A/B compartment switching occurs 

across differentiation and exists between cell-types (Dixon et al., 2015), suggesting that they 

represent functional regulatory units. However, we cannot reliably predict the expression level of 

an individual gene solely based on it landing in an A or B compartment, suggesting that A/B 
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compartments reflect only broad differences in the underlying gene regulatory activity in a locus 

(Lin et al., 2012; Dixon et al., 2015). Furthermore, current costs of sequencing have precluded 

the ability perform these experiments in large cohorts, and so we do not know if genetic variants 

affect this level of genome organization. Characterization of the individual gene regulatory 

mechanisms is thus still a necessary step for fine-mapping trait-associated genetic loci. 

Promoter Capture Hi-C (pCHi-C) is an extension of the Hi-C experiment that uses DNA 

hybridization and pulldown to enrich the genome-wide interaction data for those interactions that 

involve promoters, and thus are likely important for local gene regulation (Mifsud et al., 2015; 

Schoenfelder et al., 2015). Early pCHi-C studies showed that these interactions are enriched for 

regulatory histone marks relative to non-interacting regions and for the motifs of transcription 

factors (TFs) that are relevant for the studied cell-type (Mifsud et al., 2015). Furthermore, it was 

shown that genes that are involved in pCHi-C interactions in a given cell-type are more highly 

expressed on average in that cell-type than genes not involved in interactions (Schoenfelder et 

al., 2015). This suggests that promoter interactions identified through pCHi-C represent an 

important mechanism in local gene regulation, and that they can be used as a way to fine-map 

genomic regulatory mechanisms at a locus. However, similar to Hi-C data, it is unclear whether 

genetic variants would affect the pCHi-C interactions themselves, given that the cost of creating 

and sequencing the libraries has prevented the creation of pCHi-C datasets in large numbers of 

individuals so far. Instead, it is likely that genetic variants within the interactions affect the gene 

regulatory element that is being brought into contact with its target promoter via the interactions.  

Gene regulatory elements need to be accessible to DNA-binding proteins that modulate 

gene expression, such as TFs and chromatin modifiers. The major exception is for pioneer 

factors, which are known to bind inaccessible DNA and recruit chromatin modifying enzymes to 
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unwind the DNA from histones and make it accessible for downstream transcriptional regulation 

(Cirillo et al., 2002). In general, however, the accessible chromatin landscape in a cell can be 

viewed as the collection of putative gene regulatory regions for that cell-type. The Assay for 

Transposase-Accessible Chromatin (ATAC) -sequencing (Buenrostro et al., 2015) is a method to 

identify accessible chromatin elements in the genome. It is quick to perform and relatively 

affordable to sequence, which has contributed to its widespread use across biomedical and basic 

science research (Yan et al., 2020). Trait-associated genetic variants are enriched in accessible 

chromatin regions (Maurano et al., 2012), which strongly supports the use of chromatin 

accessibility assays in profiling a cell-type’s gene regulatory landscape as it pertains to disease.  

Cellular genomic programming represents the unique combination of epigenetic marks 

that enable both general and cell-type-specific genomic regulatory mechanisms to function. 

These mechanisms ensure that genes are expressed at the correct level at the correct time. Two 

functional genomics marks that are useful in characterizing these genomic regulatory 

mechanisms are promoter interactions and accessible chromatin. The combination of multiple 

layers of functional genomics assays will enable a more refined understanding of the cell-type-

specific mechanisms that function in genomic loci that are associated with obesity and related 

comorbidities.     

 

1.4 Adipose tissue and obesity 

Obesity develops as a result of increased energy intake relative to energy expenditure. GWAS 

variants for BMI are strongly implicated as likely functioning in brain regulatory regions (Locke 

et al., 2015), suggesting that genetic risk for increased BMI acts in large part through neural 

pathways and behavioral mechanisms. Metabolic pathways that function in adipose tissue, such 
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as lipid biology and adipogenesis, were also implicated as putative mechanisms functioning in 

the BMI GWAS loci (Locke et al., 2015). Importantly, crosstalk between the brain and adipose 

occurs via signaling molecules (adipokines) from the adipose tissue, depending on the metabolic 

status of the body (Cercato and Fonseca, 2019). These signals help the brain know whether food 

seeking behavior is needed or not. Furthermore, dysfunctional adipose tissue associated with 

obesity is implicated in a number of metabolic abnormalities such as altered adipokine signaling, 

insulin resistance, and inflammation (Ghaben and Scherer, 2019). Thus, altered adipose tissue 

gene regulation is likely important for driving mechanisms in both increasing BMI and obesity 

comorbidities.  

The cell-type composition of adipose tissue is heterogeneous. Adipocytes are the fat 

storing cell that must take up fatty acids from the bloodstream and store them as triglycerides in 

response to feeding. In response to fasting, adipocytes will initiate lipolysis pathways to release 

fatty acids for energy throughout the body. Adipocytes release adipokines that are responsible for 

maintaining energy homeostasis throughout the body (Ouchi et al., 2011). For instance, leptin, 

which is an adipocyte-specific adipokine, is a satiety signal from adipocytes to the brain (Ghaben 

and Scherer, 2019). Rare variants in leptin are associated with monogenic forms of obesity 

(Huvenne et al., 2016), highlighting the importance of the adipocyte-brain signaling loop.  

Both adipocytes and their progenitors, preadipocytes, secrete pro-inflammatory cytokines 

and are responsive to inflammatory signals (Constant et al., 2006; Lacasa et al., 2007; Poulain-

Godefroy and Froguel, 2007). However, in the mouse 3T3-L1 cell line model of adipogenesis, 

preadipocytes express a higher basal level of IL-6 than adipocytes (Poulain-Godefroy and 

Froguel, 2007). Given that IL-6 is one of the main cytokines that stimulates the production of 

CRP by the liver, this suggests an important role for preadipocytes in the chronic low-grade 
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inflammation seen in obesity. Furthermore, preadipocytes exhibit impaired differentiation in 

vitro in response to the inflammatory secretome produced by macrophages (Constant et al., 

2006; Lacasa et al., 2007). When preadipocytes do not differentiate to make new adipocytes, the 

adipocytes that already exist must take up and store the excess fat in obesity. This leads to 

adipocyte hypertrophy, which may affect adipokine secretion and insulin sensitivity (Ghaben and 

Scherer, 2019), implicating a potential mechanism underlying the obesity predisposition to T2D. 

This suggests a link between preadipocyte differentiation, inflammation, and their dysregulation 

in obesity.  

Resident macrophages are present in the adipose tissue of both lean and obese 

individuals, but there seems to be a positive correlation between the number of macrophages and 

BMI (Ouchi et al., 2011). Furthermore, it is thought that in obesity, these macrophages are 

activated to a pro-inflammatory state (Ouchi et al., 2011). The initial mechanisms that are 

involved in this activation are not known. In addition, other pro-inflammatory immune cells 

involved in both the innate and adaptive immune system infiltrate the inflamed adipose tissue 

associated with obesity (Ouchi et al., 2011). Other functional cell-types in adipose tissue include 

vascular cells, fibroblasts, and mesenchymal stem cells (Ouchi et al., 2011), and they also 

respond to an increase in adiposity. For example, as adipocytes expand in obesity, they become 

hypoxic, which leads to an increase in profibrotic mechanisms in resident fibroblasts (Ouchi et 

al., 2011; Ghaben and Scherer, 2019). 

Taken together, a balance between the proportions of the many adipose cell-types and the 

inflammatory status of those cells is disturbed in obesity. Whether and which of these 

mechanisms are causal for obesity and related comorbidities is not well-understood. Adipocytes 

and their progenitors must sense the metabolic status of the organism and elicit downstream 
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signaling and differentiation pathways that are strongly linked to the inflammatory status of the 

adipose tissue.  

  

1.5 Prioritizing genetic variants for gene-environment interaction scans 

Because the cellular environment is always changing within an organism, gene expression needs 

to be constantly regulated to ensure that the cell can perform its necessary functions at any given 

time. Genetic variants landing in regions that mediate the genomic responses to environmental 

stimuli during normal cellular processes could cause the pathway response to be altered, and this 

is one mechanism that can be causal for a trait. However, while this is likely the underlying 

mechanism at a number of regulatory GWAS loci, showing causality still necessitates 

mechanistic studies for the gene. Thus, additional approaches can be used to prioritize regions 

that are truly causal for, rather than simply reactive to, a trait. To this end, genetic associations 

can be utilized to provide evidence of causality. By performing a gene-environment interaction 

(GxE) analysis, we can also test whether genetic variants mediate responses to certain 

environmental stimuli and contribute to the variance in a trait through those responses.  

Unlike traditional GWAS scans, which currently have the power to detect genome-wide 

significant signals (i.e., significant after correction for multiple testing), genome-wide GxE scans 

are underpowered at the current human cohort sizes (McAllister et al., 2017). One way to 

circumvent this issue is to prioritize candidate variants for testing, to reduce the multiple testing 

burden of a genome-wide scan. Often, variants are selected for GxE testing by identifying those 

that surround a candidate gene, selected either based on previous GWAS or knowledge of the 

gene function. However, this approach likely leads to the testing of many variants that have no 

actual evidence of being responsive to the environmental stimulus of study. Selecting variants 
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that exhibit evidence of functioning in the genomic signaling pathway in response to the 

environmental stimulus will help filter out those variants with no functional evidence attributed 

to them.  

Identifying variants with prior functional evidence of being involved in a genomic 

regulatory response mechanism is becoming more feasible with the continued decreasing cost of 

sequencing. Quantitative functional genomics assays, such as ATAC-seq, can now be performed 

in many individuals (Gate et al., 2018) or in different in vitro conditions (Ramos-Rodríguez et 

al., 2019) to show a correlation of an epigenetic mark with a trait or treatment, respectively. 

Variants landing within the regions that are altered can then be tested for GxEs to support a 

causal role for that environmental response in driving variance in the outcome trait of interest. 

This effectively reduces the multiple testing burden present in genome-wide GxE scans. The 

genes that are regulated by those variants then represent strong candidates for mechanistic 

studies to understand how our genes interact with our environment to affect risk for obesity and 

related CMDs.  

 

1.6 Integrating the current state of knowledge to this thesis 

The first chapter outlines the motivation and approaches taken in this dissertation for studying 

the genetic basis of obesity and related comorbidities, with a focus on adipose tissue cell-types. 

Because our genetics and environment do not exist independently of each other, context is 

important for understanding the effects of causal genetic variation on obesity and related CMDs, 

even for marginal genetic associations. At a broad level, context can refer to which cell-type the 

associated variants are functioning in. However, cells execute different processes at different 

times, depending on the status of the external cues they receive and integrate in order to function 
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properly. This means that understanding the biological mechanisms underlying obesity and 

related CMDs will likely require information on the environmental stimuli that activate or 

repress these mechanisms. By focusing on environmental stimuli that are known to be strongly 

associated with the trait outcomes, we can prioritize and fine-map regulatory signals that are 

likely important for these traits.  

 In Chapter 2, I begin with an assessment of adipocyte-origin genomic regulation that can 

be linked to putative causality for increased BMI. We created human primary adipocyte pCHi-C 

data to interrogate the regulatory promoter interactions in this important cell-type for fat storage 

and endocrine signaling to the brain. We then identified adipose cis-eQTL variants that land 

within the regions that interact with the cis-eQTL target gene, to provide evidence that the gene 

is likely under genetic control via gene regulatory mechanisms in adipocytes. Correlating the 

target gene expression with BMI then suggests an important role for this genetically-regulated 

gene in the variance in BMI. However, the expression correlation could be driven by a reaction 

to, rather than driving, BMI differences. We therefore checked whether the interacting cis-

eQTLs are also GWAS variants for obesity traits, providing evidence that the genomic regulatory 

circuitry we identified in adipocytes is causal for these traits. Our approach provided functional 

genomics fine-mapping of four obesity GWAS loci, suggesting that adipocyte genomic 

regulatory mechanisms are causal for obesity traits at these loci. This work was published in 

Nature Communications in 2018. 

 In Chapter 3, I discuss our approach using context-specific assessment of chromatin 

accessibility across a dietary lipid challenge in human primary adipocytes to identify diet-driven 

effects on BMI. Open chromatin sites that mediate the responses to saturated or monounsaturated 

fatty acid intake in adipocytes were identified through differential accessibility across the 
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conditions. We tested genetic variants that landed in the lipid-responsive regions for interactions 

with saturated fat intake (based on 24-hr dietary recall) on BMI in the UK Biobank (UKB) 

cohort. This identified 14 promoter and 24 enhancer GxE SNPs affecting BMI in humans, 

providing evidence that the known correlation between saturated fat intake and BMI is mediated 

in part by causal, rather than simply reactive mechanisms. This work was published in Nature 

Metabolism in 2019. 

In Chapter 4, I move beyond the study of the genetic causes of obesity and address the 

mechanisms through which obesity drives related CMDs. Given the link between preadipocytes 

and inflammation, discussed in section 1.4 above, we studied the preadipocytes from BMI-

discordant monozygotic (MZ) twins to identify BMI-driven differences in their accessible 

chromatin landscapes. We found that the higher-order structure of the genome, assessed through 

A/B compartments, is altered in the higher-BMI subset of twins compared to the lower-BMI 

twins. The regions that are reprogrammed in response to BMI are enriched for the heritability of 

CRP and have a higher accumulation of small-effect variants interacting with BMI to affect CRP 

in the UKB. This work provides evidence for preadipocyte-origin mechanisms responding to 

increased BMI and contributing to the chronic low-grade inflammation seen in obesity. It has 

been submitted for publication in 2021 (Garske et al., submitted).  
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ARTICLE

Integration of human adipocyte chromosomal
interactions with adipose gene expression
prioritizes obesity-related genes from GWAS
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Markku Laakso9, Päivi Pajukanta1,2,10 & Arthur Ko 1,10

Increased adiposity is a hallmark of obesity and overweight, which affect 2.2 billion people

world-wide. Understanding the genetic and molecular mechanisms that underlie obesity-

related phenotypes can help to improve treatment options and drug development. Here we

perform promoter Capture Hi–C in human adipocytes to investigate interactions between

gene promoters and distal elements as a transcription-regulating mechanism contributing to

these phenotypes. We find that promoter-interacting elements in human adipocytes are

enriched for adipose-related transcription factor motifs, such as PPARG and CEBPB, and

contribute to heritability of cis-regulated gene expression. We further intersect these data

with published genome-wide association studies for BMI and BMI-related metabolic traits to

identify the genes that are under genetic cis regulation in human adipocytes via chromosomal

interactions. This integrative genomics approach identifies four cis-eQTL-eGene relationships

associated with BMI or obesity-related traits, including rs4776984 and MAP2K5, which we

further confirm by EMSA, and highlights 38 additional candidate genes.
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Obesity is a serious health epidemic world-wide. A recent
study of 195 countries estimated that 2.2 billion people
were overweight or obese in 20151. Clinically, obesity is

diagnosed by a body mass index (BMI) greater than 30. While a
significant proportion of the phenotypic variation in BMI is
attributed to genetic variation (heritability of BMI ~0.4–0.72),
understanding the mechanisms underlying this heritable com-
ponent has been challenging. The 97 loci identified in a genome-
wide association study (GWAS) for BMI in ~340,000 subjects
explain only 2.7% of the variance in BMI, and all HapMap phase
3 genetic variants (~1.5 M single nucleotide polymorphisms
(SNPs)) were estimated to account for ~21% of the variance in
BMI in 16,275 unrelated individuals2. The causal variants and
genes are not immediately apparent from GWAS, hindering our
ability to understand the biological mechanisms by which
genetics contribute to obesity. To address this knowledge gap, we
integrate chromosomal interaction data from primary human
white adipocytes (HWA) with adipose gene expression and
clinical phenotype data (BMI, waist-hip ratio, fasting insulin, and
Matsuda index) to elucidate molecular pathways involved in
genetic regulation in cis.

Combining genotype and RNA-sequencing (RNA-seq) data
enables the detection of expression quantitative trait loci (eQTLs)
that regulate transcription of near-by genes (i.e., in cis). These cis-
eQTLs often reside in regulatory elements, including promoters,
enhancers, and super-enhancers. However, the mechanism by
which cis-eQTLs regulate their respective eGene(s) is seldom
established because identification of the true regulatory variants
among SNPs in tight linkage disequilibrium (LD) has proven
challenging3. Enhancers modulate target gene expression levels
via their interaction with promoters, and disruption or improper
looping of enhancer sites can contribute to disease risk4,5. Pro-
moter Capture Hi–C (pCHi–C) enables detection of promoter
interactions at a higher resolution and at lower sequencing depth
than that required for Hi–C6. Incorporating a chromosomal
interaction map constructed from pCHi-C and cis-eQTL data can
help elucidate the functional mechanisms by which the genetic
variants affect gene expression. By overlapping these looping cis-
eQTLs with trait-associated variants identified in independent,
large-scale GWAS, we can assess which GWAS variants could
affect expression of regional genes via chromosomal interactions.

To search for genes that are functionally important for adipose
tissue biology, we performed a cis-eQTL analysis using genome-
wide SNP data and adipose RNA-seq data from individuals of the
Finnish METabolic Syndrome In Men (METSIM) cohort. We
identified 42 genes, regulated by cis-eQTLs that reside in regions
that physically interact with the promoters of genes. Adipose
expression of these 42 genes was robustly correlated with BMI,
and among them four genes, MAP2K5, LACTB, ORMDL3, and
ACADS, were regulated by SNPs (or their tight LD proxies)
previously identified in GWAS for BMI or a related metabolic
trait, located at the regulatory element-promoter interaction sites.
These data provide converging evidence for effects of looping
cis-eQTL variants on gene expression associated with obesity and
related metabolic traits. Our results show that these integrative
genomics methods involving pCHi-C data in primary HWA can
identify regulatory circuits comprising both regulatory elements
and their target gene(s) that operate in a complex obesity-related
metabolic trait.

Results
Characterization of the adipocyte chromosomal interactions.
Adipose tissue is highly heterogeneous, containing adipocytes,
preadipocytes, stem cells, and various immune cells. We per-
formed pCHi-C in primary HWA with the goal of identifying

physical interactions between adipose cis-eQTLs and target gene
promoters. We employed the pCHi-C protocol as described
previously7. Briefly, we fixed primary HWA to crosslink proteins
to DNA, and after digestion with the HindIII restriction endo-
nuclease, we performed in-nucleus ligation and biotinylated RNA
bait hybridization to pull down only those HindIII fragments with
annotated gene promoters6. To detect the regions that interact
with the promoter-containing HindIII fragments, we mapped the
reads to the genome, and assigned reads to HindIII fragments to
allow for fragment-level resolution of those regions interacting
with the baited fragments containing gene promoters. The key
pCHi-C sequencing metrics are shown in Supplementary Table 1.

We first confirmed that the non-promoter regions in adipocyte
chromosomal interactions are enriched for enhancer (H3K4me1,
H3K4me3, and H3K27ac), repressor (H3K27me3, H3K9me3)
histone marks, and DNase I hypersensitive sites (DHSs)
(Supplementary Table 2). As there are no publicly available
DHS data for adipocytes or adipose tissue, we used the union of
DHSs in all cell types from ENCODE and Roadmap rather than
DHSs in a single, non-adipocyte cell type8. Intersecting the
adipocyte and previously published primary CD34+ cell pCHi-C
data6, we found that 68.0% of adipocyte pCHi-C chromosomal
interactions were observed in adipocytes but not in CD34+cells.
In the following, we used the same public DHS data to focus on
open chromatin regions as they are more likely to bind
transcription factors (TFs) and, thus, be relevant for chromoso-
mal looping interactions within the interacting HindIII
fragments.

We examined whether the DHSs are enriched for adipose-
related TF motifs, using the Hypergeometric Optimization of
Motif EnRichment (HOMER) software9 that calculates the
number of times a TF motif is seen in target and background
sequences. The proportion of times the TF motif is seen in the
target when compared to the background is then tested for
enrichment in the target sequences. We found that when
compared to DHSs within CD34+ chromatin interactions, the
DHSs within the adipocyte chromatin interactions are enriched
for 26 of 332 TF motifs (FDR < 5%) (Supplementary Table 3),
including CCAAT/enhancer binding protein beta (CEBPB,
p-value= 1.00 × 10−10) and peroxisome proliferator-activated
receptor gamma (PPARG, p-value= 0.01), both of which are
well-known key players in adipose biology10. To address the
potential bias of using a different pCHi-C dataset as background,
we also performed HOMER analysis comparing the DHSs in
adipocyte interactions to DHSs in non-interacting, non-promoter
regions in the remainder of the genome. The results were similar,
and both CEBPB and PPARG were also enriched in the latter
analysis (CEBPB, p-value= 1.00 × 10−24; PPARG, p-value=
1.00 × 10−6; complete enrichment results not shown). These
results suggest that the cell-type based pCHi-C interaction data
enable the detection of interactions important for that cell type
within a heterogeneous human tissue.

Chromosomal interactions explain expression heritability. To
investigate whether the variants residing within open chromatin
of chromosomal looping regions in adipocytes are enriched for
SNPs that contribute to the heritability of cis expression
regulation, we partitioned the heritability of cis regulation of
human adipose gene expression into 52 functional categories
using a modified partitioned LD Score regression method11

(see Methods). The 52 functional categories are derived from 26
main annotations that include coding regions, untranslated
regions (UTRs), promoters, intronic regions, histone marks,
DNase I hypersensitivity sites (DHSs), predicted enhancers,
conserved regions, and other annotations11 (Supplementary
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Figure 2-1: Open chromatin sites (DHSs) within adipocyte promoter CHi-C chromosomal interactions show significant 
enrichment in cis expression

 

  

Figure 1, Supplementary Tables 4–5). The partitioned LD Score
regression method11 utilizes summary association statistics of all
variants on gene expression to estimate the degree to which
variants in different annotation categories explain the heritability
of cis and trans expression regulation while accounting for the LD
among functional annotations. To assess the enrichment of her-
itability mediated by the variants in the chromosomal interactions
detected by pCHi-C on a per-gene basis, we further modified the
LD score method, as described in detail in the Methods.
Importantly, these modifications did not change the 52 baseline
enrichments significantly when compared with the data obtained
using the unmodified version11 (Supplementary Figure 1,
Supplementary Tables 4–5). These analyses revealed that open
chromatin regions (i.e., DHSs) within the adipocyte chromosomal
interactions are enriched for sequences that contribute to herit-
ability of gene expression regulation in cis (Fig. 1, p-value < 0.002,
enrichment= 20.3 (SD±5.2), average proportion of SNPs=
0.23%). The variants residing within the open chromatin regions
within adipocyte chromosomal interactions explain 4.6% of the
heritability of adipose tissue gene expression in cis, despite only
accounting for 0.23% of the SNPs per cis gene region on average,
indicating the functionality of these SNPs at the DHSs of distal
interactions in regulating cis expression.

Identification of genes regulated by looping cis-eQTL SNPs. To
identify adipose-expressed genes regulated by SNPs (eGenes), we
performed a cis-eQTL analysis using 335 individuals from the
METSIM cohort with both genome-wide SNP data and adipose
RNA-seq data available (Fig. 2; Methods). Using the published
adipose cis-eQTL data and criteria for significance from GTEx12

(see Methods), we found 487,679 cis-eQTLs for 4,650 eGenes in
the METSIM dataset and confirmed these same SNPs as
cis-eQTLs by look-up in GTEx. 386,068 of the 487,679 (79.0%)
cis-eQTL SNPs had the same target gene and direction of effect
in both cohorts (Supplementary Figure 2). Only the 386,068

cis-eQTL SNPs that were replicated for effect direction and
target gene (Supplementary Table 1) in the GTEx adipose RNA-
seq data were used in our subsequent downstream analyses
(Supplementary Figure 2). Overall, 4,332 of 4,650 of cis-eQTL-
eGene relationships (93.0%) were replicated using the published
adipose cis-eQTL data and criteria for significance from GTEx12

(see Methods). To restrict these adipose cis-eQTL SNPs to those
that likely function through transcription factor (TF) binding at
distal regulatory elements, we determined which of these eGene
promoters were involved in looping interactions with the
cis-eQTLs, assayed through pCHi-C in primary HWA (Fig. 2;
Methods). Of the 4,332 eGenes identified in our cis-eQTL ana-
lysis, 576 (13.4%), were involved in these looping interactions
(permutation p-value < 0.00001) (Fig. 2, Methods, Supplementary
Figure 2, and Supplementary Table 1).

We next determined the set of 576 looping eGenes with
expression levels that are correlated with BMI in METSIM
(Pearson correlation, adjusted p < 1.15 × 10−5 to correct for the
4,332 replicated eGenes identified in our cis-eQTL analysis). We
found 54 of 576 (9.40%) BMI-correlated eGenes with promoters
involved in looping interactions with their cis-eQTL SNP
(Supplementary Table 6). In our subsequent second replication
analysis, the expression levels of 42 out of 54 genes (replication
rate of 77.8%) were correlated with BMI in adipose RNA-seq data
from the TwinsUK cohort (n= 720) with the same direction of
effect on BMI as in METSIM (Bonferroni adjusted p < 0.001)
(Table 1, Supplementary Table 6). Another four of the 54 genes
were not available in the TwinsUK dataset. The effects sizes and
p-values obtained for BMI associations in TwinsUK and
METSIM, using a linear regression model in both, show
comparable results to those obtained using the Pearson correla-
tions (Table 1, Supplementary Table 6). These 42 BMI-correlated
genes are functionally enriched for four pathways with fatty acid
metabolism as a top ranking pathway (Supplementary Table 7)
based on KEGG pathway enrichment using WebGestalt13

(Benjamini-Hochberg adjusted p < 0.05); however, the small
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Fig. 1 Open chromatin sites (DHSs) within adipocyte promoter CHi-C chromosomal interactions show significant enrichment in cis expression. Enrichments
in cis expression with error bars for different categories using LD score regression analysis (see Methods). For the horizontal axis labels, the value in
parentheses shows the percentage of SNPs contained within the respective annotation category that contributed to the enrichment calculation. For the
significance threshold after Bonferroni correction above each bar, * indicates a p-value < 0.05; **, a p-value < 0.001; and ***, a p-value < 0.0001,
respectively. The p-values were estimated based on Z scores calculated from the normal distribution. Error bars represent jackknife standard errors around
the estimates of enrichment
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Figure 2-2: Overview of the study design targeted to identify new genes for obesity and related metabolic traits. A schematic illustrating the 
integration of multi-omics data utilized in this study to elucidate genetics of obesity-related traits 
multi-omics data utilized in this study to elucidate genetics of obesity-related traits. 

 

number of genes in these pathway analyses warrant verification in
future studies. Only these 42 replicated genes were further
investigated in our downstream analyses.

Adipocyte chromosomal interactions prioritize GWAS genes.
To investigate which of the 42 BMI-correlated eGenes are regu-
lated by GWAS variants previously identified for BMI and related
metabolic traits, we determined which interacting cis-eQTL var-
iants are GWAS variants (or their LD proxies, r2 > 0.80), using p
< 5.00 × 10−8 as a criterion to select variants. As the goal of the
current study was to dissect the molecular contribution of adipose
and adipocyte biology to traits that can influence the pathophy-
siology of obesity, we examined GWAS for BMI and the meta-
bolic traits that have previously been shown to exhibit co-
morbidities with obesity (e.g., serum lipids and type 2 diabetes) or
that are influenced by obesity or correlated with BMI (e.g.,
metabolites and WHR). We used all GWAS variants (p-value <
5.00 × 10−8) identified in a previous metabolite GWAS of ~7000
individuals14, lipid GWAS of ~180,000 individuals15, an extensive
BMI GWAS study of ~340,000 individuals2, a sequencing-based
GWAS for type 2 diabetes16, and a waist-hip-ratio (WHR)
adjusted for BMI GWAS of ~220,000 individuals17. We found a
GWAS variant for BMI, regulating mitogen-activated protein
kinase kinase 5 (MAP2K5); a GWAS variant for high-density
lipoprotein cholesterol (HDL-C), regulating orosomucoid like
sphingolipid biosynthesis regulator 3 (ORMDL3); and two GWAS
variants for serum metabolites (succinylcarnitine and butyr-
ylcarnitine), regulating lactamase beta (LACTB) and acyl-CoA
dehydrogenase, C-2 To C-3 short chain (ACADS), among the 42
genes (Fig. 3a, b; Supplementary Figure 3a-f), with the looping
interactions spanning 287 kb, 16 kb, 151 kb, and 183 kb, respec-
tively. We found that the interacting cis-eQTL-containing HindIII
fragments for LACTB and MAP2K5 are located within the pro-
moter and intron of other genes. Furthermore, using the inte-
grated pCHi-C and cis-eQTL data, we found that the SNPs in
these regulatory HindIII fragments regulate genes that are not
their nearest gene for 3 of the 4 BMI-correlated eGenes (Fig. 3a, b,
Supplementary Figure 3a–f).

The looping BMI GWAS SNPs regulate MAP2K5. For
MAP2K5, the reported BMI GWAS SNP itself is not located
within the regulatory, cis-eQTL-containing HindIII fragment
involved in the looping interaction; however, SNPs in tight LD
with the GWAS SNP (using a criterion of r2 > 0.80) are in the
regulatory HindIII fragment that is interacting with the target
gene promoter (Fig. 3b). The regulatory HindIII fragment con-
tains 16 cis-eQTL SNPs that are LD proxies for the BMI GWAS
SNP2 (rs16951275), which has a total of 62 LD proxies in the

METSIM cohort. To prioritize a candidate functional variant
within these 16 SNPs within the HindIII fragment, we first
examined the predicted TF motifs that may be affected by each
SNP using the data curated from ChIP-seq by Kheradpour and
Kellis18. We found that only rs4776984, which is in almost perfect
LD with the original BMI GWAS variant rs16951275 (r2= 0.98),
showed a predicted increase in binding of CTCF, which is a TF
known to mediate chromosomal interactions (Fig. 4a).

We also used the deep learning–based sequence analyzer
(DeepSEA)19 to examine the allelic effect on protein binding of
rs4776984 and the 15 other looping cis-eQTLs of MAP2K5. Of
these 16 looping cis-eQTLs, six were potentially functional and
of these, two variants passed the functional significance score of
<0.05 using DeepSEA. Of the two, our candidate functional
eQTL SNP, rs4776984, resulted in the most significant
functional score (2.36 × 10−3) (Supplementary Table 8) and
was the only variant passing a functional significance score of
<0.01 among the 16 variants. Thus, the DeepSEA result further
supports the differential TF binding at the variant site
rs4776984 among all possible looping cis-eQTLs at the
MAP2K5 locus (Supplementary Table 8). The looping cis-
eQTL site also shows a ChIP-seq peak for the histone mark
H3K4me1 in ENCODE adipose nuclei ChIP-seq data; however,
notably it also shows the presence of the histone marks
H3K27me3 and H3K9me3 (Fig. 3b), two marks known to be
associated with transcriptional repression. Furthermore, the
gene expression of MAP2K5 is negatively correlated with BMI
(p-value= 7.83×10−6). These data implicate MAP2K5 as a
gene regulated by the BMI GWAS signal via a repressive
chromosomal interaction.

To functionally assess whether there is differential allele-
specific binding of proteins at the candidate functional
MAP2K5 eQTL, rs4776984, we performed electrophoretic
mobility shift assays (EMSAs) using nuclear protein from
primary HWA. The results show reduced protein binding of the
reference allele when compared to the alternate allele of
rs4776984, consistently in three independent experiments
(Fig. 4b, Supplementary Figure 4), in line with the predicted
disruption in protein binding for CTCF18 (Fig. 4a). We
performed the supershift experiment using the CTCF antibody
and adipocyte nuclear extract, but did not observe a supershift
in any of the three replicated experiments (Supplementary
Figure 5). We repeated the supershift experiment using a
different CTCF antibody (EMD Millipore 07–729), which
resulted in the same negative finding (Supplementary Figure 6).
To further verify the negative supershift result, we also directly
tested the CTCF protein for allele-specific binding at rs4776984
using EMSA in 3 replicate experiments, and did not find
evidence of sole CTCF protein binding (Supplementary

eGene expression correlated
with BMI level

BMI GWAS and
adipose cis-eQTL SNP

Histone mark
Chip-seq

peaks Promoter capture HI-C

eGene

Fig. 2 Overview of the study design targeted to identify new genes for obesity and related metabolic traits. A schematic illustrating the integration of
multi-omics data utilized in this study to elucidate genetics of obesity-related traits.
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Table 2-1: Thirteen representative eGenes (9 most significant genes and 4 GWAS loci) that correlate with BMI in METSIM 
and TwinsUK 

 

Figure 7). However, a supershift experiment may remain
negative even in the presence of true TF binding if a
complex instead of a single TF alone is required for the TF
binding20.

Interacting GWAS SNPs implicate three other genes. For
ORMDL3, there is a single lipid GWAS SNP, rs8076131, in the
HindIII fragment, which is also the only looping cis-eQTL SNP
interacting with the ORMDL3 promoter. Variant rs8076131 lies
in a region with enhancer histone marks H3K4me1 and H3K27ac
in adipose nuclei (Supplementary Figure 3a,b). The expression of
ORMDL3 is negatively correlated with BMI (p= 8.57 × 10−18), in
line with its known role as a negative regulator of sphingolipids
that are positively correlated with obesity21,22.

The regulatory HindIII fragment that loops with the LACTB
promoter contains two reported metabolite GWAS SNPs in tight
LD with each other (rs1017546 and rs3784671, r2= 0.97), both
sharing 35 LD proxies (r2 > 0.80) in the METSIM cohort. One of
the two index GWAS SNPs within the HindIII fragment,
rs3784671, resides in a region enriched for the enhancer histone
marks H3K4me1 and H3K27ac in adipose nuclei (Supplementary
Figure 3c, d). This metabolite GWAS SNP, rs3784671, is
associated with succinylcarnitine levels, which have previously
been shown to be positively correlated with BMI in KORA (p=
1.0 × 10−12) and TwinsUK (p= 5.3 × 10−5)23. Accordingly, the
expression of LACTB is positively correlated with BMI (p=
1.19 × 10−8). Notably, LACTB has been implicated as a causal
gene for obesity in mice24, further supporting our integrated
human data that implicates LACTB involvement in an obesity-
related metabolic trait.

The most significant metabolite GWAS SNP for ACADS,
rs10774569, is not located within the regulatory, cis-eQTL-
containing HindIII fragment. Instead, a single cis-eQTL SNP
rs12310161, in perfect LD (r2= 1.0) with the GWAS SNP
rs10774569, is the only cis-eQTL SNP located within the
regulatory HindIII fragment, looping with the fragment

containing the promoter of ACADS. This looping cis-eQTL
SNP also resides in a region enriched for enhancer histone marks
H3K4me1 and H3K27ac in adipose nuclei (Supplementary
Figure 3e, f). The expression of ACADS has a negative correlation
with BMI (p= 2.91 × 10−12), and the alternate allele is associated
with an increase in expression of ACADS, suggesting that this
allele has a protective effect against obesity.

Finally, we repeated the pCHi-C experiments in the same
HWA cell line in a separate experiment with two replicates and
found the same GWAS SNP interactions as in the first
experiment (Supplementary Table 9). This validation data thus
provides further support for our conclusions and the robustness
of interactions we report.

Discussion
BMI is a highly complex trait caused by the poorly characterized
interplay between genetic and environmental factors with upper
heritability estimates reaching 70%2. Understanding how
genome-wide signals with small effect sizes contribute to BMI on
a molecular level has proven to be difficult. Delineating the
underlying biological mechanisms of these signals is crucial to
better understand the development of obesity and its
concomitant cardiometabolic disorders. In this study, we
performed promoter Capture Hi–C (pCHi–C) in primary human
white adipocytes (HWA) to identify BMI-correlated adipose-
expressed genes that are under genetic regulation in cis by
variants that physically interact with gene promoters. Through
our method of integrating GWAS, cis-eQTL analyses, chromo-
somal interactions, and robust replication of the data from GTEx
and TwinsUK, we were able to identify 42 candidate genes for
future obesity research.

In the absence of adipocyte DHS information, we used DHS
data from all tissues in the ENCODE and Roadmap Epigenomics
project to label open chromatin regions within the adipocyte
chromosomal interactions8. Despite this methodological com-
promise, our results demonstrate that variants in these regions

Table 1 Thirteen representative eGenes (9 most significant genes and 4 GWAS loci) that correlate with BMI in METSIM and
TwinsUK (for the full data on all 54 genes, see Supplementary Table 6)

Pearson Linear regression

Ranka Gene Chrf METSIMc METSIMd TwinsUKe

Effect size (r) p-value Effect size (β) SE p-value Effect size (β) SE p-value

1 ADH1B 4 −0.45 7.40 × 10−18 −0.21 0.02 1.68 × 10−20 −0.58 0.03 4.47 × 10−71

2 ORMDL3b 17 −0.45 8.57 × 10−18 −0.16 0.02 2.06 × 10−20 −0.58 0.03 2.65 × 10−70

3 AKR1C3 10 0.33 4.78 × 10−10 0.13 0.02 2.95 × 10−11 0.49 0.03 5.19 × 10−54

4 CMTM3 16 0.41 4.32 × 10−15 0.087 0.01 3.84 × 10−17 0.50 0.03 6.64 × 10−52

5 LPIN1 2 −0.38 1.49 × 10−13 −0.14 0.02 2.27 × 10−15 −0.47 0.03 2.38 × 10−44

6 RNF157 17 −0.29 5.19 × 10−8 −0.096 0.02 5.87 × 10−9 −0.47 0.03 8.86 × 10−42

7 MYOF 10 0.32 1.07 × 10−9 0.086 0.01 7.37 × 10−11 0.46 0.03 2.59 × 10−40

8 NAA40 11 0.28 1.81 × 10−7 0.052 0.009 2.67 × 10−8 0.46 0.03 4.00 × 10−40

9 TMEM165 4 0.33 2.45 × 10−9 0.045 0.007 1.84 × 10−10 0.45 0.03 3.52 × 10−37

10 RFFL 11 0.27 1.02 × 10−6 0.035 0.006 1.84 × 10−7 0.43 0.03 5.67 × 10−37

28 ACADSb 12 −0.37 2.91 × 10−12 −0.085 0.01 7.12 × 10−14 −0.24 0.03 6.65 × 10−19

31 LACTBb 15 0.30 1.67 × 10−8 0.069 0.01 1.40 × 10−9 0.32 0.04 4.94 × 10−18

34 MAP2K5b 15 −0.25 7.83 × 10−6 −0.039 0.01 1.90 × 10−6 −0.21 0.03 3.81 × 10−10

a Thirteen representative eGenes, including 4 GWAS loci, ranked by their p-value in the TwinsUK cohort dataset
b GWAS gene
c Effect size (r, Pearson rho) and p-value calculated from Pearson correlation between gene expression and BMI (see Methods)
d Effect size, standard error (SE), and p-value calculated using a linear regression model with BMI and age, age² and the 14 technical factors as covariates when compared to a null model without BMI.
These models were compared using an F-test (see Methods)
e Effect size, standard error (SE), and p-value calculated from linear mixed effects model. A full model including BMI was compared to a null model in which the same model was fitted, but with BMI
omitted. These models were compared using an F-test (see Methods)
f Chr is an abbreviation for chromosome
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Figure 2-3: Promoter Capture Hi–C enables refinement of the BMI GWAS locus that colocalizes with cis-eQTLs interacting with the target 
gene promoter of MAP2K5 

 

explain a significant portion (4.6%) of the heritability of
cis–regulated expression in human subcutaneous adipose tissue.
Even though the total percentage of variants within the inter-
section of open chromatin regions and adipocyte chromosomal
looping sites is small (0.23%), the enrichment implies that these
SNPs are functionally relevant for adipocyte biology and gene
regulation in cis.

The enrichment of TF binding motifs for CEBPB and PPARG
in chromosomal interactions found in adipocyte but not in CD34
+ cells confirms that the regulatory circuits identified here are
relevant to adipose biology. These two TFs have previously been
shown to occupy shared regulatory sites. Apart from being an
enhancer binding protein, which is in concordance with its pre-
sence at chromosomal interaction sites, CEBPB has been
demonstrated to precede the binding of PPARG at many reg-
ulatory sites25, suggesting that CEBPB primes the regulatory
regions for the binding of the adipose master regulator PPARG.

One of our looping cis-eQTL variants is a tight LD proxy (r2=
0.98) for a regional BMI lead GWAS SNP (rs16951275)2. Typical
fine mapping techniques such as overlaying histone marks,
transcription factor motif scans, or eQTL searches do not
necessarily reveal the mechanism through which a SNP might
function. We refined the GWAS signal from 64 to 16 LD SNPs
within a HindIII fragment that interacts with the MAP2K5 pro-
moter by overlaying cis-eQTLs, the promoter-enhancer interac-
tion map, and the expression-BMI correlation. The top candidate,
rs4776984, increased HWA nuclear protein binding in an allele-
specific way in our EMSA experiment and lies within the
repressor histone marks H3K27me3 and H3K9me3 in ENCODE
adipose nuclei data. Recent studies have suggested that repressor
elements function through looping interactions in a similar
manner to enhancer elements6,26, which would align well with the

negative correlation between expression of MAP2K5 and BMI
level.

The region at the MAP2K5 locus, exhibiting increased binding
for the alternate allele for rs4776984, contains predicted motifs
for the looping interaction protein, CTCF, and other TFs (Sup-
plementary Table 8). We did not find evidence of CTCF binding
at rs4776984 in our supershift and protein binding EMSA
experiments. However, a supershift experiment may remain
negative even in the presence of true TF binding if a complex
instead of a single TF alone is required for the TF binding20.
Furthermore, using DeepSEA analysis, we confirmed the poten-
tial for differential TF binding at the variant site rs4776984
among all possible looping cis-eQTLs at the MAP2K5 locus.
Noteworthy, since DeepSEA identified multiple TFs as potential
binders of rs4776984 site in an allele-specific way, future studies
testing a larger set of TFs are warranted to identify the actual TF
that binds this site. We postulate that TF binding at this inter-
action site would lead to a repressive looping mechanism, in this
case altering MAP2K5 expression in adipocytes.

MAP2K5 is a member of the ERK5 MAP kinase signaling
cascade, and the importance of ERK5 signaling in adipose was
previously demonstrated in Erk5 knock-out mice, which exhibit
increased adiposity27. This suggests that changes in
ERK5 signaling in adipocytes could be relevant for human
obesity. MAP2K5 is a strong and specific activator of ERK5 in the
ERK5 MAP kinase signaling cascade28, supporting further study
of MAP2K5 in connection with increased adiposity.

The intronic ORMDL3 GWAS variant rs8076131 is associated
with high-density lipoprotein cholesterol (HDL-C)15 and is the
only cis-eQTL SNP in the HindIII fragment that interacts with the
ORMDL3 promoter in our adipocyte pCHi-C data. ORMDL3 is a
negative regulator of the synthesis of sphingolipids that are
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Fig. 3 Promoter Capture Hi–C enables refinement of the BMI GWAS locus that colocalizes with cis-eQTLs interacting with the target gene promoter of
MAP2K5. Genomic landscape of the BMI locus, MAP2K5 (panels a, b), modified from the WashU Genome Browser to show the histone mark calls from
ChIP-seq data; gene transcripts; promoter and eQTL HindIII fragments that interact in primary human white adipocytes (HWA); and GWAS SNPs (A, the rs
number indicated in the magnified box) or their LD proxies (B, r2 > 0.8) located in the interacting HindIII fragment. The vertical yellow band highlights the
cis-eQTL variant (the rs number is indicated in the magnified box). a Genomic landscape containing MAP2K5 and the interacting cis-eQTL variant and
corresponding BMI GWAS SNP. b Magnification of the boxed region in (a)
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Figure 2-4: Predicted TF motifs and electrophoretic mobility shift assay (EMSA) at the rs4776984 site indicate allele-specific 
binding 

 

produced in response to obesity and related metabolic traits, such
as inflammation and insulin resistance21,22, and that interfere
with important signaling pathways associated with these traits22.
Corroborating this, we show that ORMDL3 expression is nega-
tively correlated with BMI, and the cis-eQTL and risk variant
rs8076131 decreases ORMDL3 expression, potentially through a
change in the chromosomal interaction between the enhancer
and promoter of ORMDL3, as has been shown for this enhancer
site previously29.

We found that the metabolite GWAS SNP, rs3784671, is a
looping cis-eQTL variant associated with the expression levels of
the LACTB gene. Although this variant is a cis-eQTL for LACTB
both in our study and the GTEx adipose cohort, it lies within the
promoter for the APH1B gene, for which it is not a cis-eQTL in
our study. Through overlap of adipose cis-eQTL data and adi-
pocyte pCHi-C data, we established that rs3784671 does not act
through the adjacent APH1B gene and filtered the 35 cis-eQTL
variants for LACTB down to a single variant, rs3784671. This

variant is negatively associated with the levels of succinylcarni-
tine, a metabolite positively correlated with BMI in two inde-
pendent cohorts, KORA and TwinsUK, previously23.
Succinylcarnitine is a molecule in the butanoate metabolism
pathway; butanoate has been implicated in anti-inflammation,
protection against obesity, and an increase in leptin levels30.
Furthermore, as the succinylcarnitine GWAS variant rs3784671 is
an eQTL for LACTB, associated with an increase in LACTB
expression, we postulate that LACTB expression increases succi-
nylcarnitine. This is in agreement with a mouse study that shows
that butanoate metabolism is reduced in Lactb transgenic mice24.
Notably, support for LACTB as a causal gene for obesity derives
from functional studies using transgenic overexpression of Lactb
in mice, resulting in an increase in the fat-mass-to-lean-mass
ratio24,31. Although the function of LACTB in adipose has not
been fully elucidated, these studies suggest that a reduction in
LACTB function and, in turn, an increase in butanoate metabo-
lism and decrease of succinylcarnitine levels are beneficial for
obesity treatment. Further molecular studies at the protein level
are, however, required to determine the function of ORMDL3 and
LACTB in connection with obesity.

We identified a perfect LD proxy for a metabolite GWAS
SNP that lies within a HindIII fragment that regulates the
ACADS gene and interacts with its promoter. ACADS is a
mitochondrial protein that catalyzes the first step of the fatty
acid beta-oxidation pathway. Proper mitochondrial function is
imperative for adipose function and energy homeostasis. In
addition to the METSIM and TwinsUK adipose RNA-seq data
sets used in our study, a previous study identified ACADS when
systematically searching for genes over and under-expressed in
obese versus lean adipose tissue32. Furthermore, all 3 datasets
show a consistent negative correlation between ACADS
expression and BMI, in support of its well-established
mitochondrial function. The interacting cis-eQTL and GWAS
SNP, rs12310161, is located within enhancer histone marks in
adipose nuclei and in the HepG2 liver cell line, with the
alternate allele exhibiting a positive effect on gene expression,
in line with it being a protective allele. Interestingly, this variant
falls within a TEA Domain Transcription Factor 4 (TEAD4)
ChIP-seq peak in the HepG2 cells. TEAD4 expression is
regulated by Peroxisome Proliferator Activated Receptor alpha
(PPARα)33, the major regulator of beta-oxidation of fatty acid
pathways in liver and brown adipose tissue. Taken together,
these results suggest that the interacting cis-eQTL and
metabolite GWAS SNP, rs12310161, functions within an
enhancer to increase ACADS expression and mitochondrial
fatty acid beta-oxidation in adipose.

As the pCHi-C experiments were performed in primary HWA,
we are able to focus on physical chromosomal interactions
directly in human adipocytes among all cell types present in
adipose tissue. Adipocytes perform central adipose functions,
including lipogenesis and lipolysis. Further investigation of the
adipose genes, which are under cis genetic regulation via chro-
mosomal looping to the promoters and are correlated with BMI,
is likely to provide much needed insight into cellular processes
contributing to obesity. Our data provide 38 new candidate genes,
including some known functionally relevant genes for adiposity
such as LPIN134 and AKR1C335, that have so far not been
highlighted by GWAS for BMI or obesity-related metabolic traits.
We postulate that identification of some of these 38 candidates as
obesity GWAS genes may require much larger GWA studies,
while others may represent genes responding to obesity in human
adipose tissue. Our analysis of the looping cis-eQTLs for other
GWAS traits correlated with BMI, such as serum metabolites and
lipids, led to the identification three additional obesity-related
metabolic GWAS genes. We recognize that brain and other
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Fig. 4 Predicted TF motifs and electrophoretic mobility shift assay (EMSA)
at the rs4776984 site indicate allele-specific binding. a Predicted TF motifs
for CTCF and p300, as well as the hg19 reference genome sequence. b
Biotinylated (labeled probe) 31-bp oligonucleotide complexes with ±15 bp
flanking the reference or alternate allele for variant rs4776984 were
incubated with nuclear protein extracted from primary HWA and resolved
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allele
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tissues likely account for some of the BMI GWAS signals and that
GWAS variants may act via other mechanisms, such as trans
regulation and alternative splicing, that warrant future investi-
gation. Although the four looping cis-eQTL variants identified at
GWAS loci in our study represent either the GWAS tag SNPs (as
is the case at the ORMDL3 and LACTB loci) or they are in perfect
or almost perfect LD with the GWAS SNP (r2= 1.0 at the
ACADS locus and r2= 0.98 at the MAP2K5 locus), we recognize
that the looping variants may not always be the strongest cis-
eQTL SNPs at these loci and, thus, additional fine mapping is
needed to fully elucidate all functional regulatory cis-eQTL
variants.

The current study uses the integration of multi-level genomic
and functional data to enhance the understanding of genome-
wide molecular signals underlying obesity. GWAS signals often
fall within non-coding regulatory regions of the genome, and
the affected gene(s) often remain unclear. Similarly, the local
LD structure frequently hinders the identification and func-
tional characterization of the actual eQTL SNP even though the
eQTL target gene is known. Through the integration of multi-
layer genomics data in a functionally relevant human cell type
and tissue and replication in the GTEx and TwinsUK cohorts,
we show that the DHSs within the interacting chromosomal
regions are enriched for tissue-specific TF motifs and explain a
significant proportion of the heritability of gene expression in
cis. Furthermore, we identified LACTB, ACADS, ORMDL3, and
MAP2K5 as obesity-related genes in humans and provide a set
of 38 non-GWAS candidate genes for future studies in obesity.

Methods
Cell lines and culture reagents. We obtained and cultured the primary human
white preadipocyte (HWP) cells as recommended by PromoCell (PromoCell C-
12731, lot 395Z024) for preadipocyte growth and differentiation into adipocytes.
Cell media (PromoCell) was supplemented with 1% penicillin-streptomycin. We
maintained the cells at 37 °C in a humidified atmosphere at 5% CO2. We serum-
starved the primary human white adipocytes (HWA) for 16 h using 0.5% fetal calf
serum (FCS) in supplemented adipocyte basal medium (PromoCell), prior to
treatment with 0.23% fatty acid free bovine serum albumin (BSA, Sigma Aldrich
A8806) in media containing 0.5% FCS for 24 h prior to fixation.

Adipocyte fixation and nuclei collection. We rinsed 10M adherent HWA with
serum-free media prior to fixation. We fixed the HWA directly in culture plates
with 2% formaldehyde (EMD Millipore 344198) in serum-free adipocyte nutrition
media (PromoCell). We incubated cells in fixation medium with rocking at room
temperature for 1 min, and then quenched with 1 M ice-cold glycine for a final
concentration of 125 mM. After 5 min of rocking incubation at room temperature,
we rinsed fixed cells twice with ice-cold PBS. Then we incubated the cells with
rocking on ice with ice-cold permeabilization buffer (10 mM Tris–HCl pH 8, 10
mM NaCl, 0.2% Igepal CA-630, Complete EDTA-free protease inhibitor cocktail
[Roche])36 for 30 min. We scraped cells from the culture plate and centrifuged at
2500 × g for 5 min at 4 °C to pellet nuclei. The supernatant was discarded and
nuclei were flash frozen in liquid nitrogen and put at −80 °C.

Hi–C library preparation. We prepared the Hi–C library as described in Rao et al.7

with modifications. We processed 10M HWA nuclei in 5 M cell aliquots, closely
following Rao et al.7 protocol I.a.1 except we digested chromatin with 400U of
HindIII (New England Biolabs R3104) at 37 °C overnight with shaking (950 rpm).
After digestion, we pelleted nuclei with centrifugation at 2500 × g for 5 min at 4 °C.
We then resuspended nuclei in 265 μl 1× NEBuffer 2 and removed 10% of the cells
and kept on ice for a 3 C control37. We followed Rao et al.7 protocol I.a.1 to end-fill
and mark with biotin, perform in-nucleus ligation, degrade protein, and perform
ethanol precipitation and purification, except we used biotin-14-dCTP (Invitrogen
19518-018) to incorporate biotin during the end-filling step. After quality control
to examine Hi-C marking and ligation efficiency, we sheared 5 μg of DNA to
250–550 bp using the Covaris M220 instrument. We performed double size-
selection using Agencourt AMPure XP beads (Beckman Coulter A63881) as
described in Rao et al.7 protocol I.a.1.

We immobilized the fragments containing biotin using DYNAL™ MyOne™
Dynabeads™ Streptavidin T1 (Invitrogen 65601) beads following Rao et al.7

protocol I.a.1. After end-repair and attachment of dATP, we ligated Illumina
paired-end adaptors to the bead-bound library following the SureSelectXT user
manual for Illumina Paired-End Multiplexed Sequencing (Agilent Technologies).
After washing, we resuspended the Hi-C library in 20 μl of 1× Tris buffer and

subsequently removed the Streptavidin beads from the DNA by heating at 98 °C for
10 min. We then amplified the adaptor-ligated library using 8 PCR cycles and
purified using Agencourt AMPure XP beads, following the SureSelectXT user
manual.

Capture Hi-C. The RNA baits were designed in Mifsud et al.6 for capturing HindIII
fragments containing gene promoters (Dr. Cameron Osborne kindly shared the
exact design). As described in Mifsud et al.6, 120-mer RNA baits were designed to
target both ends of HindIII fragments that contain annotated gene promoters
(Ensembl promoters of protein-coding, noncoding, antisense, snRNA, miRNA and
snoRNA transcripts). The bait sequence was deemed valid if GC content ranged
from 25 to 65%, contained <3 consecutive Ns, and was within 330 bp of HindIII
fragment ends. A total of 550 ng of the Hi–C library was hybridized to the bioti-
nylated RNA baits, captured with DYNAL™ MyOne™ Dynabeads™ Streptavidin T1
beads, and amplified in a post-capture PCR to add indexes, using 12 PCR cycles.
The library was sequenced on the Illumina HiSeq 4000 platform.

Capture Hi-C data processing and interaction calling. To ensure all downstream
analysis was comparable, we first reduced the number of sequencing reads to match
the number used in Mifsud et al.6 analysis of their CHi-C data. We next processed
the sequencing reads with the Hi–C User Pipeline (HiCUP) software38, aligning
reads to the human reference genome (GRCh37/hg19) and using all HiCUP default
parameters. We called significant chromosomal interactions with the Capture Hi-C
Analysis of Genome Organization (CHiCAGO) software39, using default para-
meters, including the threshold of 5 for calling significant interactions. Briefly, the
background is estimated by borrowing information across interactions on two
separate components of the data: the interactions with baited fragments in the
surrounding genomic region are used to model Brownian collisions, which are
distance-dependent interactions, and interchromosomal interactions are used to
model technical noise. CHiCAGO then employs a weighted p-value based on the
expected number of interactions at a range of distances39.

Adipocyte nuclear protein extraction. Nuclear protein was extracted from adi-
pocytes after centrifugation of cells at 200 × g for 5 min using a nuclear protein
extraction kit as recommended (Active Motif 40010). The quantity of protein
extracted was measured with BCA protein assay kit (Pierce 23227).

Electrophoretic mobility shift assay. Oligonucleotide probes (15 bp flanking SNP
site for reference or alternate allele) (Supplementary Table 10) with a biotin tag at
the 5′ end of the sequence (Integrated DNA Technologies) were incubated with
HWA nuclear protein and the working reagent from the Gelshift Chemilumines-
cent EMSA kit (Active Motif 37341). For competitor assays, an unlabeled probe of
the same sequence was added to the reaction mixture at 100 × excess. The reaction
was incubated for 30 min at room temperature, and then loaded on a 6% retar-
dation gel (ThermoFisher Scientific EC6365BOX) that was run in 0.5 × TBE buffer.
The contents of the gel were transferred to a nylon membrane, and visualized with
the chemi-luminescent reagent as recommended. Similarly, we performed the
EMSAs with 1 μg purified CTCF protein (Origene TP720882). Supershift assays
were performed with 1 μg anti-CTCF antibodies (Santa Cruz sc-15914 and EMD
Millipore 07–729) that were incubated on ice with nuclear protein from HWA for
30 min prior to addition of oligonucleotide probes and run on gel.

Study cohort. The study sample consisted of a subset of the participants of the
Finnish Metabolic Syndrome in Men (METSIM; n= 10,197) cohort, described in
detail previously40,41. The study was approved by the local ethics committee
(Research Ethics Committee, Hospital Restrict of Northern Savo) and all par-
ticipants gave a written informed consent. The METSIM participants are Finnish
males recruited at the University of Eastern Finland and Kuopio University
Hospital, Kuopio, Finland. The median age of the METSIM participants is 57
years (range: 45–74 years). The biochemical lipid, glucose, and other clinical and
metabolic phenotypes were measured, as described previously40,41. A random
subset of the METSIM men underwent a subcutaneous abdominal adipose
needle biopsy, with 335 unrelated individuals (IBD sharing estimated as <0.2
using a genetic relationship matrix calculated in PLINK42) analyzed here using
RNA-seq.

Identification of cis-eQTL SNPs. We processed the METSIM RNA-seq dataset
similarly as described in Rodriguez et al.43. Briefly, for the METSIM RNA-seq
dataset, we isolated total RNA from abdominal subcutaneous adipose needle biopsy
using the Qiagen miRNeasy kit. Polyadenylated mRNA was prepared using the
Illumina TruSeq RNA Sample Preparation Kit v2 and sequenced using Illumina
HiSeq 2000 platform generating paired-end, 50-bp reads. We used STAR44 to align
the reads to the hg19 reference genome, and assembled transcripts using Cufflinks
v2.2.145. We filtered genes for those with expression of FPKM > 0 in more than
90% of the samples. Additional details of this dataset have been previously
described in Rodriguez et al.43. We inverse-normal transformed the FPKMs and
adjusted for hidden confounding factors using PEER46 by removing 22 PEER

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03554-9

8 NATURE COMMUNICATIONS | �(2018)�9:1512� | DOI: 10.1038/s41467-018-03554-9 |www.nature.com/naturecommunications



 

 
 

29 

factors based on a cis-eQTL analysis on chromosome 20 and choosing an optimal
number of PEER factors without a loss of statistical power.

To decrease computation time, we prephased the METSIM genotype data,
produced using the Illumina HumanOmniExpress BeadChip, by employing
SHAPEIT247 with the phase 1 version 3 reference panel of the 1000 Genomes
Project. We performed imputations with the same reference panel and IMPUTE248

with a cosmopolitan imputation approach, which included all populations from the
1000 Genomes Project, to ensure a high accuracy and maximize the number of
imputed SNPs. Imputed data were filtered using the quality control inclusion
criteria of info ≥0.8, MAF ≥5%, and Hardy–Weinberg equilibrium (HWE) p >
0.00001. The cis-eQTL analysis was performed using Matrix-eQTL49. We classified
the variants as in cis if they were within 1 Mb of either end of a gene. The first three
genetic principal components were included as covariates in the cis-eQTL analysis
to account for population stratification.

Replication of cis-eQTL analysis in GTEx. To ensure robustness of the results, we
filtered the cis-eQTL SNPs and their target genes detected in the METSIM cohort
so that both the cis-eQTL SNP and its predicted target gene were replicated in the
cis-eQTL data by the GTEx Consortium (n= 277) for subcutaneous adipose tissue,
filtered using their permutation test for significance, which used the adaptive
permutation scheme in FastQTL50 and a permutation test p-value threshold equal
to the empirical p-value of the gene closest to the FDR 5% threshold, as reported by
GTEx12. Only replicated adipose cis-eQTLs and their target genes were used in our
downstream analyses.

Heritability of cis expression in chromosomal interactions. To investigate the
functional importance of open chromatin regions (i.e., DHSs) within chromosomal
interactions in adipocytes to heritability of cis expression, we used LD-score
regression11. More specifically, we generated an annotation for each region within
1Mb of the TSS of every gene with at least 1 significant promoter interaction. Per
gene, this annotation consists of marking the variants within a distal fragment
within 1 MB of the TSS that interact with the fragment containing the promoter of
the gene. We further refined these annotations to the open chromatin regions
available for TF binding. Accordingly, we only marked those variants located in
regions identified in the union of DNase I hypersensitivity sites (DHSs) from all
tissues in the ENCODE and Roadmap Epigenomics project51. Since these chro-
mosomal interaction annotations change on a per-gene basis, we could not use the
genome-wide overlapping matrix in the original software, which treats the anno-
tations as fixed genome-wide. In our analyses, we generated an average overlapping
matrix aggregated across all the regions. Importantly, we tested that this weighted
overlap matrix does not qualitatively change the overall enrichment of heritability
of gene expression for fixed annotations, such as coding regions (Supplementary
Figure 1). These changes amount to altering equations 7 and 8 from Liu et al.11 as
follows (Equation 1 and 2).

Equation 1: Modified equation 8 from Liu et al.11 using a weighted overlap
matrix instead of the genome-wide average.

proph2g Cð Þ ¼
h2g Cð Þ

h2g totalð Þ ¼
P

C τCMC′\CP
C τCMC

WhereM ¼
XN

gene i

Mi

NSNPi

In the equation above, C is a given annotation category; prop h2gðCÞ is the
proportion of heritability for a given category; τc is the regression coefficient for the
category; M is the average overlap matrix for each local region;Mi is the overlap
matrix for each gene in the local region; and NSNPi is the number of SNPs in each
local region.

Equation 2: Modified equation 9 from Liu et al.11 using the average proportion
of SNPs instead of the genome-wide average.

enrichment Cð Þ ¼
prop2hg Cð Þ
propSNPS Mð Þ

WhereM ¼
XN

gene i

Mi

NSNPi

In the equation above, the variables are as in Equation 1, and prop SNPsðMÞ is
the proportion of SNPs in the overlap matrix for a given category.

Transcription factor motif enrichment in adipocytes. We used Hypergeometric
Optimization of Motif EnRichment (HOMER, v4.9) to investigate the enrichment
of known TFs in the open chromatin regions (i.e., DHSs) within chromosomal
interactions in adipocytes9. As input data, we used chromosomal interactions in

adipocytes that interacted with a promoter fragment intersected with the union of
all DHSs from ENCODE and Epigenomics Roadmap. We chose to use the DHSs in
all cell types since there are no publicly available DHS data in adipocytes or
adipose. Furthermore, since we were interested in the TF enrichments in adipo-
cytes, we used CD34+ chromosomal interactions intersected with the union of all
DHSs as the background input file6. Any regions that were shared between the
CD34+ and adipocyte datasets were not considered in this analysis. We considered
significant any TFs that were enriched in the DHSs within chromosomal interac-
tions in adipocytes at an FDR of 5%. To ensure our background input file was not
biasing the results, we also performed the same analysis with all DHSs not found in
adipocyte chromosomal interactions as the background input.

We also assessed predicted differential TF binding using the tool deep
learning–based sequence analyzer (DeepSEA)19, which assesses differential histone
modification, TF binding, and DHS profiles using a deep learning-based
algorithmic approach and gives a functional significance score at the single
nucleotide resolution.

Overlap of cis-eQTL SNPs and chromosomal interactions. To investigate
functional cis-eQTL SNPs, we overlapped the imputed cis-eQTL SNPs and their
target genes with Capture Hi-C chromosomal interactions by first overlapping the
position other end of the looping interaction with the location of the cis-eQTL
SNP. These were subsequently designated as regulatory element cis-eQTL SNPs.
Simultaneously, we examined the identity of the predicted target gene for the cis-
eQTL SNP and the gene involved in the looping interaction for a match. Only
when both these criteria were fulfilled, was the cis-eQTL SNP defined as a looping
cis-eQTL SNP and considered for further analyses.

Identification of LD proxies of GWAS SNPs. GWAS variants associated with
BMI were obtained from Locke et al.2, and with lipids and metabolites from Willer
et al.15 and Shin et al.14. We identified the cis-eQTL SNPs in tight LD (r2 > 0.80)
with GWAS variants in the METSIM adipose RNA-seq dataset using PLINK42 and
used them as the LD proxies for BMI, lipid, and metabolite GWAS SNPs. These
sets of cis-eQTL SNPs were considered as BMI GWAS SNPs, lipid GWAS SNPs,
and metabolite GWAS SNPs, respectively. These set of BMI, lipid, and metabolite
GWAS SNPs were then overlapped with the looping cis-eQTL SNPs to identify all
BMI, lipid, and metabolite GWAS SNPs involved in chromosomal interactions
acting through distant regulatory elements.

Correlation of BMI with adipose gene expression. The BMI measurements in
the METSIM cohort were first adjusted for age, age² and then the resulting resi-
duals were inverse normal transformed to reduce the possible outlier effects. Next,
we log transformed the FPKM values and then corrected them for 14 technical
factors, including the RIN values, batch, percentage of coding reads, 5′ to 3′ bias,
and percentage of uniquely mapped reads using Picard tools. The expression levels
were correlated with the BMI measurements using Pearson correlation. The p-
values were corrected for multiple testing for the number of eGenes using the
Bonferroni correction (adjusted p-value < 0.05). To directly compare the effects
sizes and p-values obtained for BMI associations in TwinsUK with those in
METSIM, we also tested the 42 replicated genes using a linear regression model
with BMI and age, age² and the 14 technical factors as covariates when compared
to a null model without BMI in METSIM (Table 1 and Supplementary Table 6).
These models were compared using an F-test.

Replication of BMI-adipose gene expression correlation. Association analysis
between BMI and adipose expression in the TwinsUK cohort was performed on
720 female twins. RNA-seq was generated as previously described52 and gene level
quantifications were generated to Gencode v19. Association between gene
expression level and inversed normalized BMI was tested with a linear mixed
effects model (LMEx) implemented using the lme4 package53. A full model
including BMI was compared to a null model in which the same model was fitted,
but with BMI omitted. These models were compared using an F-test. All known
technical variables (batch, GC content, insert size mode, and primer index), age,
age², and family structure were included as covariates in the models. All variables
were centered and scaled to unit variance. Four genes were not present in the
TwinsUK cohort dataset and we were thus unable to test them for replication,
resulting in 54 genes tested for replication. Each replicated gene was examined to
determine if effect size direction in TwinsUK and METSIM has the same direction.
A Bonferroni corrected p-value (adjusted p < 0.001) with the same direction of
effect as in METSIM was considered as statistical evidence for replication in the
TwinsUK.

Data availability. The human primary adipocyte Capture Hi–C data are available
at GEO (Accession ID: GSE110619)
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Figure 2-5: Modification to LD Score regression software does not show significant changes when compared with the data 
obtained using the published version 

 

 
Supplementary Figure 1. Modification to LD Score regression software does not show 

significant changes when compared with the data obtained using the published version. 

Enrichments in local gene expression with error bars for different categories using the LD score 

regression analysis. For the horizontal axis labels, the value in parentheses shows the percentage 

of SNPs contained within the respective annotation category that contributed to the enrichment 

calculation (for the full data on all 52 baseline annotation categories, see Supplementary Table 3-

4). Error bars represent jackknife standard errors around the estimates of enrichment. (a) 

Enrichment in local gene expression for the modified LD Score regression software. (b) 

Enrichment in local gene expression for the original, unmodified LD Score regression software. 
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Figure 2-6: Overview of the study design targeted to identify causal and reactive BMI-correlated genes   

 

 

Supplementary Figure 2. Overview of the study design targeted to identify causal and 

reactive BMI-correlated genes. 

Flow chart showing the data processing and analysis pipeline of the promoter Capture Hi-C in 

primary human white adipocytes (HWA) (the left side); adipose RNA-sequencing followed by 

cis-eQTL mapping (the right side); and the integration of these genomics data (in the middle) to 

identify eGenes correlated with BMI. 
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Figure 2-7: Promoter Capture Hi-C enables refinement of the GWAS loci that colocalizes with cis-eQTLs interacting with the 
target gene promoter of ORMDL3, LACTB, and ACADS

oci  
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Supplementary Figure 3. Promoter Capture Hi-C enables refinement of the GWAS loci 

that colocalizes with cis-eQTLs interacting with the target gene promoter of ORMDL3, 

LACTB, and ACADS. 

Genomic landscape of the lipid GWAS locus, ORMDL3 (panels a, b), metabolite GWAS locus, 

LACTB (panels c, d), and metabolite GWAS locus, ACADS (panels e, f), modified from the 

WashU Genome Browser to show the histone mark calls from ChIP-seq data; gene transcripts; 

promoter and eQTL HindIII fragments that interact in primary human white adipocytes (HWA); 

and GWAS SNP (A, the rs number indicated in the magnified box) or their LD proxies if 

applicable (B, r2>0.80) located in the interacting HindIII fragment. The vertical yellow band 

highlights the significantly influential variant (the rs number is indicated in the magnified box). 

(a) Genomic landscape containing ORMDL3 and the interacting lipid GWAS SNP. (b) 

Magnification of the boxed region in (a). (c) Genomic landscape containing LACTB and the 

interacting metabolite GWAS SNPs. (d) Magnification of the boxed region in (c). (e) Genomic 

landscape containing ACADS and the interacting cis-eQTLs and corresponding metabolite 

GWAS SNP. (f) Magnification of the boxed region in (e).  
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Figure 2-8: Two independent replicates for the Electrophoretic mobility shift assay (EMSA) data show increased binding of 
nuclear protein extracted from primary human white adipocytes (HWA) to the alternate allele when compared to the reference 
allele of the MAP2K5 cis-eQTL SNP rs4776984 

  

 
Supplementary Figure 4. Two independent replicates for the Electrophoretic mobility shift 

assay (EMSA) data show increased binding of nuclear protein extracted from primary 

human white adipocytes (HWA) to the alternate allele when compared to the reference 

allele of the MAP2K5 cis-eQTL SNP rs4776984.  

Biotinylated (labeled probe) 31-bp oligonucleotide complexes with +/-15 bp flanking the 

reference or alternate allele for variant rs4776984 were incubated with nuclear protein extracted 

from primary HWA and resolved on a 6% polyacrylamide gel. Competitor assays were 

performed by incubating the reaction with 100X excess of unlabeled (no biotin) oligonucleotide 

complexes with identical sequence. Arrow denotes specific binding of HWA nuclear protein to 

reference (left) and alternate (right) allele. (a) First replicate of the EMSA for rs4776984. (b) 

Second replicate of the EMSA for rs4776984. 
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Figure 2-9: Three independent replicates for the Electrophoretic mobility shift assay (EMSA) do not show a supershift when 
using antibody against CTCF and nuclear protein extracted from primary human white adipocytes (HWA) at the MAP2K5 cis-
eQTL SNP rs4776984 

  

 

Supplementary Figure 5. Three independent replicates for the Electrophoretic mobility 

shift assay (EMSA) do not show a supershift when using antibody against CTCF and 

nuclear protein extracted from primary human white adipocytes (HWA) at the MAP2K5 

cis-eQTL SNP rs4776984.  

Biotinylated (labeled probe) 31-bp oligonucleotide complexes with +/-15 bp flanking the 

reference or alternate allele for variant rs4776984 were incubated with nuclear protein extracted 

from primary HWA and resolved on a 6% polyacrylamide gel. Competitor assays were 

performed by incubating the reaction with 100X excess of unlabeled (no biotin) oligonucleotide 

complexes with identical sequence. Arrow denotes specific binding of HWA nuclear protein to 

reference (left) and alternate (right) allele.  6XSHUVKLIW�DVVD\V�ZHUH�SHUIRUPHG�ZLWK��ȝJ�DQWL-

CTCF antibodies (Santa Cruz sc-15914). (a) First replicate of the supershift EMSA for 

rs4776984. (b) Second replicate of the supershift EMSA for rs4776984. (c) Third replicate of the 

supershift EMSA for rs4776984. 
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Figure 2-10: The Electrophoretic mobility shift assay (EMSA) does not show a supershift when using a different antibody against 
CTCF and nuclear protein extracted from primary human white adipocytes (HWA) at the MAP2K5 cis-eQTL SNP rs4776984 

 

 

Supplementary Figure 6. The Electrophoretic mobility shift assay (EMSA) does not show a 

supershift when using a different antibody against CTCF and nuclear protein extracted 

from primary human white adipocytes (HWA) at the MAP2K5 cis-eQTL SNP rs4776984.  

Biotinylated (labeled probe) 31-bp oligonucleotide complexes with +/-15 bp flanking the 

reference or alternate allele for variant rs4776984 were incubated with nuclear protein extracted 

from primary HWA and resolved on a 6% polyacrylamide gel. Competitor assays were 

performed by incubating the reaction with 100X excess of unlabeled (no biotin) oligonucleotide 

complexes with identical sequence. Arrow denotes specific binding of HWA nuclear protein to 

reference (left) and alternate (right) allele.  6XSHUVKLIW�DVVD\V�ZHUH�SHUIRUPHG�ZLWK��ȝJ�DQWL-

CTCF antibodies (EMD Millipore 07-729). 
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Figure 2-11: Three independent replicates for the Electrophoretic mobility shift assay (EMSA) do not show specific binding 
using purified CTCF protein at the MAP2K5 cis-eQTL SNP rs4776984 

 

 
Supplementary Figure 7. Three independent replicates for the Electrophoretic mobility 
shift assay (EMSA) do not show specific binding using purified CTCF protein at the 
MAP2K5 cis-eQTL SNP rs4776984.  

Biotinylated (labeled probe) 31-bp oligonucleotide complexes with +/-15 bp flanking the 

reference or alternate allele for variant rs4776984 were incubated with purified CTCF protein 

(Origene TP720882) and resolved on a 6% polyacrylamide gel in our EMSA experiment. 

Competitor assays were performed by incubating the reaction with 100X excess of unlabeled (no 

biotin) oligonucleotide complexes with identical sequence. The reference allele is on the left and 

alternate allele on the right. (a) First replicate of the EMSA for rs4776984. (b) Second replicate 

of the EMSA for rs4776984. (c) Third replicate of the EMSA for rs4776984. 

  



 

 
 

39 

Table 2-2: Parameters used for identification of novel cis-eQTL and looping interactions 

  

  

Supplementary Table 1. Parameters used for identification of novel cis-eQTL and looping interactions 

cis-eQTL discovery METSIM (n=335) 

Type of genetic data Illumina Omni Express 

# cis-eQTLSNPs with the same target gene and beta direction replicated 
in subcutaneous adipose GTEx data 386,068 

# PEER factors corrected 22 

# Genetic principal components corrected 3 

Minor allele frequency (MAF) > 5% 

Type of expression data RNA-seq 

Normalization technique Inverse normal transformation of FPKMs 

FDR significance threshold for cis-eQTL SNPs < 5% 

# of cis-eQTL target genes with looping interactions 4,332 

Promoter capture Hi-C Primary human white adipocytes 

# reads from sequencing 138,217,259 

# uniquely aligned paired reads 101,187,918 

# valid pairs of reads after capture Hi-C specific filtering by HiCUP 88,583,089 

# significant looping interaction pairs identified from CHiCAGO 80,567 

# METSIM genes in looping interaction pairs 10,083 
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Table 2-3: Histone mark enrichment in looping HindIII fragments in primary HWA 

  

Supplementary Table 2. Histone mark enrichment in looping HindIII fragments in primary HWA 

Histone mark Base pairs of feature enrichment in 
looping HindIII fragments 

Base pairs of feature enrichment in 
random HindII fragments* Standard deviation p-value† 

H3K4me1 42181 39278.45 56.94 <2.2x10-16 

H3K4me3 42347 39502.39 55.86 <2.2x10-16 

H3K27ac 42095 39597.19 49.24 <2.2x10-16 

H3K27me3 42813 40529.33 43.78 <2.2x10-16 

H3K9me3 41222 39408.19 54.07 <2.2x10-16 

DHS 35578 30547.74 89.82 <2.2x10-16 

*Random HindIII fragments were controlled for distance away from the target promoter when selected. 

†p-value computed from Pearson’s chi-squared test. 
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Table 2-4: Adipocyte chromosomal interactions are enriched for 30 transcription factors (adjusted p<0.05) when compared to 
CD34+ chromosomal interactions 

  

  

Supplementary Table 3. Adipocyte chromosomal interactions are enriched for 30 transcription factors (adjusted p<0.05) when compared to CD34+ chromosomal interactions 

Motif logo Motif name p-value Adjusted p-value 

Number of target 
sequences with 
motif (of 189013) 

Percent of target 
sequences with 
motif 

Number of background 
sequences with motif 
(of 173261) 

Percent of background 
sequences with motif 

 
CTCF(Zf)/CD4+-CTCF-ChIP-
Seq(Barski_et_al.)/Homer 1.00x10-102 0 5746 3.04% 3915.7 2.26% 

 
BORIS(Zf)/K562-CTCFL-ChIP-
Seq(GSE32465)/Homer 1.00x10-53 0 6336 3.35% 4760.1 2.75% 

 
CEBP(bZIP)/ThioMac-CEBPb-ChIP-
Seq(GSE21512)/Homer 1.00x10-10 0 18925 10.01% 16547.8 9.56% 

 Sp5(Zf)/mES-Sp5.Flag-ChIP-Seq(GSE72989)/Homer 1.00x10-7 0 16995 8.99% 14950.8 8.64% 

 Elk4(ETS)/Hela-Elk4-ChIP-Seq(GSE31477)/Homer 1.00x10-5 0.00010 10491 5.55% 9180.3 5.31% 

 YY1(Zf)/Promoter/Homer 1.00x10-5 0.00030 817 0.43% 638.7 0.37% 

 
NRF1(NRF)/MCF7-NRF1-ChIP-
Seq(Unpublished)/Homer 1.00x10-5 0.00040 1163 0.61% 935.2 0.54% 

 
TEAD2(TEA)/Py2T-Tead2-ChIP-
Seq(GSE55709)/Homer 1.00x10-4 0.00050 12965 6.86% 11440.4 6.61% 

 E2F3(E2F)/MEF-E2F3-ChIP-Seq(GSE71376)/Homer 1.00x10-4 0.00070 7993 4.23% 6986.6 4.04% 

 
Erra(NR)/HepG2-Erra-ChIP-Seq(GSE31477)/Homer 1.00x10-4 0.0023 40662 21.50% 36580.6 21.14% 

 
TEAD(TEA)/Fibroblast-PU.1-ChIP-
Seq(Unpublished)/Homer 1.00x10-4 0.0026 17798 9.41% 15848.7 9.16% 

 Elk1(ETS)/Hela-Elk1-ChIP-Seq(GSE31477)/Homer 1.00x10-4 0.0026 10671 5.64% 9422.4 5.45% 

 
TEAD4(TEA)/Tropoblast-Tead4-ChIP-
Seq(GSE37350)/Homer 1.00x10-4 0.0026 20464 10.82% 18265.1 10.56% 

 GFY(?)/Promoter/Homer 1.00x10-3 0.0031 1159 0.61% 950.2 0.55% 

 E2F4(E2F)/K562-E2F4-ChIP-Seq(GSE31477)/Homer 1.00x10-3 0.0069 5131 2.71% 4475.5 2.59% 

 
Sp1(Zf)/Promoter/Homer 1.00x10-3 0.0084 3622 1.92% 3133.5 1.81% 

 
NFY(CCAAT)/Promoter/Homer 1.00x10-3 0.0084 14237 7.53% 12676.1 7.33% 

 
Ronin(THAP)/ES-Thap11-ChIP-
Seq(GSE51522)/Homer 1.00x10-3 0.012 443 0.23% 346.4 0.20% 

 
Olig2(bHLH)/Neuron-Olig2-ChIP-
Seq(GSE30882)/Homer 1.00x10-3 0.014 45873 24.26% 41429.3 23.94% 

 
E2F6(E2F)/Hela-E2F6-ChIP-Seq(GSE31477)/Homer 1.00x10-2 0.022 7047 3.73% 6221.3 3.60% 

 
ZNF143|STAF(Zf)/CUTLL-ZNF143-ChIP-
Seq(GSE29600)/Homer 1.00x10-2 0.024 5580 2.95% 4906.1 2.84% 

 
DUX4(Homeobox)/Myoblasts-DUX4.V5-ChIP-
Seq(GSE75791)/Homer 1.00x10-2 0.029 936 0.49% 777.7 0.45% 

 NRF(NRF)/Promoter/Homer 1.00x10-2 0.036 1622 0.86% 1382.4 0.80% 

 
PPARE(NR),DR1/3T3L1-Pparg-ChIP-
Seq(GSE13511)/Homer 1.00x10-2 0.039 17385 9.19% 15586.6 9.01% 

 
Pax7(Paired,Homeobox),longest/Myoblast-Pax7-
ChIP-Seq(GSE25064)/Homer 1.00x10-2 0.040 513 0.27% 415 0.24% 

 
NFAT(RHD)/Jurkat-NFATC1-ChIP-
Seq(Jolma_et_al.)/Homer 1.00x10-2 0.045 20039 10.60% 18002.5 10.40% 
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Table 2-5: LD score enrichments, heritability estimates, and p-values using the published LD Score software 

  

 

Supplementary Table 4. LD score enrichments, heritability estimates, and p-values using the published LD Score software9 

Category Prop. of SNPs Prop.  of h2 Enrichment SE p-value 
Coding_UCSC 0.02 0.15 9.26 0.9 6.66x10-23 
Coding_UCSC.extend.500 0.07 0.28 4.21 0.3 1.27x10-27 
Conserved_LindbladToh 0.03 0.15 5.32 0.8 1.26x10-8 
Conserved_LindbladToh.extend.500 0.34 0.56 1.64 0.1 4.45x10-7 
CTCF_Hoffman 0.02 0.06 2.52 0.5 4.92x10-3 
CTCF_Hoffman.extend.500 0.07 0.11 1.58 0.3 2.59x10-2 
DGF_ENCODE 0.14 0.34 2.46 0.2 6.87x10-10 
DGF_ENCODE.extend.500 0.54 0.77 1.42 0.1 2.60x10-5 
DHS_peaks_Trynka 0.11 0.27 2.37 0.3 3.92x10-6 
DHS_Trynka 0.17 0.35 2.05 0.2 8.32x10-6 
DHS_Trynka.extend.500 0.50 0.72 1.44 0.1 3.56x10-5 
Enhancer_Andersson 0.00 0.01 2.60 2.0 4.30x10-1 
Enhancer_Andersson.extend.500 0.02 0.03 1.70 0.7 2.87x10-1 
Enhancer_Hoffman 0.06 0.15 2.27 0.3 6.34x10-5 
Enhancer_Hoffman.extend.500 0.16 0.30 1.93 0.2 2.51x10-7 
FetalDHS_Trynka 0.09 0.28 3.25 0.3 3.78x10-12 
FetalDHS_Trynka.extend.500 0.29 0.48 1.69 0.2 2.28x10-8 
H3K27ac_Hnisz 0.39 0.65 1.64 0.1 2.77x10-8 
H3K27ac_Hnisz.extend.500 0.43 0.68 1.58 0.1 9.46x10-8 
H3K27ac_PGC2 0.27 0.53 1.95 0.1 2.57x10-11 
H3K27ac_PGC2.extend.500 0.34 0.61 1.80 0.1 8.44x10-1 
H3K4me1_peaks_Trynka 0.18 0.35 1.98 0.2 2.26x10-6 
H3K4me1_Trynka 0.43 0.71 1.64 0.1 5.61x10-8 
H3K4me1_Trynka.extend.500 0.61 0.86 1.41 0.1 6.55x10-6 
H3K4me3_peaks_Trynka 0.04 0.11 2.55 0.6 1.35x10-3 
H3K4me3_Trynka 0.14 0.35 2.59 0.2 5.48x10-13 
H3K4me3_Trynka.extend.500 0.26 0.49 1.88 0.1 4.52x10-10 
H3K9ac_peaks_Trynka 0.04 0.12 3.03 0.5 1.03x10-5 
H3K9ac_Trynka 0.13 0.36 2.79 0.2 1.07x10-14 
H3K9ac_Trynka.extend.500 0.23 0.50 2.15 0.2 1.18x10-14 
Intron_UCSC 0.39 0.40 1.00 0.1 9.63x10-1 
Intron_UCSC.extend.500 0.40 0.51 1.27 0.1 3.63x10-3 
PromoterFlanking_Hoffman 0.01 0.04 4.43 1.1 1.82x10-3 
PromoterFlanking_Hoffman.extend.500 0.03 0.13 3.70 0.4 3.39x10-12 
Promoter_UCSC 0.03 0.14 4.45 0.5 6.18x10-12 
Promoter_UCSC.extend.500 0.04 0.18 4.51 0.4 1.01x10-20 
Repressed_Hoffman 0.45 0.30 0.65 0.1 5.99x10-20 
Repressed_Hoffman.extend.500 0.71 0.47 0.65 0.1 8.43x10-6 
SuperEnhancer_Hnisz 0.17 0.35 2.03 0.2 1.79x10-6 
SuperEnhancer_Hnisz.extend.500 0.17 0.34 1.97 0.2 1.57x10-6 
TFBS_ENCODE 0.13 0.34 2.50 0.2 2.61x10-11 
TFBS_ENCODE.extend.500 0.35 0.49 1.42 0.1 6.98x10-4 
Transcribed_Hoffman 0.35 0.38 1.07 0.1 5.34x10-1 
Transcribed_Hoffman.extend.500 0.77 0.74 0.97 0.1 6.53x10-1 
TSS_Hoffman 0.02 0.13 7.10 0.9 5.15x10-12 
TSS_Hoffman.extend.500 0.04 0.19 5.23 0.5 6.73x10-15 
UTR_3_UCSC 0.01 0.08 6.88 0.9 4.11x10-10 
UTR_3_UCSC.extend.500 0.03 0.13 4.48 0.6 4.99x10-10 
UTR_5_UCSC 0.01 0.05 9.46 1.8 1.36x10-6 
UTR_5_UCSC.extend.500 0.03 0.15 5.10 0.5 1.19x10-14 
WeakEnhancer_Hoffman 0.02 0.04 1.92 0.6 1.02x10-1 
WeakEnhancer_Hoffman.extend.500 0.09 0.17 1.92 0.2 1.58x10-4 
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Table 2-6: LD score enrichments, heritability estimates, and p-values after modification of the LD score software 

  

 

Supplementary Table 5. LD score enrichments, heritability estimates, and p-values after modification of the LD score software 

Category Prop. of SNPs Prop. of h2 Enrichment SE p-value 
Coding_UCSC 0.03 0.20 6.64 0.6 3.44x10-22 
Coding_UCSC.extend.500 0.12 0.39 3.19 0.2 5.65x10-27 
Conserved_LindbladToh 0.03 0.16 4.82 0.5 3.25x10-13 
Conserved_LindbladToh.extend.500 0.40 0.63 1.59 0.1 3.09x10-10 
CTCF_Hoffman 0.03 0.07 2.18 0.4 1.54x10-3 
CTCF_Hoffman.extend.500 0.10 0.14 1.47 0.2 7.92x10-3 
DGF_ENCODE 0.18 0.40 2.19 0.2 3.73x10-12 
DGF_ENCODE.extend.500 0.64 0.83 1.29 0.1 1.23x10-4 
DHS_peaks_Trynka 0.14 0.31 2.32 0.2 2.94x10-9 
DHS_Trynka 0.20 0.40 1.99 0.2 7.84x10-9 
DHS_Trynka.extend.500 0.56 0.76 1.34 0.1 2.98x10-5 
Enhancer_Andersson 0.01 0.01 2.21 1.4 3.80x10-1 
Enhancer_Andersson.extend.500 0.03 0.04 1.48 0.5 2.89x10-1 
Enhancer_Hoffman 0.10 0.19 1.95 0.2 2.96x10-5 
Enhancer_Hoffman.extend.500 0.23 0.38 1.66 0.1 5.12x10-7 
FetalDHS_Trynka 0.11 0.31 2.92 0.2 4.30x10-15 
FetalDHS_Trynka.extend.500 0.34 0.53 1.58 0.1 1.68x10-7 
H3K27ac_Hnisz 0.54 0.75 1.39 0.1 7.15x10-6 
H3K27ac_Hnisz.extend.500 0.57 0.77 1.35 0.1 2.25x10-5 
H3K27ac_PGC2 0.37 0.62 1.67 0.1 7.02x10-10 
H3K27ac_PGC2.extend.500 0.46 0.71 1.54 0.1 6.89x10-9 
H3K4me1_peaks_Trynka 0.24 0.41 1.74 0.2 4.82x10-7 
H3K4me1_Trynka 0.55 0.80 1.44 0.1 9.82x10-7 
H3K4me1_Trynka.extend.500 0.74 0.92 1.25 0.1 3.15x10-4 
H3K4me3_peaks_Trynka 0.06 0.15 2.36 0.3 6.40x10-5 
H3K4me3_Trynka 0.20 0.46 2.29 0.2 4.79x10-15 
H3K4me3_Trynka.extend.500 0.35 0.60 1.71 0.1 2.44x10-11 
H3K9ac_peaks_Trynka 0.07 0.17 2.50 0.3 2.10x10-6 
H3K9ac_Trynka 0.21 0.48 2.30 0.2 5.70x10-15 
H3K9ac_Trynka.extend.500 0.36 0.64 1.77 0.1 4.00x10-13 
Intron_UCSC 0.47 0.43 0.91 0.1 2.60x10-1 
Intron_UCSC.extend.500 0.49 0.60 1.21 0.1 4.05x10-3 
PromoterFlanking_Hoffman 0.01 0.04 3.30 0.8 2.11x10-3 
PromoterFlanking_Hoffman.extend.500 0.05 0.15 2.91 0.3 3.11x10-12 
Promoter_UCSC 0.06 0.20 3.41 0.4 2.98x10-12 
Promoter_UCSC.extend.500 0.07 0.25 3.43 0.3 2.08x10-20 
Repressed_Hoffman 0.34 0.18 0.55 0.1 2.20x10-7 
Repressed_Hoffman.extend.500 0.56 0.32 0.57 0.1 1.10x10-15 
SuperEnhancer_Hnisz 0.27 0.43 1.63 0.2 1.92x10-5 
SuperEnhancer_Hnisz.extend.500 0.27 0.43 1.59 0.1 2.07x10-5 
TFBS_ENCODE 0.18 0.41 2.26 0.2 2.21x10-15 
TFBS_ENCODE.extend.500 0.43 0.60 1.38 0.1 7.13x10-5 
Transcribed_Hoffman 0.43 0.43 1.02 0.1 7.98x10-1 
Transcribed_Hoffman.extend.500 0.76 0.72 0.94 0.1 3.15x10-1 
TSS_Hoffman 0.03 0.19 5.34 0.6 9.97x10-13 
TSS_Hoffman.extend.500 0.06 0.26 3.97 0.4 1.84x10-15 
UTR_3_UCSC 0.02 0.10 5.06 0.6 2.30x10-10 
UTR_3_UCSC.extend.500 0.05 0.16 3.41 0.4 2.80x10-10 
UTR_5_UCSC 0.01 0.07 7.15 1.2 2.72x10-7 
UTR_5_UCSC.extend.500 0.05 0.20 3.99 0.4 4.37x10-16 
WeakEnhancer_Hoffman 0.03 0.05 1.67 0.4 7.95x10-2 
WeakEnhancer_Hoffman.extend.500 0.13 0.22 1.62 0.2 3.10x10-4 
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Table 2-7: Fifty-four eGenes in METSIM, including the 42 genes replicated for correlation with BMI and effect direction in 
TwinsUK 

  

Supplementary Table 6. Fifty-four eGenes in METSIM, including the 42 genes replicated for correlation with BMI and effect direction in 
TwinsUK 

  Pearson Linear regression 

  METSIM† METSIM
ۆ
 TwinsUK§ 

Gene Chr# Effect size (r) p-value Effect size (ȕ) SE p-value Effect size (ȕ) SE p-value 

ADH1B 4 -0.45 7.40x10-18 -0.21 0.02 1.68x10-20 -0.58 0.03 4.47x10-71 

ORMDL3* 17 -0.45 8.57x10-18 -0.16 0.02 2.06x10-20 -0.58 0.03 2.65x10-70 
AKR1C3 10 0.33 4.78x10-10 0.13 0.02 2.95x10-11 0.49 0.03 5.19x10-54 
CMTM3 16 0.41 4.32x10-15 0.087 0.01 3.84x10-17 0.50 0.03 6.64x10-52 
LPIN1 2 -0.38 1.49x10-13 -0.14 0.02 2.27x10-15 -0.47 0.03 2.38x10-44 
RNF157 17 -0.29 5.19x10-8 -0.096 0.02 5.87x10-9 -0.47 0.03 8.86x10-42 
MYOF 10 0.32 1.07x10-9 0.086 0.01 7.37x10-11 0.46 0.03 2.59x10-40 
NAA40 11 0.28 1.81x10-7 0.052 0.009 2.67x10-8 0.46 0.03 4.00x10-40 
TMEM165 4 0.33 2.45x10-9 0.045 0.007 1.84x10-10 0.45 0.03 3.52x10-37 
RFFL 11 0.27 1.02x10-6 0.035 0.006 1.84x10-8 0.43 0.03 5.67x10-37 
TMCO6 5 -0.28 9.23x10-8 -0.060 0.01 1.18x10-8 -0.44 0.03 5.04x10-35 
SCRN2 17 -0.38 2.23x10-13 -0.10 0.01 3.79x10-15 -0.38 0.03 5.32x10-35 
CSGALNACT1 8 0.24 1.00x10-5 0.047 0.01 2.04x10-6 0.42 0.03 1.41x10-31 
TAPBP 6 0.25 6.71x10-6 0.047 0.02 1.60x10-6 0.32 0.03 1.52x10-29 
CLN8 8 0.32 4.50x10-9 0.044 0.007 3.67x10-10 0.36 0.03 4.41x10-29 
DRAM1 12 0.30 1.87x10-8 0.050 0.008 1.80x10-9 0.40 0.03 5.94x10-29 
WNT2B 1 0.25 2.44x10-6 0.026 0.005 4.90x10-7 0.38 0.03 1.41x10-27 
S100A1 1 -0.27 2.52x10-7 -0.20 0.04 3.59x10-8 -0.38 0.03 3.69x10-26 
RPS6KL1 14 0.26 2.54x10-6 0.060 0.01 5.25x10-7 0.34 0.03 3.27x10-25 
SLC16A7 12 -0.26 3.47x10-6 -0.068 0.01 7.60x10-7 -0.30 0.03 2.08x10-23 
ZNF592 15 -0.27 8.26x10-7 -0.037 0.007 1.40x10-7 -0.33 0.03 2.10x10-23 
MFSD1 3 0.31 8.31x10-9 0.069 0.01 6.70x10-10 0.35 0.04 2.82x10-22 
HYI 1 -0.31 6.45x10-9 -0.11 0.02 5.52x10-10 -0.29 0.03 5.95x10-22 
ANXA4 2 0.24 1.04x10-5 0.045 0.009 2.52x10-6 0.35 0.04 1.20x10-21 
RAB30 11 0.24 8.19x10-6 0.040 0.008 1.98x10-6 0.31 0.03 1.16x10-20 
PLD1 3 -0.28 2.26x10-7 -0.050 0.009 3.24x10-8 -0.32 0.03 7.95x10-20 
MYO5A 15 0.30 3.20x10-8 0.049 0.008 3.41x10-9 0.32 0.04 4.61x10-19 

ACADS* 12 -0.37 2.91x10-12 -0.085 0.01 7.12x10-14 -0.24 0.03 6.65x10-19 
SCAI 9 -0.28 1.81x10-7 -0.034 0.006 2.50x10-8 -0.27 0.03 1.42x10-18 
HLA-DRB1 6 0.25 3.53x10-6 0.14 0.03 7.83x10-7 0.31 0.03 2.09x10-18 

LACTB* 15 0.30 1.67x10-8 0.069 0.01 1.40x10-9 0.32 0.04 4.94x10-18 
GPHN 14 -0.43 7.51x10-17 -0.11 0.01 3.20x10-19 -0.29 0.03 4.28x10-17 
MPHOSPH8 13 -0.24 8.25x10-6 -0.033 0.007 2.02x10-6 -0.23 0.04 3.97x10-11 

MAP2K5* 15 -0.25 7.83x10-6 -0.039 0.008 1.90x10-6 -0.21 0.03 3.81x10-10 
RRNAD1 1 -0.24 1.05x10-5 -0.032 0.007 2.30x10-6 -0.19 0.03 3.14x10-9 
CCDC50 3 -0.33 1.16x10-9 -0.059 0.009 7.24x10-11 -0.18 0.03 9.93x10-9 
RAD54L2 3 -0.25 2.32x10-6 -0.030 0.006 4.70x10-7 -0.20 0.04 2.78x10-8 
SCMH1 1 -0.32 1.11x10-9 -0.047 0.007 7.55x10-11 -0.19 0.03 3.85x10-8 
ATP7B 13 -0.26 6.30x10-7 -0.040 0.007 1.11x10-7 -0.20 0.04 7.22x10-8 
CYP7B1 8 0.24 6.90x10-6 0.047 0.01 1.64x10-6 0.19 0.03 1.07x10-7 
RERE 1 -0.24 1.02x10-5 -0.031 0.006 2.61x10-6 -0.17 0.04 5.39x10-6 
RPAP1 15 -0.35 1.86x10-10 -0.042 0.006 8.82x10-12 -0.14 0.03 9.58x10-6 
ARHGEF7 13 -0.35 4.12x10-11 -0.050 0.007 1.60x10-12 0.022 0.04 NS|| 
NCKIPSD 3 -0.34 3.28x10-10 -0.067 0.01 1.51x10-11 -0.042 0.03 NS|| 
NDUFS2 1 -0.24 9.38x10-6 -0.029 0.006 2.17x10-6 -0.048 0.03 NS|| 
REEP1 2 -0.24 6.38x10-6 -0.033 0.007 1.45x10-6 0.022 0.04 NS|| 
RGCC 13 -0.25 2.81x10-6 -0.076 0.01 4.91x10-7 0.087 0.03 NS|| 
SETD6 16 -0.27 3.99x10-7 -0.041 0.007 6.30x10-8 -0.047 0.04 NS|| 
SLC35A3 12 -0.26 1.13x10-6 -0.024 0.004 2.15x10-7 0.043 0.03 NS|| 
SPAG7 17 -0.26 1.21x10-6 -0.035 0.007 2.27x10-7 -0.076 0.03 NS|| 
NUDCD3 7 -0.34 7.00x10-10 -0.032 0.005 4.17x10-11 NA¶ NA¶ NA¶ 
RP11-387H17.4 17 -0.40 4.40x10-14 -0.26 0.03 4.74x10-16 NA¶ NA¶ NA¶ 
RSBN1L-AS1 7 -0.36 1.65x10-11 -0.056 0.007 5.73x10-13 NA¶ NA¶ NA¶ 
TUBB2B 6 0.34 1.01x10-10 0.14 0.02 4.51x10-12 NA¶ NA¶ NA¶ 

*GWAS gene. 
†Effect size (r, Pearson rho) and p-value calculated from Pearson correlation between gene expression and BMI (see Methods). 
ۆ
Effect size, standard error (SE), and p-value calculated using a linear regression model with BMI and age, age2 and the 14 technical factors as co-

variates when compared to a null model without BMI. These models were compared using an F-test (see Methods). 
§Effect size, standard error (SE), and p-value calculated from linear mixed effects model. A full model including BMI was compared to a null model in 
which the same model was fitted, but with the phenotype (BMI) omitted. These models were compared using an F-test (see Methods). 
||Adjusted p-value > 9.26x10-4. 
¶Value not applicable due to inability to test for replication in TwinsUK cohort. 
#Chr indicates chromosome.
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Table 2-8: The 42 replicated BMI-correlated eGenes show significant enrichment for metabolic and inflammatory pathways 
using KEGG pathway analysis as implemented in WebGestalt 

  

Supplementary Table 7. The 42 replicated BMI-correlated eGenes show significant enrichment for metabolic and inflammatory pathways 
using KEGG pathway analysis as implemented in WebGestalt13 

KEGG Pathway Name Ratio of 
Enrichment 

Number of 
Genes 

Genes in 
Pathway p-value Adjusted p-

value* 

Fatty acid metabolism 18.76 2 ACADS 
ADH1B 0.0051 0.010 

Metabolism of xenobiotics by cytochrome P450 21.78 2 AKR1C3 
ADH1B 0.0038 0.010 

Steroid hormone biosynthesis 30.69 2 AKR1C3 
CYP7B1 0.0019 0.010 

Antigen processing and presentation 11.85 2 HLA-DRB1 
TAPBP 0.012 0.019 

*p-value adjusted using Benjamini-Hochberg correction for multiple testing. 
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Table 2-9: DeepSEA analysis of the variants in the MAP2K5 locus supports the functionality of the looping cis-eQTL SNP 
rs4776984 

  

Supplementary Table 8. DeepSEA analysis of the variants in the MAP2K5 locus supports the functionality of the looping cis-eQTL SNP 
rs4776984. 

SNP ID Chr Position Ref Alt DeepSEA score 

rs4776984 chr15 68118194 A C 2.36x10-3 

rs4776982 chr15 68114974 A G 3.90x10-2 

rs4492996 chr15 68113240 A G 7.16x10-2 

rs4776990 chr15 68137364 C T 1.09x10-1 

rs28742003 chr15 68127769 C T 1.30x10-1 

rs28427879 chr15 68124256 G T 1.98x10-1 
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Table 2-10: Significant CHiCAGO interaction and replication scores from a separate HWA Capture Hi-C experiment verify the 
looping cis-eQTLs for the four identified obesity-related loci 

  

Supplementary Table 9. Significant CHiCAGO interaction and replication scores from a separate HWA Capture Hi-C experiment verify the 
looping cis-eQTLs for the four identified obesity-related loci. 

Other End Baited Fragment Target Gene Looping cis-eQTL CHiCAGO score Replication score 

chr15,67834655,67840760 chr15,68111739,68138337 MAP2K5 rs4476984 5.05 6.15 

chr17,38082534,38106859 chr17,38074576,38081958 ORMDL3 rs8076131 6.35 6.73 

chr15,63413071,63415370 chr15,63561331,63570763 LACTB rs3784671 6.65 13.92 

chr12,121158545,121162946 chr12,121343847,121345146 ACADS rs10774569 5.29 6.62 
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Table 2-11: DNA oligonucleotides used for electrophoretic mobility shift assay 

 

   Supplementary Table 10. DNA oligonucleotides used for electrophoretic  
   mobility shift assay. 

DNA 
oligonucleotides Sequence (5’ -> 3’) for positive and negative strand 

Reference allele – 
A (positive) 
biotinylated probe* 

GCGCGCCCAACTCGGAGCGCCCTGCTGGGCG 

Reference allele – 
A (negative) 
biotinylated probe 

CGCCCAGCAGGGCGCTCCGAGTTGGGCGCGC 

Alternate allele – C 
(positive) 
biotinylated probe* 

GCGCGCCCAACTCGGCGCGCCCTGCTGGGCG 

Alternate allele – C 
(negative) 
biotinylated probe 

CGCCCAGCAGGGCGCGCCGAGTTGGGCGCGC 

      *Biotinylated probes were created by adding biotin to the 5' end of positive strand probes. 
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Cardiometabolic disorders develop as a result of genetic pre-
disposition, environmental factors and their interactions1,2. 
Genome-wide association studies (GWAS) have detected 

additive genetic effects for these traits, but the biological mecha-
nisms explaining how genetic variation is involved in the increas-
ing prevalence of obesogenic cardiometabolic disorders have yet 
to be identified. Some examples of G×E interactions are emerg-
ing, including, for instance, the highly replicated BMI risk variant 
rs9939609 in an intron of FTO that exhibits a significant interac-
tion with physical activity for effect on BMI3. However, overall, 
there are few replicated G×E signals for cardiometabolic disorders 
in humans1. It has remained challenging to identify these signals, 
owing to small cohort sizes and poorly standardized definitions for 
human environmental phenotypes. Even with large cohorts such as 
the UK Biobank4, the statistical power to detect G×E interactions 
by using a genome-wide agnostic search is limited owing to the 
small effect sizes of G×E interactions and heavy multiple-testing 
penalties. Furthermore, once G×E signals have been detected, the 
mechanisms underlying the associations remain unclear, warrant-
ing further fine-mapping studies.

To systematically identify genes involved in G×E interactions, 
we set out to quantify molecular genomic responses to saturated 
and monounsaturated fatty acid challenge in primary human adi-
pocytes, as a cellular model of dietary fat intake in this key adipose 
tissue cell type. We measured differences in chromatin accessibil-

ity and searched the whole genome for chromosomal interactions 
between lipid-responsive gene promoters and enhancers to shed 
new light on the genomic molecular mechanisms relevant for 
lipid responses in human adipocytes. We hypothesized that these 
genomic responses would provide targeted regions harbouring 
candidate genetic variants for analysis of G×E interactions in the 
large UK Biobank cohort4. Using these targeted regions should 
restrict the multiple-testing burden hampering the typical agnostic 
genome-wide G×E analysis and expand knowledge of the true envi-
ronmental exposures responsible for G×E signals, thereby revealing 
the underlying functional mechanisms. Thus, integrating context-
specific molecular genomics with environmental phenotypes and 
clinical outcome data in the UK Biobank should help elucidate 
molecular mechanisms occurring in response to obesogenic cellular 
context that contribute to cardiometabolic traits in humans.

Results
Adipocyte accessible chromatin identifies regulatory regions. To 
obtain primary human adipocytes for study of the effects of lipids on 
chromatin dynamics, we first differentiated primary human white 
preadipocytes into adipocytes in vitro (Fig. 1a). We performed assay 
for transposase-accessible chromatin using sequencing (ATAC-seq)5 
on three biological replicates of the preadipocytes and adipocytes to 
identify open chromatin regions that were differentially accessible 
in the two cell types (Fig. 1b and Supplementary Tables 1 and 2). 

Reverse gene–environment interaction approach 
to identify variants influencing body-mass index 
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Identifying gene–environment (G×E) interactions contributing to human cardiometabolic disorders is challenging. Here we 
apply a reverse G×E candidate search by deriving candidate variants from promoter–enhancer interactions that respond to 
dietary fatty acid challenge through altered chromatin accessibility in primary human adipocytes. We then test all variants 
residing in lipid-responsive open chromatin sites in adipocyte promoter–enhancer contacts for interaction effects between 
genotype and dietary saturated fat intake on body-mass index (BMI) in the UK Biobank. We discover 14 new G×E variants in 12 
lipid-responsive promoters, including in well-known lipid-related genes (LIPE, CARM1 and PLIN2) and newly associated genes, 
such as LDB3, for which we provide further functional and integrative genomic evidence. We further identify 24 G×E variants in 
enhancers, for a total of 38 new G×E variants for BMI in the UK Biobank, demonstrating that molecular genomics data produced 
in physiologically relevant contexts can be applied to discover new functional G×E mechanisms in humans.
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Figure 3-1: ATAC-seq analysis comparing primary human preadipocytes and adipocytes indicates successful adipocyte 
differentiation and widespread changes in chromatin accessibility 
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The 50,336 ATAC-seq peaks that were more accessible in primary 
human adipocytes (‘adipocyte accessible’) included the promoters 
of the ADIPOQ and PPARGC1A genes with known adipocyte-spe-
cific expression (Fig. 1c,d), providing evidence that we successfully 
differentiated adipocytes in vitro. To explore whether the adipocyte 
accessible peaks harboured transcription factor (TF) motifs relevant 
for adipocyte biology, we performed TF motif enrichment analy-
ses with HOMER6. We found that the most enriched motif cor-
responded to the motif for the CCAAT-enhancer-binding protein 
alpha (C/EBPα) TF (Fig. 1b), an important regulator of the later 
stages of adipogenesis7. We then classified the adipocyte accessible 
peaks into functional genomic annotations8 and observed that the 
adipocyte accessible peaks fell more often in adipocyte enhanc-
ers and less frequently in quiescent regions when compared with 
the full peak set or preadipocyte accessible peaks (Supplementary 
Fig. 1). Taken together, these results provide evidence that in vitro  

differentiation of adipocytes leads to an increase in chromatin acces-
sibility in regions important for genomic regulation in adipocytes.

Genomic responses to dietary lipids in human adipocytes. We 
next searched for genomic regions harbouring regulatory ele-
ments that mediate adipocyte responses to the intake of different 
dietary lipids, by treating the adipocytes with the saturated fatty 
acid (SFA) palmitic acid (C16:0) or the monounsaturated fatty acid 
(MUFA) oleic acid (C18:1 cis-9) and then performing ATAC-seq 
on three biological replicates per condition (Fig. 2a). We found 
that treatment with either of these fatty acids resulted in increased 
staining with Oil Red O, which incorporates into neutral lipids, 
indicating that the lipid challenge resulted in increased storage 
of fatty acids in the lipid droplets of the cells (Supplementary Fig. 
2). We identified 1,653 ATAC-seq peaks that were differentially 
accessible in the lipid-challenged primary human adipocytes in  
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Fig. 1 | ATAC-seq analysis comparing primary human preadipocytes and adipocytes indicates successful adipocyte differentiation and widespread 
changes in chromatin accessibility. a, Bright-field images of preadipocytes (top; PAd) and in vitro-differentiated adipocytes (bottom; Ad) for unstained 
cells (left) and cells stained with Oil Red O (right). Images are representative examples from two independent experiments. b, Heat maps showing log2-
transformed fold change (log2 (FC)) in bins per million mapped reads (BPM) for preadipocytes as compared to adipocytes in the three indicated peak 
sets. FDR was calculated (adjusting for n"="154,647 ATAC-seq peaks) from the P values of the quasi-likelihood (QL) F test (see Methods) for differential 
accessibility between preadipocytes and adipocytes using ATAC-seq libraries from n"="3 replicates per cell type. The most enriched TF motif for the 
indicated peak set is listed to the right. Enrichment P values were derived from the hypergeometric enrichment test of the proportion of the given top 
de novo-identified6 TF motifs in the three indicated peak sets as compared with the background set (see Methods). c,d, Read coverage (BPM) in one 
representative (n"="3 replicates per cell type) preadipocyte (blue) and adipocyte (red) ATAC-seq library at the adipocyte accessible ATAC peaks in the 
promoters of the adipocyte hormone gene adiponectin (ADIPOQ) (c) and the adipocyte-specific marker peroxisome proliferator-activated receptor 
gamma coactivator 1-alpha (PPARGC1A) (d).
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Figure 3-2: Lipid-responsive regions fall within adipocyte accessible regions of the genome, as well as within context-dependent 
regions that are not present in untreated adipocytes 
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Fig. 2 | Lipid-responsive regions fall within adipocyte accessible regions of the genome, as well as within context-dependent regions that are not 
present in untreated adipocytes. a, Schematic overview of the lipid challenge experiment in human primary adipocytes. Treatments were performed in 
three replicates per condition. b, Schematic overview indicating the two categories of lipid-responsive peaks used for all downstream analyses. Peaks 
were considered differentially accessible at a cutoff of FDR!<!0.05. FDR was calculated (adjusting for n!=!122,252 ATAC-seq peaks) from the P values of 
the QL F test (see Methods) in one-way analysis of variance (ANOVA). Significant lipid-responsive peaks categorized as adipocyte accessible (n!=!570) 
or context dependent (not identified in untreated preadipocytes or adipocytes; n!=!453) were used in all downstream analyses. c,d, Violin plots showing 
the log2-transformed fold change in differentially accessible peaks in the indicated comparisons, stratified by whether the peak was adipocyte accessible 
(c) or context dependent (d). In c, the violin plot characteristics are as follows: MUFA versus control (ctrl) (n!=!419): range, −1.07 to 1.25; median, 0.26; 
25th percentile, −0.34; 75th percentile, 0.42; SFA versus control (n!=!87): range, −1.17 to 0.77; median, 0.15; 25th percentile, −0.34; 75th percentile, 
0.27; SFA versus MUFA (n!=!321): range, −1.22 to 1.21; median, −0.26; 25th percentile, −0.48; 75th percentile, 0.43. In d, the violin plot characteristics 
are as follows: MUFA versus control (n!=!284): range, −1.05 to 1.40; median, −0.33; 25th percentile, −0.53; 75th percentile, 0.37; SFA versus control 
(n!=!99): range, −1.19 to 1.02; median, 0.34; 25th percentile, 0.20; 75th percentile, 0.47; SFA versus MUFA (n!=!301): range, −1.30 to 1.21; median, 0.49; 
25th percentile, −0.19; 75th percentile, 0.65. The box in d indicates a shift towards increased accessibility in SFA-treated cells, observed especially in the 
context-dependent peaks. e, Human genome browser snapshot (WashU) of the GPAM locus, which harbours 15 lipid-responsive peaks in a ~50-kb region 
(highlighted in blue vertical rectangles). Fourteen of these peaks are SFA responsive. Read coverage (BPM) is shown from one representative ATAC-seq 
library (n!=!3 replicates per condition) for control (red), MUFA (green) and SFA (blue) treatment. GWAS SNPs for serum lipid traits are categorized as 
being in a lipid-responsive peak (red) or outside of a lipid-responsive peak (grey).
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comparison to control adipocytes, referred to as lipid-responsive peaks  
(Fig. 2b, Supplementary Fig. 3 and Supplementary Tables 3 and 4). 
We cross-referenced these lipid-responsive peaks against the adi-
pocyte accessible peaks (Fig. 1) and found that the 570 adipocyte 
accessible, lipid-responsive peaks fell mostly into enhancer and pro-
moter annotations in adipocytes8, in line with their likely impor-
tance in environmental responses and regulation of gene expression 
in adipocytes (Fig. 2b and Supplementary Fig. 4).

Notably, we found that 453 of the 1,653 lipid-responsive peaks 
were not detected as open chromatin in the initial ATAC-seq 
data created in untreated adipocytes and preadipocytes (Fig. 2b). 
When compared to the adipocyte accessible open chromatin, these 
context-dependent open chromatin regions fell into a higher per-
centage of quiescent annotations imputed from data created in 
unchallenged adipocytes8 (Supplementary Fig. 4). This indicates 
that genomic regions that are not open and accessible for TF bind-
ing in untreated, steady-state adipocytes or preadipocytes become 
activated in adipocytes under lipid challenge conditions.

When we stratified the SFA and MUFA treatment responses by 
adipocyte accessible or context-dependent open chromatin regions, 
we found that the effects of SFA treatment in context-dependent 
open chromatin regions were shifted towards increased accessibil-
ity (Fig. 2c,d). This was in contrast to the MUFA responses, which 
were generally evenly distributed between peaks with decreased 
and increased accessibility (Fig. 2c,d). This suggests that differ-
ent fatty acids can result in distinct signalling effects on genome-
level responses to lipid intake in adipocytes, and, in particular, SFA 
intake seems to activate regions of the genome that are normally 
inactive in untreated adipocytes.

On closer examination, we found 14 context-dependent peaks, 
exhibiting increased accessibility in SFA-treated adipocytes,  
which fell into a ~50-kb region on chromosome 10 (Fig. 2e). 
The locus contained a total of 15 lipid-responsive peaks, which 
spanned the entirety of the gene encoding glycerol-3-phosphate 
acyltransferase, mitochondrial (GPAM) (Fig. 2e). The GPAM 
enzyme prefers saturated fatty acid substrates, and the GPAM 
locus has been associated with serum lipid traits9–11 (triglycerides 
(TGs), high-density lipoprotein cholesterol (HDL), low-density 
lipoprotein cholesterol (LDL) and total cholesterol (TC)) and 
serum alanine aminotransferase (ALT), which is a biomarker for 
liver health12, in previous GWAS13. The earlier GWAS associations 
at this locus, in combination with the strong genomic response 
to SFA treatment in adipocytes observed here, suggest that dys-
regulation of the important lipogenic pathway mediated by GPAM  
in adipocytes could contribute to obesogenic cardiometabolic  
disorders such as dyslipidaemias and non-alcoholic fatty liver dis-
ease (NAFLD).

Lipid-responsive gene promoters in chromosomal interactions. 
To identify genes under transcriptional regulation via chromo-
somal interactions, we performed promoter capture Hi-C (pCHi-
C)14 on the lipid-challenged human adipocytes with two biological 
replicates per condition (Supplementary Table 5). We identified 
264 lipid-responsive ATAC-seq peaks that fell within adipocyte 
chromosomal interactions. To test whether these interacting, lipid-
responsive regions of the genome harbour motifs for TFs that are 
important for lipid metabolism, we performed TF motif enrich-
ment analysis6 comparing the lipid-responsive peaks to non-lipid-
responsive peaks within the chromosomal interactions. We found 
that motifs for peroxisome proliferator-activated receptor gamma 
(PPARγ), an important TF in adipogenesis and lipid uptake, and 
its cofactor retinoid X receptor (RXR) were among the ten most 
enriched motifs (Fig. 3a and Supplementary Table 6). This indicates 
that the lipid-responsive sites in adipocyte promoter–enhancer con-
tacts represent genomic regions that are important for mediating 
cellular responses to lipid uptake.

To identify the target genes of the adipocyte responses to lipid 
challenge, we first focused on the interacting promoters from adi-
pocyte pCHi-C (Fig. 3b), as promoters are more highly enriched for 
single-nucleotide polymorphisms (SNPs) that contribute to the her-
itability of local gene expression than enhancers15,16. The 86 interact-
ing pCHi-C baits represented 154 gene promoters, given that the 
resolution of pCHi-C interaction data depends on the frequency 
of restriction sites in the genome (Fig. 3b and Supplementary  
Table 7). We performed a Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway enrichment analysis17 on the set of 
154 interacting, lipid-responsive target genes, which identified two 
significantly enriched pathways for amino acid metabolism (false-
discovery rate (FDR) < 0.05) (Supplementary Table 8).

As energy homeostasis is important for survival, we hypothe-
sized that the 154 gene regions responsible for mediating the effects 
of lipid uptake in adipocytes might exhibit differences in the level 
of conservation when compared to other genes in the genome. 
We therefore obtained an average conservation score for the 114 
protein-coding genes among the 154 genes (gene body ± 500 kb) 
by using PhastCons18 and found that the lipid-responsive protein-
coding genes had higher conservation scores across placental mam-
mals than all other protein-coding genes in the human genome 
(P = 0.020) (Fig. 3c).

We further investigated whether these lipid-responsive genes 
exhibited constraints on genetic mutation, by using the probabil-
ity of each gene being intolerant to loss-of-function mutation (pLI), 
defined in Lek et al.19 as a high unlikelihood of protein-truncating 
mutations in humans. We found that, of the genes for which pLI 
scores were available (n = 104)19, 27 genes (26.0%) were consid-
ered LoF intolerant. Given that 17.7% of all genes are considered 
LoF intolerant, the pLI for lipid-responsive genes is higher than 
expected by chance alone (P = 0.022) (Fig. 3d). Taking these find-
ings together, we identified 154 genes with lipid-responsive pro-
moters in chromosomal interactions that are less tolerant of LoF 
variants and reside within genomic regions that are more conserved 
than expected by chance alone.

Genes that interact with lipid-responsive enhancers. We next 
tested whether the genes that interacted with lipid-responsive 
enhancers exhibited similar characteristics to those of the genes 
that had lipid-responsive promoters. We first found that 169 lipid-
responsive enhancers interacted with 223 promoter-containing 
HindIII baits in the adipocyte pCHi-C analysis (Supplementary 
Fig. 5). Given that multiple gene promoters can be captured within 
a single HindIII fragment, these 223 baits represented 323 gene 
promoters (Supplementary Fig. 5 and Supplementary Table 9). 
When we tested whether these 323 genes were enriched in any 
KEGG pathways, we did not find any functional pathways passing 
multiple-testing correction. This may be due to the fact that, on 
average, each lipid-responsive enhancer interacted with approxi-
mately two promoters (Supplementary Fig. 5), thus leading to 
ambiguities regarding which gene might be the true target of the 
lipid signalling response.

We further determined whether the genes that interacted with 
lipid-responsive enhancers exhibited mutational constraints by 
determining whether the cis regions (gene body ± 500 kb) of the 
protein-coding genes in this set (n = 217) had higher average con-
servation scores than all other protein-coding genes in the genome. 
In contrast to what we observed for genes with lipid-responsive pro-
moters (Fig. 3c), we did not observe a significant difference in the 
conservation scores for genes that interacted with lipid-responsive 
enhancers (Supplementary Fig. 5). Interestingly, of the enhancer-
interacting genes that had a pLI score (n = 207)19, 50 (24.2%) were 
LoF intolerant, which is significantly higher than would be expected 
by chance alone (P = 0.014) (Supplementary Fig. 5). Taken together, 
these results are consistent with more moderate functional signifi-
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Figure 3-3: The 154 genes with lipid-responsive promoters within chromosomal interactions exhibit cross-species conservation 
and constraints on loss-of-function mutations, in line with their potential importance for energy homeostasis and survival 
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of-function mutations, in line with their potential importance for energy homeostasis and survival. a, The top ten most enriched TF motifs in lipid-
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hypergeometric enrichment test.
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Table 3-1: Five lipid-responsive ATAC-seq peaks in interacting promoters overlap with GWAS SNPs for serum lipid traits 
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cance of the genes that interact with lipid-responsive enhancers 
when compared to genes with lipid-responsive ATAC-seq peaks in 
their promoters.

Lipid responses contribute to heritability of serum lipid traits. 
We hypothesized that the genes we were able to identify through 
lipid-responsive promoter–enhancer interactions might high-
light important genomic regions that contribute to the heritabil-
ity of cardiometabolic traits. We found that five lipid-responsive 
gene promoters and three lipid-responsive enhancers within adi-
pocyte chromosomal interactions contained SNPs with genome-
wide-significant (P < 5 × 10−8) associations with serum lipid traits, 
identified in a meta-GWAS of ~180,000 individuals11 (Table 1 and 
Supplementary Table 10). One of the lipid-responsive GWAS loci was 
the well-known nutritional response locus containing the fatty acid 
desaturase (FADS1–FADS2–FADS3) gene cluster on chromosome 
11 (Fig. 4a), which harbours SNPs that have been associated with 
multiple cardiometabolic traits20 and intermediate phenotypes21,22. 
In line with the observed pleiotropy among the serum-lipid-asso-
ciated SNPs, the lipid-responsive peak in the FADS2 promoter con-
tained GWAS SNPs for all tested serum lipid traits11 (LDL, HDL, TC 
and TG), with the strongest signal coming from rs99780 for LDL 
(P = 2.39 × 10−21; Table 1). Notably, the observed open chromatin 
peak in FADS2 was more accessible with palmitic acid treatment 
than with oleic acid treatment (Fig. 4b; FDR = 0.0021), correspond-
ing to the fact that one of the substrates of FADS2 is palmitic acid23.

This response at a GWAS locus for serum lipids was reminis-
cent of the strong SFA response at the GPAM locus (Fig. 2e); in 
fact, all five GWAS SNPs for serum lipids in lipid-responsive gene 
promoters within chromosomal interactions exhibited increased 
chromatin accessibility specifically in response to SFA intake in adi-
pocytes (Supplementary Table 11). The lipid-responsive enhancers 
that interacted with gene promoters in adipocyte pCHi-C exhibited 
a similar trend (Supplementary Table 12). These results suggest 
that environmental responses, particularly to saturated fat intake, 
explain functional mechanisms at these lipid GWAS loci.

Because signals that do not reach genome-wide significance 
probably also contribute to the heritability of cardiometabolic 
disorders, particularly with the added effect of relevant envi-
ronmental stimuli, we wanted to test the combined effect of all  

variants in our lipid-responsive regions while still accounting for 
the linkage disequilibrium (LD) between them. We therefore tested 
whether genetic variants in the cis region (gene body ± 500 kb) of 
all 154 lipid-responsive, interacting promoters contributed signifi-
cantly to the heritability of serum lipid levels. For these analyses, 
we used the LD score-partitioned heritability method24 and GWAS 
summary statistics from the high-powered meta-GWAS for serum 
lipid traits11. We found that 2.9% of all variants resided within the 
cis regions of the 154 genes, and these variants contributed signifi-
cantly to the heritability of the four lipid traits (0.0088 ≤ P d 0.045, 
with an average enrichment of 2.915; Supplementary Table 13). In 
contrast, 5.5% of all variants resided within the cis regions of genes 
with promoters interacting with lipid-responsive enhancers. These 
SNPs contributed significantly to the heritability of HDL, but not 
to that of the other lipid traits (Supplementary Table 14). This is 
consistent with the more diffuse overall functional characterization 
of the genes that interacted with lipid-responsive enhancers when 
compared to the genes with lipid-responsive open chromatin in 
their promoters. Overall, these results indicate that adipocyte lipid-
responsive, interacting loci are important in modulating serum lipid 
levels in humans and provide evidence that variants in these regions 
might have a role in G×E interactions in humans.

Lipid responses identify new G×E interactions for BMI in UK 
Biobank. The large, deeply phenotyped UK Biobank4 cohort can 
provide a valuable resource for G×E studies, particularly because the 
participants’ environmental phenotypes have been characterized in 
a systematic manner. Saturated fat intake has known adverse effects 
in the context of cardiometabolic disorders25–27, and we present evi-
dence here in human adipocytes of an enhanced effect of human adi-
pocyte genomic responses to SFA intake on cardiometabolic traits 
in comparison to genomic responses from MUFA intake (Fig. 2c–e 
and Supplementary Tables 11 and 12). To maximize the number of 
individuals for whom phenotypes were available, as well as to aim 
for the most relevant environment and cardiometabolic outcome, we 
used dietary intake of saturated fat (24-h recall) as the environmen-
tal variable and BMI as the outcome for our G×E analysis.

We first tested whether there were any genome-wide-significant 
signals for G×E interactions by using 167,908 individuals in the 
UK Biobank. We corrected the BMI measurements for array type, 

Table 1 | Five lipid-responsive ATAC-seq peaks in interacting promoters overlap with GWAS SNPs for serum lipid traits

Peak 
chr.

Peak start Peak end Genea SNP(s) in 
peak

MAFb Associated traitc 
(from ref. 11)

P valuec (from ref. 11) Index SNP 
(from ref. 11)

LD with 
index 
SNPd 
(r2)

11 61,594,652 61,596,828 FADS2–
FADS1

rs99780 0.37 TG/HDL/LDL/TC 2.32!×!10–16/5.52!×!10–9 
/2.39!×!10–21/8.62!×!10–18

rs174546 0.93

rs968567 0.16 3.4!×!10–9/NS/8.91!×!10–11 
/2.27!×!10–9

0.35

rs191508698 0 1!×!10–16/2.37!×!10–8/ 
1.24!×!10–20/3.1!×!10–17

–

7 73,036,880 73,038,991 MLXIPL rs55747707 0.2 TG 3.55!×!10–44 rs17145738 0.47
rs34060476 0.13 9.73!×!10–46 0.77

2 27,432,323 27,432,971 SLC5A6–
ATRAID

rs2580759 0.22 TG 2.18!×!10–17 rs1260326 –
rs1275530 0.72 1.88!×!10–17 –

16 68,115,758 68,116,375 NFATC3 rs2107269 0.015 HDL 5.07!×!10–45 rs16942887 0.66

19 10,981,139 10,983,631 CARM1 rs12460421 0.44 LDL 4.32!×!10–11 rs6511720 –

Lipid-responsive ATAC-seq peaks that fell within promoters in adipocyte chromosomal interactions (n!=!91) were assessed for whether they contained GWAS SNPs for serum lipid traits from the meta-
GWAS performed in Willer et al.11. Chr., chromosome; NS, not significant. aThe gene listed corresponds to the promoter in the baited HindIII fragment with a lipid-responsive ATAC-seq peak. bMAF is 
the European frequency from the 1000 Genomes Project. cThe most significant association is in bold when a SNP is associated with more than one serum lipid trait. dLD was calculated on the basis of 
Europeans in the 1000 Genomes Project; LD calculations!>!0.2 are reported.
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Figure 3-4: A lipid-responsive open chromatin region in human primary adipocytes at the 11q12.2 FADS1–FADS2–FADS3 
locus harbours GWAS SNPs for serum lipid traits 
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sex (inferred), age (when the participant attended an assessment 
centre), age2, the assessment centre ID and genetic principal com-
ponents 1–20, as done previously28. We then inverse normal trans-
formed the residuals to account for mean–variance relationships in 
the phenotype, which have been shown previously to impact G×E 
signals29. In the quantile–quantile plot from the genome-wide scan 
for G×E interactions, there was no evidence of genomic inflation in 
the G×E linear model (Supplementary Fig. 6). Furthermore, the fact 
that we were not able to detect any genome-wide-significant signals 
in this genome-wide G×E analysis (see equation (1) in the Methods; 
Supplementary Fig. 6) supports the feasibility of our reverse G×E 
candidate search approach, which identifies functional candidates 
for G×E analyses from molecular genomics data produced under 
biologically relevant conditions.

We have provided evidence that lipid challenge in adipocytes 
highlights important regions of the genome that respond to envi-
ronmental cues and contribute to the heritability of cardiometa-
bolic traits. Thus, these regions represent strong candidates for 
G×E interactions in humans. The 154 promoters in chromosomal 
interactions contained 91 lipid-responsive open chromatin sites 
(Fig. 3b), and we determined that 75 of these 91 candidate regions 
contained variants with minor allele frequency (MAF) > 0.05 in the 
set of 167,908 individuals for whom we had both dietary saturated 
fat intake and BMI phenotypes available (Supplementary Table 15).

We performed G×E analysis by incorporating all SNPs resid-
ing in the open chromatin, lipid-responsive promoter regions 
(n = 290; Supplementary Table 15) into a multivariable linear model  
(see equation (2) in the Methods). This resulted in the identifica-
tion of 14 significant nonredundant G×E SNPs (LD r2 < 0.2) in 12 
interacting promoters, including new G×E SNPs in the promot-
ers of the well-known lipid-associated genes encoding hormone- 
sensitive lipase (LIPE), coactivator-associated arginine meth-
yltransferase 1 (CARM1) and perilipin 2 (PLIN2) (Table 2 and 
Supplementary Table 16).

We next performed a similar G×E analysis on all SNPs at the 
lipid-responsive enhancers that interacted with gene promoters in 
human adipocytes. Of the 173 lipid-responsive regions within the 
interacting enhancers (Supplementary Fig. 5), 142 contained SNPs 
with MAF > 0.05 in the 167,908 individuals in the UK Biobank 
(Supplementary Table 17). We used the same multivariable linear 
model approach to test these SNPs (n = 410) for an interaction with 
the effect of saturated fat intake on BMI and found 24 nonredun-
dant (LD r2 < 0.2) significant G×E SNPs (Supplementary Table 18). 
Given that enhancer fragments can interact with more than one 
promoter-containing pCHi-C bait, these 24 nonredundant SNPs 
interacted with a total of 27 promoter baits in human adipocytes 
(Supplementary Table 18).

Identifying altered chromatin states at G×E SNP sites. The dif-
ferential chromatin accessibility in response to lipid challenge in 
adipocytes probably stems from altered chromatin states, such as 
TF binding or histone modifications. This idea is supported by 
our finding that the lipid-responsive regions within chromosomal 
interactions are enriched for the motifs of TFs important in lipid 
metabolism (Fig. 3a and Supplementary Table 6). To determine the 
predicted allelic effect of the G×E SNPs on chromatin features, we 
used the DeepSEA tool30, which applies a deep learning algorithm 
to publicly available molecular genomics data to predict chromatin 
features on the basis of genomic sequence in silico. Notably, 11 of the 
20 (55%) G×E SNPs in lipid-responsive promoters had a functional 
significance score of less than 0.05, and the predicted impacts of the 
G×E SNPs included differential binding of RXRA (Supplementary 
Table 19). Conversely, only 5 of the 26 (19%) G×E SNPs in lipid-
responsive enhancers had functional significance scores of less than 
0.05 (Supplementary Table 20). It is worth noting that the publicly 
available data used to train the DeepSEA neural network do not 

include molecular genomics data for adipocytes or adipose tissue. 
Therefore, it is possible that the G×E SNPs fall into cell-type-spe-
cific regulatory elements and disrupt chromatin features that cannot 
be predicted with this tool.

To obtain further evidence for the function of the G×E SNPs 
in adipose tissue, we examined whether the G×E SNPs affected 
local gene expression in human adipose tissue as cis expression 
quantitative trait loci (cis-eQTLs) and whether the cis-eQTL target 
gene was the same gene that harboured the lipid-responsive pro-
moter and G×E signal. We found that 3 of the 12 genes with lipid-
responsive promoters harbouring G×E signals were also regulated 
in cis by their G×E SNP at the genome-wide significance level in 
subcutaneous adipose RNA-seq data (n = 335) from the Finnish 
METSIM cohort15,31 (Table 2 and Supplementary Table 16). These 
genes were GLTSCR2 (encoding glioma tumour-suppressor candi-
date region gene 2 protein), PLIN2 and LDB3 (LIM domain binding 
3). Additionally, 2 of the 27 genes interacting with lipid-responsive 
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Fig. 4 | A lipid-responsive open chromatin region in human primary 
adipocytes at the 11q12.2 FADS1–FADS2–FADS3 locus harbours GWAS 
SNPs for serum lipid traits. a, Genome browser snapshot showing the 
FADS1–FADS2–FADS3 locus with data from adipocyte baseline ATAC-seq 
(one representative example from n!=!3 vehicle control (BSA) ATAC-seq 
libraries) and pCHi-C (interactions identified in at least one condition 
from the adipocyte lipid challenge pCHi-C analysis were included; 
see Methods). Chromosomal interactions of the FADS2 promoter are 
highlighted in magenta. b, Read coverage (BPM) in one representative 
ATAC-seq library (n!=!3 replicates per condition) from vehicle control 
(red), MUFA (green) and SFA (blue) treatment. The lipid-responsive peak 
in one of the FADS2 promoters is more accessible in SFA-treated than in 
MUFA-treated adipocytes and contains three independent GWAS SNPs 
for serum lipid traits (1, rs191508698; 2, rs968567; 3, rs99780). FDR was 
calculated (adjusting for n!=!122,252 ATAC-seq peaks) from the P values 
of the QL F test (see Methods) in one-way ANOVA. For the post hoc test 
to determine which comparison was significant after one-way ANOVA 
(MUFA vs. control, SFA vs. control or SFA vs. MUFA), we determined the 
least significant difference; **FDR!=!0.0021; NS, not significant.
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Table 3-2: Significant GÅ~E interactions affecting BMI from a multivariable linear model for 290 promoter SNPs in lipid-
responsive ATAC-seq peaks 
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enhancers were regulated in cis by their interacting G×E SNP at the 
genome-wide significance level in human subcutaneous adipose 
tissue (Supplementary Table 18): THBS2 (thrombospondin 2) and 
CITED4 (Cbp/p300-interacting transactivator with Glu/Asp-rich 
C-terminal domain 4).

We further examined whether the imputed cis expression val-
ues for these five cis-eQTL target genes (eGenes) were correlated 
with BMI or other obesogenic cardiometabolic phenotypes, as 
determined through transcriptome-wide association analysis 
(TWAS)32,33. The LDB3 adipose expression model was strongly 
associated with BMI, arm fat percentage (genome-wide-significant 
TWAS score > 5.0) and other related body fat distribution pheno-
types (TWAS score > 4.0)32. Furthermore, the tibial artery expres-
sion model for LDB3 was also significantly associated with high 
blood pressure and cardiovascular disease (genome-wide-signif-
icant TWAS score < −5.0)32. None of the other eGene expression 
models was associated with cardiometabolic phenotypes at the 
genome-wide significance level.

Because the adipose expression models of LDB3 were signifi-
cantly associated with BMI in TWAS32, we followed up on the most 
significant G×E SNP in the LDB3 lipid-responsive peak (Fig. 5a), 
rs10788522, which was also an adipose cis-eQTL for LDB3 in the 
METSIM cohort (Table 2). As evidenced by the ATAC-seq reads 
intersecting with SNP rs10788522 (Fig. 5b), we found, by electro-
phoretic mobility shift assay (EMSA), that adipocyte nuclear pro-
tein bound this G×E SNP (Fig. 5c and Supplementary Table 21). 
Whereas LDB3 was expressed in subcutaneous adipose tissue 
from the METSIM cohort, as well as the Gene–Tissue Expression 
(GTEx) Project34, we could not reliably detect LDB3 expression 
by quantitative PCR (qPCR) in the lipid-challenged adipocytes 
(data not shown). We therefore determined whether any publicly 
available datasets analysed the transcriptome of sorted cells from 
human adipose tissue. In previously published microarray datasets  

(GSE80654 and GSE100795) from human adipose biopsies in 
which adipocytes were collected and the remaining cell types were 
separated by fluorescence-activated cell sorting (FACS), LDB3 was 
expressed in human adipocytes at a level comparable to that in the 
other adipose cell types35,36. Taken together with our finding that 
the LDB3 promoter responds to lipid uptake in adipocytes, these 
data support the conclusion that the G×E SNP rs10788522 regu-
lates LDB3 expression in adipocytes in response to dietary saturated 
fat and that the interaction has a protective (BMI-lowering) effect  
(Table 2). Altogether, we provide a mechanistic interpretation and 
fine-mapping of a causal G×E SNP, rs10788522, narrowing it to 
the promoter of LDB3 that exhibits differential open chromatin in 
response to lipid challenge in human adipocytes (Figs. 5 and 6).

Discussion
It is well established that environment has a major role in the devel-
opment of cardiometabolic disorders. However, G×E interactions 
have been challenging to detect owing to both the lack of extensive 
study cohorts with sufficient statistical power to detect the small 
G×E effects and the complexity of environmental exposures that are 
difficult to measure in a standardized way in humans1. Systematic 
identification of the effects of defined environmental contributions 
to cardiometabolic disorders is thus necessary to effectively move 
towards the promise of precision medicine. Through our integra-
tion of context-specific molecular genomics data with human epi-
demiological and clinical outcome data in the UK Biobank, we 
provide much-needed information on how the chromatin land-
scape of human adipocytes responds to external environmental sig-
nals and identify the molecular basis of new G×E interactions in 
humans (Fig. 6).

We reversed the typical approach of selecting candidate G×E 
interactions among GWAS SNPs, by first scanning the genome for 
molecular responses to controlled environmental stimuli, apply-

Table 2 | Significant G×E interactions affecting BMI from a multivariable linear model for 290 promoter SNPs in lipid-responsive 
ATAC-seq peaks

SNP PG PGE βG βGE Genes in bait Cis-eQTL FDRa 
(from ref. 15)

Target gene 
(from ref. 15)

log2 (FC) 
(from ref. 15)

rs1974817b 0.0089 0.0010 2.3 −0.089 GLTSCR2–
SNORD23

2.4!×!10–31 SEPW1 0.73

rs58631862 0.032 0.0031 0.085 −0.0035 RGMB – – –
rs74249860 0.0013 0.0043 0.081 −0.0021 SH3GL3 0.021 GOLGA6L4 0.90
rs112438892b 0.0017 0.0050 −0.50 0.012 CARM1 2.7!×!10–5

0.015
SMARCA4
ICAM4

−0.28
0.38

rs17625418 0.015 0.0054 −2.2 0.073 GLTSCR2–
SNORD23

1.3!×!10–13

0.0038
SEPW1
GLTSCR2

−0.76
−0.3

rs3848589 0.045 0.014 0.073 −0.0027 HOOK2–JUNB 0.0058 CACNA1A −0.6
rs882881 0.034 0.016 −0.051 0.0017 PLIN2 – – –
rs35213231 0.56 0.020 0.66 −0.038 RNU2-10P 0.019 PTPRG 0.29
rs41322049 0.29 0.021 0.032 −0.0021 BLVRB–

SPTBN4
– – –

rs35678764b 0.028 0.025 −5.7 0.19 RDH8–COL5A3 – – –
rs10788522b 0.013 0.027 3.9 −0.14 LDB3 6.1!×!10–4 LDB3 0.42
rs10422283 0.045 0.029 −0.072 0.0023 LIPE–LIPE-AS1 – – –
rs867773b 0.31 0.033 −2.0 0.11 PLIN2 0.048 PLIN2 −0.39

1:12245360_CCTTTTT_C 0.047 0.034 0.64 −0.023 TNFRSF1B–
MIR4632

– – –

The reported P values are from the β values in the multivariable linear model (see equation (2) in the Methods), where g is the number of minor alleles of the genotype and e is saturated fat intake. Here 
PG indicates the P value for the genotype effect and PGE indicates the P value for the G×E effect; β values follow the same notation. For the multivariable linear model, there were a total of 290 SNPs and 
38,394 individuals with no missing data available for study. aCis-eQTLs were identified in adipose tissue from the METSIM cohort15,31. bWhen more than one non-independent SNP (LD r2!>!0.2) has a 
significant G×E P value for the lipid-responsive region, only the top SNP is reported; the SNPs in LD with the top SNP are listed in Supplementary Table 16.
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Figure 3-5: Fine-mapping of the gene–diet interaction for BMI in the LDB3 promoter region 
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ing a cellular model of the effects of saturated or monounsaturated 
fat intake on chromatin dynamics in primary human adipocytes. 
Through our integration of chromatin accessibility and chro-
mosomal interactions in lipid-challenged adipocytes, we identi-
fied lipid-responsive open chromatin within promoter–enhancer 
contacts, effectively identifying candidate G×E interaction genes 
with strong evidence of genomic regulation in response to fatty 
acid uptake and processing in human adipocytes. This systematic 
approach culminated in testing a total of 700 SNPs in the accessible, 
lipid-responsive chromatin regions for interactions with dietary sat-
urated fat intake affecting BMI in the UK Biobank4. This led to the 
identification of 14 significant, nonredundant G×E SNPs in 12 gene 
promoter regions and 24 nonredundant G×E SNPs in 20 enhancers, 
representing new gene–diet interactions affecting BMI (Fig. 6).

We observed that the LDB3 gene is regulated in cis by its pro-
moter G×E SNP in human adipose tissue, and previous TWAS anal-
yses have shown that the imputed local adipose expression of LDB3 
is significantly associated with BMI and related cardiometabolic 
phenotypes32,33. Notably, individuals with nonsynonymous muta-
tions in exon 6 of LDB3 have been shown to exhibit autosomal dom-
inant myofibrillar myopathy characterized by fatty degeneration 
(steatosis) of the muscle that progresses with age37,38. This is sugges-
tive of the role of lipid metabolism in the pathophysiology of these 
variants. Here we show that accessibility of the promoter region is 
increased in response to lipid challenge in human adipocytes, and 
adipocyte nuclear protein binds to the G×E SNP site. Although 
we did not detect LDB3 expression in our cultured adipocytes, we 

found that the gene was expressed in mature adipocytes isolated 
from human adipose biopsies, in vivo, suggesting that future studies 
to understand the role of LDB3 in adipocytes may require in vivo 
mouse models. In line with this, LDB3 is known to bind α-actinin 
isoforms that are not muscle specific, and actin cytoskeleton orga-
nization is critically important in maintaining proper tissue func-
tions. Taken together with the adipose cis-eQTL and TWAS results, 
our lipid challenge findings provide a functional mechanism for the 
G×E effect in human adipocytes, adding to the knowledge of envi-
ronmental response to diet and the consequent effects on genetic 
predisposition to cardiometabolic traits in humans.

The 154 lipid-responsive promoters within adipocyte chromo-
somal interactions provide a set of biologically important genes for 
studies in adipose tissue. These gene regions have a higher conser-
vation score and the 154 genes are more likely to be intolerant to 
LoF mutation than expected by chance, suggesting that there are 
evolutionary constraints to maintain their proper function. The 
LoF-intolerant genes are widely and highly expressed19, and they 
may exhibit pleiotropy. Nonetheless, the lipid-responsive mecha-
nism of genomic regulation identified for the LoF-intolerant genes 
in this study provides evidence that these genes may be important 
in maintaining energy homeostasis, which is critical for survival.

It is known that dietary saturated fat intake is correlated with 
various adverse cardiometabolic outcomes25,27, and a genetic risk 
score (GRS) for obesity-related traits was previously shown to 
interact with saturated fat intake to affect BMI26. However, as the 
authors of this study note, the underlying mechanisms for the G×E 
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Fig. 5 | Fine-mapping of the gene–diet interaction for BMI in the LDB3 promoter region. a, Genome browser snapshot of the LDB3 locus with adipocyte 
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The lipid-responsive ATAC-seq peak harbouring the significant G×E SNP rs10788522 resides in the LDB3 gene. FDR was calculated (adjusting for 
n!=!122,252 ATAC-seq peaks) from the P values of the QL F test (see Methods) in one-way ANOVA. For the post hoc test to determine which comparison 
was significant after one-way ANOVA (MUFA vs. control, SFA vs. control or SFA vs. MUFA), we determined the least significant difference; *FDR!=!0.024. 
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NATURE METABOLISM | VOL 1 | JUNE 2019 | 630–642 | www.nature.com/natmetab638



 

 
 

61 

Figure 3-6: Analytical approach 
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interactions remain elusive, particularly when the effect is esti-
mated across tens of SNPs26. Here we bridge this knowledge gap 
and show through a genome-wide scan of regulatory open chro-
matin responses to saturated versus monounsaturated fat uptake 
that a subset of these responses are probably specific to saturated fat 
intake and, when dysregulated at the genetic level, could underlie 
GWAS and G×E signals for cardiometabolic traits. We note that we 
assessed the effects of exogenous fatty acids and did not quantify 
the consequent cellular fatty acid processing, which could include 
desaturation of palmitic acid (C16:0) to the MUFA palmitoleic acid 
(C16:1), by stearoyl-CoA desaturase (SCD). Thus, we do not know 
whether the effects we observed at the DNA level were directly due 
to SFA signalling or resulted from downstream signalling mecha-
nisms of the SCD pathway, affecting MUFA concentrations inside 
the cell.

Our finding that SNPs within the cis regions of the 154 lipid-
responsive gene promoters (gene body ± 500 kb) contributed 
significantly to the heritability of serum lipid levels suggests that 
responses to lipid uptake in adipocytes are associated with cellular 
programs that can modulate serum lipid levels. Correspondingly, 
we identified five adipocyte lipid-responsive, interacting gene 
promoters and three lipid-responsive enhancers that harboured 
genome-wide-significant signals for serum lipid traits, including 
in the well-known FADS1–FADS2–FADS3 gene cluster involved in 
nutrient sensing. Specific lipid-associated SNPs within this locus 
have undergone positive selection in Inuits, which is thought to 

have been in response to the polyunsaturated fatty acids (PUFAs) in 
diets with high amounts of marine mammalian fat39. Furthermore, 
a gene–diet interaction for PUFA intake has been identified in 
Europeans at the FADS1–FADS2–FADS3 locus40, and, while many 
studies of the effects of FADS1–FADS2 polymorphisms on PUFA 
metabolism have shown a clear role for this locus in modulating 
serum fatty acid levels, an understanding of the mechanistic effects 
of these SNPs, associated with cardiometabolic disorders, has been 
less conclusive41,42. Our results suggest that the underlying mech-
anisms may derive from the effects of saturated fats at this locus. 
This additional role for a well-established, yet-inconclusive locus 
supports the applicability of our approach to identify G×E interac-
tions through characterization of molecular genomic responses to 
relevant environmental stimuli.

Although there has been a strong international effort by the sci-
entific community to characterize genomic regulatory elements in 
various cell types and tissues, many of the publicly available datas-
ets and corresponding genomic annotations have been created in 
cells at steady state or under unstimulated baseline conditions43–46. 
Context-specific molecular genomics studies have mainly been per-
formed in immune cell types47–49, while similar studies in other cell 
types are scarce. In line with the importance of studying molecular 
genomic phenotypes under physiologically relevant conditions, we 
found here that, whereas most lipid-responsive regions in human 
adipocytes reside in known adipocyte enhancers, a subset emerge 
from regions that were not identified as open chromatin and were 
annotated as quiescent8 in unchallenged adipocytes, indicating that 
quiescent regions of the human genome are activated under specific 
environmental contexts. Thus, this genome-wide scan for response 
to fatty acid uptake in adipocytes adds to the currently incomplete 
understanding of genomic regulation in contexts that are expected 
to confer complex cardiometabolic disease states.

In conclusion, this study highlights the value of performing 
genome-wide functional genomics experiments in a context-spe-
cific manner to advance understanding of environmental epig-
enomic responses underlying complex traits. We performed a global 
assessment of the genomic responses of primary human adipocytes 
to dietary fatty acid uptake, through incorporating open chromatin 
and chromosomal interaction data that we followed for G×E inter-
actions in UK Biobank. Overall, our study helped discover candi-
date functional mechanisms at 38 new gene–diet interactions on 
BMI, identified over 100 genes important for lipid uptake that may 
contribute to variance in cardiometabolic traits and uncovered a 
new set of interacting open chromatin elements responding to lipid 
challenge in a primary human cell type relevant for lipid synthesis 
and storage.

Methods
Cell lines and culture reagents. We obtained and cultured primary human 
white preadipocyte cells as recommended by PromoCell (PromoCell, C-12731, 
lot 395Z024) for preadipocyte growth and di!erentiation into adipocytes. Cell 
medium (PromoCell) was supplemented with 1% penicillin-streptomycin. We 
maintained the cells at 37 °C in a humidi"ed atmosphere at 5% CO2. For the lipid 
challenge experiments in adipocytes, we serum starved cells for 16 h with 0.5% 
FCS in supplemented adipocyte basal medium (PromoCell), before treatment 
with 200 µM palmitic acid:BSA complex, 200 µM oleic acid:BSA complex (Sigma-
Aldrich, O3008) or 0.23% fatty-acid-free BSA (Sigma-Aldrich, A8806) as a vehicle 
control, in medium containing 0.5% FCS for 24 h before performing experiments.

Palmitic acid conjugation to BSA. We dissolved 25.6 mg of palmitic acid (Sigma-
Aldrich, P5585) into 1 ml of 0.15 M NaCl at 70 °C in a shaking heat block to make 
100 mM palmitic acid solution. We added the palmitic acid solution dropwise into 
10% (wt/vol) BSA in 0.15 M NaCl at 37 °C to generate palmitic acid:BSA conjugate 
at 8 mM stock for palmitic solution.

Oil Red O staining and quantification. We prepared Oil Red O stock by making 
0.3% Oil Red O solution in >99% isopropanol and filtering through a 0.45-μm filter. 
This solution was diluted 3:2 in water, incubated at room temperature for 10 min 
and then filtered through a 0.22-μm filter. We fixed cells for 30–60 min in 10% 
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Fig. 6 | Analytical approach. Flowchart of our approach to integrate 
molecular genomics data created in human adipocytes in physiologically 
relevant contexts that, when combined with human cohort molecular and 
phenotype data, enable the detection of G×E signals.
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formalin, rinsed with distilled water and incubated for 2–5 min at room temperature 
with 60% isopropanol. We stained with Oil Red O for 15 min, rinsed well with water 
and collected images for quantification. Cells were photographed with a Keyence 
bright-field light microscope under ×10 magnification for publication images and 
×20 magnification for lipid droplet quantification. Lipid droplet numbers were 
determined for ~20 cells per condition (untreated, BSA, palmitic acid and oleic 
acid). The total area of Oil Red O staining was quantified with ImageJ50.

ATAC-seq. We performed the ATAC-seq protocol in untreated primary human 
preadipocytes and adipocytes for 300,000 nuclei in three biological replicates per 
cell type, similarly to the protocol developed in Buenrostro et al.5. Specifically, we 
lysed cells in ice-cold lysis buffer (10 mM Tris-HCl pH 7.4, 10 mM NaCl, 3 mM 
MgCl2) plus 0.03–0.1% Tween-20 for 10 min on ice. We centrifuged at 500g for 
10 min at 4 °C and then resuspended the nuclear pellet in 50 µl of transposition 
master mix (25 µl of 2× TDE1 buffer, 2.5 µl of transposase, 22.5 µl of nuclease-free 
water; Illumina, FC-121-1030). We incubated samples at 37 °C for 30 min and then 
purified the DNA with the Qiagen MinElute kit (Qiagen, 28204). Libraries were 
amplified for six cycles and sequenced on an Illumina HiSeq 4000 to produce an 
average of 23,376,290 (±3,337,206) reads.

For the ATAC-seq analysis in primary human adipocytes that underwent lipid 
challenge, we performed omni-ATAC as developed in Corces et al.51 for 300,000 
nuclei in three biological replicates per condition. Specifically, we treated the cells 
with DNase I (Worthington; 200 U ml–1) at 37 °C for 30 min, rinsed the cells with 
ice-cold PBS, scraped the cells gently to the side of the plate, resuspended them in 
50 µl of ice-cold lysis buffer (10 mM Tris-HCl pH 7.4, 10 mM NaCl, 3 mM MgCl2, 
0.1% Igepal CA-630, 0.1% Tween-20, 0.01% digitonin) and incubated them on ice 
for 3 min. We washed with 1 ml of ice-cold lysis quench (10 mM Tris-HCl pH 7.4, 
10 mM NaCl, 3 mM MgCl2, 0.1% Tween-20) and centrifuged at 500g for 10 min at 
4 °C. The nuclear pellet was resuspended in 50 µl of transposition master mix (25 µl 
of 2× TDE1 buffer and 2.5 µl of transposase, 16.5 µl of PBS, 0.5 µl of 1% digitonin, 
0.5 µl of 10% Tween-20, 5 µl of nuclease-free water). We incubated samples at 37 °C 
for 30 min with mixing at 1,000 r.p.m. and then purified the DNA with the Qiagen 
MinElute kit. Libraries were amplified for 6–7 cycles and sequenced on an Illumina 
HiSeq 4000 to produce an average of 40,315,572 (±14,577,770) reads.

ATAC-seq data processing and peak calling. We processed the sequencing reads 
and performed quality control by using the ENCODE ATAC-seq Data Standards 
and Prototype Processing Pipeline. Briefly, we aligned reads to the human reference 
genome (GRCh37/hg19) with Bowtie2 (ref. 52) v2.2.9 (with parameters -k 4 -X 
2000 --local) and filtered out unpaired mapped reads and reads with MAPQ < 30 
(SAMtools53) as well as duplicates (marked with Picard Tools). Only reads from the 
autosomes and X chromosome were retained for downstream analyses.

Identification of differentially accessible ATAC-seq peaks. Read alignments 
from all untreated human preadipocyte and adipocyte libraries (three biological 
replicates per cell type) were merged before peak calling. Peaks were called with 
MACS2 (ref. 54) v2.1.1 (by using the BEDPE function), and peaks with FDR < 0.05 
were retained. We filtered out peaks in blacklisted regions and peaks that did 
not replicate in two of the three biological replicates in at least one condition. 
For differential accessibility analyses, we retained peaks with counts per million 
(c.p.m.) ≥ 1 in at least three libraries. We then input aligned read counts for 
each peak into cqn55 v1.20.0 and normalized the counts for G+C content, peak 
length and library size, before inputting the counts into edgeR56 v3.16.5 to detect 
differentially accessible peaks between preadipocytes and adipocytes with the 
generalized linear model (GLM) functionality and QL F test, applying an FDR 
threshold of 0.05. Libraries for adipocyte lipid challenge ATAC-seq were processed 
identically until the differential accessibility analysis. To detect open chromatin 
regions that exhibited differential accessibility in lipid-challenged adipocytes, 
we performed one-way ANOVA with the GLM functionality and QL F test 
functionality in edgeR56, applying an FDR threshold of 0.05. For the post hoc test 
to determine which comparisons were significant after one-way ANOVA (oleic 
acid versus BSA, palmitic acid versus BSA or oleic acid versus palmitic acid), we 
determined the least significant difference.

Transcription factor motif enrichment in ATAC peaks. We used HOMER (v4.9)6 
to investigate the enrichment of motif sequences in open chromatin regions. For 
enrichment in differentially accessible peaks between untreated preadipocytes 
and adipocytes, we used the consensus peak set (all peaks that were called in 
both the preadipocyte and adipocyte data) as the background. We utilized the 
de novo motif enrichment functionality. To ensure that our background input file 
was not biasing the results, we performed the same analysis with the genome as 
the background input, which produced largely the same results, with smaller P 
values (data not shown). For enrichment in lipid-responsive peaks in adipocyte 
promoter–enhancer contacts, we used non-differentially accessible peaks within 
the promoter–enhancer contacts as the background. Owing to the small number of 
peaks (n = 264), we used the known TF motif enrichment functionality.

Hi-C library preparation. We prepared the Hi-C libraries for the primary human 
adipocyte lipid challenge experiment as described in Pan et al.15 in two biological 

replicates per condition (BSA, oleic acid and palmitic acid). These methods 
were adapted by closely following the in-nucleus Hi-C methods in Rao et al.57 
and Nagano et al.58. Specifically, we fixed 7–10 million adherent cells directly 
in the culture plate in 2% formaldehyde and quenched with glycine to a final 
concentration of 125 mM. Cells were lysed in ice-cold lysis buffer (10 nM Tris-
HCl pH 8.0, 10 mM NaCl, 0.2% Igepal CA-630, 1× protease inhibitors: cOmplete, 
EDTA-free Protease Inhibitor cocktail) on ice for 30 min with occasional agitation. 
We split lysates into aliquots with 5 million nuclei and centrifuged at 2,500g for 
5 min at 4 °C. The nuclear pellets were resuspended in 50 µl of 0.5% SDS in 1× 
NEBuffer 2 (New England Biolabs) and incubated at 62 °C for 10 min. We then 
added 145 µl of water and 25 µl of 10% Triton X-100 and incubated at 37 °C  
for 15 min. We digested chromatin by adding 25 µl of 10× NEBuffer 2 and  
400 U of HindIII (New England Biolabs), incubating at 37 °C overnight with 
shaking (950 r.p.m.).

The next day, we marked the DNA ends with biotin (1.5 µl of 10 mM dATP, 
1.5 µl of 10 mM dGTP, 1.5 µl of 10 mM dTTP, 37.5 µl of 0.4 mM biotin-14-dCTP 
(Invitrogen), 8 µl of 5 U μl–1 Klenow (New England Biolabs)), incubating for 60 min 
at 37 °C; we then added 895 µl of ligation mix (663 µl of water, 120 µl of 10× NEB 
T4 DNA ligase buffer, 100 µl of 10% Triton X-100, 12 µl of 10 mg ml–1 BSA, 5 μl of 
400 U μl–1 T4 DNA ligase (New England Biolabs)). Ligation was performed at room 
temperature for 4 h with slow rotation, and 50 µl of 20 mg ml–1 proteinase K and 
120 μl of 10% SDS were added with incubation at 55 °C for 30 min. We added 130 µl 
of 5 M NaCl and incubated at 68 °C overnight. We then performed an ethanol 
precipitation and sheared the purified DNA to 250–550 bp in size with a Covaris 
M220 instrument. Double size selection was performed with SPRI select agent 
(Beckman Coulter) by adding 0.55 volumes and then 0.15 volumes according to the 
manufacturer’s instructions, eluting the final DNA in 300 µl of 10 mM Tris pH 8.0.

Biotin pulldown was performed with 150 µl of 10 mg ml–1 DYNAL MyOne 
Dynabeads Streptavidin T1 (Invitrogen, 65601) per sample. First, the beads were 
washed twice with 400 µl of 1× Tween wash buffer (1× TWB: 5 mM Tris-HCl pH 
7.5, 0.5 mM EDTA, 1 M NaCl, 0.05% Tween-20) and resuspended in 300 µl of 2× 
binding buffer (2× BB: 10 mM Tris-HCl pH 7.5, 1 mM EDTA, 2 M NaCl). Beads 
were then added to 300 µl of sheared and size-selected DNA. We incubated at room 
temperature for 15 min with rotation to bind biotinylated DNA to the streptavidin 
beads. We washed twice with mixing at 55 °C by adding 600 µl of 1× TWB and 
then washed beads in 100 µl of 1× NEB T4 DNA ligase buffer. We repaired the 
ends of the DNA by resuspending beads in 100 µl of master mix (88 µl of 1× NEB 
T4 DNA ligase buffer with 10 mM ATP, 2 µl of 25 mM dNTP mix, 5 µl of 10 U µl–1 
NEB T4 PNK, 4 µl of 3 U µl–1 NEB T4 DNA polymerase I, 1 µl of 5 U µl–1 NEB 
DNA polymerase I, large (Klenow) fragment) and incubated samples at room 
temperature for 30 min. We washed twice with 1× TWB, washed once with 1× 
NEBuffer 2 and then resuspended samples in 100 µl of dATP attachment master 
mix (90 µl of 1× NEBuffer 2, 5 µl of 10 mM dATP, 5 µl of 5 U µl–1 NEB Klenow 
exo minus) and incubated samples for 30 min at 37 °C. We washed twice with 1× 
TWB and resuspended beads in 100 µl of 1× T4 DNA ligase buffer. We followed 
the manufacturer’s instructions for the Agilent SureSelect to ligate the paired-end 
adaptors. The beads were then washed twice with 1× TWB and resuspended in 
32 µl of 1× Tris buffer. DNA was removed from the streptavidin beads by heating 
at 98 °C for 10 min. We followed the manufacturer’s instructions for the Agilent 
SureSelect for precapture PCR, carried out for eight cycles.

Promoter capture Hi-C library preparation. RNA baits were designed in  
Mifsud et al.14 for capturing HindIII fragments containing gene promoters  
(C. Osborne (Department of Medical & Molecular Genetics, King’s College 
London, London, UK.) kindly shared the exact design). As described in Mifsud 
et al.14, 120-mer RNA baits were designed to target both ends of HindIII fragments 
that contained annotated gene promoters (Ensembl promoters of protein-coding, 
noncoding, antisense, snRNA, miRNA and snoRNA transcripts). A bait sequence 
was deemed valid if the sequence had a G+C content of 25–65%, contained 
fewer than three consecutive Ns and was within 330 bp of the ends of the HindIII 
fragment. Hi-C library hybridization to the capture library was performed 
according to the manufacturer’s instructions for the Agilent SureSelect. A total of 
550 ng of the Hi-C library was hybridized to the biotinylated RNA baits, captured 
with DYNAL MyOne Dynabeads Streptavidin T1 and amplified in post-capture 
PCR to add index sequences, for 12 PCR cycles. The library was sequenced on 
the Illumina HiSeq 4000 platform. All six libraries were sequenced together 
across two lanes of the Illumina HiSeq 4000 to produce an average of 127,069,374 
(±16,855,586) sequencing reads per library.

Capture Hi-C data processing and interaction calling. We processed the 
sequencing reads as described in Pan et al.15, by using the Hi-C User Pipeline 
(HiCUP) v0.5.9 (ref. 59) with default settings except that the insert size restrictions 
for the filtering step were set to 200–600 bp. We called significant interactions 
for each library separately with CHiCAGO software v1.1.1 (ref. 60). We used the 
default threshold of 5 for calling significant interactions. To create a stringent set 
of interactions, we merged all pCHi-C final alignments and called interactions 
with CHiCAGO, again by using a threshold of 5; we then filtered these interactions 
to include only those that were called in both biological replicates in at least one 
condition (BSA, oleic acid or palmitic acid).
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Cross-species conservation analysis. For the cross-species conservation analysis, 
we used the PhastCons score18 available on the UCSC ENCODE database. Briefly, 
the PhastCons score uses a phylo-HMM to predict per-base conservation across 
species. We used the PhastCons scores for placental mammal alignment and 
calculated the mean score for each of the lipid-responsive regions for the protein-
coding lipid responsive genes on autosomes (gene body ± 500 kb). To create a 
background set for this comparison, we calculated the mean score for all other 
protein-coding genes annotated by Ensembl in GRCh37 and their surrounding 
regions of ±500 kb. We performed a non-parametric two-sided Wilcoxon signed-
rank test to compare the lipid-responsive regions to the background set.

LD score analysis. We used LD score regression24 to estimate the heritability 
explained by the lipid-responsive regions. More specifically, we generated an 
annotation for each lipid-responsive region consisting of the lipid-responsive 
gene (gene body ± 500 kb) and used the summary statistics from a lipid GWAS11 
to estimate the proportion of heritability explained by the 154 lipid-responsive 
promoters or 323 promoters that interacted with lipid-responsive enhancers in 
adipocytes, for the four lipid GWAS traits: serum TG, HDL, LDL and TC.

Genotype and phenotype data from the UK Biobank cohort. We downloaded 
imputed genotype data from the UK Biobank cohort4. We identified all SNPs in 
the lipid-responsive gene promoters involved in chromosomal interactions. For 
the G×E interaction test, we filtered out SNPs that had a genotype missing rate 
of greater than 5% or a MAF of less than 5%. We used the BMI value collected 
from the initial UK Biobank assessment visit at which participants were recruited. 
The data for 24-h recall of saturated fat consumption in diet was collected at five 
different time points, including during the initial assessment and four online cycle 
collections. If an individual had 24-h recall of saturated fat consumption collected 
at multiple time points, we used the value closest to the initial assessment. We 
then selected unrelated individuals of European ancestry from the UK Biobank 
participants who had data on both BMI and saturated fat diet collected for the G×E 
analysis. We corrected BMI for the following covariates and performed inverse 
normal transformation to ensure that BMI was normally distributed: array type, 
sex (inferred), age (when the participant attended the assessment centre), age2, the 
assessment centre ID and genetic principal components 1–20.

Genome-wide G×E scan. To verify that our significant G×E interactions were 
not caused by overall inflation, we fitted the linear G×E interaction model on all 
SNPs across the human genome in the UK Biobank data. We first selected SNPs 
that were not in the same LD block (r2 < 0.2) and then used the following linear 
model to detect the G×E interaction between each LD-pruned SNP and saturated 
fat intake on BMI

α β β β ε= + + + +Y g e ge (1)G E GE

where Y is a vector of inverse normal transformed BMI values and g represents 
the vector of the number of minor alleles in the genotypes of the target SNP for 
the individuals in the study sample. We used e for the vector of saturated fat intake 
levels as the environmental covariate, and ε represents a vector of random errors, 
in which each entry is independently and normally distributed. α and β are the 
estimated parameters. The test for an interaction is based on the coefficient βGE. 
A non-zero βGE value indicates that there is an interaction between the genotype 
and environmental factor for the outcome phenotype. We constructed a quantile–
quantile plot to compare the P values of βGE and the expected P values based on 
multiple testing.

Testing for G×E interaction by multivariable linear model. We used the 
following multivariable linear model to detect the G×E interactions between SNPs 
and saturated fat intake for BMI

∑ ∑α β β β ε= + + × + × +
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where Y is a vector of inverse normal transformed BMI values and gi represents a 
vector of the number of minor alleles in the genotypes of the target SNP i, where 
i = 1, …, N SNPs, for the individuals in the study sample. We use e for the vector of 
saturated fat intake levels as the environmental covariate, and ε represents a vector 
of random errors, in which each entry is independently and normally distributed. 
α and β are the estimated parameters. The significance of the interaction is 
given for the coefficient βGEi. A non-zero βGEi value indicates that there is an 
interaction between the genotype i and the environmental factor (24-h saturated 
fat recall) for the outcome phenotype (BMI). Individual βGEi values are estimated 
with conditioning on the effects of the other genotypes and βGi values from the 
multivariable linear model. The P values given for the individual βGEi values are 
calculated by t test.

Electrophoretic mobility shift assays. Nuclear protein was extracted from 
adipocytes with a nuclear protein extraction kit (Active Motif, 40010) following 
the manufacturer’s instructions. Oligonucleotide probes (corresponding to the 

15 bp flanking a SNP site for the reference or alternate allele; Supplementary 
Table 21) with a biotin tag at the 5′ end of the forward sequence (Integrated 
DNA Technologies) were incubated with human adipocyte nuclear protein and 
the working reagent from the Gelshift Chemiluminescent EMSA kit (Active 
Motif, 37341). For competitor assays, an unlabelled probe of the same sequence 
was added to the reaction mixture at 100× excess. The reaction was incubated 
for 30 min at room temperature and then loaded on a 6% retardation gel 
(Thermo Fisher Scientific, EC6365BOX) that was run in 0.5× TBE buffer. We 
transferred the contents of the gel to a nylon membrane and visualized signal with 
chemiluminescent reagent as recommended.

Cis-eQTLs in the METSIM cohort. We obtained subcutaneous adipose cis-eQTL 
variants identified in RNA-seq data (n = 335) from the Finnish METSIM cohort15,31.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The ATAC-seq data for primary human preadipocytes and adipocytes (untreated 
and lipid-challenged cells) and the pCHi-C data for primary human adipocytes 
under lipid-challenge conditions have been deposited in the Gene Expression 
Omnibus under accession GSE129574 and are available upon request from the 
corresponding author.
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Figure 3-7: Adipocyte-accessible peaks fall more into adipocyte enhancers and promoters than the preadipocyte-accessible 
peaks or the full peak set 

  

 

Supplementary Figure 1. Adipocyte-accessible peaks fall more into adipocyte enhancers and 
promoters than the preadipocyte-accessible peaks or the full peak set. ATAC-seq peaks from the 
indicated peak sets on the y-axis are distributed among four subsets of functional annotations from the 25-
state imputed chromHMM1 annotations from mesenchymal stem cell derived cultured adipocytes. Note 
that not all peaks were categorized into one of these 4 categories due to minimum peak proportion overlap 
(>50%) requirement not being met. ***depicts the p-value (p < 1x10-5) for the chi-square test for 
independence between the distributions of peaks in the indicated annotations. Related to Figure 1. 
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Figure 3-8: Fatty acid lipid challenge in human adipocytes leads to increased storage of lipids in lipid droplets 

  

 

Supplementary Figure 2. Fatty acid lipid challenge in human adipocytes leads to increased storage 
of lipids in lipid droplets. (a,b) The proportion of cells in each of the indicated quartiles are reported for 
(a) lipid droplet (LD) number per cell, and (b) total LD area per cell, quantified from oil red o staining. 
Treatment with monounsaturated fatty acid (MUFA) leads to increased total area of LD but fewer total 
LDs (e.g. large LDs). Treatment with saturated fatty acid (SFA) leads to increased LD number and size. 
Data presented are from one representative experiment out of two independent experiments with similar 
results. Related to Figure 2. 
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Figure 3-9: Violin plots show the distribution of log2 fold-change (log2FC) for all differentially accessible peaks from the lipid 
challenge in adipocytes 

  

 

Supplementary Figure 3. Violin plots show the distribution of log2 fold-change (log2FC) for all 
differentially accessible peaks from the lipid challenge in adipocytes. Peaks were considered 
differentially accessible at a cutoff of FDR < 0.05. FDR was calculated (adjusting for n=122,252 ATAC-
seq peaks) from the p-values of the QL F-test (see Methods) in the one-way ANOVA. For the post hoc 
test to determine which comparison was significant after the one-way ANOVA (OA vs. BSA, PA vs. 
BSA, or OA vs. PA), we determined the least significant difference. The violin plot characteristics are as 
follows: MUFA vs. ctrl (n=1,232) range: -1.11 – 1.40; median: 0.32; 25th percentile: -0.32; and 75th 
percentile: 0.47. SFA vs. ctrl (n=277) range: -1.19 – 1.02; median: 0.22; 25th percentile: -0.30; and 75th 
percentile: 0.37. SFA vs. MUFA (n=989) range: -1.31 – 1.21; median: -0.27; 25th percentile: -0.51; and 
75th percentile: 0.47. MUFA indicates monounsaturated fatty acid; SFA, saturated fatty acid. Related to 
Figure 2. 
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Figure 3-10: Lipid-responsive peaks in adipocyte-accessible regions fall more into adipocyte enhancers and promoters than 
lipid-responsive peaks in context-dependent regions 

  

 

Supplementary Figure 4. Lipid-responsive peaks in adipocyte-accessible regions fall more into 
adipocyte enhancers and promoters than lipid-responsive peaks in context-dependent regions. 
Lipid-responsive ATAC-seq peaks from the indicated peak sets on the y-axis are distributed among four 
subsets of functional annotations from the 25-state imputed chromHMM1 annotations from mesenchymal 
stem cell derived culture adipocytes. Note that not all peaks were categorized into one of these 4 
categories due to minimum peak proportion overlap (>50%) requirement not being met. ***depicts the p-
value (p < 1x10-5) for the chi-square test for independence between the distributions of peaks in the 
indicated annotations. Related to Figure 2. 
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Figure 3-11: The 323 genes with promoters that interact with lipid-responsive enhancers exhibit constraints on loss-of-function 
mutations 

  

 

Supplementary Figure 5. The 323 genes with promoters that interact with lipid-responsive 
enhancers exhibit constraints on loss-of-function mutations. (a) Schematic overview of the lipid-
responsive sites in non-baited HindIII fragments from the adipocyte pCHi-C interactions. These data were 
integrated to identify the 323 gene promoters that interact with lipid-responsive enhancers in adipocytes. 
(b) Density plot shows the distribution of per-gene average conservation scores across placental 
mammals2 for all protein-coding genes in the genome compared to all protein-coding genes in the set of 
323 genes whose promoters interact with lipid-responsive enhancers. The two-sided Wilcoxon signed-
rank test returned a non-significant p-value > 0.05. (c) Bar graph shows the proportion of protein-coding 
genes that are loss-of-function intolerant (i.e. are unlikely to have protein-truncating variants in humans)3 
in the whole genome (n=3,204/18,122; 17.7%) compared to the protein-coding genes among the 323 
genes (n=50/207; 24.2%). LoF indicates loss-of-function; *depicts the p-value for the hypergeometric 
enrichment test. Compare with Figure 3 results for 154 genes with lipid-responsive promoters. 
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Figure 3-12: Testing all SNPs genome-wide for gene-by-saturated fat intake effect on BMI does not show inflation or result in 
significant GxEs at the genome-wide significance threshold 

  

 

Supplementary Figure 6. Testing all SNPs genome-wide for gene-by-saturated fat intake effect on 
BMI does not show inflation or result in significant GxEs at the genome-wide significance 
threshold. We tested the SNPs that are not in the same LD block (r2 < 0.2) genome-wide for a GxE 
between each SNP and saturated fat intake effect on BMI. There were a total of 211,187 SNPs and 
167,908 individuals with no missing data available for study (see Equation 1 in the Methods). The Q-Q 
plot shows the observed p-values of ீߚா, the expected p-values (red line) based on the multiple testing, 
and the 95% confidence interval (shaded area). 
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Table 3-3: Sequencing, read processing, and QC metrics for untreated preadipocyte and adipocyte ATAC-seq 

  

  

 

Supplementary Table 1. Sequencing, read processing, and QC metrics for untreated preadipocyte and adipocyte ATAC-seq. 

 Reads Uniquely 
aligned 

Fraction 
uniquely aligned 

Paired and 
filtered 

De-
duplicated 

Fraction 
duplicates 

Final 
Reads 

Fraction 
mtDNA 

Fraction 
reads in 
peaks 

PAd rep1 23,240,008 16,960,464 0.73 20,403,898 16,707,418 0.18 15,810,810 0.019 0.48 

PAd rep2 25,705,628 18,552,651 0.72 22,516,812 17,829,509 0.21 16,938,123 0.016 0.46 

PAd rep3 27,548,038 19,008,502 0.69 23,815,866 19,142,102 0.20 17,984,628 0.025 0.47 

Ad rep1 24,407,273 16,893,473 0.69 21,049,924 16,045,835 0.24 15,038,768 0.033 0.58 

Ad rep2 18,190,931 12,109,272 0.67 15,537,582 11,344,211 0.27 10,459,715 0.049 0.53 

Ad rep3 21,165,864 13,976,310 0.66 17,956,825 12,512,132 0.30 11,528,741 0.050 0.70 

PAd indicates preadipocyte; Ad, adipocyte; mtDNA, mitochondrial DNA.  
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Table 3-4: Sequencing, read processing, and QC metrics for adipocyte lipid-challenge ATAC-seq 

  

  

Supplementary Table 3. Sequencing, read processing, and QC metrics for adipocyte lipid-challenge ATAC-seq. 

 Reads Uniquely 
aligned 

Fraction 
uniquely aligned 

Paired and 
filtered 

De-
duplicated 

Fraction 
duplicates Final Reads Fraction 

mtDNA 

Fraction 
reads in 
peaks 

BSA rep1 64,706,941 48,768,335 0.76 56,012,019 45,623,026 0.185 44,927,691 0.012 0.66 

BSA rep2 24,133,180 18,644,383 0.77 21,149,557 17,972,138 0.150 17,655,287 0.015 0.66 

BSA rep3 23,981,457 17,668,336 0.74 20,677,446 17,553,162 0.151 17,214,846 0.016 0.59 

OA rep1 46,775,100 35,874,412 0.77 40,975,870 29,562,701 0.279 29,007,522 0.016 0.70 

OA rep2 57,372,688 44,971,629 0.79 51,073,123 39,246,428 0.232 38,742,718 0.010 0.71 

OA rep3 33,118,575 25,516,115 0.77 29,143,404 23,401,224 0.197 22,995,249 0.014 0.67 

PA rep1 27,688,462 21,034,204 0.76 24,089,236 18,199,958 0.244 17,822,393 0.018 0.64 

PA rep2 45,904,086 35,705,224 0.78 40,386,681 31,318,153 0.225 30,874,420 0.011 0.68 

PA rep3 39,159,661 29,810,602 0.76 34,234,012 26,610,078 0.223 26,074,118 0.017 0.68 

 BSA indicates bovine serum albumin; OA, oleic acid; PA, palmitic acid; mtDNA, mitochondrial DNA. 
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Table 3-5: Sequencing and read processing metrics for adipocyte lipid-challenge pCHi-C 

  

 

Supplementary Table 5. Sequencing and read processing metrics for adipocyte lipid-challenge pCHi-C. 

 Reads Uniquely mapped 
and paired Unique ditags Cis-close Cis-far Trans 

BSA rep1 156,781,294 115,665,713 69,664,503 10,560,429 49,905,501 9,198,573 

BSA rep2 126,772,704 94,717,631 51,631,011 8,335,003 36,631,083 6,664,925 

OA rep1 120,985,559 90,005,610 54,155,183 7,477,013 38,909,160 7,769,010 

OA rep2 118,632,574 89,101,812 49,035,437 8,495,017 34,445,736 6,094,684 

PA rep1 132,242,479 98,448,728 54,891,280 8,392,648 39,146,001 7,352,631 

PA rep2 107,001,633 80,596,383 44,405,325 6,636,844 31,576,330 6,192,151 

BSA indicates bovine serum albumin; OA, oleic acid; PA, palmitic acid. 
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Table 3-6: The top 10 TF motifs enriched in adipocyte lipid-responsive open chromatin regions in chromosomal interactions 

  

  

Supplementary Table 6. The top 10 TF motifs enriched in adipocyte lipid-responsive open chromatin regions in chromosomal interactions. 

Motif logo Motif name p-value 
Adjusted p-
value 

Number of 
target 
sequences with 
motif (of 264) 

Percent of 
target 
sequences 
with motif 

Number of 
background 
sequences with 
motif (of 
30,704) 

Percent of 
background 
sequences 
with motif 

 
RUNX-AML(Runt)/CD4+-PolII-
ChIP-Seq(Barski_et_al.)/Homer 1.0x10-8 0 134.0 50.76% 10267.5 33.44% 

 
STAT4(Stat)/CD4-Stat4-ChIP-
Seq(GSE22104)/Homer  1.0x10-8 0 166.0 62.88% 13952.6 45.44% 

 
PPARE(NR),DR1/3T3L1-Pparg-
ChIP-Seq(GSE13511)/Homer  1.0x10-6 0 162.0 61.36% 14012.1 45.64% 

 
RXR(NR),DR1/3T3L1-RXR-ChIP-
Seq(GSE13511)/Homer  1.0x10-6 0 173.0 65.53% 15537.1 50.60% 

 

ZBTB18(Zf)/HEK293-
ZBTB18.GFP-ChIP-
Seq(GSE58341)/Homer  

1.0x10-6 1.0x10-4 108.0 40.91% 8317.5 27.09% 

 
THRa(NR)/C17.2-THRa-ChIP-
Seq(GSE38347)/Homer  1.0x10-5 1.0x10-4 105.0 39.77% 8090.0 26.35% 

 
KLF10(Zf)/HEK293-KLF10.GFP-
ChIP-Seq(GSE58341)/Homer  1.0x10-5 1.0x10-4 108.0 40.91% 8567.6 27.90% 

 
Srebp1a(bHLH)/HepG2-Srebp1a-
ChIP-Seq(GSE31477)/Homer  1.0x10-5 1.0x10-4 59.0 22.35% 3792.7 12.35% 

 
NF1-halfsite(CTF)/LNCaP-NF1-
ChIP-Seq(Unpublished)/Homer  1.0x10-4 3.0x10-4 215.0 81.44% 21406.9 69.72% 

 
NPAS2(bHLH)/Liver-NPAS2-ChIP-
Seq(GSE39860)/Homer 1.0x10-4 3.0x10-4 152.0 57.58% 13632.6 44.40% 

Enrichment p-values were derived from the hypergeometric enrichment test of proportion of the given TF motif in the peak set [lipid-responsive open 

chromatin regions in adipocyte chromosomal interactions (n=264)] compared with the background set of peaks [all non-lipid-responsive peaks in 

adipocyte chromosomal interactions (n=30,704)], adjusted (Benjamini-Hochberg) for the number of known motifs tested (n=364)4. The top 10 enriched TF 

motifs in include key TFs in lipid metabolism, such as the co-factors PPARG and RXR. Related to Figure 3.
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Table 3-7: KEGG pathway enrichment analysis of 154 genes with lipid-responsive promoters 

  

  

Supplementary Table 8. KEGG pathway enrichment analysis of 154 genes with lipid-responsive promoters.  

KEGG pathway Ratio of enrichment Number of genes Genes in 
pathway FDR 

Glycine, serine and 
threonine 

metabolism 
13.96 5 

AGXT2 
AOC2 
AOC3 

GLYCTK 
MAOA 

0.0072 

Phenylalanine 
metabolism 23.46 3 

AOC2 
AOC3 
MAOA 

0.036 

The 154 genes with lipid-responsive promoters in adipocyte chromosomal interactions were tested for KEGG 

pathway enrichment using WebGetstalt5, using all genes that were involved in adipocyte chromosomal 

interactions (n=17,052) as the background set. The FDR is calculated from the p-values of the hypergeometric 

test, adjusted for the number of pathways tested through WebGestalt. Related to Figure 3.
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Table 3-8: Three lipid-responsive ATAC-peaks in interacting enhancers overlap with GWAS SNPs for serum lipid traits 

  

  

Supplementary Table 10. Three lipid-responsive ATAC-peaks in interacting enhancers overlap with GWAS SNPs6 for serum lipid traits. 

peakChr peakStart peakEnd intBaitGene¶ SNP in peak MAF† Associated 
trait6  p-value6 Index 

SNP6 

LD with 
index 
SNP† (r2) 

7 73015109 73016308 

Bait1:  
WBSCR22 

Bait2:  
STX1A  

rs34346326 0.2 TG 1.31e-44 rs17145738 0.5 

15 58591111 58592050 

Bait1:  
ADAM10 

Bait2:  
RP11-30K9.7/ 

U3.10 

rs12899879 0.14 HDL 3.55e-09 rs1532085 - 

10 113902081 113908608 ADRA2A rs2792744 0.28 TC 2.73e-09 rs2255141 0.77 

¶The genes listed are the promoters in the baited HindIII fragment with which the lipid-responsive enhances interact. More than one bait is listed when the 

lipid-responsive enhancer is interacting with more than one bait in the adipocyte pCHi-C; †Minor allele frequency (MAF) is the European frequency from 

the 1000 Genomes Project. Linkage disequilibrium (LD) is calculated based on Europeans in the 1000 Genomes Project; LD calculations > 0.2 are 

reported. Lipid-responsive ATAC-seq peaks that land in enhancers within adipocyte chromosomal interactions (n=173) were assessed for 

whether they contain GWAS SNPs for serum lipid traits from the meta-GWAS performed in Willer et al.6  
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Table 3-9: Lipid-responsive gene promoters with GWAS SNPs respond to SFA treatment 

  

 

Supplementary Table 11. Lipid-responsive gene promoters with GWAS SNPs respond to SFA treatment.  

peakChr peakStart peakEnd 
gene-pCHi-C 

bait 
log2FC 

(MUFA/ctrl) 
log2FC 

(SFA/ctrl) 
log2FC 

(SFA/MUFA) 

11 61594652 61596828 
FADS2/ 
FADS1 

n.s n.s 0.37 

7 73036880 73038991 MLXIPL n.s. n.s 0.29 

2 27432323 27432971 
SLC5A6/ 
ATRAID 

n.s n.s 0.33 

16 68115758 68116375 NFATC3 n.s n.s 0.48 

19 10981139 10983631 CARM1 n.s 0.24 n.s 

MUFA indicates monounsaturated fatty acid; SFA, saturated fatty acid; ctrl, control; n.s., non-significant (based 

on the post hoc test of the one-way ANOVA, see below). Lipid-responsive ATAC-seq peaks that land in 

promoters within adipocyte chromosomal interactions (n=91) were assessed for whether they contain GWAS 

SNPs for serum lipid traits from the meta-GWAS performed in Willer et al.6 The direction of the ATAC-seq 

differential accessibility effect was then assessed based on the quality (e.g. SFA or MUFA) of the fatty acid. 

Differential accessibility was evaluated at an FDR cutoff of 0.05. FDR was calculated (adjusting for n=122,252 

ATAC-seq peaks) from the p-values of the QL F-test (see Methods) in the one-way ANOVA. For the post hoc 

test to determine which comparison was significant after the one-way ANOVA (MUFA vs. ctrl, SFA vs. ctrl, or 

SFA vs. MUFA), we determined the least significant difference. The lipid-responsive gene promoters in 

chromosomal interactions that contain GWAS SNPs exhibit increased accessibility in palmitic acid (saturated 

fatty acid) lipid challenge. Related to Table 1.   
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Table 3-10: Lipid-responsive enhancers with GWAS SNPs stratified by quality of fatty acid 

  

  

Supplementary Table 12. Lipid-responsive enhancers with GWAS SNPs stratified by quality of fatty acid. 

peakChr peakStart peakEnd intBaitGene¶ 
log2FC 

(MUFA/ctrl) 
log2FC 

(SFA/ctrl) 
log2FC 

(SFA/MUFA) 

7 73015109 73016308 

Bait1: 
WBSCR22 

Bait2:  
STX1A  

n.s 0.45 0.64 

15 58591111 58592050 

Bait1: 
ADAM10 

Bait2:  
RP11-30K9.7/ 

U3.101 

0.45 n.s -0.28 

10 113902081 113908608 ADRA2A n.s 0.50 n.s. 

¶The genes listed are the promoters in the baited HindIII fragment with which the lipid-responsive enhancers 

interact. More than one bait is listed when the lipid-responsive enhancer is interacting with more than one bait in 

the adipocyte pCHi-C; MUFA indicates monounsaturated fatty acid; SFA, saturated fatty acid; ctrl, control; n.s., 

non-significant (based on the post hoc test of the one-way ANOVA, see below). Lipid-responsive ATAC-seq 

peaks that land in enhancers within adipocyte chromosomal interactions (n=173) were assessed for 

whether they contain GWAS SNPs for serum lipid traits from the meta-GWAS performed in Willer et 

al.6 The direction of the effect was then assessed based on the quality (e.g. SFA or MUFA) of the fatty acid. 

Differential accessibility was evaluated at an FDR cutoff of 0.05. FDR was calculated (adjusting for n=122,252 

ATAC-seq peaks) from the p-values of the QL F-test (see Methods) in the one-way ANOVA. For the post hoc 

test to determine which comparison was significant after the one-way ANOVA (MUFA vs. ctrl, SFA vs. ctrl, or 

SFA vs. MUFA), we determined the least significant difference. The lipid-responsive enhancers in chromosomal 

interactions that contain GWAS SNPs are more often differentially accessible in palmitic acid (saturated fatty 

acid) lipid challenge. Related to Supplementary Table 10. 
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Table 3-11: LDSC analysis of SNPs in cis regions of the 154 lipid-responsive promoters 

 

  

Supplementary Table 13. LDSC analysis7 of SNPs in cis regions of the 154 lipid-responsive promoters.  

Category Proportion 
of SNPs 

Proportion of  
h2 

Proportion 
of  h2 SE Enrichment Enrichment 

SE 
Enrichment 
p-value 

TC 0.029 0.086 0.021 2.95 0.74 0.0088 

LDL-C 0.029 0.084 0.026 2.91 0.91 0.038 

HDL-C 0.029 0.083 0.027 2.87 0.92 0.042 

Serum TG  0.029 0.085 0.026 2.93 0.90 0.045 

SE indicates standard error; h2, heritability; TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol; 

HDL-C, high-density lipoprotein cholesterol; TG, triglycerides. LD score regression (LDSC)7 was performed 

using the SNPs in the cis regions (gene body +/- 500 kb) of the 154 genes with lipid-responsive promoters in 

adipocyte chromosomal interactions; and the serum lipid trait summary statistics from the meta-GWAS 

performed in Willer et al.6 The enrichment p-value and the SE for the proportion of h2 and enrichment were 

calculated from block jackknife resampling used in the LDSC method. The p-value reported is not adjusted for 

multiple tests as these serum lipid traits are highly correlated. The cis regions of the 154 genes with lipid-

responsive promoters in adipocyte chromosomal interactions contribute significantly to the heritability of serum 

lipid traits in humans. 
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Table 3-12: LDSC analysis7 of SNPs in cis regions of genes with lipid-responsive enhancers 

 

Supplementary Table 14. LDSC analysis7 of SNPs in cis regions of genes with lipid-responsive enhancers. 

Category Proportion of 
SNPs 

Proportion of  
h2 

Proportion of  
h2 SE Enrichment Enrichment 

SE 
Enrichment 
p-value 

TC 0.055 0.078 0.015 1.41 0.28 0.12 

LDL-C 0.055 0.057 0.0089 1.03 0.16 0.86 

HDL-C 0.055 0.11 0.020 1.94 0.36 0.011 

Serum TG  0.055 0.12 0.041 2.10 0.74 0.15 

SE indicates standard error; h2, heritability; TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol; 

HDL-C, high-density lipoprotein cholesterol; TG, triglycerides. LD score regression (LDSC)7 was performed 

using the SNPs in the cis regions (gene body +/- 500 kb) of the 323 genes with promoters that interact with lipid-

responsive enhancers in adipocyte chromosomal interactions; and serum lipid trait summary statistics from the 

meta-GWAS performed in Willer et al.6 The enrichment p-value and the SE for the proportion of h2 and 

enrichment were calculated from block jackknife resampling used in the LDSC method. The p-value reported is 

not adjusted for multiple tests as these serum lipid traits are highly correlated. The cis regions of the 323 genes 

that interact with lipid-responsive enhancers in adipocytes contribute significantly to the heritability of HDL, but 

not the other serum lipid traits, in humans. 
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Table 3-13: Significant GxE promoter SNPs with LD proxies 

  

  

Supplementary Table 16. Significant GxE promoter SNPs with LD proxies. 

SNP p-g p-g*e E-g E-g*e Genes in Bait cis-eQTL 
FDR8† 

Target 
Gene8 log2FC8 

 

  

rs1974817 

rs2334290 
0.0089 
0.22 

0.0010 
0.0011 

2.3 
-1.65 

-0.089 
0.088 

GLTSCR2/ 
SNORD23 

2.4E-31 
1.2E-08 

SEPW1 
SEPW1 

0.73 
0.46   

rs112438892¶ 
rs117569851¶ 

0.0017 
0.0037 

0.0050 
0.016 

-0.50 
0.461 

0.012 
-0.011 

CARM1 

2.7E-05/ 
0.015 

0.0014/ 
0.046 

SMARCA4/ 
ICAM4 

SMARCA4/ 
KRI1 

-0.28/ 
0.38 

-0.21/ 
0.18 

  

rs35678764 
rs66516040± 
rs9797822 

0.028 
0.034 
0.044 

0.025 
0.026 
0.039 

-5.7 
0.19 
5.2 

0.19 
-0.0057 
-0.17 

RDH8/COL5A3 0.012 
0.047 

OLFM2 
PIN1 

-0.67 
-0.24   

rs10788522 
rs2354358 

0.013 
0.033 

0.027 
0.042 

3.9 
-3.5 

-0.14 
0.14 

LDB3 6.1E-04 
6.1E-04 

LDB3 
LDB3 

0.42 
0.42   

rs867773 
rs12379376 

0.31 
0.19 

0.033 
0.034 

-2.0 
2.1 

0.11 
-0.11 

PLIN2 0.048 
0.048 

PLIN2 
PLIN2 

-0.39 
-0.39   

†The cis-eQTLs were identified in the adipose tissue from the METSIM cohort8,9. ±This SNP is the only genome-wide significant cis-eQTL from the set of 

GxE SNPs with LD r2 > 0.2 in the lipid-responsive peak. ¶These GxE SNPs are cis-eQTLs for more than one gene. For 5 of the significant promoter GxE 

SNPs listed in Table 2, SNPs with LD r2 > 0.2 in the lipid-responsive region that also exhibited a significant GxE effect of saturated fat intake on BMI are 

listed. Redundant SNPs are listed together in order of more to less significant. The reported p-YDOXHV�DUH�IURP�WKH�ȕV�LQ�WKH�PXOWL-variable linear model (see 

Equation 2 in the Methods), where g is the number of minor alleles of the genotype and e is saturated fat intake. Here p-g indicates the p-value for the 

genotype effect; p-g*e, the p-value for the GxE effect; beta values follow the same notation. For the multi-variable linear model, there were a total of 290 

SNPs and 38,394 individuals with no missing data available for study. Related to Table 2.
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Table 3-14: EMSA oligo probes used for analysis of GxE SNP rs10788522

 

Supplementary Table 21. EMSA oligo probes used for analysis of GxE SNP rs10788522. 

Probe Name Probe Sequence 

rs10788522 FWD 
labeled 

biotin - 5'- TCTGGGGAGAGGAAGG/AGGGACAGGCTGAGAC - 3' 
 

rs10788522 FWD 
unlabeled 5'- TCTGGGGAGAGGAAGG/AGGGACAGGCTGAGAC - 3' 

rs10788522 REV 
unlabeled 

5' - GTCTCAGCCTGTCCCC/TCTTCCTCTCCCCAGA - 3' 
 

Oligonucleotides were designed to target the GxE SNP rs10788522 in the LDB3 promoter HindIII fragment (+/- 

15 bp).   
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BMI-discordant monozygotic twin preadipocytes exhibit altered compartmentalization in regions 

with BMI-interacting variants affecting inflammation 
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Summary 

Obesity is associated with adipose tissue dysfunction, which can cause low-grade inflammation. 

In obesity, preadipocytes (PAd) need to efficiently differentiate to adipocytes to store the extra 

fat, making PAd one of the key cell types affected by obesity and obesity-induced inflammation. 

To test the hypothesis that increased body mass index (BMI) alters genomic programming of 

human preadipocytes and thus drives gene-environment interactions underlying inflammation, 

we leveraged a BMI-discordant monozygotic (MZ) twin cohort. We first defined the higher-

order genomic programming across the twin pairs by integrating open chromatin (ATAC-seq) 

and expression (RNA-seq) data from primary preadipocytes isolated from the twins’ adipose 

tissue with chromosomal interaction (promoter Capture-HiC) data. After identifying subnuclear 

active (A) and inactive (B) compartments, we observed that connectivity of open chromatin in 

the active A compartments is significantly impaired in the higher BMI MZ twins compared to 

their paired lower BMI MZ twin siblings. Extending these epigenetic results to the UK Biobank 

(UKB) showed that the A compartment regions that differed most (~88.5 Mb) in open chromatin 

connectivity between the twins also significantly contribute to systemic inflammation in UKB by 

variants interacting with BMI on C-reactive protein (CRP). Taken together, the obesogenic 

cellular microenvironment alters genomic programming in human preadipocytes, which drives 

inflammation through gene-environment interactions.  
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Introduction 

The obesity epidemic is driving concomitant alarming increases in obesity comorbidities, such as 

type 2 diabetes (T2D), coronary artery disease (CAD), and non-alcoholic fatty liver disease 

(NAFLD) (Hotamisligil, 2006; Lavie et al., 2018; Cercato and Fonseca, 2019). Obesity is also 

one of the key risk factors for severe COVID-19 outcomes (Docherty et al., 2020; Petrilli et al., 

2020), most likely not only due to the altered mechanics of lung ventilation but also due to the 

low-grade inflammation induced by obesity (Ritter et al., 2020). Recent assessment of polygenic 

risk scores (PRSs) for the obesity surrogate trait, body mass index (BMI), highlights how 

accumulation of risk variants is associated with the level of BMI and higher odds of having 

obesity comorbidities, T2D or CAD, in the UK Biobank (UKB) (Khera et al., 2019). However, 

since not all individuals with obesity exhibit metabolic profiles associated with poor 

cardiometabolic health outcomes, the genetic risk for BMI and related complex traits is not 

deterministic, and environmental and lifestyle factors also confer the risk (Khera et al., 2019; 

Blüher, 2020). Therefore, understanding the pathophysiological mechanisms in obesity that 

contribute to metabolically unhealthy phenotypes can improve risk assessment of genetic and 

environmental contributions to these clinically important traits. This will ultimately inform 

treatment strategies to decrease morbidity and mortality due to the obesity epidemic.  

 

Chronic low-grade inflammation is a hallmark of obesity that contributes to the development of 

obesity comorbidities such as insulin resistance and atherosclerosis (Hotamisligil, 2006). In 

obesity, the adipose tissue environment develops into a pro-inflammatory state that corresponds 

with an increase in the overall number, as well as activation, of resident macrophages 

(Hotamisligil, 2006; Ouchi et al., 2011). However, the factors that initiate these events in obesity 
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are incompletely understood. There is increasing evidence for the role of preadipocytes in the 

development of dysfunctional adipose tissue and the pro-inflammatory state seen in obesity. It 

has been shown that primary preadipocytes isolated from individuals with obesity are less 

efficient at producing adipocytes in vitro when compared with preadipocytes isolated from lean 

individuals (Isakson et al., 2009). This reduced adipogenic capacity can contribute to adipocyte 

hypertrophy, wherein already existing adipocytes need to take up and store excess energy in the 

absence of newly formed adipocytes. Hypertrophic adipocytes produce abnormal levels of 

adipokines, which contributes to insulin resistance and inflammation (Sorisky, Molgat and 

Gagnon, 2013; Ghaben and Scherer, 2019; Pyrina et al., 2020). This suggests that one 

mechanism linking adipose tissue inflammation and downstream obesity comorbidities is 

reduced preadipocyte differentiation. 

 

Chronic signaling conditions, such as in the state of overnutrition that causes obesity, can elicit 

changes at the epigenomic level that contribute to dysregulated preadipocytes. For example, 

preadipocytes that have been cultured with high levels of glucose show altered histone 

modifications at genes involved in inflammatory responses (Rønningen et al., 2015). This 

suggests that prolonged exposure to this obesogenic environment affects the epigenomic priming 

of a pro-inflammatory expression profile in preadipocytes. However, it is unclear if similar 

mechanisms contribute to the inflammatory response to obesity in vivo. Evidence from cell 

biological (Isakson et al., 2009) and epigenomic (Andersen et al., 2019) studies have shown that 

preadipocytes from obese individuals exhibit altered differentiation potential relative to 

preadipocytes from lean individuals, suggesting that the cellular genomic programming can be 
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affected by obesity in vivo. The mechanisms involved in the altered programming and the 

downstream effects on inflammation remain to be determined.   

 

Here, we leveraged a cohort of monozygotic (MZ) twins who are discordant for BMI (ΔBMI>3 

kg/m2) to study the effects of increased BMI on preadipocyte cellular programming. Because 

their genetics are identical, epigenomic differences between the MZ twin siblings can be 

attributed to differences in lifestyle between the twins. We characterized preadipocyte genomic 

programming through Assay for Transposase-Accessible Chromatin (ATAC) -sequencing and 

RNA-seq in the MZ twins, and promoter Capture Hi-C (pCHi-C) in an independent source of 

human primary preadipocytes. By integrating these data and leveraging co-accessibility 

information across all preadipocyte samples from the twins, we identified subnuclear 

compartments of chromatin activity, previously defined as active (A) and inactive (B) 

compartments (Perino and Veenstra, 2016). The active A compartments exhibited significant 

differences in compartmentalization of chromatin activity, defined by the level of connectivity, 

between the lower and higher BMI MZ sibling groups. We show that these regions of altered 

genomic compartmentalization of chromatin activity also contribute to inflammation through 

gene-BMI interactions in the UKB.  
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Results 

Identification of A/B compartments in human primary preadipocytes 

We have an ongoing collection of a unique, deeply phenotyped cohort of 65 Finnish 

monozygotic (MZ) twin pairs who are discordant for BMI (ΔBMI³3 kg/m2) (Granér et al., 2012; 

Naukkarinen et al., 2014) (see Methods). The clinical and metabolic characteristics of these 

twins are summarized in Table S1. A paired t-test of clinical measurements indicates that many 

traits are significantly different between the lower and higher BMI groups of siblings, including 

C-reactive protein (CRP), which is a measure of systemic inflammation, an important 

comorbidity of obesity (Table S1). We hypothesized that preadipocyte (PAd) genomic 

programming is altered under conditions of increased BMI, which could lead to adipose tissue 

dysregulation and contribute to the difference in inflammatory profiles. We therefore isolated the 

primary subcutaneous PAd from the subcutaneous adipose biopsies of 10 pairs (n = 20) of the 

BMI-discordant MZ twins (see Methods). The clinical characteristics of this subset of twins for 

whom we collected the PAd are summarized separately in Table S1.  

 

Cellular genomic programming is defined by various levels of genome organization. To first 

characterize the PAd genomic programming at the level of subnuclear compartmentalization of 

chromatin activity, we performed ATAC-seq on the PAd from all 10 pairs of BMI-discordant 

MZ twins (see Methods). We inferred A and B genomic compartments, which are broadly 

associated with active or inactive regions of genome (Perino and Veenstra, 2016), respectively, 

using the co-accessibility information from the ATAC-seq coverage across 100-kb bins, as 

described previously (Fortin and Hansen, 2015) (see Methods) (Figure 1A; Table S2). In the MZ 

twin PAd, the A compartments were shorter than B compartments, with a median of 300 kb 
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compared with 600 kb in the B compartments (pWilcoxon=3.1x10-76) (Figure S1A). B 

compartments made up an average of 74.8%% +/- 9.7% (s.d.) of each chromosome (Figure 

S1B). We validated the compartment detection by characterizing the stratification of known 

functional features of chromatin compartmentalization across the A and B compartments 

(Lieberman-Aiden et al., 2009; van Steensel and Belmont, 2017). The proportion of 

chromosomes making up B compartments is significantly correlated (Spearman’s r=0.68, 

p=6.8x10-4) with the percent of the chromosome that is comprised of gene deserts (Figure S1C). 

As previously reported (Lieberman-Aiden et al., 2009; van Steensel and Belmont, 2017), gene 

deserts were largely restricted to B compartments (Figure S1D) and the gene density in the A 

compartments was significantly higher than in the B compartments (pWilcoxon=3.34x10-69) (Figure 

S1E).  

 

Preadipocyte A/B compartments reflect cell-type-specific gene regulatory activity 

To address the cell-type-specificity of gene regulatory activity in the PAd A/B compartments, we 

compared their coverage of chromatin states across 127 ENCODE cell types using the imputed 

25 state model from ChromHMM (Ernst and Kellis, 2015). We found that the A compartment 

coverage of enhancer chromatin states was highest for the mesenchymal stem cell -derived 

adipocyte cultured cells (MSC-Ad) (FDRWilcoxon<0.05), and next highest in adipose-derived 

mesenchymal stem cell cultured cells (Ad-MSC), in line with the primary PAd being at a 

developmental stage similar to these two cell types (Figure S2). There was a similar trend for A 

compartment coverage of promoter chromatin states for MSC-Ad (Figure S2). Conversely, the A 

compartment coverage of quiescent chromatin states was significantly lower in the MSC-Ad than 

all other cell types (FDRWilcoxon<0.05) except Ad-MSCs and primary breast myoepithelial cells 
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(Figure S2). The coverage of the active transcription chromatin state in the A compartments was 

not highest in the MSC-Ad (data not shown), suggesting that the promoter, enhancer, and 

quiescent chromatin states exhibit more cell-type-specific compartment coverage. Since the A 

compartment coverage was most specific for MSC-Ad, we consider the primary PAd to be most 

similar to this ENCODE cell type. We therefore used these chromatin states for all subsequent 

analyses using ChromHMM. 

 

To confirm that measures of active gene regulation are more restricted to A compartments than B 

compartments, we assessed the coverage of active or inactive chromatin states within the A/B 

compartments. The A compartment coverage was higher than B compartment coverage for the 

enhancer (pWilcoxon=2.83x10-79) and promoter (pWilcoxon=8.84x10-149) chromatin states, whereas 

the B compartment coverage was higher than the A compartment coverage for quiescent states 

(pWilcoxon=1.23x10-100) (Figure 1B), in line with active gene regulation being more prevalent in 

the A compartments. Taken together, the A/B compartments inferred from the human primary 

PAd ATAC-seq data exhibit cell-type-specific gene regulatory chromatin states and functional 

genomics measures from human MSC-Ad, consistent with the A compartment being comprised 

of more active gene regulatory states that may be important for regulating PAd cellular 

programming. 

 

To determine whether the subnuclear compartmentalization of chromatin activity associates with 

gene expression in the way expected based on the epigenetic data, we performed RNA-seq on the 

20 MZ twin PAd samples (see Methods). Genes in the A compartments have higher mean 

expression than genes in the B compartments (pWilcoxon=4.63x10-49), in line with the fact that A 
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compartments are enriched for molecular signatures of active gene regulation (Figure 1C). A 

clear example of how the A/B compartments define cell-type-specific genomic programming is 

presented in Figure 1D and 1E. Consistent with these primary cells being at a later 

developmental time point (Gulyaeva et al., 2018), the early PAd marker, DLK1, is located within 

a B compartment and has negligible expression in the preadipocytes (Figure 1D). Conversely, 

the later PAd marker, PDGFRA, is located within an A compartment and is clearly expressed 

(Figure 1E). Furthermore, the well-established adipocyte-specific adipocytokine, ADIPOQ, is 

located within a PAd B compartment, in line with this gene not being expressed until the later 

stages of adipocyte differentiation (Table S2). Taken together, our data on A and B 

compartments are in accordance with previously published hallmark features of subnuclear 

compartments.  

 

Promoter-enhancer interactions are enriched in the A compartments 

Cellular genomic programming involves the proper targeting of active or repressive regulatory 

elements and the necessary DNA-binding proteins to their target promoters through 

chromosomal interactions (Perino and Veenstra, 2016). We therefore identified promoter 

interactions in human primary PAd using promoter Capture Hi-C (pCHi-C) (see Methods). To 

assess whether the PAd pCHi-C interactions correspond to the subnuclear A/B 

compartmentalization, we examined whether the two ends of the pCHi-C interactions land in the 

same or different compartments. For 51,974 of the 76,473 PAd interactions (68.0%), both ends 

landed in the same compartment, with 25,686 of these (49.4%) being contained within the same 

A compartment, and 26,288 (50.6%) of these interactions being in the same B compartment. 

Given that the B compartments make up ~75% of the genome (Figure S1B), this suggests that 
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the pCHi-C interactions are enriched within the A compartments. To determine whether the 

proportion of pCHi-C interactions in the A compartments is higher than expected by chance 

alone, we permuted the compartment locations and re-calculated how often both ends of the 

pCHi-C interactions land in the same A compartment (see Methods). The proportion of 

interactions that have both ends landing in the same permuted A compartments is on average 

18.5% +/- 1.1% (s.d.), meaning that there is a 2.67-fold enrichment of pCHi-C interactions in the 

A compartments (p<1x10-04). This is in line with the pCHi-C interactions being regulatory and 

thus being more prevalent in A compartment regions of active gene regulation. It has previously 

been reported that genes involved in pCHi-C interactions are more highly expressed 

(Schoenfelder et al., 2015). We found that this is only true for genes located within the A 

compartments (n=8,807 genes, pwilcoxon=4.2x10-08), whereas this was not the case for genes in the 

B compartments (n=9,903) (pwilcoxon=n.s.) (Figure S3). 

 

Taken together, we have shown that PAd pCHi-C interactions are enriched in the PAd A 

compartments, and that the previously reported higher expression of genes involved in pCHi-C 

interactions is dependent upon the gene landing in A, rather than B compartments (Figure S3). 

We chose to focus on the A compartments for the remainder of our study, given the evidence that 

active gene regulation is occurring in these regions, and thus they are likely important for PAd 

programming and function.   

 

Genome-wide A compartment connectivity is decreased in MZ twin siblings with a higher 

BMI 
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Given their identical genomes, in theory the differences in BMI between the BMI-discordant MZ 

twins are expected to be entirely due to environmental and epigenetic factors. We hypothesized 

that alterations in cellular signaling resulting from long-term differences in nutrient intake or 

expenditure between the lower and higher BMI MZ siblings would affect the 

compartmentalization of the chromatin activity in their preadipocytes. To determine whether we 

could quantify an overall measure of chromatin activity in the A compartments, we calculated 

the A compartment connectivity at the genome-wide level (see Methods), following the 

hypothesis that the compartments that are more highly connected would exhibit coordinated gene 

regulation and higher accumulation of active regulatory states. We found that the A compartment 

connectivity is significantly associated with gene expression (pKW=1.27x10-16) (Figure 2A), and 

all measures of active gene regulation based on chromatin state, PAd pCHi-C interactions, and 

PAd accessible chromatin (Figure 2B). Taken together, the A compartment connectivity can be 

used as a metric that captures various degrees of genomic regulation associated with genomic 

programming.  

 

To assess whether this measure of genomic programming is different between the BMI-

discordant MZ twin siblings, we separated the lower and higher BMI twins (n=9 MZ sibling 

pairs split to into lower and higher BMI subgroups) and re-computed the connectivity of the A 

compartments in each set separately (see Methods). We found that the genome-wide 

compartment connectivity is significantly higher in the lower BMI set of twins than in the higher 

BMI twins (ppaired Wilcoxon=4.96x10-31) (Figure 2C). This overall decline of A compartment 

connectivity in the higher BMI siblings shows that PAd programming is altered when comparing 

individuals with higher BMI to those with a lower BMI across the same genome.  
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To identify specific A compartments that exhibit the strongest connectivity differences between 

the lower and higher BMI MZ twin siblings, we permuted the lower and higher BMI labels 

between siblings (n=92 or 512 permutations) and re-calculated the difference in connectivity 

between the lower and higher BMI subgroups of siblings for all compartments (see Methods). 

We selected compartments with a permutation p-value of less than 0.01, totaling 88.5 Mb, to 

define the reprogrammed A compartments (Table S2). These A compartments that have been 

reprogrammed in response to BMI in the BMI-discordant MZ twins thus represent regions that 

are mechanistic candidates for gene-environment interactions (GxEs) originating in human PAd.  

 

Reprogrammed PAd A compartments are enriched for the heritability of CRP and 

contribute to gene-BMI interaction effects on CRP in the UK Biobank 

To first test whether there is evidence for PAd genomic contribution to the marginal genetic 

effects on systemic inflammation, we used partitioned LDSC regression (Bulik-Sullivan et al., 

2015; Finucane et al., 2015) to partition the heritability of CRP into the B compartments and the 

A compartments, while also stratifying the latter ones to the A compartments that were 

reprogrammed in the BMI-discordant MZ twins and the A compartments not reprogrammed in 

the twins (see Methods). The B compartments were significantly depleted for the heritability of 

CRP (enrichment=0.840, p=1.99x10-09), whereas the A compartments (enrichment=1.33, 

p=7.05x10-04) and the reprogrammed A compartments (enrichment=3.10, p=6.19x10-03) were 

both significantly enriched for the heritability of CRP (Table 1).  
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To next determine whether the BMI-responsive reprogrammed A compartments identified in the 

BMI-discordant MZ twin PAd are more likely to harbor GxE effects on inflammation, we 

performed a GxE scan in the UKB, testing all SNPs in the A compartments for the effect of 

SNPs interacting with BMI on CRP levels (see Methods). We compared the distribution of the 

GxE p-values in the reprogrammed A compartments (88.5 Mb) to all other A compartments (561 

Mb) (Table S2). Indeed, we found that the reprogrammed compartments have a higher 

accumulation of low p-value GxE signals than all other A compartments (pWilcoxon=7.54x10-05) 

(Figure 2D). This shows that the regions exhibiting BMI-dependent PAd programming 

differences identified in the MZ twins harbor many small-effect GxEs affecting inflammation in 

humans, above what is seen in the A compartments alone.  

 

Clustering of the A compartments identifies subcommunities of compartments important 

for distinct preadipocyte functions  

To gain insight into the potential genomic regulatory mechanisms that contribute to the 

regionally enriched heritability of CRP and the observed GxEs affecting inflammation in the 

UKB, we clustered the A compartments after UMAP dimensionality reduction (McInnes et al., 

2018) to 2 variance components (see Methods). This clustering approach identified 10 clusters 

that exhibit varying levels of connectivity, containing between 107 and 230 A compartments 

(Figure 3A; Figure S4A; Table S2; Table S3). The total sum of the lengths (in Mbs) of the 

compartments in each of the A compartment clusters is given in Table S3. As expected, given the 

observed correlations between connectivity and gene regulatory signatures (Figure 2B), the 

clusters containing the A compartments with the highest levels of connectivity (clusters 1, 2, 3, 

and 5; padj<0.05) (Figure 3A; Figure S4A) also exhibit the highest coverage of enhancer (Figure 
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3B) (clusters 2, 3 and 5; padj<0.05) or promoter (Figure 3C) (clusters 1 and 2; padj<0.05) 

chromatin states; and have the lowest coverage of quiescent chromatin states (padj<0.05) (Figure 

3D). Thus, as clusters 1, 2, 3, and 5 likely represent the most important A compartments for PAd 

programming and function, we chose to focus on these clusters for the remainder of the study. 

 

The differences in enhancer and promoter chromatin state coverage between the four main A 

compartment clusters 1, 2, 3 and 5 suggest that there may be differential gene regulatory 

mechanisms functioning within each cluster. In support of this, we found that cluster 5, which 

exhibits the highest enhancer chromatin state coverage (Figure 3B), is enriched 3.2-fold for PAd 

super-enhancers (padj hypergeom=7.8x10-04) (see Methods). Cluster 5 also exhibits the highest 

number of PAd pCHi-C interactions per promoter (pKW=8.95x10-46), particularly when compared 

with cluster 1 (8 interactions per promoter in cluster 5 versus 3 interactions per promoter in 

cluster 1) (Figure 3E). Accordingly, the gene expression in cluster 1 is significantly lower than in 

clusters 2, 3, and 5 (pKW=2.50x10-08) (Figure S4B). These data suggest that, in contrast to the 

highly interacting, enhancer-enriched cluster 5, cluster 1 may be more developmentally primed. 

One feature that has been previously reported to be more common in cells that are primed for 

differentiation is a higher number of promoter-promoter (P-P) interactions in pCHi-C data (Joshi 

et al., 2015). We found that cluster 1 does in fact exhibit a higher proportion of P-P interactions 

relative to clusters 2, 3, and 5 (Figure S4C). We performed a gene ontology (GO) enrichment 

analysis on the genes in each of the clusters separately (Figure S5; Table S4) (see Methods), and 

found that cluster 1 is enriched for developmental processes, cell polarity, and cell adhesion, in 

line with this cluster being important for cellular priming (Noronha Nc et al., 2019) (Figure S5; 

Table S4). Notably, immune-related processes such as leukocyte chemotaxis and proliferation, 
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response to cytokine, and apoptotic cell clearance are also enriched in the A compartment cluster 

1 (Figure S5; Table S4).  

 

To further examine whether the regions in the A compartment cluster 1 are likely to be 

developmentally primed relative to the A compartment cluster 5, we assessed the effects of 

initiating the MZ twin PAd differentiation into adipocytes for 24 hours by performing ATAC-seq 

on the cells at this developmental time point (see Methods). Intriguingly, the A compartment 

cluster 5, which has the highest accumulation of enhancer chromatin state coverage, exhibited a 

higher proportion of ATAC-seq peaks with decreased accessibility after the first 24 hours of 

differentiation (Figure 3F). This is consistent with cluster 5 being made up of genomic regions 

that are specifically important for PAd function, in line with the strong enrichment of super-

enhancers (see above). On the other hand, cluster 1 showed the opposite trend, with a higher 

proportion of ATAC-seq peaks being more accessible after the first 24 hours of differentiation, 

relative to PAd (Figure 3F). Taken together, the chromatin state and enhancer coverage, as well 

as the differential responses to early differentiation signals, suggest that the A compartment 

clusters represent regions of the genome that are functionally related and exhibit distinct gene 

regulatory mechanisms in PAd. 

 

The primed PAd A compartment cluster 1 contributes significantly to the heritability of 

CRP and is enriched for gene-by-BMI interaction effects on CRP in the UK Biobank 

To determine whether any of the four main A compartment clusters are particularly important in 

participating in the PAd responses to BMI in the MZ twins, we tested whether the reprogrammed 

A compartments identified in the MZ twins (Figure 2C,D; Table S2) are overrepresented in any 
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of the clusters. We found that both clusters 1 (2.65-fold enrichment, padj=2.62x10-07) and 2 

(3.47-fold enrichment, padj=2.81x10-13) are significantly enriched for the reprogrammed A 

compartments (Table S3). We also found, using partitioned LDSC, that the A compartment 

clusters 1 and 2 are significantly enriched for the heritability of CRP in the UKB (Figure 4A). 

Strikingly, when we compare the GxE SNP p-values for SNPs interacting with BMI to affect 

CRP levels in the UKB, we also found that cluster 1, with the highest promoter coverage, has a 

higher accumulation of low p-value GxE SNPs when compared to cluster 5, with the highest 

enhancer coverage (pKW=0.0164) (Figure 4B). This supports the conclusion that primed, rather 

than highly regulated and cell-type-specific regions, are important for the immunomodulatory 

effects of PAd responses to BMI. In summary, the cluster-dependent responses to BMI and 

contribution to CRP heritability, including to GxEs affecting CRP in the UKB, all support a role 

for the A compartment cluster 1 regions being important for PAd responses to BMI and affecting 

systemic inflammation.  

 

To identify genes that may modulate inflammation through PAd mechanisms in the A 

compartment cluster 1 regions, we referred back to the CRP GWAS loci in the cluster 1 

compartments that were found to be reprogrammed in the MZ twins (Figure 2C,D; Table S2). Of 

the 24 compartments in the A compartment cluster 1 that contain at least one CRP GWAS SNP, 

seven (29.2%) were reprogrammed in the BMI-discordant MZ twin PAd. These seven 

compartments contain a total of 17 independent CRP GWAS signals (Table S5). One of these 

harbors two independent CRP GWAS signals, and is located within the HLA locus on 

chromosome 6, in line with BMI driving PAd cellular responses at this locus, which impacts 

CRP levels in humans (Table S5). Notably, another reprogrammed A compartment on 
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chromosome 3 contains five independent CRP GWAS signals (Table S5) and 12 known 

immune-related genes, which suggests that this reprogrammed A compartment is an immune hub 

responding to the cellular obesogenic microenvironment. One of the CRP GWAS signals, with 

the tag SNP rs2271961 (Table S5), is located within a 156-kb region of this reprogrammed A 

compartment. The SNP LD proxies land in PAd pCHi-C interactions that contain PAd ATAC-

seq peaks, and interact with or are in the interacting promoter of three immune-related genes: 

Inositol Hexakisphosphate Kinase 1 (IP6K1), TRAF Interacting Protein (TRAIP), and 

Macrophage Stimulating 1 Receptor (MST1R) (Table S5). These genes thus represent strong 

functional candidates for PAd-origin effects of BMI-induced inflammation. Taken together, the 

A compartment cluster 1 is enriched for the heritability of CRP and for PAd responses to BMI at 

the genomic compartmentalization level, likely leading to the enrichment of small-effect SNPs 

interacting with BMI to affect CRP in humans.   
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Discussion 

Obesity predisposes to COVID-19 complications and a cascade of cardiometabolic disorders 

(CMDs), likely at least partially by inducing chronic low-grade inflammation in the affected 

tissues (Hotamisligil, 2006; Kivimäki et al., 2017; Docherty et al., 2020; Petrilli et al., 2020; 

Ritter et al., 2020). Preadipocytes (PAd) are one of the key cell types in adipose tissue, 

responding to environmental cues and deciding whether to proceed toward fat storage 

(differentiation into adipocytes) or alternative pathways. In this study, we showed that increased 

BMI affects the higher-order compartmentalization of the genome in PAd, in regions that 

contribute to the heritability of inflammation, measured by CRP in the UK Biobank (UKB). 

Furthermore, these reprogrammed regions in PAd that span ~88.5 Mb exhibit a higher 

accumulation of small-effect GxBMI SNPs affecting CRP. Taken together, BMI affects PAd 

programming in large genomic regions that contribute to systemic inflammation in humans, 

suggesting an important role for this progenitor cell type in the low-grade inflammatory state that 

is associated with obesity (Reilly and Saltiel, 2017).   

 

When PAd differentiation is impaired, as occurs in obesity (Isakson et al., 2009; Andersen et al., 

2019), already existing adipocytes take up and store excess fat, causing adipocyte hypertrophy. 

Due to the association between adipocyte hypertrophy and adipose tissue dysregulation, PAd are 

an important factor to consider when understanding systemic inflammation and downstream 

obesity comorbidities. However, PAd are an understudied cell type, underrepresented in large 

collections of epigenetic data such as ENCODE (Davis et al., 2018) and Roadmap (Roadmap 

Epigenomics Consortium et al., 2015), and mainly studied in mouse or human PAd-like cells, 

rather than primary cells (MacDougald and Mandrup, 2002; Rauch et al., 2019). This is likely in 



 

 
 

104 

part due to the relative difficulty in collecting and propagating primary PAd cells in sufficient 

numbers for genomics studies. Because of this, there is an overall lack of knowledge surrounding 

the genomic programming of primary human PAd. Our study identified and characterized 

primary PAd A/B compartments, which represent the higher-order genomic 

compartmentalization of chromatin activity across 10 pairs (n=20) of BMI-discordant MZ twins. 

Thus, this work advances the field by elucidating the genomic context in which local epigenetic 

signatures function, toward understanding how these cells integrate information from the 

environment to make important cellular decisions. We showed that the active PAd A 

compartments are enriched for enhancer and promoter chromatin states, relative to the more 

inactive B compartments, which are enriched for quiescent chromatin states. Furthermore, 

subclustering of the A compartments groups genomic regions that contain genes that are 

important for distinct progenitor cell functions, such as development (cluster 1), signal 

transduction (cluster 2), and hormone secretion (cluster 5). These clusters exhibit differences in 

their gene regulatory landscapes, assessed through chromatin state coverage, super-enhancer 

identification, regulatory interactions, and responses to differentiation signals. Thus, we have 

shown that higher-order genomic coordination is important for defining functionally related 

regions of the genome in PAd. By quantifying this coordination through the A compartment 

connectivity, we then were able to show that the PAd genomic programming at this level is 

impaired in the higher BMI subgroup of the BMI-discordant MZ twins. 

 

We showed that the reprogrammed A compartments contribute significantly to the heritability of 

CRP, meaning that environment-responsive regions of the genome also contain an enrichment of 

marginal SNP effects on inflammation. This suggests an important contribution of PAd BMI-
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responsive regions to systemic inflammation. GxEs are difficult to detect in humans for various 

reasons, including environmental heterogeneity, imprecision in the environmental measurements, 

and low power to detect interaction effects in the current cohort sizes, even in the UKB. We have 

previously shown that by restricting the GxE search space to regions of the genome that contain 

SNPs that respond to environmental cues in experiments, we can reduce the multiple testing 

burden to only include those regions with prior evidence of being relevant for that environmental 

stimulus (Garske et al., 2019). This enables the detection of significant GxEs, even when 

genome-wide significant signals remain difficult to detect. Here, rather than a controlled 

experiment, we are using BMI as the environmental variable, which in itself is very 

heterogeneous in its etiology. However, by leveraging the BMI-discordant MZ twins, we 

identified regions that differed between MZ siblings, thus controlling for the heterogeneity of 

genetic backgrounds, which complicates and reduces power in environmental studies from 

cohorts of unrelated individuals.  

 

We found that the reprogrammed genomic regions, marginal effects on CRP, and GxE signals 

affecting CRP were enriched in regions of the genome that exhibit features of a more primed 

cellular state (cluster 1), rather than in the regions enriched for super-enhancers and highly 

interacting gene promoters (cluster 5). Cluster 1 exhibits a higher accumulation of promoter 

chromatin states, which possibly represent poised promoters. This concept of poised promoters is 

supported by the lower number of interactions per promoter, the lower gene expression, and the 

previous knowledge that promoter-promoter interactions are associated with a primed cellular 

state (Joshi et al., 2015). However, it is important to consider that this conclusion may be driven 

by the fact that we only assessed the effects of BMI on the higher-order level of genome 
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organization. The complex etiology of increased BMI reduces the power to detect BMI-driven 

differences in epigenetic signatures, particularly with the small sample size of the current study. 

This precluded the assessment of the effects of BMI on individual open chromatin peaks, due to 

the heavy multiple-testing burden at the genome-wide level (testing for BMI-driven differences 

in tens to hundreds of thousands of individual peaks). Therefore, it is possible that enhancer-

enriched regions in PAd do respond to BMI, but the higher-order coordination of those regions, 

as we assessed through PAd connectivity, is not as strongly affected. Furthermore, different traits 

may be affected by different BMI-responsive mechanisms. Thus, larger cohort sizes and 

investigation of alternative genomic regulatory mechanisms aside from the higher-order 

coordination of active regions is warranted to further understand the effects of increased BMI on 

human primary PAd.     

 

In conclusion, we have characterized the higher-order genomic programming of human primary 

PAd and refined active genomic regions to functionally related clusters that span 30-130 Mbs, 

thus providing new important information for adipose biology and obesity research. Increased 

BMI affects this level of PAd genomic programming through dysregulation of the coordination 

of functionally related regions of the genome. These reprogrammed regions are significantly 

enriched for the heritability of CRP, and harbor a higher accumulation of small-effect SNPs 

interacting with BMI to affect CRP levels. Taken together, we have identified PAd-origin 

genomic regulatory mechanisms that respond to BMI to induce the key obesity consequence, 

inflammation. 
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Figure 4-1: A/B compartment identification using ATAC-seq co-accessibility in human primary preadipocytes 

 
 
 
Figure 1. A/B compartment identification using ATAC-seq co-accessibility in human 

primary preadipocytes. (A) PAd A/B compartments on chromosome 1. Each bar represents a 

100-kb bin and the height of the bar is the projection onto the first eigenvector of the 100-kb bin 

co-accessibility matrix across chromosome 1. The sign switches at A/B compartment boundaries; 

positive values correspond to A compartments (green) and negative values correspond to B 

compartments (grey). (B) Coverage of enhancer, promoter, and quiescent chromHMM chromatin 
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states in the A and B compartments. P-values correspond to the Wilcoxon Rank Sum test 

comparing the A compartment to B compartment coverage for each chromatin state. (C) Density 

distribution of the gene expression (mean log2(TPM)) in the A (green) and B (grey) 

compartments shows higher expression in A compartments. P-value corresponds to the 

Wilcoxon Rank Sum test comparing the gene expression in A compartments to the gene 

expression in B compartments. Genome browser snapshots of two preadipocyte marker genes: 

(D) DLK1, an early preadipocyte marker, is located within a B compartment on chromosome 4 

and is not expressed; and (E) PDGFRA, a late preadipocyte marker, is located within an A 

compartment on chromosome 14 and is expressed. The ChromHMM state track is directly from 

Roadmap Epigenomics on the WashU Epigenome Browser. PC indicates principal component; 

MSC-Ad mesenchymal stem cell derived adipocyte cultured cells; and PAd, preadipocyte. See 

also Figures S1-3 and Table S2. 
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Figure 4-2: The A compartment connectivity differs between the lower and higher BMI twins and contributes to gene-BMI 
interactions affecting CRP in the UK Biobank  

 

 

Figure 2. The A compartment connectivity differs between the lower and higher BMI twins 

and contributes to gene-BMI interactions affecting CRP in the UK Biobank. (A) Boxplots 

show the mean expression (log2(TPM)) of genes in the A compartments, stratified into quartiles 

of the A compartment connectivity. Higher A compartment connectivity is correlated with higher 

gene expression. The Kruskal-Wallis p-value refers to the overall non-parametric test for 

expression differences across the A compartment connectivity quartiles. All pairwise 

comparisons were significant in the post hoc Dunn test. (B) Heatmap shows the level of 

correlation of the PAd A compartment connectivity with ChromHMM chromatin states and this 
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study’s PAd ATAC-seq and pCHi-C data. Asterisks denote a significant Spearman’s correlation 

(*padj<0.05). (C) Histogram of the differences in the A compartment connectivity between the 

lower and higher BMI subgroups of MZ twin siblings. The red dashed line at x=0 denotes the 

null hypothesis that there are not genome-wide connectivity differences between the twins. The 

p-value corresponds to the two-sided, one-sample Wilcoxon test for the connectivity differences, 

showing that the lower BMI twins exhibit a shift toward higher A compartment connectivity 

compared to the higher BMI twin siblings (shifted to the right of the 0). (D) Q-Q plots for the 

uniform distribution of the p-values for the gene-by-BMI effects on CRP in the UKB, stratified 

by whether the SNPs land in the reprogrammed A compartments (dark green, connectivity 

difference permutation p<0.01) or the non-reprogrammed A compartments (light green, 

connectivity difference permutation p³0.01). Confidence intervals (dashed lines) were calculated 

for the reprogrammed A compartment p-values. The p-value corresponds to the Wilcoxon Rank 

Sum test for differences in the p-value distribution between the reprogrammed and non-

reprogrammed A compartments, showing that the reprogrammed A compartments have a higher 

accumulation of low p-value GxE SNPs affecting CRP levels in the UKB. See also Table S2. 

  



 

 
 

113 

Figure 4-3: The A compartment clustering reveals differential accumulation of chromatin states and gene regulatory landscapes  

 

 

Figure 3. The A compartment clustering reveals differential accumulation of chromatin 

states and gene regulatory landscapes. (A) iGraph layout of the A compartment clusters after 

UMAP dimensionality reduction and Louvain clustering. Each circle represents an A 

compartment. Colors represent the 10 clusters that were identified. The size of the circles is 

proportional to the level of connectivity of that A compartment, showing that clusters 1, 2, 3, and 

5 have the highest levels of connectivity. The A compartment cluster coverage of enhancer (B), 

promoter (C), and quiescent (D) ChromHMM chromatin states are indicated with boxplots. 

Overall p-values (top) correspond to the Kruskal-Wallis test comparing the coverage across the 
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A compartment clusters. The p-value map below the plot denotes which pairwise differences are 

significant in the post hoc Dunn test, after correcting for multiple testing using the Benjamini-

Hochberg procedure. (E) Violin plots show the number of pCHi-C interactions per promoter in 

the four A compartment clusters. The overall p-value corresponds to the Kruskal-Wallis test and 

the asterisks in the pairwise comparisons denote significant differences in the post hoc Dunn test, 

after correcting for multiple testing using the Benjamini-Hochberg procedure. (F) Boxplots show 

the proportion of ATAC-peaks in the cluster A compartments that are upregulated (higher 

accessibility in D1 relative to PAd) or downregulated (lower expression in D1 relative to PAd) 

after 24 hours of PAd differentiation into adipocytes. The p-values correspond to the Wilcoxon 

Rank Sum test for differences between the proportion of up- or down-regulated peaks in each of 

the compartment clusters separately. See also Figures S4-5 and Tables S2-4. 
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Figure 4-4: The A compartment cluster 1 contributes significantly to the heritability of CRP and is enriched for gene-BMI effects 
on CRP in the UK Biobank  

 

 

Figure 4. The A compartment cluster 1 contributes significantly to the heritability of CRP 

and is enriched for gene-BMI effects on CRP in the UK Biobank. (A) Barplot shows the 

enrichment of heritability for CRP in the different A compartment clusters relative to the null 

hypothesis of the uniform contribution from all SNPs. Error bars represent the standard error. 

Asterisks refer to an enrichment adjusted p-value of less than 0.05. The x-axis tick marks list the 

cluster with the proportion of SNPs in that cluster in parentheses. (B) Q-Q plots for the uniform 

distribution of the p-values for the gene-by-BMI effects on CRP in the UKB, stratified by which 

of the A compartment clusters the SNP lands in. Confidence intervals (dashed lines) were 

calculated for the A compartment cluster 3. The overall p-value corresponds to the Kruskal-

Wallis test for differences among all cluster p-value distributions. Cluster 1 had a higher 

accumulation of low p-value SNPs than cluster 5 in the post hoc Dunn test.   
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Table 4-1: Partitioned LDSC analysis shows that the A compartments are significantly enriched for the proportion of CRP 
heritability while the B compartments are depleted 

Table 1. Partitioned LDSC analysis shows that the A compartments are significantly 
enriched for the proportion of CRP heritability while the B compartments are depleted. 

PAd A/B 
compartment 

category 

Proportio
n of SNPs 

Proportio
n of h2 

Proportio
n of h2 SE 

Enrichmen
t 

Enrichmen
t SE 

Enrichmen
t 

p-value 

B  0.773 0.650 0.017 0.840 0.022 1.99x10-09 

A (not 
reprogrammed 
in MZ twins) 

0.199 0.265 0.020 1.33 0.099 7.05x10-04 

A 
(reprogramme
d in MZ twins) 

0.0276 0.0856 0.020 3.10 0.72 6.19x10-03 

SE indicates standard error, and h2, heritability. Partitioned LD score regression (LDSC) (Bulik-
Sullivan et al., 2015; Finucane et al., 2015) was performed using the C-reactive protein (CRP) 
summary statistics from the UK Biobank round 2 GWAS results hosted at the Neale Lab website 
(http://www.nealelab.is/uk-biobank/). Heritability was partitioned using the SNPs in the 
identified PAd B and A compartments, the latter of which was further stratified into the PAd A 
compartments that were either not reprogrammed, or were reprogrammed in the higher BMI twin 
siblings from the BMI-discordant MZ twins. The enrichment p-value and the SE for the 
proportion of h2 and enrichment were calculated from the block jackknife resampling using the 
LDSC method. The B compartments exhibit a significant depletion in the proportion of h2 
explained, similar to repressed regions of the genome (Finucane et al., 2015); whereas the A 
compartments are significantly enriched for the proportion of CRP h2 explained in these regions.  
  



 

 
 

117 

Methods 

Study cohorts 

For the preadipocyte (PAd) sample collection, this study included a subset of 10 pairs (n=20) out 

of the 65 pairs of BMI-discordant (DBMI³3kg/m2) MZ twins in the Finnish monozygotic twin 

cohort (FTC), collected and recruited in the Helsinki University Central Hospital, Helsinki, 

Finland, as described previously (5,6). The cohort mean age is 46 y (+/- 2 y (s.e.)), and it 

comprises 27 pairs of males (42%) and 38 pairs of females (58%). The subset of the cohort used 

in this study has a mean age of 42 y (+/- 4 y (s.e.)), and it comprises 6 pairs of males (60%) and 4 

pairs of females (40%). The clinical characteristics are shown in Table S1. All participants gave 

written informed consent, and the study protocol was approved by the local ethics committee. 

The PAd sample collection is described below. For the C-reactive protein (CRP) gene-

environment interaction (GxE) analysis, we used the UK Biobank (UKB) cohort (n=up to 

372,652 non-related Europeans) (Bycroft et al., 2018), under the Application Number 33934. 

The details of the GxE analysis are described below. 

 

PAd collection and cell culture from the BMI-discordant MZ twins’ adipose biopsies 

We isolated the PAd from the subcutaneous fat biopsy specimens of the twins undergoing 

adipose biopsies. Briefly, the biopsy specimens were first treated with collagenase and then 

centrifuged to separate the adipocytes from the stromal vascular fraction (SVF) pellet. Next, the 

SVF pellet was suspended to PAd basal media with 5% fetal calf serum supplemented with 1% 

penicillin-streptomycin. Then, the SVF was filtered before plating to allow the PAd to adhere 

and propagate. Finally, the viable PAd were cryopreserved for the downstream ATAC-seq and 

RNA-seq experiments (see below). To optimally preserve the in vivo epigenetic characteristics 
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of these primary human cells, we will use the earliest passages (no more than 5) for all 

experiments.  

For the experiments, cryopreserved cells (passage 3-4) were seeded into PromoCell PAd 

growth medium (PromoCell C-27410) with 1% Gibco Penicillin-Streptomycin (ThermoFisher 

15140122) and cultured according to PromoCell PAd culturing protocols. Cells were maintained 

in a monolayer culture at 37°C and 5% CO2. The primary PAd were passaged once for plating 

after propagation, resulting in fewer than 5 passages before collection for the experiments. We 

grew cells to <90% confluency for the PAd sample collection. We grew the cells to 100% 

confluency to begin the differentiation of these cells, using PAd differentiation medium 

(PromoCell C-27436) for the 24-hr differentiated (D1) time point. We collected two replicates of 

the PAd (for the ATAC-seq and RNA-seq) and one replicate of the D1 cells (for ATAC-seq), per 

individual.  

 

Assay for transposase accessible chromatin (ATAC) –sequencing and data processing 

We performed the ATAC-seq protocol in the PAd and D1 cells from each individual, including 

technical replicates from 2 twin pairs. We followed the omni-ATAC protocol(Corces et al., 

2017), beginning with the DNase I treatment, and then trypsinized cells using the PromoCell 

detach kit (PromoCell C-41210), according to the manufacturer’s protocols. We then performed 

the tagmentation and DNA purification reaction as described in (Garske et al., 2019). Libraries 

were sequenced on the Illumina HiSeq 4000 to produce an average of 40,315,572 (+/-

14,577,770) reads. 

We processed the sequencing reads and performed quality control (QC) using the 

ENCODE ATAC-seq Data Standards and Prototype Processing Pipeline. Briefly, we aligned 
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reads to the human reference genome (GRCh37/hg19) using Bowtie2 v2.2.9 (Langmead and 

Salzberg, 2012) (with parameters -k 4 -X 2000 --local), filtering out unpaired mapped reads and 

reads with MAPQ < 30 (Samtools (Li et al., 2009)) and duplicates (marked with Picard Tools). 

Only reads from the autosomes were retained for downstream analyses.  

 Forty out of the 48 samples were retained for downstream analyses. One pair (n=2) of 

twins failed the differentiation step; one sample had poor tagmentation and did not exhibit the 

proper fragment size distribution; 4 samples did not pass library complexity thresholds as 

defined by the ENCODA ATAC-seq Data Standards; and one sample had too few sequencing 

reads.  

 For the samples that passed the QC, we called consensus peaks on all samples combined, 

after removing the technical replicates (n = 33). Peaks were called using MACS2 (Zhang et al., 

2008) v2.2.7.1 and peaks with an FDR<0.05 were retained. We filtered out peaks in blacklisted 

regions, and retained peaks with counts per million (cpm) mapped reads >=1 in at least 10% of 

the samples. 

 

A/B compartment detection from ATAC-seq data 

We performed the A/B compartment detection as described previously (Fortin and Hansen, 

2015). Briefly, first we binned the PAd ATAC-seq sequencing reads into 100-kb bins across the 

genome, except for reads landing in blacklisted regions (Amemiya, Kundaje and Boyle, 2019). 

We calculated the bins per million mapped reads (BPMs) and corrected the log2-transformed 

BPMs for family ID (as a random effect), age, sex, and FRiP, using the lme4 (Bates et al., 2015) 

v1.1 R package. Next, we obtained the Spearman’s rank correlation matrix of the bins to get the 

pairwise bin co-accessibility measures. To call the A/B compartments, we calculated the first 
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eigenvector of the correlation matrix, by chromosome, using the nipals function in the mixOmics 

(Rohart et al., 2017) v6.10.9 R package. Since the sign of the eigenvector is arbitrary, we used 

the known fact that the B compartments are generally more correlated than A compartments 

(Fortin and Hansen, 2015). Thus, we correlated the eigenvector with the level of correlation of 

the compartment (sum of the correlation coefficients with all other bins on the chromosome), and 

ensured that the positive values in the eigenvector are negatively correlated with the level of bin 

correlation to denote A compartments as positive an B compartments as negative, changing the 

sign of the eigenvector if necessary. Next, we smoothed the eigenvector using a simple moving 

average with a bin size of 3 and obtained the final set of A/B compartments.  

To permute the compartment locations for assessing the enrichment of pCHi-C in A 

compartments, we used the bedtools (Quinlan and Hall, 2010) shuffle command with the -

noOverlapping option, the -chrom option to shuffle the compartments within the same 

chromosome and the -excl option to exclude blacklisted regions that were removed when 

identifying A/B compartments.  

To calculate the chromatin state coverage in the A/B compartments, we downloaded the 

ChromHMM (Ernst and Kellis, 2015) 25-state segmentation across 127 reference epigenomes 

from the Roadmap Epigenomics Project. We determined the compartment coverage for each 

subset of ChromHMM states (enhancers, promoters, quiescent, and active) using bedtools 

(Quinlan and Hall, 2010) intersect function and dividing by the length of the compartment.  

 

RNA-sequencing and data processing 

We isolated and purified RNA from the PAd cells from the 10 pairs of twins, resulting in a total 

20 samples. Cells were washed with PBS once before lysing with TriZol (Invitrogen 15596026) 
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and purified using Direct-zol RNA Mini-Prep (Zymo Research R2061). Libraries were prepared 

using the Illumina TruSeq Stranded mRNA kit and sequenced on an Illumina HiSeq 4000 

instrument for an average sequencing depth of 78M reads (+/- 28M reads) per sample. 

Reads were aligned to hg19 with STAR v2.7.0e (Dobin et al., 2013), using the 2-pass 

method and the following parameters: --outFilterMultimapNmax 1, --outFilterMismatchNmax 6, 

--alignIntronMin 20, --alignIntronMax 500000, --chimSegmentMin 15. The various technical 

factors were obtained from STAR v2.7.0e (Dobin et al., 2013) after sequence alignment 

(uniquely mapped reads) or from the Picard Tools v2.9.0 (option CollectRnaSeqMetrics). We 

only retained genes with =>1 cpm mapped reads in at least 10% of the samples. 

 

Promoter Capture Hi-C (pCHi-C) cell culture and library preparation 

Human subcutaneous primary white PAd were obtained from Zen-Bio (lot L120116E, female, 

age 52, BMI 26.5). Cells were maintained in a monolayer culture at 37°C and 5% CO2 using 

PAd growth medium (PromoCell C-27410) with 1% Gibco Penicillin-Streptomycin 

(ThermoFisher 15140122) and following PromoCell PAd culturing protocols. We grew cells to 

<90% confluency (~7M cells) for two isogenic biological replicates of PAd. We fixed the cells 

directly in the culture plate and proceeded with the pCHi-C library preparation, as described 

previously (Pan et al., 2018; Garske et al., 2019). 

We then followed the Agilent SureSelectXT manufacturer instructions for the pre-capture 

PCR, using 8 cycles. We amplified the libraries in a post-capture PCR to add indexes, using 12 

PCR cycles. In total, six libraries (two libraries were not associated with this publication) were 

sequenced together across 2 lanes on the Illumina HiSeq 4000 to produce 107M (rep1) and 92M 

(rep2) sequencing reads. 
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Promoter Capture Hi-C data processing and interaction calling 

We processed the sequencing reads as described previously (Pan et al., 2018; Garske et al., 

2019), using the Hi-C User Pipeline (HiCUP) v0.5.9 (Wingett et al., 2015) default settings, 

except the insert size restrictions for the filtering step were set to 200-600 bp. A total of 46M 

(rep1) and 39M (rep2) reads per sample were aligned and passed the filtering and deduplication 

steps, with 38M (rep1) and 32M (rep2) on-target, for an average capture efficiency of 81.8%. We 

called significant interactions with the Capture Hi-C Analysis of Genome Organization 

(CHiCAGO) software v1.1.1 (Cairns et al., 2016). We used the default threshold of 5 for calling 

significant interactions. To create the set of interactions for our downstream analyses, we used 

CHiCAGO to call interactions on the combined 2 biological replicates. 

 

The A compartment connectivity analysis 

To quantify the compartment connectivity, we first calculated the bins per million mapped reads 

(BPMs) for the A compartments and corrected the log2-transformed BPMs for family ID (as a 

random effect), age, sex, and FRiP, using the lme4 (Bates et al., 2015) v1.1 R package. Next, we 

obtained the Spearman’s rank correlation matrix of the bins to get the pairwise bin co-

accessibility measures. The connectivity per compartment is calculated as the sum of the 

compartment adjacency with all other compartments genome-wide, divided by the total number 

of compartments. Adjacency is equal to 0 if the Spearman’s r<0.6 and equal to 1 if the 

Spearman’s r>=0.6.  

To compute the differences in compartment connectivity between the lower and higher 

BMI siblings, we separated the MZ twin pairs into subgroups containing the lower BMI siblings 



 

 
 

123 

(n=9) and higher BMI siblings (n=9). We then calculated the compartment connectivity in the 

two subgroups separately, and compared the differences in connectivity at the compartment level 

by subtracting the connectivity value in the higher BMI MZ sibling group from the connectivity 

value in the lower BMI MZ sibling group. We used the paired Wilcoxon Rank Sum test to 

compare the level of connectivity between the lower and higher BMI siblings at the genome-

wide level.  

To identify individual compartments that are significantly different between the lower 

and higher BMI subgroups, we permuted the BMI status (higher or lower) within each MZ twin 

pair and re-calculated the connectivity differences of the compartments for all permutation (9 

pairs^2=512 permutations). For each permutation, we compared the difference in connectivity 

for a given compartment between the groups and compared with the true difference in 

connectivity between the lower and higher BMI groups of twins. We calculated the number of 

permutations that exhibited a higher connectivity in the lower BMI compared to higher BMI 

groups of siblings than the true difference (one-sided), given our previous result that there is a 

shift toward higher connectivity in the lower BMI sibling group at the genome-wide level. 

Compartments with a permutation p-value of <0.01 (n=121, totaling 88.5 Mb) were defined as 

reprogrammed in the BMI-discordant twins and selected for downstream analyses. 

 

Partitioned LD Score (LDSC) regression 

We used the partitioned LDSC regression method(Bulik-Sullivan et al., 2015; Finucane et al., 

2015) v1.0.1 to estimate the heritability of C-reactive protein (CRP) explained by the A/B 

compartments (stratifying the A compartments into the reprogrammed or non-reprogrammed 

compartments); or partitioned across the A compartment clusters. We downloaded the summary 
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statistics for the second round of the UKB GWAS performed by the Neale Group and colleagues 

(http://www.nealelab.is/uk-biobank/).  

 

GxE analysis in the UKB 

We downloaded the imputed genotype data from the UKB cohort (Bycroft et al., 2018). We 

selected unrelated individuals of European ancestry who had both body mass index (BMI) and 

CRP measurements collected. We performed inverse normal transformation of the CRP values 

and corrected for age, age2, sex, assessment center ID, array type, and the first 20 genetic 

principal components. The BMI values were centered and scaled.  

 For the gene-environment interaction (GxE) analysis, we filtered out SNPs with a minor 

allele frequency <1% and genotyping missing rate of >5%. To test for the interaction between 

the SNP and BMI, we used plink (Purcell et al., 2007) v1.90b3.45 to test the effect of the SNP, 

BMI, and BMIxSNP in a linear model.  

 

A compartment dimensionality reduction and clustering 

Using UMAP for dimensionality reduction prior to clustering, as opposed to pairwise 

correlations to create an adjacency matrix, has previously been shown to improve the detection 

of true genetic interactions (Dorrity et al., 2020). To do this, we first binned the PAd ATAC-seq 

sequencing reads into the identified PAd A compartments, except for reads landing in blacklisted 

regions (Amemiya, Kundaje and Boyle, 2019). We calculated the bins per million mapped reads 

(BPMs) and corrected the log2-transformed BPMs for family ID (as a random effect), age, sex, 

and FRiP, using the lme4 (Bates et al., 2015) v1.1 R package. We performed dimensionality 

reduction and clustering following the previously published methodology (Dorrity et al., 2020). 
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We performed principal component analysis (PCA) on the corrected PAd BPMs using the 

prcomp function in R. We then performed an additional dimensionality reduction to 2 

components using Uniform Manifold Approximation and Projection (UMAP) (McInnes et al., 

2018) in the umap v0.2.7.0 R package, with n_neighbors set to 10 and min_dist set to 0.05. We 

obtained the 75 nearest neighbors based on the UMAP projections for each compartment, which 

corresponds to the mean number of compartments each compartment is correlated with in 

pairwise correlation analyses. This was done using the get.knn function in the FNN 

(Beygelzimer et al., 2013) v1.1.3 R package. Louvain clustering was performed on the resulting 

adjacency matrix, using the iGraph (Csardi and Nepusz, 2006) v1.2.6 R package, to obtain the 10 

A compartment clusters used for downstream analyses.  

 For assessing the statistical significance of the differences between the A compartment 

clusters, we used the Kruskal-Wallis test and applied the dunnTest function in the FSA (Ogle, 

2017) v0.8.32 R package for the post hoc test to determine which pairwise comparisons are 

significant after correcting for multiple testing using the Benjamini-Hochberg procedure.  

 

Preadipocyte super-enhancer identification 

We downloaded the raw FASTQ ChIP-seq data for the H2K27ac histone mark and MED1 at the 

day 1 adipogenic time point (Rauch et al., 2019) from bone marrow derived stromal stem cells 

(BM-hMSC-TERT4) from the GEO database (accession code GSE113253). We processed the 

ChIP-seq data according to the ENCODE ChIP-seq pipeline. Briefly, sequencing reads were 

aligned to the hg19 reference genome using Bowtie2 v2.2.9 (Langmead and Salzberg, 2012) 

(with parameters -k 4 --local), filtering out unmapped reads and reads with MAPQ<30 (Samtools 
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(Li et al., 2009)) and duplicates (marked with Picard Tools). Only reads from the autosomes 

were retained for downstream analyses. 

 Peaks were called on each biological replicate separately using MACS2 (Zhang et al., 

2008) v2.2.7.1 and then consensus peaks were called on both replicates together to run the 

irreproducible discovery rate (IDR) analysis to identify reproducible peaks across both replicates. 

Only MED1 peaks that overlapped with H3K27ac peaks were retained as the constituent peaks 

for downstream analyses to identify super-enhancers. The ROSE algorithm (Lovén et al., 2013; 

Whyte et al., 2013) was used to call super-enhancers based on the MED1 ChIP-seq alignments.  

 

Gene ontology (GO) term enrichment in the A compartment clusters 

We performed a gene ontology (GO) enrichment analysis on the compartment genes in each A 

compartment cluster separately. As performing enrichment analyses on genes selected from large 

genomic regions can lead to spurious enrichments due to clusters of gene families or genes with 

similar functions (Pazos Obregón et al., 2018), we used the Network Enrichment Analysis Tool 

(NEAT) (Signorelli, Vinciotti and Wit, 2016). NEAT uses information about the relationship 

between genes (e.g., genes in the same co-expression network) to test for functional enrichment, 

thereby requiring additional information about the gene function in that cell-type, on top of 

simply the region of the genome in which it lands.  

To provide the network information to NEAT, we performed weighted gene co-

expression network analysis (WGCNA) (Langfelder and Horvath, 2008) using the RNA-seq data 

from all of the A compartment genes together. We followed default WGCNA procedures except 

that we used a soft power value of 12 and performed a signed analysis. Genes from each A 

compartment cluster were assigned a co-expression module, and this network information was 
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provided to NEAT for the A compartment GO enrichment. We downloaded the GO slims from 

the PANTHER (Mi et al., 2021) database. We used an alpha of 0.005 as the cutoff for GO term 

significance to correct for testing 10 A compartment clusters separately, and then thresholded the 

within-compartment p-values using an FDR<0.05 as the significance cut-point.  

 To summarize the cluster GO terms based on semantic similarity, we used the online tool 

REVIGO (Supek et al., 2011). We used the simRel method for clustering, and then quantified 

the number of GO terms that are listed under each indispensable GO term from the REVIGO 

output.  

 

Identification of differentially accessible ATAC-seq peaks 

We performed the differential accessibility (DA) analysis between the PAd and D1 time points 

using the R package limma v3.34.9 (Ritchie et al., 2015; Phipson et al., 2016) and the voom 

(Law et al., 2014) method. We used the duplicateCorrelation function in limma (Smyth, 

Michaud and Scott, 2005) to account for the repeated measure from the same individual. To 

decrease confounding, we included age, sex, and fraction of reads in peaks (FRiP) as covariates 

in the model and the family ID as a blocking factor. We tested for DA between the PAd and D1 

time points in the lower and higher BMI individuals separately. We used an FDR < 0.05 cutoff to 

define significant DA peaks for these comparisons. 
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Supplemental information titles and legends 

Figure 4-5: A/B compartment detection in preadipocytes reflects known genomic hallmarks of A and B compartments 

Figure S1. Related to Figure 1. A/B compartment detection in preadipocytes reflects known 

genomic hallmarks of A and B compartments. (A) Boxplots show the distribution of A/B 

compartment lengths. Outliers have been removed for clarity. The p-value corresponds to the 

Wilcoxon Rank Sum test comparing the lengths between the A and B compartments. (B) Bar 

plots show the proportion of each chromosome that makes up A/B compartments. (C) Scatterplot 

shows the relationship between the proportion of chromosomes made up of gene deserts, and the 

proportion of chromosomes made up of B compartments. The p-value corresponds to the 

significance of the Spearman’s rank correlation coefficient. (D) Bar plots show the percent of 

gene deserts that overlap A or B compartments. (E) Boxplots show the gene density distribution 
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in A/B compartments. Outliers have been removed for clarity. The p-value corresponds to the 

Wilcoxon Rank Sum test comparing the gene density between the A and B compartments. 
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Figure 4-6: The A compartment coverage of enhancer chromatin states across 127 ENCODE samples highlights the cell-type-
specificity of the A compartment identification 
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Figure S2. Related to Figure 1. The A compartment coverage of enhancer chromatin states 

across 127 ENCODE samples highlights the cell-type-specificity of the A compartment 

identification. Boxplots show the coverage of enhancer, promoter, and quiescent ChromHMM 

chromatin states across all of the A compartments for the top 10 ENCODE cell or tissue types 

(for the enhancer and promoter coverage); or the bottom 10 ENCODE cell or tissue types (for the 

quiescent coverage). The cell-type with the highest coverage of enhancer marks and promoter 

marks, as well as with the lowest coverage of quiescent marks, is denoted in red (mesenchymal 

stem cell -derived adipocyte cultured cells (MSC-Ad)). Asterisks correspond to p<0.05 the 

Wilcoxon Rank Sum test, comparing the MSC-Ad cells to all other cell- and tissue types, after 

correcting for multiple testing using the Benjamini-Hochberg procedure.  
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Figure 4-7: Promoter Capture Hi-C in PAd reveals how promoter interaction effects are dependent upon A/B 
compartmentalization 

 

 

Figure S3. Related to Figure 1. Promoter Capture Hi-C in PAd reveals how promoter 

interaction effects are dependent upon A/B compartmentalization. (A) Boxplot shows the 

expression of genes either involved in pCHi-C interactions (darker) or not (lighter) for genes 

with promoters in the A compartments (left) or the B compartments (right). P-value corresponds 

to the Wilcoxon Rank Sum test comparing gene expression within each compartment type 

separately.  
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Figure 4-8: The A compartment clustering stratifies clusters based on the level of connectivity and cellular priming, assessed 
through promoter-promoter interactions and gene expression 

 

 

Figure S4. Related to Figure 3. The A compartment clustering stratifies clusters based on 

the level of connectivity and cellular priming, assessed through promoter-promoter 

interactions and gene expression.  (A) Boxplots show the connectivity distributions across the 

10 A compartment clusters. The overall p-value corresponds to the Kruskal-Wallis test and the p-

value map below the plot denotes which pairwise differences are significant in the post hoc Dunn 

test, after correcting for multiple testing using the Benjamini-Hochberg procedure. (B) Violin 

plots show the proportion of pCHi-C interactions within the same A compartment that are 

promoter-promoter interactions. The overall p-value corresponds to the Kruskal-Wallis test and 

the pairwise significance is determined by the post hoc Dunn test. (C) Boxplots show the mean 
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gene expression (log2(TPM) of genes in each of the A compartment clusters. The overall p-value 

corresponds to the Kruskal-Wallis test, and the pairwise significance is determined by the post 

hoc Dunn test. 
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Figure 4-9: Gene ontology (GO) term enrichment across the A compartment clusters 
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Figure S5. Related to Figure 3. Gene ontology (GO) term enrichment across the A 

compartment clusters. Dot plot shows significantly enriched GO terms related to biological 

processes in the A compartment clusters 1, 2, 3, and 5. The size of the circle is proportional to 

how many of the significantly enriched GO terms for that A compartment cluster were listed 

together after semantic similarity analysis was done to cluster similar GO terms. The semantic 

similarity analysis was performed using REVIGO. 
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Table 4-2: Differences in metabolic traits between the lower and higher BMI sibling groups in the BMI-discordant MZ twin 
cohort  

Table S1. Differences in metabolic traits between the lower and higher BMI sibling groups 

in the BMI-discordant MZ twin cohort. 

Trait Full cohort 
lower BMI 

sibling mean 
(SE) 

Full cohort 
higher BMI 

sibling mean 
(SE) 

p-value  
(paired t-

test) 

This study 
lower BMI 

sibling mean 
(SE) 

This study 
higher BMI 

sibling mean 
(SE) 

BMI  
(ncohort=130) 26.5 (0.6) 32.3 (0.7) 7.25E-27 27.7 (1.8) 33.9 (2.3) 

body fat 
percent  
(ncohort =130) 

33.9 (1.1) 41 (0.9) 2.79E-19 33.4 (2.6) 40 (2.7) 

body fat mass 
(kg)  
(ncohort =126) 

27.1 (1.4) 39.3 (1.5) 1.68E-19 30.7 (4.6) 43.7 (5.2) 

fat free mass 
(kg)  
(ncohort =126) 

48.1 (1.3) 52.6 (1.5) 1.85E-08 54.9 (3.2) 59.6 (3.4) 

waist (cm)  
(ncohort =123) 90.2 (1.7) 105.5 (1.9) 1.11E-21 99 (4.5) 112.6 (4.8) 

hip (cm)  
(ncohort =124) 99.3 (1.4) 110.1 (1.7) 6.72E-23 103.9 (4.9) 114.4 (5.7) 

WHR  
(ncohort =129) 0.91 (0.01) 0.95 (0.01) 2.00E-08 0.96 (0.02) 0.99 (0.03) 

liver fat 
percent  
(ncohort =80) 

1.4 (0.3) 4.7 (0.8) 8.46E-08 1.7 (0.5) 6.4 (2.4) 

subcutaneous 
fat volume 
(cm3)  
(ncohort =52) 

3814 (417) 6359 (540) 4.12E-10 n.a. n.a. 

intraabdominal 
fat volume 
(cm3)  
(ncohort =52) 

790 (179) 1644 (247) 4.49E-09 n.a. n.a. 

adipocyte 
diameter (um)  
(ncohort =122) 

83 (2) 93 (2) 1.03E-07 80 (3) 82 (3) 

adipocyte 
volume  
(um3)  
(ncohort =122) 

450 (24) 631 (29) 1.28E-10 461 (38) 538 (45) 
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HbA1c 
(mmol/mol)  
(n=126) 

5.4 (0.1) 5.7 (0.1) 4.37E-07 5.2 (0.1) 5.8 (0.4) 

fasting glucose 
(mmol/L)  
(ncohort =128) 

5.5 (0.1) 5.9 (0.2) 1.74E-04 5.4 (0.1) 5.8 (0.3) 

fasting insulin 
(pmol/L)  
(ncohort =124) 

6.5 (0.6) 9.7 (0.8) 9.54E-06 6.9 (1.9) 7.8 (1.2) 

Matsuda index  
(ncohort =113) 7.4 (0.5) 4.9 (0.4) 4.42E-07 7.0 (1.0) 4.7 (0.6) 

HOMA-IR  
(ncohort =119) 1.6 (0.2) 2.6 (0.3) 1.35E-06 1.7 (0.4) 1.9 (0.3) 

total 
cholesterol 
(mmol/L)  
(ncohort =124) 

4.7 (0.1) 4.8 (0.1) 3.78E-01 4.7 (0.2) 4.8 (0.3) 

HDL 
(mmol/L)  
(ncohort =130) 

1.6 (0.1) 1.4 (0.1) 4.95E-05 1.6 (0.2) 1.4 (0.1) 

TG (mmol/L)  
(ncohort =130) 0.98 (0.07) 1.19 (0.07) 2.19E-04 0.8 (0.1) 1.1 (0.1) 

LDL 
(mmol/L)  
(ncohort =130) 

2.9 (0.1) 3.1 (0.1) 7.07E-02 3.0 (0.2) 3.2 (0.3) 

CRP (mg/L)  
(ncohort =121) 2.5 (0.4) 3.9 (0.6) 1.48E-04 1.59 (0.42) 3.69 (0.89) 

AST (U/L)  
(ncohort =130) 27.7 (1.2) 30.4 (2.2) 1.53E-01 26.0 (3.9) 39.3 (10.9) 

ALT (U/L)  
(ncohort =130) 25.9 (1.9) 31.7 (2.9) 8.04E-03 25.3 (5.4) 41.9 (11.2) 

GGT (U/L)  
(ncohort =84) 24.1 (3.3) 33 (5.2) 5.28E-03 25.2 (5.3) 29.1 (5.0) 

SE indicates standard error; BMI, body mass index; WHR, waist-to-hip ratio; HbA1c, 
hemoglobin A1c; HOMA-IR, homeostatic model assessment for insulin resistance; HDL, high-
density lipoprotein; TG, triglycerides; LDL, low-density lipoprotein; CRP, C-reactive protein; 
AST, aspartate transaminase; ALT, alanine transaminase; and GGT, gamma-glutamyltransferase. 
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Table 4-3: The A compartment cluster numbers and Mb spanned 

Table S3. Related to Figure 3. The A compartment cluster numbers and Mb spanned. 
 

  

A compartment 
cluster 

# of A 
compartments 

in cluster 
Total Mb 

# of 
reprogrammed A 
compartments in 

cluster 

Total Mb 
(reprogrammed) 

1 145 129 30 37.3 
2 144 88.8 39 32.5 
3 107 42.6 13 5.0 
4 156 52.8 8 1.8 
5 138 60.6 11 4.0 
6 137 39.3 1 0.1 
7 193 78.1 7 4.0 
8 121 27.1 6 1.1 
9 180 69.2 4 2.4 
10 230 62.3 2 0.3 
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Table 4-4: CRP GWAS SNPs that land in pCHi-C interactions in the reprogrammed primed A compartment cluster 1  

Table S5. Related to Figure 4. CRP GWAS SNPs that land in pCHi-C interactions in the 

reprogrammed primed A compartment cluster 1. 

Cluster 1 A 
compartment 

# 
GWAS 
SNPs 
(LD 
R2<0.2) 

# GWAS 
signals in 
PAd pCHi-C 
and ATAC-
seq  

Tag SNP Genes with 
GWAS 
SNP in 
interacting 
promoter 

Genes 
interacting 
with 
GWAS 
SNP 

chr1_A_comp22 2 - - - - 

chr3_A_comp31 5 3 rs37440724
7 

AMT, 
DAG1, BSN 

RHOA, 
TCTA, 
APEH, 
QRICH1 

rs2271961 GMPPB, 
AMIGO3, 
IP6K1, 
FAM212A, 
CDHR4 

IP6K1, 
TRAIP, 
CAMKV, 
MST1R, 
MON1A, 
RBM6 

rs76367790 MST1R, 
RBM6 

UBA7, 
FAM212A, 
CDHR4, 
MST1R, 2, 
RBM6, 
IP6K1, 
MON1A 

chr6_A_comp26 2 1 rs154977 - HLA-DMB 

chr7_A_comp51 1 1 rs12333760 PTCD1, 
ZNF789, 
ATP5J2,  
ZNF394, 
ZKSCAN5 

ZNF394, 
ZKSCAN5, 
ZSCAN25 

chr11_A_comp2
5 

1 - - - - 

chr12_A_comp6
6 

5 1 rs28861152 - SETD8 

chr17_A_comp1 1 1 rs7502910 SERPINF2, 
RP11-
961A15.1 

- 



 

 
 

141 

Chr indicates chromosome; LD, linkage disequilibrium; GWAS, genome-wide association study; 
SNP, single nucleotide polymorphism; ATAC, Assay for Transposase Accessible Chromatin. 
The “Cluster 1 A compartment” column is the unique A compartment identifier. Only Ensembl 
protein-coding and lincRNAs are shown for clarity.  
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Understanding the genetic etiology and pathophysiology of increased BMI in humans is a 

challenging but important task toward understanding and reducing risk for CVD. In this 

dissertation, I have outlined three integrative genomics approaches that incorporated a context-

specific assessment of genomic regulatory mechanisms in adipose tissue cell-types that 

contribute to or respond to BMI in humans. In chapter 2, we showed that adipocyte promoter 

interactions are enriched for the heritability of adipose gene expression, supporting the utility of 

using these interactions as a fine-mapping tool for genetic variants that are associated with gene 

expression. By also identifying obesity GWAS variants that land within these regulatory loops, 

we highlighted four putative mechanisms that originate in adipocytes and contribute to these 

obesity traits. These results enabled the initial fine-mapping of obesity GWAS loci and 

contributed to a better understanding of how adipose tissue cell-types can affect energy 

homeostasis and fat outcomes in humans.  

 In chapter 3, we tested the hypothesis that significant GxE associations can be identified 

after prioritizing candidate variants based on their genomic responses to the environmental 

stimulus in question. We performed a dietary lipid challenge in human primary adipocytes using 

saturated or monounsaturated fatty acids, and genetic variants that land in dietary lipid -

responsive interacting regions in adipocytes were tested for an interaction with dietary saturated 

fat intake to affect BMI in the UKB. This resulted in the identification of 14 promoter GxE 

variants and 24 enhancer GxE variants for BMI. 

 Finally, in chapter 4 we extended the context-specific chromatin accessibility 

comparisons to a cohort of MZ twins who are discordant for BMI (DBMI³3 kg/m2), enabling the 

assessment of environment (BMI) -driven changes in the epigenome while controlling for the 

genetic background. We found that increased BMI alters the higher-order chromatin activity 
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state in the preadipocytes isolated from these twins, and that these reprogrammed regions are 

significantly enriched for the heritability of CRP in the UKB. Furthermore, these regions contain 

a higher accumulation of small-effect variant interactions with BMI to affect CRP, suggesting a 

causal role for BMI-dependent preadipocyte reprogramming in driving the important obesity 

comorbidity, chronic low-grade inflammation. 

In this dissertation work, BMI was used as the obesity measurement phenotype. BMI has 

been criticized as a measure for obesity due to the inability to estimate the contribution of lean 

versus fat mass to the resulting BMI value. Instead, waist-to-hip ratio (WHR) has been shown to 

be a better representation of adiposity in humans, given that it is better correlated with measures 

of body fat distribution. However, BMI correlates significantly with WHR, suggesting that at the 

population level, BMI does capture adiposity to a substantial degree (Speakman et al., 2018). 

Furthermore, BMI is quick and easy to measure, being simply weight (in kilograms) divided by 

height (in meters) squared. This has supported the collection of very large cohorts with BMI 

measurements, increasing the power to detect many causal variants, typically with very small 

effect sizes, for obesity. It has been shown that some of the first hits in cohorts with better 

defined adiposity phenotypes overlap with BMI associations (Speakman et al., 2018). However, 

collecting these phenotypes is less straightforward than collecting the measurements for the BMI 

calculation. The collection procedures often necessitate more training for the collection staff, and 

they are often more time-consuming, precluding the collection in large enough numbers to reach 

the power attained by BMI GWAS (Speakman et al., 2018). Furthermore, looking beyond the 

scientific research, BMI is the measure that can be calculated from data collected during routine 

clinical procedures: height and weight. Thus, understanding this measure directly, including the 

caveats and differences in cutoffs between sexes and ethnicities, should be of more clinical 
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relevance (Dalton et al., 2003). Taken together, despite the phenotypic limitations, understanding 

BMI is likely beneficial for discovering obesity biology and treating obesity. 

These studies started with the characterization of certain epigenetic marks in adipose 

tissue cell-types in vitro. In vitro methods that involve the culturing of cells, even if they are 

primary cells, can be criticized. Some reasons relevant for this dissertation include 1) cells are 

being cultured in a monolayer on a plate (2-dimensional culture rather than the 3-dimensional 

organization in tissues); 2) the cell media does not recapitulate the in vivo cellular environment; 

or 3) there is a lack of the in vivo interactions of cells with other cell-types in tissues, or lack of 

signaling within the entire organism. We show that we can integrate in vitro genomic findings 

with human genetic and gene expression cohort studies to extrapolate from the experimental 

evidence and identify likely genomic regulatory mechanisms underlying human CMDs. By 

leveraging the environmentally controlled nature of in vitro cell culture, we were able to increase 

the signal-to-noise ratio (through the collection of data from single cell-type rather than tissue) 

and reduce biological variation (through culturing primary cells briefly to standardize the 

external environment between individuals) in the functional genomics assessments utilized in 

this work. This enabled us to identify robust epigenetic signals from the cultured cells that could 

be validated through large human genetics cohorts with gene expression (METSIM and GTEx) 

and deep phenotyping (METSIM and UKB), thus providing putative causal genomic regulatory 

mechanisms underlying obesity and related CMDs.  

One major limitation of the work presented here is that it was solely performed in 

individuals of European ancestry. GWAS have been overwhelmingly performed in individuals of 

European ancestry. This is detrimental to equity in healthcare as well as understanding the 

biological underpinnings of disease (Popejoy and Fullerton, 2016; Sirugo, Williams and 
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Tishkoff, 2019). In the clinic, the generalizability of the results we obtain from European 

ancestry studies could be limited by differences in effect sizes between ancestries or population-

specific variants. This can make PRSs and other genetic risk assessments imprecise or incorrect. 

Some ancestry-specific mechanisms are likely involved in obesity and related CMDs. Mexicans 

and Mexican-Americans exhibit the highest risk for T2D (Barquera et al., 2018), whereas Black 

Americans have a higher risk for hypertension (Ford, 2011). Furthermore, different genetic 

backgrounds likely shape the genomic regulatory landscape, from promoter interactions and the 

higher-order organization of the chromatin, to the local genetic regulation by enhancers and other 

regulatory elements. While the genetic effects on the 3-dimensional conformation of the 

chromatin is less understood, the existence of chromatin accessibility and histone mark 

quantitative trait loci exist has been established (Kasowski et al., 2013; Kilpinen et al., 2013; 

McVicker et al., 2013; Gate et al., 2018). Thus, it is important to place an emphasis on collecting 

large enough GWAS and functional genomics cohorts for obesity and related comorbidities in 

more diverse populations in the coming years.  

For all of the studies presented in this dissertation, the goal was to identify strong 

candidates for the functional assessment of genes that drive obesity and related CMDs in adipose 

tissue cell-types. One unanticipated result from the GWAS era was the highly polygenic nature 

of some complex traits, including BMI. We learned that it is not feasible to test all potential 

causal genes and variants in a single GWAS locus, let alone tens to hundreds. Thus, the genome-

wide assessment of functional genomics for the initial GWAS fine-mapping have proven to be an 

important approach in the post-GWAS era. While many disease associations may exhibit a 

functional enrichment in certain cell- or tissue-types, in reality, a wide range of cell-types can be 

important for disease. Functional genomics provides a way for researchers to prioritize cell-types 
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and fine-map mechanisms that are relevant for their expertise. This can refine a starting list of 

many GWAS loci to a handful that have strong genomic evidence of being involved in their cell-

type or context of interest. Integrative functional genomics approaches are highly flexible and 

depend on the priority of the research. For instance, rather than focusing on cell- or context-

specific mechanisms, projects could instead focus on a cross cell-type fine-mapping analysis 

looking for evidence that known drug targets underlie biological mechanisms at GWAS loci. The 

vast amount of information available to the public, with much more to come, is enabling creative 

and meaningful research aims that have provided valuable insight into complex trait biology and 

genetics.  

Next steps following the work presented in this dissertation could involve functional 

probing at the loci that exhibit evidence of being involved in obesity mechanisms originating in 

adipose tissue cell-types. In chapter 2, our integrative approach identified putative genomic 

regulatory mechanisms that underlie four obesity GWAS loci. For genes with limited 

information regarding their function, gene knockdown combined with RNA-seq as well as a 

number of other functional genomics assays, such as ATAC-seq or TF and histone mark ChIP-

seq, could be performed to get a sense of the pathways the gene is involved in. Experimental 

designs that incorporate more high-throughput, functional genomics assessments such as these 

are becoming more widely used as these assays become more affordable due to kits and reduced 

sequencing costs. By obtaining a network-level view of gene perturbation effects across many 

individuals, for example, we can more reliably identify of the pathway(s) in which the gene is 

involved in that cell-type. In addition, approaches such as this can be performed on many genes 

at once by profiling the effects of gene knockdown across many cells, rather than individuals. 

This is the general idea behind Perturb-seq (Dixit et al., 2016), which combines a high-
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throughput activating or inactivating CRISPR assay with single-cell RNA-seq readouts to assess 

the effects of gene perturbations across many cells for many genes in one experiment. This 

would be highly valuable for following up projects with many hits that cannot be screened on a 

locus-by-locus basis, such as the GxEs identified in chapters 3 and 4.  

Understanding both the causes of obesity and its downstream mechanisms that contribute 

to the increased prevalence of other CMDs will be important for reducing cardiometabolic risk. 

In this dissertation, I have outlined approaches using cell- and context-specific functional 

genomics assays to highlight putative genomic regulatory mechanisms underlying genetic 

associations and GxEs for CMDs in humans. GWASs have highlighted many loci to be involved 

in complex traits, which necessitates more systematic fine-mapping approaches than previously 

anticipated. Furthermore, understanding the mechanisms through which the obesogenic 

environment interacts with our genetics to drive variation in BMI and related comorbidities can 

be valuable for developing novel therapeutics. This will aid the development of personalized 

prevention and treatment plans to counteract the continued rise in the prevalence of obesity in the 

United States and worldwide.  
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