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Abstract

Fyn in Neonatal Hypoxic-Ischemic Brain Injury
Renatta Knox

Neonatal brain hypoxia-ischemia (HI) is an important cause of morbidity and
mortality in infants and children. However, there are few treatments. We have
recently demonstrated that Src Family Kinase (SFK) activity and NMDA receptor
(NMDAR) tyrosine phosphorylation are increased following neonatal HI in mice.
Inhibition of SFKs provides neuroprotection against HI. However, it is unknown
which particular SFKs contribute to neonatal HI brain injury or the molecular
mechanisms by which SFKs worsen brain injury. We used two transgenic mouse
models to determine the role of Fyn and Fyn-mediated NR2B tyrosine
phosphorylation in neonatal HI. We found that neuronal Fyn overexpression leads
to increased brain injury and mortality in response to neonatal HI. These changes
correlated with elevated NMDAR tyrosine phosphorylation and increased calpain
activity. Mutation of tyrosine 1472 of NR2B to phenylalanine (Y1472F) resulted in
decreased brain injury, NR2B tyrosine phosphorylation at specific residues, and
calpain activity following HI. In vitro Y1472F neurons had less generation of
reactive oxygen species and cell death in response to NMDA and glutamate. Taken
together, these studies implicate Fyn and tyrosine phosphorylation of the NR2B
subunit in neonatal hypoxic-ischemic brain injury and encourage the development

of therapies targeting Fyn in neonatal HI.
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Chapter 1: Fyn in Neurodevelopment and Ischemic Brain Injury



The Src Family kinases (SFKs) are nonreceptor protein tyrosine kinases that
are implicated in many normal and pathogenic processes in the nervous system.
The SFKs Fyn, Src, Yes, Lyn and Lck are expressed in the brain. This review will
focus on Fyn, as Fyn mutant mice have striking phenotypes in the brain and Fyn is
involved in ischemic brain injury in adult rodents, and with our work, in neonatal
animals. An understanding of Fyn's role in neurodevelopment and disease will

allow researchers to target pathogenic pathways while preserving protective ones.

Fyn Structure and Regulation

Fyn is a 59kDa protein that is expressed in neurons and glia in the nervous
system (1). Alternative splicing produces three Fyn isoforms. FynB, which uses
exon 74, is enriched in the brain (2). In the rodent embryo, Fyn is present in axon
tracts and growth cones, the telencephalon, hippocampal formation, cerebral cortex,
and thalamic and hypothalamic nuclei (1, 3). There are elevated Fyn protein levels
in white matter beginning at postnatal day 10 that coincides with myelination (3). In
the mature brain, Fyn has decreased expression in axon tracts and is predominantly
found in the cerebellum, telencephalon and brain stem (1, 3). Fyn expression and
kinase activity increase with development (3, 4).

Fyn shares a similar structure to other SFKs, an N-terminal SH4 domain,
unique region, SH3 and SH2 domains, linker regions and a C-terminal kinase domain
(Figure 1A). Myristoylation at glycine 2 and palmitoylation at cysteine 3 and 6 allow
Fyn to target to the plasma membrane and lipid rafts (5-7). The SH3 domain is a

protein-protein interaction module that recognizes proline-rich regions (8) and the



SH2 domain recognizes phosphorylated tyrosine (pY) (9). Fyn interacts with a wide
range of proteins through these domains (Figure 1B).

SFKs exist in active and inactive conformations that are partially driven by
phosphorylation of two critical tyrosine residues (Figure 2). Y531 is located in the
extreme C-terminus. When this residue is phosphorylated, it forms an
intramolecular interaction with the SH2 domain. This conformation makes the
kinase active site and SH3 domain inaccessible (10, 11). Y420 is located within the
activation loop of the kinase domain. When this site is phosphorylated, it activates
SFKs and makes the SH3 domain available for protein-protein interactions (12).

Phosphorylation of Y420 and Y531 provide an important level of regulation
of Fyn activity and its ability to interact with other proteins. Striatal enriched
phosphatase (STEP) and protein tyrosine phosphatase a (PTPa) are Fyn regulators
in the mammalian brain. STEP negatively regulates Fyn kinase activity by
dephosphorylating Y420 (13). PTPa activates Fyn by dephosphorylating Y531 (14-
16). Once activated, Fyn can phosphorylate substrates in the brain with diverse
cellular functions (Table 1). A broad range of substrates and binding partners

situate Fyn upstream of many cellular processes in the brain.

Functional role of Fyn in the immature and mature nervous system

Several conclusions about Fyn function in the developing and adult nervous
system can be drawn from transgenic mice where Fyn has been deleted, mutated or

overexpressed. The Soriano lab generated Fyn null mice that lack expression of all



Fyn isoforms (17). Yagi et al produced Fyn mutant mice in which the SH2, SH3 and
kinase domain is replaced with lacZ, producing a Fyn-B-galatosidase fusion protein
that is catalytically inactive (18). A Fyn kinase dead mutant exists which has a point
mutation in the ATP binding pocket (K296R) (19). Finally, there are two mouse
models that overexpress Fyn in excitatory neurons. Wild type or constitutively
active (Y531F) Fyn is driven by the calcium/calmodulin-dependent protein kinase
[la (CaMKIlIa) promoter where Fyn is overexpressed postnatally in the forebrain
(20, 21). Studies using these transgenic mice have implicated Fyn in migration,
myelination, synaptic plasticity and the regulation of excitatory and inhibitory

receptors.

Neuronal Migration

Development of the neocortex involves the coordinated migration of neurons
from the ventricular zone radially toward the pial surface. Fyn is expressed in the
leading processes of migratory cortical neurons during corticogenesis (22). On a
molecular level, Fyn has been implicated in the Reelin pathway. Reelin is an
extracellular molecule that activates signaling cascades eventually leading to
"outside-in" layering of neurons in the cerebral cortex, where early-generated
neurons are located superficially and later-generated neurons are present in deeper
layers (23).

Reelin and the intracellular adaptor protein Dab1 lead to activation of Fyn.
Then, Fyn phosphorylates Dab1 that initiates signal transduction cascades critical

for neuronal migration (24, 25). Fyn null mice have abnormal stratification of layer



[I-III neurons with sparing of neurons in the deeper layers (22). Fyn knockout (KO)
embryos have an intermediate migration defect, however Fyn Src double KO mice
have a reeler phenotype suggesting that both kinases function downstream of Reelin

and are necessary for cortical layer formation (26)

Oligodendrocyte Maturation

One function of oligodendrocytes (OL) is myelination of axons in the central
nervous system (27). Fyn null mice have significantly less myelin and OLs. Fyn
kinase dead mutant mice are also hypomyelinated, suggesting that Fyn kinase
activity is required for myelination (19). In vitro, fewer OLs develop in the absence
of Fyn and fewer cells are morphologically mature. Fyn KO OLs are insensitive to
IGF-1 induced maturation (28). Many of these phenotypes are recapitulated in Fyn
KO mice backcrossed to the C57BL/6 background as early as postnatal day 6. These
mice show severe hydrocephalus with defects in oligodendrocyte development (29).

Fyn KO mice have decreased mylein basic protein (MBP) throughout
development (27). While this may be due to decreased number of OLs, Fyn also
regulates MBP at the mRNA level. Activated Fyn phosphorylates RNA binding
protein hnRNP A2, which stimulates translation of MBP mRNA (30). These studies
suggest that Fyn does not participate in oligodendrocyte migration, but functions in
oligodendrocyte maturation and may affect myelin production post-translationally

27).



Synaptic Plasticity

Synaptic plasticity refers to the ability of neuronal connections, synapses, to
change over time. One experimental model of synaptic plasticity is long-term
potentiation (LTP), in which repetitive stimulation of excitatory synapses leads to a
long-lasting increase in synaptic strength (31). Fyn KO mice have impaired LTP in
the hippocampus in response to weak intensity tetanus (32). Interestingly, LTP is
normal due to Src compensation until 14 weeks of age in Fyn KO mice when
compensatory Src expression is reduced and the LTP deficit begins to be observed
(20). Mice overexpressing constitutively active Fyn have a lower threshold for LTP
in response to a weak stimulus. These studies suggest that Fyn is not required for
the initiation of LTP, but may play a modulatory role influencing the threshold of
LTP induction (33).

In addition to the LTP deficit, Fyn KO mice have impaired spatial memory in
the Morris water maze. Anatomically, Fyn deletion results in an abnormal
localization and an increased number of granule cells in the dentate gyrus and target
cells in CA3 (32). Fyn KO mice also have decreased spine density in the
hippocampus at 3 months of age (34). These anatomical changes may contribute to

aberrant hippocampal function in adult Fyn KO mice.

GABAergic synaptic transmission
Inhibitory neurotransmission is mediated by y-aminobutyric acid (GABA)
through activation of GABA receptors. GABA type A receptors (GABAaR) are

heteropentameric GABA-gated chloride channels that are derived from 19 genes



(al-6,p1-3,v1-3, 9, ¢, 0, m, p1-3) (35). Several lines of evidence suggest that Fyn
regulates GABAAR expression and function.

Fyn KO slices from the olfactory bulb were insensitive to the GABAAR
antagonists, bicuculline and picrotoxin (36). Functional deficits in GABAa -gated
chloride flux are also evident in the cerebellum of Fyn KO mice (37). GABAaR
agonists have hypnotic effects, however Fyn KO mice are less sensitive to the
hypnotic effects of $2 /83 agonists, but not to an a1 selective agonist (37).

The y2 subunit of GABA4R is a Fyn substrate (Table 1). Fyn phosphorylates
Y365 and Y367 that are within a consensus tyrosine-based endocytosis motif
(YGYECL). Phosphorylation at Y365/7 prevents endocytosis of the GABA4R, leading
to increased surface expression of GABAaRs and synaptic inhibition (38). Mutation
of Y365/7 to phenylalanine (Y365/7F) is embryonic lethal. Heterozygous Y365/7F
mice have an increased size of inhibitory synapses and increased mini inhibitory
postsynaptic currents (mIPSCs) in the CA3 region of the hippocampus.
Heterozygous mice also have impaired spatial object recognition (39).

These studies suggest that Fyn deletion leads to abnormal GABAergic
synaptic transmission with behavioral, functional and developmental consequences
in different brain regions. Fyn may regulate GABAaRSs specifically via the 2, $3 and

v2 subunits.



NMDA Receptor Surface Expression and Cleavage

The N-methyl-p-aspartate receptor (NMDAR) is a heteromeric glutamate
receptor composed of an obligatory NR1 subunit and modulatory subunits NR2A-D.
NMDARs participate in fast excitatory synaptic transmission (40) and form large
multi-protein complexes at synaptic membranes (41). The NR2A and NR2B
subunits have multiple tyrosine residues on their C-terminal tails that are
phosphorylated by SFKs Src and Fyn (40). Exogenous Fyn may upregulate NMDAR
currents possibly by tyrosine phosphorylation (42).

Fyn deletion results in decreased tyrosine phosphorylation (pY) of NR2B and
Fyn overexpression (Fyn OE) leads to elevated pY NR2B. Interestingly, Fyn KO mice
have normal levels of pY NR2A, while Fyn OE mice have increased pY NR2A (21).
These results suggest that in vivo Fyn may preferentially phosphorylate the NR2B
subunit of the NMDAR.

In vitro, Fyn phosphorylates seven tyrosine residues on NR2B (43)(Table 1).
In the developing cortex, we found that pY1070, pY1252, pY1336, pY1472
expression was highest in synaptic membranes, while pY1336 was also present in
extrasynaptic membranes (44)(Knox and Jiang, unpublished observations). One
study reported that pY1252 NR2B is higher in synaptic lipid rafts compared to the
post-synaptic density (PSD) (45). Additionally, pY1336 promotes calpain cleavage
of NR2B in response to glutamate exposure in vitro (46) and is associated with
increased interaction of NR2B with phosphatidylinositol 3-kinase (PI-3K) (47).

Among Fyn-mediated NR2B tyrosine phosphorylation sites, Y1472 has been

studied the most extensively. Phosphorylation of Y1472 maintains surface



expression of the NR2B-containing NMDARs as it is within the tyrosine endocytosis
motif YEKL (48-50). Although pY1472 leads to increased surface expression and
less endocytosis of NR2B, it does not affect excitatory synaptic transmission (49,
50). Interestingly, mice in which Y1472 has been replaced with phenylalanine
(Y1472F) have impaired fear-related learning and decreased LTP in the amygdala,
but normal LTP and spatial memory in the hippocampus. pY1472 affects NR2B
tyrosine phosphorylation, as Y1472F mice have 80% less tyrosine phosphorylation
in the amygdala compared to WT mice. Y1472F mice also have changes in the NR2B
complex, with less a-actinin and CaMKII associated with NR2B (50). pY1472 leads
to activation the CaMKII pathway in the amygdala and spinal cord (50, 51). Taken
together, these results suggest that Y1472 affects NR2B tyrosine phosphorylation,

surface expression, complex formation and downstream signaling cascades.

In summary, Fyn is involved in many processes critical for the development
of the brain. Fyn regulates neuronal migration during corticogenesis,
oligodendrocyte maturation, myelin production, long-term potentiation, and

excitatory and inhibitory neuronal receptors.

Fyn in adult ischemic brain injury

Stroke is a leading cause of death and disability worldwide (52). Preclinical
studies in rodents using SFK inhibitors suggest that targeting this kinase family may
be protective in ischemic brain injury in humans (53). PP1 (4-amino-5-(4-

methylphenyl)-7-(¢-butyl)pyrazolo[3,4-d|pyrimidine) and PP2 (4-amino-5-(4-



chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine) are ATP-analogues which
compete with ATP for the ATP binding pocket of SFKs, thereby decreasing the ability
of SFKs to phosphorylate substrates. Both compounds have some selectivity for Fyn
among SFKs (54). Experiments using the adult rodent middle cerebral artery
occlusion (MCAO) model have shown that PP2 reduces infarct volume and blood
brain barrier leakage (55). PP2 protects CA1 pyramidal neurons from transient
ischemia (56). PP1 decreases infarct volume, edema, neurological deficits and
increases survival when given after an ischemic insult (57).

While these inhibitors demonstrate that SFKs contribute to ischemic brain
injury, few studies have examined the relative contribution of specific SFKs. Using a
permanent MCAO model in adult rodents, Paul et al found that Src KO mice have
decreased infarct volume compared to control mice. However, brain injury in Fyn
KO mice (which are on C57BL/6, 129s hybrid background) did not differ from
control C57BL/6 or 129s mice (57). This study would suggest that Src may be more
important to the pathogenesis of stroke in adults. However it is unknown how brain
injury in Fyn KO mice compares to control mice on a hybrid background. Recently,
Du et al found in an in vitro model of ischemia, oxygen glucose deprivation, that Src
or Fyn knockdown leads to decreased apoptotic cell death. Fyn knockdown with
siRNA had a greater neuroprotective effect (58). This study would suggest that Fyn
and Src both contribute to injury, and that Fyn may be more important for apoptotic
cell death, which is more prevalent in the neonatal brain.

How does Fyn contribute to ischemic brain injury in adult rodents?

Consistent with its role as an adaptor protein, Fyn is part of protein complexes that

10



assemble in response to ischemia. It may also phosphorylate proteins implicated in
cell death pathways.

Fyn exists in at least three ischemia-induced complexes with the NMDAR,
PSDO5, L-type voltage gated calcium channel (LVGCC), and SynGAP (Figure 3A). Fyn
interacts with NMDAR subunits NR2A and NR2B in response to ischemia (59).
While it is unknown whether Fyn directly phosphorylates the NMDAR in this
setting, its interaction with the NMDAR coincides with elevated tyrosine
phosphorylation (60). Tyrosine phosphorylation of NR2A and the NR2A-Fyn
association are enhanced by PSD95 after transient brain ischemia (61). Studies have
shown that PSD95 and the NMDAR couple to the neurotoxic nitric oxide signaling
pathway and disrupting this interaction is protective (62). Itis possible that Fyn
may promote this interaction, since the NMDAR and PSD95 are Fyn substrates
(Table 1).

Fyn phosphorylates PSD95 at Y523, which leads to upregulation of glutamate
receptor channel activity in cultured hippocampal neurons (63). The Fyn-NR2A-
PSDO95 complex is positively regulated by protein tyrosine kinases and negatively
regulated by protein tyrosine phosphatases (61). Two neuroprotective agents,
Chinese traditional medicine Sy-21 and lithium, are associated with decreased pY
NR2A and decreased formation of the Fyn-PSD95-NR2A complex (64, 65). These
results suggest that tyrosine phosphorylation of this complex by Fyn may contribute
directly to ischemic brain injury by increasing calcium influx through the NMDAR
via PSD95 while also increasing nitric oxide signaling by promoting the NMDAR-

PSDO95 interaction.
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To add another layer of complexity, the Fyn-NR2A-PSD95 complex is
enhanced by NMDAR and L-type voltage gated calcium channel (L-VGCC) activity.
Fyn interacts directly with the a1c subunit of L-VGCC during the peak of its tyrosine
phosphorylation (66). Fyn also interacts with PSD95 associated GTPase SynGAP
during ischemia. Pei et al found that SynGAP tyrosine phosphorylation increases
after ischemia, as does its association with Fyn. It is unknown whether Fyn regulates
SynGAP phosphorylation or how SynGAP participates in ischemia (67).

Taken together, these studies suggest that Fyn forms complexes in response
to ischemia in the adult brain. Fyn may phosphorylate several proteins such as
PSD95, SynGAP and membrane channels leading to increased calcium flux and cell
death signaling pathways (Figure 3A). While these studies implicate Fyn in the
pathogenesis of ischemic brain injury in adults, much less is known about the

contribution of Fyn to ischemic brain injury in neonates.

Fyn in neonatal hypoxic-ischemic brain injury

Neonatal encephalopathy affects 1-6/1000 live births (68). Encephalopathy
is derived from the Greek words enkephalos (brain) and pathos (disease) and refers
to a disorder of the brain resulting in global dysfunction. Neonatal hypoxic-ischemic
encephalopathy (HIE) is caused by hypoxia-ischemia during the prenatal, perinatal
or postnatal periods (68). Neonatal HIE is modeled in postnatal day 7 rodents by
exposing them to unilateral common carotid artery ligation followed by systemic
hypoxia. This leads to injury in the cortex, hippocampus and striatum ipsilateral to

the ligation (69-71).
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To date there is only one paper from our lab examining the role for Fyn in
hypoxic-ischemic brain injury in neonates. We found that SFKs are activated in
response to hypoxia-ischemia (HI) in neonatal mice. SFK activity correlates with
elevated NR2A and NR2B tyrosine phosphorylation. Fyn has increased association
with NR2A and NR2B in response to injury. Significantly, SFK inhibitor PP2 was
protective (72). While this study is consistent with the adult ischemia literature,
namely that Fyn forms a complex with the NMDAR during HI and PP2 is protective,
much remains to be determined about the mechanism by which Fyn contributes to
HI brain injury (Figure 3B).

This dissertation focuses on the function of Fyn in neonatal HI brain injury.
Chapter 2 examines the subcellular distribution of Fyn and related signaling
molecules in the immature and mature brain. Chapter 3 determines whether
neuronal Fyn overexpression affects brain injury and NMDAR tyrosine
phosphorylation. Chapter 4 explores whether Fyn-mediated NR2B phosphorylation
at Y1472 is functionally important. This work sheds light on the role of Fyn in
neonatal HI brain injury and provides insight into the molecular mechanisms by

which Fyn contributes to cell death.
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Figure Legends

Figure 1. Structure of FynB. A) Domain structure of FynB including N-terminal
myristoylation and palmitoylation sites as well as regulatory tyrosine residues. B)
Fyn binding partners in the unique region (black), SH3 domain (red) and SH2

domain (orange).

Figure 2. Inactive and active conformations of Fyn. Phosphorylation of Y531 in the
C-terminus leads to intramolecular interactions which prevent kinase activity and
protein-protein interactions while phosphorylation of Y420 leads to an open

structure which is catalytically active and accessible to binding partners.

Figure 3. Fyn complexes during ischemia in adult and neonatal rodents. A) In
response to ischemia in adult rodents, Fyn interacts with two receptors that flux
calcium, the NMDA receptor and alc subunit of L-type voltage gated calcium
channel. PSD95 facilitates the interaction between Fyn and NR2ZA. Fyn also
associates with SynGAP. B) Fyn forms a complex with NMDA receptor subunits
NR2A and NR2B during neonatal hypoxic-ischemic brain injury. These proteins are
tyrosine phosphorylated, potentially by Fyn, which strengthens complex formation

and may contribute to pathogenic calcium signaling in the setting of ischemia.
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Figure 1. Structure of FynB. A) Domain structure of FynB including N-terminal
myristoylation and palmitoylation sites as well as regulatory tyrosine residues. B)
Fyn binding partners in the unique region (black), SH3 domain (red) and SH2
domain (orange).
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Figure 2. Inactive and active conformations of Fyn. Phosphorylation of Y531 in the

C-terminus leads to intramolecular interactions which prevent kinase activity and
protein-protein interactions while phosphorylation of Y420 leads to an open
structure which is catalytically active and accessible to binding partners.
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Table 1. Direct Fyn substrates in the Brain.

PTPRT
(Protein
Tyrosine
Phosphatase
Receptor T)
TrkA receptor

Nay1.2

Y2 subunit
GABAAa receptor
NR2A subunit
NMDA receptor
NR2B subunit
NMDA receptor

TCGAP
p250GAP
p190RhoGAP
Cdk5

Tau
MAP-2c

PSD93
PSD95
rSLM-1
a-synuclein
c-Cbl
N-WASP

Dab1

Y912

ND

ND
Y365,Y367

ND

Y932,Y1039,
Y1070,Y1109,
Y1252,Y1336,
Y1472

Y406
ND
ND
Y15

Y18
Y67

Y348
Y523
ND
Y125
ND
Y253

Y185,Y198

* ND, Not Determined

Decreases phosphatase activity
Promotes homophilic interactions
Inhibits synapse formation

Promotes transactivation of TrkA by G-
Coupled Protein Receptors (GPCRs)
Decreases sodium currents

Prevents clathrin-mediated endocytosis
Enhances synaptic inhibition

ND

Y1472: prevents clathrin-mediated
endocytosis

Y1336: promotes calpain cleavage of
NR2B; increased interaction with PI3-K

Negatively regulates activity

Increases association with Fyn

ND

Increases kinase activity

Promotes sema3a induced growth cone
collapse

Prevents inhibition of anterograde fast
axonal transport

Increased interaction with Grb2

ND

Increases NMDA receptor currents
Prevents splice site selection

ND

ND

Arp2/3 complex mediated actin
polymerization

Neurite extension

Permits phosphorylation of other Y sites
of Dab1l

Increases interaction with Fyn

Akt activation

Degradation of Dab1

(73)

(74)

(75)
(39)
(38)
(76)

(76)
(43)
(48)
(46)
(47)
(77)
(78)
(79)
(80)

(81)
(82)
(83)
(84)
(85)
(86)
(87)
(88)
(89)
(90)

(25)
(24)
(o1)
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Fig. 3

Figure 3. Fyn complexes during ischemia in adult and neonatal rodents. A) In
response to ischemia in adult rodents, Fyn interacts with two receptors that flux
calcium, the NMDA receptor and a1c subunit of L-type voltage gated calcium
channel. PSD95 facilitates the interaction between Fyn and NR2A. Fyn also
associates with SynGAP. B) Fyn forms a complex with NMDA receptor subunits
NR2A and NR2B during neonatal hypoxic-ischemic brain injury. These proteins are
tyrosine phosphorylated, potentially by Fyn, which strengthens complex formation
and may contribute to pathogenic calcium signaling in the setting of ischemia.
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Introduction

There are striking differences between the neonatal and adult brain in
response to hypoxic-ischemic (HI) brain injury. Due to higher levels of glutamate
receptor expression that promote activity-dependent neuronal plasticity, the
neonatal brain is more excitable and prone to oxidative stress than the adult brain
(2, 3). Recent studies show that the N-methyl-D-aspartate receptors (NMDAR),
which have long been considered as a critical mediator for excitotoxic cell death, are
also able to initiate neuronal survival depending on whether they are synaptically or
extrasynaptically located (4-6). Synaptic NMDAR stimulation boosts intrinsic
antioxidant defenses (7), activates the Ras-extracellular signal regulated kinase
(ERK)-cAMP response element binding protein (CREB) pathway and translation of
prosurvival proteins (8), whereas stimulation of extrasynaptic NMDAR induces pro-
apoptotic proteins through an ERK-CREB shut-off pathway (9, 10) and activation of
p38 (11). Interestingly, coupling of NMDAR to intracellular signaling pathways is
developmentally regulated as well (12-14). This raises the question whether the
NMDAR and its associated proteins are localized differentially in synaptic
membrane components in neonatal and adult brain, which allows for specificity of
signaling cascades.

NMDARs are heteromeric complexes of the NR1, NR2 (2A-2D) and NR3
subunits. The NR1 subunit is essential for functional NMDAR channels, whereas the
NR2 subunits modulate channel activity and functional properties of the receptors.
We have previously shown that, following neonatal HI, the Src family kinases (SFKs)

are activated in the postsynaptic densities (PSDs) and interact with the NR2A and
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NR2B subunits (15). Protection by inhibiting specific SFKs implicates SFKs in the
injury seen in neonatal HI. SFKs, especially Fyn, mediate tyrosine phosphorylation of
NR2B at three major sites: tyrosine (Y) 1472, Y1252 and Y1336 (16). By contrast,
the striatal-enriched tyrosine phosphatase (STEP) dephosphorylates NR2B at Y1472
and reduces activity of its substrates ERK and p38 (17-19). A recent study
demonstrates in mature hippocampal slices that phosphorylation of Y1472 and
Y1336 is associated with synaptic and extrasynaptic enrichment of NR2B,
respectively (20). This points to the possibility that SFKs and STEP may regulate
NMDAR trafficking on the cell surface by phosphorylation or dephosphorylation of
different residues. It is important to determine whether SFK modulation of the
NMDAR and downstream MAP kinases are uniquely affected by their subcellular
localization in the developing brain.

In the present study, we characterized the distribution of the NMDAR, Src
and MAP kinases in synaptic and extrasynaptic membranes of neonatal and adult
mouse brain to begin to investigate the mechanisms underlying differences between

synaptic versus extrasynaptic NMDAR signaling.

Material and Methods

Animals
All animal experiments were approved by the institutional animal care and
use committee at the University of California San Francisco and every effort was

made to minimize animal suffering and reduce the number of animals used.

35



Subcellular Fractionation

Cortical tissue was dissected from the brains of postnatal day 7 (P7) and
adult (around P48) C57BL/6 mice. Purification of synaptic and extrasynaptic
membrane proteins was performed according to Goebel-Goody and colleagues'
procedure (20) using a subcellular fractionation approach followed by extraction
with Triton X-100. In brief, cortical tissue was homogenized in ice-cold sucrose
buffer containing 0.32M sucrose, 10mM Tris-HCI (pH 7.4), 1ImM EDTA, 1mM EGTA
and protease and phosphatase inhibitors (Complete mini and Phospho-Stop cocktail
tablets, Roche, Indianapolis, IN). A low-speed (1,000xg) centrifugation was
performed to remove the nuclear fraction and tissue debris. The resulting
supernatant (S1) was spun at 10,000xg for 15 minutes to yield a crude membrane
fraction (P2). The supernatant (S2) was then centrifuged at 100,000xg for 60 min to
separate cytoplasmic protein (S3) and intracellular light membrane fraction (P3).
The P2 was subsequently resuspended in 120 ul sucrose buffer, and mixed with 8
volumes of 0.5% Triton X-100 buffer containing 10mM Tris-HCl (pH 7.4), 1mM
EDTA, 1mM EGTA and protease and phosphatase inhibitors. The mixture was
homogenized again with 30 pulses of a glass pestle and rotated at 4°C for 30 min
followed by centrifugation at 32,000xg for 30 min in a TL-100 tabletop
ultracentrifuge (Beckman). The resultant pellet (TxP) containing Triton X-insoluble
PSD proteins was considered as the synaptic membrane compartment. The
supernatant (TxS) containing proteins soluble in Triton X-100 and not tightly bound

to the PSD was defined as the extrasynaptic membrane compartment. The S3 and
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TxS fractions were further concentrated by adding 8 volumes of 100% acetone and
incubated at -20 °C overnight. The precipitated protein was spun at 3000xg at 4°C
for 15 min and dried at room temperature for 15min. All the pellets were dissolved
in TE buffer (100 mM Tris-HCl, 10mM EDTA) with 1% SDS. The samples were
sonicated, boiled for 5 min and stored at -80 °C until use. Protein concentration was

determined by the bicinchoninic acid method (Pierce).

Western Blotting

For Western blot analysis, an equal amount of cytoplasmic (S3),
extrasynaptic (TxS) and synaptic (TxP) protein (7pg) from P7 and adult mice was
applied to 4-12% Bis-Tris SDS polyacrylamide gel electrophoresis (Invitrogen,
Carlsbad, CA) and transferred to polyvinyl difluoride membrane as described
elsewhere [10]. The blots were probed with the following primary antibodies
overnight at 4°C: NR1 (1:1,000; BD Pharmingen, San Diego, CA), NR2A (1:500;
Upstate Cell Signaling Solutions, Lake Placid, NY), NR2B (1:2,000; BD), Fyn (1:800;
Santa Cruz Biotechnology, Santa Cruz, CA), Src (1:500; Upstate), the phospho-site
specific antibodies against NR2B Tyr1252, Tyr1336, and Tyr1472 (1:800;
PhosphoSolutions, Inc. Aurora, CO), ERK (1: 2000; Cell signaling Technology,
Danvers, MA), p38 (1:200; Cell signaling), and STEP (1:500; Upstate). The following
antibodies were used to verify synaptic and extrasynaptic membrane purity: PSD-95
(1:2,000; Upstate), P97 ATPase (1:1,000; Fitzgerald Industries International,
Concord, MA), EEA1 (1:200; Cell signaling) and Rab11 (1:500; Cell signaling).

Appropriate secondary horseradish peroxidase-conjugated antibodies (1:2,000,
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Santa Cruz) were used, and signal was visualized with enhanced chemiluminescence
(Amersham). Image | software was used to measure the mean optical densities (OD)
and areas of protein signal on radiographic film after scanning.

To quantify the protein expression from Western blot analysis, the OD values
from each blot were normalized to P7 synaptic values. For STEP and p38, the blots

were normalized to P7 extrasynaptic values.

Statistical Analysis

Two-tailed Student’s t-tests were used to compare protein expression
between P7 and adult animals in cytoplasmic, synaptic and extrasynaptic membrane
fractions. Statistical significance was determined as p<0.05. Data are presented as

mean =+ SD from three independent experiments.

Results

Purity of the synaptic and extrasynaptic membranes

The purity of the subcellular compartments was assessed by Western
blotting (Fig. 1). Synaptic markers used were proteins representative of the PSD
(PSD-95, NR1 and NR2A). For identification of extrasynaptic membrane proteins,
we used antibodies against EEA1 and Rab11, which are involved in early endosomal
transport and receptor endocytic recycling that take place at extrasynaptic sites (21,
22). The p97 ATPase (also called valosin-containing protein) is bound to Golgi and

endoplasmic reticulum membrane and was used as a marker for intracellular light
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membrane (P3). Consistent with previous studies using the same approach [2],
PSDO95 was exclusively in synaptic membrane (TxP); NR1 and NR2A were most
enriched in synaptic membranes. EEA1 and Rab11 were not expressed in TxP, but
most concentrated in extrasynaptic fractions (TxS). p97 ATPase was predominantly
present in the intracellular light membrane fraction (P3). These results confirmed
that synaptic and extrasynaptic membranes were enriched without contamination

with other subcellular components.

Membrane Localization of NMDARs in P7 and adult mouse cortex

NR1, NR2A and NR2B were all concentrated in synaptic membranes in both
P7 and adult brains (Fig. 2a). In the synaptic fraction, the expression of NR2B
decreased (p=0.0155, P7 vs. adult), while NR2A increased (p=0.0487, P7 vs. adult),
with development (Fig. 2a-c). NR1 remained constant at both ages.
Extrasynaptically, there was significantly higher expression of NR1 (p=0.0348) and
NR2B (p=0.0276) at P7 than that in adult brain, suggesting that NR1/NR2B is the
primary NMDAR subtype at extrasynaptic sites at P7. NR2B is also the primary
subunit to be tyrosine phosphorylated by Fyn in the PSDs, so we chose to examine
the localization and expression of NR2B that is phosphorylated at three major
tyrosine residues by Fyn. pY1472NR2B and pY1252NR2B were located
predominantly in synapses at both ages and increased significantly with
development (Fig. 2a, 2d, p=0.0432 for NR2BY1472, p=0.0188 for NR2BY1252, P7
vs. adult). Although pY1336NR2B was more enriched synaptically Fig. 2a, 2c), it was

the major phosphorylated NR2B form located extrasynaptically at P7 (12.56% of

39



total pY1336NR2B) with no extrasynaptic expression in the adult.

Membrane localization of SFKs and STEP in P7 and adult mouse cortex

Next, we examined the subcellular localization of Src, Fyn and STEP, which
are the best-characterized tyrosine kinases and phosphatase involved in phospho-
regulation of NMDAR and both are changed following neonatal HI. Fyn was more
concentrated at synapses and decreased with age in both synaptic and extrasynaptic
membranes (Fig. 3a-b, p=0.0006 for synaptic Fyn; p=0.0048 for extrasynaptic Fyn,
P7 vs. adult). Src was equally distributed between synaptic and extrasynaptic
membranes with lower levels in the adult brain than at P7 (Fig. 3a-b, p=0.035 for
synaptic Src; p=0.0346 for extrasynaptic Src, P7 vs. adult). We used a STEP antibody
that detects the three major alternatively spliced variants (61, 46 and 38kD).
Membrane-associated STEP61 was located extrasynaptically and was 1.7-fold
higher in adult animals compared to P7 mice (Fig. 3a, 3d, p=0.0233). Other STEP
isoforms with lower molecular weights were detected in the cytoplasmic fractions

and expressed at higher levels in adult animals as well.

Membrane localization of ERK and p38 in P7 and adult mouse cortex

The concentration of ERK and p38 was highest in the cytoplasmic fraction
compared with extrasynaptic and synaptic fractions (Fig. 3a). There was no change
with age in cytoplasmic ERK or p38 expression. In membranes, ERK was more

enriched extrasynaptically with a small fraction in synaptic membranes. ERK1, but
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not ERK2, decreased with development at synaptic membranes (p=0.0017, P7 vs.
adult). p38 was enriched extrasynaptically and not detectable in the synaptic
fraction (Fig. 3a, 3d). Expression of extrasynaptic p38 was higher at P7 than that in

adult (p=0.0013).

Discussion

We examined the distribution of the NMDAR, Src and MAP kinases in
synaptic and extrasynaptic membranes in the developing brain to investigate their
age-related expression on the cell surface. Our major findings are: 1) At all ages,
membrane-associated NMDAR and Src kinases are predominantly at synapses,
whereas STEP and its substrates ERK and p38 are much more concentrated
extrasynaptically. 2) There is a developmental switch from NR2B to NR2A
expression in synaptic membranes with more NR1/NR2B expression in
extrasynaptic membranes in the developing brain. 3) While Fyn and Src protein
levels decrease with age, phosphorylation of NR2BY1472 and NR2BY1252 that is
mediated by these kinases is significantly higher in the adult animals. At P7,
phosphorylation of NR2B at Y1336 is associated with extrasynaptic NMDARs. 4) The
developmental increase in STEP is accompanied by the decrease in p38
extrasynaptically.

NR2B and Fyn are expressed at much higher levels at P7 in both synaptic and
extrasynaptic membranes, suggesting the importance of Fyn in regulating NR2B in
the developing brain. Fyn modulates NMDAR internalization by phosphorylation at

NR2B Y1472. Although NR2B Y1472 has been well characterized, much less is
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known about the physiological function of NR2B Y1252 and NR2BY1336. From our
study, although NR2B Y1472, Y1252 and Y1336 are all enriched in the synapses,
NR1/NR2B is the main subunit occupying extrasynaptic sites with concomitant
phosphorylation at Y1336 in the immature brain. This is in agreement with a recent
study in adult hippocampal slices showing that phosphorylation of Y1336 is
associated with extrasynaptic enrichment of NR2B (20). Other studies suggested
that Y1336 phosphorylation enhances calpain-mediated extrasynaptic NR2B
cleavage at C terminus, which may affect the ability of NR2B binding to associated
proteins and thus change downstream signaling complexes (23). This site also
mediates activation of phosphatidylinositol 3-kinase (PI3K) and p38
dephosphorylation in mature hippocampal cultures following extrasynaptic NR2B
stimulation, suggesting a possible protective role against NMDA toxicity (24). This
phenomenon was not observed in immature cultures since NR2B Y1336 was not
increased under the same condition (24). We found elevated NR2B Y1472, Y1252
and Y1336 expression early after neonatal HI at P7 (unpublished data), but how
these modifications link to their surface locations after HI and the subsequent
downstream NMDAR signaling is unknown.

STEP61, the membrane-associated isoform, was found primarily at
extrasynaptic sites in both P7 and the adult brain. STEP substrates ERK and p38 are
also associated with extrasynaptic membranes. The extrasynaptic localization of
STEP and p38 is consistent with a recent study from adult mouse cortical tissue
(11), that supports the preference of p38 activation and STEP cleavage following

extrasynaptic NMDAR stimulation or in vitro ischemia (11). STEP61 cleavage was
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also found in a neonatal P7 rat HI model (25). Compared to the adult brain, P7
animals have lower STEP and higher p38 available at extrasynaptic sites; this may
be related to the greater susceptibility of neonates to HI or other brain injury
involving excitotoxicity.

ERK, another STEP substrate, while more concentrated extrasynaptically, has
been reported to be activated by synaptic NMDAR stimulation and shut-off by
extrasynaptic NMDAR. Complex mechanisms are involved in ERK regulation,
therefore ERK activity is determined by whether activation or inhibition dominates.
The functional significance of extrasynaptic ERK and p38 is not clear. It is possible
that in the cytosol ERK and p38 are translocated to different cellular compartments
to interact with specific signal proteins in response to different stimuli.

In conclusion, our study demonstrates a developmental regulation in
localization and expression of NMDAR, Src and MAP kinases in synaptic and
extrasynaptic membranes in mouse cortical tissue. Protein localization could
contribute to, but is unlikely to fully account for the differences between synaptic
versus extrasynaptic NMDAR signaling. Determining whether pro-death or pro-
survival signaling following NMDAR activation predominates will allow for

identification of more specific therapeutic targets for neonatal HI.
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Figure legends

Figure 1. Characterization of synaptic and extrasynaptic membranes.
Representative Western blots with each subcellular fractions (S3: cytoplasmic
fraction; P1: nuclear fraction; P3: intracellular membrane fraction; TxS:
extrasynaptic membrane fraction; TxP: synaptic membrane fraction) probed with
the PSD markers PSD95, NR1 and NR2A; the early endosomal markers EEA1 and

Rab11 and the ER marker p97ATPase.

Figure 2. Localization of the NMDAR and phospho-NR2B at different subcellular
fractions in P7 and adult mouse cortex.

Equal amount of protein from cytoplasmic (cyto-), extrasynaptic (extra-) and
synaptic (synap-) fractions was used for Western blotting. Primary antibodies are
indicated on the left of the blots (2a). For each protein, the OD values were
normalized to P7 synaptic values. Data are presented on the right (2b-2d) as mean
+ SD from 3 independent experiments. *: p< 0.05 versus adult values from the same

fraction.

Figure 3. Localization of the Src and MAP kinases, STEP at different subcellular
fractions in P7 and adult mouse cortex.

Equal amount of protein from cytoplasmic (cyto-), extrasynaptic (extra-) and
synaptic (synap-) fractions was used for Western blotting. Primary antibodies are
indicated on the left of the blots (3a). For Fyn, Src and ERK (3b-3c), the OD values

were normalized to P7 synaptic values. For STEP and p38 (3d), the OD values were
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normalized to P7 extrasynaptic values. Data are presented on the right (3b-3d) as
mean =+ SD from 3 independent experiments. *: p< 0.05 versus adult values from the

same fraction.
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Figure 1. Characterization of synaptic and extrasynaptic membranes.
Representative Western blots with each subcellular fractions (S3: cytoplasmic
fraction; P1: nuclear fraction; P3: intracellular membrane fraction; TxS:
extrasynaptic membrane fraction; TxP: synaptic membrane fraction) probed with
the PSD markers PSD95, NR1 and NR2A; the early endosomal markers EEA1 and
Rab11 and the ER marker p97ATPase.
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Figure 2. Localization of the NMDAR and phospho-NR2B at different subcellular
fractions in P7 and adult mouse cortex.
Equal amount of protein from cytoplasmic (cyto-), extrasynaptic (extra-) and
synaptic (synap-) fractions was used for Western blotting. Primary antibodies are
indicated on the left of the blots (2a). For each protein, the OD values were
normalized to P7 synaptic values. Data are presented on the right (2b-2d) as mean
+ SD from 3 independent experiments. *: p< 0.05 versus adult values from the same

fraction.
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Figure 3. Localization of the Src and MAP kinases, STEP at different subcellular
fractions in P7 and adult mouse cortex.

Equal amount of protein from cytoplasmic (cyto-), extrasynaptic (extra-) and
synaptic (synap-) fractions was used for Western blotting. Primary antibodies are
indicated on the left of the blots (3a). For Fyn, Src and ERK (3b-3c), the OD values
were normalized to P7 synaptic values. For STEP and p38 (3d), the OD values were
normalized to P7 extrasynaptic values. Data are presented on the right (3b-3d) as
mean =+ SD from 3 independent experiments. *: p< 0.05 versus adult values from the

same fraction.
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Introduction

Neonatal hypoxic-ischemic brain injury is an important cause of morbidity and
mortality (1). Src family kinases (SFKs) have recently been implicated in a rodent model
of neonatal hypoxia-ischemia (HI). SFKs Src and Fyn are expressed in the developing
brain and are activated in the postsynaptic density in response to neonatal HI. Specific
inhibition of SFKs is protective against neonatal HI (2) suggesting that SFKs are
involved in HI brain injury.

The N-Methyl-p-aspartate receptor (NMDAR) is an important determinant of
survival and cell death in the developing brain (3, 4). The NMDAR is a heteromeric
glutamate receptor composed of an obligatory NR1 subunit and modulatory subunits
NR2A-D. Excessive glutamate release in the setting of ischemia and subsequent
overactivation of the NMDAR cause an influx of calcium ions that damages neurons
leading to excitotoxicity (5-7). Increased levels of intracellular calcium (8) and
recruitment of signaling molecules to the NMDAR (2, 9, 10) are critical for the evolution
of brain injury in the neonate.

Tyrosine phosphorylation of NR2A and NR2B by Src or Fyn enhances NMDAR
channel conductance (11), prevents NMDAR internalization via phosphorylation at
tyrosine (Y) 1472 (12-15) and controls calpain-mediated cleavage via phosphorylation
at Y1336 (16). One of the mechanisms by which SFKs are thought to contribute to
excitotoxicity, is through ischemia-induced tyrosine phosphorylation and enhanced
activation of the NMDAR (2, 17). In the present study we determined the specific
contribution of Fyn to neonatal HI brain injury by using mice with neuronal Fyn

overexpression (OE).
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Materials and Methods

Animals

C57BL/6 WT and Fyn OE mice (generously provided by Dr. Nobuhiko Kojima,
Gunma University School of Medicine, Japan, as described in (18)) were bred at the
Laboratory Animal Resource Center (LARC) at the University of California, San
Francisco. Both sexes were used for these studies at postnatal day 7 (P7). Fyn OE
mice express Fyn under the control of the CaMKIla promoter, overexpressing Fyn

postnatally in excitatory neurons in the forebrain (18).

Hypoxic-Ischemic Brain Injury

HI was induced with an adaptation of the Vannucci procedure (19). At P7, pups
were anesthetized with isoflurane (2-3% isoflurane/balance oxygen) and the right
common carotid artery was ligated. Animals were allowed to recover for 1.5 hours
with their dam and then exposed to 40 minutes of hypoxia in a humidified chamber
at 37°C with 8% oxygen/balance nitrogen. Sham-operated control animals received
isoflurane anesthesia and exposure of the right common carotid artery without
ligation or hypoxia. HI and sham animals were returned to their dams until they

were euthanized.

Evaluation of Brain Injury
Five days after the HI procedure, brains were examined histologically with cresyl

violet and Perl’s stain to assess the degree of damage as previously described (20).
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Briefly, animals were anesthetized with pentobarbital (50mg/kg) and perfused with
4% paraformaldehyde (PFA) in 0.1M phosphate buffer (pH 7.4). Brains were
postfixed in the same solution for 4 hours, then transferred to 30% sucrose in 0.1M
phosphate buffer. Coronal sections were cut through the forebrain at 50uM
intervals with a vibratome. Alternate sections were stained with cresyl violet for
morphology or with Perl’s stain enhanced with diaminobenzidine to localize iron

deposition. Brain sections were scored as described (2).

Western Blotting from Whole Cell Lysates

Cortical tissue from sham-operated and the ipsilateral side of HI-injured animals
was homogenized in modified radioimmunoprecipitation assay buffer (RIPA buffer,
1X sodium phosphate buffer with 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS,
protease and phosphatase inhibitors). 30ug of protein from sham or ipsilateral
cortex was applied to 4-12% Bis-Tris SDS polyacrylamide gel electrophoresis
(Invitrogen, Carlsbad, CA) and transferred to polyvinyl difluoride membrane (Bio-
Rad, Hercules, CA) as described elsewhere (2). The membranes were probed with
the following primary antibodies overnight at 4°C: Fyn (1:1000; Santa Cruz
Biotechnology, Santa Cruz, CA), Src (1:1000; Millipore, Billerica, MA), phospho-Src
(phospho-Tyr416; 1:500; Cell Signaling Technology, Boston, MA), NR2B (1:1000; BD
Transduction Laboratories, San Jose, CA), phospho-Y1252 NR2B (1:500;
PhosphoSolutions, Aurora, CO), phospho-Y1336 NR2B (1:600; PhosphoSolutions),
phospho-Y1472 NR2B (1:500; AbD Serotec, Oxford, UK), and B-actin (1:3000; Santa

Cruz Biotechnology). Appropriate secondary horseradish peroxidase-conjugated
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antibodies (1:2000, Santa Cruz Biotechnology) were used and signal was visualized
with enhanced chemiluminescence (Amersham, Buckinghamshire, UK). Image |
software was used to measure the optical densities (OD) and areas of protein signal

on radiographic film after scanning.

Subcellular Fractionation

Purification of synaptic and extrasynaptic membrane proteins was performed
according to Goebel-Goody and colleagues' procedure (15) using a subcellular
fractionation approach followed by extraction with Triton X-100. In brief, cortical
tissue was homogenized in ice-cold sucrose buffer containing 0.32M sucrose, 10mM
Tris-HCI (pH 7.4), 1mM EDTA, 1mM EGTA and protease and phosphatase inhibitors
(Complete mini and Phospho-Stop cocktail tablets, Roche, Indianapolis, IN). A low-
speed (1,000xg) centrifugation was performed to remove the nuclear fraction and
tissue debris. The resulting supernatant (S1) was spun at 10,000xg for 15 minutes
to yield a crude membrane fraction (P2). The supernatant (S2) was then centrifuged
at 100,000xg for 60 min to separate cytoplasmic protein (S3) and intracellular light
membrane fraction (P3). The P2 was subsequently resuspended in 120 ul sucrose
buffer, and mixed with 8 volumes of 0.5% Triton X-100 buffer containing 10mM
Tris-HCI (pH 7.4), 1ImM EDTA, 1mM EGTA and protease and phosphatase inhibitors.
The mixture was homogenized again with 30 pulses of a glass pestle and rotated at
4°C for 30 min followed by centrifugation at 32,000xg for 30 min in a TL-100
tabletop ultracentrifuge (Beckman). The resultant pellet (TxP) containing Triton X-

insoluble postsynaptic density (PSD) proteins was considered as the synaptic
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membrane compartment. The supernatant (TxS) containing proteins soluble in
Triton X-100 and not tightly bound to the PSD was defined as the extrasynaptic
membrane compartment. The S3 and TxS fractions were further concentrated by
adding 8 volumes of 100% acetone and incubated at -20 °C overnight. The
precipitated protein was spun at 3000xg at 4°C for 15 min and dried at room
temperature for 15min. All the pellets were dissolved in TE buffer (100 mM Tris-
HCI, 10mM EDTA) with 1% SDS. The samples were sonicated, boiled for 5 min and
stored at -80 °C until use. Protein concentration was determined by the

bicinchoninic acid method (Pierce).

Western blotting from Membrane Preparations

For Western blot analysis, an equal amount of cytoplasmic (S3), extrasynaptic (TxS)
and synaptic (TxP) protein (5ug) from P7 cortex was applied to 4-12% Bis-Tris SDS
polyacrylamide gel electrophoresis and transferred to polyvinyl difluoride
membrane as described elsewhere (2). The blots were probed with the following
primary antibodies overnight at 4°C: phospho-Y416 (1:500; Cell Signaling),
phospho-Y1472 NR2B (1:500; Cell Signaling), phospho-Y1252 NR2B (1:800; Cell
Signaling) , and NR2B (1:1000; Cell signaling). Appropriate secondary horseradish
peroxidase-conjugated antibodies (1:2,000, Santa Cruz) were used, and signal was
visualized with enhanced chemiluminescence (Amersham). Image ] software was
used to measure the mean optical densities (OD) and areas of protein signal on

radiographic film after scanning.
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Immunoprecipitation (IP)

[P experiments were performed to measure tyrosine phosphorylation of NR2A and
NR2B, the specific Fyn activity and the association of NR2A or NR2B with Fyn or Src.
Cortical tissue from sham-operated and the ipsilateral side of HI-injured animals
was homogenized in RIPA buffer. An equal amount of protein (250ug) was diluted
with RIPA buffer and pre-cleared by incubation with Protein G-agarose (Invitrogen)
for 30 minutes at 4°C. For NMDAR IPs, cell lysates were incubated with 4ug of
appropriate antibodies (goat polyclonal NR2A or NR2B antibody; Santa Cruz
Biotechnology) or 4ug of normal goat IgG (Santa Cruz Biotechnology) as a negative
control and Protein G-PLUS (Santa Cruz Biotechnology) overnight at 4°C. For Fyn
IP, cell lysates were incubated with 15ug of Fyn-conjugated agarose (Santa Cruz
Biotechnology) or 15ug of mouse IgG-conjugated agarose (Santa Cruz
Biotechnology) as a negative control at 4°C overnight. After centrifugation, IPs were
washed 3X with RIPA buffer, then boiled with 30uL of LDS sample buffer
(Invitrogen). Eluted immune complexes were loaded onto a 4-12% Bis-Tris SDS
polyacrylamide gel electrophoresis and transferred to polyvinylidene fluoride
membrane. Membranes from NR2A and NR2B [Ps were incubated with mouse 4G10
anti-phosphotyrosine (anti-pY) antibody (1:800; Millipore), then stripped and
reprobed with Src (1:800; Millipore) or Fyn (1:1000; Santa Cruz Biotechnology) and
NR2A (1:1000; Cell Signaling) or NR2B (1:1000; BD Transduction Laboratories)
antibodies. NR2A or NR2B tyrosine phosphorylation was expressed as the OD ratio
of phosphotyrosine (pY) to NR2A or NR2B. Membranes of Fyn IPs were incubated

with phospho-Src (pY416; 1:500; Cell Signaling) antibody, which is the active form
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of SFKs. The membranes were then stripped and reprobed with Fyn (1:1000; Santa

Cruz) antibody. Specific Fyn activity was expressed as the OD ratio of pY416 to Fyn.

Statistical Analysis

Data are presented as median and interquartile range for brain injury score using
Prism 4 nonparametric tests for analysis of variance (Kruskal-Wallis test).
Contingency tables were used to determine mortality differences. Data of optical
densities of immunoblots are presented as mean * SD and were evaluated
statistically using SAS Wilcoxon-Mann-Whitney test. Differences were considered

significant at p<0.05.

Results

Fyn is overexpressed in the developing cortex in Fyn OE mice

We first assessed whether Fyn overexpression leads to changes in protein
levels. We made cortical lysates from wild type and Fyn-transgenic mice at different
postnatal ages (P3, P7, P14, P21, P48). We examined the expression of Src, Fyn and
NMDAR subunits NR2A and NR2B. As previously reported, the Fyn transgene
continues to increase in expression into adulthood (21). There were no changes in
Src, NR2A or NR2B protein levels in Fyn-transgenic mice (Fig. 1A). Importantly, Fyn
is overexpressed approximately 2-fold relative to wild-type animals at P7, the age at

which we performed hypoxia-ischemia (Fig. 1B).
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Neuronal Fyn overexpression worsens brain injury and increases mortality after neonatal
Hi

We examined the effect of neuronal Fyn overexpression on the degree of
brain injury and mortality after HI. Fyn OE mice had more severe brain injury than
WT controls [median = 10, range 7.5-13.5 in OE (n=34); median = 8, range 6.5-10 in
WT (n=37), WT vs. OE p=0.0141, Fig. 2A, B and Table 1]. The cortex and striatum
showed a statistically significant increase in brain injury in Fyn OE mice compared
to WT mice (cortex p=0.0139, striatum p=0.0077, Fig. 2C,E). Additionally, we found
that Fyn OE mice had a 4-fold higher mortality than WT mice (Fyn OE 23.26% vs.
WT 5.26%, p=0.0229, Table 1). The distribution of injury scores indicated that more
Fyn OE mice had relatively severe injury (scores 212) than the WT animals (Fig. 2G,
Table 1). There were no gender differences in mortality or brain injury in WT or Fyn

OE mice after HI (Fig. 2F).

Fyn OE mice have elevated Fyn expression and activity after HI

Next, we examined the expression and activity of SFKs after neonatal HI. In
WT mice, Fyn protein expression did not change in response to HI (Fig. 3A,C). Fyn
OE mice had significantly higher Fyn protein expression compared to WT mice in
sham-operated animals and 15min after HI (sham WT vs. OE p=0.003, 15min WT vs.
OE p=0.004, Fig. 3A,C). Fyn activity was higher in OE mice than WT mice 1hr after
injury (1hr WT vs. OE p=0.037, Fig. 3D,E), which correlated with elevated SFK

activity as measured by phospho-Y416 (1hr WT vs. OE p=0.025, Fig. 3B).
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Fyn OE mice have sustained phosphorylation of NR2A and NR2B after HI

To determine if Fyn overexpression affects tyrosine phosphorylation of
NR2A and NR2B, we immunoprecipitated NMDAR subunits and performed western
blots for phosphorylated tyrosine. In sham animals, Fyn OE mice had higher NR2A
and NR2B tyrosine phosphorylation than WT mice (Fig. 4A,B and 5A,B). NR2A
tyrosine phosphorylation peaked 15min after HI in WT animals (Fig. 4A,B).
Interestingly, we found that Src but not Fyn was recruited to NR2A in response to HI
in WT and Fyn OE animals 15min and 1hr after injury (Fig. 4A,C). NR2B tyrosine
phosphorylation was elevated in Fyn OE animals relative to WT at all time points
(Fig. 5A,B). Neither Src nor Fyn co-immunoprecipitated with NR2B after HI (data

not shown).

Fyn-mediated tyrosine phosphorylation of NR2B

Next, we examined three NR2B tyrosine phosphorylation sites regulated by
Fyn (13, 16, 22). We measured the protein expression of NR2B phosphorylated at
tyrosine 1472, 1336 and 1252. Compared to WT sham animals, Fyn OE sham mice
had increased NR2B phosphorylation at tyrosine 1472 (pY1472) and pY1252 with
decreased pY1336 (Fig. 5C-F). pY1472 and pY1336 peaked 15min after injury while
pY1252 NR2B peaked at 1hr in both WT and Fyn OE mice (Fig. 5C-G). Relative to
WT mice, Fyn OE mice had less pY1336 15min after HI and more pY1252 1hr after
injury (Fig. 5E-G). We did not observe the 115 kDa calpain cleavage fragment

generated by pY1336 NR2B (data not shown) (16).
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In synaptic membranes, we found significant increases in SFK activity,
pY1472,and pY1252 up to 6hrs after injury in WT mice (Fig. 6A-D). Fyn OE mice
had significantly more pY1472 in synaptic fractions in sham-operated animals,
15min and 1hr after injury (Fig. 6A,C). pY1252 was higher in Fyn OE mice

compared to WT at 1hr and 24hrs (Fig. 6A,D).

Fyn OE mice have elevated calpain activity after HI

We assessed the activity of calcium-activated proteases calpain and caspase
implicated in necrotic and apoptotic cell death (23). Calpain cleavage of a-spectrin
produces a 150 and 145 kDa fragment, also known as spectrin breakdown pattern
(SBDP) 150 and SBDP145 that is evident in cells undergoing necrosis and apoptosis
(23, 24). Caspase cleavage of a-spectrin produces a 120 kDa fragment (SBDP120)
which is present in apoptotic cells (23, 25). WT mice had elevated SBDP150/145
6hr and 24hr after injury (Fig. 7A,B). Fyn OE mice had elevated SBDP150/145 1hr,
6hr, and 24hrs after injury, with significantly higher SBDP150/145 at 24hr
compared to WT mice (Fig. 7A,B). There were no significant differences in SBDP120

at the time points investigated (data not shown).

Discussion
This study demonstrates that neuronal Fyn overexpression leads to
increased mortality and brain injury in response to neonatal HI. Fyn overexpression

is associated with sustained NR2A and NR2B tyrosine phosphorylation. There is
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also elevated pY1252 and pY1472 NR2B in synaptic membranes in Fyn OE mice.
These early changes in NMDAR tyrosine phosphorylation correlate with elevated
calpain activity. Taken together, our results implicate Fyn and NMDAR tyrosine
phosphorylation in neuronal cell death after neonatal HI (Fig. 8).

Our results may underestimate the effect of neuronal Fyn overexpression
due to the high mortality in Fyn OE mice during hypoxia. The elevated mortality in
Fyn OE mice may be due to more seizures that occur during hypoxia. One study
found that overexpression of constitutively active Fyn resulted in premature death
due to seizures (18). Therefore it is possible that mice with high levels of Fyn kinase
activity may be more susceptible to seizures and mortality during HI.

While there is some evidence of gender differences in response to cell death
pathways initiated by neonatal HI and to genetic mutations or treatments (26-28),
we find that male and female Fyn OE mice have more injury compared to WT mice
of the same gender. While Fyn overexpression could differentially regulate cell
death pathways on a molecular level, we find that the outcome is the same in male
and female mice.

We found that NR2A tyrosine phosphorylation peaked at 15min in WT
animals, consistent with our previous report (2). Fyn OE mice had prolonged
phosphorylation of NR2A, with a peak at 1hr, coinciding with elevated Fyn activity.
Contrary to our previous study, we found that Src was specifically recruited to NR2A
after neonatal HI, while Fyn did not co-immunoprecipitate with NR2A or NR2B. The
duration of Src association with NR2A was shorter than previously reported (1hr vs.

6hrs). However, Src interaction with NR2A coincided with the peak of NR2A
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tyrosine phosphorylation. This discrepancy may be due to mouse strain or the
duration of hypoxia as the previous study was done in CD1 mice with a shorter
duration of hypoxia (15min) and this study utilized C57BL/6 mice which are more
resistant to neonatal HI injury (20). Husi et al found that in C57BL/6 mice, Src but
not Fyn is a component of the NMDAR complex (29). Alternatively, Fyn could be
transiently associating with the NMDAR or could be mediating its affects through
Src or an adaptor protein (30).

At baseline, NR2A and NR2B tyrosine phosphorylation was higher in Fyn OE
mice compared to WT, as reported in adult mice (18). In response to injury,
tyrosine phosphorylation of NR2B and NR2A remained elevated in the Fyn OE mice.
These results suggest that Fyn leads to phosphorylation of NR2A and NR2B during
HI. One study found that phosphorylation of the NR2B CTD by SFKs leads to a more
open conformation of the CTD in vitro (31). Fyn could transiently associate with the
NMDAR and cause prolonged phosphorylation by increasing the accessibility of the
CTD to other kinases. Additionally, SFK activity is elevated in synaptic membranes
and could lead to elevated NMDAR phosphorylation by activating another tyrosine
kinase in the PSD.

In this study, we provide the first description of three NR2B phosphorylation
sites regulated by Fyn in response to neonatal HI. In WT mice, we found early
phosphorylation of tyrosine (pY) 1336 and 1472 NR2B, followed by pY1252 NR2B.
Consistent with a previous report, pY1472 is increased up to 1hr after neonatal HI

(32). Y1472 is associated with surface expression of NR1/NR2B and synaptic
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enrichment of the receptor (13-15). In neonatal HI, pY1472 may contribute to
excitotoxic cell death by maintaining synaptic expression of the NMDAR.

Wu et al. found that phosphorylation of Y1336 by Fyn promotes calpain
cleavage of NR2B in an in vitro glutamate toxicity model (16). We did not observe
the calpain cleavage fragment generated by pY1336, however we did observe less
pY1336 NR2B in sham-operated mice and 15min after HI in Fyn OE animals
compared to WT mice. The function of NR2B phosphorylation at Y1336 and Y1252
in the developing brain is unknown. Our results suggest that at baseline, Fyn
preferentially phosphorylates Y1472 and Y1252 in the neonatal cortex, since Fyn OE
mice had elevated pY1472 and pY1252 and decreased pY1336 relative to WT sham
animals. pY1472 NR2B and pY1252 NR2B were absent in Fyn KO mice (data not
shown). Additionally, pY1472 and pY1252 were up-regulated in synaptic
membranes in Fyn OE mice where SFK activity was also increased. Further
biochemical studies are required to determine the functional consequences of Fyn-
mediated NR2B phosphorylation at specific sites following neonatal HI.

Although Fyn has been implicated in the apoptosis pathway (33-35), there
was no increase in caspase-3 cleavage or caspase activity as assessed by a-spectrin
cleavage in Fyn OE mice relative to WT mice. Our data suggests that Fyn increases
calpain activity which functions in necrotic and apoptotic cell death. Calpain activity
may be elevated in Fyn OE mice due to increased calcium signaling via NMDAR-
dependent and independent pathways (24). Calpain is activated downstream of
NR2B in the hippocampus during traumatic mechanical injury (36). Fyn may lead to

increased calpain activity by upregulating NR2B receptor activity via tyrosine
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phosphorylation. Changes in calpain activity are indicative of calcium dysregulation
and can also occur independent of calcium flux from the NMDAR (37).
In the next chapter, we will determine the mechanism by which Fyn

phosphorylation of the NR2B contributes to cell death after neonatal HI.
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Figure Legends

Table 1. Fyn OE mice have increased mortality and more severe brain injury due to

HI

Mortality occurred during hypoxia. Brain sections were scored for injury with Cresyl

violet (morphology) and Perl’s Stain (iron deposition). Injury scores were
considered mild (=5), moderate (6-12) and severe (=12). Contingency tables were
used for mortality differences. Brain injury score was analyzed using
nonparametric tests for analysis of variance (Kruskal-Wallis test), where p<0.05

was considered significant.

Figure 1. Fyn overexpression does not lead to compensatory changes in Src or
NMDAR protein expression.

A) Westerns blots were performed on cortical lysates for Fyn, c-Src, NR2B, NR2A,
and B-actin at P3, P7, P14, P21, and P48. B) Fyn developmental expression was

normalized to (3-actin. Representative data for n=2 experiments.

Figure 2. Fyn overexpression enhances brain injury in the cortex and striatum
following neonatal HI.

A modified Vannucci procedure was performed on WT (n=37) and Fyn OE mice
(n=34) at postnatal day 7 (P7). A) Animals were perfused at P12, brains were
sectioned and stained with Cresyl violet (morphology) and Perl’s Stain (iron

deposition). Arrows indicate patches of cell loss in Cresyl violet stained sections.
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Arrowheads show iron accumulation in similar injured areas in Perl-stained
adjacent sections. B) Composite injury score. Regional injury scores in the C)
cortex, D) hippocampus, and E) striatum. Data are represented by box and whisker
plots: the median is represented by the central horizontal line, 25t and 75t
percentiles by the space within the box, and the range by the vertical lines extending
from the box. Brain injury score was analyzed using nonparametric tests for

analysis of variance (Kruskal-Wallis test). *p<0.05, ** p<0.01.

Figure 3. Fyn activity is elevated 1 hour after neonatal HI in Fyn OE compared to WT
animals.

A) Western blots using anti-Fyn, Src, pY416 (activated SFKs), and 3-actin antibodies
were carried out on cortical lysates from sham and HI animals at the time points
shown. B) pY416 and C) Fyn protein levels were normalized to -actin. D) Fyn was
immunoprecipitated from cortical lysates and blotted for anti-pY416 antibody, then
stripped and reprobed with anti-Fyn antibody. E) Fyn activity is expressed as an OD
ratio of pY416 to Fyn. Data was normalized to WT sham values. Representative
data for n=6 experiments. Graphs indicate mean + SD. Data were analyzed using

SAS Wilcoxon-Mann-Whitney test. *p<0.05, ** p<0.01.

Figure 4. Srcis recruited to NR2A during the peak of NR2A tyrosine
phosphorylation.
A) NR2A was immunoprecipitated from sham and HI cortical samples and blotted

with antibodies for phosphotyrosine (pY), Src, and NR2A. B) NR2A tyrosine
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phosphorylation was measured as an OD ratio of phosphotyrosine to NR2A. C) Src
association with NR2A was expressed as a ratio of coimmunoprecipitated Src to
immunoprecipitated NR2A. Data was normalized to WT sham values.
Representative data for n=6 experiments. Graphs indicate mean + SD. Data were

analyzed using SAS Wilcoxon-Mann-Whitney test. *p<0.05, ** p<0.01.

Figure 5. Fyn-mediated tyrosine phosphorylation of NR2B following neonatal HI.
A) NR2B was immunoprecipitated from sham and HI cortical lysates and blotted
with antibodies for phosphotyrosine (pY) and NR2B. B) NR2B tyrosine
phosphorylation was measured as an OD ratio of phosphotyrosine to NR2B. Data
was normalized to WT sham values. C) Tyrosine phosphorylation of specific
residues on NR2B was ascertained by western blotting in sham and HI cortical
lysates using anti-pY1472, pY1336, and pY1252 NR2B antibodies. Expression of D)
pY1472 NR2B, E) pY1336 NR2B, and F) pY1252 NR2B was normalized to total
NR2B and then to WT sham. Representative data for n=4 experiments. Graphs
indicate mean = SD. Data were analyzed using SAS Wilcoxon-Mann-Whitney test.

*p<0.05.

Figure 6. pY1472 NR2B and pY1252 NR2B are elevated in synaptic membranes in
Fyn OE mice in response to HI.

Western blots using anti-pY416, pY1472, pY1252, and NR2B were carried out on
synaptic and extrasynaptic membrane fractions from sham and HI animals at the

time points shown. B) pY416 was normalized to WT sham in synaptic membranes.
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C,D) pY1472 and pY1252 were normalized to synaptic NR2B and then to WT sham.
Representative data for n=3 experiments. Graphs indicate mean + SD. Data were

analyzed using SAS Wilcoxon-Mann-Whitney test. *p<0.05, ** p<0.01.

Figure 7. Fyn OE mice have elevated calpain activity in response to neonatal HI.

A) Western blots were carried out for a-spectrin and p-actin in sham animals and
after HI. B) Expression of a-spectrin 150/145 kDa cleavage product was
normalized to (-actin and then to WT sham. Representative data for n=6
experiments. Graph indicates mean + SD. Data were analyzed using SAS Wilcoxon-

Mann-Whitney test. *p<0.05, ** p<0.01.

Figure 8. Model.
In response to neonatal HI, Src interacts with NR2A and Fyn phosphorylates NR2A
and NR2B subunits. These changes are associated with increased calpain activity

and brain injury.
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Table 1: Mortality and degree of brain injury in WT and Fyn OE mice following neonatal HI

genotype animal number  mortality (%) 1.1’1] ury score distribution of injury scores
median range <5 6-12 >12

WT 37 5.26 8 6.5-10 8 25 4
OE 34 23.26 10 7.5-13.5 4 18 12

WT vs. OE: p=0.0229 (mortality), p=0.014 (injury score)

Table 1. Fyn OE mice have increased mortality and more severe brain injury due to
HI

Mortality occurred during hypoxia. Brain sections were scored for injury with Cresyl
violet (morphology) and Perl’s Stain (iron deposition). Injury scores were
considered mild (=5), moderate (6-12) and severe (=12). Contingency tables were
used for mortality differences. Brain injury score was analyzed using
nonparametric tests for analysis of variance (Kruskal-Wallis test). p<0.05 was
considered significant.
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Fig. 1
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Figure 1. Fyn overexpression does not lead to compensatory changes in Src or

NMDAR protein expression.
A) Westerns blots were performed on cortical lysates for Fyn, c-Src, NR2B, NR2A,

and B-actin at P3, P7, P14, P21, and P48. B) Fyn developmental expression was
normalized to (3-actin. Representative data for n=2 experiments.
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Figure 2. Fyn overexpression enhances brain injury in the cortex and striatum

following neonatal HI.

A modified Vannucci procedure was performed on WT (n=37) and Fyn OE mice
(n=34) at postnatal day 7 (P7). A) Animals were perfused at P12, brains were
sectioned and stained with Cresyl violet (morphology) and Perl’s Stain (iron
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deposition). Arrows indicate patches of cell loss in Cresyl violet stained sections.
Arrowheads show iron accumulation in similar injured areas in Perl-stained
adjacent sections. B) Composite injury score. Regional injury scores in the C)
cortex, D) hippocampus, and E) striatum. Data are represented by box and whisker
plots: the median is represented by the central horizontal line, 25t and 75t
percentiles by the space within the box, and the range by the vertical lines extending
from the box. Brain injury score was analyzed using nonparametric tests for
analysis of variance (Kruskal-Wallis test). *p<0.05, ** p<0.01.
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Fig. 3
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Figure 3. Fyn activity is elevated 1 hour after neonatal HI in Fyn OE compared to WT
animals.

A) Western blots using anti-Fyn, Src, pY416 (activated SFKs), and 3-actin antibodies
were carried out on cortical lysates from sham and HI animals at the time points
shown. B) pY416 and C) Fyn protein levels were normalized to -actin. D) Fyn was
immunoprecipitated from cortical lysates and blotted for anti-pY416 antibody, then
stripped and reprobed with anti-Fyn antibody. E) Fyn activity is expressed as an OD
ratio of pY416 to Fyn. Data was normalized to WT sham values. Representative
data for n=6 experiments. Graphs indicate mean + SD. Data were analyzed using

SAS Wilcoxon-Mann-Whitney test. *p<0.05, ** p<0.01.
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Fig. 4
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Figure 4. Srcis recruited to NR2A during the peak of NR2A tyrosine
phosphorylation.

A) NR2A was immunoprecipitated from sham and HI cortical samples and blotted
with antibodies for phosphotyrosine (pY), Src, and NR2A. B) NR2A tyrosine
phosphorylation was measured as an OD ratio of phosphotyrosine to NR2A. C) Src
association with NR2A was expressed as a ratio of coimmunoprecipitated Src to
immunoprecipitated NR2A. Data was normalized to WT sham values.
Representative data for n=6 experiments. Graphs indicate mean + SD. Data were
analyzed using SAS Wilcoxon-Mann-Whitney test. *p<0.05, ** p<0.01.
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Fig. 5
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Figure 5. Fyn-mediated tyrosine phosphorylation of NR2B following neonatal HI.
A) NR2B was immunoprecipitated from sham and HI cortical lysates and blotted
with antibodies for phosphotyrosine (pY) and NR2B. B) NR2B tyrosine
phosphorylation was measured as an OD ratio of phosphotyrosine to NR2B. Data
was normalized to WT sham values. C) Tyrosine phosphorylation of specific
residues on NR2B was ascertained by western blotting in sham and HI cortical
lysates using anti-pY1472, pY1336, and pY1252 NR2B antibodies. Expression of D)
pY1472 NR2B, E) pY1336 NR2B, and F) pY1252 NR2B was normalized to total
NR2B and then to WT sham. Representative data for n=4 experiments. Graphs
indicate mean = SD. Data were analyzed using SAS Wilcoxon-Mann-Whitney test.

*p<0.05.
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Fig. 6
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Figure 6. pY1472 and pY1252 are elevated in synaptic membranes in Fyn OE mice in

response to HI.

Western blots using anti-pY416, pY1472, pY1252, and NR2B were carried out on
synaptic and extrasynaptic membrane fractions from sham and HI animals at the
time points shown. B) pY416 was normalized to WT sham in synaptic membranes.
C,D) pY1472 and pY1252 were normalized to synaptic NR2B and then to WT sham.
Representative data for n=3 experiments. Graphs indicate mean + SD. Data were
analyzed using SAS Wilcoxon-Mann-Whitney test. *p<0.05, ** p<0.01.
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Fig. 7
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Figure 7. Fyn OE mice have elevated calpain activity in response to neonatal HI.

A) Western blots were carried out for a-spectrin and p-actin in sham animals and
after HI. B) Expression of a-spectrin 150/145 kDa cleavage product was
normalized to -actin and then to WT sham. Representative data for n=6
experiments. Graph indicates mean = SD. Data were analyzed using SAS Wilcoxon-
Mann-Whitney test. *p<0.05, ** p<0.01.
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Fig. 8

Figure 8. Model.

In response to neonatal HI, Src interacts with NR2A and Fyn phosphorylates NR2A
and NR2B subunits. These changes are associated with increased calpain activity
and brain injury.
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Introduction

Previous studies have implicated NR2B tyrosine phosphorylation in neonatal
hypoxic-ischemic (HI) brain injury. In postnatal day 7 (P7) rats exposed to HI, NR2B
tyrosine phosphorylation increases at 1hr after injury as does pY1472 NR2B (1).
Previously, we found that in P7 mice, NR2B tyrosine phosphorylation increases in
the cortex immediately after HI (2). We also observed early increases in pY1472,
pY1336 and pY1252 after HI (See Chp 2). However, it is unknown whether elevated
tyrosine phosphorylation of NR2B contributes to brain injury. In this study, we
determined the function of pY1472 NR2B in vivo and in vitro using mice with a

knock-in mutation of the Y1472 to phenylalanine (YF-KI).

Methods

Animals

C57BL/6 YF-KI mice (generously provided by Dr. Tadashi Yamamoto, Department
of Cancer Biology, University of Tokyo, as described in (3)) were bred with WT mice
from Charles River to generate heterozygous animals at the Laboratory Animal
Resource Center (LARC) of the University of California, San Francisco. Heterozygous
mice were crossed to generate WT and homozygous YF-KI littermates for

experiments. Both sexes were used for these studies at postnatal day 7 (P7).
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Hypoxic-Ischemic Brain Injury

HI was induced with an adaptation of the Vannucci procedure (4). At P7, pups were
anesthetized with isoflurane (2-3% isoflurane/balance oxygen) and the right
common carotid artery was ligated. Animals were allowed to recover for 1.5 hours
with their dam and then exposed to 40 minutes of hypoxia in a humidified chamber
at 37°C with 8% oxygen/balance nitrogen. Hypoxia was staggered, so that each
animal recovered for 1.5 hours. Sham-operated control animals received isoflurane
anesthesia and exposure of the right common carotid artery without ligation or
hypoxia. HI and sham animals were returned to their dams until they were

euthanized.

Evaluation of Brain Injury

Five days after the HI procedure, brains were examined histologically with cresyl
violet and Perl’s stain to assess the degree of damage as previously described (2).
Briefly, animals were anesthetized with pentobarbital (50mg/kg) and transcardially
perfused with 4% paraformaldehyde (PFA) in 0.1M phosphate buffer (pH 7.4).
Brains were post-fixed in the same solution for 4 hours, and then transferred to
30% sucrose in 0.1M phosphate buffer. Coronal sections were cut through the
forebrain at 50uM intervals with a vibratome. Alternate sections were stained with
cresyl violet for morphology or with Perl’s stain enhanced with diaminobenzidine to

localize iron deposition. Brain sections were scored as described (5).
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Western Blotting

Cortical tissue from sham-operated and the ipsilateral side of HI-injured animals
was homogenized in modified radioimmunoprecipitation assay buffer (RIPA buffer,
1X sodium phosphate buffer with 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS,
protease and phosphatase inhibitors). 25ug of protein from sham or ipsilateral
cortex was applied to 4-12% Bis-Tris SDS polyacrylamide gel electrophoresis
(Invitrogen, Carlsbad, CA) and transferred to polyvinyl difluoride membrane (Bio-
Rad, Hercules, CA) as described elsewhere (2). The membranes were probed with
the following primary antibodies overnight at 4°C: Fyn (1:1000; Santa Cruz
Biotechnology, Santa Cruz, CA), Src (1:1000; Millipore, Billerica, MA), phospho-Src
(phospho-Tyr416; 1:500; Cell Signaling Technology, Boston, MA), NR2B (1:1000; BD
Transduction Laboratories, San Jose, CA), phospho-Y1252 NR2B (1:800;
PhosphoSolutions, Aurora, CO), phospho-Y1336 NR2B (1:800; PhosphoSolutions),
phospho-Y1472 NR2B (1:500; Cell Signaling Technology, Boston, MA), phospho-
Y1070 NR2B (1:500; Cell Signaling Technology, Boston, MA), phospho-p38 (1:500;
Cell Signaling Technology, Boston, MA), p38 (1:500; Cell Signaling Technology,
Boston, MA), phospho-T286CaMKII (1:1000; Cell Signaling Technology, Boston,
MA), CaMKIla (1:1000; Millipore, Billerica, MA), phospho-S831GluR1 (1:1000;
Millipore, Billerica, MA), GluR1 (1:1000; Millipore, Billerica, MA), a-spectrin
(1:1000; Millipore, Billerica, MA), cleaved caspase 3 (1:500; Cell Signaling
Technology, Boston, MA) and p-actin (1:2000; Santa Cruz Biotechnology).
Appropriate secondary horseradish peroxidase-conjugated antibodies (1:2000,

Santa Cruz Biotechnology) were used and signal was visualized with enhanced
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chemiluminescence (Amersham, Buckinghamshire, UK). Image ] software was used
to measure the optical densities (OD) and areas of protein signal on radiographic

film after scanning.

Primary Neuronal Cultures

Cultures were prepared from the cortices of embryonic day 14 mice and plated in
24-well culture plates or poly-D-lysine coated glass coverslips at a density of 1.65 x
106 cells/mL. After 1 day in culture, 10 uM cytosine arabinoside was added for 24
hours to prevent glial proliferation. The neurons were subsequently maintained
with serum-free NeuroBasal medium (Gibco) containing 5 mM glucose, and used at
day 10 in vitro. These cultures contain > 95% neurons and no detectable microglia.
Experiments were initiated by exchanging the culture medium with a balanced salt
solution (BSS) containing 1.2 mM CaClz, 0.8 mM MgS04, 5.3 mM KCl, 0.4 mM
KH2P04,137 mM NacClz, 0.3 mM NaHPO4, 5 mM glucose, and 10 mM 1,4-
piperazinediethanesulfonate (PIPES) buffer, pH 7.2. Drugs were added from

concentrated stocks in BSS 10 minutes prior to the addition of NMDA.

Intracellular calcium and mitochondrial membrane potential imaging

On day in vitro 10 (DIV10) neurons were loaded for 30 minutes with 4 uM Fura-2
AM (Molecular Probes) and washed once with BSS prior to imaging. If simultaneous
detection of superoxide production was conducted, Fura-2 was removed and

exchanged for BSS containing 5uM dihydroethidium (Invitrogen) 10 - 20 minutes
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prior to the addition of NMDA, and maintained throughout the duration of the
experiment. Images were acquired at 30 second intervals, using excitation which
alternated between 340 nm and 380 nm (emission > 510 nm) for Fura-2, and 510-
550 nm excitation (> 580 nm emission) for Eth. For both Fura-2 and Eth, raw
fluorescence was normalized to baseline levels prior to stimulus. Calcium transients
were then determined by calculating the ratio of 340 nm / 380 nm fluorescence

from these normalized values.

Cell death

Dead neurons were identified by using fluorescence markers, propidium iodide and
calcein-AM which were added to the culture wells 24 hours after NMDA exposures.
Live and dead neurons were counted in 3 randomly chosen fields in a minimum of 4
wells per plate, and results of each experiment were expressed as the percent of

neurons that were dead.

Statistical Analysis

Data are presented as median and interquartile range for brain injury score using
Prism 4 nonparametric tests for analysis of variance (Kruskal-Wallis test).
Contingency tables were used to determine mortality differences. Data of optical
densities of immunoblots are presented as mean * SD and were evaluated
statistically using SAS Wilcoxon-Mann-Whitney test. For cell culture experiments,

one way analysis of variance (Tukeys post hoc test) was used and data are
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presented as mean * SEM. For in vivo and in vitro studies, differences were

considered significant at p<0.05.

Results

YF-KI mice have decreased brain injury following neonatal HI

We examined the effect of pY1472 NR2B on the degree of brain injury after
neonatal HI using mice in which Y1472 is mutated to phenylalanine (YF-KI) (3). YF-
KI mice had decreased overall brain injury compared to WT animals [median =
16.25, range 11.5-19 in WT (n=18); median = 11, range 7.5-15 in YF-KI (n=23), WT
vs. YF-KI p=0.03434, Fig. 1A, B]. The cortex showed a statistically significant
decrease in brain injury in YF-KI mice compared to WT and the striatum showed a
trend toward a significant decrease in brain injury (cortex p=0.013, striatum
p=0.067, Fig. 1C-E). There were no differences in degree of brain injury in the
hippocampus (Fig.1D). There were no gender differences in brain injury in WT or

YF-KI mice after HI (Figure 1F).

pY1472 affects NR2B tyrosine phosphorylation at specific sites and Src family kinase
activity

Next we determined the phosphorylation status of the NR2B subunit, as YF-
KI mice are hypo-tyrosine phosphorylated in the amygdala (3). We performed
western blots on cortical lysates from sham and HI operated WT and YF-KI mice and

examined the expression of pY1472, pY1336, pY1252, pY1070 and NR2B at
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different time points following injury. Consistent with our previous study, we found
that pY1472, pY1336 and pY1252 increase in response to HI in WT mice (Fig. 2A-E).
We also examined the expression of another Fyn-mediated NR2B phosphorylation
site, Y1070, which has not been characterized in the literature (6). We found a small
increase in pY1070 after HI at 15min in WT animals (Fig. 24, E).

Interestingly, YF-KI mice had a significant decrease in the expression of
pY1070, pY1252 and pY1336 in sham-operated animals. There was a 20%
reduction in pY1336, a 50% reduction in pY1252 and a 70% reduction in pY1070
(p<0.05 WT vs. YF-KI). After HI, YF-KI mice had significantly less pY1252 at 15min,
and less pY1070 for up to 6hrs after injury compared to WT mice. pY1336 had a
trend toward decreased expression at 15min after HI in YF-KI mice compared to WT
(pY1336 WT vs. YF-KI, p=0.08326) (Fig. 2A-E).

To elucidate the molecular basis of decreased NR2B tyrosine
phosphorylation in YF-KI mice, we did western blots on cortical lysates from WT
and YF-KI mice for Fyn, Src, and activated SFKs (pY416). In sham-operated animals,
there was a 30% reduction in pY416 in YF-KI mice compared to WT (WT vs. YF-K],

p=0.01387), but there were no differences in Fyn or Src expression (Fig. 3A, B).

YF-KI mice have less cell death in vivo in response to neonatal HI

We assessed cell death in vivo by examining the activity of calcium-activated
protease calpain and caspase 3 for their substrate a-spectrin. Calpain cleavage of -
spectrin produces a 150 and 145 kDa fragment while caspase cleavage of a-spectrin

produces a 120 kDa fragment (7). In WT mice, we found increased calpain and
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caspase activity, as measured by a-spectrin cleavage, at 1hr, 6hr and 24hr after
injury. However, YF-KI mice did not differ from sham animals in calpain and
caspase activity (Fig 4A-C). Consistent with these findings, cleaved-caspase 3
(activated caspase 3) protein levels were elevated in WT mice at 6hr and 24hr after
injury, but not in YF-KI mice (Fig. 44, D).

To ascertain how decreased NR2B tyrosine phosphorylation could lead to
less cell death, we examined the activity of the p38 MAP kinase (MAPK) that is
implicated in neonatal HI brain injury and NMDAR activity (8, 9). While there was
elevated p38 MAPK activity in response to neonatal HI, there was no difference in
p38 phosphorylation between WT and YF-KI mice (Fig. 5A, B). Previous studies
have shown that YF-KI mice have decreased CaMKII activity and decreased
phosphorylation of CaMKII substrate GluR1 AMPA receptor in the spinal cord (10).
We found decreased CaMKII activity in response to neonatal HI in cortical lysates
from WT animals and no difference in pS831 GluR1 between WT and YF-KI mice in

response to injury (Fig. 5A,C,D).

YF-KI neurons have decreased superoxide production in response to NMDA

Next, we performed in vitro experiments to determine the effect of pY1472
on calcium flux and superoxide generation, which have both been implicated in
neuronal cell death. There was no significant difference in the total increase in
intracellular calcium between WT and YF-KI neurons (Fig. 6A) (mean peak

fluorescence; wt neurons 3.27 = 0.24 vs Y1472 neurons 3.19 + 0.28). NMDA

treatment of WT neurons caused a significant increase in superoxide production
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which was diminished substantially in YF-KI neurons (Fig. 6B). Exposure of cortical
neurons to NMDA resulted in a 1.6 fold increase in cell death relative to control.
However, YF-KI neurons had a significant decrease in cell death relative to WT

neurons when treated with NMDA or glutamate (Fig. 7A,B).

Discussion

In summary, we find that Y1472 mutation to phenylalanine results in
neuroprotection from cell death in vivo and in vitro. YF-KI mice exposed to neonatal
HI have less brain injury, NR2B tyrosine phosphorylation, SFK activity, and
decreased activity of proteases implicated in necrotic and apoptotic cell death. In
vitro, YF-KI neurons have less superoxide generation in response to NMDA and are
protected from NMDA and glutamate induced cell death.

We report for the first time, that in the neonatal cortex, pY1472 affects
tyrosine phosphorylation of at least 3 other tyrosine residues on NR2B - Y1336,
Y1252, and Y1070. Two previous studies did not find changes in phosphorylation of
Y1336 or Y1252 in YF-KI mice in the amygdala or spinal cord (3, 11). These
discrepancies may be due to different brain regions or brain maturity. While the
function of Y1070 and Y1252 is unknown, pY1336 mediates the interaction of NR2B
with the p85 subunit of PI-3 kinase (12). Additionally, YF-KI mice have decreased
CaMKII and a-actinin associated with NR2B (3). Therefore, it is likely that changes
in multiple tyrosine phosphorylation sites affects the recruitment of proteins to the

NR2B complex in naive animals and in the setting of injury.
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Decreased NR2B tyrosine phosphorylation correlated with lower SFK
activity. SFKs can be activated directly via kinases, phosphatases, and in response to
many stimuli in the brain (13). Y1472 may be involved in SFK regulation by
recruiting SFKs to the NMDAR complex in the PSD where they can be activated.

One study found that in response to neuropathic pain in the spinal cord,
there was decreased intracellular calcium in YF-KI mice but there was no effect on
intracellular calcium at baseline. Changes in intracellular calcium correlated with
decreased activity of CaMKII which is known to be activated by calcium flux from
the NMDAR (11). We found no difference in calcium load in vitro and in vivo we did
not observe differences in CaMKII activity following neonatal HI brain injury. This
suggests that in vivo, there is no difference in NMDAR-mediated calcium flux in
response to neonatal HI in WT and YF-KI mice. However, the calcium activated
protease calpain did have decreased activity in YF-KI mice suggesting that calcium
signaling may be dysregulated. We also found that in synaptic fractions, CaMKII
activity is increased but not in whole cell lysates (Knox and Jiang, unpublished
observations). The additional cellular stress of HI could lead to changes in calcium
flux in synaptic membranes downstream of the NMDAR or other calcium channels.

Although we did not find differences in the p38 MAPK pathway that is
involved in neonatal HI brain injury, we did find a dramatic reduction of superoxide
production in vitro in YF-KI neurons, implicating Y1472 phosphorylation in
superoxide production independent of calcium flux for the first time. Since neonatal
mice are more vulnerable to free radical injury (14), this finding may explain the

neuroprotection we observed in YF-KI mice following neonatal HI. pY1472 could
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affect reactive oxygen species through the PSD95-nNOS pathway. PSD95 interacts
with the NR2B subunit in the extreme C-terminus and has an increased association
with the NMDAR in response to ischemia (15). Although the PSD95-NR2B
interaction is preserved in naive YF-KI mice (Knox and Jiang, unpublished
observations), the association may be diminished in YF-KI mice following neonatal
HI

pY1472 NR2B is enriched in synaptic membranes in the neonatal cortex (16)
and increases in this compartment in response to neonatal HI (See Chp 3). While
there has been some debate over the function of synaptic and extrasynaptic
NMDARs in survival and cell death (17), a recent study found that synaptic NMDARs
contribute to hypoxic cell death (18). Another report found that the C-terminal
domain (CTD) of NR2B is linked to excitotoxic cell death in vitro and in vivo (19).
Therefore pY1472 is situated to affect cell death processes synaptically through its
ability to modify proteins associated with the CTD of NR2B. It may also participate
in diverse cell death pathways which occur during neonatal HI brain injury as we
found less activity in calpain and caspase which function in apoptotic and necrotic
cell death (20).

Here, we provide a mechanistic basis for the increased Fyn-mediated NR2B
tyrosine phosphorylation that occurs during neonatal HI brain injury. Future
studies will determine how pY1472 alters the NR2B complex in the immature brain
and elucidate the function of additional Fyn-mediated tyrosine phosphorylation

sites in neonatal HI.
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Figure Legends

Figure 1. YF-KI mice have decreased brain injury following neonatal HIL.

A modified Vannucci procedure was performed on WT (n=18) and YF-KI mice
(n=23) at postnatal day 7 (P7). A) Animals were perfused at P12, brains were
sectioned and stained with Cresyl violet (morphology) and Perl’s Stain (iron
deposition). Arrows indicate patches of cell loss in Cresyl violet stained sections.
Arrowheads show iron accumulation in similar injured areas in Perl-stained
adjacent sections. B) Composite injury score and F) composite injury score by
gender. Regional injury scores in the C) cortex, D) hippocampus, and E) striatum.
The median is represented by the central horizontal line. Brain injury score was
analyzed using nonparametric tests for analysis of variance (Kruskal-Wallis test).

*p<0.05.

Figure 2. Y1472 affects NR2B tyrosine phosphorylation at specific residues.

A) Western blots using anti-pY1472, pY1336, pY1252, pY1070, and NR2B were
carried out on cortical lysates from sham and HI animals at the time points shown.
B-E) Expression of NR2B tyrosine phosphorylation sites was normalized to NR2B.
Data was normalized to an internal control and WT sham values. Representative
data for n=4 experiments. Graphs indicate mean + SD. Data were analyzed using

SAS Wilcoxon-Mann-Whitney test. *p<0.05, ** p<0.01.

Figure 3. YF-KI mice have decreased Src Family Kinase Activity.
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A) Western blots using anti-pY416, Fyn, c-Src and [-actin were carried out on
cortical lysates from sham and HI animals at the time points shown. B) Expression
of p416 was were normalized to B-actin. Data was normalized to an internal control
and WT sham values. Representative data for n=4 experiments. Graphs indicate

mean =+ SD. Data were analyzed using SAS Wilcoxon-Mann-Whitney test. *p<0.05.

Figure 4. YF-KI mice have less activity of calpain and caspase after HI.

A) Western blots using anti-a-spectrin, cleaved caspase 3 and -actin were carried
out on cortical lysates from sham and HI animals at the time points shown. B)
Expression of spectrin and cleaved-caspase 3 was normalized to -actin. Data was
normalized to an internal control and WT sham values. Representative data for n=4
experiments. Graphs indicate mean + SD. Data were analyzed using SAS Wilcoxon-

Mann-Whitney test. *p<0.05.

Figure 5. p38 MAPK and CaMKII pathways are not differentially activated in WT

and YF-KI mice after neonatal HI.

A) Western blots using anti-p-p38, p38, pT286 CaMKII, CaMKIla, pS831 GluR1,
GIluR1 and B-actin were carried out on cortical lysates from sham and HI animals at
the time points shown. B) p-p38 was normalized to p38, C) pCaMKII was normalized
to fB-actin, and D) pS831 GluR1 was normalized to GluR1. Data was normalized to
WT sham values. Representative data for n=3 experiments. Graphs indicate mean *

SD. Data were analyzed using SAS Wilcoxon-Mann-Whitney test. *p<0.05.
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Figure 6. YF-KI neurons have decreased superoxide production in response to
NMDA.

A) Representative Fura-2 transients (from n = 5) show robust calcium increases
after NMDA application (arrow) in both WT (black circles) and YF-KI neurons (open
circles). B) Panels illustrate Eth fluorescence before NMDA application (0 minutes),
at the time of NMDA addition (5 minutes) and then at 5 minute intervals in both
wild-type or in YF-KI neurons. Representative Eth fluorescence transients show
only wild-type neurons (black circles) have a significant increase in superoxide
production following NMDA application (arrow) compared to Y1472 neurons (open
circles). Mean peak Eth fluorescence; WT neurons 2.75 + 0.09 vs. YF-KI neurons

1.34 = 0.04.

Figure 7. Protection from NMDA and Glutamate induced cell death in YF-KI neurons.
A) Panels illustrate propidium iodide labeled dead neurons 24 hours after NMDA or
glutamate treatment in either wild-type neurons or in YF-KI neurons. B)
Quantification shows that NMDA or glutamate-induced neuronal death occurred
only in wild-type cultures but not in Y1472 neurons. p < 0.01, n = 3. Data were

analyzed using Tukeys test. ** p<0.01, ***p<0.001.

Figure 8. Model.
pY1472 contributes to cell death during neonatal HI through the regulation of NR2B
tyrosine phosphorylation, generation of superoxide, and activation of proteases

calpain and caspase 3.
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Figure 1. YF-KI mice have decreased brain injury following neonatal HIL.

A modified Vannucci procedure was performed on WT (n=18) and YF-KI mice
(n=23) at postnatal day 7 (P7). A) Animals were perfused at P12, brains were
sectioned and stained with Cresyl violet (morphology) and Perl’s Stain (iron
deposition). Arrows indicate patches of cell loss in Cresyl violet stained sections.
Arrowheads show iron accumulation in similar injured areas in Perl-stained
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adjacent sections. B) Composite injury score and F) composite injury score by
gender. Regional injury scores in the C) cortex, D) hippocampus, and E) striatum.
The median is represented by the central horizontal line. Brain injury score was
analyzed using nonparametric tests for analysis of variance (Kruskal-Wallis test).
*p<0.05.
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Figure 2. Y1472 affects NR2B tyrosine phosphorylation at specific residues.

A) Western blots using anti-pY1472, pY1336, pY1252, pY1070, and NR2B were
carried out on cortical lysates from sham and HI animals at the time points shown.
B-E) Expression of NR2B tyrosine phosphorylation sites was normalized to NR2B.
Data was normalized to an internal control and WT sham values. Representative
data for n=4 experiments. Graphs indicate mean + SD. Data were analyzed using
SAS Wilcoxon-Mann-Whitney test. *p<0.05, ** p<0.01.
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Fig. 3
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Figure 3. YF-KI mice have decreased Src Family Kinase Activity.

A) Western blots using anti-pY416, Fyn, c-Src and [-actin were carried out on
cortical lysates from sham and HI animals at the time points shown. B) Expression
of p416 was were normalized to B-actin. Data was normalized to an internal control
and WT sham values. Representative data for n=4 experiments. Graphs indicate
mean + SD. Data were analyzed using SAS Wilcoxon-Mann-Whitney test. *p<0.05.
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Fig. 4

A B
WT YF-KI
*
& & ¢ L& & < g " —= '
> & & & S @K« S B | e—— 0 wr
FREOR & R S X k4 — M YFK
- e e S WS W 0 g 0
O-SPECHN o D P - - - 150145102 3
o —120 kDa é 54
2
c-caspase 3 _ - - ?
04
B-actin == == == m— e e —— &}@@ @é-\\o & & q,Vé
C D
*
I * 1 *
* 200 r * 1
6000 M S
5001 0 wr e E \\/(\gkl
‘é 400 Il YFK B 150 -
& 300 Y
& 2004 ﬁ
T 401 g 1007
5 30 &
Q ©
& 204 g 507
S 104
o4 0Ly Y v
- Ry < < Q& & < < &
(}@6‘ \b@“ N & &8 N &

Figure 4. YF-KI mice have less activity of calpain and caspase after HI.

A) Western blots using anti-a-spectrin, cleaved caspase 3 and -actin were carried
out on cortical lysates from sham and HI animals at the time points shown. B)
Expression of spectrin and cleaved-caspase 3 was normalized to -actin. Data was
normalized to an internal control and WT sham values. Representative data for n=4
experiments. Graphs indicate mean + SD. Data were analyzed using SAS Wilcoxon-
Mann-Whitney test. *p<0.05.
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Figure 5. p38 MAPK and CaMKII pathways are not differentially activated in WT

and YF-KI mice after neonatal HI.
A) Western blots using anti-p-p38, p38, pT286 CaMKII, CaMKIla, pS831 GluR1,

GluR1 and p-actin were carried out on cortical lysates from sham and HI animals at
the time points shown. B) p-p38 was normalized to p38, C) pCaMKII was normalized
to fB-actin, and D) pS831 GluR1 was normalized to GluR1. Data was normalized to
WT sham values. Representative data for n=3 experiments. Graphs indicate mean *
SD. Data were analyzed using SAS Wilcoxon-Mann-Whitney test. *p<0.05.
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Figure 6. YF-KI neurons have decreased superoxide production in response to
NMDA.

A) Representative Fura-2 transients (from n = 5) show robust calcium increases
after NMDA application (arrow) in both WT (black circles) and YF-KI neurons (open
circles). B) Panels illustrate Eth fluorescence before NMDA application (0 minutes),
at the time of NMDA addition (5 minutes) and then at 5 minute intervals in both
wild-type or in YF-KI neurons. Representative Eth fluorescence transients show
only wild-type neurons (black circles) have a significant increase in superoxide
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production following NMDA application (arrow) compared to Y1472 neurons (open
circles). Mean peak Eth fluorescence; WT neurons 2.75 + 0.09 vs. YF-KI neurons
1.34 + 0.04.
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Figure 7. Protection from NMDA and Glutamate induced cell death in YF-KI neurons.
A) Panels illustrate propidium iodide labeled dead neurons 24 hours after NMDA or
glutamate treatment in either wild-type neurons or in YF-KI neurons. B)
Quantification shows that NMDA or glutamate-induced neuronal death occurred
only in wild-type cultures but not in Y1472 neurons. p < 0.01, n = 3. Data were
analyzed using Tukeys test. ** p<0.01, ***p<0.001.
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Fig. 8

calpain caspase3  ROS

l

cell death

Figure 8. Model.
pY1472 contributes to cell death during neonatal HI through the regulation of NR2B

tyrosine phosphorylation, generation of superoxide, and activation of proteases
calpain and caspase 3.
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Chapter 5: Concluding Remarks
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Summary

This dissertation examines the role of Fyn and its regulation of NMDAR
tyrosine phosphorylation in neonatal hypoxic-ischemic (HI) brain injury. In chapter
2, we show that Fyn and NR2B are expressed in synaptic and extrasynaptic
membranes at P7. Fyn-mediated NR2B phosphorylation at Y1472, Y1336, and
Y1252 are enriched at synaptic membranes and pY1336 NR2B is also present at
extrasynaptic membranes.

The consequences of neuronal Fyn overexpression on neonatal HI brain
injury and NMDAR tyrosine phosphorylation are explored in chapter 3. Fyn OE mice
have increased brain injury and mortality following injury. This is associated with
increased tyrosine phosphorylation of NR2A and NR2B as well as increased calpain
activity. NR2B phosphorylation at Y1252 and Y1472 is higher in Fyn OE mice in
synaptic fractions.

In chapter 4 we determine whether phosphorylation of Y1472 of NR2B
affects brain injury. Y1472F (YF-KI) mice have less brain injury, decreased NR2B
tyrosine phosphorylation of Y1070, Y1252 and Y1336, decreased SFK activity, and
less activity of calpain and caspase. YF-KI neurons exposed to NMDA have less
superoxide production and significantly less cell death in response to 100 uM NMDA
and glutamate.

Taken together our results support the following model for Fyn and the

NMDAR in neonatal hypoxic-ischemic brain injury (See Model). At synaptic
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membranes, Fyn phosphorylates NR2ZA and NR2B. Downstream of pY1472, Fyn
promotes brain injury through up-regulation of reactive oxygen species and
increased activity of calpain and caspase. The function of extrasynaptic Fyn is
unknown, however based on our studies, it does not appear to regulate
extrasynaptic Y1336 or p38, and may function in other pathways (Knox and Jiang,

unpublished observations).

Future Directions

While most of our experiments focused on NR2B, NR2A is also a Fyn
substrate and NR2A tyrosine phosphorylation increases after HI (1). It will be
interesting to identify which sites Fyn phosphorylates on NR2A and to see if they
overlap with the three tyrosine residues that Src phosphorylates on NR2A (Y1292,
Y1325,Y1387) (2).

Although Fyn-mediated NR2B tyrosine phosphorylation sites are often
studied in isolation, we have chosen to study phosphorylation sites for which there
are antibodies (Y1472,Y1336,Y1252,Y1070). In the original publication
identifying tyrosine residues on NR2B that Fyn phosphorylates in vitro, seven
residues were identified (3). They span the entire C-terminal region of NR2B and
likely cooperate to affect NMDAR channel properties and the NR2B complex. We
identified important differences among these sites. For example, pY1336 is present
in synaptic and extrasynaptic membranes and is less affected by Fyn
overexpression. pY1070 decreased to a greater extent than the other sites in YF-KI

mice after HI. These findings suggest a complex dynamic interplay between the
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residues on the C-terminal domain (CTD) of NR2B. To understand this in greater
detail, I generated several constructs that will allow us to determine the function of
these sites alone and in combination (See Appendix). These reagents will allow us
to assign functions to the phosphorylation sites on the CTD of NR2B in the normal

brain and in response to injury.

Therapeutic Implications

Our lab has shown that PP2, a SFK inhibitor, is protective, that Fyn
overexpression worsens injury, and that a NR2B phosphorylation mutant is
protective against neonatal brain hypoxia-ischemia. These results implicate SFKs,
Fyn and the NMDAR in the pathogenesis of neonatal HI brain injury and would make
attractive therapeutic targets. However, there are two potential caveats. First,
although two loss-of-function approaches were neuroprotective (PP2 and YF-KI
mice), neither strategy resulted in complete protection. One advantage of the PP2
data obtained from our lab is that it was performed in an outbred mouse strain
(CD1) and the drug was delivered after injury intraperitoneally. Although PP2 was
not completely protective, it did reduce brain injury from severe to moderate (1).
Since brain injury correlates with outcome in neonatal encephalopathy, this could
be a significant finding (4). We also do not know how PP2 would affect brain injury
if combined with hypothermia, the standard of care for neonatal HIE, or if given in
multiple doses.

Although it is possible to disrupt pY1472 using peptides which span this

region, such an approach would be difficult to deliver in vivo. SFKs likely affect
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brain injury through NR2A and other signaling pathways, therefore it would be
more advantageous to target the kinase family than one substrate.

The second caveat is that we do not know if SFKs are important for neonatal
HI injury in humans. Before considering a therapeutic intervention, it will be
important to determine the expression, timing, and regional localization of SFKs and
NMDAR phosphorylation in neonatal HI lesions. Genetic studies could also uncover
polymorphisms in SFKs and the NMDAR that predispose infants to brain injury,
which would provide further rationale for targeting this pathway.

After considering the possible limitations and the progress we have made,
targeting Fyn, the NMDAR and other SFKs is a promising therapeutic strategy. As
we obtain more information on the link between NMDAR phosphorylation, ROS
generation, and cell death and the contribution of other SFKs, we can design
therapies that target critical nodes mediating brain injury that do not disrupt

normal brain development.
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Cloning Strategy

LEMPRA
LEntivrial Mediated

Protein Replacement Assay
Zhou Neuron 2006
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Zhaolan Zhou generously provided us with the pLEMPRA construct, Takanobu

Nakazawa provided us with WT and phosphorylation mutant NR2B constructs, and

[ made additional NR2B phosphorylation mutant constructs. I generated a NR2B

shRNA and tested it in primary cortical neurons. [ introduced seven silent mutants

to make NR2B resistant to the shRNA. This led to the generation of a construct

which depletes endogenous NR2B and overexpresses shRNA-resistant NR2B.
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pLEMPRA Constructs
The following constructs have been verified by sequencing:
* pLEMPRA NR2B
* pLEMPRA Y1472F NR2B
* pLEMPRA Y1336F NR2B
* pLEMPRA Y1252F NR2B
* pLEMPRA Y1252F/Y1336F NR2B
* pLEMPRAY1336F/Y1472F NR2B
* pLEMPRAY1252F/Y1336F/Y1472F NR2B
* pLEMPRA CTD NR2B

Fyn Overexpression Constructs
e pCMV6 FynB
e pCMV6 FynT

Lentiviral shRNA Constructs
+ pLLX NR2B
e pLLXFynl
e pLLXFyn2

Future Directions

The pLEMPRA NR2B constructs will allow us to determine the function Y1252,
Y1336 and Y1472 in response to an array of stimuli such as NMDA, glutamate, and
oxygen glucose deprivation. Additionally, we can knock down Fyn using shRNAs
and rescue with the FynB construct. We can also generate FynB kinase dead and
constitutively active mutants using site directed mutagenesis to determine whether
Fyn kinase activity is dispensable in neuronal cell death. These tools will allow us to
further dissect the molecular mechanisms by which Fyn and NMDAR tyrosine

phosphorylation contribute to neuronal cell death in vitro.
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