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Abstract

To comprehend language, we continually use prior context to pre-activate expected upcoming 

information, resulting in facilitated processing of incoming words that confirm these predictions. 

But what are the consequences of disconfirming prior predictions? To address this question, most 

previous studies have examined unpredictable words appearing in contexts that constrain strongly 

for a single continuation. However, during natural language processing, it is far more common to 

encounter contexts that constrain for multiple potential continuations, each with some probability. 

Here, we ask whether and how pre-activating both higher and lower probability alternatives 

influences the processing of the lower probability incoming word. One possibility is that, similar 

to language production, there is continuous pressure to select the higher-probability pre-activated 

alternative through competitive inhibition. During comprehension, this would result in relative 

costs in processing the lower probability target. A second possibility is that if the two pre-activated 

alternatives share semantic features, they mutually enhance each other’s pre-activation. This would 

result in greater facilitation in processing the lower probability target. To distinguish between 

these accounts, we recorded ERPs as participants read three-sentence scenarios that constrained 

either for a single word or for two potential continuations – a higher probability expected 

candidate and a lower probability second-best candidate. We found no evidence that competitive 

pre-activation between the expected and second-best candidates resulted in costs in processing 

the second-best target, either during lexico-semantic processing (indexed by the N400) or at 

later stages of processing (indexed by a later frontal positivity). Instead, we found only benefits 

of pre-activating multiple alternatives, with evidence of enhanced graded facilitation on lower-

probability targets that were semantically related to a higher-probability pre-activated alternative. 

These findings are consistent with a previous eye-tracking study by Luke and Christianson (2016, 

Cogn Psychol) using corpus-based materials. They have significant theoretical implications for 

models of predictive language processing, indicating that routine graded prediction in language 

comprehension does not operate through the same competitive mechanisms that are engaged 
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in language production. Instead, our results align more closely with hierarchical probabilistic 

accounts of language comprehension, such as predictive coding.
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explaining away; prediction; predictive coding; competition; N400; late frontal positivity

Introduction

One of the most robust findings in the study of language comprehension is that the more 

predictable the input, the easier it is to process (Kuperberg & Jaeger, 2016; Ehrlich & 

Rayner, 1981; Rayner & Well, 1996). Numerous studies have shown that, relative to less 

predictable words, more predictable words are processed faster (Staub, 2015) and produce 

smaller evoked neural responses (Kutas & Hillyard, 1984; Delong, Urbach, & Kutas, 2005).

The most common explanation for this graded effect of predictability is that the prior 

context predictively pre-activates upcoming lexico-semantic information before new bottom-

up input becomes available.1 When a new word is encountered, its processing is facilitated 

to the degree that its semantic features have already been pre-activated. So long as these 

predictions are generated probabilistically, based on the statistics of the communicative 

environment, the ease of processing each incoming word should be inversely related 

to its prior probability, given the preceding context (DeLong, Urbach, & Kutas, 2005; 

Federmeier, 2007; Kuperberg & Jaeger, 2016). Indeed, we know from numerous studies 

that the magnitude of the N400 — an ERP component that is thought to reflect the ease 

of accessing (or retrieving) the semantic features associated with an incoming word (Kutas 

& Federmeier, 2011; Van Berkum, 2009; Kuperberg 2016) — is inversely related to that 

word’s contextual predictability, regardless of whether this is estimated using standard cloze 

procedures (cf. Taylor, 1953; e.g. Kutas & Hillyard, 1984; DeLong, Urbach & Kutas, 2005; 

Wlotko & Federmeier, 2012), or using large language models (cf. Brown et al., 2020; e.g. 

Michaelov, Coulson, & Bergen, 2021; Szewczyk & Federmeier, 2022; Heilbron, Armeni, 

Schoffelen, Hagoort & De Lange, 2022).

This predictive pre-activation account can also explain why, in plausible sentences, the 

amplitude of the N400 produced by unpredictable words appearing in contexts that strongly 

constrain for an alternative continuation (e.g. “He bought her a pearl necklace for her…
collection”) is no larger than the N400 produced by unpredictable words appearing in low 

constraint2 contexts that do not strongly predict any single continuation (e.g. “He looked 
worried because he might have broken his…collection”), e.g. Kutas & Hillyard (1984); 

Federmeier, Wlotko, De Ochoa-Dewald & Kutas (2007); Kuperberg, Brothers, & Wlotko 

1We use the term “lexico-semantic” to refer to the semantic features associated with a particular word. We provide a more precise 
discussion about the relationship between these features and a word’s conceptual and lexical representations towards the end of the 
Discussion. By “predictive pre-activation”, we mean “the pre-activation of information at lower representational level(s) on the basis 
of information at higher levels within our internal representations of context, ahead of the bottom-up input reaching these lower levels” 
(Kuperberg & Jaeger, 2016, section 3, page 39). We do not make any assumptions about whether comprehenders pre-activate an 
upcoming word’s orthographic or phonological features (see DeLong, Urbach, & Kutas, 2005, and Nieuwland et al., 2018 for debate).
2Contextual constraint is usually operationalized as the probability of the context’s best (most probable) completion.
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(2020). In both these situations, the incoming word’s lexico-semantic representation has 

received no pre-activation, and so it will be relatively harder to access/retrieve, resulting in a 

relatively large N400 response.

In most accounts of predictive pre-activation, it is assumed that, rather than predicting one 

word at a time, comprehenders pre-activate multiple potential continuations in parallel, 

outside conscious awareness. For example, when reading “Johnathan brewed the…”, 

readers might pre-activate the lexico-semantic representations of “beer”, “coffee” and “tea” 

simultaneously, each with a different strength that is related to the probability of each lexico-

semantic representation. As a consequence, encountering any of these words would produce 

a smaller N400 than a lower probability continuation (e.g. “Johnathan brewed the poison”). 

This, however, raises a question that has not yet been addressed in the prior literature: 

During this pre-activation phase, what influence do these multiple, pre-activated alternatives 

exert on one another (excitatory and/or inhibitory), and what impact does this have on 

processing the incoming word when it subsequently becomes available? In principle, there 

are three possibilities.

The first is that there are minimal interactions between the multiple pre-activated candidates 

until the new bottom-up input arrives. On this account, when the incoming word is 

encountered, the degree of facilitation it receives should depend solely on its own 

probability, regardless of the probability of any pre-activated alternatives. We refer to this as 

the independent pre-activation account.

The second possibility is that, during the pre-activation phase, these multiple pre-activated 

alternatives begin to compete, mutually inhibiting one another through a winner-take-all 

mechanism. A consequence of this mutual inhibition is that when an incoming word 

subsequently becomes available, it should receive less facilitation than one would expect 

given its estimated probability. We refer to this as the competitive pre-activation account.

Competitive interactions of this kind are implemented in classic Interactive Activation 

and Competition (IAC) models, which have been proposed as accounts of written 

word recognition (McClelland & Rumelhart, 1981; McClelland & Elman, 1986), spoken 

word recognition (Dahan, Magnuson, Tanenhaus & Hogan, 2001) and syntactic parsing 

(competitive ranked parallel models: Spivey & Tanenhaus, 1998; MacDonald, Pearlmutter 

& Seidenberg, 1994). Importantly, IAC architectures have also been proposed to implement 

language production, with mutual inhibition between lexical candidates playing a central 

role in selecting a single candidate for later articulation (e.g. Chen & Mirman, 2012). 

Recent work suggests that an IAC model (Chen & Mirman, 2012) can simulate times to 

produce predicted upcoming words in a speeded cloze completion task in which participants 

first comprehend a sentence context and then produce the most likely upcoming word; 

see Ness and Meltzer-Asscher (2021a) and Nakamura and Phillips (2022). Thus, if this 

type of competitive mutual inhibition operates during the pre-activation phase of language 

comprehension, this would provide evidence that top-down prediction during language 

comprehension is routinely implemented through one of the same processing mechanisms 

that is employed in language production (Pickering & Garrod, 2013; Fitz & Chang, 2019; 

see also Van Petten & Luka, 2012; Thornhill & Van Petten, 2012).3
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The third possibility is that instead of acting as competitors, multiple pre-activated lexico-

semantic candidates (e.g. beer, coffee, tea) serve to reinforce one another if they share 

semantic features. On this account, the presence of a semantically related pre-activated 

alternative would actually lead to more facilitation and a smaller N400 response than one 

would expect based on that word’s lexical probability. We will refer to this as the friendly 
pre-activation account.

Evidence consistent with friendly pre-activation comes from the ERP studies showing 

that the pre-activation of semantic features can facilitate the processing of incoming 

words during language comprehension, even if these words are lexically unpredictable. 

For example, the N400 is reduced in response to implausible words that are semantically 

related to a predictable alternative (Kutas and Hillyard 1984; Federmeier & Kutas, 1999; 

for recent replications, see DeLong, Chan & Kutas, 2019; Ito, Corley, Pickering, Martin & 

Nieuwland, 2016). This anticipatory semantic facilitation effect on the N400 has also been 

described on unexpected (zero cloze) plausible continuations (Thornhill & Van Petten, 2012; 

DeLong & Kutas, 2020). However, no previous study ERP has asked whether, in contexts 

that constrain for multiple continuations, less expected but non-zero probability words 

can receive facilitation from a higher probability pre-activated alternative as a function of 

semantic overlap.

Finally, we note that the competitive and friendly pre-activation accounts are not mutually 

exclusive. For example, some IAC architectures include both intra-lexical competition 

and mutual reinforcement from shared semantic features (Chen & Mirman, 2012). These 

architectures might predict that a lower probability word would receive less facilitation 

than expected if it is semantically unrelated to a higher probability alternative, but 

more facilitation than expected if it shares semantic features with the higher probability 

alternative. Indeed, Ness and Meltzer-Asscher (2021a) recently showed behavioral evidence 

consistent with this type of hybrid account in a speeded cloze production task.

Understanding whether and how pre-activated lexico-semantic alternatives interact with one 

another is important not only for understanding the nature of routine predictive processing 

during language comprehension (including its relationship with language production), but 

also because of its ecological validity. In natural language, it is relative rare to encounter low 

probability words that violate a very high-constraint context. In contrast, we frequently 

encounter moderately constraining contexts that are predictive of multiple alternatives. 

Moreover, in these contexts, readers often encounter inputs that disconfirm the most 

probable continuation but confirm a lower probability continuation.

This pattern was demonstrated in a key study by Luke and Christianson (2016), who 

measured cloze probability in a corpus of mixed-genre texts by asking readers to predict 

each word in turn. The authors found that most words in these naturalistic texts were only 

somewhat predictable, with content words having an average cloze probability of 13%. 

Nonetheless, readers were more consistent, on average, in their expectations about upcoming 

3Note, this wouldn’t imply that production-like mechanisms are never engaged in implementing top-down prediction 3 during 
language comprehension, particularly in very high constraint contexts (see Federmeier, 2022).
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content words, resulting in an average lexical constraint of 36%. Strikingly, although most 

incoming words disconfirmed an individual reader’s most common prediction, 79% of 

words matched a cloze continuation that was produced by at least some participants.

Luke and Christianson also examined eye-movement data as participants read these texts 

for comprehension. Reading times were analyzed as a function of (a) the cloze probability 

of each word, and (b) whether or not each word was the most probable continuation 

produced by all participants in the cloze task. They found only an effect of cloze probability, 

but no interaction with whether or not the word was the most probable completion. In 

addition, the authors calculated the semantic relationship between each content word and 

the full set of offline cloze responses produced in response to the prior context. They found 

enhanced behavioral facilitation on words that were more semantically related to these 

alternative predictions. Thus, taken together, Luke and Christianson’s findings suggest that, 

during natural reading, parallel lexico-semantic pre-activation provides benefits (friendly 
pre-activation), but no costs (no competitive pre-activation), on reading times.

Goals of the present study

Given the theoretical and ecological importance of Luke and Christianson’s behavioral 

findings, we wanted to carry out a conceptual replication of their work. We had three main 

goals.

First, we wanted to determine whether Luke and Christianson’s results held up using 

controlled experimental materials. We see the use of naturalistic and controlled experimental 

stimuli as complementary approaches. Luke and Christianson (2016) provided key data 

about the distributions of cloze and constraint values within naturalistic text by virtue of 

using texts gathered from a variety of real-world sources such as news articles and fiction. 

Moreover, their use of extended multi-sentence texts provides the most ecologically valid 

reading experience for experimental participants. However, as the authors discuss, with 

these types of stimuli, it is difficult to dissociate effects of lexical properties such as word 

length and frequency from effects of context-specific predictability, since these effects are 

inherently confounded in naturally occurring texts. Naturalistic corpus studies also introduce 

the possibility of uncontrolled spill-over effects, or other effects arising from uncontrolled 

properties of the text (Rayner, Pollatsek, Drieghe, Slattery & Reichle, 2007; Brothers, 

Hoversten & Traxler, 2017; Angele et al., 2015; see Brothers & Kuperberg, 2021 for 

recent discussion). Thus, the use of controlled experimental stimuli offers an opportunity to 

specifically test the hypotheses motivated by the theories described above, while controlling 

for lexical factors such as word length and frequency.

Second, we were interested in replicating Luke and Christianson’s behavioral findings using 

a different technique — ERPs instead of reading times. ERPs provide a time-sensitive 

measure of online comprehension. The N400 component, in particular, is known to be 

sensitive to many of the same factors that influence reading times, including frequency, 

predictability, and semantic overlap, and this component has played a central role in debates 

on the role of prediction and misprediction in language comprehension (Van Petten & Luka, 

2012; see also Federmeier, 2007; DeLong, Urbach & Kutas, 2005; Nieuwland et al., 2018). 

Moreover, although many classic connectionist and neural network models of language 
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processing were originally developed to simulate behavioral findings, ERPs provide an 

important test case of the computational principles implemented by these models (see Nour 

Eddine, Brothers, & Kuperberg, 2022 for a comprehensive review). ERPs therefore provide 

an important and complementary perspective to behavioral findings.

Third, ERP methods allow us to examine not just the initial stages of lexico-semantic 

processing, indexed by the N400, but also later ERP components that might be particularly 

sensitive to the disconfirmation of prior predictions. Previous behavioral studies have 

found little evidence of late processing costs on lower probability continuations that are 

inconsistent with a prior higher probability prediction (Luke and Christianson, 2016; 

Frisson, Harvey, & Staub, 2017; Steen-Baker, Ng, Payne, Anderson, Federmeier & Stine-

Morrow, 2017; Fischler & Bloom, 1979, 1985; Schwanenflugel and LaCount,1988; but 

see Ness & Meltzer-Asscher, 2021b, who showed that participants took longer to make 

speeded congruency decisions in two-word phrases in which the second word violated a 

prediction, e.g. “rearview camera” where mirror was predicted vs. “desert storm” where 

there was no strong prediction). However, several ERP studies have reported that in 

plausible sentences, unexpected (zero-cloze) words appearing in contexts that constrain 

strongly for a single alternative (e.g. “He bought her a pearl necklace for her…collection”) 

can sometimes produce a larger late frontally-distributed positive component between 500–

1000ms, in comparison with unexpected words appearing in low constraint contexts (e.g. 

“He looked worried because he might have broken his…collection”, see Federmeier et al., 

2007; Kuperberg, Brothers, & Wlotko, 2020; Lai, Rommers, & Federmeier, 2021).

One possible interpretation of this late frontal positivity effect is that it indexes late 

processing “costs” associated with suppressing an incorrect lexical prediction (Kutas, 1993; 

Ness & Meltzer-Asscher, 2018). This would follow from an account in which the prediction 

of a higher-probability pre-activated alternative remains active in the late time window and, 

in order to successfully integrate the lower-probability incoming word into its prior context, 

it is necessary to suppress/inhibit this incorrect prediction within this later time window. 

This late suppression account would therefore predict a larger late frontal positivity on less 
versus more probable words in contexts that constrain for multiple continuations, where 

there would also be additional demands to inhibit an incorrectly pre-activated competitor.

Design and questions addressed in the present study

To address the questions outlined above, we developed a set of materials with two types of 

contexts, each continuing with either a more or a less expected critical word.

First, WithCompetitor contexts, such as (1), always constrained for two upcoming words 

— a more probable expected alternative (e.g. hearts) and a less probable alternative (e.g. 

flowers). Following these contexts, participants saw either the Expected critical word 

(“hearts”) or the SecondBest critical word (“flowers”).

Second, NoCompetitor contexts, such as (2), always constrained for just one upcoming 

continuation (e.g. roses). Participants saw either this Expected critical word or a ZeroCloze 
but plausible critical word (e.g. rocks).

1. WithCompetitor context:
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Stephen wanted to do something special for his girlfriend. He decided to make 

her a hand-made card. On it, he drew some… Expected: hearts / SecondBest: 
flowers

2. NoCompetitor context:

Alexis was thrilled with her new garden. All of the flowers had bloomed 

overnight. In particular, she loved the… Expected: roses/ ZeroCloze: rocks

In the WithCompetitor contexts, the cloze probabilities of the SecondBest critical 

words were, on average, lower than those of the Expected critical words in both the 

WithCompetitor and NoCompetitor contexts. However, as discussed in the Methods, the 

range of cloze probability values within each condition was wide, allowing us to address 

our hypotheses at varying degrees of predictability. Specifically, we addressed three sets of 

questions.

First, is there any evidence that competitive pre-activation influences the magnitude of the 

N400? The competitive pre-activation account predicts that in WithCompetitor contexts, 

prior to the presentation of the incoming word, there should be some degree of mutual 
inhibition between the two pre-activated alternatives (e.g. between <hearts> and <flowers> 

in (1) above). This should result in less facilitation and a larger N400 in response to both the 

SecondBest and the Expected critical word than one would expect based only on their cloze 

probabilities. In contrast, if the N400 response to each of these words remains proportional 

to its cloze probability, with no penalty for having pre-activated a competitor, this would 

provide evidence for the independent pre-activation account. For specific details about how 

we statistically tested these hypotheses, see Models 1 and 2 in the Results section.

Second, is there any evidence that friendly pre-activation influences the N400? The 

friendly pre-activation account predicts that there should be a facilitatory effect on the 

N400 produced by a lower probability word whenever it shares semantic features with 

a higher probability pre-activated alternative. To address this question, we began by 

considering all scenarios in which a lower probability critical word appeared in place 

of a potentially pre-activated alternative—namely, the NoCompetitor ZeroCloze and the 

WithCompetitor SecondBest scenarios, asking if there was any additional facilitation on 

the N400 as a function of how semantically related the observed word was to the more 

expected continuation (Model 3, Results). In addition, because previous ERP work has only 

demonstrated this type of facilitatory effect on zero-cloze words (Kutas and Hillyard 1984; 

Federmeier & Kutas, 1999; Thornhill & Van Petten, 2012; DeLong & Kutas, 2020), we 

separately tested for evidence of friendly pre-activation on the subset of WithCompetitor 
SecondBest continuations, which always had non-trivial cloze probabilities (Model 4, 

Results).

Our investigation of the N400 across these scenarios provided a strong test of whether 

pre-activating multiple alternatives results in competition or facilitation. However, as noted 

above, competitive and friendly pre-activation are not mutually exclusive, and, in principle, 

both can influence the degree of facilitation on an incoming word, jointly impacting the 

amplitude of the N400. Therefore, we also wanted to test for an effect of competitive 
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pre-activation in isolation of any facilitatory effects. To do this, we conducted an analysis on 

the subset of SecondBest words that were unrelated to the expected continuation (Model 5, 

Results).

Third, and finally, we turned to the question of whether there was any evidence of late 

suppression on the late frontal positivity produced by SecondBest critical words in the 

WithCompetitor contexts. According to the late suppression account, late costs should 

be incurred when suppressing an unobserved strongly pre-activated alternative in order 

to integrate an observed lower-probability incoming word into the prior context. In the 

WithCompetitor contexts, this would predict a larger late frontal positivity on SecondBest 
than on Expected completions. We therefore compared the amplitude of the late frontal 

positivity to these two types of completions (Model 6, Results).

Methods

Materials

Overall Design—Our stimuli consisted of plausible, three-sentence discourse scenarios. 

This three-sentence stimulus design was based on prior studies (Kuperberg, Brothers, & 

Wlotko, 2020; Brothers, Wlotko, Warnke, & Kuperberg, 2020) and provided a slightly 

more natural reading experience than one-sentence stimuli. In each scenario, the first two 

sentences introduced the scenario using a variety of sentence structures. The third sentence 

was more controlled and consisted of an adverbial phrase, the subject, a transitive verb, an 

optional determiner, a direct object critical noun, and 3–4 words to conclude the sentence.

As described in the Introduction, the prior context either constrained for either one or two 
upcoming words, i.e., WithCompetitor and NoCompetitor contexts, respectively (see Table 

1). In the WithCompetitor contexts, participants either saw the Expected (A1) or SecondBest 
(A2) continuation. In the NoCompetitor contexts, participants either saw the Expected 
continuation (A3) or a ZeroCloze but plausible (A4) continuation. We refer to these four 

conditions as the TargetScenarios. Because the specific critical words varied across the four 

types of TargetScenarios, to control for low-level lexical differences across items, we also 

constructed a set of ControlScenarios, which used the same four critical words as those 

used in the TargetScenarios (B1–B4). These were generated by writing two new introductory 

sentences and pairing these with the same final sentences used in the TargetScenarios. In 

these ControlScenarios, there were no clear preferences for a particular continuation, making 

them relatively non-constraining and non-competitive in nature.

In Table 1, we present all of the eight conditions described above—namely, the 

four conditions in the TargetScenarios group (A1: WithCompetitor Expected, A2: 

WithCompetitor SecondBest, A3: NoCompetitor Expected, A4: NoCompetitor ZeroCloze), 

and the four conditions with lexically-matched critical words in the ControlScenarios group 

(B1–B4). All scenarios were written to be semantically plausible (see below for a rating 

study that verified that this was the case).

Cloze norming and item selection—To create and classify our stimuli into the eight 

conditions described in Table 1, we carried out cloze norming studies. For this, we recruited 
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participants from within the United States through Amazon Mechanical Turk. Based on 

self-report, all participants were between the ages of 18–35 and their native language was 

English. All participants provided informed consent, and they were compensated for their 

time.

On each trial in this task, participants saw one stimulus item up to (but not including) the 

critical word. They were then asked to respond with “the most likely next word” (Taylor, 

1953). After providing their response, participants were then asked to give two further 

possible responses for each context, each with the prompt, “Please enter another likely next 

word.” In this way, we obtained the first, second, and third best continuations from each 

subject for each item (see also Federmeier et al, 2007; Schwanenflugel, Harnishfeger & 

Stowe, 1988). All participants completed a guided practice before viewing the experimental 

stimuli. Stimuli were normed in batches of different sizes (from 4–74 stories), which took 

approximately 3–60 minutes. Participants were paid up to $6 per hour for their time. At least 

50 participants provided continuations for each context. In total, over 800 vignettes were 

normed for consideration.

For each item, we determined its contextual constraint by identifying the most common 

completion for each context, and then calculating the percentage of participants who 

provided that particular word as their first response. The cloze probability of each critical 

word was calculated as the percentage of respondents providing that word as their first 

response. We will refer to this as the top-1 cloze probability. In addition, for each item, we 

calculated a measure of cloze probability that was based on the percentage of respondents 

for whom the critical word was one of their three responses. As discussed below, this was 

particularly important in allowing us to identify WithCompetitor contexts, even in contexts 

where most of the top-1 probability mass was taken up by the most expected target word. 

We will refer to this second measure as the top-3 cloze probability.

Using these norming data, we then constructed a set of 60 WithCompetitor and 60 

NoCompetitor contexts with a wide range of contextual constraints (33–92%). As described 

above, the NoCompetitor contexts (Mean constraint: 61%) did not have a second 

continuation with non-trivial cloze probability (i.e. all alternative continuations provided in 

the cloze task had a top-1 cloze probability below 10%). The NoCompetitor Expected (A3) 

words had a top-1 cloze probability of at least 33% and were always the modal completion 

for their context. The NoCompetitor ZeroCloze (A4) words were chosen to have a cloze 

probability of near 0%.4

As also described above, the WithCompetitor contexts (Mean constraint: 57%) could 

be followed by at least two continuations with non-trivial cloze probabilities. The 

WithCompetitor Expected (A1) critical words had a top-1 cloze probability of at least 36% 

and were always the modal completion for their context. The WithCompetitor SecondBest 
(A2) words either had a top-1 cloze probability greater than 10% or a top-3 cloze probability 

greater than 25%.5 These SecondBest completions were typically listed as being “second 

43 out of 60 words in this condition were chosen by a single participant (out of >50 participants) in cloze norming, giving them a 
non-zero cloze probability of <2%. The remainder had 0% cloze probability.
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most likely” by participants. However, in a few cases, we instead took the third best 

completions in order to avoid repeating a critical word within the experiment. To the extent 

possible, all critical words were matched across conditions in length, log word frequency, 

orthographic neighborhood size, and semantic concreteness.

Across the ControlScenarios (60 for the WithCompetitor conditions and 60 for the 

NoCompetitor conditions: B1–B4), the average constraint was 19% with a range of 8–52%. 

The critical words, when presented in these control discourse scenarios, had an average 

top-1 cloze probability of below ~5%.

Across the full stimulus set, the contexts had an average constraint of 39% and an average 

cloze probability of 18.5% for the target and control critical words. Therefore, unlike some 

prior studies, these levels of constraint and predictability were highly similar to those 

encountered in naturalistic texts (Luke & Christianson, 2016).

Plausibility norming—Late frontally distributed positivities are only produced by 

unexpected words when they can be plausibly integrated into their prior contexts (e.g. 

Van Petten & Luka, 2012; Kuperberg, Brothers, & Wlotko, 2020). In contrast, highly 

implausible/anomalous critical words often produce a late posteriorly distributed positivity 

effect, known as the P600 (Kuperberg, 2007, section 3.4 page 32; Kuperberg et al., 

2003; van de Meerendonk, Kolk, Vissers & Chwilla, 2010; Paczynski & Kuperberg, 2012; 

Kuperberg, Brothers, & Wlotko, 2020), while mildly implausible words tend not to produce 

robust late positivities at all (e.g. Kuperberg, Sitnikova, Caplan & Holcomb, 2003; van 

de Meerendonk, Kolk, Vissers & Chwilla, 2010). We therefore wanted to verify that our 

scenarios were indeed plausible. To do this, we conducted a plausibility norming study using 

the online platform, Prolific (www.prolific.co). We recruited a set of participants in the US 

and UK who listed their first language as English, and then asked them to rate various 

scenarios on a scale of 1–7 (1 = “makes no sense at all”; 7 = “makes perfect sense”).

In this norming study, we included not only all the scenarios from the current study, but also 

sets of three-sentence scenarios from prior studies run in our lab that had previously been 

normed to be plausible, highly implausible/anomalous, and semi-implausible. Specifically, 

we included (a) the high constraint expected and high constraint unexpected scenarios 

from a study by Kuperberg, Brothers and Wlotko (2020), which had been normed to be 

plausible,6 (b) the high constraint anomalous scenarios, also from Kuperberg, Brothers 

and Wlotko (2020), which contained selection restriction violations and were therefore 

highly implausible, and (c) a set of scenarios from Greene, Brothers, Weber, Noriega, and 

Kuperberg (2020), without selection restriction violations, that had previously been normed 

to be semi-implausible.

To keep the task length reasonable, each participant saw a subset of items: 60 from the 

current experiment, 38 or 39 from the previous studies, as well as 10 sanity check items that 

5The choice of the exact values of 10% and 25% was arbitrary, reflecting our intuition of approximately what constitutes a non-trivial 
competitor. However, we do not expect there to be a true categorical cutoff for what constitutes a non-trivial competitor.
633 items from Kuperberg, Brothers, & Wlotko (2020) were not included because they were extremely similar or identical to the 
scenarios used in the present study.
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were designed to be either very plausible or highly implausible. Items were counterbalanced 

such that no participant saw more than one version of each scenario. Each version was rated 

by 10 participants.

The results are given in Table 2. They confirm that the TargetScenarios (A1–A4) and 

ControlScenarios (B1–B4) in the present study all received plausibility scores that were 

higher than those of the highly implausible/anomalous and semi-implausible scenarios used 

in our previous work.

Counterbalancing of stimuli and construction of final stimulus lists—In the ERP 

experiment, we created four counterbalanced lists. Each participant saw each context in 

the TargetScenarios and ControlScenarios just once. However, our counterbalancing scheme 

worked to ensure that they never saw the same critical word twice; that is, if a participant 

saw a critical word in a WithCompetitor or NoCompetitor context, they saw a different 

critical word in the ControlScenario for that item. In addition, participants did not see a 

WithCompetitor or NoCompetitor trial and its corresponding ControlScenario in the same 

half of the experiment. Presentation order was counterbalanced across participants, and 

participants were randomly assigned to one of these four lists.

Participants—We report data from 32 native English speakers who were recruited from 

Tufts University and the surrounding community. Fifteen further participants were tested 

but were subsequently excluded because of excessive noise in the ERP recording (see Data 

Preprocessing for cutoff criteria).7 The final set of participants were between the ages of 18 

and 35 (Mean age = 24.0; SD: 4.1). All were right-handed and had normal or corrected-to-

normal vision. All participants reported having no significant exposure to any language other 

than English before the age of 5, no history of neurological disorder(s), and no current use of 

psychoactive medication. All participants provided written informed consent and were paid 

for their time at a rate of $15 per hour. All protocols were approved by Tufts University 

Social, Behavioral, and Educational Research Institutional Review Board.

Stimulus Presentation—Participants sat in a comfortable chair in a dimly lit room 

approximately 150cm from the LCD computer monitor. They were asked to minimize 

muscle activity, eye movements, and blinking, particularly while reading the sentences. 

Stimuli were presented word-by-word using PsychoPy 1.83 software (Peirce, 2007). Each 

word was presented in a white Arial font on a black background, with 3 characters covering 

approximately 1 degree of visual angle. Each trial began with the prompt “READY?” in 

green font presented at the center of the screen, and the participant pressed a button to 

advance. The first two sentences of each context appeared in full, separated by a button 

press. After participants read the second sentence, a fixation marker (“++++”) appeared for 

750ms before the third sentence appeared, one word at a time, in the center of the screen 

(450ms word duration, 100ms inter-stimulus interval).

7This relatively high exclusion rate was because data were collected on a new high impedance system, and in these participants, we 
used minimal scalp abrasion prior to data collection.
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In 128 trials, a yes/no comprehension question appeared immediately after the third 

sentence. These sentences often required readers to draw inferences based on the entire 

scenario, and they never referred specifically to the critical words. Their purpose was to 

encourage participants to attend to and deeply comprehend the scenarios.

Within each half of the experiment, the order of item presentation was randomized 

individually for each participant. Trials were presented in blocks of 30 items, which 

generally took 8–10 minutes, with a break between each block. Prior to seeing the 

experimental trials, participants saw 12 practice items with a similar structure to the 

experimental items.

ERP Acquisition and Preprocessing—We recorded ERPs using the BioSemi 

ActiveTwo EEG system with ActiView v7.05 EEG acquisition software (http://

www.biosemi.com/). We recorded from 32 active Ag/AgCl electrodes in an elastic cap 

placed according to a modified international 10–20 system. Additional electrodes were 

placed below the left eye and beside the right eye to monitor for blinks and eye movements, 

as well on each mastoid to serve as reference. The EEG signal was amplified, digitally 

filtered online with the Biosemi Active-Two acquisition system using a low pass 5th order 

sinc response filter with a half-power cutoff at 104 Hz, and continuously sampled at 512Hz.

Data was processed using the EEGLAB (Delorme & Makeig, 2004) and ERPLAB (Lopez-

Calderon & Luck, 2014) toolboxes in MATLAB. EEG channels were referenced offline 

to the average of the left and right mastoid channels. A 2nd order Butterworth IIR filter 

with a half-amplitude high pass cutoff of 0.1 Hz was applied offline. The ERP was then 

segmented into epochs spanning from −300ms to 900ms, time-locked to the critical word. 

Only trials free from ocular, muscular, and electrical artifacts were included in analysis, 

as determined by preprocessing routines from the EEGLAB and ERPLAB toolboxes using 

participant-specific artifact detection thresholds, combined with manual inspection. To be 

included in the analysis, participants had to have at least 15 artifact-free trials per condition, 

and at least 160 artifact-free trials overall (across the 8 conditions). On average, 18% of 

trials were rejected for artifacts for the included participants, and artifact rejection rates did 

not different significantly across the eight conditions, F(7,255) = 0.58, p = 0.77.

ERP statistical analysis—We extracted single trial artifact-free ERP data, using a 

baseline of −300 to 0ms, by averaging across electrode sites and time windows in two 

spatiotemporal regions of interest, which were selected a priori, based on previous studies 

using a similar design (Kuperberg, Brothers, & Wlotko, 2020; Brothers, Wlotko, Warnke, 

& Kuperberg, 2020). The N400 was operationalized as the average voltage between 300–

500ms across five central electrode sites (Cz, CPz, C3/4, CP1/2). The late frontal positivity 

was operationalized as the average voltage between 600–900ms across five prefrontal 

electrode sites (FPz, FP1/2, AF3/4).

We analyzed these trial-level data using a series of linear mixed-effects regression models, 

which allowed us to look for effects of categorical predictors as well as continuous item-

level predictors. This random effect for items refers to contexts (not individual target words). 
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Thus, all trials that use the same introductory scenarios (and their control contexts) have the 

same item label.

All regression analyses were conducted in R (R Core Team, 2022), using the lme4 package 

version 1.1–31 (Bates et al., 2015) and lmerTest version 3.1–3 (Kuznetsova et al., 2017). 

Following Barr et al. (2013), all regression analyses included the maximal random effects 

structures justified by the design both by subjects and by items. Random effect correlations 

were included by default. However, if we encountered issues with model convergence or 

singular fits, we removed these correlations. If this step did not resolve the issues, we 

continued to simply the random effects structure until reaching convergence without singular 

fits.

For the analyses designed to test the friendly pre-activation account (Models 3 and 4), we 

calculated the semantic relatedness between the lower and higher probability words in all 

of our TargetScenarios. Specifically, we calculated the semantic relatedness (1 – cosine 

distance) on an item-by-item basis between the WithCompetitor SecondBest (A2) and the 

WithCompetitor Expected (A1) words, and between the NoCompetitor ZeroCloze (A4) and 

NoCompetitor Expected (A3) words. The semantic vectors used for these computations were 

obtained using a predictive Continuous Bag of Words model (see Mandera, Keuleers, & 

Brysbaert, 2017; http://meshugga.ugent.be/snaut-english, 300 dimensions, window size = 6).

We also conducted two additional analyses that are only reported in the Supplementary 

Materials/OSF. First, we conducted a series of Bayesian analyses. This is because, to 

foreshadow our findings, we report a series of null main effects and interactions that are 

critical to distinguishing the theoretical accounts under discussion. For these supplementary 

analyses, we calculated the Bayes Factor (BF01) to quantify the evidence in favor or 

against these null findings. Second, to explore the possibility of other late ERP effects 

related to misprediction (e.g. a left frontally distributed negativity described by Wlotko and 

Federmeier’s, 2012), which might occur outside our spatiotemporal regions of interest, we 

implemented a series of Mass Univariate analyses across all time points from 600–900ms 

and all electrode sites (except for temporal sites), correcting for multiple comparisons using 

a cluster-based approach.

Results

Behavioral results

Comprehension question accuracy across all conditions was 91% (on average), suggesting 

that readers were attending carefully to the discourse contexts.

ERP Results

In Figure 1, we show grand-average ERPs produced by the WithCompetitor Expected 
(A1) and SecondBest (A2) critical words in the TargetScenarios, along with the collapsed 

grand-averages produced by the same critical words in the ControlScenarios (B1–B2). 

Between 300–500ms, the WithCompetitor Expected critical words elicited the smallest 

N400 responses; the WithCompetitor SecondBest critical words, which, on average had 

moderate cloze probabilities, produced a larger N400 responses, and the ControlScenario 
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continuations, which, on average, had low cloze probabilities, produced the largest 

N400 response. Beyond the N400 time-window, between 600–900ms, the WithCompetitor 
SecondBest words appeared to produce a slightly larger positivity at frontal sites than the 

critical words in the ControlScenarios.

In Figure 2, we show grand-average ERPs from the NoCompetitor Expected (A3) and 

ZeroCloze (A4) conditions, as well as ERPs produced by the same critical words appearing 

in the ControlScenarios. Here, the critical words in the two unexpected conditions 

(ZeroCloze, ControlScenarios) had similarly low cloze probabilities, and produced a larger 

N400 than the NoCompetitor Expected critical words. Beyond the N400 time-window, there 

again appeared to be a slightly larger positivity at frontal sites between 600–900ms to the 

NoCompetitor ZeroCloze words relative to the critical words in the ControlScenarios.

ERP plots for all conditions individually at all electrodes sites and all time points are 

included in Supplementary Materials.

It is important to note that although there were clear differences between conditions in the 

mean cloze probability of the critical words, which was reflected by the differences in N400 

shown in Figures 1 and 2, there was considerable variability in cloze values within each 

of these conditions. Indeed, several conditions actually overlapped in their ranges of cloze 

probabilities (see Methods). For example, the range of top-1 cloze probabilities for critical 

words in the WithCompetitor SecondBest condition was 0–36%, which overlapped with the 

ranges in the WithCompetitor Expected (36–92%), NoCompetitor Expected (33.3–88%), 

NoCompetitor ZeroCloze (0–1.9%) conditions, as well as with the range of critical words 

in the ControlScenarios (range across B1–B4, 0–36%). Therefore, to test the divergent 

predictions made by the competitive pre-activation, independent pre-activation, and friendly 
pre-activation accounts, we used condition labels as categorical predictors (where relevant), 

while controlling for item-specific cloze probability as a continuous predictor variable.8 This 

enabled us to address three sets of questions.

Question 1: Competitive or independent pre-activation? Evidence from the N400

We began by asking whether there was any evidence of competitive pre-activation. This 

account predicts that in contexts with more than one likely continuation, there should be 

some degree of mutual inhibition between pre-activated alternatives prior to the incoming 

word becoming available. For example, in the WithCompetitor context from Table 1, the 

8For all analyses that included the WithCompetitor contexts, we also carried out the same set of analyses with an independent 
measure of lexical probability, taken from the large language model, GPT-3 (Brown et al., 2020). When we estimate lexical probability 
via cloze responses from multiple individuals, we assume that each individual response represents a noisy sample from an internal 
probability distribution of representation within an individual brain, and so multiple averaged guesses should provide a more precise 
estimation of these probabilistic representations than responses from a single individual – the so-called “wisdom of the crowd” effect 
(Galton, 1907; Stroop, 1932). Thus, if two words in two different contexts are matched in cloze probability, we tend to assume that 
their levels of pre-activation are also matched. However, it is possible that this assumption may not hold for the WithCompetitor 
contexts. This is because competition amongst pre-activated representations could, in principle, directly influence the probability 
with which these items are produced during the cloze task. For example, inhibition from the more probable alternative may reduce 
pre-activation of the SecondBest representation, making it less likely that this SecondBest continuation is produced than if it appeared 
in a NoCompetitor context. If this was the case, then it could lead to a systematic underestimation of the lexical probability of these 
SecondBest items, which would, in turn, reduce the likelihood of detecting evidence of competitive pre-activation during language 
comprehension. Our use of an independent corpus-based measure of lexical probability helped rule out this potential confound: For all 
tests of theoretical interest, we observed the same pattern of results using these GPT-3 estimates (see Supplementary Materials/OSF 
for results of these analyses in the annotated R script).
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pre-activated lexico-semantic representations, <hearts> and <flowers>, should inhibit one 

another during the prediction phase, resulting in less facilitation and a larger N400 than one 

would expect (based only on cloze probability) to the incoming SecondBest and Expected 
critical words. In contrast, the independent pre-activation account predicts that the amplitude 

of the N400 evoked by these words should depend solely on their cloze probabilities, 

regardless of the presence of a co-activated alternative. We tested these divergent predictions 

with Models 1 and 2.

Model 1: Does competitive pre-activation result in an increased N400 to 
SecondBest words?—In Model 1, we focused on the N400 in response to the 

WithCompetitor Expected (A1), and WithCompetitor SecondBest (A2) critical words, 

while controlling for Item-specific cloze probability. In order to control for low-level 

lexical variables, we also included the N400 responses from the identical set of critical 

words appearing in their associated ControlScenarios (B1 and B2, respectively). Thus, this 

model included fixed effects of Item-specific Cloze, Continuation Type (Expected = −0.5, 

SecondBest = 0.5), Stimulus Group (TargetScenarios = 0.5, ControlScenarios = −0.5), and 

an interaction between Continuation Type and Stimulus Group.

If there is competitive pre-activation in the WithCompetitor contexts, then we should see 

larger N400 responses to the SecondBest words, relative to Expected words, after controlling 

for item-specific cloze probability. In contrast, we should see no such difference between 

the N400 produced by the same critical words appearing in their ControlScenarios. In other 

words, we should see an interaction between Continuation Type and Stimulus Group.

Our results showed a clear main effect of Item-specific Cloze on the N400 (b = 3.58, t = 

2.47, p = .014). Critically, however, we saw no significant interaction between Continuation 

Type and Stimulus Group (see Table 3). These findings suggest that all critical words in our 

study evoked N400 amplitudes in proportion to their cloze probabilities, with no penalties 

for being in the presence of a pre-activated alternative.

Model 2: Does competitive pre-activation result in an increased N400 to 
Expected words?—In Model 2, we compared the N400 responses to the WithCompetitor 
Expected (A1) and the NoCompetitor Expected (A3) critical words. Again, to control for 

lexical variables, we included the N400 responses from the identical critical words appearing 

in their associated ControlScenarios (B1, B3). In this model, we included fixed effects of 

Item-specific Cloze, Contextual Competition (WithCompetitor = 0.5, NoCompetitor = −0.5), 

Stimulus Group (TargetScenario = 0.5, ControlScenario = −0.5), and an interaction between 

Contextual Competition and Stimulus Group.

If Expected words in WithCompetitor contexts were slightly inhibited by their SecondBest 
competitors during the pre-activation phase, then they should produce slightly larger N400s 

than the cloze-matched Expected words in the NoCompetitor contexts. As in Model 1, we 

would expect to see no such differences between the same critical words in their associated 

ControlScenarios. In other words, there should be an interaction between Contextual 

Competition and Stimulus Group (see Table 4).
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In this model, however, we found only a main effect of Item-specific Cloze on the N400 (b 
= 3.51, t = 2.87, p = .005). There were no other significant main effects, nor interactions. 

Taken together with Model 1, these results fail to provide evidence for the competitive 
pre-activation account; that is, the degree of pre-activation for a given word did not appear to 

be sensitive to the presence or absence of a pre-activated alternative.

Question 2: Friendly pre-activation due to shared semantic features: Evidence from the 
N400

Our second aim was to determine whether there is any evidence for friendly pre-activation 
as a result of overlap between the semantic features associated with the observed lower 

probability critical word and an unobserved higher probability pre-activated alternative. In 

contrast to the competitive pre-activation account, which predicted less facilitation and a 

larger N400 than that one would expect based on cloze probability alone, the friendly 
pre-activation account predicts more facilitation and a smaller N400 than one would expect 

based only on cloze. Moreover, this account also predicts that the reduction in the N400 

should be graded with increasing levels of relatedness between the critical word and its 

unobserved, higher probability alternative. To address this question, we first assessed the 

effects of friendly pre-activation in all lower probability continuations (Model 3). We then 

restricted our analyses to the subset of SecondBest continuations in the WithCompetitor 
contexts (Models 4 and 5).

Model 3: For all lower probability words, is there a graded effect of friendly 
pre-activation?—In Model 3, we included the N400 responses to all lower probability 

continuations in contexts with a potentially pre-activated higher probability alternative—

namely, the NoCompetitor ZeroCloze and the WithCompetitor SecondBest conditions. 

According to the friendly pre-activation account, the mere pre-activation of a higher 

probability alternative should provide facilitation on the N400 evoked by a lower probability 

continuation, but only if the two words are semantically related to one another. Thus, if 

there is friendly pre-activation, the N400 produced by lower probability continuations should 

become smaller (than predicted by cloze) as semantic relatedness increases.

To test this hypothesis, Model 3 included a continuous fixed effect of Semantic Relatedness, 

which was calculated, item-by-item, between each critical word and its higher probability 

competitor (see Methods). The model also included a fixed effect of Item-specific Cloze to 

control for differences between the two lower probability conditions.

Consistent with a friendly pre-activation account, we observed a significant effect of 

Semantic Relatedness such that the N400 produced by lower probability continuations 

(ZeroCloze, SecondBest) decreased as semantic relatedness increased (see Table 5; b = 6.01, 

t = 3.55, p < .001).9 In Figure 3 (left panel), we show the averaged N400 responses for each 

lower probability word as a function of its semantic relatedness with its higher probability 

9In Model 3, as well as in Model 4, which included only a subset of the non-modal continuations, there was no significant effect 
of Cloze, perhaps because of the relatively restricted range of cloze probability in these analyses. However, the fact that Semantic 
Relatedness predicted N400 amplitude, while controlling for cloze probability, supports the friendly pre-activation account.
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alternative. Consistent with the model results, the amplitude of the N400 increases with 

increasing similarity between the critical word and its higher probability alternative.

To further visualize this effect, we used a median split to subdivide the trials into those that 

were semantically related to a higher probability continuation (Mean semantic relatedness: 

0.44; SD: 0.10) and those that were semantically unrelated to a higher probability 

continuation (Mean semantic relatedness: 0.19; SD: 0.07). We then computed grand-average 

waveforms for each of these conditions across central electrode sites. Figure 3 (right 

panel) shows these waveforms, together with the waveforms produced by Expected critical 

words (averaged across conditions A1 and A3) and critical words in the ControlScenarios 
(averaged across conditions B2 and B4). As expected, we found graded N400s such that 

Expected words evoked the smallest responses, followed by a larger N400 to critical words 

that were Related to a higher probability alternative, and the largest N400s to critical 

words that were Unrelated to a higher probability alternative, and that appeared in the 

ControlScenarios. Taken together, these findings suggest that, instead of reducing the degree 

of lexico-semantic facilitation, the pre-activation of a higher probability alternative can 

further facilitate the processing of a lower probability critical word.

Model 4: Does friendly pre-activation also enhance facilitation on SecondBest 
critical words in WithCompetitor contexts?—In Model 3, we grouped together 

responses to all lower probability continuations in contexts with a potentially pre-

activated alternative, including zero-cloze continuations where previous work has already 

demonstrated friendly pre-activation (Kutas and Hillyard 1984; Federmeier & Kutas, 1999; 

Thornhill & Van Petten, 2012; DeLong & Kutas, 2020). Here, in Model 4, we focused 

solely on the N400 produced by the WithCompetitor SecondBest continuations, which have 

not been examined in previous studies. This provided a more direct test of whether, in 

these WithCompetitor contexts, SecondBest critical words receive friendly pre-activation 

from their higher probability alternatives, which, as discussed earlier, could have potentially 

acted as competitors. Similar to Model 3, this model included fixed effects of Semantic 

Relatedness and Item-specific Cloze (see Table 6). We again found a significant effect of 

Semantic Relatedness on the N400 on the WithCompetitor SecondBest continuations (b = 
7.37, t = 2.87, p = .006), when controlling for cloze probability.

Model 5: When minimizing friendly pre-activation, is there any evidence of a 
competition effect on SecondBest completions?—As noted in the Introduction, the 

competitive pre-activation and friendly pre-activation accounts are not mutually exclusive. 

Thus, even though, as shown in Model 4, SecondBest critical words that were semantically 

related to a more expected continuation received more facilitation than one would expect 

based on their cloze probability, it remained possible that SecondBest critical words that 

were semantically unrelated to a more expected continuation might receive less facilitation 

than expected, as a result of competitive pre-activation (see Ness and Meltzer-Asscher, 

2021a, for evidence during a speeded cloze task). On this account, one explanation for why 

we found no evidence of competitive pre-activation in Model 1 could be that any effects of 

competitive pre-activation were outweighed by friendly pre-activation.
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To explore this possibility, we further restricted our analysis to the subset of WithCompetitor 
items in which the Expected and SecondBest continuations were unrelated to one 

another. All trials were split into Related and Unrelated groups using a median split on 

Semantic Relatedness (Median = 0.39). We then selected the SecondBest words from these 

semantically Unrelated trials and paired them with their associated ControlScenarios. We 

then implemented another model with fixed effects of Stimulus Group (TargetScenarios = 
0.5, ControlScenarios = −0.5) and Item-specific Cloze as a control variable. If there was 

any evidence of competitive pre-activation on the N400, we should see an effect of Stimulus 

Group in this model. However, similar to the models above, we observed no such categorical 

effect of Stimulus Group; if anything the beta-weight for this model went in the opposite 

direction, with greater facilitation on unrelated SecondBest words in the WithCompetitor 
contexts than when the same words appeared in the ControlScenarios (see Table 7).

Question 3. Late costs of suppressing higher probability alternatives: Evidence from the 
late frontal positivity.

Our final aim was to determine whether, in the WithCompetitor contexts, there was any 

evidence for costs associated with late inhibition when processing SecondBest versus 

Expected continuations. To address this question, we focused on the late frontal positivity, 

which has sometimes been interpreted as an index of inhibiting or suppressing an incorrect 

lexical prediction in order to successfully integrate an observed input into the unfolding 

context (Kutas, 1993; Ness & Meltzer-Asscher, 2018).

Model 6: Are there inhibitory costs on the late frontal positivity produced by 
SecondBest relative to Expected continuations in WithCompetitor contexts?
—Similar to Model 1 for the N400, Model 6 compared the late frontal positivities produced 

by WithCompetitor Expected (A1) and WithCompetitor SecondBest (A2) critical words, as 

well as the same critical words appearing in the ControlScenarios (B1 and B2, respectively), 

i.e., it included fixed effects of Item-specific Cloze, Continuation Type (Expected = −0.5, 

SecondBest = 0.5), Stimulus Group (TargetScenarios = 0.5, ControlScenarios = −0.5), and 

an interaction between Continuation Type and Stimulus Group.

If late costs are incurred when comprehenders suppress/inhibit an incorrectly pre-activated 

alternative, then the SecondBest completions should produce a larger frontal positivity than 

the Expected continuations, and there should be no such differences between the same 

critical words appearing in the ControlScenarios, i.e., a there should be an interaction 

between Continuation Type and Stimulus Group. However, our results did not indicate any 

such interaction (see Table 8). Thus, in WithCompetitor contexts, there was no evidence of 

any late penalty in processing lower probability words in the presence of a higher probability 

alternative.

Models 7 and 8: Are there continuous effects of Constraint on the late frontal 
positivities to lower probability critical words?—One reason why some researchers 

have suggested that the late frontal positivity reflects late costs associated with suppressing 

an incorrectly predicted alternative is that this component is sometimes larger in response 

to zero-cloze words appearing in high constraint contexts, which constrain for a single 
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alternative, relative to zero-cloze words appearing in low constraint contexts that do not 

constrain for any specific word (e.g. Federmeier et al., 2007; Kuperberg, Brothers, & 

Wlotko, 2020).

In light of these findings, we attempted to replicate (and extend) these previous findings 

by investigating how the late frontal positivity to lower probability continuations varies as 

a function of Contextual Constraint in the present study (Models 7 and 8). In comparison 

with previous studies, which have contrasted ERPs to zero-cloze words appearing in high 
constraint versus low constraint contexts, the present study included discourse contexts 

with a fairly wide range of constraint across conditions. Thus, even though, the average 
constraint of the contexts in the ControlScenarios was lower (Mean constraint = 19.5%, SD 
= 7.8%) than that of the TargetScenarios (Mean constraint = 59.1%, SD = 14.8%), there 

was still a considerable amount of variability in Contextual Constraint within both these 

stimulus groups (ControlScenarios Range = 8–52%, TargetScenarios Range = 33.3–92%). 

We therefore decided to combine these two conditions and use a continuous item-level 

measure of constraint, rather than categorical measure of constraint, for these analyses.

In Model 7, we examined the effect of Item-specific Constraint on the late frontal positivity 

produced by zero-cloze items (analogous to what has been examined in previous studies). 

In the present study, this included all items in the NoCompetitor ZeroCloze (A4) and their 

associated ControlScenarios (B4). This model included fixed effects of Item-specific Cloze 

and Item-specific Constraint (see Table 9). In this analysis, we found that the effect of 

Item-specific Constraint trended toward significance in the predicted direction (b = 1.46, t = 

1.90, p = .06).

Because of this near replication, and given the interest of an anonymous reviewer, we 

then ran another model (Model 8) with the same predictors to explore whether there was 

an influence of Item-specific Constraint on the late frontal positivities produced by the 

WithCompetitor SecondBest critical words (A2) and their corresponding controls (B2). 

Results indicated a significant effect of Item-specific Constraint (see Table 10) such that late 

frontal positivities became larger as the constraint of the context increased (b = 2.46, t = 

2.51, p = .014).

The results from these two analyses (Models 7 and 8), taken together with the prior 

literature, suggest that lower probability continuations show larger late frontal positivities 

in higher relative to lower constraint contexts.10 We discuss this finding further in the 

Discussion.

Discussion

It is well-established that linguistic predictions are probabilistic, and that the processing 

of incoming words is facilitated in a graded fashion to the degree that they have been pre-

10For completeness, we also ran identical models to Models 7–8 on the N400 response. Consistent with the prior literature, we did 
not see any effects of constraint on the N400 to the NoCompetitor ZeroCloze continuations (b = 0.40, t = 0.49, p = .62) nor the 
WithCompetitor SecondBest continuations (b = 1.93, t = 1.71, p = .09).
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activated by the prior context. This raises an obvious question: Are there “costs” associated 

with generating lexico-semantic predictions during language comprehension?

To address this question, most researchers have focused on the specific situation in which 

a plausible but lexically unpredictable target word violates a strong lexical prediction that 

is generated in a highly constraining context (e.g. “He bought her a pearl necklace for her…
collection”). It has been hypothesized that such prediction violations might incur processing 

costs as a result of competition between the bottom-up input and the incorrect prediction. To 

test this hypothesis, researchers have contrasted these prediction-violating-target words with 

target words that are equally unpredictable, but that do not violate a strong prediction (e.g. 

“He looked worried because he might have broken his…collection”).

ERP and behavioral studies examining this contrast have found no evidence of costs 

associated with violating strong predictions during lexico-semantic processing (ERP studies 
examining the N400: Kutas & Hillyard, 1984; Federmeier, Wlotko, De Ochoa-Dewald 

& Kutas, 2007; Kuperberg, Brothers, & Wlotko, 2020; behavioral studies: Frisson et al., 

2017; Steen-Baker, Ng, Payne, Anderson, Federmeier & Stine-Morrow, 2017; Fischler & 

Bloom, 1979, 1985; Schwanenflugel and LaCount, 1988; see also Wong, Veldre & Andrews, 

2022). However, some ERP studies have shown that, in plausible sentences, this contrast 

sometimes reveals a frontally-distributed positivity effect at a later stage of processing (e.g. 

Federmeier et al., 2007; Kuperberg, Brothers, & Wlotko, 2020). This effect has sometimes 

been interpreted as indexing later costs as a result of competition between the predicted 

word and the bottom-up input (Kutas, 1993; Ness & Meltzer-Asscher, 2018).

In the present study, we ask a different question that has received far less attention in the 

literature: Are there any consequences of disconfirming a prior prediction in contexts that 

constrain for multiple possible candidates?

In contrast to prediction violations on zero-cloze words, where any competition would 

begin only once the bottom-up input is encountered, in these WithCompetitor contexts, the 

pre-activated alternative candidates could begin to compete with one another before the 

onset of the target word. This would lead to relative costs in processing the bottom-up 

input; that is, even if the target is partially predictable because it confirms one of the 

pre-activated alternatives, it may still be more difficult to process than if there had been no 

pre-activated competitor. These relative costs could be incurred during the initial stages of 

lexico-semantic processing, predicting a larger N400 than would be expected based only on 

cloze probability. Alternatively, they might manifest at a later stage of processing on the late 

frontal positivity.

In a naturalistic eye-tracking study, Luke and Christianson (2016) showed (a) that such 

“high competition” contexts followed by “second best” continuations are encountered 

frequently in natural texts, but (b) when these texts are read for comprehension, the second-

best continuations incurred no behavioral processing costs on either early or late reading 

time measures. Instead, these authors found evidence of increased facilitation when less 

predictable words were semantically related to a higher probability alternative.
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In the present study, we conceptually replicated Luke and Christianson’s findings using a 

different method — ERPs — and using a controlled experimental design, which allowed 

us to control for potential lexical confounds. Contrary to the predictions of a competitive 
pre-activation account, we found that in WithCompetitor contexts, the N400s produced 

by SecondBest and Expected continuations were no larger than would be predicted given 

their cloze probabilities alone. Instead, we found evidence for friendly pre-activation on the 

N400: Extending previous ERP findings showing that zero-cloze words that are semantically 

related to a predicted continuation produce facilitation on the N400 (e.g. Federmeier & 

Kutas, 1999), we found that when a SecondBest critical word was semantically related to 

the higher probability alternative, it produced a smaller N400 than expected given its cloze 

probability (i.e. enhanced facilitation). Finally, we found no evidence for differences in the 

responses produced by the SecondBest and the Expected continuations on a later frontal 

positivity, even though this component was influenced by the constraint of the prior context.

These findings have important theoretical implications for understanding the mechanisms 

underlying probabilistic prediction during language comprehension. In the remainder of this 

discussion, we first consider the lack of evidence for competitive effects on the N400 in the 

WithCompetitor contexts. We then consider the lack of evidence for competitive effects on 

the late frontal positivity and consider reasons why this late effect was nonetheless sensitive 

to contextual constraint. Third, we discuss how our findings extend previous work that 

has demonstrated the role of friendly pre-activation on the processing of zero-cloze words. 

Finally, we discuss the computational principles of a parallel, interactive framework of 

predictive processing that can accommodate these findings, and how these principles might 

be implemented by a biologically plausible architecture and algorithm known as predictive 

coding.

No evidence for effects of competitive pre-activation on the N400

During language comprehension, prediction is often viewed as a top-down process in 

which comprehenders use their current high-level interpretation to pre-activate lower-level 

lexico-semantic representations of upcoming words. At face value, this top-down process 

is similar in many respects to language production, in which producers use an intended high-

level message to activate lower-level lexical representations for later articulation. This has 

led some researchers to propose that top-down prediction during language comprehension 

routinely employs the same mechanisms that are employed during language production (e.g. 

Pickering & Garrod, 2013; Fitz & Chang, 2019; Van Petten & Luka, 2012).

In testing this theory, a critical factor to consider is that, to produce language, there is 

continuous top-down pressure to select a single word (e.g. Levelt, 2001). One well-known 

mechanism of top-down lexical selection during language production is mutual competitive 
inhibition in which co-activated lexical representations each exert lateral inhibition on 

one another until a single candidate is selected. This type of “winner-takes-all” selection 

mechanism is a fundamental characteristic of classic Interactive Activation and Competition 

(IAC) models that have been used to model language production (e.g. Chen & Mirman, 

2012). For example, in a recent study, Ness and Meltzer-Asscher (2021a) used an IAC 

model (Chen & Mirman, 2012) to simulate production times in a speeded cloze tasks. 
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These authors showed that competitive inhibition between unrelated pre-activated lexical 

representations could explain the longer-than-expected times to produce upcoming words 

(see also Nakamura & Phillips, 2022).

To the extent that the same IAC principles have been proposed to underlie aspects of 

language comprehension (e.g. McClelland & Rumelhart, 1981; McClelland & Elman, 

1986; see also Spivey & Tanenhaus, 1998; MacDonald, Pearlmutter & Seidenberg, 1994), 

then this would predict that the presence of a competing alternative during the predictive 

phase of language comprehension should reduce lexico-semantic facilitation on incoming 

words when they become available. This would result in larger N400s on critical words 

in WithCompetitor contexts than one might expect based on cloze probability alone. 

This reduced facilitation should be particularly apparent on SecondBest continuations 

(e.g. “flowers”) because, in IAC models, lateral inhibition scales non-linearly, such that 

more strongly activated lexical units exert the greatest inhibitory pressure. Specifically, 

during the pre-activation phase, the more weakly pre-activated second-best alternative (e.g. 

<flowers>) would receive strong inhibition from the more strongly pre-activated alternative 

(e.g. <hearts>), and so when this SecondBest input (“flowers”) actually appears, it should be 

relatively more difficult to access its lexico-semantic representation. In addition, one might 

also expect to see some effect of top-down competitive inhibition on the Expected words 

in the WithCompetitor contexts (“hearts”) compared to Expected words in NoCompetitor 
contexts with the same cloze probability, although this inhibition effect should be smaller in 

magnitude.

However, we found no evidence for these types of competitive effects in the WithCompetitor 
contexts: First, the SecondBest words produced N400s in proportion to their cloze 

probabilities, with no additional effect of Continuation Type (Expected vs. SecondBest). 
Second, the Expected words in WithCompetitor context had comparable N400s to the 

Expected words in NoCompetitor contexts. These findings therefore do not support the 

idea that mutual inhibition between multiple pre-activated candidates influences subsequent 

lexico-semantic processing of incoming words between 300–500ms.

No evidence for late suppression costs to SecondBest versus Expected critical words on 
the late frontal positivity

We also found no evidence for neural costs in processing SecondBest relative to Expected 
continuations at a later stage of processing, either on the late frontal positivity or on any 

other late ERP component (see Supplementary Material).11 This provides evidence against 

a late suppression account, which claims that in order to integrate a lower probability word 

into its prior context, it is necessary to suppress an alternative predicted (but unobserved) 

11Wlotko and Federmeier (2012) proposed that another ERP component might reflect late costs associated with competition: In an 
exploratory post-hoc analysis, these authors observed a left-lateralized frontal negativity in response to medium-high (75–90%) cloze 
probability words, particularly those with an alternative competing continuation. These authors speculated that this effect indexed 
working memory resources necessary to deal with multiple competing possibilities during lexical selection. We did not find any 
evidence of this effect, either in the analyses presented in this manuscript or in further analyses reported in Supplementary Materials, 
despite the fact that our NoCompetitor Expected versus WithCompetitor Expected contrast closely resembled the contrast where 
Wlotko and Federmeier found their late left-lateralized frontal negativity.
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representation that remain active past the N400 time window (Kutas, 1993; Ness & Meltzer-

Asscher, 2018).

The original motivation for the late suppression account of the late frontal positivity was 

that this ERP component is sometimes larger to plausible zero-cloze words appearing in very 

high constraint versus low constraint contexts (e.g. Federmeier, Wlotko, De Ochoa-Dewald 

& Kutas, 2007; Kuperberg, Brothers, & Wlotko, 2020; although this is not always the 

case, e.g. see Thornhill and Van Petten, 2012; Zirnstein, van Hell & Kroll, 2018). In the 

present study, we replicate and extend this original finding by showing significant (and 

near significant) graded effects of Item-specific Constraint on the late frontal positivity (see 

Models 7 and 8). Therefore, our findings raise the question of what neurocognitive processes 

the late frontal positivity does index, and why this component is sometimes sensitive to 

contextual constraint, but not to lexical-level inhibition.

In recent work, we have argued that, rather than indexing processes that operate over 

individual lexical items (such as lexical suppression), the late frontal positivity indexes 

processes related to the successful updating of the comprehender’s higher-level situation 
model upon encountering new unpredicted input (Brothers, Wlotko, Warnke, & Kuperberg, 

2020; Kuperberg, Brothers, & Wlotko, 2020; Brothers, Greene, & Kuperberg, 2020). On 

this account, the reason why the late frontal positivity is often enhanced on unexpected 
plausible words that violate a higher probability prediction is that these types of unexpected 

words tend to trigger larger updates/shifts of the situation model (by retrieving new schema-

relevant information from long-term memory). For example, when reading “He bought her 
a pearl necklace for her collection”, the final word (collection) may produce a large late 

frontal positivity because the comprehender updates the situation model by inferring new 

schema-relevant events that are related to the collection of jewelry.

Critically, this account of the late frontal positivity implies that the presence of a strong 

lexical-level competitor is neither necessary nor sufficient to induce updates of the 

situation model and produce this effect. In the present study, this would explain why the 

WithCompetitor SecondBest completions (e.g. “flowers”) did not produce a larger late 

frontal positivity than the WithCompetitor Expected completions. We suggest that both 
these critical words produced some degree of update in the comprehender’s situation model, 

which was, on average, greater than that produced by critical words in the ControlScenarios.

This situation model updating account can also explain why the late frontal positivity 

effect is not produced by unexpected words that violate strong predictions in very short 

sentences where comprehenders are unlikely to engage in building a situation model (e.g. 

“James unlocked the…[door]/laptop”, see Brothers, Wlotko, Warnke, & Kuperberg, 2020, 

Experiment 1). In addition, it can explain why, relative to expected words, a robust late 

positivity is sometimes produced by unexpected words appearing in low constraint contexts 

(e.g. Chow, Lau, Wang & Phillips, 2018; Freunberger & Roehm, 2016; Davenport & 

Coulson, 2011), sometimes with an amplitude that is, in fact, just as large as to high 

constraint unexpected continuations (e.g. Thornhill & Van Petten, 2012; Ng, Payne, Steen, 

Stine-Morrow, & Federmeier, 2017; Hubbard, Rommers, Jacobs, & Federmeier, 2019; 

Zirnstein, van Hell & Kroll, 2018). In these cases, both types of unexpected words may 
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be informative enough to induce fairly large updates of the situation model (see Brothers, 

Greene & Kuperberg, 2020).

We emphasize, however, that the present study was not designed to directly test this situation 

model updating account of the late frontal positivity, and so it will be important for future 

studies to further explore the function role of this late frontal effect.

Friendly pre-activation

In contrast to the lack of evidence for competitive pre-activation, we did find clear evidence 

for friendly pre-activation on lexico-semantic processing. The N400 response produced by 

lower probability words was reduced when these words shared semantic features with a 

more strongly pre-activated alternative (bride – groom). This finding is consistent with 

previous ERP studies that have reported this type of “anticipatory semantic overlap effect” 

both on unexpected implausible words (Federmeier & Kutas, 1999; DeLong, Chan, & 

Kutas, 2019; Ito, Corley, Pickering, Martin, & Nieuwland, 2016) as well as on unexpected 

zero-cloze plausible words (Thornhill & Van Petten, 2012; DeLong & Kutas, 2020; for 

consistent behavioral results, see Frisson et al., 2017, Experiment 2; Roland, Yun, Koenig & 

Mauner, 2012; Wong, Veldre & Andrews, 2022).12

Importantly, by conceptually replicating Luke and Christianson’s (2016) behavioral findings 

in their natural corpus, our findings extend this previous ERP work in two ways: First, we 

show that the anticipatory effect of semantic relatedness on the N400 is graded, with a linear 

relationship between degree of semantic relatedness and degree of facilitation. Second, we 

demonstrate that this additional facilitation occurs on SecondBest continuations (with non-

trivial cloze probabilities) that are encountered in WithCompetitor contexts. Unlike a zero-

cloze word, which will receive facilitation from a higher-probability predicted alternative 

only after it is encountered, SecondBest completions are likely to have already received 

some pre-activation from the semantically related alternative before the onset of the bottom-

up input (see below for further discussion). As discussed earlier, during this pre-activation 

phase, the higher probability alternative could have, in principle, acted as a competitor. 

Therefore, by showing that these higher probability alternatives can facilitate, rather than 

inhibit, subsequent lexico-semantic access, we provide important evidence that semantic 

overlap from alternative pre-activated items can support everyday language processing. 

Indeed, as noted earlier, Luke and Christianson (2016) showed that such SecondBest 
continuations in WithCompetitor contexts occur frequently in natural language.

We should note that finding an anticipatory semantic overlap effect on critical words in 

WithCompetitor contexts is compatible with some IAC architectures. For example, in Chen 

& Mirman’s IAC model (2012), in addition to receiving inhibitory lateral connections from 

other localist lexical items, each lexical item also receives cross-layer excitatory connections 

12In a previous eye-tracking study, Frisson, Harvey and Staub, 2017 (Experiment 2) observed semantic overlap effects on plausible 
prediction violations, but only on late eye-tracking measures. This led the authors to conclude that lexical predictability and semantic 
overlap influenced distinct processing stages (word recognition and integration). The current findings, however, suggest that lexical 
predictability and semantic relatedness both modulated the same underlying ERP response (the N400) with a similar time course. 
Again, this finding supports the claim that semantic overlap effects are anticipatory in nature and can influence the initial stages of 
lexico-semantic retrieval (for additional supporting evidence, see Wong, Veldre & Andrews, 2022).
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from distributed sets of semantic features. If two pre-activated candidates share semantic 

features, then this shared excitation can sometimes outweigh any mutual lexical-level 

inhibition. Evidence that this can impact language production comes from a recent study 

by Ness & Meltzer-Asscher (2021a), who carried out simulations using Chen and Mirman’s 

IAC model, and showed that the additional pre-activation received by an expected lexical 

unit that shared semantic features with its second best “competitor” was able to explain 

peoples’ faster response latencies to produce this word in a speeded cloze task.

However, as discussed earlier, Ness & Meltzer-Asscher (2021a) also found that the mutual 

lateral inhibition between lexical units in the IAC model was able to explain why producers 

took longer to produce expected words the presence of an unrelated competitor. In the 

present study, however, we found no evidence that this type of mutual inhibition between 

pre-activated competitors influenced comprehension: Even when we considered only the 

subset of WithCompetitor contexts in which the SecondBest continuation was semantically 

unrelated to the Expected continuation (based on a median split), the N400 produced by 

SecondBest continuation was no larger than that produced by the same critical words in the 

ControlScenarios.

Taken together, these findings provide strong evidence for friendly pre-activation, but no 

evidence for competitive pre-activation during language comprehension.

Explaining parallel, graded and friendly pre-activation within a hierarchical probabilistic 
generative framework

In the sections above, we discussed how researchers have appealed to architectures such as 

IAC in which lateral inhibitory connections between lexical representations play a key role 

in inhibiting pre-activated competitors. These frameworks, however, are incompatible with 

our current findings, as we found no evidence that inhibition between pre-activated lexical 

competitors influences lexico-semantic processing during comprehension. In this section, 

we will argue that our findings can be better understood within a probabilistic generative 

framework of language processing (see Kuperberg & Jaeger, 2016 for an overview). We first 

discuss the computational principles of this framework at Marr’s first level of analysis (Marr, 

1971), and consider how these principles can explain the present set of findings. We then 

consider how this framework could be implemented at the algorithmic level, highlighting 

predictive coding as a particularly promising architecture and algorithm for achieving this 

goal.

Marr level 1: Probabilistic Inference: Explaining the bottom-up input and 
explaining away alternatives—At the heart of all probabilistic generative frameworks 

is the generative model — an internal network of hierarchically organized knowledge 

that encodes the agent’s probabilistic assumptions about how latent causes (also called 

hypotheses) cause or “generate” observations from the environment (see Griffiths, Chater, 

Kemp, Perfors, & Tenenbaum, 2010). At each level of representation, each hypothesis is 

held with a particular probability, referred to as a belief, and at any given time, an agent 

can hold multiple beliefs in parallel, which, together can be described as a probability 

distribution. When new input (evidence) becomes available from the environment, prior 
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beliefs at each level of representation are updated through Bayes’s rule, with belief flowing 

dynamically up and down the hierarchical generative network until it settles on the latent 

causes that best “explain” the statistical structure of the input (Pearl, 1982).

Within this probabilistic framework, the process of deep language comprehension can be 

understood as the process of inferring the high-level message that the producer intended 

to communicate from a sequence of linguistic inputs that unfold in real time. We will 

refer to this high-level interpretation as a situation model –– a representation of the set 

of events being communicated, including the referential, spatial, temporal, motivational 

and causal coherence relationships that link them (Van Dijk & Kintsch, 1983; Zwaan & 

Radvansky, 1998). We assume that this situation model lies at the top of the comprehender’s 

internal generative model, and that the network below it comprises all relevant information 

that is needed to infer this interpretation. This network encodes information at multiple 

levels of linguistic and non-linguistic representation (e.g. event structures, syntax, semantics, 

phonology, orthography). However, for the purpose of explaining our current findings, 

we will primarily focus on just four of these levels of representation: concepts, semantic 

features, lexical items, and orthographic features. Within this part of the generative 

network, each individual concept (e.g. {lime}) serves as a latent cause of a unique 

combination of distributed semantic features (e.g. the combination of <sour> and <edible> 

and <squeezable> and <green>). Each unique combination of semantic features, in turn, 

serves as a latent cause of a specific lexical representation (e.g. /lime/), which similarly 

serves as the latent cause for a particular set of distributed form features (e.g. “L-I-M-E”). 

Note that, with these assumptions, each lexical representation describes a mapping function 

that uniquely links a particular unique combination of semantic features with a particular set 

of form features.13

During word-by-word language comprehension, the situation model continually propagates 

belief down to lower levels of the generative hierarchy. Because this high-level situation 

model represents information over a long time span, these beliefs will reach the conceptual, 

semantic, and lexical levels before new bottom-up input becomes available to these 

levels. Thus, within this framework, a lexico-semantic prediction corresponds to the 

comprehender’s prior beliefs about the particular concepts, the particular sets of semantic 

features, and the particular lexical items that are most likely to have caused/generated 

the orthographic features of the upcoming word. For example, when reading the scenario, 

“At the restaurant, Anthony got his food. He squeezed the fresh….”, a comprehender 

may have a 70% prior belief that Anthony squeezed a {lemon}/lemon/ and its unique 

set of semantic features, and a 30% belief that Anthony squeezed a {lime}/lime/ and its 

unique set of semantic features. (Note that, as discussed later, at the level of semantic 

features, a comprehender’s prior belief about a particular combination of features does not 
necessarily equate to the average of their prior belief of encountering each of these features 

individually).

13Within a Bayesian belief network, each individual lexical item would correspond to a particular value of a variable that functions to 
“d-separate” these semantic and form features such that they are conditionally independent (Pearl, 1988; see Narayanan & Jurafsky, 
2001 for discussion in relation to a different aspect of language comprehension).
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Then, when new orthographic/phonological input is encountered (e.g. the orthographic 

features, L-I-M-E), this provides strong new evidence that is compatible with only one 

candidate hypothesis (only one latent cause) at each level of representation. As a result, 

over multiple cycles of belief updating, the agent’s belief over the conceptual representation, 

{lime}, its unique combination of semantic features (<sour> and <edible> and <squeezable> 

and <green>), and its lexical representation, /lime/, will each rise to nearly 100%, while 

belief will fall over all other mutually exclusive hypotheses at each of these levels 

of representation. This process of belief updating can be conceptualized as a type of 

“competitive selection” in that it involves selecting one latent cause from multiple mutually 

exclusive hypotheses. However, as we discuss next, and as illustrated in Figure 4, this 

type of “selection-by-inference” is quite different from the competitive selection that is 

implemented by IAC networks.

As explained earlier, in an IAC architecture, selection is implemented through mutual lateral 

inhibition between active units at a single lexical level of representation. In contrast, in 

probabilistic inference, latent causes compete to explain observations at the level below. To 

win this competition, each possible hypothesis at the conceptual and lexical levels must be 

evaluated in relation to each possible combination of observed semantic and orthographic 

features in order to determine which hypothesis/latent cause provides the best possible 

explanation of the particular combination of features that are observed. For example, at 

the lexical level, /lime/ and /dime/ both match the observed orthographic features, “I-M-

E”, but only /lime/ can additionally explain the specific combination “L-I-M-E”, with 

the presence of “L” and the absence of “D” in the input’s first position, and so it will 

win the competition. Analogously, at the conceptual level, both {lemon} and {lime} can 

explain the observed semantic features, <sour>, <edible>, and <squeezable>, but only the 

conceptual representation {lime} can account for the specific combination of observed 

features, including the presence of <green> and the absence of <yellow>.

Moreover, as discussed by Lee and Mumford in their foundational paper describing 

hierarchical inference in the visual system, because belief flows dynamically up and down 

the hierarchical generative model, competitive inference over latent causes at higher levels 

of the hierarchy will continually influence competitive inference at lower-levels, and vice 

versa (Lee & Mumford, 2003, p. 1437). For example, as illustrated schematically in Figure 

3, as belief rises over the lexical representation, /lime/, this will lead the comprehender to 

infer/retrieve its unique set of semantic features from long-term memory. The rise in belief 

over this unique set of semantic features will, in turn, provide new bottom-up evidence that 

leads the comprehender’s prior conceptual beliefs to shift from {lemon} to {lime}. This, 

in turn, will provide new top-down evidence that induces a further rise in belief over /lime/ 

(versus /dime/) as the most likely lexical hypothesis.14

14This has important implications for theories of language comprehension: It implies that “lexical access” (inferring the lexical item 
that best explains a set of form features) is inherently intertwined with, and inseparable from inferring its conceptual representation. 
Moreover, to the degree that a word’s conceptual representation (e.g. {lime} is part of an event, e.g. {Anthony squeezed the lime}, 
then this also implies that “lexical access” is inherently linked to “lexical integration”. However, we emphasize that integrating a 
single word into its local context to infer an event within a single proposition is not the same as updating a still-higher-level situation 
model, based on this newly inferred event. The latter process may additionally involve activating/retrieving new schema-relevant 
information from long-term memory. For example, inferring, {Anthony squeezed the lime} may lead the comprehender to update her 
situation model by increasing belief over (or, equivalently, retrieving) information related to Mexican or Latin American cuisine, see 

Brothers et al. Page 27

Cognition. Author manuscript; available in PMC 2024 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Critically, as belief rises over the correct latent conceptual and lexical representations 

({lime} and /lime/), it falls over their competing neighbors ({lemon} and /dime/). This 

phenomenon exemplifies a form of Bayesian reasoning known as “explaining away” in 

which a rise in belief over one latent cause results in a reduction in belief over competing 

latent causes that share overlapping outcomes/observations. “Explaining away” is classically 

illustrated by the sprinkler problem: if we see wet grass and then find out that the sprinkler 

was on, our belief in the more likely hidden cause –– that it was raining –– decreases 

(Pearl, 1988). As we discuss later, explaining away can be implemented in neural networks 

that approximate Bayesian inference, where it provides a more “natural” mechanism for 

competitive selection than lateral inhibition (see Smolensky, 1986; Gaskell & Marslen-

Wilson, 1997).

These basic principles of probabilistic inference can explain two key aspects of the current 

findings. First, they can explain why, in the WithCompetitor contexts that constrained 

for upcoming words that were semantically related to one another, we found evidence of 

friendly but not competitive pre-activation. As explained above, in a Bayesian framework, 

multiple prior beliefs can be maintained in parallel. Thus, after reading the context, “At 

the restaurant, Anthony got his food. He squeezed the fresh….”, the conceptual/lexical 

representations of both {lemon}/lemon/ and {lime}/lime/ are pre-activated in parallel, 

without any pressure to select between them. Moreover, because these pre-activated 

representations share common semantic features (i.e. <sour>, <edible>, and <squeezable>), 

and because the prior probability of each of these shared features is 100%, the average prior 

probability of encountering the set of individual semantic features that correspond to “lime” 

will be greater than 30% (i.e. greater than the prior probability of the unique combination 
of these features). As a result, when this lower probability target, “lime” is encountered, and 

its lexical and conceptual representation is actually inferred, the total change in probability 

at the level of semantic features will be less than the change in belief at either the lexical or 

conceptual levels.

Crucially, behavioral measures of processing and the N400 are primarily sensitive to 

changes at the level of semantic features, rather than at the lexical or conceptual levels. This 

has important implications for using estimates of lexical probability, based either on cloze 

or large language models, to predict behavioral and ERP measures of processing: Given that 

so many of the words that we encounter in natural text have semantically related alternatives 

(Luke and Christianson, 2016), these measures are likely to systematically underestimate the 

probability of encountering their semantic features and therefore their processing difficulty.

Second, these probabilistic principles can explain why, in the WithCompetitor contexts that 

constrained for upcoming words that were semantically unrelated to each other, we also saw 

no evidence of costs due to competitive pre-activation; that is, why the process of inferring 

the correct lexical and conceptual representation of the target was no more difficult than if 

the same target had been encountered with the same probability in a NoCompetitor context. 

To illustrate why this was the case, imagine reading a context like “Gina was about to eat 

Figure 3. As discussed earlier, the successful update of the comprehender’s higher-level situation model may be linked to the late 
frontal positivity ERP component, rather than the N400.
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her fish and fries. She squeezed the…”. At this point, we may have a 70% prior belief 

in /ketchup/ and a 30% prior belief in /lemon/. As discussed earlier, in an IAC architecture, 

these two pre-activated unrelated lexical representations would begin to compete before the 

bottom-up input is encountered. Moreover, once “lemon” is encountered, its pre-activated 

lexical representation, /lemon/, would continue to receive lateral inhibition from the more 

strongly pre-activated item, /ketchup/. For both these reasons, it will be harder to select the 

correct target, /lemon/, in this WithCompetitor context than if there had been no competing 

alternative.

In contrast, in a Bayesian framework, there is no prior pressure to select between the pre-

activated representations, /ketchup/ and /lemon/15 until new bottom-up evidence, becomes 

available. Moreover, once the new target input is encountered, the total change in belief that 

it induces is determined primarily by its own prior probability. For example, in the above 

example, encountering the word “lemon” should induce an increase in belief of 70% over its 

lexical representation, i.e. a change from 30% to almost 100%. This will be accompanied by 

a fall in belief of 70% to nearly 0% over /ketchup/; that is, the total change of belief is 70% 

in both directions. Similarly, in a NoCompetitor context, observing “lemon” will induce a 

70% increase in belief over /lemon/. Because within this framework, all lexical probabilities 

must add up to 1, this will be accompanied by a 70% decrease in belief over the full set of 

alternative lexical representations in the lexicon.

Marr level 2: A neural network that approximates Bayesian inference: 
Predictive coding—Of course, principles that are specified at Marr’s first level of 

analysis are not always applicable at Marr’s second algorithmic level. However, there 

are some connectionist networks and algorithms that can approximate Bayesian inference, 

and, in these cases, the fundamental probabilistic principles outlined above should also 

apply. Specifically, within these types of neural networks, one can think of each lexical 

representation as corresponding to a specific pattern or “blend” of activity (cf. Smolensky, 

1986) over the particular set of connectionist units that encode its unique set of semantic 

features. On the assumptions that (a) comprehenders pre-activate upcoming lexico-semantic 

information based on the full situation model they have constructed prior to encountering an 

incoming word, and (b) they allocate a fixed amount of resources for this pre-activation, 

each unique blend would be pre-activated in parallel, with a strength that mirrors its 

estimated prior probability.16 Then, upon encountering new bottom-up input, activity would 

increase over the unique pattern that encodes the semantic features of the incoming word, 

while, at the same time decreasing over all other blends. Once again, however, if the 

15Within this framework, the only time when a comprehender would “pre-select” upcoming candidates during the pre-activation phase 
is if the context constrains for representations that are mutually incompatible with one another. For example, the selection restrictions 
of a verb can constrain either for semantic features associated with animate or inanimate entities (see Wang, Wlotko, Alexander, 
Schoot, Kim, Warnke, & Kuperberg, 2020 for recent evidence for this type of distributed pre-activation).
16This proposal assumes fully incremental language comprehension in which the comprehender (a) continually updates her situation 
model based the prior context, and (b) uses this updated situation model to generate top-down predictions that reach lower levels of 
representation before new lexico-semantic information becomes available from the bottom-up input. This, however, will not always 
the case, and will depend on multiple factors, including the presence of discourse coherence markers that can influence updates to 
the situation model (e.g. Xiang & Kuperberg, 2015), the comprehender’s goals (e.g. Brothers, Wlotko, Warnke, & Kuperberg, 2020), 
the broader communicative environment (e.g. Delaney-Busch, Morgan, Lau & Kuperberg, 2019), the presentation rate of the linguistic 
stimuli (e.g. Camblin, Ledoux, Boudewyn, Gordon, & Swaab, 2007, Wlotko & Federmeier, 2015), as well as the speed of information 
flow across the cortex, see Kuperberg & Jaeger, 2016, Section 3.4, pp. 42–45 for discussion.
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incoming word’s semantic features are compatible with semantic features that have been 

pre-activated as part of another word’s unique blend, then that word should still receive 

additional facilitation, evoking a smaller N400 than one would expect based only on its 

lexical probability (the probability of encountering its unique set of semantic features).

There are several types of neural networks and algorithms that can approximate Bayesian 

inference. For example, a recent modification of the original IAC model – the Multinomial 

Interactive Activation model – has been shown to implement optimum Bayesian inference 

through Gibbs’ sampling (McClelland, Mirman, Bolger & Khaitan, 2014). However, 

we believe that a particularly promising approach for understanding both language 

comprehension, and the functional role of the N400, is predictive coding – a biologically 

plausible neural architecture and algorithm that has been proposed to approximate Bayesian 

inference in the brain (Mumford, 1992; Rao & Ballard, 1999; Rao & Ballard, 1997; Friston, 

2005; Spratling, 2016a, 2016b).

In predictive coding, probabilistic inference is approximated by a particular dual-unit 

connectionist architecture that implements a particular optimization algorithm. Specifically, 

at each level of the representational hierarchy, “state units” actively generate top-down 

predictions that attempt to explain (or reconstruct) information that is observed at the level 

below. Any observed information at the lower level that fails to match these top-down 

predictions (residual information) produces activity within lower-level “error units”, which 

is termed, “prediction error”. This prediction error is then passed back up to the higher 

level where it is used to update the representations encoded within the state units. These 

updated state units will therefore produce more accurate predictions/reconstructions on the 

next iteration of the algorithm. This process repeats over multiple iterations and proceeds in 

parallel at multiple levels of the hierarchy until prediction error is minimized. At this point, 

the brain will have converged on the representations that best explain the bottom-up input.

In recent work, we have developed and implemented a predictive coding model of lexico-

semantic processing in which we directly link the N400 component to the summed 

activity produced by lexical and semantic error units (i.e. the magnitude of lexico-semantic 

prediction error) as the model infers the conceptual and lexical representation from bottom-

up orthographic inputs (Nour Eddine, Brothers, Wang, Spratling & Kuperberg, 2023; Nour 

Eddine, Brothers, & Kuperberg, 2022).

As in Chen and Mirman’s (2012) IAC model, in our predictive coding model, each lexical 

unit is linked to a unique set of distributed semantic features. However, in contrast to 

this IAC architecture, there are no lateral inhibitory connections between state units within 

the lexical layer. Therefore, there are no competitive interactions between pre-activated 

conceptual or lexical representations. Instead, the selection of the correct lexical and 

conceptual representation begins only after the bottom-up input is observed. And, at this 

point, instead of competing through mutual lateral inhibition within any single layer of 

the network, the correct representation is selected through the type of global competition 

described above, in which all possible combinations of features at multiple levels of the 

hierarchy are considered and competing lexical and conceptual neighbors are explained 

away.
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In predictive coding, explaining away occurs because state units at each level of 

representation suppress prediction error at the level below, thereby depriving their competing 

neighbors of their own inputs (see Spratling, De Meyer, & Kompass, 2009; Spratling, 2016a 

for discussion). For example, at the lexical level, /lime/ generates top-down predictions 

that suppress orthographic prediction error, thereby depriving potential lexical competitors 

(orthographic neighbors, e.g. /dime/) of their initial source of bottom-up activation, while 

at the conceptual representation (e.g. {lime}) generates semantic predictions that suppress 

semantic prediction error, thereby depriving potential conceptual neighbors (semantic 

competitors, e.g. {lemon}) of activity.

Our predictive coding model is able to simulate the time course of the N400, as well 

its sensitivity to multiple lexical and contextual variables. Notably, consistent with the 

empirical data, the magnitude of lexico-semantic prediction error is highly sensitive to 

an incoming word’s contextual probability, but not the constraint of the prior context 

(the probability of the most likely lexical candidate). Also consistent with the present 

findings, prediction error is smaller to unexpected words that share semantic features with 

a predicted alternative (Nour Eddine, Brothers, Wang, Spratling & Kuperberg, 2023; Nour 

Eddine, Brothers, & Kuperberg, 2022). This correspondence suggests that predictive coding 

may provide a promising theoretical account of the neural computations that support lexico-

semantic processing and give rise to the N400 response.

Conclusion

To sum up, we find no evidence that, in contexts that constrain for more than one 

continuation, competitive interactions between pre-activated parallel graded predictions 

reduces lexico-semantic processing of incoming words, as indexed by the N400. We also 

find no evidence that competition from a higher probability candidate induces costs in 

processing a lower probability candidate at a later stage of processing, as indexed by the 

late frontal positivity. Instead, readers show processing benefits when they encounter lower-

probability incoming words that are semantically related to a higher-probability alternative. 

These findings have important theoretical implications for informing models of predictive 

language processing, suggesting that routine top-down prediction does not rely on precisely 

the same mechanisms as those employed in language production. Finally, our results are 

consistent with hierarchical accounts of language comprehension based on probabilistic 

inference, such as predictive coding.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Grand-average event-related potentials, time-locked to the onset of Expected and 

SecondBest critical words in the WithCompetitor contexts, and to the same critical words 

appearing the ControlScenarios.
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Figure 2. 
Grand-average event-related potentials, time-locked to the onset of Expected and ZeroCloze 
critical words in the NoCompetitor contexts, and to the same critical words appearing the 

ControlScenarios.
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Figure 3. 
Left: The averaged N400 response (300–500ms) for each lower probability critical word 

in conditions A2 (WithCompetitor SecondBest) and A4 (NoCompetitor ZeroCloze) plotted 

as a function of its semantic relatedness to its more probable alternative (taken from the 

WithCompetitor Expected condition, A1, and the NoCompetitor Expected condition, A3).

Right: Grand-averaged ERPs within the N400 spatiotemporal region in response to (a) 

critical words in the ControlScenarios (averaged across conditions B2 and B4, blue dotted), 

(b) critical words in conditions A2 and A4 that were semantically unrelated to a higher 

probability alternative (Unrelated to Expected, red), (c) critical words in conditions A2 and 

A4 that were semantically related to a higher probability predicted alternative (Related to 

Expected, orange), and (d) Expected critical words (averaged across conditions A1 and A3, 

black)
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Figure 4. 
Schematic illustration of the state of one part of a comprehender’s internal generative model 

at approximately 400ms after observing the new bottom-up orthographic input, L-I-M-E, 

following the context, “At the restaurant, Anthony got his food. He squeezed the fresh…”.

At the level of lexical items: Most belief is centered over the lexical item, /lime/, which 

(a) provides the best explanation for the full set of observed orthographic features, L-I-M-E, 

and (b) is best explained by the unique set of semantic features that is being inferred (or 

retrieved) at the level above. At this point, there is also some belief over /lemon/, which 

was the more likely prior lexical candidate before the bottom-up input was encountered, but 

belief in /lemon/ will continue to fall because it cannot explain all the observed orthographic 

features, L-I-M-E. Finally, at this point, there is some belief over /dime/, which is able 

to explain several of the observed orthographic features (“I-M-E”). However, as belief 
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continues to rise over /lime/, it will fall over this competing orthographic lexical neighbor, 

which is said to be “explained away”.

At the level of semantic features: Belief is rising over the unique combination of semantic 

features (<sour> and <edible> and <squeezable> and <green>), which provides the best 

explanation of the most probable lexical candidate, /lime/, that is being inferred at the lexical 

level below. At this point in time, there is also some belief over the unique combination of 

semantic features associated with the concept, {lemon} (<yellow> and <sour> and <edible> 

and <squeezable>), which was the most probable concept before the bottom-up input was 

encountered. However, belief over this particular combination will continue to fall because 

it does not provide the best explanation for the more probable lexical candidate, /lime/. Note 

that the probability of the individual semantic features that are shared by the conceptual 

representations of {lime} and {lemon}, i.e., <sour>, <edible>, and <squeezable>, will each 

remain high (at 100%); it is primarily the probability of the feature, <yellow>, that will 

fall. Therefore, at the level of semantic features, any change in belief induced by the 

bottom-up input (or, equivalently, the amount of “work” of retrieving or accessing these 

features from semantic memory) will be less than the change in belief that is induced either 

at the lexical level below or at the conceptual level above. Finally, at this point in time, 

there is also some belief over the particular set of semantic features that can explain /dime/, 

which as noted above, is being inferred with lower probability at the level below. However, 

the comprehender’s belief in this unique combination of semantic features will continue to 

fall (a) because it cannot explain the more probable lexical candidate, /lime/, that is being 

inferred at the level below, and (b) because it cannot be explained by the more probable 

unique concept, {lime}, that is being inferred at the level above.

At the level of concepts: Most belief is centered over the concept, {lime} — the latent 

cause that (a) provides the best explanation of the most probable unique combination 

of semantic features (<sour> and <edible> and <squeezable> and <green>) that is being 

inferred at the level below, and (b) is also explained by the event structure that is being 

inferred at the level above. At this point, any belief over the concept {dime} is minimal 

because of the lack of both bottom-up and top-down support. Finally, at this point in 

time, there is some remaining belief over {lemon}, which was the more likely conceptual 

candidate before the bottom-up input was observed. However, as belief continues to rise over 

{lime}, it will fall over this competing conceptual candidate, which is said to be “explained 

away”.

At the level of event structures: As belief rises over the concept, {lime}, it will increase 

over the specific event {Anthony squeezed the fresh lime}. Note, given the preceding 

context, the correct syntactic structure has already been inferred. Therefore, within this 

framework, the successful “access” of a word’s semantic features and its underlying 

conceptual representation by 500ms (at the end of the N400 time-window) will often 

equate to successful “lexical integration” — the integration of a word into its local event/

proposition.

At the level of the situation model: Note that integrating a word into its local event/

proposition does not necessary equate to integrating the newly inferred event into the entire 

situation model. Updating the entire situation model may involve the additional inference (or 

retrieval) of new schema-relevant information. For example, in the present case, the reader is 

likely to have already inferred that Anthony is eating fish. In addition, as the reader becomes 
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increasingly certain of the specific event, {Anthony squeezed the fresh lime}, she may 

additionally infer that Anthony is eating tacos, which may, in turn, lead her to retrieve more 

details about other items that he is eating (e.g. Mexican or Latin American cuisine). We 

suggest that this process of successfully updating belief at the level of the situation model by 

retrieving additional schema-relevant features may be linked to another ERP component that 

peaks at a later stage of processing — the late frontal positivity.

Brothers et al. Page 43

Cognition. Author manuscript; available in PMC 2024 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Brothers et al. Page 44

Table 1.

Stimuli

Stimulus 
Group Context Type Continuation Type Average 

Cloze (SD) Example Contexts with both Continuation Types

Target 
Scenarios

WithCompetitor

Expected (A1) 57.4% 
(14.7%)

Stephen wanted to do something special for his girlfriend. He 
decided to make her a hand-made card. 
On it, he drew some… hearts (A1) / flowers (A2)

SecondBest (A2) 16.3% 
(8.5%)

NoCompetitor
Expected (A3) 60.9% 

(15.0%)
Alexis was thrilled with her new garden. All of the flowers 
had bloomed overnight. 
In particular, she loved the… roses (A3) / rocks (A4)

ZeroCloze (A4) 0.1% (0.4%)

Control 
Scenarios

Controls for 
WithCompetitor

Control for A1 (B1) 4.5% (7.2%) Stephen always doodled in class. He took out a fresh sheet of 
paper. 
On it, he drew some… hearts (B1) / flowers (B2)Control for A2 (B2) 3.0% (5.0%)

Controls for 
NoCompetitor

Control for A3 (B3) 5.5% (7.9%) Alexis had just moved to a new city. She enjoyed exploring 
new sites. 
In particular, she loved the… roses (B3) / rocks (B4)Control for A4 (B4) 0.3% (1.3%)
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Table 2.

Mean plausibility ratings for all conditions in the present study and those from Kuperberg, Brothers, and 

Wlotko, 2020 (KBW20) and Greene, Brothers, Weber, Noriega, and Kuperberg, 2020 (GBWNK20).

Experiment Condition Plausibility

Present study WithCompetitor Expected (A1) 6.66

Present study WithCompetitor SecondBest (A2) 6.45

Present study NoCompetitor Expected (A3) 6.55

Present study NoCompetitor ZeroCloze (A4) 5.10

Present study ControlScenario for A1 (B1) 5.55

Present study ControlScenario for A2 (B2) 5.35

Present study ControlScenario for A3 (B3) 5.20

Present study ControlScenario for A4 (B4) 4.84

KBW20 Expected 6.57

KBW20 Unexpected (plausible) 5.29

GBWNK20 Semi-implausible (no selection restriction violations) 2.89

KBW20 Anomalous (selection restriction violations) 1.89
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Table 3.

WithCompetitor Expected, SecondBest and ControlScenario conditions

Model 1 (N400) Estimates

Predictor b SE t-value p-value

Item-specific Cloze 3.58 1.45 2.47 .01 *

Continuation Type −0.18 0.41 −0.44 .66

Stimulus Group 0.71 0.60 1.18 .24

Continuation Type × Stimulus Group −0.50 0.77 −0.65 .52

Random Effects Structure: (1 + continuation*stimulus_group || subject) + (1 + stimulus_group + continuation:stimulus_group || item)
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Table 4.

WithCompetitor Expected, NoCompetitor Expected, and ControlScenario conditions

Model 2 (N400) Estimates

Predictor b SE t-value p-value

Item-specific Cloze 3.51 1.22 2.87 .005 *

Contextual Competition 0.41 0.28 1.45 .15

Stimulus Group 0.10 0.71 0.14 .89

Contextual Competition × Stimulus Group 0.75 0.58 1.30 .20

Random Effects Structure: (1 + cloze + contextual_competition:stimulus_group || subject) + (1 + cloze + stimulus_group || item)
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Table 5.

ZeroCloze and SecondBest continuations

Model 3 (N400) Estimates

Predictor b SE t-value p-value

Item-specific Cloze 2.78 2.52 1.10 .28

Semantic Relatedness 6.01 1.69 3.55 < .001 *

Random Effects Structure: (1 + cloze + semantic_relatedness | subject) + (1 | item)

Cognition. Author manuscript; available in PMC 2024 December 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Brothers et al. Page 49

Table 6.

WithCompetitor SecondBest only

Model 4 (N400) Estimates

Predictor b SE t-value p-value

Item-specific Cloze 0.03 4.04 0.01 .99

Semantic Relatedness 7.37 2.57 2.87 .006 *

Random Effects Structure: (0 + cloze + semantic_relatedness || subject) + (1 | item)
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Table 7.

WithCompetitor SecondBest continuations from semantically Unrelated trials

Model 5 (N400) Estimates

Predictor b SE t-value p-value

Item-specific Cloze −4.29 4.39 −0.98 .33

Stimulus Group 1.44 0.82 1.75 .09

Random Effects Structure: (1 + cloze + stimulus_group || subject) + (1 + stimulus_group || item)

Cognition. Author manuscript; available in PMC 2024 December 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Brothers et al. Page 51

Table 8.

WithCompetitor Expected, WithCompetitor SecondBest, and ControlScenario conditions

Model 6 (Late Frontal Positivity) Estimates

Predictor b SE t-value p-value

Item-specific Cloze −1.49 1.47 −1.02 .31

Continuation Type 0.45 0.40 1.12 .26

Stimulus Group 0.79 0.57 1.37 .17

Continuation Type × Stimulus Group −0.53 0.83 −0.63 .53

Random Effects Structure: (1 + cloze + stimulus_group || subject) + (0 + cloze + continuation_type:stimulus_group || item)
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Table 9.

ZeroCloze and their associated ControlScenarios

Model 7 (Late Frontal Positivity) Estimates

Predictor b SE t-value p-value

Item-specific Cloze 9.96 19.09 0.52 .60

Item-specific Constraint 1.46 0.77 1.90 .06

Random Effects Structure: (1 + cloze + constraint || subject) + (1 | item)
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Table 10.

SecondBest and their associated ControlScenarios

Model 8 (Late Frontal Positivity) Estimates

Predictor b SE t-value p-value

Item-specific Cloze −1.16 2.14 −0.54 .59

Item-specific Constraint 2.46 0.98 2.51 .014 *

Random Effects Structure: (1 + constraint || subject) + (0 + constraint || item)
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