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Characteristics  of  the  communication  infrastructure  determine  which  action  should  be  taken  when 

tuning data transfer operations in order to obtain high transfer rates. Local area networks and wide area  

networks have different characteristics,  so they demonstrate diverse features in terms of congestion,  

failure  rate,  and  latency.  In  most  cases,  congestion  is  not  a  concern  in  dedicated  high  bandwidth 

networks. However, the latency wall in data transfers over high bandwidth connections is still an issue  

[1,2,3]. Enough data should be obtained from the applications and storage layers for high throughput 

performance.  Data transfer  optimization has been deeply studied in the literature  [4,5,6].  However,  

many of the solutions require kernel level changes that are not preferred by most domain scientists. In 

this study, we concentrate on application level auto-tuning methodologies that are applied in user-space  

for better transfer performance [7,8,9,10]. Using multiple data transfer streams is a common technique 

applied in application layer to increase the network bandwidth utilization [2,5,10]. Instead of a single 

connection at a time, multiple streams are opened for a single data transfer service. Larger bandwidth in  

a network is gained with less packet loss rate; concurrent data transfer operations that are initiated at the 

same time better utilize the network and system resources.
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document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The  
Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any  
legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, 
or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product,  
process,  or  service by its trade name, trademark,  manufacturer,  or  otherwise,  does not  necessarily  constitute or  imply its  
endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the  
University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the  
United States Government or any agency thereof or The Regents of the University of California.



To achieve high throughput, the number of multiple connections needs to be adjusted according to the 

capacity of the underlying environment. There are several studies on parameter estimation in order to 

predict the network behavior and to find a good estimation for the level of parallelism [6,11,12,13,14].  

However, those techniques usually depend on performance results of sample transfers with different 

parameters. The systems probe and measurements with external profilers are needed. Complex models  

are used to calculate the optimum number of multiple streams with the help of sample measurements 

[12,14,15]. However, network conditions may change over time in the shared environments, and the 

estimated  value  might  not  reflect  the  most  recent  state  of  the  system.  The  achievable  end-to-end 

throughput and the system load in communicating parties might change during the period of a data 

transfers, especially when large volume of data needs to be transmitted. 

Dynamically setting the number of optimal parallel streams has been introduced in [16]. Further, there 

are several studies in adaptive parameter tuning [9,11]. We have designed a similar approach in which 

the number of concurrent connections is set dynamically in a large-scale data transfer. The proposed  

methodology operates without depending on any historical measurements and does not use external 

profiles for measurement. Instead of using predictive sampling as proposed in [6,14,15], we make use of 

the instant throughput information gathered from the actual data transfer operations that are currently  

active.  The  number  of  multiple  streams  is  set  dynamically  in  an  adaptive  manner  by  gradually  

increasing the number of concurrent connections up to an optimal point.  The adaptive approach does  

not require complex models for parameter optimization. That enables us to adapt varying environmental  

conditions to come up with a high-quality tuning for best system and network utilization.

Gradually  improving  the  level  of  concurrency  brings  a  near  optimal  value  without  the  burden  of  

complex optimization steps to find the major bottleneck in a data transfer. In this adaptive algorithm, a 

change  in  the  performance  is  detected  and  the  number  of  concurrent  connections  is  adjusted  

accordingly. Figure 1 shows an illustration of dynamic parameter tuning in which system detects a  

change in the environment and adjust the level of concurrency for high-performance data transfer.



(a) number of concurrent streams over time

(b) total bytes transferred over time

Figure 1: Adaptive Tuning Algorithm: setting the concurrency dynamically for transfers

 from poseidon and louie to queenbee machines on LONI network (loni.org / measurements from 2009) 



Instead  of  making  measurements  with  external  profilers  to  set  the  level  of  concurrency,  transfer 

parameters  are  calculated  using  instant  throughput  values  from  currently  running  data  transfer 

operations.  Thus,  there  is  no  additional  data  packets  transferred  for  measurements  and there  is  no  

additional load in the system for complex parameter estimations. By observing the achieved application 

throughput, we gradually adjust the number of multiple streams.  The best throughput for the current 

concurrency level is recorded. The actual throughput value is calculated, and the number of multiple 

streams is increased if  the throughput value is larger than the best  throughput seen so far.   In this  

dynamic approach, we try to reach to a near optimum value gradually, instead of directly finding the 

best parameter achieving the highest throughput at once. We underline the fact that the focus is on  

application level tuning such that we do not deal with low-level network and server optimization. We  

adjust  the  number  of  multiple  streams  according  to  the  dynamic  environmental  conditions,  by 

considering the fact that there might be other data transfer operations using the same network resources 

and the achievable throughput can change dynamically.

Figure 2:  Algorithm searching for the optimal concurrency level 



We first  start  with a  single  stream and measure  the  instant  achievable  throughput.  The  number  of  

concurrent streams is increased gradually as long as there is any performance gain in terms of overall 

throughput. Although this incremental approach is practical especially for  large-scale data transfers that 

take long time to complete, a good starting point is highly desirable. Inspired from the TCP congestion 

window mechanism, we benefit from exponentially increasing the concurrency level in the beginning of 

the  tuning  process.  Figure  2  gives  a  glimpse  of  the  algorithm  used  to  set  the  concurrency  level 

dynamically. We analyze the search pattern in two phases. In the first phase, we exponentially increase 

the number of multiple streams to quickly find a good starting point. In the second phase, we gradually  

adjust  the concurrency level  by measuring instant  throughput in order to come up with an optimal 

number of  streams.
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