
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
Dynamic Adaptation for High-Performance Data Transfers

Permalink
https://escholarship.org/uc/item/983986md

Author
Balman, Mehmet

Publication Date
2011-01-17

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/983986md
https://escholarship.org
http://www.cdlib.org/

Dynamic Adaptation for High-Performance Data Transfers1

Jan 17, 2011

Mehmet Balman

Computational Research Division
Lawrence Berkeley National Laboratory

1 Cyclotron Road MS 50B 3238 Berkeley, CA 94720
mbalman@lbl.gov

Characteristics of the communication infrastructure determine which action should be taken when

tuning data transfer operations in order to obtain high transfer rates. Local area networks and wide area

networks have different characteristics, so they demonstrate diverse features in terms of congestion,

failure rate, and latency. In most cases, congestion is not a concern in dedicated high bandwidth

networks. However, the latency wall in data transfers over high bandwidth connections is still an issue

[1,2,3]. Enough data should be obtained from the applications and storage layers for high throughput

performance. Data transfer optimization has been deeply studied in the literature [4,5,6]. However,

many of the solutions require kernel level changes that are not preferred by most domain scientists. In

this study, we concentrate on application level auto-tuning methodologies that are applied in user-space

for better transfer performance [7,8,9,10]. Using multiple data transfer streams is a common technique

applied in application layer to increase the network bandwidth utilization [2,5,10]. Instead of a single

connection at a time, multiple streams are opened for a single data transfer service. Larger bandwidth in

a network is gained with less packet loss rate; concurrent data transfer operations that are initiated at the

same time better utilize the network and system resources.

1 Disclaimers: This document was prepared as an account of work sponsored by the United States Government. While this
document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The
Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any
legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed,
or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the
University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof or The Regents of the University of California.

To achieve high throughput, the number of multiple connections needs to be adjusted according to the

capacity of the underlying environment. There are several studies on parameter estimation in order to

predict the network behavior and to find a good estimation for the level of parallelism [6,11,12,13,14].

However, those techniques usually depend on performance results of sample transfers with different

parameters. The systems probe and measurements with external profilers are needed. Complex models

are used to calculate the optimum number of multiple streams with the help of sample measurements

[12,14,15]. However, network conditions may change over time in the shared environments, and the

estimated value might not reflect the most recent state of the system. The achievable end-to-end

throughput and the system load in communicating parties might change during the period of a data

transfers, especially when large volume of data needs to be transmitted.

Dynamically setting the number of optimal parallel streams has been introduced in [16]. Further, there

are several studies in adaptive parameter tuning [9,11]. We have designed a similar approach in which

the number of concurrent connections is set dynamically in a large-scale data transfer. The proposed

methodology operates without depending on any historical measurements and does not use external

profiles for measurement. Instead of using predictive sampling as proposed in [6,14,15], we make use of

the instant throughput information gathered from the actual data transfer operations that are currently

active. The number of multiple streams is set dynamically in an adaptive manner by gradually

increasing the number of concurrent connections up to an optimal point. The adaptive approach does

not require complex models for parameter optimization. That enables us to adapt varying environmental

conditions to come up with a high-quality tuning for best system and network utilization.

Gradually improving the level of concurrency brings a near optimal value without the burden of

complex optimization steps to find the major bottleneck in a data transfer. In this adaptive algorithm, a

change in the performance is detected and the number of concurrent connections is adjusted

accordingly. Figure 1 shows an illustration of dynamic parameter tuning in which system detects a

change in the environment and adjust the level of concurrency for high-performance data transfer.

(a) number of concurrent streams over time

(b) total bytes transferred over time

Figure 1: Adaptive Tuning Algorithm: setting the concurrency dynamically for transfers

 from poseidon and louie to queenbee machines on LONI network (loni.org / measurements from 2009)

Instead of making measurements with external profilers to set the level of concurrency, transfer

parameters are calculated using instant throughput values from currently running data transfer

operations. Thus, there is no additional data packets transferred for measurements and there is no

additional load in the system for complex parameter estimations. By observing the achieved application

throughput, we gradually adjust the number of multiple streams. The best throughput for the current

concurrency level is recorded. The actual throughput value is calculated, and the number of multiple

streams is increased if the throughput value is larger than the best throughput seen so far. In this

dynamic approach, we try to reach to a near optimum value gradually, instead of directly finding the

best parameter achieving the highest throughput at once. We underline the fact that the focus is on

application level tuning such that we do not deal with low-level network and server optimization. We

adjust the number of multiple streams according to the dynamic environmental conditions, by

considering the fact that there might be other data transfer operations using the same network resources

and the achievable throughput can change dynamically.

Figure 2: Algorithm searching for the optimal concurrency level

We first start with a single stream and measure the instant achievable throughput. The number of

concurrent streams is increased gradually as long as there is any performance gain in terms of overall

throughput. Although this incremental approach is practical especially for large-scale data transfers that

take long time to complete, a good starting point is highly desirable. Inspired from the TCP congestion

window mechanism, we benefit from exponentially increasing the concurrency level in the beginning of

the tuning process. Figure 2 gives a glimpse of the algorithm used to set the concurrency level

dynamically. We analyze the search pattern in two phases. In the first phase, we exponentially increase

the number of multiple streams to quickly find a good starting point. In the second phase, we gradually

adjust the concurrency level by measuring instant throughput in order to come up with an optimal

number of streams.

References:

[1] Wu, Y., Kumar, S., and Park, S., "Measurement and performance issues of transport protocols over

10Gbps high-speed optical networks", Computer Network 54, 3 (Feb. 2010), 475-488

[2] M. Balman and T. Kosar, "Data Scheduling for Large Scale Distributed Applications", In

Proceedings of the 9th International Conference on Enterprise Information Systems Doctoral

Symposium (DCEIS 2007), 2007

[3] H. Bullot, R. Les Cottrell and R. Hughes-Jones, "Evaluation of Advanced TCP Stacks on Fast Long-

Distance Production Networks", Journal of Grid Computing, Springer, Volume 1, Number 4,

December, 2003

[4] FastTCP. An alternative congestion control algorithm in tcp. http://netlab.caltech.edu/FAST.

[5] sTCP. Scalable TCP. http://www.deneholme.net/tom/scalable/, 2006.

[6] T. Dunigan, M. Mathis, and B. Tierney, "A tcp tuning daemon”, In Proceedings of SuperComputing:

High-Performance Networking and Computing, 2002.

[7] M. Gardner, S. Thulasidasan, and W. Feng, "User-space auto tuning for tcp flow control in

computational grids", Computer Communications, 27:1364-1374, 2004.

[8] S. Soudan, B. Chen, and P. Vicat-Blanc Primet, "Flow scheduling and endpoint rate control in grid

networks", Future Gener. Comput. Syst., 25(8):904–911, 2009.

[9] W. Feng, M. Fisk, M. Gardner, and E. Weigle, "Dynamic right sizing:An automated, lightweight,

and scalable technique for enhancing grid performance", In Proceedings of the 7th IFIP/IEEE

International Workshop on Protocols for High Speed Networks, 2002.

[10] J. Bresnahan, M. Link, R. Kettimuthu, D. Fraser and I. Foster, "GridFTP Pipelining",

Proceedings of the 2007 TeraGrid Conference, June, 2007

[11] T. Ito, H. Ohsaki, and M. Imase, "On parameter tuning of data transfer protocol gridftp in wide-

area grid computing", In Proceedings of Second International Workshop on Networks for Grid

Applications, GridNets, 2005.

[12] Hacker, T. J., Noble, B. D., and Athey, B. D., "Adaptive data block scheduling for parallel TCP

streams", In Proceedings of the High Performance Distributed Computing, 2005.

[13] Mirza, M., Sommers, J., Barford, P., and Zhu, X., "A machine learning approach to TCP

throughput prediction", SIGMETRICS Perform. Eval. Rev. 35, pg 97-108, 2007

[14] E. Yildirim, M. Balman, and T. Kosar, "Dynamically Tuning Level of Parallelism in Wide Area

Data Transfers", In Proceedings of DADC'08 (in conjunction with HPDC'08), Boston, MA, June

2008D.

[15] Yin, E. Yildirim, and T. Kosar, "A Data Throughput Prediction and Optimization Service for

Widely Distributed Many-Task Computing", In Proceedings of MTAGS'09 (in conjunction with

SC'09), 2009

[16] M. Balman and T. Kosar, "Dynamic Adaptation of Parallelism Level in Data Transfer

Scheduling", In Proceedings of Second International Workshop on Adaptive Systems in

Heterogeneous Environments (in conjunction with CISIS2009), 2009

Acknowledgements: This work was supported by the Office of Science of the U.S. Department of
Energy under contract DE-AC02-05CH11231.

