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Design of a Glucose Oxidase Sensor for a
Mechanochemical Insulin Pump

by
C. Pamela De Moor

Abstract

A glucose sensitive membrane coupled to a pH-sensitive
polymer hydrogel is being investigated for use as a sensor in an
implantable mechanochemical insulin pump. The glucose sensitive
membrane contains the immobilized enzymes glucose oxidase and
catalase which convert glucose and oxygen into gluconate and free
protons. The free protons generated by the reaction in the membrane
diffuse into and ionize the hydrogel, causing the latter to swell. The
design of the glucose sensitive membrane coupled to the hydrogel is
crucial to the operation of the pump.

This thesis project is concerned with the diffusion/reaction
modeling of the glucose sensitive membrane. The diffusion/reaction
calculations for the enzyme membrane coupled to the polymer
hydrogel are carried out in order to determine the rate of delivery of
protons to the hydrogel as a function of the enzyme loading and the
geometric properties of the membrane. The design problem is
complicated by the fact that the oxygen will be depleted before the
sensor detects appreciable amounts of glucose. This is because the
molecular oxygen concentration in plasma is on the order of ten
times less than the glucose concentration. This problem can be
mitigated by providing preferential transport pathways for oxygen
relative to glucose and by optimizing the geometry of the enzyme
membrane. The calculations enable us to determine the design which
allows for enhanced oxygen transfer and efficient proton transfer as
a function of the external mass transfer limitations and the external

glucose concentration. A finite element model is used to solve the
diffusion/reaction equations. Results of the finite element analysis
are analyzed.

■ ºa■ / ºf
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Chapter 1.

Introduction

1. 1 The Problem: Diabetes Mellitus

Insulin dependent diabetes results from the breakdown of a

physiologic feedback system where insulin is no longer secreted

from the pancreas in response to elevated blood glucose levels.

Current treatments of insulin dependent diabetes do prevent the

acute manifestations of the disease. They do not however, provide

good control of blood glucose concentrations. The ultimate goal of

insulin therapy is to mimic pancreatic function as closely as

possible and in this way control glycemia. This can best be

accomplished by implementing a closed loop, self-regulating

delivery device which responds to blood glucose levels in a similar

fashion to the pancreas.

1.1.1 Overview of Diabetes

In a nondiabetic, a rise in glucose level due to a meal is

accompanied by an increase in the secretion rate of insulin from the

pancreas. The principal function of insulin is to lower blood glucose

concentration and to maintain its level within a very narrow range,

about 3.5 - 6.5 mM in human blood (60 - 120 mg%).1-4. The secretion

of insulin brings the glucose level back down to normal by enhancing

its uptake into cells and the liver. In this manner nondiabetics are

able to maintain their blood sugar levels while providing their



bodies with nourishment. This glucose homeostasis in a healthy

person is maintained by a push-pull closed loop system that controls

the glucose flux into and out of extracellular space. This control

system is regulated mainly by the liver and pancreas and by cells

that utilize glucose.

Diabetes is the result of the inability of the body to use

insulin effectively, either due to insulin resistance by tissues or the

inability of the pancreas to secrete sufficient amounts of insulin to

maintain normal blood glucose levels. There are two main types of

diabetes, insulin dependent diabetes mellitus (IDDM) or Type I

diabetes and non-insulin dependent diabetes mellitus (NIDDM) or

Type II diabetes. IDDM is defined as a lack or shortage of insulin.

This is usually due to beta-cell damage, and little or no insulin is

secreted. NIDDM is characterized by only a "relative" lack of insulin.

In this case the body can produce insulin, but the need for insulin is

so increased that production cannot keep up. In NIDDM, beta cells are

present and may function normally but it is the insulin receptors

that are defective. Often there is also increased insulin resistance

by tissues, which is the inability of the insulin to tell the cells to

use glucose.

Without the external administration of insulin, an insulin

dependent diabetic can no longer efficiently use glucose as an energy

source. For type I diabetics, insulin must be supplied. Type II

diabetics can often get by with minimal insulin requirements. In

either case, if sufficient insulin is not supplied, ketoacidosis

results from the breakdown of fat cells for energy. Eventually coma



and death result when no treatment is given to a diabetic. Before

the discovery of insulin, diabetics would die within four years of
onset of the disease.

Due to the inability of diabetics to generate or effectively use

insulin, diabetics frequently have high blood glucose levels or

hyperglycemia. The irony of the situation is that diabetics have

increased circulating levels of glucose but little intracellular

glucose for ATP production. Cellular famine results in the midst of

plenty because there is not sufficient insulin to enhance cellular

uptake of glucose. On a short term basis, mild hyperglycemia

results in frequent urination which in turn leads to excessive thirst

and dehydration. The long term affects of hyperglycemia however,

are more detrimental. Long term hyperglycemia results in

premature artherosclerosis and microvascular disease of the eyes

and kidneys, such as blindness, neuropathy and nephropathy.

1.2 Existing treatments

There are several different treatment options currently

available to insulin dependent diabetics: intensive conventional

therapy, transplantation of beta cells which produce insulin, or use

of mechanical and/or chemical devices. A brief description of each

is given below.

The most commonly used treatment is a regimen of daily

subcutaneous insulin injections, and dietary restrictions. Although

this type of treatment greatly prolongs the life of a diabetic, the
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patient is often far removed from a normal physiologic state and

exhibits high blood sugar levels. The amount of insulin in the body

for this type of treatment is determined by the rate of insulin

transport across the anatomical barriers separating the

subcutaneous space from the bloodstream. This treatment is

considered open-loop in the sense that the amount of insulin in the

circulation is controlled by the user and not by the blood sugar level.

Another treatment option has been to try to transplant healthy

beta cells which produce insulin into a diabetic. This method has

met with success in diabetic rats.5 Islet cell transplants in larger

mammals have not been as successful due to graft rejection

problems. Current research involves encapsulating the beta cells in

microspheres, hollow fibers or in macroporous hydrophilic

membranes. These chambers are separated from the immune system

and would resist rejection. Glucose and insulin would diffuse into

and out of these chambers. The problems with this system have been

development of scar tissue around the chamber which limits

diffusion, long term cell viability, and scaling up the system to

human dimensions.6,7

In order to improve on the conventional treatment, Albisser

and coworkers developed the electromechanical "artificial beta

cell", which is like an attached artificial mechanical pancreas.8

This electromechanical system continuously samples the patient's

blood by a catheter. The sampled blood is then analyzed for glucose,

and the glucose levels are fed into the computer which determines

the insulin delivery rate. The correct amount of insulin is then



infused in from another catheter driven by a peristaltic pump. This

system is a bedside system which provides excellent control over

the glucose levels but is too large for practical use.

In an effort to develop more efficient treatments which could

better control glycemia in diabetics, several open-loop systems

have been developed in the past fifteen years. These systems

include wearable implantable pumps. 9, 10 These pumps are all

electromechanical in nature and require a reliable and long-lasting

power supply. In these systems the insulin is pumped into the body

in response to an externally programmed delivery rate activated by

the wearer. The patient must still measure their own glucose

concentration using the usual methods. These devices require

intense patient participation and responsibility. These pumps do

provide better control over glycemia than injections, but have

proved to be cumbersome to wear due to the external power supplies.

In addition power failures and infections surrounding the

percutaneaous junctions have also been large problems. Therefore

there is still a need for a reliable implantable self-regulating

device which is convenient and accurate, and which operates in

direct response to blood glucose concentrations.

1.3 New Devices for Treatment of Diabetes

As mentioned previously, the ultimate solution to control

diabetes would be a 'closed-loop' system where blood glucose levels

are continuously and automatically monitored and insulin is released



in direct response to the blood glucose level. [One of the major

difficulties with these systems has been the lack of a reliable and

sensitive glucose sensor.] Many authors have worked on this

problem. Developing devices that use biochemical and chemical

means to release insulin in response to glucose concentrations has

been an active area of research over the last few years. A few of

the experimental devices are listed below.

Kim and colleagues have developed a self-regulating

implantable insulin delivery system by utilizing the competitive

binding affinity of glucose and glycosylated insulin (G-insulin) to

plant lectin Concanavalin A (ConA). 11 A solution of the G-insulin

protein bound to ConA is surrounded by a macroporous, hydrophilic

membrane. The membrane allows diffusion of glucose and insulin

but not blood proteins. The glycoslylated insulin is displaced by

glucose, and diffuses out of the matrix. In this manner the insulin

release is proportional to glucose concentration. This system has

been tested in pancreatectomized dogs and shown to be fairly

effective in maintaining the blood glucose concentration close to

that observed for nondiabetic dogs for a period of 36 hours.14 The

performance of this device was hampered by inadequate

permeability of glucose and G-insulin. Other problems with this

system included immunogenic response to the ConA and the

glycosylated insulin, and hindered diffusion due to scar tissue

development.

A second approach to developing a self-regulating insulin

delivery system couples a glucose sensing system with pH sensitive



hydrogels. These systems rely on glucose-induced chemical

reactions coupled to the swelling of polymers to actuate insulin

release. Several groups have researched and developed cross-linked

hydrogel membranes which are pH sensitive and contain insulin.15

17 These membranes swell when the pH is reduced thus releasing
insulin which is stored either directly in the membrane or in a

reservoir which is surrounded by the pH sensitive hydrogel.

In order to make these systems closed-loop, the swelling

mechanism must be triggered by glucose. This is done by including

the enzymes glucose oxidase, gluconolactonase and catalase in the

membrane. Glucose oxidase converts glucose to gluconic acid

through the reactions:

GluCx
glucose + O2 —- glucono-6-lactone + H2O2 (1a)

Cat
H2O2 —- H2O + 1/2 O2 (1b)

Gluconolactonase
glucono-6-lactone + H2O —- gluconate + H+ (1c).

The catalase (Cat) reaction is included to prevent the accumulation

of peroxide and to partially regenerate the oxygen. The important

product of this reaction is the free proton which lowers the local

pH, and causes a change in the membrane permeability, thus

releasing insulin.
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These crosslinked hydrogel membranes include tertiary amine

groups which are easily ionized by the gluconic acid or the free

proton. The charge repulsion between the ionized tertiary amine

groups creates a positive osmotic pressure and thus causes the

membrane to swell. The swelling stretches the mesh of the polymer

network, enabling the insulin to permeate.

Ishihara and coworkers fabricated a glucose sensitive

composite membrane by immobilizing glucose oxidase in a

polyacrylamide membrane and laminating it with a pH sensitive

polyamine membrane. In their device, the membrane surrounds an

insulin reservoir. A rise in blood glucose is converted to a decrease

in the local pH in the membrane through reactions (1a-c). The

tertiary amines are protonated and repel each other, causing the

membrane to swell, increasing its permeability to insulin.18

Horbett et. al. immobilized the glucose oxidase and catalase

enzymes directly into the hydrogel containing ionizable tertiary

amine groups. The membrane surrounds a saturated reservoir

containing insulin. Klumb and Horbett have further utilized the

above ideas and designed devices in which the enzymes and the

insulin are incorporated into one gel. 19.20 In these designs as the

glucose level rises, the pH decreases through reactions (1a-c). The

protonated amines again cause the membrane to swell and the
insulin diffuses out.

The above systems are closed loop, self-regulating systems to

deliver insulin. Practical implementation of the above devices



would involve keeping insulin in an aqueous reservoir for extended

time periods. Problems arise with the packaging of the insulin,

however, because insulin is not stable for extended periods of time

in an aqueous environment. In addition, aggregation of insulin should

be considered. Aggregation, aside from reducing the activity of

insulin, could lead to the possible clogging of the size-selective gel

by the insulin clots.

Other gel applications which utilize the glucose

oxidase/catalase mechanism include bioerodible polymers coupled to

glucose oxidase membranes, and pH sensitive membranes which open

and close pores through which insulin diffuses. 21, 22 Fischel

Ghodsian et. al. have taken advantage of the pH sensitivity of the

solubility of trilysine-insulin to design a matrix-based

dissolution/diffusion system that utilizes the glucose oxidase

mechanism to produce sensitivity to blood glucose levels.23

Some of the devices discussed above can be put into a category

termed "mechanochemical". These devices are mechanochemical

because they convert changes in the chemical activity (i.e.

concentration) of glucose into a mechanical change, which

subsequently controls the insulin release.

1.4 Scope of Thesis

This thesis project is concerned with investigating the

theoretical development of a novel mechanochemical device which

would mimic the endocrine action of a normal pancreas in order to

minimize or possibly prevent the long-term complications of
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diabetes. This device would deliver insulin in response to blood

glucose changes. Since the device responds directly to blood sugar

levels it is inherently a closed-loop system.

The proposed device utilizes the biochemical idea described

above of coupling a glucose oxidase membrane to an osmotically

active polymer gel or polyelectrolyte. Instead of using the

expansion of the gels described above in order to control the

diffusion of drug out of the device, however, the proposed pump uses

the expansion and contraction properties of the polymer gels or

liquid polyelectrolyte to expel drug out of the pump. In this way the

gels act as a "piston" of a chemical engine, where the expansion and

contraction cycles are powered by changes in pH produced by the

glucose oxidase enzyme. These systems can be designed to swell or

generate pressure at a particular pH and used in a mechanochemical

pump in such a way as to make the system self-regulating or closed

loop.

The long term goal of the project is to develop a working

prototype of the mechanochemical pump. This thesis will focus on

the analytical modeling of the pump to determine the theoretical

feasibility of this system and to determine the design parameters

required to build a stable, accurate, and reliable system. The

project can be divided into three inter-related areas of analytical

modeling: the control dynamics of the pump, the diffusion/reaction

analysis of the coupled enzyme membrane and polymer system, and

the pressure calculations of the polymer/diaphragm system. The

main focus of this thesis is to model the diffusion/reaction of the
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coupled enzyme membrane and polymer system. The goal is to

determine a sensor design which will maximize the pump

performance.

In Chapter 2 the proposed mechanochemical pump is described

in more detail. The pump is has many components which require

investigation. Details are given on the size and volume requirements

of the proposed design followed by some discussion of polymer

systems studied to date. The main focus of the thesis is on the

sensor portion of the pump. A background of the pump design is

given for completeness.

Chapters 3 through 7 describe the theoretical sensor design

for the pump. Chapter 3 compares various glucose sensors and the

problems associated with utilizing these sensors. A novel design

for a glucose sensor, using the enzymes glucose oxidase and catalase

is proposed. This sensor can be easily coupled to a titratable

polymer system. The theoretical modeling of the proposed sensor

design is presented in Chapter 4. The finite element modeling is

discussed in Chapter 5. The modeling was done to determine the

sensor designs that could generate a maximum pH difference due to a

rise in blood glucose levels. Chapter 6 compares the results of the

program with known analytical results and other current designs.

Results for various geometries and several different enzyme loading

patterns are presented and discussed in Chapter 7.
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Chapter 8 gives a summary of the analytical modeling

completed on the pump to date. Conclusions and recommendations

for fabricating the device and future work are also presented here.
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Chapter 2.

Pump Design

2.1 Characteristics of Ideal Pumps

As described in the Introduction, the goal of this investigation

is to determine the feasibility of using implantable pumps

containing pH-sensitive hydrogels for insulin delivery. Before

discussing the actual design to be studied some background on the

development of this design is given.

Several considerations must first be given to the development

of implantable systems. Sefton has documented a few guidelines to

use to determine the characteristics of the ideal implantable pump."

These guidelines are summarized in Table 2-1.

First and foremost, from Table 2-1, the implantable pump

must be able to deliver the drug reliably at the prescribed rate for

extended periods of time. This should include a capability of the

pump to achieve a wide range of delivery rates in case the patients'

drug need changes with time. This is especially important in

designing a device for diabetics, many of whom require variable

amounts of insulin at different times. The pump should be designed

to give accurate, precise and stable drug delivery at the appropriate

times. This implicitly implies that the pump have reliable

mechanical and/or electrical components. The movable parts of the

pump should be simple and stick-free. (Many peristaltic pumps have
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rotors which get stuck.) In addition possible clogging of the device

by the drug or by tissue encapsulation should be avoided. This

involves designing devices with as few moving parts as possible,

and choosing the correct materials for the pump.

Table 2-1: Characteristics of the Ideal Implantable Pump
[From Sefton, M. CRC Critical Reviews in Biomedical Engineering,
Volume 14, Issue 3, 1986]

1. Must deliver drug reliably.
(i) Wide range of delivery rates.
(ii) Accurate, precise and stable delivery.
(iii) Reliable pump and electrical components.

2. Must be safe.
(i) Biocompatible exterior.
(ii) Overdose protection.
(iii) No leakage.

3. Drug must be stable both chemically and biologically.
(i) Compatible with pump internals.

4. Convenient to use.
(i) Long reservoir life.
(ii) Long battery life.
(iii) Easy programmability.
(iv) Implantable under local anesthesia.
(v) Simple method to monitor status.

5. Sterilizable.

Safety and longevity of the pump are other major factors of

concern with implants, as is biocompatibility. The device must be

capable of residing in the body for a period of years to make the

surgery worthwhile. More importantly any implantable device must
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be capable of remaining in the patient without creating discomfort

or having any toxic effects. This implies choosing the pump
materials and design very carefully such that the device causes the

minimum amount of distress to the body.

The requirement that the pump be able to remain in the body

for extended time periods is another major consideration in the

design of an implantable device. In order to accomplish this, the

drug must be compatible with the pump materials and must remain

chemically, physically and biologically stable for a long period of

time and/or for the life of the implant. If refilling is necessary, the

pump must be placed in a convenient location. In addition, any

leakage or dumping of the drug must be prevented, especially with

insulin systems. Fail-safe mechanisms to prevent overdose of

insulin are especially important.

In designing the present device concept, as many of the above

characteristics were taken into account as possible. Special

consideration was given to size and power source. It was desired to

design a system which would require no external power source and

which could operate for up to a year in the body. It was also

considered important to avoid any percutaneous junctions. External

biocompatibility issues were not considered as important at this

stage, since only the physical aspects of the device concept were

considered.

In the present work the normal functioning pancreas is taken

as the performance standard for the design of an insulin pump. In
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the nondiabetic body a rise in blood glucose level triggers a biphasic

increase in the insulin secretion rate where a pulse or spike in

secretion rate followed by a return to steady-state secretion rate

which is slightly higher than the basal secretion rate. Thus the

insulin secretion rate is determined by both the current value and by

the rate of change of glucose concentration.

To mimic the pancreas we desire a device which will exhibit

proportional-derivative control, i.e. that will simply release, in

response to a step increase in glucose concentration, a "burst" of

insulin followed by a secondary slower release phase. The main

focus of the present pump design is to try to deliver a burst of

insulin in response to glucose levels. It is proposed that another

method be used to deliver the basal amount of insulin. Also we

prefer a device that delivers insulin directly to liver. Device

designs which can implanted in peritoneal cavity, which feeds into

the hepatic portal vein, are therefore of interest.

2.2 Hydrogels, Liquid Polyelectrolyte Systems

The idea of using pH-sensitive hydrogels to power drug

delivery from a pump arose from the phase transition/swelling

properties of the lightly crosslinked copolymer gels being studied in

our laboratory. These gels contain amine groups which become

protonated at low pH. This reaction causes the gel to have charged

sites in close proximity to each other. Electrostatic repulsion

between the charged sites occurs and causes the polymer network to

expand.
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It was thought that a device containing hydrogels which

respond to chemical rather than mechanical or electrical stimuli

would be more reliable. Some of the hydrogels studied in the

laboratory exhibit the ability to swell and shrink in response to pH

changes reproducibly and unfatigued for long time periods. In

addition, the expansion and contraction of the hydrogels are powered

by a chemical reaction which will be present in the device as long as

the glucose oxidase enzyme remains active. This fact figured

greatly in the design, since the pump would be self-powered, and

there would be no need for an external power source.

Several types of hydrogels were considered for use in the

pump. 2-5 Swelling equilibria and kinetics were measured as a

function of solution pH for several lightly crosslinked copolymer

gels. The gels which were studied were fairly hydrophobic gels

containing combinations of the hydrophobic comonomer methyl

methacrylate and a tertiary amine-bearing comonomer; either N,N-

dimethylaminoethyl methacrylate (DMA) or N,N-dimethylaminoethyl

methacrylamide (DMAA). The hydrogels are loosely crosslinked with

divinylbenzene (DVB). What we wanted to create were hydrogels

which at high pH, i.e. low blood glucose levels, were unswollen and

collapsed. This meant that the DMA or DMAA monomer be neutral and

the hydrophobic MMA monomer dominates keeping the gel collapsed.

At low pH, (high blood glucose levels) the amine group in the gel

ionizes, causing the membrane to swell due to electrostatic and
osmotic forces.
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Using two of these gels, we were able to generate equilibrium

swelling isotherms with swelling transitions around pH 6.6 and 7.6,

respectively. The gels containing DMAA are more hydrophilic and

have a higher degree of swelling near neutral pH. At pH 7.4 the

water fraction for the gels containing DMAA is 0.617 versus a water

fraction of less than 0.1 for the gels containing DMA. This implies

that at pH 7.4 the gels containing DMA are in a collapsed and

unswollen state and will not turn "on" until the pH is decreased to

below 6.6. The gels containing DMAA, however, are already swollen

at pH 7.4, and thus will change from one swollen state to another as

the pH is decreased. (The reader is referred to references 2-5 for

more detail.)

Another feature of the pump is that it must be able to respond

quickly to changes in blood glucose levels, thus it is imperative that

the "engine" be able to respond quickly. This requires that the

polyelectrolyte gels be able to change volumes quickly in response

to changes in pH. A comparison of the dynamics of swelling changes

for both the DMA and the DMAA gels considered shows that the DMA

gels respond much faster than the DMAA gels. In both cases the gels

took longer to swell than to deswell. The exact relaxation dynamics

for these gels have not been worked out. In both cases, however,

significant volume changes are obtained within an hour.

Before we continue with the proposed design of the pump, we

discuss briefly another polymer system that was considered for use.

For any polyelectrolyte, in order to transfer a pH change into a

change in volume it is necessary to have 1) a change in the degree of
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protonation of the gel or polymer, or 2) a change in the ionization

state of various counterions. These two conditions produce changes

in the electrostatic and Donnan osmotic forces within the gel or

polymer. These forces can also be present with liquid

polyelectrolyte systems, where the advantage of a liquid system is

the lack of crosslinks. The crosslinks in the hydrogel actually

oppose expansion and may lead to slower swelling/deswelling

kinetics, reducing the efficiency of the polyelectrolyte in converting

chemical changes into a mechanical force. The major design

problems with liquid systems is their containment. An advantage

however is that a soluble system is not confined to a particular

shape.

Several different liquid polyelectrolyte systems were studied

in our laboratory with intent for use in the pump.6 These liquid

polymers contained hydrophobic polybasic chain molecules.

Titration experiments and kinetic studies of colloid osmotic

pressure development and release were performed for several

precipitating and non-precipitating linear polyelectrolytes. These

experiments showed that copolymers of the hydrophobic p(N,N-

diethylaminoethyl methacrylate • HCl) [p (DEAe HCI)] and

methacryloxyethyl trimethyl ammonium chloride (MTAC), are capable

of generating a Donnan pressure change of around 0.1 atm in about an

hour. The drop in colloid osmotic pressure upon neutralization is

again slower than the increase, as for the hydrogels. Nevertheless,

these polyelectrolytes were shown to be capable of producing

changes in osmotic pressures of 0.1 atm. These pressure
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fluctuations could be switched on and off by changing the pH of the
reference solution.

The two gels which were studied for use in the pump each had

individual problems. The MMA/DMAA gels exhibited long term

stability problems.5 Whether the MMA/DMA gels can be utilized in

the pump depends on whether the sensor can operate at the low pH

values required to swell and shrink this gel. As will be seen later,

it is difficult to move the pH down to these values. The liquid

polymers appear to be very promising and more research is needed to

determine a correct combination of nontoxic monomers.

There are probably many other combinations of monomers

which could be used to obtain the desired response. Therefore

instead of developing several different combinations, this thesis

concerns itself with determining the required responses we wish to

obtain in order to have a feasible working pump. This is done in the

remaining chapters. An estimation of kinetic constants is required

for a stable insulin delivery system. The polymers or hydrogels

could then be "designed" to fit these requirements. At this point the

design of a particular polymer system becomes dependent on the

parameters determined by the glucose/insulin dynamics, and the

glucose sensing system. This section simply gives ideas of the

range of polymer systems available to power an implantable pump.

The exact system will depend on the desired kinetic response of the

pump, the exact design of the pump and the pump type.
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2.3 Mechanochemical Pump

The current device bears some relationship to osmotic pumps

in that both exploit pressure changes. Osmotic pumps act by

utilizing osmotic activity changes between an outside water

compartment and a highly concentrated osmotic agent compartment.

The change in osmotic activity between these two separate

compartments causes water to flow into the highly concentrated

salt compartment, and this excess volume flow, in turn can be used

to expel drug out of a device.8 In order for an osmotic pump to turn

on and off as would be required for an insulin pump, the pH-sensitive

gel would need to be an on/off device. This requirement is very

stringent and thus the idea of using an osmotic pump was shelved in

favor of the concept of the mechanochemical insulin pump.

In order to circumvent the difficulties of obtaining a polymer

system which is entirely an on/off device, it was decided to try to

design a pump which turns itself on and off by utilizing the change

in swelling or pressure generating properties of the polyelectrolyte

systems. The goal became to design a device which exploits the

volume changes in a gel, instead of permeability changes. In doing

this one can take advantage of the faster kinetics of going from one

swollen state to another swollen state. If liquid polyelectrolytes

are used instead of gels, the pump will be designed to go from one

partially osmotically active state to another more osmotically

pressurized state.
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The proposed device or pump functions by converting chemical

energy in the form of changes in blood glucose activity, into a

mechanical hydraulic force which pumps insulin out of the device.

The pump is powered by the osmotic swelling action of a pH

sensitive hydrogel or liquid polyelectrolyte. The polymer system is

coupled to a glucose sensitive membrane which contains the

enzymes that convert glucose into an acid. The polymer gel swells

in response to a decrease in local pH (high glucose levels) and

contracts in response to an increase in local pH (basal glucose

levels). This device would be intended for use as a long-term

implantable pump.

This pump is a three compartment system: one compartment

contains the hydrogel membranes placed in series, the second is an

incompressible fluid chamber which allows the pump to be reset,

and the third is the drug chamber containing insulin (see figure 2-1

below). The hydrogel membranes are adjacent to a diaphragm. As

the pH-sensitive gel swells in response to gluconic acid, it applies

pressure to the diaphragm. The diaphragm conducts the pressure to

the second and third compartments. When enough pressure is applied

a valve opens and releases the insulin. The second and third

chambers are separated by a movable/flexible partition which when

expanded acts to force the insulin out of the pump. When glucose is

present in the blood stream this process is set in motion.

The device concept is illustrated in Figure 2-1 below. This

proposed design for the pump contains three compartments, two

valves and a flexible elastomeric diaphragm. Chamber 1 contains the
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glucose sensitive swellable polymer system. For the present

purposes, Chamber I will be modeled as a composite membrane

where one component is the immobilized glucose oxidase enzyme

membrane and the other is a polybasic hydrogel which expands when

the blood glucose concentration rises. Chamber Il contains an

incompressible aqueous fluid, such as saline solution, and Chamber

III contains the drug formulation. Chamber III is separated from the

environment by a one way valve which opens when the internal

pressure of the pump exceeds the external surrounding pressure

allowing insulin to flow out of the pump. Chamber II also contains a

one way valve which opens when the surrounding pressure is greater

than the internal pressure. Chambers II and lll are separated by a

movable partition which collapses as drug is released. Chamber

communicates with the body fluids through a rigid porous membrane

which allows the influx of small molecules but excludes the large

molecules such as plasma proteins. Chambers l and Il are separated

by the diaphragm. The diaphragm separates the polymer gel from the

inside of the pump and in this way serves as a pressure transmitter.

It deforms in response to the increase in osmotic pressure from the

swelling gel and in this way, transfers the pressure from the gel to

Chamber II. The diaphragm also acts by elastic recoil to push fluid

out of the polymer gel when the gel contracts.
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Figure 2-1: Schematic of proposed Mechanochemical

Insulin Pump
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A schematic of the pump operation is shown in Figure 2-2.

When the blood glucose concentration is high, the glucose oxidase

membrane in Chamber 1 catalyzes the conversion of glucose into

gluconate and protons. The protons then diffuse into the polybasic

gel also contained in Chamber I. The polybasic gel contains amine

groups which bind the protons. This leads to an osmotic pressure

due the fixed charges on the gel and the excess of mobile

counterions present to maintain electroneutrality within the

polymer. The polymer gel then swells as a result of the increase in

osmotic force. The swelling action of the polymer causes the
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diaphragm to expand and to exert a pressure on the fluid in Chamber

ll. The increased pressure in Il closes valve #1 and is transferred to

Chamber III by the incompressible fluid in II. The drug is expelled

from Chamber Ill when the pressure in Ill exceeds the cracking

pressure of valve #2. Conversely when the glucose level in the blood

decreases, the gel contracts causing an effective negative pressure

in Chambers II and Ill. Valve #1 opens and allows fluid to flow into

Chamber ||. The volume of water which flows into Chamber ||

replaces the volume of drug released. In this way the pump is reset.
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Figure 2-2: Workings of Proposed Pump
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The model proposed in Figure 2-1 became the basis for the

theoretical design of the mechanochemical pump. The appealing

features of this pump is that it operates by the direct conversion of

chemical energy, manifested by changes in glucose levels, to a

mechanical pumping of insulin. This eliminates the need for an

external power source. Second, as in the osmotic pump, the insulin

can be formulated in any method, since it is kept completely

separate from the rest of the device. This may aid in solving some
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of the long-term stability and aggregation problems associated with

insulin. The fail-safe device in this design is associated with the

diaphragm. Insulin release in response to a rise in blood glucose is

limited by the degree by which the hydrogel can expand against the

diaphragm. Limiting the diaphragm to expand only by a given volume

limits the amount of insulin which can be released and thereby

automatically prevents overdosing.

2.4 Size Requirements for the Insulin Pump

The overall size of the pump is largely determined by the

amount of insulin required to store within the pump for the intended

duration of the implant. The yearly insulin requirement for an

average sized diabetic male is approximately 1 gram. If the pump is

to be refilled once a year, then this gram of insulin must be stored

within the pump. The specific gravity of insulin is greater than one

which means that the volume of one gram of pure insulin is less than

1 ml. The total volume of the insulin compartment will depend on

the type of formulation used. If the insulin is formulated as a finely

divided powder in a semi-solid suspension, one gram of insulin can

be stored in this form in a volume of 10 ml by using a concentration

of 100 mg/ml. This volume may change of course depending on the

insulin formulation.

A volume of 10 ml for Chamber Ill can easily be accomodated.

Chamber II is initially empty and engrossed by Chamber Ill,

therefore it does not require much extra space. Since the

mechanochemical pump has no rotor or other electrical or
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mechanical parts, the remainder of the pump can easily be encased

in a volume of under 20 ml. This compares favorably to other

implantable pumps currently available, which have insulin

reservoirs of 10 - 50 ml and an overall average volume of 200 - 300
ml. 1

It should be noted that the overall size of Chamber 1 of the

pump outlined in Figure 2-1 can be made very small by incorporating

very thin membranes. One advantage of using very thin membranes

is that the kinetics of diffusion become faster allowing for a

quicker response time. The diaphragm, as will be shown, can be

made as thick or thin as required. The valves in this design must be

designed to meet size specifications.

2.5 Amount of Insulin Delivery

The proposed mechanochemical pump shown in Figure 2-1 is

designed for insulin delivery at peak glucose levels right after

meals. This design does not take into account basal insulin delivery

which must be provided by some other means. In order to design the

pump correctly it is required to know the actual amount of insulin
delivered after each meal.

The amount of insulin to be delivered after each meal can be

estimated as follows. A normal individual of average size needs

approximately 50 units of insulin per day, with a basal rate of 1

unit/hr and a peak rate of 5 units/hr. This corresponds to 24
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units/day required for basal secretion rate and 26 units/day after

meals. If it is assumed that one has three meals per day, this

corresponds to approximately 9 units of insulin required per meal or

9 units per dose. Depending on the site of insulin delivery, this

amount may need to be increased. It has been documented that if the

insulin is delivered subcutaneously, the same amount is delivered as

if the insulin were delivered intravenously. It simply takes much

longer to reach the plasma if delivered subcutaneously. If, however

the insulin is delivered intraperitoneally, only about half the amount

of insulin could be accounted for in the plasma.9 This implies that

the pump should be able to deliver a dose of 9 - 20 units each meal,

depending of course on the individual. This dosage corresponds to

360 - 800 pig■ dose or delivering 3.6 - 8 pil per dose if the insulin

concentration in the drug compartment is 100 mg/ml.

Another method to generate a rough estimate of how much

insulin needs to be delivered per dose is to assume that an average

person needs 1000 bursts of insulin per year. (This corresponds to

one dose per meal, three boosts per day times 365 days per year.) To

accomodate the 1000 doses per year with a volume of 10 ml in the

insulin reservoir, each dose would be required to be approximately

10 pl. Given an approximate concentration of insulin in the drug

compartment as 100 mg/ml, 10 pl/dose corresponds to 1000

plg/dose or 25 units/dose. This value is higher than that estimated

above. It can easily be altered by changing the concentration of

insulin in the drug reservoir or designing the pump to only release a

lower volume.
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For the purposes of obtaining a generic design for the pump, it

was assumed that a dose of 10 pil is required.

2.6 Conclusions

This chapter describes the proposed mechanochemical insulin

pump. Due to unknowns in the design and problems with the

experiments, it was decided to pursue a more theoretical approach.

It was decided to design the initial portion of the pump, or the

sensor in more detail. The theoretical approach is used to determine

a range of parameters which will facilitate the design of a better,

more feasible pump.
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Chapter 3.

Sensor Design

3. 1 Introduction

In a normal individual the beta cells of a healthy pancreas

continually measure blood glucose and release insulin accordingly.

In a diabetic this process is either no longer functioning or greatly

reduced. Therefore, one of most important requirements in order to

obtain a working closed-loop device for insulin dependent diabetics

(IDD) is a reliable, in vivo glucose sensor. This chapter reviews

current glucose sensor technology and the problems associated with

utilizing these sensors. A novel design for a glucose sensor, using

the enzymes glucose oxidase and catalase is proposed. This sensor

can be easily coupled to a titratable polymer system which is used

in the proposed implantable device.

Many of the difficulties encountered in the treatment of

diabetes are concerned with the accurate measurement of blood

glucose levels in order to obtain the correct amount of insulin

required. Diabetics currently need to measure their blood glucose

level at least three times a day; once in the morning, at bedtime and

at least one time before a meal. Six to eight blood glucose

measurements a day are considered optimal to obtain good glycemic

control according to the Functional Insulin Treatment Program.1

Self-monitoring of blood glucose (SMBG) involves drawing blood
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using finger-pricking devices and measuring the blood glucose level
using blood glucose test strips, which can be evaluated either on the

basis of color or inserted into a glucose meter. The development of

a reliable, sensitive and long lasting (in vivo) biosensor which can

monitor the blood glucose level is therefore imperative to the
advancement of diabetic treatments.

3.2 Glucose Sensors: What is available.

Glucose sensor technology has been active for more than 25

years.” The final goal of glucose sensor development is to obtain a

biosensor which can monitor glucose level for effective feedback

control. Some of the desirable characteristics for an implantable

glucose sensor include reliablity, reproduciblity, biocompatiblity,

and an in vivo lifetime of several years. In addition a reliable

sensor must be specific only or primarily towards glucose and must

not have any inhibitory or poisoning effects towards the body. Ease

of fabrication and cost effectiveness are also important factors to

consider. These "wishes" are by no means simple to achieve. A

durable in vivo glucose sensor is still needed in order to close the

loop in diabetic treatment.

Several papers have documented advances and current research

in glucose sensor development.3-6. Most of the research has been

concentrated on enzyme electrodes, or other enzyme-catalysed

sensors which utilize immobilized enzymes to detect glucose.

Other potential sensors which do not use enzymes have been studied
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with some success. These include metal catalysed glucose sensors

using an activated platinum electrode and affinity sensors using
lectin concanavalin A as described in the Introduction of this thesis.

Another sensor, termed the coated wire sensor, has been developed

by Wilkins.7 This sensor converts glucose to an ionic substance

using the association-dissociation mechanism of glucose salts. The

glucose concentration is measured by an electrode either

polarographically, potentiometrically or amperometrically due to

the dissociation or the association of the glucose salt in equilibrium

with a glucose solution.

Some of the major problems encountered with development of

these glucose sensors have been the interaction of the implanted

sensors with body tissues or biocompatibility, the need for in vivo

calibration since sensors often give lower values when implanted

than would be anticipated from prior in vitro calibration, and

unpredictable drift of sensors in vitro and in vivo. Specificity

problems are encountered with the non-enzymatic sensors such as

the metal catalyzed glucose sensors. In addition, many of the

electrode sensors have had stability problems in vivo. The

enzymatic sensors have the general problem of short lifetimes,

depending on the life of the particular enzyme.

To date the enzyme-catalyzed sensors have been the most

successful in measuring glucose levels. The main advantage of these

sensors is that they are specific to glucose, thereby making the the

signal due only to glucose and not to other chemicals in the body.

These sensors are also biocompatible and do not have the



39

immunological problems which the affinity sensors do, because the

enzymes used, such as glucose oxidase, exist in the body.

The purpose in this project is to develop a sensor which will

interact with the rest of the pump described in Chapters 1 and 2 in a

closed loop fashion. Most of the above devices are simply sensors

and not an entire delivery system. Our goal is to use the above

research and adapt some of the above ideas to design a sensor which

will function in the pump. We have chosen the enzyme-catalyzed

sensor using glucose oxidase.

3.3 Glucose Oxidase Sensor

The majority of the enzyme sensors to date use glucose

oxidase to detect glucose. Glucose oxidase has been used

extensively in commercial products. It is used to remove glucose or

oxygen from food products, in the production of gluconic acid, for

quantitative determination of glucose in blood (YSI instruments),

and more recently has been implemented in glucose biosensors.8-11

Due to its importance in commercial applications and its current use

in biosensors, glucose oxidase has been studied extensively. Glucose

oxidase has been referred to as an ideal enzyme to use in a biosensor

by Wilson and Turner.12

The enzyme was first detected in the extracts of Aspergillus

niger .13. It has since been purified and characterized. 14, 15 Its
amino acid sequence and most recently its crystal structure have
been determined. 16-18
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Glucose oxidase (3-D-glucose:oxygen oxidoreductase, EC

1.1.3.4) catalyzes the oxidation of 3-D-glucose to glucono-6-lactone

and hydrogen peroxide by reducing molecular oxygen. This enzyme is

highly specific for B-D-glucose which makes it extremely valuable

in detecting the glucose concentrations. The flavoprotein glucose

oxidase is a dimer of identical monomer units with a molecular

weight of 150,000. It contains two tightly non-covalently bound

FAD cofactors and 2 moles of covalently bound phosphate groups per

dimer. 18, 19 Glucose oxidase is also a glycoprotein containing 11
16% carbohydrates.20,21. It is thought that the carbohydrate shell

around the enzyme contributes to its unique solubility and stability

properties. The enzyme is very soluble in water and resistant to

many proteases.

The mechanism of the glucose oxidase reaction, the kinetics

and the pH dependence of the GO reaction are well documented22,23,

as are the stability and activity of the enzyme.20,24-27 Glucose

oxidase is inactivated by hydrogen peroxide.8.28 and by putrescine.26

Inactivation also results with the loss of the FAD coenzyme, and

when the dimer becomes disassociated.27 Deglycosylation does not

inactivate the enzyme although it does affect the kinetics of the

reaction.20,29. The flavoprotein chemistry and the possible reaction

intermediates have also been investigated.30

Due to its high degree of substrate specificity, glucose oxidase

has been investigated for use in a number of enzyme

electrodes.8, 10,24,31-34. When glucose oxidase is used to detect

glucose in this fashion, glucose oxidase is often immobilized in a
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polymer matrix. There are several, well-documented methods one

can use to immobilize enzymes. The soluble enzyme can be

sandwiched between two polymer membrane layers.33,34. Other more

effective methods have been used. Trapping the enzyme in a gel

matrix is what is most commonly done.8-11.31,35-39 The gel matrix

can be poly-acrylamide or glutaraldehyde. Initially the above two

methods result in some loss of sensitivity due to loss of free

glucose oxidase. In addition, in time such membranes may lose their

activity to due a slow leakage of the enzyme. This problem can be

countered by covalent attachment of the enzyme to the membrane.40

It has also been suggested to cover the enzyme layer with cellulose

acetate. The purpose of this is to restrict access of interfering

substances such as ascorbate, uric acid and bilirubin. The covering

can also act as a diffusional barrier for glucose, and can reduce the

effects of variation in temperature and pH on enzyme kinetics, as

well as forming an interface between the body and the device and

ensure biocompatibility.

The major disadvantage in using glucose oxidase as a glucose

sensor is its sensitivity to oxygen. Glucose oxidase requires oxygen

to reoxidize it. Thus many of the sensors experience variations of

output with alterations in oxygen levels at the sensing site. In

addition, the molecular oxygen concentration in plasma is much

lower than the glucose concentration. This implies that oxygen will

be depleted before the sensor detects appreciable amounts of

glucose. In order to mitigate this problem, the sensor must be
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designed to enhance the transport of oxygen relative to that of

glucose.

3.4 Current Designs

There are two current designs that are of interest to us in that

each design uses glucose oxidase and combats the oxygen deficiency

problem. These sensors attempt to increase oxygen concentration

with respect to glucose concentration by either providing excess

oxygen or by providing preferential oxygen transport. Increasing the

oxygen concentration within the glucose oxidase/catalase membrane

can be accomplished by entirely or partially covering the

immobilized enzyme gel with a hydrophobic membrane. The

hydrophobic membrane is very permeable to oxygen and virtually

impermeable to glucose or other hydrophilic substances.

Enzyme electrodes are chemical-specific sensors in which

immobilized enzymes are coupled to electrodes that measure the

potential difference caused by a difference in the concentration of

an analyte. These sensors utilize immobilized glucose oxidase to

measure the glucose level by monitoring either oxygen

consumption 8-11,41 or hydrogen peroxide production33,34,42 at a

platinum base electrode. Gough et al. developed a two dimensional

glucose sensor which eliminated the oxygen deficit problem. The

sensor consists of a thin cylindrical electrode, surrounded by a gel

containing immobilized glucose oxidase and catalase. This gel is

surrounded in turn by a hydrophobic, oxygen permeable membrane.

Thus the glucose can enter the gel in the axial direction only, but
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oxygen can enter by both the axial and the radial directions. This

sensor has been tested both in vitro and in vivo with good results.

Abel et al. used a perforated hydrophobic membrane to modify

a Clark-type glucose electrode to decrease the electrodes'

sensitivity to oxygen concentrations.33,34 Their design consists of

a membrane-covered polarographic electrode which measures the

production of hydrogen peroxide. The membrane consists of a

hydrophilic membrane of cellulose acetae next to the elecrode,

covered by a layer of immobilized glucose oxidase in sepharose,

which is covered by a hydrophobic membrane. The hydrophobic

membrane is perforated directly above the anode. The hole in the

hydrophobic membrane allows glucose to enter the sensor. Without

the hydrophobic membrane, the studies showed that the sensor could

only detect glucose levels up to 3 mmol. Addition of the hydrophobic

membrane allowed this range to be extended to 40 mmol.

3.5 Proposed sensor

The electrode sensors mentioned above are not entirely

feasible for the proposed pump. The sensor for the proposed device

is required to detect glucose by converting it into gluconate and

hydrogen ions, and by delivering the hydrogen ions to the polymer

gel. This sensor must therefore be adjacent to the polymer gel,

which in turn must be allowed to swell without damaging the sensor.

In addition this sensor requires entry and exit paths for the acid

during the discharge or shrinking phase of the pump. For these
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reasons, the design used by Gough cannot be accomodated. Instead it

was decided to adapt the design used by Abel et. al.

The idea is to cover a planar glucose oxidase/catalase

membrane with a thin hydrophobic membrane that is periodically

punctured. The holes allow the diffusion of glucose, oxygen, protons,

gluconate, buffers and ions. Only oxygen can diffuse through the

hydrophobic layer. This system couples the advantages of the

membrane covering to enhance the oxygen concentration and the

holes in the hydrophobic membrane the effectively generate a two

dimensional sensor. Figure 3-1 below illustrates the proposed

SenSOr.

Figure 3-1: Schematic of proposed glucose sensor

Top View

Reflection of

Side View glucose and H " Holes allow
diffusion of| glucose, O2 and H +

Hydrophobic Layer -- Sºlº:
Enzyme Layer —-
"Destination" —- - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - - -
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The goal of this system will be to design the sensor in such a

fashion as to maximize delivery of the protons from the glucose

oxidase/catalase reaction to the destination layer when glucose is

high and minimize it when glucose is low, regardless of the oxygen

concentrations. By optimizing the geometry of the enzyme

membrane, the location and amount of enzyme within the membrane,

and the location and size of the perforations in the hydrophobic

membrane, the afore mentioned goal can be attained. The next

chapter describes the mathematical modeling undertaken to

determine the dimensions of the sensor.

3.6 Other possible solutions.

In choosing to use the enzyme system glucose oxidase and

catalase we have chosen enzyme which employs oxygen as the final

charge acceptor, and thus we are left with the problem of oxygen

sensitivities. The other metal catalyzed electrodes have specificity

problems. There are however several other possibities. A sensor

which uses a mediated electron transfer substance such as

ferrocene to transfer electrons from the reduced enzyme to an

underlying electrode has been studied with some success.49. In this

case oxygen is no longer the final electron acceptor in the glucose

oxidase-catalyzed reaction and the sensor is oxygen insenitive.

Another possibility is to use another enzyme to oxidize glucose to an

acid. Glucose dehydrogenase oxidizes glucose to gluconolactone as

well. This enzyme requires the enzyme co-factors FAD and NAD.

Chung et al. have developed an insulin releasing membrane by

immobilizing this enzyme with these co-factors.40
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Much more research is needed in the area of enzyme sensors,

specifically glucose sensors. Preliminary successes have occured

with the enzyme glucose oxidase. The major difficulty with the

glucose oxidase sensor is the oxygen sensitivity problem which

occurs in vivo. The remaining chapters show a theoretical solution

to this problem.
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Chapter 4.

Mathematical Modeling of Glucose Sensor

4. 1 Introduction

In this chapter the modeling aspects of the glucose sensor are

considered. As described in Chapter 3, the sensor is a glucose

sensitive membrane containing the immobilized enzymes glucose

oxidase, gluconolactonase and catalase. These enzymes convert

glucose and oxygen into gluconate and free protons. The free protons

generated by the reaction in the membrane diffuse into and ionize

the hydrogel, causing the latter to swell. A major goal in the

membrane design is to control the mass transfer of protons within

and from the polymer hydrogel; this mass transfer is in turn

controlled by the mass transfer and subsequent reaction of both

glucose and oxygen into and within the enzyme membrane.

This problem poses some complex modeling issues. Therefore

the diffusion/reaction calculations for the enzyme membrane

coupled to the polymer hydrogel are being carried out in order to

determine the rate of delivery of protons to the hydrogel as a

function of the enzyme loading and the geometric properties of the

membrane. The design problem is complicated by the fact that the

molecular oxygen concentration in plasma is much lower than the

glucose concentration, so oxygen may be depleted before the sensor

detects appreciable amounts of glucose. This problem has been

documented by a variety of authors: Gough and Lucisano (1985),
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Fischer and Abel (1982), Albin et.al. (1987), Klumb and Horbett

(1992), and Wilson and Turner (1992) to mention a few.1-7. As

mentioned in the last chapter, this problem can be mitigated by

providing preferential transport pathways for oxygen relative to

glucose and by optimizing the geometry of the enzyme membrane.

These calculations will enable us to determine the design which

allows for enhanced oxygen transfer and efficient proton transfer as

a function of the external mass transfer limitations and the external

glucose concentration.

This chapter describes the mathematical modeling undertaken

for the proposed glucose sensor. A simplified model for the sensor

is described, and the assumptions involved in deriving the mass

transfer equations are made explicit. The diffusion/reaction

equations are then derived for the model. The boundary conditions

used in this model are also discussed.

4.2 Assumptions and Simplification of the Model

As described in Chapter 3, the transport pathways for oxygen

are provided by means of a thin hydrophobic perforated membrane

which covers the enzyme membrane, and which is permeable to

oxygen but impermeable to glucose and hydrogen ions. The glucose

and protons can only diffuse into and out of the perforations in the

membrane while the oxygen can diffuse through the whole sensor

area.
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Figure 4-1 shows a schematic of the proposed enzyme sensor

along with the polymer layer or the destination layer into and out of

which the protons diffuse. The enzyme membrane is a composite

membrane in which the enzyme layer is sandwiched between the

destination layer and the hydrophobic layer. Diffusion of the species

from the bulk solution into the enzyme layer is assumed to occur

only in the axial direction with only the top side exposed to the

environment. The rest of the sensor or enzyme membrane is

assumed to be contained in a cylindrical casing which does not

permit radial diffusion into the sensor This assumption greatly

simplifies the model and the boundary conditions as will be seen.

Figure 4-1. Schematic of Glucose Sensor

Top View

Reflection of

Side View glucose and H " Holes allow
diffusion of| glucose, O2, and H +

Hydrophobic Layer -> Sº
Enzyme Layer —- :
"Destination" —B- - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - - -
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The thin hydrophobic layer is perforated in a uniform pattern

with the center of each hole at the vertices of equilateral triangles

with sides of length 2R, as shown in Figure 4-2a. In this way the

center of each hole is equidistant from the center of all adjacent

holes. It is assumed that the hydrophobic layer will completely

exclude transport of the glucose, protons and any buffer present in

the system, into or out of the enzyme layer. The transport of

protons, buffers and glucose will take place only through the holes

in the hydrophobic layer. In this design the size of the holes, the

distance between the holes, and the sensor membrane thickness

control the enhancement of the oxygen transport relative to that of

glucose.

The thickness of the hydrophobic layer is assumed to be

minimal compared with the thickness of the enzyme layer and thus

the mass transfer equations were only applied to the enzyme layer.

The destination layer is thought of as an area of uniform

concentration such as a continuously stirred reactor, and was not

included in deriving the mass transfer equations. The boundary

conditions at the destination layer/enzyme reactor interface will be

discussed in more detail in a later section.
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Figure 4-2: Perforation Pattern of Hydrophobic Membrane

Figure 4-2a: Placement of Perforations in Hydrophobic Membrane
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The problem to be solved is to calculate the concentration and

flux profiles of each species in the membrane as a function of the

external glucose concentration. In order to solve this a number of

assumptions are implemented and a simplified model of Figure 4-1

is utilized. Due to the equidistance of the holes and because
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diffusion from the bulk solution only occurs in the axial direction,

the approximation of radial symmetry can be made. This implies

that a "unit cell" can be used to model the entire membrane. Figure

4-2b and Figure 4-3 show the "unit cell" utilized in modeling this

problem. This simplified model is similar to the experimental Type

Il design used by Fischer and Abel (1982) for polarographic hydrogen

peroxide measurements.2,3

Figure 4-3. Model used to Analyze the Problem

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * G z = 0*—e *—º *—º I-4–4–4–4–4–4–4–4–4–4–4–4–4–4–4–4.

a I

H

SWRNS
Enzyme —º-

layer

The assumption of a cylindrical "unit cell" surrounding each

hole is not altogether correct however, and excludes a small portion

of the gel. This can be seen in Figure 4-2b, which shows an expanded

version of the top view of Figure 4-1. For complete accuracy, the

"unit cell" should be a hexagonal prism with sides of length G sº
This however, would be extremely complicated to model and due to

the other assumptions involved, we determined that it would be

more feasible to model the cylindrical unit cell as shown in Figure
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4-3. In making this assumption, we are underestimating the total

area for oxygen diffusion by approximately 10%. This unaccounted

for area is depicted by the shaded areas of the hexagons in Figure

4-2b, and is given by the ratio:

3R2 2
area hexagon - area circle sin 60 T R

area hexagon – 3R2 0.093.
sin 60

Since we are using the smaller of the two areas, we are using a

conservative estimate for the area of oxygen diffusion and we would

expect to see slightly higher oxygen concentrations in the membrane

experiments as a result.

Due to the angular symmetry involved, the diffusion/reaction

equations need to be solved only on a cross-section of the unit cell

shown with bold lines in Figure 4-3. Thus the diffusion/reaction

equations need to be solved in cylindrical coordinates over a

rectangular cross-section of height h, the enzyme layer thickness,

and length R, half the distance between the center of the holes. In

making these assumptions the complicated three dimensional

problem has been reduced to a two-dimensional problem which can

be solved using numerical techniques.

The regular techniques for solving diffusion/reaction problems

are used to solve this problem.8-10, 12 The general set up of a

diffusion/reaction problem is to equate the accumulation of species

i with the flux of species i into and out of a particular control

volume added to the generation or loss of species i due to reaction
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terms. In this case the control volume is the cross-section of the

unit cell shown in Figure 4-3. Using the above explanation, the

diffusion/reaction continuity equation for species i is given by:

0ci# => v . J. : XV i■ ri (1)

The model we are using assumes steady state conditions. This

means that there is no net accumulation of species i within the
0ci

control volume, or ot = 0 . Therefore, in this model we are

balancing the flux and the reaction terms.

Several other assumptions were made in analyzing this

problem. The most significant of these is the assumption that the

ionic strength of the medium is high enough to screen any electric

potential effects. This assumption translates to simplifying the

Nernst-Planck equation to Fick's law of diffusion. The Nernst

Planck equation for a flux of species i within a membrane is given by

Equation (2), where ci, Di, pli are the concentration, diffusivity and

mobility, respectively, of the species i within the membrane.

Ji = - Di Vci + [li zi Ci E + Ci Vf

= - Di Vci - plizici FV\} + civi (2)

The right hand side of (2) includes contributions from diffusion,

electrical migration with y as the local electrical potential, and

convection with v■ as the mass centered fluid velocity. The

assumption of high ionic strength implies that the electrical

potential effects become negligible with respect to the diffusion
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effects. In addition it is assumed that the convection fluxes are

negligible compared with the diffusion flux. These assumptions

allow equation (2) to be simplified to Fick's law of diffusion given

by equation (3) for each species i,

Several authors have also made this assumption (Albin , Gough,

Varanassi, Grodzinsky). 1, 4-6, 11 - 14 In addition it has been

experimentally shown that the migration and convection fluxes are

minimal compared to the diffusional fluxes. 11-14

Another approximation used in the development of this

analysis is that there is no selective partitioning of the species in

the membrane. This implicitly implies that there are no charges on

the membrane so that no Donnan effects are present. This

assumption may not be completely valid since the enzyme glucose

oxidase is very anionic and carries a charge of -80 at physiologic

pH.15, 16 Other authors have been able to use this assumption with

qualitative success, however. 1,4-6 It should be noted that this

assumption will be valid in a situation of high ionic strength and

low enzyme loading. [The mathematical model can allow for

different amounts of partitioning within the membrane by assuming

different equilibrium partition coefficients, oi, for each species i,

but as of yet the coefficients are all considered to be equal to one.]

It is also assumed that the diffusivity of each species is

independent of concentration and the best estimate of the
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intramembrane diffusion coefficients are used when possible. This

is discussed in more detail in the section on parameter estimation.

4.3 Reaction Term Modeling

The reactions catalyzed by the enzymes glucose oxidase,

catalase in excess, and gluconolactonase, respectively, are shown
below,

Gluox
glucose + O2 —- glucono-6-lactone + H2O2 (4a)

Cat
H2O2 —- H2O + 1/2 O2 (4b)

Gluconolactonase
glucono-6-lactone + H2O —- gluconate + H+ (4c).

Summing 4a-c the net reaction becomes:

glucose + 1/2 O2 —- gluconate + H+ (4d).

This reaction has been modeled by a two substrate Michaelis-Menten

model, known as the ping-pong mechanism. The model was originally

developed by Nakamura and Ogura in 1967 and since then has been

used by numerous authors (Weibel and Bright, Horbett et al., Klumb,

Gough). 1,4-6,17-19. This three parameter model given below, was

shown to fit the overall reaction kinetics to within 1% for a given

pH.
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El 1 1 1
— - + +

V Kredºg Koxbo Kcat (5)

where cq = glucose concentration in moles/liter (M)
Co = oxygen concentration in moles/liter (M)

Et = total enzyme concentration in moles/liter (M)

v = rate of reaction in moles/liters-seconds (M/sec).

This equation can be rewritten to express explicitly the rate of

reaction, v, as a function of the glucose and oxygen concentrations.

In writing equation (6) shown below, Kg and Ko are Michaelis-Menten
constants for glucose and oxygen, respectively, kcat represents the

irreversible decomposition of the enzyme-substrate complex and Et

is the total enzyme concentration.

V = kcat E.
k k1 + \ca + "ca%. C9 %-->

kcat El

1 + % .*.C g Co

——

1 + % .*.C g Co

The above equation was used to model the glucose oxidase

(6)

reaction. The performance of glucose oxidase is dependent on pH and

has an optimum performance at pH 5.5. More discussion of this will
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be given in Chapter 7 where the values of the parameters used in the
simulations are determined.

4.4 Derivation of Mass Transfer Equations

The model uses conservation of mass and Fick's second law to

describe the diffusion and reaction in the glucose sensitive

membrane. As was discussed in the assumptions section, equation

(3) is valid for the six species involved in the problem. Using the

conservation of mass principle given by equation (1) with the steady

state assumption, and applying Fick's second law to equation (3), the

species conservation equations become:

V - (-D, VC)=Xviºr (7)
J

In equation (7) the index j represents a particular reaction, ri is the
rate of the jth reaction, and vij is the stoichiometric coefficient of
the i'th species in the j'th reaction. The diffusion coefficient and

concentration of species i are denoted by Di, and ci, respectively.

The divergence operator, W s, and the gradient operator, V, are

represented in cylindrical coordinates.

The six species involved in the glucose sensor are glucose

(denoted by subscript "g"), oxygen (o), hydronium ion (h),

unprotonated buffer (b), protonated buffer (bh) and gluconate (a).

Two reactions were considered in this model: one is the glucose
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oxidase/catalase reaction denoted by reaction rate v given by

equation (6); and the acid/base reaction with the buffer whose

reaction rate is denoted by rp. For completeness both reactions are

initially included. Below all the species conservation terms are
written out:

V - (-Do Vc.)=-v (7a)

V - (-Do Vco) = - v (7b)

V - (-Dh Vch) = V + r b (7c)
V - (-Db- VC b.) = r b (7d)
V - (-Dbh VCbh) = -rb (7e)

V - (-Da Vca) = v (7f.)

In equations (7a-f),

v. CD, vo)-1-((-Dº), '4-D.”
r 9r Or oz Oz

These six equations can be simplified by assuming that (i) the

diffusivity of the unprotonated buffer is equal to the diffusivity of

the protonated buffer, and (ii) that the system is "closed" within the

device. The second assumption implies that there is no generation

of buffer species within the enzyme membrane or the destination

layer. Then adding equations (7d) and (7e) and using the above

assumptions, it can be shown that inside the device:
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Db.V2 ctb = 0 where Ctb = Cbh + Cb-. (7d)+(7e)

This eliminates one of the six equations above. If in addition it is

assumed that the buffer is in acid/base equilibrium at all locations

in the membrane, then equations (7d) and (7e) can be replaced by

equation (8) shown below.

Cbh = CtbCh Kº- “bºh
Kb + ch Cbh (8)

where Kb is the equilibrium constant for the buffer.

Adding equations (7e) and (7c), equation (9) is obtained:

V - (-Dh Vch) + V - (-Db VCbh) = v (9)

Equations (7a), (7b), (8) and (9) completely describe the problem at

hand. (Equation (7f) does not need to be solved explicitly because

once the other five concentrations and fluxes are known the

gluconate concentration can be determined.)

Since Ctb and Kb are constants, and cbh depends only on ch, this

problem can be simplified further. Substituting equation (8) into

equation (9) and taking the derivative of the protonated buffer

concentration using the chain rule, equation (10) is obtained.

VCbh – 0CBh Vch –
_* ve.

Och (Kb + ch) (10)



66

Substituting equation (10) into (9) and collecting like terms, the

final equations (11) and (12) are obtained to solve for the hydrogen
ion concentration.

V - (-Dapph Vch) = V (1 1)

where;

Ctbkb
Dapph = Dht D, ºr

(Kb + ch) (12)

Equations (7a), (7b) and (11) now represent the diffusion/reaction

equations which need to be solved. Equations (6) and (12) are used

implicitly in solving for the concentrations cq, co and ch. This set of
equations represents a highly nonlinear problem and an iterative

numerical procedure is used to solve this problem with the geometry

given in figure 4-2. These equations are listed together below.

Diffusion/Reaction Equations

V - (-Dg Vcg) = -v (7a)

V - (-Do Vco) = - : V (7b)

V - (-Dapp,h VCh) = v (11)

where,

0 0C; 0 0civ. CD, vo)=1 * (r(-Dº))+ ° (-Dºº)
r Or Or Oz Oz .
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and,

Ko (6)

(12)

It should be noted that Albin and Horbettº have used a slightly

different method to solve for the hydrogen ion concentration. This

involves solving equations (7a,b) for the reaction rate using equation

(5), and then solving for gluconic acid using equation (7f). The pH

was solved once the gluconic acid concentration had been

determined. This method was not used in this analysis.
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4.5 Boundary Conditions

Thus far we have written down the necessary transport field

equations for the problem at hand. However, the complete

mathematical description requires that boundary conditions also be

specified. Figure 4-4 summarizes the boundary conditions placed

over the rectangular area. No flux boundary conditions are assigned

to side 1 and side 3, as shown in equations (13) and (14).

0ci

Side 1: r = 0 ; 0 < z < h : ... = 0 i = g, o, H+ (13)

-
0ci

-

Side 3: r = R ; 0 < z < h : a = 0 i = g, o, H+ (14)

At r = 0, the center of the unit cell, all the concentrations must be

finite and the fluxes must therefore equal zero. At r = R at the outer

edge of the unit cell, it is assumed that the fluxes are zero because

of symmetry. It is assumed that beyond the boundary at any point

where r = R, there is another cell which is a mirror image of the cell

being considered. This may not be completely valid since in the

actual design the "unit" cell is a hexagonal prism not a cylinder.

Given all the other assumptions made however this will probably

only contribute a minor error in the calculations. It should be noted

that this has been tested by varying R and determining if the fluxes

are zero along this edge.



69

The boundary conditions along side 2 are given by matching the

mass transfer rate from the bulk solution to the gel to the diffusion

rate within the gel for a given species. In applying these boundary

conditions we assume no forced convection is occuring into the

device and only free convection from the bulk solution to the device

is occuring. This assumption is valid for Reynold numbers below

20,000, where it is assumed that the flow into the device is very

slow. If the device is placed in a region of no blood flow, this

assumption is valid.

The mass transfer coefficient for species i into the enzyme

membrane are given by the symbol ki. These mass transfer

parameters from the bulk solution to the device have been estimated

by Gough et. al. using a membrane-covered, rotated disc electrode

system simulating passive diffusion from the bulk solution to a

membrane (Reynold numbers less than 5000).20-22 The

determination of these parameters will be discussed in more detail

in Chapter 7.

Since there is a hydrophobic membrane which excludes the

transfer of some species, the boundary conditions for side 2 are not

straightforward and must be broken up into two sections; the area of

the hydrophobic membrane and the area of no membrane. Along the

region of no membrane (the hole), mass transfer of all species is

allowed, and the boundary conditions are given by equation (15a) for

glucose and oxygen.

:
º
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Side 2: z = h; 0 < r < a

.-K. (CiB - +)
Z O.; i = g, o (15a)

The boundary condition for hydrogen is slightly more complicated

due to the fact that we need to take into account the flux of the free

hydrogen ions as well as the flux of the hydrogen ions bound to

buffer. Thus the boundary condition along the hole for hydrogen

becomes:

Side 2: z = h; 0 < r < a

och • Och , , , OCbh
Dapp,h Oz T Dh oz " Db Oz

Ch Cbh= K, (one-, + k (cºne- (15b-1)
This equation can be simplified and written only in terms of the

hydrogen concentration by substituting equation (8) in for cbh and

CbhB .

Side 2: z = h; 0 < r < a

D., *=lk, , ; *—|ca -lk, , ; *-***
app.h 32 = |*h * Ke che | *he " " Kb ch oblon

Ch

= khi ChB - kh?(ch) on (15b-2)
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The first term in this equation is a constant, whereas the second

term is a nonlinear function of the hydrogen concentration. Equation

(15b-2) is in a similar form as (15a) with unequal mass transfer
coefficients used for the bulk and the actual concentrations.

Along the area of the membrane, due to the characteristics of

the membrane, only mass transfer of oxygen is permitted and the

boundary conditions are given by equations (16a,b).

Side 2: z = h; a s r < R

0c CDoº?=ko (coe - **)
0z O'o (16a)

oci = 0: i = Cl, H+ 16b
Oz

- y | = 9, ( )

In equations (15) and (16), ki is the mass transfer coefficient for

species i, ciB is the bulk concentration of species i and o. i is the

partition coefficient of species i in the enzyme membrane. (For the

computations involved, all the partition coefficients, oi, were set to

one.) Equation (16b) represents the no flux condition for glucose and

hydrogen along the area of the hydrophobic membrane, whereas

equation (16a) represents the mass transfer of oxygen all along the

membrane. [It should be noted that if the membrane were to allow

passage of buffer as well as oxygen, then the boundary condition

given by (16b) is incorrect for hydrogen. To correct it, one needs to

set kh =0 and kb # 0 in equation (15b).]
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The boundary conditions for the destination layer, side 4, are

more complicated than for the other sides. This boundary condition

is essentially unknown for this particular problem because the

destination layer is an unknown polymer system of unknown size.

The goal of this project was to determine the pH at the destination

layer boundary for a given sensor design, without regard for the

polymer system. In order to do this the polymer system was not

considered in this analysis. However this still made it difficult in

determining the exact nature of the boundary conditions to use at

this interface.

Boundary conditions can be of two forms: setting the

concentration, or setting the flux conditions. At the edge of the

destination layer, the realistic boundary condition is to set the flux

conditions; that is the fluxes from the enzyme gel to the destination

layer should be set equal to the fluxes in the destination layer at

this boundary. Implementing this boundary condition would imply

solving the transport equations within the destination area. This in

itself is not difficult, for a known system.

The exact polymer system, however is unknown. At the time

of this analysis, liquid polymer systems which buffered the system

at pH 7.2 were being studied. Other liquid polymer systems studied

exhibited buffer-like behavior and their acid/amino group

interactions followed a titration curve.23 The gel polymer systems

studied exhibit highly complex behavior and cannot be described

easily by a simple acid/base equilibrium. Due to these conditions,

several different boundary conditions were tried. First we briefly
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discuss the various boundary conditions which were tried for

glucose and oxygen, followed by the hydrogen boundary conditions.

No flux conditions were initially tried for glucose and oxygen.

This condition corresponds to having the destination layer be a

barrier which allows no transport of any species accross it. In

reality this is not the case for any of the species. Both glucose and

oxygen will diffuse into and out of the destination layer, but no

reaction will be occuring in this region. This would imply that using

a boundary condition of constant concentrations would be more

accurate. The problem in this condition is what value to use for both

glucose and oxygen.

Sink conditions, where either the glucose and oxygen

concentrations are set to zero, are unrealistic for this problem. The

goal of this design is to enhance the oxygen concentration at the

destination layer so it is undesireable to have zero oxygen

concentrations in this region. There is ample glucose in the system

so that having zero glucose concentrations at the enzyme/polymer

interface is also unrealistic. The exact boundary conditions used are

discussed below.

It is desirable to allow hydrogen to flow into this region so

the initial boundary condition corresponded to setting the pH. The

value that the pH was set at was determined by the buffering power

of a liquid polymer system that was under investigation in our lab at

the time. Initially this value was pH = 7.2, and the fluxes into and

out of the destination layer were looked at. Other polymer systems
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however either buffered the layer at a different pH or had much more

complex titration behavior, so this value was not used in all the

analysis. Instead the condition shown below was used once the

glucose and oxygen profiles had been determined.

At steady state we might normally expect the destination

layer to be an area of uniform concentration with no flux into or out

of this area. However, applying a boundary condition of no flux

generally leads to a nonuniform concentration distribution along the

bottom edge. Since it is not very realistic to have a nonuniform

concentration distribution along the bottom edge, we applied a

constant concentration boundary condition along side 4 for each of

the species. The final boundary condition concentrations were

determined as the concentration at which the integrated flux along

the destination layer was zero. Equation (17) show the boundary

condition for the destination layer.
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Side 4: z = 0; 0 < r < R

Ci = Cibottom such that

r=R

Dº for -o
Oz

r = 0

bottom i = g, o, H+ (17)

for H+: Di EX Dapp,h

It is noted that for hydrogen, the diffusion coefficient in (17) is the

apparent diffusivity which includes the contribution of the

protonated buffer. The exact procedure used in applying this

boundary condition is discussed in Chapter 5.

In the boundary conditions given by equations (13)-(17), the

selective partitioning is included for completeness of the

formulation. Selective partitioning of species into the enzyme

membrane is represented by the partition coefficient for each

species. The equilibrium partition coefficient is given by o i =

ci/ciB, where the subscript iB refers to the concentration of species

i in the bulk solution, and the subscript i refers to the concentration

of species i in the membrane. These two concentrations are

assumed to be in equilibrium.
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Figure 4-4 : Summary of boundary conditions

O a R

2 NH
H

/
flux of glucose, O, ,
and H"

glucose, H*, and O2

(3) No flux out

1–1–
(~~)
* -
--,
---



4.6 Nondimensionalization of Equations

The transport/reaction equations and boundary conditions were

nondimensionalized

generalize the method of solution.

used are given in Table 4-1.

to facilitate solving this problem and

The nondimensional quantities

Table 4-1 : Nondimensional Quantities

Distances Concentrations Glucose Oxidase

Reaction constants

– co — 90
-

Kop = B ° Too coB Too coB

Z
-

Di Ci Dg Kg
- T Ci -Ç h | O.O Do CoB Kg O.O Do CoB

i = g, H+, th, a

R R2 V*
8 = T (p 2 - yh olo Do CoB

Thiele modulus;

V" = kcat Et

:
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In addition, the nondimensional buffer equilibrium constant is given
DH Kb

In the above equations, coB is the concentration of oxygen in
the bulk solution. We chose to nondimensionalize the concentrations

and the reaction constants by the quantity oo Do CoB because oxygen

is the limiting concentration. In the body the oxygen level varies

from 0.01 mM in venous blood to 0.15 mM in arterial blood, whereas

glucose levels vary from 3 - 8 mM. In addition, the maximum

saturation level of oxygen in water at atmospheric pressure is only

0.274 mM. It was desired that the nondimensional oxygen

concentration vary from 0 to 1, thus letting the nondimensional

glucose concentrations be greater than 1. By nondimensionalizing by

the product of the bulk oxygen concentration, the diffusivity of

oxygen in the membrane and the partition coefficient within the

membrane, the diffusion and partition coefficients are taken care

of, and the problem focuses on the oxygen concentrations.

Substituting the nondimensional reaction constants from Table

4-1 into equation (6), the nondimensional enzyme reaction rate

becomes:

2 2

R °
-

(18)V-vºnCo Do CoB 1 + kg/(Cg ) + Ko/ ( Co.)

Substituting the nondimensional concentrations and

dimensions, and the nondimensional reaction rate into equations
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(7a), (7b), (11) and (12), the final nondimensional equations are

obtained and are shown below in equations (19a-c) and (20).

1 o o Co O2 cg
- - -

pm op pm op + £2 3.2 V ( CJ , Co )= 0 (19a)

where:

º,
Dºº-ºººº- —º- (20).

(1 + º

The "m" in equations (19a-c) gives the user the flexibility to use

planar (m=0) or cylindrical (m=1) coordinates. The problem was

formulated in this fashion to allow the user to change geometries if

necessary. In addition, equation (18) is used for the reaction rate in

equations (19).



80

It was noted earlier that the glucose oxidase reaction is

dependent on pH. Equation (18) can be altered to incorporate the pH

dependence, however this reaction rate was initially used in order

to start with a slightly simpler problem. It was later determined

that the pH change within the membrane is small enough to warrant

the use of (18) rather than a more complicated form, which

incorporates the hydronium ion concentration.

Equations (18), (19a-c) and (20) represent the nondimensional

equations which solve the diffusion/reaction problem posed here for

glucose, oxygen and hydrogen. The boundary conditions must also be

nondimensionalized. The nondimensional forms of equations (13)-

(17) are given in Table 4-2, equations (21) - (25).

In Table 4-2, equations (22) and (23) are the nondimensional

mass transfer boundary conditions. The quantities, Bii and Bio are

the Biot numbers for species i (either glucose, hydrogen or buffer)

and oxygen respectively. These quantities represent ratios of the

external mass transfer rate to the internal rate of diffusion and are
ki h

given by Bij = 5. O i■ The effective substrate concentration ratioI |

within the del for species i is ci" and is diven by ci" _0 i Di CiB.DiCi B
9 p I 9 y C it = olo Do CoB'

The quantity ci" relates the rates of diffusion of species i within

the membrane to that of the limiting species oxygen.
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Table 4-2: Nondimensional Boundary conditions

Side p Ç Boundary Condition

1 p = 0 0 < ... < 1 oci
-− = 0 i = g, o, H+ (13)=> (21)op

-
a | r oci

-

2 - in |0 < p < = |* = 1 † = B( or - c. ) = g. b
area of no

0 C
-

membrane ºr = Bio (1 - Co ) (15a)=> (22a)

Please see text for (15b)=> (22b)

. a –

2 - in ||5- p < 1 || = 1 * -o i = g, H+, b
area of

membrane (16b) => (23 b)

o co -
-Bio (1 - Co )

(16a) => (23a)

3 p = 0 0 < ... < 1 oci
-

- - -

− = 0 i = g, o, H+ (14)=> (24)op
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Ci = Cibottom ; S.t. pmop = 0

i = g, O ; and

Ch = Chbottom ; S.t.

1

0 ch

p=0

(17)=> (25)

The hydrogen boundary conditions for sides 2 and 4 are slightly

different than those of the other species. The apparent diffusivity

is included in the hydrogen flux terms because we desired to take

into account the total flux of hydrogen into and out of the enzyme

membrane. By including the nondimensional apparent diffusivity, the

flux calculated includes free hydrogen ions and those bound to

buffer. Equation (15b) is slightly more complicated to

nondimensionalize. The nondimensional form is given below:
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0 ch
- -

ob cle
*Papp 5: = | Bih + Bib anch or Ch

- -
Ctb

-- || Bih + Bib - ch
Kh + Ch

= Biº"ch - Biº"(ch) ch (22b)

In (22b), B." and B."(ch) are effective Biot numbers for the total

hydrogen ion concentration and are functions of the nondimensional
free hydrogen concentration, ch or the effective hydrogen

concentration in the membrane, ch” .
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Appendix 4-1.

List of Variables

R

zi

Radius between preforations in the hydrophobic membrane;
radius of a unit cell. (cm)

Radius of a preforation in the hyrdophobic membrane (cm)

Thickness of sensor (cm)

radial coordinate in unit cell

axial coordinate in unit cell

mmole
flux of species i (cm2·sec)

diffusion coefficient of species i within the enzyme membrane
cm2

(sec)

mole M mmoleliter T" T cm3concentration of species i ( )

cm2 mole
mobility of species i (joules see

charge on species i

- - -
volt

electric field (cm)
= - F W \}/

t coulomb
F : farraday's constant, 96,500 mole
\P': local electric potential (volt)
[Note: 1 coulomb-volt = 1 Joule)

:
:
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Vf

ki

0.j

mass centered fluid velocity (...)
- -

C m

mass transfer coefficient (sec)

partition coefficient

Reaction Variables

rate of i'th reaction (sec)

stoichiometric coefficient of the jth species in the i'th
reaction

M
acid/base reaction with buffer (sec)

- -
M

rate of glucose oxidase reaction (sec)

- -
Se C

rate constant for reduction of glucose oxidase by glucose (TM)

- - - - -
Se C

rate constant for oxidation of glucose oxidase by oxygen (TM)

rate constant for irreversible decomposition of enzyme
substrate complex (sec)

Michaelis-Menton constant for glucose in the glucose oxidase

kcat ]reaction (M) [= Kredre

Michaelis-Menton constant for oxygen in the glucose oxidase
k

reaction (M) [= . ].OX

total enzyme concentration in moles/liter (M; mmole/cm3)

:

i
:
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V* maximum rate of glucose oxidase reaction (sec) [= kcat Et

Kb equilibrium coefficient for acid/base reaction (M)

Subscripts

9 glucose

O oxygen

h hydrogen

b buffer, assumed to be bicarbonate

a gluconate

bh protonated buffer

t b total buffer

iB bulk concentration of species i

species i

Nondimensional Variables

p

Ç

8.

- - - -
r

nondimensional radial coordinate [= R]

];nondimensional axial coordinate [ =

-
R

aspect ratio [ = h
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Kg

©2

KH

nondimensional concentrations [= Di Ci , i = g, o, H+, th, aCo Do CoB
]; over bar carried only in Chapter 4, dropped for simplicity in
Chapter 5.

nondimensional Michaelis Menton constant for oxygen in the

&
O■ o Co B

glucose oxidase reaction [=

nondimensional Michealis Menton constant for glucose in the
Do Kglucose oxidase reaction [= −º- )

Co Do CoB

R 2 V*
Thiele modulus [= TT ]O'o Do CoB

DH K
the nondimensional buffer equilibrium constant [= –PH ºb

Co Do CoB

- - -
R2

nondimensional reaction rate [= v | Tº T | ]Co Do CoB

nondimensional diffusion coefficient for hydrodium ion
_ (Dapp,h)[--tº

Biot number, ratio of mass transfer rate to diffusion rate

[= ki hT Dio.

effective substrate concentration ratio within the gel [ =
O. i Di Ci B
Co Do CoB

:
! ***

■ ºme

=

:
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Mathematical SVmbols

0 0
-

W = ( op ' 0. ) gradient operator

We a divergence operator

1-4 tam da
-

pm ºn (P a) no + x n |
m = 0 rectangular coordinates

m = 1 cylindrical coordinates
i
:
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Chapter 5.

Method of Solution - Finite Element Modeling

5.1 Introduction

As derived in Chapter 4, equations (19a), (19b) and (19C)

represent the nondimensional diffusion/reaction equations which

need to be solved along with the nondimensional boundary conditions

given in equations (21) - (25) (see Table 4-2). In addition equations

(18) and (20) are used implicitly in solving for the nondimensional

concentrations cq, Co and ch. (For the rest of this section and the
remainder of this chapter, the bar over the concentrations will be

dropped and it is understood that the concentrations are

nondimensional unless indicated otherwise.) This set of equations

represents a highly nonlinear problem and it is necessary to use an

iterative numerical procedure to solve it. Several different

numerical methods were considered to solve this set of coupled

nonlinear partial differential equations.

The finite difference method relies on approximating the

derivatives in the equations by difference formulas obtained from

the Taylor series. The difference formulas represent differences

between values of the solution at discrete mesh points. Although

this is the most straightforward method of solving this problem, it

was rejected due to the difficulty in incorporating the nonlinear



93

hydrogen diffusivity, and due to the method's inability to refine

mesh sizes easily.

The method of weighted residuals is a general method which

can be applied to boundary-value problems. It is a generalization of

the variational method in which the solution is chosen to minimize a

functional such as an energy integral for the system. In using the

method of weighted residuals the first step involves approximating

the solution as a combination (Xciój) of known polynomial trial
functions (@) and unknown parameters (c.). A residual is formed by

substituting this approximation into the differential equation. The

unknown parameters are determined by setting the integral (over the

domain) of the weighted residual of the approximation to zero. For

different choices of the weight functions, yi, the method is known

by different names. The method of collocation, for example, uses

Dirac delta functions as the weight functions, yi [uyi = 6(x - xi)]. In

doing this, the solution is required to satisfy the differential

equation exactly at the collocation points, xi, which need to be

chosen over the domain. The Galerkin method is another example of

the method of weighted residuals where the weighting functions are

identical to the known polynomial trial functions, yi = @i. In the

Galerkin method, the unknown coefficients, ci are solved for over

the whole domain and the solution at any point, (xj,y) is a linear

combination of these coefficients, ci and the trial functions at that
point, Öj(xj,yj).

The method of weighted residuals is usually performed over

the entire domain of the problem and the polynomial trial functions
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must be chosen to satisfy all the boundary conditions. The difficulty

with this comes in choosing the polynomial trial functions, and in

choosing the points at which the residual will be evaluated. An

improvement on the collocation method is to use orthogonal

polynomials as the trial functions. Then the collocation points are

taken as the roots to one of the polynomials and the dependent

variables are the solution values at the collocation points rather

than the coefficients of expansion. This method, known as the

method of orthogonal collocation, has been used to solve

diffusion/reaction problems. 3, 4 The method of orthogonal

collocation was used to solve equations (4-7a-f) by Gough et al.5-7,

and Klumb et.al.89. Each author used different geometries than the

one we are considering and furthermore, all of their models had

uniform boundary conditions along each side.

The difficulty with using orthogonal collocation or any of the

variational methods in solving the problem posed here arises in

applying boundary conditions at the membrane/bulk solution

interface, given by equations (4-15) and (4-16). Due to the

membrane properties, this boundary condition is non-uniform along

that side for two of the three species, glucose and hydrogen.

Furthermore, it was desired to be able to vary the hole radius easily.

In order to do this easily it was decided to use the method of

Galerkin finite elements.

The method of finite elements is simply a piecewise

application of the variational methods over elements. In the method

of finite elements the domain of the problem is first discretized

:
:
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into a collection of geometrically simple subdomains, or finite

elements. Then over each finite element the weighted-residual

method is applied, and continuity of the solution and its derivatives

is assumed at the edges of the elements. The type of weighting
function that is chosen will dictate the method of solution for the

rest of the problem. Orthogonal collocation on finite elements can

be used to solve diffusion/reaction problems using Legendre

polynomials as the trial functions. 4

As mentioned before the Galerkin method on finite elements

has the advantage over the collocation method in cases of non

uniform boundary conditions. In addition the power of the Galerkin

method is that the mesh can be easily refined where needed without

having to refine the mesh over the entire domain. This was

considered a great advantage for our problem and thus the Galerkin

method of finite elements was chosen.

In using the Galerkin method of finite elements, the Galerkin

method of weighted residuals is applied to the differential

equations to be solved over each element with the weight functions

equal to the polynomial trial functions. The differential equations

are first put into variational form over a typical element, and the

solution is assumed to be a combination (2 ciój) of the given
approximation functions 0; and the nodal solutions ci. The trial

functions, j, and the weight functions, yi= Qi, are polynomials that

are derived using interpolation theory, and are called interpolation
functions. The assumed solution is then substituted into the

variational form of the differential equation. This form of the

.
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equation is rearranged to obtain the element equations [Ke) {ue} =

{Fe}, where "e" represents the element in consideration, and the

vector {u} represents the unknown nodal values. The element

stiffness matrix [K] and the force vector {F} depend on the

interpolation functions. The element equations are then assembled

to obtain the global equations, assuming interelement continuity

conditions. At this point the boundary conditions are imposed and

the global equations are solved by inverting the global matrix [Kgll.

Due to the nonlinear reaction term and also the nature of the

boundary conditions in this problem, solving the assembled global

equations is not as straightforward as simply inverting the global

stiffness matrix. This is because the reaction rate involves the

concentrations of both glucose and oxygen as shown in equation (4-

18). There are two ways to approach this problem: one is to

incorporate the nonlinear reaction term into the global stiffness

matrix and use the Newton-Raphson iterative method to solve the

problem. The other method is to approximate the reaction term as a

combination, V = XVI u■ i, of a constant reaction term Vi calculated at

the nodes using old values of cq and co, and the polynomial trial
functions bi= yj. Using this method the global stiffness matrix

becomes only a function of the known polynomial trial functions and

can be easily inverted. Picard's method of iteration is used to obtain

an accurate reaction term at the nodes, Vi. Both of these methods

are discussed in more detail in Appendix 2: Handling the Nonlinear

Reaction Term.

i
º -

:
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Solving for the hydrogen ion concentration involves other

nonlinear terms, the apparent diffusivity and the effective Biot

numbers. These terms can be handled in a similar manner as the

reaction term, and will be discussed in more detail in the Numerical

Solution section.

5.2 Galerkin Finite Element Method

5.2.1 Setting up the Equations - Variational Formulation

In this section the variational formulation of the problem is

derived to obtain the equations in the appropriate form for the finite

element method. The variational formulation (synonomous with the

method of weighted residuals) involves three basic steps: (i)

multiplying the equation (with all of the terms on one side of the

equality) by a test function or weighting function and integrating

the product over the domain of the problem, (ii) transferring the

differentiation from the dependent variable ci to the weighting

function and (iii) simplifying the boundary terms using the specified

boundary conditions. The test function in the first step can be

thought of as a variation in the dependent variable to be solved for.

It also must be chosen to satisfy the homogeneous form of any

primary boundary conditions. (Primary boundary conditions are

those in which the dependent variable is specified exactly at a

boundary.) The second step involves using integration by parts, the

divergence theorem and the gradient theorem.

:
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The steps for obtaining equations (4-19a-c) along with

boundary conditions (4-21)- (4-25) listed in Table 4-2 into the

variational formulation over a typical element in the mesh are given

below. Since equations (4-19a,b) are in similar form, the

variational formulation is applied to them first. Equation (4-19C),

due to the extra nonlinear diffusivity term, is treated separately.

Equations (4-19a,b) are repeated below:

1 0 0Cg O°cq VI.
pm op |om º + £2 0.2 V (Cg, Co.)= 0 (4-192)

1 0 Oc 02co 1 –#;" . . e., v (Cg, Co.) = 0 (4-19B)

The general form of these equations is:

1 9 0ci 02ci
-##!" ...) *** - vi V (ci, ci) = 0 (4-19)

where ci is the concentration for species i, vi is the stoichiometric

coefficient for species i, (vg = 1 for glucose, vo = 0.5 for oxygen) and
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the reaction term, v, is a function of both species. When m=0 the

solution is for planar coordinates and when m=1, the solution is for

cylindrical coordinates.

In the method of weighted residuals, the residual for equation

(4-19) is formed by substituting in an approximate solution of the

form ci = 2ci vj for ci. As described in the introduction using the
Galerkin method, the residual is then multiplied by a weighting

function, U■ k, and the product is integrated over the domain, Q.

The mathematical formulation is now shown for equation (4-

19a); i.e. for glucose.

jv0.9(left hand side of 19a using approx.cg for cg) pm 0p6 =
Q

1 9 0c 02c
-|vº) ■ º op |om º + £2 .# - V (cg, co)," opo■ = 0

(1)

In equation (1), the integral is taken over the domain under

consideration, which in the present case is a typical element.

Writing this out explicitly generates a double integral over p and Ç.

We are now ready to apply step (ii) from above. Equation (1)

can be rewritten using vector notation as:

:

i
:
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J J v■ (9.9 (v-(ve)pm obot - ■ ] v■ (p,q) Vom Opot = 0 (2)
p : p :

In writing equation (2) the gradient and divergence operators are

slightly modified by the aspect ratio, e. The gradient and

divergence operators used in the vector notation are redefined as:

and

-a-■ pm 0p (pm a) np + e 0. n;)

respectively. The first term in (2) can be further rewritten using

the vector identity:

(V-(VF))G = (V2F)G = We■ (VF)G) - (VF)-(VG),

where F and G are scalar quantities. Applying this identity to the

first term in (2) we obtain:
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j ■ vi (V-(Vce))pmopog =
p &

■ jv-[(vcºv]omopog-■ ■ ycº)-(vvºpºbo; (3)
p : p :

Applying the divergence theorem to the first term on the right hand

side of equation (3) and expanding yields:

0

| ■ º pmopo■ -; . u■ id ST

In equation (4), the line integral is taken over the surface of the

domain, T, and no and ng are the normals in the p and (; directions,
Oc

respectively. It is noted that the quantity on is redefined including
Oc

the aspect ratio as: on 7 (not eng) • Vc, with V defined as before.

A typical element and the normals are shown in Figure 5-1 .

(It is noted that the variational formulation of the problem does not
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depend on the exact type of element chosen. At this point, however,

using a different shape element such as triangular would change the

remainder of this analysis slightly.) Using Figure 5-1, the last term

in (4) can be rewritten over the element as shown in equation (5).

Figure 5-1: Applying the boundary terms to each element:

:
(2)

p 1 p
2 :

Along side 1: p = p 1, no = -1, nº = 0

side 2: G = {2, np = 0, ng = 1

side 3: p = p2, np = 1, ng = 0

side 4: G = {1, np = 0, nº = -1
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0c 0 c# (now o + ng £4 y #)as -
Ç={2 p=p2

0cg dog| v0.9 op *}” d(; + e2 ■ vº 0. ke pmdp +
Ç={1 p=p1

side 1 side 2

Ç={2 p=p2

dog Ocq■ vº 0p *}” d■ + £2 | v0.9 0. kº
Ç={1 p=p1

side 3 side 4

)
In the last line of equation (5), J's represents the flux into

side 1 of element (e), etc. One aspect of interelement connectivity

implies that the convective contribution at any interelement node or

side is assumed to be zero. This can be seen more clearly in Figure

5-2, below. This means that if element 1 and 2 share side 3 of

element 1 and side 1 of element 2, then J''}= J% . Thus the

interelement conditions work to cancel adjacent fluxes. In addition,
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as shown below, the nodal values between the two elements at the

adjoining side must be equal.

Figure 5-2 : Interelement Connectivity

element 1 element 2

(2) (2)

| \

y \

4 * | J º 4 3

1 @H- (D 2-G-
2)I 2 ( I 2

Jil

- -
(1) (2)

Flux connectivity: J - = - J.i3 il

N : * > *** - - (1) (2)
-odal connectivity: n°2' = n., ' (where nº = node number)

n'."
–

nº

Similar relations are derived for vertically adjacent elements

whose shared boundaries are not the boundary of the whole domain.

The nondimensional boundary conditions over the entire domain

are given by equations (4-21)-(4-25) in Table 4-2. These boundary
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conditions can be applied to equation (5) in a slightly modified form.

Over a typical element the boundary conditions for sides 1, 3 and 4

can be applied directly. Since the fluxes on sides 1 and 3 of the

entire domain are zero at the boundaries; Jº'- 0 or Jº'- 0; and the

interelement conditions apply elsewhere; Jº;"
- -

J'. The

boundary condition along side 4, given by equation (4-25) is a

primary boundary condition where cq = cqbottom such that the

integrated flux along that side is zero. Since cq is specified along
this edge, the weight function, u■ i must satisfy the homogenous form

of this boundary condition, or yi = 0. This eliminates the last term

in equation (5).

The boundary condition along side 2 is represented in equations

(4-22) and (4-23). These can be generalized over an element to be:

**= B'º' co - ca) (6)

º becomes a parameter which is dependent on the element
(e)

9

where Bi

number; that is the term Bi is zero for elements not along the

boundary. Generalizing equations (4-22) and (4-23) to this form

enables all the elements in the mesh to be represented such that

elements which share a boundary with side 2, will have different

Biot numbers depending on the species and whether or not that

element is under the oxygen permeable membrane. Substituting

equation (6) into (5), we obtain equation (7):
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p=p2

tº ■ [woºle;
p=p1

e '(co' - ca (0,&2))]omde (7)

Putting all this together, and substituting equation (7) into (4), then

substituting the resulting equation into (3) and then into (2), the

final form of the variational approximation for glucose becomes:

dog ovi , , , dog Ovi).m■ º do tº ºf ...) opo■
‘.

p=p2

tº ■ [v■ o ºbº" c, - ca (0.52) loºd,
p=p1

- J J v(p,q) V (co cop" opos = 0 (8)
p :

The derivation of the variational formulation for equation (4-19b) is

analogous to (4-19a) with cq replaced by co, and is not repeated.
This similarity arises not only from the fact that equations (4-19a)

and (4-19b) are analogous, but also that the boundary conditions for
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glucose and oxygen are in the same form. Equation (9) is the final
form for the variational approximation for oxygen, with yi as the

weighting function, vo = -0.5 and co = 2co■ Uj as the approximate
Solution to Co .

oco 0 yi 0 co 0\■ i
-

— — — . L. c 2 —- -— om| ■ º do *** 2: ...) opo■Ç

p=p2

tº ■ [v■ o ºb!" co (0.52) loºd,
p=p1

1
-

2 ■ jv0.8) V (cg, co pn opo■ = 0 (9)
p :

The variational formulation for hydrogen is very similar to the

steps taken in forming equations (8) and (9). The major difference

comes in with the additional nonlinear diffusion term, Dapp given in
equation (4-20) and the nonlinear boundary condition given in (4-

22b). The same steps can be taken from equation (2) on with the

exception that the quantity (V ca) is replaced by (Dapp V ch). Most of

the boundary conditions on hydrogen are in the same form as the
0c

boundary conditions for glucose except that the term 2C9 is replaced0.
0c

by (Dapp º The boundary condition for side 2, given by (4-22b) is

in a similar form to (6). In substituting (4-22b) into (5) written for

hydrogen, the surface integral becomes:
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p=p2

tº ■ v■ oºb■ " on v(0.9)[B"cººl cººp"do
p=p1

.eff
- -

O b Ctb

where Bi. -| Bih + Bib ...] andO. h Kh -- Ch

Biº"(c)(0.02) =| Bih + Bib ºl (10)
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Thus the variational formulation for hydrogen becomes:

0ch 0 \■ i och 0 \■ i
-

— — — . L. c 2 — — — . Am| ■ olº (; ; , eº;
Ç

p=p2

tº ■ v■ o ºb■ " on v(0.52)(Bº"choºl cººp"do
p=p1

+ J J v■ (p,q) V (ca.co) p" opos = 0 (11)
p :

Equations (8) and (9) represent the variational formulation for

glucose and oxygen, respectively. Equation (11) is the variational

formulation for hydrogen, with the effective Biot numbers given by

equation (10), and the nondimensional apparent diffusivity given by

equation (4-20).

There are two ways to solve these equations. Due to the

dependence of the reaction rate on current glucose and oxygen

concentrations, equations (8) and (9) either need to be solved

simultaneously or decoupled by assuming an approximate form for

the reaction rate. A modified Newton-Raphson method can be used

and will be described below. Another method to solve these
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equations is to decouple them by assuming an approximate reaction

term and solving each equation separately for glucose and oxygen

first, and then iterating until the reaction term converges to the

correct value. Once the reaction term has been determined,

equation (11) can be solved for the hydrogen ion concentration. The

latter method proved to be more practical for our use.
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5.2.2 Discretization of the Domain into Elements

The domain of interest shown in Figure 4-3, is discretized into

a collection of preselected finite elements. Due to the flexibility in

choosing the mesh, the elements are not required to be the same

size. If desired the elements directly below the holes can be made

smaller in both the p and (; dimensions than those under the

hydrophobic membrane. Figure 5-3 shows a sample of the domain in

nondimensional space and a sample discretization of the domain. An

element is defined to be a geometrically simple subdomain within

the entire domain. The elements shown below were chosen to be

rectangles. Triangles, however can also be used. The elements

under the hole are shown to be smaller in the p direction than those

under the area of the membrane. All the elements in this example

have the same dimensions in the ( - direction. This too however can

be variable.

The nodes of an element are defined as the values of the

solution at a finite number of preselected points over the element.

These points usually lie on the vertices of the element, but also can

be on the boundary and possibly in the interior of the element. All

the elements in Figure 5-3 are shown to contain 4 nodes per

element, and each of these nodes lie on the four corners of each

element. The number and the location of the nodes in an element

depends on the geometry of the element, and the degree of the

polynomial approximation used. Linear rectangular elements have
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four nodes per element, and four terms in a first degree polynomial,

whereas linear triangular elements have three nodes per element and

three terms in a first degree polynomial. Quadratic rectangular

elements have nine nodes per element, and quadratic triangular

elements have 6 nodes per element.

Figure 5-3: Discretization of Domain

HOW DOWE SOLVE THIS PROBLEMT

|p=0 p = 1
“G-B-

g= 1–- - - - -

a/R

| -,% =0–-

USE FINITE ELEMENT METHOD:

DIVIDE AREA INTO RECTANGULAR "ELEMENTS" WITH 4

NODES (OR 9 NODES, NOT SHOWN) PERELEMENT.

tº
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Figure 5-4 shows examples of rectangular and triangular

elements which can be used in the program, along with their

numbering scheme and the interpolation functions for each type of

element. The coordinates used in Figure 5-4 are natural coordinates

for each element. This means that these coordinates are the most

convenient ones to use in deriving the polynomial approximations

and in doing the numerical integration. It is described in Appendix

5–2 how these coordinates are related to the actual coordinates in

the problem.

The subroutine MESH generates the finite-element mesh and

calculates all the total number of nodes and the corresponding global

nodal coordinates, (pi, Çi). This program is available upon request.

[Note to reader: all referenced computer code is available upon

request through Professor R. A. Siegel at UCSF School of Pharmacy.]
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Figure 5-4: Two-dimensional Elements and their

Interpolation Functions

4-node Linear Rectangular element

Interpolation Functions

% =}(1-5)(1-m) $2-}(1-5)(1-m).
A% = (1-5)(1 m).3.−}(1-5)(1 m)

Interpolation Functions

% = (1-5), 1-mºn &=}(1-3)(1-m);-m).
1 A 1

s= (1+3)(1+n)ºn V.- (1-5)(1 + n)—ºn
2 . . 2 . A 1 , .2 2

(1 - & )(m -m) vs. # (5 + š)(1 - m ),
{}__l

º
vs==

(1,–1) {}__1.
v, -z

2 2% = (1-5)(1-m).

3-node Linear Triangular element

Interpolation Functions
m

= 1 A(e) 1
-wi = −(of B; + Yin) i = 1,2,3

2Ae
Ae = area of element
O. : = & - -

§ i = j.nk - ■ Knj ižjzk, and i,j,and k3. = m, - nº permute in a natural order
§ = 1 Y =&k - ■
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5.2.3 Determination of Polynomial Trial Functions -
Interpolation Theory

The degree of the polynomial approximation, yì, over an
element as well as the element shape determine the number of nodes

each element must have. The degree of the polynomial

approximation, however, is also largely determined by the user's

weighting of the desired accuracy of the solution and the

computation time involved. Depending on the formulation of the

problem, a higher degree polynomial usually generates a more

accurate solution at the cost of more computation.

The number of primary variables per node also plays a role in

determining the degree of the polynomial approximation and

consequently, the number of nodes in an element. A primary variable

is defined to be a variable which is directly specified in the

essential boundary conditions; i.e. u = uo at a boundary. A secondary

variable is defined as one which is specified in the natural or flux

boundary conditions; i.e. flow from diffusion or convection. For

second-order equations, such as those used in heat or mass transfer,

the primary variables are either temperature or concentrations, and

the secondary variables are flows. In this case, the species

concentrations are all primary variables, and the mass fluxes are

secondary variables. The finite-element interpolation functions are

chosen such that the finite-element approximation over an element

satisfies the boundary conditions on the primary variable and

includes the elementwise continuity condition for the primary

variables as well as those for the secondary variables. The latter



1 16

requirement ensures completeness of the set of finite-element

interpolation functions and hence convergence.

The variational formulation of the problem also helps to

identify the type and the minimum admissible degree of the

interpolation functions, and the number of primary variables per

node. The correspondence between the number and location of nodal

points, the number of primary unknowns per node in a finite element,

and the number of terms used in the polynomial approximations of a

dependent variable over an element is also determined by the shape

of the element for two-dimensional elements. For example, a

problem which has more than one primary variable per node may need

quadratic or cubic trial functions, corresponding to 9 or 16 nodes for

a rectangular element, or corresponding to 6 or 10 nodes for a

triangular element. For this particular problem more accuracy was

found using quadratic rectangular elements than linear quadratic

elements.

The trial functions given in Figure 5-4 were derived using

interpolation theory, and are called the Lagrange family of

interpolation functions. The construction of the interpolation

functions does not depend on the specific differential equation being

solved. Rather the construction procedure depends on the geometry,

the number and the position of the nodes and the number of primary

unknowns identified at the nodes of the element. The reader is

referred to Appendix 5-2 and reference 1 for further detail on

obtaining the exact formulation for the interpolation functions given

for each element in Figure 5-4.
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The elements shown in Figure 5-4 are master elements for the

problem. Master elements, which all have the same geometry and

use identical coordinate systems, facilitate the numerical

integration of the element equations derived in the next section.

This is not the case for elements in the actual mesh. The mesh

elements have global coordinates, and thus each element has slightly

different values for the interpolation functions. This problem is

overcome by using the Jacobian transformation to convert between

the master elements and the actual elements.

In order to perform element calculations required by equations

(8), (9), and (11), we must calculate the quantities pm 0 po (;,

* and **
op' 0',

must know the coordinate transformations from natural coordinates

To calculate these quantities in global coordinates we

to global coordinates, that is: the transformation p = p(&, m); Q = Q(&,

m) and the inverse transformation & = &(p, (...); m = m (p, q). These

transformations can be described by the Jacobian matrix for each

element. The exact nature of these transformations used in this

problem are documented in Appendix 5-2.

The subroutine which generates the interpolation functions in

global coordinates for each element is SHAPE. For more discussion

about interpolation functions, master elements and the Jacobian

transformation the reader is referred to any finite element text. 1,2
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5.3 Derivation of Element Equations

In the Galerkin finite-element method, the solution is
(e),..., ,

j yj) in terms of the

values ci of c at the j nodal points of element (e), and the trial

represented as a linear combination ( c = X.c

functions, yj. The trial functions are the polynomials that are
derived using interpolation theory over each element discussed

above and shown for three different master elements in Figure 5-4.

To derive the element equations, the general approximation,

n

--> % is substituted into the variational formulations given
j

in equations (8), (9) and (11) for species i, and the equations are

rearranged to obtain the element equations in the form [Ke] {c}} = {Fe}

for each species.

5.3 - 1 Glucose and Oxygen Element Equations

Again using the glucose equation as the example and using the

Galerkin method, with 0 = yj, the substitution of the approximation
n

Cg = Xº in for the actual concentrations cq transforms
j

equation (8) into:
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9(2c.gi vj) 0\yi o(2 cgi vj) 0 yi* v- ~ 91 ºr 11 ° W I ' \* > 9 J Y J/ ‘’ \' I■ ( ... “ . . e. =: ...)"opo,
Ç

- J
p

p=p2

tº ■ [v■ o ºbºe, -■ zes v■ oºl loºd,
p=p1

- | jv(p,q) V (Eco v■ . Eco, v) p" opaq
p :

= 0 (12)

In equation (12) the terms (Xcq vi) and (2co■ wj) represent the
glucose and oxygen approximations over an element, respectively. It

should be understood that the summations are taken over all the ne

nodes of the element.

Continuing the derivation by interchanging the integral and the

summation for the linear terms, equation (12) can be rewritten as:
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0
p=p2

i 0 u■ i o u■ i o u■ iX. ■ (; ...”. '...)* Hºove pmdp 'º

■ jv (0.3) V (Eco v■ . Eco, v) p" opos
p :

p=p2
2 ; (e) * - m -+ e? Biº'co' ■ v■ (p,q2) pmdp = 0 (13)

p=p1

Equation (13) can be shortened by defining the matrices, [s(e).], [bº],
and [R(e)] and the vector {F}, where now the subscript k refers to

species k as shown below.

0\■ i 0 \■ i o \■ i 0 \■ i[. op + 8. 0', 6% ) pm.0p8. (14)[*]--■ ■
P :

p=p2

|b|- -e” Bi'; ■ v (bºw (0.52) p"do (15a)
p=p1
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polynomials, yi and yj for that element. The interpolation

polynomials are known functions of p and Ç, as determined by Figure

5-4 and equations (A2-2) - (A2-4) in appendix 5-2, and thus these

integrals can be evaluated separately for each element. (This is done

in subroutine STIFF in the program for each element.)

A similar equation to (18) can be written for oxygen using the
■ le

approximation co-2-3 y j for co , and starting with the
j

variational formulation in equation (9). Using the notation above,

the equation for oxygen becomes:

■ le

(e) (e) (e) 1 T, , (e) (e)X. [. i■ + bo |...}. [R'■ - Fº-0 (19)
j= 1

p=p2

With |b." = - £2 Biº jv■ (p.32)w■ (p.32) pmdp (15b),
p=p1

p=p2

and, Fº = - £2 Biº J wi■ p, 2) p"dp (17b).
p=p1



121

[Rº
-

■ jv0.8) V (Eco vj Žco; vi) p" op og (16)
p :

(e) ( p=p2e -{F}= - e2 Bi º co' ■ v■ (p,q2) p"dp (17a)
p=p1

Inserting (14) - (17) into equation (13), the element equation for

glucose simplifies to:

X. |s"}+ bº |c. [R'?). {F}=0 (18)

In equation (18), the first term is a linear term consisting of the

element stiffness matrix, [sº]. and the boundary term
)

contribution, [bº] The reaction term, [R''
y9 is the nonlinearI]

portion of the problem in which the nodal glucose and oxygen values

are implicitely involved, and will be considered in more detail

below. The load term, Fº is independent of the unknown nodal9 i

concentrations and is fully specified. The values cgi are the glucose

concentrations at the j nodes of element (e). The integrals in

equations (14), (15a) and (17a) are all independent of the

concentrations C9.j and are only dependent on the interpolation
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polynomials, yi and u■ j for that element. The interpolation

polynomials are known functions of p and Ç, as determined by Figure

5-4 and equations (A2-2) - (A2-4) in appendix 5-2, and thus these

integrals can be evaluated separately for each element. (This is done

in subroutine STIFF in the program for each element.)

A similar equation to (18) can be written for oxygen using the
■ le

approximation co = c. v. for co , and starting with the
j

variational formulation in equation (9). Using the notation above,

the equation for oxygen becomes:

X. [s"}. bºld'.). ...[Rºl. Fº-0 (19)

p=p2

with [bº]--e” Bi'; ■ v (0.52W0.52) p"do (15b),
p=p1

p=p2

and Fº)-- ea Bi'; ■ v (0.52) pmdo (17b).
p=p1
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Equations (18) and (19) are the element equations for glucose

and oxygen. These equations are still not in the desired form of

[Kel {c} = {Fe}, due to the nonlinear reaction term [R'?). however.

There are various methods for handling this nonlinear term which

will be discussed before deriving the element equations for

hydrogen.

5.3.2 Handling of the Nonlinear Reaction Term

Rewriting equation (16) using equation (4-18) with the

assumed approximations for glucose and oxygen, the reaction term is

expressed as:

(e)] _
-

62[R i jJ T j ■ vº 1 + kg/(Ecgi vj) + Ko/(Ecoj v j) pm Opog (20)
p :

There are several ways that this term can be handled, each of which

involve iterations. The method used for handling the reaction term

is discussed below. Other methods which were considered, are

discussed in Appendix 5-3. This method decouples the glucose and

oxygen equations by assuming an approximate reaction rate. This

allows equations (18) and (19) to be solved independently for the

glucose and oxygen concentrations. Once the glucose and oxygen

concentrations have been calculated the reaction rate is updated and

equations (18) and (19) are resolved. These iterations are finished
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once the glucose and oxygen concentrations and the reaction rate

have converged to within a given tolerance.

Approximate Reaction rate as a function of the Nodal reaction rates.

( v = X. wº \!/ j).

In this method the reaction rates are calculated at the nodes

of the elements using the approximate nodal values of c. and c. The

reaction rate is then approximated over an element in the same

fashion as the concentrations by assuming that the reaction term is

a combination of the approximate reaction term calculated at the

nodes and the polynomial trail functions. In doing this the reaction

rate is expressed as:

-

(e)
X ©2

j 1 + kg/cg + Ko/c oj

Using the above expression for the reaction rate, the reaction matrix

can be expressed as is shown in equation (22):
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■ le

[Rº
=

■ \■ i(p,\) C. w!” wj) pm op 9 |
p j

Ç

vi(p,q) v■ (p,q) p" opog = {R} (22)– V
e | !

As mentioned above this method decouples equations (18) and (19)

by making the reaction rate independent of the current

concentrations. This method is more flexible than method (1)

considered in Appendix 5-3 in that it allows for changes in the

reaction rate within an element. In using this method, the element

equations for glucose and oxygen can be rewritten in the desired

form [Kel {c}} = {Fe}. In doing this equations (18) and (19) become:

X. [k; Jº-Fº (23)
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where :

| K'º - sº bº' k=g o (25)

Fº
-

vk{R} Fº vk= 1 for glucose and

1
vk= 2 for oxygen

vk= -1 for hydrogen (26)

In rewriting equations (18) and (19) in the form of (23) and (24), the

element stiffness matrix [K], and the load vector {F}, are

independent of the unknown concentrations and are only a function of

the known polynomial trial functions. Both the element stiffness

matrix and the element load vector can now be calculated using the

interpolation functions given in Figure 5-4 and using equations (A2

2) through (A2-4). Since equations (23) and (24) are decoupled, they

can be solved separately once the elements have been assembled.

As mentioned above, the glucose and oxygen solutions are recoupled

by iterating until convergence of the concentrations and the reaction
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rate. This will be elaborated on in the Numerical Solution section.

An important point in this formulation is that the element stiffness

matrices given by Kk, k = g,o in equations (23) and (24), are both

symmetric matrices. This implies that only the unique values of

these matrices need to be saved. This facilitates solving the

problem in that the amount of computations are decreased and the

problem can be solved more quickly.

5.3.3 Derivation of Element Equations for Hydrogen

At this point we are ready to return to deriving the element

equations for hydrogen. Beginning with the variational formulation

for hydrogen given by equation (11), substituting the approximation
■ le

ch (p,q) = X. cº vj(p,q) for ch, and rearranging, the element
j

equation for hydrogen becomes:
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0\■ i 0 \■ i ,0\■ i 0 \■ i (e)

-

■ |Pºp■ ºn v■ . ... tº º pmopo■ c h j
p ‘.

p=p2

+ -e2 ■ [Bº"Cºch v(0.32)] u■ i(p,42) u■ ;(p,\2) p.m. dp ■ c
p=p1

(e)
hj

+ J J v■ (p.8) V (Eco, vizco. v.) p" opos
p :

p=p2
.eff+ e? Biºch' ■ wi(p,q2) p.mdp = 0 (27)

p=p1

The first two lines of (27) can be separated into a linear and a

nonlinear portion by inserting the definitions for Dapp (eqn 4-20) and
Bi." (eqn 10).
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Thus, the first two lines can be simplified as:

■ le

-X [-º]. [...] [º]. [...] c'; 29.
j= 1

(e)
(e) is given by equation (14) and [bº] is given by equationwhere [sº

(15c) shown below. The nonlinear portions, |s. and |b. are given

explicitly by equations (29) and (30), respectively.

p=p2

[bº] = - e2 Bi" jvi(p,q2)w■ (p,q2) p"do (15c)
p=p1

0\■ i 0 \■ i 0\■ i 0 \■ i|-|--||(º)(..*.*.)”; (29)Kh42chmu■ m)*) \op op ' 0% dº
‘.

p=p2
NL ; (e) Ctbb = - £2
- - -Pºl--ee'; ■ ºvºvºº

p=p1

(30)
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Now with the aid of equations (14), (15c), (16), (17c) and (28)

through (30), equation (27) can be simplified with to:

■ le

X [[.º. bºl. [.. bºile'; ...[Rºl-Fº-0
j= 1

(31)

where

ff p=p2Fº- - e2 Biºch' ■ v■ (p,q2) p.mdp (17c)
p=p1

and Bº' is given in (10).

Equation (31) is analogous to equation (18) for glucose with the

exception of the nonlinear terms shown in equations (29) and (30),

both of which are dependent on the unknown hydrogen ion

concentration, and are included in the integrals.

Since we have chosen to use equation (4-18) to describe the

reaction term, the reaction rate is independent of the hydrogen

concentration and is known once the glucose and oxygen

concentrations are known. Thus the equation which describes the

hydrogen concentration is decoupled from the glucose and oxygen

equations. Therefore regardless of the method chosen for handling

nonlinear reaction term, the hydrogen concentrations at each node
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can be solved for once the glucose and oxygen concentrations, and

the following reaction rates at each node are determined. Since the

reaction rates at each node are known, the reaction term in equation

(31) is given exactly by equation (22). Thus the reaction rate matrix

is a vector, and equation (31) can be simplified using equations (25)

and (26) for hydrogen, to:

■ le ■ le

X. |Kºº |c'. X. ■ º |cº- Fº (32)
j= 1 j= 1

where,

(e) -(e) . , (e)Kºi = si; + bi, (25)

NL (e) N L NLKºe h) = shºt bà. (33)

Fº-Fº- {R} (26)

The nonlinear terms in equation (32) can be evaluated using

either of the methods described in handling the reaction term. The

method of assuming an initial value for the hydrogen concentration

to calculate the nonlinear matrices s'. and b. and iterating after

assembly and solution using Picard's method (described further in

the Numerical Methods Section) can be used. The Newton-Raphson
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method can also be used once an initial guess is given. After

assembly the values of the nonlinear matrices s'. and b. can be

updated with the next hydrogen concentration approximations and

the problem can be resolved.

If the nodal values of the hydrogen concentration are

approximated as c. then the nonlinear portions in equation (32) can

be treated as a function of the approximate hydrogen concentrations

and the element equation for hydrogen becomes:

where,

NLO, O N L, O N L, O
K. (c h)

-
sh (c h) + bh (c h)

or in matrix form:

[K*] {sº}
–

{E}} (34)

In expressing the element equation for hydrogen in this form, the

nonlinear portion of the element stiffness matrix, [KNL°]. is made

independent of the current hydrogen concentrations by using the last

iteration values of the hydrogen concentration. In writing equation

(34), the total element stiffness matrix [KTh], and the load vector
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{F}, are independent of the current unknown concentrations and

are only a function of the known polynomial trial functions.

Both the total element stiffness matrix [K 4. KNL°]. and the

element load vector can now be calculated using the interpolation

functions given in Figure 5-4, and equations (A2-2) through (A2-4).

It should be noted that the total element stiffness matrix given in

equation (34) is symmetric and only a portion of the ne by ne

elements need to be calculated and saved. This decreases

computation time and greatly simplifies the problem.

The element equation for hydrogen given by equation (34) is

now in the desired form and can be solved by inverting the global

stiffness matrix once the elements have been assembled. It will be

necessary to iterate on the hydrogen ion concentration until

convergence within tolerance, of the approximate c. used in

estimating the nonlinear term, and the current solution for Chi. This

will be elaborated on in the Numerical Solution section.

The subroutines which generate the elemental stiffness

matrices, | k': | for all the species are STIFF and CONV. The

STIFF subroutine calculates the quantites corresponding to [s"
y

equations (14), or (14) and (29) for hydrogen. The CONV subroutine

calculates the convective boundary condition contributions to the

stiffness matrix, either [bº] for glucose or oxygen or [bº] + [b.
for hydrogen. These subroutines could be adapted for the Newton
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Raphson method of solution given in Appendix 5-3 with a few

alterations.

5.4 Assembly

At this point we turn to assembling the element equations.

Each element equation given by (23), (24) and (34) for glucose,

oxygen and hydrogen respectively for the symmetric case; or by (A3

9), and (A3-17) for the Newton-Raphson case, are derived for an

arbitrarily typical element and therefore hold for any element in the

finite element mesh. Before these equations can be solved it is

necessary to assemble the individual finite elements into the global

mesh to obtain the global equations. This is done using the

interelement continuity conditions. These conditions give a

correspondence between the local nodes and the global nodes by

equating the connected nodes. Thus, the assembly part of a finite

element program is a matter of book-keeping between element node

numbers and global node numbers. It simply involves placing the

correct element stiffness matrix value in the correct position in the

global equation.

A detailed example of the assembly of a finite element

problem is given in Appendix 5-4. The reader is referred to finite

element textbooks for further information or specific programs.1.2

The computer implementation involves generating a matrix

which contains correspondence between the local and global nodes.
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This matrix keeps track of how each element stiffness and load

value fit into the global equation. It should be noted that when the

elemental stiffness matrices are symmetric, so is the global

matrix, and only half of the entries need to be saved. This allows

the global stiffness matrix to be stored in an upper-half-banded

form which makes computer implementation easier and faster. In

addition general-purpose equation solvers are available for such

banded systems of equations.

The assembly portion of the code is given by the subroutine

ASSEM which assembles the element equations into a global

equation. The subroutine works for symmetric element stiffness

matrices and stores the global equations in an upper-half-banded

form.

5.5 Imposition of Numerical Boundary Conditions

Once the finite-elements have been assembled, it remains to

impose the specified boundary conditions over the domain. First the

boundary conditions on the secondary variables are imposed (the

natural boundary conditions). These conditions represent the

imposed fluxes at the boundaries. Then the essential boundary

conditions are applied. These are the specified values of the

primary unknowns at the boundaries. In doing this the assembled

matrix is rearranged slightly. The problem is finally solved by

inverting the global stiffness matrix.
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It should be noted that in many two-dimensional problems like

the example above, singular points occur. Singular points are points

at which both the primary variables and the secondary variables are

specified or those at which two separate primary or secondary

conditions are specified. Obviously one cannot impose both boundary

conditions at the same point. As a general rule, the essential

boundary condition (i.e., the boundary condition on the primary

variables) should be imposed at the singular points and the natural

boundary conditions ( i.e. the boundary condition on the secondary

variables) should be disregarded. When either two primary or two

secondary boundary conditions are given at one point the user must

choose which value is more appropriate, or take an average of the

two values.

The reader is again referred to Appendix 5-4 for a detailed

example of applying the boundary conditions for a specific problem.

The reader is referred to finite element textbooks for further

information or specific programs.1.2

The boundary conditions for the glucose oxidase sensor are

given by equations (4-21) - (4-25) in Table 4-2 and shown in Figure

4-4. The natural boundary conditions occur along sides 1, 2 and 3

and the essential boundary conditions occur along side 4. There are

four singular points at the corners of the domain. The two points at

the top of the domain ( corresponding to points 7 and 9 in figure A4

1) are assigned the natural boundary conditions of side 2. The other

two points at the bottom edge (corresponding to points 1 and 3 in

Figure A4-1) are assigned the essential boundary conditions along
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side 4. In solving this problem the natural boundary conditions along

sides 1, 2 and 3 are applied first. Then the essential boundary

conditions along side 4 are applied. The global set of equations are

rearranged in the same fashion as described above. Once this is

completed, the remaining set of equations is solved for the

remaining primary and secondary unknowns by inverting the global
stiffness matrix.

Imposing the boundary conditions in the code is completed by

using the subroutines MAKEBND and BOUND. MAKEBND generates the

files used to impose the boundary conditions and BOUND applies

these conditions to the correct elements. The subroutine BOUND

works for symmetric global equations stored in an upper-half

banded form.

5.6 Numerical Solution - program methods

At this point the we have gone through all the details of

setting up the finite-element method. Now it remains to solve the

equations for the unknown concentrations. Various solvers exist

depending on whether the matrix is banded or not. The subroutine

that is used for the symmetric, banded equations given by equations

(23), (24) and (34) solves a banded system of equations and returns

the solution in the load matrix. The routine performs gaussian

elimination and back substitution to obtain the solution.
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A variety of equation solvers are available. For the cases of

non-symmetric, unbanded systems, i.e. equations (A3-9) and (A3-17)

the solution can be obtained by inverting the matrix using the Gauss

Jordan elimination method. This is often time consuming, however

due to the fact that the full matrix is used. The global matrices

corresponding to equations (A3-9) and (A3-17) are sparse matrices.

There are several solvers for sparse matrices which should be

used.10

Regardless of the numerical method used for inversion of the

global stiffness matrix, this problem still requires iteration due to

the nonlinear reaction term and the nonlinear hydrogen diffusivity

and effective Biot numbers for hydrogen transport. In addition

iteration on the boundary condition of side 4 is required for a steady

state solution. This latter part is described in more detail below.

The element equations (23) and (24) for glucose and oxygen,

respectively generate symmetric element and global matrices. This

implies that we are artificially separating the glucose and oxygen

equations. In using this method each set of concentrations is solved

for separately for the next solution values of glucose and oxygen

concentrations. Therefore assembly and applying the boundary

conditions are done separately for glucose and oxygen. First the

glucose matrix is inverted to obtain the glucose solutions, and then

the same is done for oxygen, to obtain the oxygen solutions. At this

point the solutions are checked to determine how accurate the

initial approximations used to obtain the reaction term at each node

We re. The problem is recoupled by comparing the initial
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approximations to the new solutions. An overall convergence

criterion is used to compare the old and new solutions at each node.

If the error value is not within the tolerance value, then new values

for the glucose, oxygen and the resulting reaction term at each node

are obtained using Picard's method shown below. (The error at each

node is also determined and used to check how close the solutions

are to the original approximations used to obtain reaction term at

each node.)

Error calculations are performed for each concentration at

each node and for the combined convergence criteria as shown below.

The error for a species i at node j is given by:

error = (35)

k
- - - -

where C ij is the concentration of species i at node j for the current
k-1 .

- - - -

solution and C ij is the concentration of species i at node j for the

last iteration. The overall convergence criteria for glucose and

oxygen is given by the square root of the sum over all the nodes of
the fractional differences between the last and current iterations.

This is given explicitely in equation (36) below:
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1 / 2

k k - 1

Coi - C of |2)
1 / 2 s tolerance (36)

The tolerance value for the overall convergence criteria is set by the

user and can be variable. The tolerance for the convergence criteria

was usually set at 0.00001

As mentioned above if the convergence criterion is not within

the tolerance value, then new values for the glucose, and the oxygen

concentrations and the resulting reaction term at each node need to

be determined. At this point Picard's method of iteration is used

after each solution step to get new nodal values for glucose and

oxygen. Picard's method obtains the next iterative value by

combining the new solution obtained using the last iterative value

and the old iterative value as shown by equation (37):

k+ 1 k k - 1
C

-ij =xole c + (1 - Xbic ) c | (37)

where xpic is a fraction between 0 and 1. In most cases Xpic was set
to 0.66. The new solution values at each node are now used to

calculate a new reaction term, and the problem is resolved. This
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iterative method is represented in the flowchart shown in Figure 5
5 below.

The Newton-Raphson method uses a more direct method to

obtain the new solution values by calculating them directly. In using

this method, the next values of the glucose and oxygen

concentrations are solved for simultaneously by determining the

solution of the change in the global digl vector, Aquint1 = digin: 1 -
digin. This is accomplished by inverting the assembled modified

stiffness matrix, Agi. At this point it was decided not to use this
method due to the added computation that was required by

assembling and inverting the nonsymmetric matrix Agi. Figure 5-6
shows the iterative procedure which would be used in this case.

>

41
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Figure 5-5: Method of Solution (Picard's solution)
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Figure 5-6: Method of Solution ( Newton- Raphson Scheme)
Guess initial values for
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Once having a preliminary solution for glucose and oxygen, we

now need to check the boundary condition along side 4. This involves

calculating the integrated fluxes for both glucose and oxygen. If the

integrated fluxes are zero or within a tolerance value then the

solution is a steady state solution and the problem is solved. If the

fluxes are not zero, then a new boundary condition is guessed along

side 4. This is done using a minimization scheme obtained from

Numerical Recipes. 10

The minimization scheme that is used for this problem is a

multidimensional scheme based on Powell's Quadratically

Convergent Method. This method is used to minimize a function of

more than one variable, and involves using successive line

minimizations. The choice of successive directions does not involve

explicit computation of the function's gradient, which would be very

difficult in our case. The idea of this method is to evaluate the

function at a number of points, or directions to find the minimum.

This is based on the fact that the optimum (or minimum) of an N

dimensional quadratic function can be found by exactly N single

variable searches along each of the N conjugate directions.

Briefly, Powell's method involves calculating the minimum of

the N-dimensional function along N mutually conjugate directions,

ui. Initially the set of directions is taken as the basis vectors

which span the space. (In our case, initially it is the glucose and

oxygen boundary conditions along side 4 which need to be

determined. Therefore initially we are attempting a two

dimensional search.) A starting position is picked and the function
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to be minimized is calculated at this position. Then for each

dimension, i = 1, . . ., N, along each basis vector, the minimum is

found in that direction. That is: move along the first direction to its

minimum, then from there along the second direction to its minimum

and so on, cycling through the whole set of directions one time. At

this point the set of directions are evaluated and a new set of

conjugate directions are chosen based on the new minimum found.

This basic scheme is repeated until the minimum value of the

function is within a set tolerance value.

Several different minimization functions were tried for this

problem. The goal is to find the glucose and oxygen concentrations

along side 4 which will generate zero integrated fluxes along this

side. This boundary condition is given in equation (4-25). It was

finally decided to use the minimization function given below:

Xelem Xelem 2

f(Cgbot, Cobot) = | **)
+

| **) (38)

This function minimized the square of the integrated fluxes for both

glucose and oxygen. The program calculates the above function

given guessed values for the bottom concentrations of glucose and

oxygen. For each new value of glucose and/or oxygen concentration

along side 4, the entire problem is resolved and the fluxes into the

destination layer are recalculated. This is done in order to obtain a

new estimate for equation (38). Then the minimization program is

used to minimize equation (38) by obtaining new values for the

bottom concentrations. This is illustrated in the flowchart in Figure

5-7.
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Figure 5-7: Method to determine boundary conditions
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When the glucose and oxygen concentrations have been

determined, it remains to solve for the hydrogen ion concentrations.

This is done using equation (34). At this point the reaction term is

known at each node. It is still necessary to iterate on the hydrogen

ion concentration until convergence within tolerance due to the

nonlinear diffusivity term. In this case Picard's method was used.

Picard's method is simpler to implement and was chosen over the

Newton-Raphson method which generates asymmetric element and

global stiffness matrices. [The Newton-Raphson method can be used

with equation (A3-17) if desired.]

In using Picard's method the initial value of the hydrogen ion
- - -

O .

concentration is approximated as °h in order to calculate the

nonlinear terms in the stiffness matrix given by equations (25) and

(33). The problem is solved as shown by the flowchart in Figure 5-8

below. The error calculation for this portion of the solution is given

by equation (39) below. Equation (37) is still used to determine the
next value used in the next iteration.

Ntot 1 / 2

X. (cf. cº - )
i- 1

< tolerance (39)
Ntot 1 / 2

X. (cf. )
i- 1

In this case tolerance was set at 0.0001.
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Figure 5-8: Method of Solution for Hydrogen lon
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5.7 Postprocessing

Once the final solutions are obtained for a particular

geometry, it remains to process the solutions. Postprocessing

involves the computation of the gradient of the solution and plotting

the solution contours and fluxes. This is done using a subroutine

which calculates fluxes at either the center of each element or on

the user designated side of each element. Another graphics program

is used to plot the fluxes and the concentration contours.

º

:
:
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Appendix 5-1.

List of Variables:

General

Cj concentration of species of interest at node j

©j approximation function at node j

\■ i = @i, approximation functions or polynomials derived
using interpolation theory

Q domain under consideration

[Kel element stiffness matrix for element # e

{ue} unknown nodal values for element # e, in vector form

{Fe} force or reaction vector for element # e, in vector form

[Kgll global stiffness matrix for the problem

{Fgi) global load vector for the problem

Vi reaction term at node i

Ci nondimensional concentration for species i

Vi stoichiometric coefficient for species i, (vg = 1 for
glucose, vo = 0.5 for oxygen)

V (Ci, Ci ) nondimensional reaction rate

cij nondimensional concentration for species i at node j

np; ng the normals in the p and (; directions, respectively

J'. represents the flux into side k of element (e)
corresponding to interpolation function \■ i

.
:
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(e)
n; node number j from element e

Ntot total number of nodes in the mesh

Biº) Biot number for species i at a boundary element e

p,' nondimensional cylindrical coordinates for problem

§,m natural coordinates within an element (see Appendix 5
2)

öij Dirac Delta function ( = 1 when i = j. = 0 for all i + j)

th = Wi( 3,m) are the element interpolation functions in
natural coordinates shown in Figure 5-4

errori■ error for a species i at node j from last iteration to
current solution

Xpic fraction used to reset species concentrations if not
within error tolerance

c concentration of species i at node j for the current
solution

º concentration of species i at node j for the last iteration

Cobot glucose concentration along side 4

Cobot oxygen concentration along side 4

f(Cgbot, Cobot) minimization function used to minimize fluxes
along destination layer

fluxgi flux of glucose at element i into the destination layer

fluxoi flux of oxygen at element i into the destination layer

Xelem number of elements in the r-direction along the side 4



154

Elemental Matrices and Equations

(e) 0\■ i 0 \■ i O yi ) \■ i[sº] = - J ■ º . . e. ***...]omobo,
p Ç

general element stiffness matrix [eqn (14)]

p=p2

[bº] = - £2 Bi'." jv■ (p.32)w■ (p,q2) p"dp
p=p1

contribution to element stiffness matrix from

convective terms for species k [eqn (15)]

[Rºl= | | vi■ o.g) V (Eco v■ . Eco, v) p" opot
p :

Reaction term contribution ■ eqn (16)]

p=p2

Fº- - e2 Bi'.' co’ ■ wººd,
p=p

convective term contribution to load vector for species k

[eqn (17)]
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| K'? |=| s'? . bº | k = g, o, h

total elemental stiffness matrix for element # e [eqn

(25)]

-
1Fº = vk{R} + Fº vk= 1 for glucose, vk=2 for oxygen

vk= -1 for hydrogen

total load vector for element # e :
3



156

Mathematical Notation

o 0
-

W = ( 0p ' 8. 0. ) gradient term

• *-( pm 0p (pm a) np + e 0. nº) Ivergence term

| | a pmopog
p &

volume integral for function a over domain Q, bounded by
p and Ç

§ a d s line integral for function a over a surface T bounded by
T

ds

Oc
* = (not eng) • Vc

definition of normal vector for concentrations

:
:
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Appendix 5-2

Interpolation Theory

The trial functions given in Figure 5-4 were derived using

interpolation theory, and are called the Lagrange family of

interpolation functions. The construction procedure for

interpolation functions depends on the geometry, the number and the

position of the nodes and the number of primary unknowns identified

at the nodes of the element. The interpolation functions given for

each element in Figure 5-4 have the following properties,

() v■ "Gºn) = 5 i i = 1,2,..., no

where ne = number of nodes per element

ne

() XV"-
i- 1

(iii) w!” = 0 outside the element o'e)

The Lagrange family of functions are constructed for elements with

only one type of unknown per node; e.g. primary variables which are

:
i
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all concentrations. The Lagrange family of interpolation functions

for rectangular elements are derived using equation (A2-1).

n n

(e)
-

| | Š-Xi n-yju■ ' "(§,m) = Ši-Xj mi-yj (A2-1)
j= 1 j= 1

i + j i + j

where nº = total number of nodes in the 3-direction,

and nm = total number of nodes in the n-direction.

xi = 3-coordinate of jth point

y = n-coordinate of jth point

In using (A2-1), the element is split into the 3-direction and the m

direction. The total number of nodes in the 3-direction is given by

né, and the nº 3-coordinates of those nodes are given by x1, x2, ...., xng.
The same terminology is used in the m-direction. The term ■ i

represents the coordinate value of node "i" in the 3-direction. For

example, for the quadratic rectangular element shown in Figure 5-4,

ng = 3, x1= -1, x2= 0, and x3 = 1. The individual nodal coordinates for

nodes 1, 8 and 4 along line x1 = -1, for example are $1 = 38 = 34 = -1;

and m4 = -1, m3 = 0 and m4 = 1.

:
i
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The formulation of the interpolation functions for triangular

elements is slightly more complex, and uses area coordinates rather

than the actual point coordinates. The linear interpolation functions

are shown in Figure 5-4. Higher order functions can be constructed

but were not used in this problem.

Master Elements

The elements shown in Figure 5-4 are master elements for the

problem. Master elements all have the same geometry and use

identical coordinate systems, thus each element has the same

interpolation function. As described in the text the elements in the

actual mesh have global coordinates, and thus each element has

different values for the interpolation functions. This problem is

overcome by using the Jacobian transformation to convert between

the master elements and the actual isoparametric elements.

Isoparametric elements are those which can be used for the

description of both the geometry of the element and the variation of

dependent variables as shown below in equation (A2-2):

ne ne ne
p(t,n) = X. p ij Ç(&n) = X giv ck(&n) = X cKi■ i

i- 1 i- 1 i- 1

(A2-2)

where k = glucose, oxygen or hydrogen and () i = ji(&, n) are the
element interpolation functions in natural coordinates shown in

:
:
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Figure 5-4. The elements used in generating the finite-element

mesh are isoparametric. Using isoparametric elements facilitates

an accurate representation of irregular domains (curved boundaries).

Elements which have irregular domains however create difficulties

in computing the element coefficient matrices [Ke) and column

vectors, {F} directly in terms of global coordinates p and Ç. This is

overcome by introducing an invertible transformation, between the

curvilinear element and the master elements illustrated in Figure 5

4. This transformation is illustrated in Figure A2-1. Figure A2-1

also shows how the actual elements in the finite-element mesh can

be related to a master element. Different elements in the finite

element mesh can be generated from one master element simply by

assigning the global coordinates of the elements.

i
-

3
n
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Figure A2-1 - Transformation of Isoparametric Elements
into Master Elements

p

p = p (§, m)

$=G (§ m) g- 8 (p, q) p = p (3, 1)
m= m (p, q) § = G (§, 1)

Ç dp d' = J dé dm
§

p = p (1, n)
p & = & (1, n)

The coordinate transformation, J the Jacobian, which is required to

map functions from natural coordinates into global coordinates, is

illustrated above. The Jacobian maps the line & =1 in the domain à
of natural coordinates into the curve defined parametrically by p =

p(1, n); G = {(1, m) in the p" plane in the Q domain. This can be done

for each element. For each element (e) in Q9, the Jacobian matrix is

defined as:

:
;
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m n n -X.º. X ºf
op o & pi 0% Çi 03

J 0% oš i = 1 i- 1
[J) = op o G |T| n n (A2-3)* * |X.º. X. º.Pion '0m

L is 1 i- 1 -

A A A. p1 $1
où1 0ü2 0Vne p2 $2
03 04: ‘’’ oë

- -

= | A A A (A2-3b)
où1 OV2 0\ne

- -

0m 0m ‘’’ on
Pne ºne

Equation (A2-2) relates the global coordinates to the natural

coordinates, thus calculating pm. Equation (A2-3) gives the

coordinate transformation between the two domains, relating opo■ =
0

- -

[J1030m . The terms . and º: are calculated by using the inverse

Jacobian as shown in (A2-4) below.

Ovi) Tog on T ■ o■ i où
0 00 0 0 oP}_|* * | * } - tº 4% (A2-4)
0\■ i Oé o n || 0■ ji oùji
0& J LOC O. —I \ 0m 0m

P

;
;

*
* º

*
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Using the equations (2), (3) and (4) shown above, the interpolation

functions and their derivatives are obtained in global coordinates

for each element.

:
;
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Appendix 5-3.

Handling the Nonlinear Terms

Other Methods for Handling of Nonlinear Reaction Term

Three methods for handling the nonlinear reaction term are

listed in this appendix. The first method simplifies the problem by

assuming a constant reaction term. Using a constant reaction rate

decouples the glucose and oxygen equations and each species can be

solved for separately. The second two methods involve solving for

the glucose and oxygen concentrations simultaneously. These

methods were not used in the program but are mentioned here for

completeness.

Method (1) - Approximate Reaction rate as a constant.

The simplest method is to approximate the reaction term as a

constant, and update it at each iteration. This would reduce the

reaction matrix to a vector which could be included in the load

Vector.

-
2

V = O () O = VO = constant
1 + kg/(2cd. \, j) + Ko/(2c% \, j)

:
;



1.65

[R'?]= ■ ■ º vo pm opaq = {R} (A3-1)

Using this method requires having a constant reaction term over the

entire area of the problem. Due to this, method (1) was incorporated

into the program, but was not used in calculating the results. This

method proved useful in checking the accuracy of the program

against some analytical problems.

Alternate methods (2) and (3) for evaluating the nonlinear

reaction term are simple in concept but quite complicated in

application because the element equations become significantly

more complicated. A brief outline of each method is given below.

Method (2) involves expressing the reaction rate as a function of old

values of the concentrations times the actual concentration. Method

(3) linearizes the nonlinear reaction rate by representing it in a

Taylor series. These methods were not used in the program code but

could be implemented if desired. They are discussed here for

completeness.

Method (2) - Newton-Raphson method.

This method is the most common method for solving nonlinear

sets of equations. Due to the way that this problem is formulated,

:
;
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however, this method was rejected for use because of the added

computation it generates. In using this method, the reaction rate is

rewritten as a function of cº and cº, the old values of the

concentrations, and the current variable cq■ or coj. This results in a
nonlinear symmetric matrix, [KN-], for each species. Rewriting

equation (5-20) in this fashion over an element, [R'') is expressed

aS.

n
(e) e (e), _o -o

-|R :
-

X." KNº.(cºc.) (A3-2);J =

Where

KNºc.c.)=
2

J ■ v■ (p,q) v■ (p,q) → *—a pm 0 poº
p Geº■ v D (1 + →--) + x k

Ç

subscript k = glucose or oxygen, and

subscript I = oxygen or glucose, other species than k

O O - -

Co., Co = estimated concentrations for glucose and oxygen

and c.
=

Xc". \!/ j (A3-3)

:
;
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Equations (A3-2) and (A3-3) are written in general and apply to

either glucose or oxygen; for example when k = g or glucose, I = o or

oxygen, and vice-versa. Unlike the previous two methods where the

approximate reaction term is included in the load vector, thereby

decoupling element equations (23) and (24), using equation (A3-2)
includes the reaction term in the element stiffness matrix.

Inserting equation (A3-2) into equations (18) and (19), the element

equations become:

■ le

(e) (e) (e), _o -o, -(e) (e)|s i■ + big, - KNL g|(c gº 0 g = Fº (A3-4)
j= 1

for glucose and,

■ le

(e) (e) 1 (e), _o -o, (e) (e)X. |s i■ + bº■■ ' - a KNL (c sº co■ = Fº (A3-5)
j= 1

for oxygen.

In writing equations (A3-4) and (A3-5), the same notation as in

equations (5-18) and (5-19) is used; that is the element stiffness
(e)

matrix S i j is given by (5-14), the boundary term by (5-15), and the

load vector by (5-17). The nonlinear portion of the element

stiffness matrix, knlº is given by equation (A3-3).

:
;
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At this point there are two different ways to solve this

problem. An analysis similar to the method documented in the text

of chapter 5, where the equations are decoupled by using estimated
O O

values of cq = coand co - co, to calculate KNL can be performed.
The equations can then be solved separately for the glucose and

oxygen concentrations. The glucose and oxygen solutions are

recoupled by iterating until the reaction terms given by (A3-2) and

(A3-3) converge for both glucose and oxygen. This analysis was

tried but lead to slower convergence and more instabilities than the

method used. This analysis also involves more calculations than

solving equations (5-23) and (5-24) directly and thus was not used.

The other, more conventional method is to solve for the

glucose and oxygen concentrations simultaneously by combining the

ne by ne matrix equations given by (A3-4) and (A3-5), into one matrix

equation given by (A3-6) which is 2ne by 2ne. This means that we

now have two primary variables per node, the glucose and oxygen

concentrations. Combining (A3-4) and (A3-5) into one set of matrix

equations, we have the complete matrix equations for each element:

:
;
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(e), L. (e) (e), _o -o (e)sºft-bº-KNº.'(c,c) 0|J% g;
(e) L (e) 1 (e), _o -o

0 sºftb, ". . KNº. (Cºco) e':

Fº
7 l. (e) (A3-6)

F.

Each of the four terms in the above element matrix is an ne by ne

term, where ne is the number of nodes per element. (This includes

the zeros which are matrices of ne by ne zeros.) The entire matrix

given in (A3-6) is thus 2*ne by 2*ne. Using a matrix of this size

involves twice the amount of computation as does the method in the

text. In order to decrease the bandwidth of the matrix, and thereby

reduce the computation time, the matrix equations above are

rearranged as:

i
3

>
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■ u.T T T |K O K O
- -

O
| g|1 912 “ºn. |ca) | Fal

T T T

|O K. O K. “ O “one |c. | F.
K K! K! |. | | |

|^g2. 922 "92ne |% | | *g, (A3-7)
lo K' 0 K" ... 0 K" | Co., = { Foz
| O21 O22 O2ne || ... | | ...
|

- - - - - - - - - - -
|c | |F ||K. 0 K. 0 < K. 0 || * *

e1 9me2 9mene C Fo K" K" ... O T || * | a.
l One1 One2 onene.

where

The element equations are now given by (A3-7). At this point

the Newton-Raphson method can be employed to solve (A3-7). To

simplify the bookkeeping of the problem the Newton-Raphson method

is applied before assembly, and the modified element equations are

assembled.

To further simplify applying Newton's method to calculate the

:
:



171

+ 1º from the estimated c'... and "op let
n+ 1

next values of c. and c 9.jgj

the vector of unknowns be designated by q. Then in matrix form,
equation (A3-7) becomes:

d – C O 2

[K + C(q)) {q}= {F} (A3-8)

In equation (A3-8) the matrices K, and C and the vector F are

defined in terms of the species stiffness matrices Kº (equation 5

25), the nonlinear reaction matrix KNL º (A3-3), and the species

load vector Fº (5-17) as follows:

:
:
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for i = 1,...., ne ; j = 1, ..., ne

| = 2*i - 1 ; m = 2^j -1

Klm = Kgij, KI4.1m4.1 = Koij,
(l,m both odd indices) (l,m both even indices)

K|4.1m = Klm4.1 = 0

and

cm = - Knºc.c.) c.1m. -- Knºcºc.)
CI+1 m = CImr1 = 0

and

F1 = Fg F|4.1 = Foi.

Now applying the Newton-Raphson method to calculate the change in

q, where Aqn+1 = qn41 - qn such that qn is known, and do is the

first guess, the pre-assembled element equations become:

OC(qn)
oq

K + C (qn) +
q" w {Aqn+1}= {F} - (K 4: C(qn)] (qn)

or, more concisely:

[A](e) (Aqn41} = {B}(e) (A3-9)

i
;
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-
... [OC(qn)

In equation (A3-9), the quantity
-

oq ... ■ l
w is a non-symmetric

matrix of size 2*ne by 2*ne and is given by,

2*ne

OC(Gn
-

OCIX -**, w
-

X. ** a. (A3-10)Öq |q |m 1 oqmX =

with Clm and Gn defined by (A3-8). This implies that every entry in
the matrix A (e) must be saved, and the complete set of element

equations are given by (A3-9).

In using this method, the next values of the glucose and oxygen

concentrations are solved for simultaneously by determining the

solution of the change in the global digl vector, Aquint1 = quint1 -
digi". This is accomplished by inverting the assembled modified

stiffness matrix, Agi. At this point it was decided not to use this
method due to the added computation that was required by

assembling and inverting the nonsymmetric matrix Agi. (The method
of assembly for a nonsymmetric matrix of the dimension 2*nt by

2*nt where nt is the total number of nodes can be found in many

finite element texts and is not repeated here.)

i
;



174

Method (3) - Linearization of Nonlinear Reaction Term

Method (3) linearizes the nonlinear reaction rate by representing it
in a Taylor series in terms of the unknown concentrations, co, and9.j

- O O - - -

° of and the estimated values C pand °of The linearization was

considered because of the abrupt discontinuities in the reaction

term when it is expressed in the form of equation (4-18). The

linearization is shown below in equation (A3-11).

-
O , .O O, .O

V (2cg; \!/j. 2co■ \■ i) = VO + (2cg Uj- cq) di + (2co Uj- co) d2

(A3-11)

where,

-
2

vo = V (c.c.) –––.
1 + Kg/cg + Ko/co

d = 0 V 0° kg
1 T 0cc (c.)2(1 + kg/cº + Ko■ c.)?

d; = 0 V
-

©2 ko
* *o (c.)2(1 + kg/c. re■ c.)?

and,
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Using equation (A3-11) as a definition for the reaction term in

equation (5-16), the reaction matrix becomes:

(e)[R'º) =

J J v■ (p,q) (V° (Eco vºcºdi + (Eco vrcºd■ ) p" opog
p : J

= ■ .■ vi■ o.9 (vº cº-cºbº +
p :

X ■ ■ wºvºdºp"opºlco ºp :
j= 1

: ■ ■ v (0.9M9.98%pºpº Cojp :
j= 1

-Fi, 2 [Diegº D2 col (A3-12)
i = 1

i
;
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Inserting equation (A3-12) into equations (18) and (19) and

rearranging slightly, the element equations become:

(e) (e) (e), _o -o, ) - (e) (e), _o O (e)X. | (s ij + bg■ - D1}; (cãº) c gj (D2 *}(c.c.) ° of |

–
Fº

+
F'ºc,c) (A3-13)

for glucose and,

■ le

1_ (e), _o -o (e) (e) (e) 1 (e), _o -o (e)|- 2 (D.' (c.c.) • qi + (s i■ + bºn' - a D2 (c.c.)c o j |
j= 1

1=Fºr , Fºc.c.) (A3-14)

for oxygen.

Combining equations (A3-13) and (A3-14) into one matrix equation,

size 2*ne by 2*ne, the element equations are written as:

i
;
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es")-bº. D1 º'c.c.) | -D2" (c.c.) cº
1 (e), _o O (e) (e) 1 (e), _o -o e

T 2 D1}; (Cºco) | S ij + b% T 2 D2 i;(Cºco) e':

(e) r-(e), _o -oFº■ +Fä(c.gc.)
l-(e). 1 -(e) o -o (A3-15)

Fº■ + ; F fi■ c goo)

where

Dº'cº-■ ■ y■ bºv(0.98% pºpº
p :

(e), _o -o OD2%&c.) = | ■ vºjv0.98% propos
p :

OFºc.c.) = | ■ v (0.5) (vº cº-cººpmobot
p :

)
and, s(*) bº and Fºi j' are defined as before.

At this point, the element equations can be rearranged as was

outlined in method (2) and the Newton-Raphson method can be

applied. The rearrangement of equation (A3-15) generates cross

i

;
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terms in the final matrix which makes the element matrix analogous

to (A3-7) nonsymmetric. This in turn complicates the application of

the Newton-Raphson method and requires excessive numerical

computations. This method was originally considered due to the

some of the numerical problems which occured with the reaction

term in the form of (4-18) for large values of the Thiele modulus, 62.

This method proved, however, to add much more computation to the

problem and was rejected unless more accuracy was required.

Handling the Nonlinear Hydrogen Terms

If the Newton Raphson method is used to handle the nonlinear

diffusivity terms in equation (5-32), then the element equation

needs to be reformulated to solve for the change in hydrogen

concentration, Achnt 1, at the (n+1)st iteration, given the values for

the hydrogen concentration at the nth iteration. The analysis is

similar to method (2) used above, equations (A3-8) through (A3-10)

using only one variable instead of two. Starting with equation (5-

32) for the element equation, and placing it in the same form as

(A3-8), the formulation becomes:

[k+ KN-(6)]{G}= {fi} (A3-16)

i
;
;
|
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Following the same analysis as method (2) above by applying the

Newton-Raphson method on each element, equation (A3-16) becomes

analogous to (A3-9) where the A matrix and the B vector are given

by:

[A](e) (Achn-1} = {B}(e) (A3-17)

where,

[A] = |K + KNL (chn) +

(B) = {fi} - (K+ KN-(G) (Gº)

{Achnº-1} = {chnº 1} - (chn}

- -
OKNL(Chn)

In equation (A3-17), the quantity |-º-º-º: - n chn is a non
Och Ch

symmetric matrix of size ne by ne and is given by,

i
)

º

* :
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ne

OKNL(Chn)
-

0KN-ix - n
---|- n chn = LT Chy =

Och Ch ij Ochj
x = 1

ne

\■ j Ovid VX ...e50wi OVX),m n*! |(º)(..*, *)"woºl º
Ç

x = 1

ne

p=p2

2 \,(e) Vi(p.32)Vi(p.32) n

+ £4 y'b ■ º \yz(p,é2) p"dp Ch.
p=p1

-

x = 1

(A3-18)

Due to the asymmetry shown in equation (A3-18), each entry in

matrix [A] must be calculated and saved. The global form of matrix
- n + 1

[Ag] can be inverted once it is assembled, to solve for (Achglobal).
The new values of ch are calculated from this and the process is

repeated until the new and old values of Ch are within tolerance.

i
;
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As mentioned before, the Newton-Raphson method requires much

more computer space and time due to the asymmetry involved. This

method was therefore not used and the previous method of guessing

ch and solving was used.

:
;

_x
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Appendix 5-4.

Assembly and Applying Boundary Conditions: Example

The assembly part of a finite element program is simply a

matter of book-keeping between the element node numbers and the

global node numbers. This is best shown by example. Figure A4-1

shows a simple two by two element mesh. The four elements are

numbered in rows and their numbers are designated by italic type

surrounded by circles. The global node numbers are shown by bold

type whereas the element node numbers are given in italic type. In

this figure, it is assumed that each element has 4 nodes, and that

each node has only one primary variable. For a four node element

with one unknown per node, the elemental stiffness matrix is four

by four and the load and solution vectors are each four by one. In the

case of only one primary variable, the global equation [Kgl] {U} =

(Fgl} has nine unknowns corresponding to the nine nodes in the mesh
and consequently the global stiffness matrix is nine by nine. The

solution to the problem is to solve for the concentrations at the nine

nodes and thus it is necessary to assemble the four element

equations into one global equation.

:
;

Q

º.
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Figure A4-1 : Assembly of a 4 element mesh

7. º —s°
4 3 || 4 3

f 1 2
4 fi 3 #. †- 6

!! #–ll #–1
1 2 3

In order to do this the interelement continuity conditions are

applied to the element equations and the correct combination of

element values are placed in the global equation. The interelement

connectivity conditions for this example are shown in the Table A4

1 below. For example at global node 2, there are contributions from

element 1, node 2 and element 2, node 1. In order to put this

altogether one needs to express each element equation in terms of

the global nodal values according to the conditions given in Tables

A 4-1.

;
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Table A4-1: Correspondence between global and local nodes

global local node contribution primary nodal equality

node

1 nº) U1 = u■ .”

2 nº". º U2 = u" - u■ "

3 º U3 = uº

4 nº". º U. = u■ ." - u"

5 n". º º, º Us= u!' - u■ - u■ " = uº"

6 nº. nº) U6 = º -
u■ .”

7 º Uz = 0."

8 nº). nº U8 = º = u'."

9 nº U9 = u■ .”

For this simple problem, each element equation is given by

4

X. [ k"? º
-

{F}. The goal is to have a set of equations
j= 1

in terms of the global nodal values Uj. Using the relations given in

;
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Table A4-1, these equations are expressed in terms of the global
nodal values Ui for the first two elements below.

Element 1:

(1)
K11

(1)
21

0

(1)
41

(1)
31

0

K

K

K

Element 2:

Elements 3 and 4 each have analogous matrices.

(1)
12

(1)
22

(1)
42

(1)
32

O

O

(2)
K11

(2)
21

(2)
41

(2)
31

O

0

(2)
K12

(2)
22

(2)
42

(2)
32

O

(1)

0

(2)
K14

(2)
24

(2)
44

(2)
34

O

0

(2)
13

(2)
23

(2)
43

(2)
33

0

ju 5

U1

U2

U 3

U4

U6

U7

U8

|U 9 …

ul
U2

U 3

U4

j■ 57

U6

U.7

U 8

U.9)

(A4-1)

Each of the above

element equations give the contribution of each element to the

overall problem. By adding each of the above element equations the

global equation for this system is obtained. The assembled global
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stiffness matrix for Figure A4-1 is given by equation (A4-3) and the

assembled global load vector is given below.

F;"■
|
|

Fº + Fº
|

Fº)
|

Fº + Fº

(Fal) = {F} + F + F + Fº (A4-4)

Fº) + Fº

Fº

|
|
|
|
|
|
|

| (3) , r_(4)Fº' 4 F,

Fº



º

K
Q.
i:i

Global(1)11(1)21(1)K41(1)K31

StiffnessMatrix:(1)O

K12

(1)+v(2)(2)K22"K1112(2)(2)K2122(1)O

K42

(1)+i.(2)p.(2)K324142(2)(2)31K32

(1)14(1)24

(1)+v(3)4411(1)+i.(3)3421
(3)41(3)31

(1)K13
(1)+v(2)K2314

(2)K24
(1)+v(3)K4312

(1)33

(2)+(4)+
k!?

+

K*441122

(2)+v(4)K3421
K9)42

(3)+v(4)3241
(4)31

(2)13(2)23

(2)+v(4)4312(2)+v(4)3322
(4)42

k(*)32

(3)14(3)24(3)*44(3)34

(3)K13(3)+

23

(4)24(3)43

(4)44
K+(4)34

(4)14(3)33

(4)13(4)23(4)43(4)33
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Equations (A4-3) and (A4-4) in the form of [Kgi] {U} = {FG} represent
the assembled equations which are to be solved for after applying

the boundary conditions for the mesh shown in Figure A4-1. More

complicated meshes are assembled similarly to this simple problem.

If there are two or more primary unknowns per node, then

assembly of the global stiffness matrix is slightly more

complicated. For a two-degree-of-freedom problem (as is the case

if equation (A3-9) is used), the assembly of the elements involves

two values at each node and thus there are twice as many elemental

values to assemble. The assembly is done in much the same manner,

however. The asymmetry of the matrices, A, given by equations

(A3-9) or (A3-17) require however that all the elements in the

global stiffness matrix be saved. The method of assembly for

nonsymmetric matrices of the dimension 2*Ntot by 2"Ntot where Ntot

is the total number of nodes in the problem can be found in a finite

element text. 1, 2

Applying the boundary conditions:

The boundary conditions for the problem are applied after the

assembly of each element. To illustrate this let Figure A4-1 be used

again, and let the flux be specified to be 0 along the side with nodes

1, 2, and 3 and the flux specified to be 1 along the side with nodes 1,

4, and 7. In addition let the primary boundary conditions be that the
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side with nodes 7, 8 and 9 is set to zero concentration (i.e. U7 = U8 =

U9 = 0), and that the concentration along the side with nodes 3, 6 and

9 is some unspecified value 0, (i.e. U3 = U6 = Ug = 0.). The boundary

conditions on the secondary variables are imposed by placing the

values of the fluxes at the specified nodes directly into the load

Vector. These conditions would indicate that the global load vector,

{Fgl} be given by:

■ F i = 0 \ (F1 = 1 \
O O

F3 * F3 *
1 1

F5 F5(Fq) = i E. or (Fq) = i E. r (A4-5)
F7 F7

1 1

F8 F8
\ F9 2 \ F9 2

In this example nodes 1, 3, 7 and 9 are singular points. At

node 1 there are effectively two flux conditions specified; i.e. the

term F1 can be either 0 or 1 due to the duplicity of the boundary

condition. At node 9 there are two essential conditions specified;

i.e. the term Ug can be either 0 or o, due to the duplicity of the

boundary condition. Either of these issues can be solved by adding

more nodes close to the singular boundary condition, and/or refining

the mesh. The user can also use his/her own judgement based on the

physics of the problem and decide which boundary condition is more

appropriate. At nodes 3 and 7 both primary and secondary boundary
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conditions are specified. By the above rule, the primary boundary

conditions will be used and thus the fluxes at these points are left

unspecified. For this example we will arbitrarily choose F1 = 1 and

U9 = 0 .

Once the secondary boundary conditions are assigned to the

load vector, the essential boundary conditions must be applied. This

involves modifying the assembled matrix by moving the known

products to the right-hand column of the matrix equation, replacing

the columns and rows corresponding to the known primary variable

by zeros, except on the main diagonal where the variable is set to

unity, and replacing the corresponding component of the right-hand

column by the specified value of the variable.

To understand this concept, consider the point U3 = 0. From

equation (A4-3) and (A4-5) the global system of equations can be

represented as:

r U1 \ r 1 N

U2 O

U3 F3

K1 1 K12 K13 ... | | 1 ºK21 K22 K23 “k F5U5 × = * A 4-6
K3 1 K32 K33 ... U F6 ( )

- - - - - - 6 F7

U8 F8
º Ug 2 S F9



■ º
º s**t's--

º
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The boundary condition at U3 is applied by setting K33 = 1, and

F3 = 0, and setting all the other K3i = Ki:3 = 0 for i + 3 as shown

below.

r 1 \

r U1 N O
U2 O.

1

K1 1 K12 0 . f
K21 K22 0 ... . j. = < 5 > (A4-7)o of 95 f = i fe

O U6 f
U7 7

U8 1

\ U9 J #s
\- #9 2

In equation (A4-7), #1 = Fi - Kia a for i = 1, 2, 4, 5, ...,9. Thus in
applying the essential boundary conditions, if Uk = 0 is known then

the global equations are rearranged such that:

Fi – Fi - Kik O. (A4-8)

Kki and Kik → Kki = Kik = 0

where i = 1, 2, ... , k-1, k+1, ... , n, i + k

This procedure enables us to retain the original order of the matrix

and the imposed boundary conditions are now printed as part of the

solution.
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Chapter 6.

Program Testing

6.1 Comparison of Analytical and Numerical Solutions

6.1.1 Constant Reaction Term

The program developed in Chapter 5 was first tested on

several analytical problems to ensure the accuracy of the results.

Two separate test cases were tested. One case is the constant

reaction case, where the reaction term is set at 1. The boundary

conditions were varied slightly to complicate the problem. The fully

posed problem, in polar coordinates is:

1 9 0u 02u
-#! ...] **: 1-0 In Q = {(p,q): 0 < (p,q)< 1} (1)

with boundary conditions given by:

ou
; (0,0) = 0 u(10 = u(0,1) = 0 (2)

* a º –* (09–

The analytical solution to this problem with e = 1, is a series

solution given in equation (3) below.

º

cº

º

. . . "
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Co

2 1

u(p,\}) = X. º Än 3 (-1)" cos (An■ ) lo (An o) *: 1 - (2) (3)
n = 1

where,

Io (An p) is a Bessel function which comes from the solution of the
modified Bessel equation of zero order;

and,

T

An = (2n-1)^2 comes from the homogeneous solution and the
boundary condition along ( = 1.
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Figure 6-1 shows the analytical solution in the form of a

contour plot. The finite element solutions have similar contours as

the analytical solution. Plotting all of these on one contour plot is

somewhat meaningless, however. Therefore, the different solutions

are compared along lines of constant p or Ç.

Figure 6-1: Contour Plot of Analytical Solution

.0181 u=0

.03639
.07.289

.1094
.1277

.20066 .05464
.09115.1

.1824 .1459

Figures 6-2 through 6-4 show the comparison of the analytical

solution with the finite element computer program solution at p-0,

Ç=0, and p-.5, respectively. The symbols on these Figures represent

the finite element solution values for different mesh sizes and

different number of nodes per element. The solid line is the

analytical solution for the lines p =0, Q =0, or p =.5. Table 6-1

compares the solutions at the point (0,0).

º
* *

º
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Figure 6-2: Comparison of Analytical Solution and FEM

Solution at p = 0
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Fisgure 6-3: Comparison of Analytical Solution and FEM

Solution at ( = 0
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Figure 6-4: Comparison of Analytical Solution and FEM

Solution at p = 0.5

u(r=.5,2) actual

0.150 O 4by4.4node
D 4by4.9node

10by10.4node

0.100
N
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II
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Z

From Figures 6-2 through 6-4 it can be seen that the finite element

solutions are very accurate. A more in depth break down can be seen

in Table 6-1, which compares the solutions at the point p-0, C-0.

Table 6-1: Numerical comparison of Solutions at (p=0, C-0).

actual solution .2006637

4 by 4 mesh 4 nodes/elem. .2094.07

9 nodes/elem. .200631

5 by 5 mesh 4 nodes/elem. .2064.92

10 by 10 mesh 4 nodes/elem. .202319

*
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It can be seen that a finer mesh gives a more accurate solution.

More refinement on the solution is given by adding more nodes per

element. From the above example, it can be seen that the finite

element solution is accurate to 4 significant figures if a 4 by 4

mesh is used with 9 nodes per element.

6.1.2 Convective Test Problem

The other test case involves the convective boundary

conditions. This problem was posed in rectangular coordinates, and

the reaction term is set to zero. The problem is posed by equation

(4) and is illustrated in Figure 6-5 below.

02u O2u
-

ox2 *ay - 0 in Q = {(x,y): 0 < (x,y)- 1}

ou ou

u(x,1) = 4; 5. (1,y) = 0; dy (x,0) = 0

ou h
- - - -

ox (0,y) = ku Convective boundary condition (4)
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Figure 6-5: Convective Test Problem

u = 4
(0,1) (1,1)

Ou h ou
—(0,y) = — —(1,y) = 0... y) u .." y)

y (1,0)
ou

x -(x,0) = 0
oy

The analytical solution to this problem is given by equation (5).

u(x,y) =

4 Sin An 1 h A X. 1
An cosh An (1 . Sin 2An Cosh An y Cos An(x-1)(; , "º

n=1

(5)

where:

An is th luti f tan A _Bi h (6)
n is the solution OT tan "T An Tk An

comes from boundary condition at x = 0.

*

t

Z

º
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Figure 6-6 below shows the analytical solution in the form of

a contour plot for Bi = 10.0. Figure 6-7 shows a comparison between

the analytical solution and the computer generated solution for this

problem for a four by four mesh with four nodes per element and

nine nodes per element at x=0. The computer generated solution

with nine nodes per element matches the analytical solution with

more accuracy than the four node solution. This test case proved

that the program was working fairly accurately. For the other cases

tried below, nine nodes per element were used.

Figure 6-6: Contour plot of Analytical Solution
u = 4.0

3.717
1.692

N 3.338
3.042

.6787 —s. – 2,704

— 2.367

.3411 | N ~ 2.029
1.016 1354
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Figure 6-7: Comparison between Analytical and Computer
Solutions at x = 0.

4.0.
3.5 .

3.0 - u(x=0,y) actual

2.5- O 4by4.4node
O 4by4.9nodei

6.2 Comparison for Nonlinear Portion of Code

The next step before trying different geometries was to

compare solutions from the finite element code with another

author's case. This was done to assure that the nonlinear portion of

the finite element code was working correctly. The comparison was

done using a design modeled and tested by Albin et.al." The design
was a one dimensional membrane containing glucose oxidase. The

same parameters were used to compare Albin's one dimensional

solution and the one dimensional solution obtained from the finite

element code. The parameters which Albin used are given below in

Tables 6-2 through 6-4.

*
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Table 6-2: Albin Parameters

Parameter Value

kg 0.000673 cm/sec

ko 0.00226 cm/sec

kh 0.00891 cm/sec

kb 0.000995 cm/sec

Da 6.75 X 10-6 cm2/sec

Do 2.29 X 10-5 cm2/sec

Dh 9.3 X 10-5 cm2/sec
1.0 X 10-5 cm2/sec for bicarb.

Db." buffer

6.6 X 10-6 cm2/sec for citrate

buffer. SEE TEXT.

99 1.0

OO 1.0

Oth = 0.b 1.0

Ka 0.06328 M (Weibel ref)4

Ko 0.0003729 M (Weibel ref)4
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kcat 226 sec-1 (Weibel ref)4

Kb." 7.94 X 10-7 M (pKa = 6.1) bicarb.

4.07 X 10-7 M (pKa = 6.39) citric

acid

Table 6-3: Bulk Concentrations used by Albin et. al.1

CoB 0.274 mM

CoB 5.56 mM

cbs." 26 m/M bicarbonate

19.5 mM citric acid

ChB 10-74 (pH = 7.4)

Table 6-4: Dimensions used by Albin et. al.”

R = 0.5 Cm

h = 0.02 cm model

h = 0.01.29 cm experimental

Et = 1.0 X 10-6 M

In Tables 6-2 through 6-4 the variables have the same

meanings as listed in Appendix 4-1. The transport parameters,

denoted by ki correspond to Biot numbers of 2.0 for all species using
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a 0.02 cm thick membrane. Two values are listed for the buffer

parameters denoted by asterisks. In these cases the first value

corresponds to that for bicarbonate buffer which is used in the

current model (see Chapter 7 for details) and one value for citric

acid buffer. Albin et. al. and Klumb et. al. both use citric acid buffer

in their simulations and experiments.1.2 The reader is reminded
however, that the model which Albin uses does not take buffer

transport into account. (See Chapter 4, pg. 67, and discussion

below).

A computer comparison was done for both the calculated and

experimental cases listed above. Figure 6-8 compares the glucose

and oxygen concentration profiles from Albin's solution and the

finite element computer solution for the Albin's base case one

dimensional design." The profiles from Albin's solution are shown

as dashed lines. These values were estimated from a graph in

reference 1. The destination layer is located at the normalized

length equal to 1.0 side of the graph. It can be seen that the glucose,

oxygen and reaction rate profiles all match very closely. This

validated the method which we were using to solve this problem.
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Figure 6-8: Comparison with Albin Solution
One Dimensional Case; No Hydrophobic Membrane; h =0.02 cm

Glucose, Oxygen Concentrations and Reaction Curves
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Figure 6-9 shows the comparable hydrogen ion profiles for the

exact same case as tried above. Two profiles are shown as well as

Albin's solution which is given by a dashed line. The profile which

most closely matches Albin's solution was made by modifying the

code to solve for the hydrogen ion concentration using the same

method which Albin uses. The pH profile which does not match the

solution given by Albin was calculated allowing buffer transport

using bicarbonate as the buffer. This last pH profile however is not

in such good agreement. There are several reasons for this. Albin

makes the assumption that the hydrogen ion concentration profile is
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identical to its counter ion, gluconate ion. In his model, the pH was

calculated using the Henderson-Hasselbach equilibrium expressions

from the gluconic acid concentration profiles. In the finite element

model used here, the hydrogen ion concentration is calculated

directly from the diffusion-reaction equations, equations (4-11) and

(4-12). This generates a more accurate concentration profile for

the hydrogen concentration and hence for the pH.

Figure 6-9: Comparison of Hydrogen Ion Profiles

7.40

pH profile simulating Albin's program
(i.e. no buffer transport)7.35 -

****..
****..

***. ****..

(■ ) ( Fº-º-º-§ 7.30 - 2. “...........
g Albin's solution

#.
7.25 -

: pH profile using equations (4-11); (4-12)

7.20 +---—r——r——r——r—r——r-----,
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

body side polymer sideNormalized length

Klumb et al.2 (1993) also came up with a solution for this

case using this design but a different program code. Klumb et.

al.have also incorporated the hydrogen transport equations into their

model. Table 6-5 below gives a numerical comparison of the pH
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values at the bottom of the membrane calculated and observed

experimentally by all three models. The bottom of the membrane

refers to the polymer or destination layer. Several values

calculated using different diffusion coefficients and buffers are

also given.

Table 6-5: Numerical Comparison of pH values at bottom of
membrane

Author Calculated Calculated: Experimental

h =0.02 cm h = 0.01.29 cm h=0.0129

Albin Soln. 7.295 7.25 7.32

no buffer
transport

FEM Soln 7.23 7.29 not applicable

bicarbonate
buffer

FEM SOIn 7.20 not done not applicable
citric acid
buffer; Klumb
parameters

Klumb Soln 7.09 not done not done

citric acid as a
buffer
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Klumb Soln
7.37 not done not done

citric acid as a
buffer:

Dcitrate – Dh

FEM SOIn
7.38 not done not applicable

citric acid
buffer; Klumb
parameters:

Dcitrate = Dh

The discrepancy between the calculated pH values at the

bottom for the Albin method and the FEM method is again shown in

Table 6-5. The predicted values for another membrane are also

given. It should be noted that for the experimental membrane, the

FEM solution using the bicarbonate buffer predicts a pH value which

is very close to the experimental value obtained by Albin. This was

very encouraging and showed that incorporating buffer transport in

the equations gives a more accurate result.

The next step is to compare the pH values obtained by Klumb

et. al. to those obtained using the FEM program. The values which

they obtain for the base case for their pH profiles are lower than the

values which are obtained by the FEM model however. This initially

caused some concern but there are several other differences

between the two models. Both Klumb and Albin use citric acid as

the buffer in this reaction, and both authors have incorporated

titratable amine groups directly into the glucose oxidase membrane

model to calculate the pH. The model which we are using contains

_º

* R
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bicarbonate buffer and the amine groups are not included in the

hydrogen ion equations. The bicarbonate buffer is assumed to be

more mobile than the citric acid buffer due to its size and its

diffusion coefficient is one order of magnitude larger than that of

citric acid.3 Klumb ran a sensitivity analysis and showed that if the
diffusion coefficient of citric acid was increased to that of the

hydrogen ion that the bottom pH increases to 7.37.

To check whether the buffer difference would account for the

large difference in calculated pH, the FEM model was run using citric

acid in the same concentration as used by Klumb. The pH value did

decrease but not significantly. This is somewhat puzzling given that

when the model is run setting the buffer diffusion coefficient equal

to the hydrogen ion diffusion coefficient, the same pH is obtained as

Klumb calculated. It is assumed, however that the difference

between the bottom pH values between the two models is due to the

addition of the amine groups and the dihydrogen monocitrate ion

(H2C-) which are incorporated into Klumb's model. The sensor we

are developing here will not contain amine groups and thus these do

not need to be included in the modeling. In addition, the buffer in the

body is mainly bicarbonate buffer. It can be seen that due to

relatively large concentration of buffer as compared to the other

species in the model, the diffusion coefficient for the buffer, and

the pKa of the buffer have a much larger affect on the resulting pH.

These differences account for the different hydrogen ion

concentrations seen for the different models.
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6.3 Conclusion

The results of these test cases illustrated that the code was

working satisfactorily, and that the results which were obtained

were indeed meaningful. Figures 6-8 and 6-9 show the good

agreement between Albin's solution and the finite element code

solution. This proved that the nonlinear portion of the code was

working as well. The next chapter shows the cases which were tried

and documents several possible theoretical sensor designs.
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Chapter 7.

Results for Model

7. 1 Introduction

The model presented in Chapter 4 can now be numerically

solved using the code developed in Chapter 5 and tested in Chapter 6.

At this point it remains to determine the parameter values required

to solve the problem for different geometries. One of the

difficulties in ascertaining if experimental observations correspond

closely to the predicted response is determining the values of the

parameters to be used in the simulations. This chapter documents

several cases which were tested and the parameters used to obtain

the solutions.

7.2 Parameter Estimation

The dimensional parameters required for the simulations are

listed below in Table 7-1. The determination of the mass transfer

coefficients, the diffusion coefficients within the membrane and the

partition coefficients is discussed in section 7.2.1 below. The

reaction parameters were obtained using equation (4-6) and analysis

done by Weibel (1971).8 The exact value of these is discussed in
section 7.2.2.
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Table 7-1: Dimensional Parameters Needed in Simulation

Mass transfer coefficients from kg, ko, kh, kb
bulk solution to membrane

Diffusion coefficients in Da, Do, Dh, DB
membrane

partition coefficients Cºg, Cºo, Oh, Cºb

Reaction parameters Kq, Ko and kcat, Kb

7.2.1 Determination of Transport Parameters

The dimensional mass transfer parameters from the bulk

solution to the device have been estimated by Gough et. al. using a

membrane-covered, rotated disk electrode system simulating

passive diffusion from the bulk solution to a membrane (Reynold

numbers less than 5000). 1-4. Using their novel disc electrode

system, Gough et. al. determined values for the partition

coefficients, diffusion coefficients and the mass transfer

coefficients for glucose and oxygen into a hydrophilic membrane. 1-4

The mass transfer properties for each substrate were first

determined separately in the absence of the enzyme reaction using

Cuprophane PT-150 as the hydrophilic membrane. Cuprophane PT

150 is a regenerated cellulosic membrane containing about 65 vol %

water at equilibrium. Then these diffusion and reaction properties

were quantitatively characterized for both glucose and oxygen using

//;
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membranes containing a glutaraldehyde-crosslinked mixture of

purified glucose oxidase, catalase and collagen cast as a thin

homogeneous film." Using the estimated parameters obtained from

the rotated disk electrode, Gough et. al. showed that their

predictions exhibited good agreement with experimental results for

their design.5-7

Most of the reported values were considered to be accurate

enough for our purposes and were used in our simulations. The most

recent values were used where possible.7 Similar theoretical
methods were used to estimate the mass transfer coefficients.2-4

The parameter values for the hydrogen ion and the bicarbonate buffer

were estimated using bulk values and similar theoretical methods.

The mass transfer coefficients, ki, were estimated using the

classical rotating disk theory in which the disk surface is uniformly

accessible to the reactant and the diffusion boundary layer

thickness is known.9 In the rotating disk theory the hydrodynamic

boundary layer for a species i is calculated as,

8 = 1.61 D'vº o-1/2 (1)

where v is the kinematic viscosity of the medium, Go is the angular

rotation rate, and DiB is the solute diffusion coefficient in the bulk.

From equation (1) the mass transfer coefficient is calculated as:



º:
Cº

º
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ki = º = 1.61 Dºv-1/6 ot/2 (2).

Equation (2) gives a direct method to calculate the solution mass

transfer coefficient for a given species. There are two major

assumptions associated with equation (2); that the radius of disk be

much greater than the diffusion boundary layer for any species, 6i,

and that the flow be laminar. Since passive diffusion is assumed

(i.e. laminar flow), the Reynolds number must be between 100

20,000 for equation (2) to be valid. 10, 11 Gough et. al. obtained their

values using rotation rates of up to 25 rad/sec.1-4. Using this value

for go, the Reynolds number can be calculated given the solution's

kinematic viscosity, the solution's temperature and the disk radius.

The solution is assumed to be similar to water at 370 C. The

properties for water at 20 and 370C and the known bulk diffusion

constants of the species considered in this problem in water are

given in Table 7-2, below.

_*
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Table 7-2: Known Parameters

Kinematic Viscosity of

water/plasma

v2000 = 0.01 cm2 s−1

v370C = 0.0069 cm2 s−1
Diffusion coefficients in Bulk
Solution

Glucose

Oxygen

Buffer

Hydrogen lon

Due 6.75 x 10−6 cm2 s.1

DoB 2.30 X 10-5 cm2 s−1

DbB 1.0 X 10-5 cm2 s−1

(assumed bicarbonate buffer)

DhB 9.3 X 10-5 cm2 s−1

Using these values the diffusion layer thickness and Reynolds
numbers can be calculated as shown below.

d2 @

v20°c TRe200c = 2500 d2 or Re870C =
d2 0)

v370c T 3623 d2 (3)

where d is the unknown disk radius, and the rotation rate is 25

rad/sec. The proposed sensor is assumed to be approximately 1 cm

in overall diameter (see Chapter 2). This would give Reynolds

numbers well within the required range for use of equation (2). The

s
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diffusion layer thicknesses for all the species in consideration at
3700 are estimated to be:

ôg = 0.0027 cm; 60 = 0.002 cm; 8h = 0.0064 cm; 8b = 0.003 cm.

These values are much less than the overall proposed disk dimension

of 1 cm and thus equation (2) will be used to estimate the mass

transfer coefficients. Therefore using (2), the dimensional mass

transfer parameters from the solution to the membrane were

estimated at 370C as shown in Table 7-3.

Table 7-3: Mass Transport Coefficients

Glucose kg = 0.00254 cm/sec

Oxygen ko = 0.00575 cm/sec

Hydrogen lon kh = 0.0146 cm/sec

Bicarbonate Buffer kb = 0.0033 cm/sec

Using these as the mass transfer coefficients the Biot

numbers can be estimated once the diffusion coefficients within the

membrane and the partition coefficients have been determined.

Gough et. al. used their rotating disk electrode to first determine the

membrane permeability to a particular species. 1-3 The membrane

permeability, Pm, is given by equation (4) below.
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Oi Dmi
Pn-º." (4)

where the partition coefficient oi is defined below, Dmi is the
diffusion coefficient of species i in the membrane and 6m is

membrane thickness. [In our case 6m is h.] Once the permeability is

known, the quantity oi Dmi can be calculated using equation (4). A

transient technique developed by Gough et. al. is then used to obtain

separately the partition and diffusion coefficients. 1.4 At this point

the most recent values predicted by Gough et. al. for the diffusion

coefficients within the membrane, Dmi, were used in this
simulation.” These values are listed below in Table 7-4.

As mentioned previously (Chapter 4) selective partitioning of

species into the enzyme membrane is included in our formulation for

completeness and is represented by the partition coefficient for

each species. The equilibrium partition coefficient for species i, oi

= ci/ciB, is defined as the equilibrium ratio at the membrane

solution interface of the solute concentration in the membrane, ci,

divided by the concentration in the bulk solution, ciB. Gough et. al.

also estimated values for the membrane partition coefficients for

both glucose and oxygen. These values are shown in parenthesis in

Table 7-4. For simplicity all the partition coefficients were set to

one in the simulations. (This is thought to be a decent assumption,

since the exact nature of the glucose oxidase membrane has not been

fully determined yet.)
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Table 7-4: Parameter Values used in Simulations sº

Parameter Value º

Da 4 X 10-6 cm2/sec (Gough ref. 7)

Do 2 X 10-5 cm2/sec (Gough ref. 7)

Dh 9.3 X 10-5 cm2/sec (*)

Db 1.0 X 10-5 cm2/sec (*)
-

O'g 1.0 (0.8) i.

O'O 1.0 (0.8 - 3.0) º,

Oth = 0.b 1.0 --

In Table 7-4, the bulk diffusivities, denoted by the asterisk, were

used as the membrane diffusion coefficients for the bicarbonate |
buffer and the hydrogen ion. The bulk diffusivities were used for

both buffer and the hydrogen ion because both species are very /* {

mobile and it is assumed that there will be minimal diffusional ■ º.

hindrance to these species due to the proposed hydrophilic nature of J
the membrane.

The Biot number for each species was calculated using |
equation (5) below. º

ki h ki /.
Bij = + H = Hº- (5) -,Dm O. i T Prmi
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The mass transfer coefficients used are given in Table 7-3. The

diffusion coefficients within the membrane which were used in this

calculation are given in Table 7-4. The partition coefficients were

set to 1.0 as mentioned above. Due to some discrepancy in the

membrane parameters obtained by Gough et al.,5-7 the Biot numbers

used in the simulation are slightly different than those calculated

using (5). The calculated and the used Biot numbers are listed in

Table 7-5.

Table 7-5: Biot Numbers.
All Values calculated for h = 0.1 cm

Species Calculated Biot No. ... in

Glucose Big = 63.5 Big = used 60

Oxygen Bio = 28.75 Bio = used 27

Hydrogen lon Bih = 15.68 Bih = used 15

Bicarbonate Buffer Bib = 32.98 Bib = used 31

7.2.2 Determination of Reaction Rate Parameters

As mentioned in Chapter 4 the performance of glucose oxidase

is dependent on pH and has an optimum performance at pH 5.5.

Weibel and Bright collected data over a range of pH values from 3 to

11.8 This data led them to generate a minimal mechanism

consistent with all the aspects of the high pH experiments. From
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this scheme, a turnover equation for the enzyme of the form of

equation (4-5) was determined. From this equation, equations for

kox and kcat as a function of the pH were generated. The parameters

that are used in the reaction rate equation (4-6) are Kg and Ko which
are ratios of kcat to kred and kcat to kox, respectively. By expressing

the ratios as functions of pH, Kg, Ko and kcat can be expressed as
functions of pH. These values were calculated and plotted. The

reaction parameters were determined from these plots at pH 7.4.

The pH within the sensor is expected to change by less than 0.5

units. Within this range the parameters are relatively constant, and

thus were approximated as shown in Table 7-6. Other authors have

used similar assumptions. 1-7, 13-15

Table 7-6: Reaction Rate Parameters used in Simulations

Kq 0.07 M (Weibel ref. 8)

Ko 0.0008 M (Weibel ref. 8)

kcat 880 secº' (Weibel 8)

Kb 7.94 X 10-7 M (pKa = 6.1)

7.2.3 Other relevant parameters

It still remains to determine the range of bulk concentrations

that are valid for this problem. These are given below in Table 7-7.

The total buffer concentration was set at the total concentration of

bicarbonate buffer in the body. 16 The bulk hydrogen ion
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concentration was set by the normal body pH since it is known that

the body regulates itself quickly. The bulk oxygen concentration

was set at 0.1 mM. This value was chosen because it is a reasonable

value and Gough et. al. used values similar to this. The maximum

saturation of oxygen in water is 0.274 mM at 1 atm. In arterial

blood oxygen concentrations can be as high as 0.15 mM. In some

peripheral tissues or venous blood, however, oxygen concentrations

can be as low as 0.01 mM. The value of 0.1 mM was thought to be

conservative enough to give a decent and realistic estimate of the

oxygen deficit. Glucose bulk values were varied between 3 mM (54

mg/dl) to 15 mM (270 mg/dl). The value of 10 mM (180 mg/dl) was

used to simulate the average value of bulk glucose after a normal

meal.

Table 7-7: Concentration Ranges

CoB 0.1 mM

CoE 3 - 15 mM

CbB 26 mM

ChB 10-74 (pH = 7.4)

The other important parameters in this problem are the

membrane parameters such as the geometry of the membrane, and

the total enzyme concentration. Since we are considering only one

"cell" of the entire membrane as shown in Figure 4-3, the significant

geometric parameters become the overall membrane thickness, h,

the radius between holes, R, and the hole radius, a. Realistic values
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for the geometries were chosen with some regard for fabrication

eaSe.

which lists the geometric cases considered.

The values which were considered are listed in Table 7-8,

Table 7-8: Sensor Dimensions

Case Cell Cell Hole Aspect a/R Thiele Et (uN)

number | Radius, thick- | radius, Ratio, modulus,

R ness, h a 8. ()

1 0.1 cm |0.1 cm |0.1 cm | 1.0 1.0 10.0 0.02273

1-d case

2 new 0.1 cm |0.1 cm |0.025 | 1.0 .25 10.0 0.02273
Cm

med hole

3 0.1 Cm 0.1 cm |0.01 1.0 ... 1 10.0 0.02273
C m

small
hole

4 0.1 cm 0.1 cm |0.05 1.0 .5 10.0 0.02273
Cm

Ig hole

5 0.2 cm |0.1 cm |0.05 2.0 .25 10.0 0.00568
Cm

6 0.2 cm |0.1 cm |0.1 cm | 2.0 .5 10.0 0.00568

7 0.1 Cm 0.1 cm |0.025 | 1.0 .25 * 10.0 0.02273
C m

8 0.1 cm |0.1 cm |0.01 1.0 ... 1 * 10.0 0.02273
Cm

In Table 7-8, the total enzyme concentration is set by the

effective Thiele modulus. In our formulation the Thiele modulus is

//;"
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R2 kcat Et
iven by Ó2 =

-

9 y () Co Do CoB
This form of the Thiele modulus is used

because it is the most convenient when formulating the problem.

The Thiele modulus is defined as the ratio between the reaction rate

and the diffusion rate, and can be used as a design parameter in

membrane designs [Gough, et.al 1982].1 It should be noted that in

general the Thiele modulus is usually defined with respect to the

membrane thickness. Using this definition, the Thiele modulus is

denoted by:

cº-º-º-º: (6)

In our problem, choosing values for the geometry, i.e. the

radius or the membrane thickness, gives a direct relationship

between the Thiele modulus and the enzyme concentrations. Due to

the numerical expression for the reaction rate (equation (4-18)), for

numerical stability with an aspect ratio equal to 1.0 values of no

more than 15 can be used for the Thiele modulus. This has been

noted by other authors who were not able to retain numerical

stability for values over 10.5-7, 14, 15 A value of 10 for the Thiele
modulus corresponds to very low enzyme concentrations as given in

Table 7-8. Gough et al.5-7 and Klumb et al. 14,15 have used values
for the Thiele modulus of 10 or lower even though the actual enzyme

concentration in their test devices may give a Thiele modulus value

as high as 200. They have justified their use of lower Thiele
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modulus values by saying that there is little effect on the

concentration profiles by varying the Thiele modulus, o, above 10.

The assumption of the small effect of the Thiele modulus can

be further justified by examining the shape of the reaction curves

generated by equation (4-18). The reaction curves generated by

equation (4-18) are three dimensional hyperbolas. For a steady

state solution the reaction rate must match the diffusion terms. For

a given reaction rate, however there is very little numerical

difference in concentration values for Thiele modulus values

between 15 and 200. 5-7

In addition it has been noted that as long as the process is

diffusion limited, that is for Thiele modulus values greater than

five, accurate responses are achieved by this model." Diffusion

limited processes require that diffusion is slow compared to any

reaction process. The major advantage of the diffusion-controlled

design is that even though the intrinsic enzymatic activity may

decay during long-term use, enzyme inactivation will have little

effect on the signal until the activity becomes sufficiently low that

the process is converted to reaction-controlled, and thereafter the

sensor response will change dramatically during further use to the

point of total failure. Thus the Thiele modulus values for all of the
above cases were set at 10.0.

It should be noted that for cases 7 and 8 the effective Thiele

modulus value is slightly different. In these cases less enzyme is

º s

3 | "

■

|-y
-

*

*
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packed into a smaller volume to generate the same enzyme

concentrations.

Figure 7-1 shows a visual comparison of the geometries of

each case listed in Table 7-8.

Figure 7-1: Comparison of Geometries

1 R

| I

CASE 1 : NO MEMBRANE I
<-

R = a = 0.1 cm —º h
h = 0.1 cm -S
a / R = 1.0 I

I

a I R I

CASE 2 : AVERAGE HOLE NH
IN MEMBRANE N: I

R = 0.1 cm <!-

h = 0.1 cm ha / R = .25
TS

a | R
! —

CASE 3: SMALL HOLE |
IN MEMBRANE

R = 0.1 cm
h = 0.1 cm
a / R = .1

º
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Figure 7-1: cont'd

a

CASE 4: LARGE HOLE I H
IN MEMBRANE

R = 0.1 cm
h = 0.1 cm
a / R = .5

CASE 5: AVERAGE HOLE IN MEMBRANE, R / h = 2.0

R = 0.2 cm a R

h = 0.1 cm \ .

a / R = .25 SS T.

a | R |

R = 0.2 cm ! NH
h = 0.1 cm — I

a / R = .5
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Figure 7-1: cont'd

Variable Enzyme Cases

a I R I

CASE 7 : AVERAGE HOLE \H
IN MEMBRANE N. |

R = 0.1 cm $*SN§§ºh = 0.1 cm
a / R = .25 h

<-

a I I R I

CASE 8: SMALL HOLE NH
R = 0.1 cm ■
º §§ –a F .

<!-

7.3 Results

The results for the various geometries listed in Table 7-8 and

shown in Figure 7-1 are presented here. A comparison of these

results determine the set of designs which should be experimentally

tested.

The computer generated solutions for Cases 1-8 listed above

in Table 7-8, using the parameters in Tables 7-3 through 7-7 are

illustrated in the figures below. A three dimensional visual

comparison of the geometries of each case is given in Figure 7-1
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above. For each case, the glucose, oxygen and hydrogen

concentration contours are given over a cross-section of the unit

cell outlined in bold in Figure 7-1.

The first six cases are membranes which contain a uniform

distribution of glucose oxidase. The concentration contours for

these cases, (excepting case 4) are given in Figures 7-2 through 7-6.

Cases where glucose oxidase is distributed uniformly throughout the

membrane were the first designs considered for simplicity. The

remaining cases contain layers of glucose oxidase combined with

layers containing no glucose oxidase. The results for these variable

enzyme cases are shown in Figures 7-8 and 7-9. The layers of

glucose oxidase are illustrated by the shaded (i.e. dotted) regions in

the unit cells in Figure 7-1. Areas of no glucose oxidase are blank.

The hydrophobic membrane is illustrated by the striped area at the

top of each cell. The results shown below represent the

concentration contours at a bulk glucose concentration of 10 mM

(180 mg/dl), and a bulk oxygen concentration of 0.1 mM unless

otherwise noted.

Case 1 is the one dimensional case where there is no

membrane. From Figure 7-2 it can be seen that the concentration

contours are flat as expected. There is a significant decrease in

oxygen concentration with relatively little decrease in glucose

concentration. The overall pH decrease is 0.1 pH units from top to

bottom. This decrease in pH is probably not enough to significantly
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Figure 7-2: Case 1 Geometry. One-Dimensional Design
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swell the polymer layer at high glucose levels. This design has

already been shown to be unsatisfactory in combating the oxygen

deficit problem by other authors. 1,5-7, 13-15, 17, 18 It is shown

anyway for comparison to the other designs.

The optimal size of the hole in the membrane is partially based

on the oxygen to glucose delivery ratio. This ratio is calculated as:

O flux O2 _ Co Do (CoB-Coavg) . area O2 flux
G flux glucose Tag D9 (coB-cqavg) area gluc. flux

_ Cºo Do (CoB-Coavg). It R2
Og Dg (CgB-cqavg) T a2

(7)

For an optimal design, at higher bulk glucose concentrations the flux

ratio of oxygen to glucose should be greater than or equal to one, if

possible. From equation (7) and the parameters given in Tables 7-3

through 7-7, the ratio of the radius of the hole in the hydrophobic

membrane to the unit cell radius is given by equation (8):

2
-

aé < (0.1 Coavg) *5.0R* (Cgb-cqavg)
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In equations (7) and (8), estimated average concentrations of

glucose and oxygen are used to estimate fluxes through the

membrane. If the one dimensional results are used (a worst case

scenario), then a rough average estimate for the glucose and oxygen

concentrations in the membrane are 9.5 mM and 0.06 mM,

respectively. Now making use of equation (8), for a bulk glucose

concentration of 10 mM, a unit cell radius of 0.1 cm, and the average

concentrations from the one dimensional case, the radius of the hole

in the hydrophobic membrane should be less than or equal to 0.06 cm.

The maximum oxygen to glucose delivery parameter is obtained when

the maximum fluxes are achieved by setting the average

concentrations to zero. For this case the ratio of the hole radius to

the unit cell radius becomes: a■ < 0.224. These two a/R ratios give

a fairly good estimate of how large the hole in the membrane should
be. Various values for the hole radius were used. The hole to radius

ratio was started at 0.25 for simplicity.

The case 2 design shows the effect of a hydrophobic membrane

which covers 93.75% of the area. This corresponds to a hole in the

membrane which is a quarter of the radius of the entire unit cell; i.e.

an a■ ratio of 0.25. This was taken as the original base case due to

the simple calculations on the oxygen to glucose delivery ratio from

above. Case 2 results are illustrated in Figure 7-3.
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Figure 7-3: Case 2 Geometry. Medium Sized Hole: a■ : =.25 sº

Glucose Contours

7.57 mM 5.81 mM
hole
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pH Contours

7.20y hole | 6.963
7.33

6.956

6.993

—º-

6.95 6.95

From the concentration contours in Figure 7-3, it can be seen that at

the bottom of membrane the glucose concentrations have been

reduced by 40% (9.25-5.53/9.25) by adding the hydrophobic

membrane. The oxygen concentrations, on the other hand have

increased by 22% over the one dimensional design. This is a good

improvement over the one dimensional design. Due to the increase

in oxygen to glucose ratio at the bottom of the membrane, the pH

levels have been decreased to 6.95. This is a significant decrease as

compared to the one dimensional design. This result was very

encouraging, although we expected to see slightly higher oxygen

concentrations within the membrane.

For comparison to the medium sized hole, both a smaller and a

larger hole was tried using the same geometry. The smaller hole

results are shown in Figure 7-4. For this case the hydrophobic

membrane covers 99% of the unit cell.
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Figure 7-4: Case 3 Geometry. Small Hole: a■ k =.1

Glucose Contours

* 288 1.93mm
titº

2.88-v-
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1.558 mM

Oxygen Contours

.0967 mM

.063 mM

.05297 mM



235

pH Contours

hole
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6.703

6.71

6.698

From Figure 7-4 it can be seen that the small hole increases oxygen

contours by 150% over the one dimensional case. Both the pH and the

glucose concentrations are significantly decreased with this design.

The case 4 geometry was tested as a comparison to cases 2

and 3. Using case 4 geometry, the hydrophobic membrane covers 75%

of the unit cell. The larger hole allows the entry of more glucose

and hence the oxygen to glucose ratio at the bottom of the membrane

is not as favorable as in the previous case. These contours are not

shown because they are analogous to the previous two cases. The

glucose concentration runs from 8.19 mM at the bottom of the

membrane to 9.9 mM at the top. The oxygen contours run from 0.022

mM to 0.094 mM which shows no improvement over the one

dimensional case. The larger the hole the more flux of glucose and

hydrogen ions into and out of the membrane, thus increasing the
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glucose concentration and decreasing the hydrogen ion concentration

slightly. The calculated pH at the bottom of this membrane is 7.18

for a bulk glucose value of 10 mM. This value is higher than the

bottom pH for case 2, as expected.

Cases 5 and 6 represent trying a larger radius unit cell with

the same hole to unit cell ratios as Cases 2 and 4 above. This was

done to attempt to increase the oxygen concentration in the

membrane. It should be noted that these cases were run using a

version of the program which did not attempt to calculate the zero

flux condition as given by the boundary condition at side 4, equation

(4-17). This boundary condition was implemented after these runs.

These runs were not redone using the new boundary conditions

because the preliminary results shown below indicate that these

cases are unfavorable. In addition, the boundary condition for pH

along side 4 is set to 7.2. For these cases the predicted hydrogen

fluxes into the polymer layer are also shown.

The results for case 5 are shown in Figure 7-5. Case 5 is

similar to case 2 in that the hydrophobic membrane covers 93.75% of

the unit cell. This design does increase the oxygen concentrations in

the membrane. At the bottom of this membrane, oxygen

concentrations are 65% (.73-.257/.73) higher than those in case 2.

This increase in oxygen at the destination layer is not, however

accompanied by a decrease in the pH due to the thickness of the

membrane. The aspect ratio for this membrane is 2.0 which implies

that the membrane is thinner compared to the other cases. It has

been determined that thinner membranes or those with aspect ratios
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greater that one have quicker transport times resulting in increased

pH values. 13 The total hydrogen fluxes are included in this figure.
It can be seen that for this design there is some flux into the

destination layer which is what is ultimately desired. When this

case is run for lower bulk glucose concentrations, however the flux

differences between the two cases are not significant enough to

recommend this design. [These results not shown.]
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Figure 7-5: Case 5 Geometry. Thinner membrane. a■ R = .25
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H+ Fluxes
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The results for the case 6 design, having an aspect ratio of 2.0

and a hole to radius ratio of 0.5 are shown in Figure 7-6. These

results are similar to the results for case 5 in that the oxygen

Concentration is indeed increased within the membrane. Due to the

hole size and the "thinness" of the membrane, however, the pH values

are higher than those for cases 2-5.

.
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Figure 7-6: Case 6 Geometry. Thinner membrane. a■ : = .5
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From the results for cases 1-6, it was decided that the

reaction to generate hydrogen ions still occurs mainly near the hole

in the unit cell. Due to this the oxygen is still depleted first before

depleting the glucose sufficiently, thus making the membrane still

more sensitive to changes in oxygen concentration rather than

changes in glucose concentration. To combat this problem, it was

decided to try a different approach. To further enhance the oxygen

concentration in the membrane, designs using variable regions of

glucose oxidase/catalase were considered. This meant alternating

enzyme concentrations in layers, with enzyme rich layers

strategically located adjacent to the destination layer and by the

hole at the top. The middle layer which contains little or no enzyme,

acts like a storage reservoir for oxygen. The perforated hydrophobic

silicone membrane which enhances oxygen transport would remain

on top. Figure 7-7 below illustrates this solution more clearly. N \ it
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Figure 7-7: Membrane Design to Enhance Glucose

Sensitivity

Enzyme Layer

"Destination" -> N
Enzyme rich
layers

Several different designs were tried using the scheme in Figure 7-7.
These are listed as cases 7 and 8 in Table 7-8.

Cases 7 and 8 represent cases with variable enzyme layers and

two different hole sizes. For each case the bottom enzyme layer is

only 0.03 cm thick. Each case also has an enzyme plug at the hole to

filter out excess glucose. The size of the enzyme plug at the hole

was arbitrarily set at 0.02 cm. Figures 7-8 and 7-9 show the

concentration profiles for these two cases respectively.
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Figure 7–8: Case 7 Geometry -
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pH Contours

7.36 W;
=2~

7.16

A comparison of case 7 and case 2 gives an idea of how

variable enzyme layers change the design. For case 7, oxygen

concentrations in the middle of the membrane are enhanced by 54%

(.06315-.041/.041), and at the bottom of the membrane by 78%

(.0459-.0257/.0257). This is a significant improvement in oxygen

concentrations. The glucose concentrations and the corresponding

pH, however are increased in this design. The pH at the destination

layer is 0.2 units higher with this design than with the case 2

design. In addition the glucose concentrations at the bottom of the

membrane are 44% higher with this design.

To combat the problem from case 7, a smaller hole was used.

Using a smaller hole, as in Case 8, further magnifies the oxygen

enhancement and pH drop. Comparing case 8 to case 2, the pH drop at

the destination layer is now 0.07 units below the case 2 design, and

oxygen is enhanced by 106% at the bottom of the membrane. Figure
7-9 shows the concentration contours for this case.
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Figure 7-9: Case 8 Geometry
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The oxygen contours are essentially identical for Cases 3 and

8. The glucose and pH contours are very different for these two

cases however. From these figures it can be seen that the overall pH

drop is greater when the entire membrane contains glucose oxidase,

but that oxygen concentrations are enhanced for geometries with

very small holes or variable enzyme amounts.

7.4 Discussion

At this point in the study designs which showed the most

promise were compared. Thicker membranes and small holes in the

membrane proved to work the most efficiently to combat the oxygen

deficit while maintaining lower pH values. The designs which were

compared further were cases 2, 3, 7 and 8.

It should be noted that the important parameters for each

design are the overall change in pH for a bulk glucose change from

basal level (3 mM) to an average glucose level after a meal (10 mM),

and the pH at the destination layer (bottom of the membrane) at

basal glucose levels. (It should be noted that glucose levels after

meals could go much higher. For design considerations an average

glucose concentration was used.) The object of the design is to

maximize the change in pH, while maintaining reasonable pH values

near 7.4 at the bottom of the membrane during fasting stages or low

glucose levels.
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Figure 7-10 compares the pH contours for cases 2, 3, 7 and 8

at fasting glucose levels and after a meal. The corresponding

overall pH drops at the destination layer for several cases are listed

in Table 7-9. It can be seen that the cases 3 and 8 designs give the

largest pH drops over the range considered.

Table 7-9: pH Drops at Bottom of Sensor

Case # A CGB (mM) A pH (bottom)

2 7 (3-10) 0.2

3 7 (3-10) 0.372

7 7 (3-10) 0.1

8 7 (3-10) 0.26
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Figure 7–10: pH Contour plots for 4 Cases

Cobulk = 3 mM (54 mg/dl) Cobulk = 10 mM (180 mg/dl)
Case 2: R/h = 1; hole/R = .25
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Figure 7-10: cont'd:

Cobulk = 3 mM (54 mg/dl) Cobulk = 10 mM (180 mg/dl)
Case 7: R/h = 1. ; hole/R = .25
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From Figure 7-10, the pH values at the bottom of the

membrane during fasting for cases 2, 3 and 8 designs are rather low

however. Initially this was cause for concern, since the titratable

polymer should be in its "off" or unswollen position or osmotically

inactive at basal glucose levels. Depending on the polymer used, the
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system may be already swollen or osmotically active at a pH of 7.2

or lower. 19-21. Due to the overall design of the pump, however, it is
feasible that the "off" position for the polymer gel or solution, is an

already slightly swollen state. The pump could be designed in such a

way that the polymer goes from one slightly swollen state to

another more swollen state. This will actually facilitate the

kinetics of swelling, and allow the polymer to react more

quickly.20-23

From Figure 7-10 and Table 7-9 it can be concluded that the

designs which generate the largest pH difference are those with the

smallest openings in the hydrophobic layer. Case 3 generated the

largest pH drop at the bottom of the sensor. Another method to

determine whether a design is feasible is to maximize the

difference in total fluxes into the polymer layer for a bulk glucose

change from basal level to an average glucose level after a meal.

The total hydrogen flux into the polymer layer is dependent on the pH

of the polymer layer. Polymers which could potentially buffer the

system at a given pH were synthesized in our laboratory.20 Thus the

flux into or out of the destination layer for a given pH is an

important factor in determining the feasibility of the sensor design.

The total hydrogen flow into or out of the polymer layer at a

set pH was calculated for the Case 3 design at two bulk glucose

levels. The results given in Figure 7-10 show pH contours for the

situation of no flow of hydrogen ions into or out of the polymer

layer. In Figure 7-10 the bottom pH values shown represent the

steady state which the system will eventually come to. If the
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polymer, however buffers the system at a given pH then this value

will initially override the steady state value and there will be flow

into or out of this layer. Figure 7-11 shows the total flow of

hydrogen ions into or out of the polymer layer for the Case 3

geometry as a function of the pH of the polymer layer for two

different bulk glucose values, basal level 3.0 mM and average

glucose level 10.0 mM.

Figure 7-11: Total H+ Delivery Rate vs. polymer pH for
Case 3 Design
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>
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pH of Polymer Layer

In the above figure, the negative flow values imply that the hydrogen

flux is into the polymer layer, whereas positive flow values indicate

that the hydrogen ion is moving out of the polymer and the sensor.

This graph enables the designer to couple the polymer system and
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the sensor. The zero flow conditions are those given in Figure 7-10

under Case 3.

From the above figure, it can be seen that if the polymer for

use in the pump buffers the system at pH 7.0, at basal glucose levels

the integrated hydrogen flow is positive implying that there is a

small flow of protons out of this layer. As the bulk glucose level

rises as in the case after a meal, the hydrogen flow is initially

negative, and hydrogen ions flow into the destination layer (denoted

by d]) protonating it. The pH of the destination layer decreases at a

rate that depends on the total hydrogen flow and the buffer capacity

of the polymer in the destination layer as given in Equation (9).

Equation (9) below is valid for a homogeneous, well-stirred

destination layer.

dpH Qcht
d t T dB (9)

Vdl (2.303X10-pH - cM dpH)

where:

Qch+ is the flow of hydrogen ions into or out of the
polymer layer (mmole/sec) from Figure 7-11.

Vdl is the volume of the destination layer (cm3)

cM is the total number of ionizable amine groups in the
destination layer

pH is the pH in the destination layer

Chb

B is the fraction of ionized amine groups (= *...)
where chbdi is the concentration of bound hydrogen ions
to amine groups
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The pH of the polymer layer will decrease until the steady state

value of no integrated flow is reached causing the pH at the sensor

bottom to decrease to its steady state value. With the above design

this is predicted to occur at pH 6.7. Decreasing the pH within the

polymer layer acts to increase the osmotic pressure which in turn

pumps the insulin out of the pump. Once the glucose level is reduced

by the insulin pumped out of the pump, the sensor and polymer will

return to their pre-meal states.

These calculations show which designs appear more feasible in

enhancing the oxygen concentrations while decreasing pH values. It

remains to be experimentally tested whether these designs will

actually produce the predicted pH drop. From these calculations it

is recommended that the designs to be tested should be cases 2, 3

and 8. Case 1 should also be made and tested to determine if the

model predicts accurately the pH drop, for the given chosen

parameters. It is expected that cases 3 and 8 will give the best

results.

7.5 Conclusion

The equations have been solved for the system of the glucose

oxidase membrane covered by a perforated silicone membrane. A

finite element model has been used to solve the coupled nonlinear

differential equations in cylindrical coordinates. Using this

computer model, it has been determined that having a hydrophobic

membrane cover most of the unit cell does help to enhance the
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oxygen concentration within the enzyme membrane. Several designs

have been tested using this computer model and the results have

shown that membrane designs with very small holes, a■ < .25, work

best in obtaining the largest pH differences and making the "sensor"

more sensitive to changes in glucose concentration.

The majority of the oxygen gets consumed at the hole for

membranes containing uniform amounts of glucose oxidase.

Variations on the design can be accomplished by alternating enzyme

rich and enzyme vacant layers within the membrane. By placing

glucose oxidase in the hole and at the bottom layer, significant

improvements are made in the oxygen enhancement. The pH drop,

however is greater for those designs which contain uniform amounts

of glucose oxidase.

This program provides an effective means to estimate which

designs will produce the most desired results. It has been

determined that cases 3 and 8 will most likely give favorable

results and these two sensor designs should be tested. The program

does have some numerical limitations, however. Increasing the

glucose oxidase concentrations above a certain amount results in

numerical instabilities which would not occur in practice. In

addition, testing extremely small hole sizes, a■ R < 0.1 results in

excessive computation. Further improvements on the designs for

cases 3 and 8 can be made by physically increasing the glucose

oxidase content within the membrane, or having a hydrophobic

membrane with smaller holes. These improvements can be made if

necessary once the base case designs have been tested.
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The overall design will depend on polymer solution or gel

chosen as well as the sensor. It is necessary to couple the sensor

design to a polymer such that the polymer will be able to turn "on"

and "off" for the given pH changes. This can be done in part by

utilizing the program as was done above in Figure 7-11. Whether or

not this idea will work is dependent on all components involved.

This program estimates one part of the design.
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Chapter 8.

Summary and Future Work

In this chapter a summary of the analytical modeling

completed on the pump to date is presented. Conclusions and

recommendations for fabricating the device and future work are also

presented here. There is much future experimentation which must

be completed to verify this model. The author feels that the

computer model has aided in determining which designs should be

tested.

From the results and conclusions given in Chapter 7 we

recommend a sensor which would be fairly thick with very small

pores in the hydrophobic membrane. There is some concern, however

that thick membranes have slower kinetics as noted by Albin, Klumb

and Gough. 1-3 Sensor response time will be very important in the

design of the pump. This was not one of the major design

considerations in this thesis, but should be considered in the overall

project. It is also very important to couple the sensor behavior and

the polymer layer response as was attempted in Figure 7-11.

In an ideal system the sensor response would be instantaneous

as it is in the body. In this case instantaneous response would imply

that a rise in glucose concentration be accompanied by an immediate

production of hydrogen ions, followed by an immediate increase in

the osmotic pressure of the polymer layer. In practicality, however,
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this type of response does not occur as it takes time for the glucose

to diffuse into the sensor and react to produce hydrogen ions. It

then takes time for these ions to diffuse into and protonate the

polymer layer to create the increase in osmotic pressure. To this

effect, thinner membranes will produce faster response times. From

the results found in this thesis, thinner membranes however are not

as effective in producing large pH drops and consequently large

changes in hydrogen fluxes for different glucose concentrations.

To combat these issues several designs have been

recommended, Cases 2, 3, 7 and 8. Cases 7 and 8 use variable

amounts of enzyme within the unit cell. These designs which

contain glucose oxidase/catalase only in thin layer at bottom of

membrane should be tried due to the fact that these membranes may

exhibit faster responses since the area of fast change is small in

comparison to the rest of the membrane.

It is the author's opinion that each design be tested separately

as a unit cell first and then as an entire sensor. For all the

recommended designs the cells are 0.1 cm in thickness, and 0.1 cm

in radius. According to the model given in Figures 4-1 through 4-3,

if the sensor will fit into a pump of 1 cm in diameter, then the

sensor will be 1 cm in diameter and 0.1 cm thick, and will contain

approximately 19 cells. It will be fascinating to determine

experimental differences between the the unit cell designs and the

larger sensor.
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The experimental testing of the sensors can be done in

diffusion cells. The author recommends minimal stirring in each of

the diffusion cell compartments, since the proposed implant site in

the body will not be well mixed and there will be no flow conditions.

Initial experiments should be done with the one dimensional

membrane design, Case 1 geometry, to obtain the experimental

conditions which most closely mimic the analytical results. These

conditions can then be used to test the rest of the designs.

Fabrication of the sensors should be done as close to the

recommended design cases as possible. Since Gough et. al. obtained

excellent agreement with their electrodes, it is recommended to use

the glutaraldehyde-crosslinked mixture of purified glucose oxidase,

catalase and collagen cast as a thin homogeneous film for use in the

experimental sensors. 3 It will be necessary to have the hydrophobic

membranes fabricated using a laser to precisely place the

perforations. The hydrophobic membrane covering should be made as

thin as possible since in the model it is not considered to have any

dimension.

Since the proposed pump is driven by a the change in polymer

swelling or osmotic pressure, it will be necessary to couple the

sensor response to the polymer or polyelectrolyte chosen to power

the pump. Initially the pH change which occurs at the sensor end

will be determined for a given glucose change. Transient pH

responses and hydrogen ion flux changes from one glucose value to

another will be most valuable in determining which polymer system

will respond best. Eventually the sensor will be coupled directly to
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the polymer system and the pressure change will be determined for a

given glucose concentration change. Cornejo began some of the

pressure generation analysis using polyelectrolyte gels.4 Much work

is still required in determining a feasible and biocompatible polymer

system. It is expected that these results will aid in determining

which system will function well within a pump.

In the overall proposed mechanochemical pump there are two

valves. It will be necessary to couple the sensor/polymer system

design to the valve designs. One of the main questions is will a

change in 0.4 pH units be enough to generate enough pressure within

the polymer system to open and close valves? The valves are a

crucial component of the proposed pump. Preliminary analysis has

been started but much more work is needed in this area.5 The author

feels that it would be more beneficial to first design a pressure

sensor using Chamber 1 of the pump shown in Figure 2-1. This

pressure sensor would include and couple the glucose oxidase

sensor, the polymer system and the diaphragm. The valves would be

omitted until further pressure data is obtained. The pressure

calculations of the polymer/diaphragm system have been completed

using a simplified model for obtaining the pressure inside a polymer

gel. 6 This model will need to be updated somewhat, but the

diaphragm analysis is still valid. Once a feasible polymer system

which responds well to the sensor has been determined, the

diaphragm analysis dictates the type and material required for the

diaphragm.
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As mentioned in the Introduction the project can be divided

into several inter-related areas of modeling. This thesis represents

the analytical modeling of one portion of the mechanochemical pump

presented in Chapter 2, the sensor modeling. The other areas which

have been studied but are not discussed in this thesis are the

pressure calculations of the polymer/diaphragm system, the control

dynamics of the pump and the valve design. At this point

experimental results are required to couple the individual pump

components.
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