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Abstract We show in a model of spiking neurons that
synaptic plasticity in the mushroom bodies in combina-
tion with the general fan-in, fan-out properties of the
early processing layers of the olfactory system might be
sufficient to account for its efficient recognition of odors.
For a large variety of initial conditions the model system
consistently finds a working solution without any fine-
tuning, and is, therefore, inherently robust. We demon-
strate that gain control through the known feedforward
inhibition of lateral horn interneurons increases the ca-
pacity of the system but is not essential for its general
function. We also predict an upper limit for the number
of odor classes Drosophila can discriminate based on the
number and connectivity of its olfactory neurons.

Key words Olfaction, pattern recognition, synaptic
convergence, information coding, fan-in, fan-out

1 Introduction

Odor space is in contrast to visual or auditory space
not endowed with an obvious structure. Accordingly it
is not obvious how odor space should be represented in
the olfactory brain structures. In insects, the information
collected by receptor cells in the antenna is projected to
glomeruli in the antennal lobe (AL). Each receptor cell
expresses one receptor type [48], and all cells with the
same receptor type project to the same glomeruli [31,
46]. As a result, olfactory information seems to be en-
coded as combinatorial activation patterns of glomeruli
in the AL [21,40,11,29]. In locust, these patterns are
transformed to spatio-temporal patterns of active pro-
jection neurons (PNs) [22,25,50,24,39] which improve
the separation of representations of similar odors [42,18,
10]. The spatio-temporal code of the AL is transmitted
to the mushroom body (MB) as discrete snapshots of
activity [35]. These snapshots are reminiscent of sniffing

behavior in mammals even though on a somewhat dif-
ferent time scale. It has been shown in rats that odor
recognition can be very fast, often performed within a
single sniff [47]. To investigate such rapid odor recogni-
tion we concentrate on information processing in a single
snapshot. On the single snapshot level, the system needs
to perform a one shot pattern recognition task with noisy
patterns. For other insects, like Drosophila, honeybee or
moth, where the spatio-temporal coding in the AL and
snapshot transmission to the MB has not been demon-
strated, the pattern recognition task addressed here can
be interpreted as the rapid recognition of an initial ac-
tivity pattern in the AL in response to an odor.

We consider the activity of the PNs in the AL in
a given short time window as the input to a classifica-
tion system consisting of the intrinsic Kenyon cells (iKC)
of the MB and the extrinsic Kenyon cells (eKC) of the
MB lobes. Classification systems in abstract neural net-
works, e.g., linear classificators or support vector ma-
chines, typically have a very specific connectivity and
are trained to respond to given inputs with prescribed
outputs, i.e., to represent given inputs in a prescribed
way. In this work we explore an alternative comput-
ing strategy based entirely on random connectivity and
self-organization through local learning and competition.
We demonstrate that the known facts about the olfac-
tory system of insects are consistent with a classification
scheme that does not require tutoring, prescribed rep-
resentation of information, or genetically or algorithmi-
cally determined special connectivity.

Some aspects of the resulting model resemble the
ideas of support vector machines [6,5], however, with
major differences:

1. The connectivity is unspecific, i.e. the system uses a
random kernel function

2. The final representation of classes is self-organized
through a type of spike timing dependent plasticity
and mutual inhibition



3. the model system is built with realistic spiking neu-
rons.

The classification procedure is split into two stages. The
first stage is a nonlinear transformation from the AL to
the MB, which separates the patterns in the PNs into
sparse patterns in the iKCs realized by a non-specific
connectivity matrix between AL and MB [12], which is
consistent with observations in Drosophila [49]. The sec-
ond stage is linear classification of iKC activity patterns
by eKCs. This stage rests on a type of spike timing de-
pendent plasticity and mutual inhibition between eKCs,
the combination of which leads to self-organized, simple
representations of odors which appear very suitable for
association and memory. Experimental evidence for such
self-organization has been shown in the piriform cortex
of rats [53]. Direct experimental evidence for the type
of representations seen in the model described here has,
however, yet to be found.

We built our model with realistic spiking neurons and
synapses obeying a local spike timing dependent plas-
ticity rule. Even though the complexity of the model
and its numerical cost in terms of computation time
are much higher than for an artificial neural network,
this step seems necessary to make the applicability of
a model to real biological systems plausible. It has be-
come clear in numerous works [15,14,27,41,3] that sys-
tems built with more realistic models of biological com-
ponents can be quantitatively and qualitatively different
from the more abstract connectionist approaches. In the
context of this article, for example, non-disjoint repre-
sentations of odors that were easily implemented in our
previous more abstract work on the olfactory system of
insects [19] could not be observed under any conditions
in the more realistic system described here.

2 Model Description
2.1 Model Neurons

Our model is implemented with spiking neurons repre-
sented by a phenomenological, discrete time dynamical
map [4,38] with fixed time steps At = 0.5ms. In con-
trast to phenomenological conductance based models,
this map can be computed very quickly such that we
can simulate neural ensembles with realistic population
sizes, on the order of thousands of neurons. In particu-
lar, the membrane voltage V (¢ + At) of a neuron at time
t+ At is

V(t+ At) =

aVipike

Vipike (m + ’Y) V(t)<0

V(t) < Vipike (2 +7) &
Vit—At) <0
otherwise,

Vapike (@ +7)

_‘/spike

(1)
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where Vipike = 60 mV, o = 3, B = 2.64 M{2, and vy =
—2.468. [ reflects the input resistance of the cell and was
chosen such that match with the corresponding values
for the equivalent Hodgkin-Huxley model and Rall type
synapses (see below, Fig. 1).

The model neurons exhibit a simple spiking behav-
ior in response to DC input (Fig. 1A) very much like
Hodgkin-Huxley neurons (Fig. 1B). The Hodgkin-Huxley
neuron shown for comparison is a standard model [45]
with three conductances, Ina, Ikd, and Ijeax. In partic-
ular,

W — L (axam @OV (1) — Exa]+

dt C (
grn(t) [V (t) — Ex]+ (2)
Jleak [V(t) - Eleak]) - Isyn-

The activation and inactivation variables m, h, and n are
governed by % = oy (V(£)[1 — y(t)] — Byy(t), where y
represents m, h, and n, respectively and

am =0.32(=52—=V)/(exp((—52 — V) /4) — 1)

Bm = 0.28(254+ V) /(exp((25+ V) /5) — 1)

ap = 0.128 exp((—48 — V)/18)

Br = 4/(exp((=25—V)/5) +1)

ay, = 0.032(=50 - V)/(exp((-=5 = V)/5) — 1)

Bn = 0.5exp((—55 — V) /40)

The conductances and reversal potentials are gn, = 7.15uS,

Ena = 50 mV, gk = 1.43uS, FEx = —95 mV, gjeax =
0.0267uS, Fleax = —63.56 mV, and the membrane ca-
pacitance is C = 0.3 nF.

The map model and the conductance based model
have also very similar spike latencies in response to EP-
SPs of different size (Fig. 1C). Because all neurons in
this work operate in a very sparse regime the good agree-
ment of the two models in the shown tests implies that
the conductance based model would yield qualitatively
and quantitatively the same results as the map neurons.

We used the original map neurons [38] that match
this generic and well-tested Hodgkin-Huxley model for
spiking neurons instead of developing a custom model
to match the emerging line of models for the honeybee
KCs [20,34,54]. While the current study is closer to the
biological systems than our previous work [19], it is not
yet describing a specific insect and specializing to a neu-
ron model designed to match honeybee KCs would be
pretentious. Nevertheless, the chosen model is as a type
1 model well suited to allow low firing frequencies and
the observed sparse activity in KCs [35]. The response
latency as a function of the synaptic input is qualita-
tively similar to Wiistenberg’s model of honeybee KCs
[54], see inset in figure 1C.

Reaching a steady state in the learning process re-
quires long simulation runs; The computational speed
of map based neurons allowed us to simulate our model



Self-organization in the olfactory system

A B

0.4 nA 0.4 nA

J il

N
3

0.3 nA

wo MMM
o AN

@

251

100 mV

>

15

o

0.2nA e

0.2 nA

R

0.1nA 0.1nA

I J
10 150
[nS]

)

tsmke ~ tepsp [ms]
@ B
@
8
| [

e mmm ==
o

9syn

tpike ~ tepsp [MS]
&
T

5mV

50 ms 50 ms

e s

n n | n J
0 50 100 150
g,,, [nS]

Fig. 1 A) Response of the neuron model to DC current injection of —0.5 to 0.4 nA in steps of 0.1 nA. B) Response of a
standard conductance based model [45] to DC current input for comparison. C) Spike response latency for the map model
(circles) and the conductance based model (dashed line) in response to EPSPs evoked by presynaptic voltage pulses from a
resting potential of —60 mV to +50 mV of 1.5 ms duration (7syn = 2 ms). The inset shows the corresponding response latency
curve for the KC model of Wiistenberg et al. [54] (Tsyn = 10 ms).

system with 2720 neurons and on the order of 150,000
synapses over 100,000 ms on standard PC hardware. The
map model was used for all neurons except the PNs. PN
activity was represented by short, square voltage pulses
at the spike times determined by the input patterns. The
resting potential was set to -60 mV and the pulse voltage
to 50 mV with a duration of 1.5 ms.

2.2 Synaptic Currents

Synapses are modeled by

Lyn(t + At) = gsyn S () (Veev — Vpost (1)), 3)

S(t)e=At/Tvn 4 § presynaptic spike at t
S(t)e A/ Tevn otherwise.

St + At) = {
(4)

S(t) describes the amount of neuro-transmitter active at
the postsynaptic receptors. At each time step in which
the presynaptic neuron is spiking, a quantile character-
ized by 6 = 0.25 is released within A¢ and then de-
creases exponentially with rate At/7g, implementing
neuro-transmitter diffusion and uptake. The presynaptic
neuron is considered to be spiking when its membrane
potential first crosses 0 mV. For the voltage pulses rep-
resenting PN activity, spiking is synonymous to the volt-
age being at its high value 50 mV. V., is the reversal
potential of the synapse and is Ve, = 0 mV for all ex-
citatory and Viey, = —92 mV for all inhibitory synapses.
Vpost (t) denotes the membrane potential of the postsy-
naptic neuron.

2.8 Network geometry
The model network is illustrated in Fig. 2. Even though

the architecture and the coding in our classification sys-
tem were mainly inspired by the findings in locust, a full

size simulation of the locust olfactory system is computa-
tionally too expensive. We, therefore, built a smaller sys-
tem that roughly follows the statistics of Drosophila with
100 PNs, 2500 iKCs and 100 eKCs. We performed simu-
lations with and without feedforward gain control. Con-
nectivity is determined by a random process and then
fixed throughout the simulation. Each PN-iKC pair is
connected with probability ppn, ikc = 0.15. The synap-
tic timescale was 7pN, ikc = 2 ms and the mean synaptic
strength was gpn, ikc = 4.545 nS without and gpn, ikc =
5.25 nS with gain control. This choice matches the av-
erage activity in the iKCs for both cases. We added a
Gaussian jitter with standard deviation 1.25 nS to the
mean synaptic strengths. The gain control was imple-
mented through 20 lateral horn interneurons (LHIs) re-
ceiving input from all PN and inhibiting all iKCs. The
inputs to LHIs have strengths leading to increasing in-
hibition onto the iKCs with increasing activity in the
PNs. In particular, the synapses afferent to LHI number
n have maximal conductance 6/(c + n), with § = 53.75
nS and ¢ = 15, and time scale 7pn, L1 = 1 ms. The
inhibitory synapses from LHIs to iKCs are characterized
by JLHI, iKC = 8.75 nS and TLHI, iKC = 3 ms.

Any iKC-eKC pair is connected with probability pikc,
An existing synapse is initially active (strong) with prob-
ability pi"{(C’ ke and inactive (weak) with 1 — pf%c’ oKO-
We initially use all-to-all connectivity, pikc, ekc = 1
and 20% active synapses, pikc, oxc = 0-2- The strengths
for active and inactive synapses are drawn from Gaus-
sian distributions with mean g ¢ = 1.25 nS and
standard deviation O’;‘I_(C’ ke = 0.25 nS for the active
synapses and gixc oxc = 0.125 nS and TiKC, eKC =
0.025 nS for the inactive synapses if not stated otherwise.
The time scale for excitatory synapses is Tikc, ekc = 10
ms.

The eKCs in the MB lobes interact through all-to-all
mutual inhibition. The mutual inhibition is implemented
by inhibitory synapses governed by 3 with gsyn = 75 nS

eKC-
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Fig. 2 A) Model system in 1 : 5 scale. Panels B) and C)
show the distribution of the number of active neurons in the
AL (B) and the MB (C) for a structured set of 1000 inputs
(paL = 0.2, pperturb = 0.1). The distribution of the number of
active neurons in the MB lobes depends on the details of the
learning rule and the history of learning and is not shown.
Note the difference in the MB activity with and without gain
control.

and Tyyn = 5 ms. The assumption of such a connectivity
is motivated by our computational paradigm and as of
now a speculation.

2.4 Synaptic Plasticity

All iKCs-eKCs synapses are modified by a spike timing
dependent plasticity rule,

Graw (t + At)
90 + (Graw(t) — go)e_At/Tdecay no spikes at ¢
=9 9o + (Graw(t) — go)e 2/ Taceay pre or postsynaptic

+A(tpost — tpre — Tshift) spike at ¢
(5)
Y- T< T
_JaT1+y - <7=<0
A(r) = arTH+yYyo 0 <7< 14 (6)
Y+ T+ < T
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with 7_ = —(1/6104-1/611)77011/2, T4 = (1/001-1—1/011)7'1611/27
a_ = —ay = 2¢max/(TC11), Y= = —Gmax/C10, Yo =
Jmax/C11, and Yy = —gmax/co1- While the definition

might look rather complex, the learning rule is basically
spike timing dependent plasticity including a time delay
for the finite transmission speed of the synapse. The pa-
rameters are cig = 10%, cg1 = 20, c11 = 5, 7 = 25 ms,
Tohift = 10 MS, Tdecay = 10° ms, and gg = 0.125 nS if
not stated otherwise. Because of the large value of co1
the synaptic strength is only depressed if post-synaptic
spikes are not paired with presynaptic ones, consistent
with experimental observations [36,37,28,30] and bio-
physical models [1,52].

To avoid run-away behavior of the synaptic strength
the raw synaptic strength gyaw(t) is filtered by a sig-
moidal function gsyn = gmax(tanh((graw (t) —gmid)/gsiope )+
1)/2. This filter implements the restriction of the maxi-
mal synaptic conductance of real synapses due to limited
resources in terms of neurotransmitters and the maximal
number of ion channels. The maximal synaptic strength
Jmax 18 important in determining the average activity
in the eKCs. It is matched to produce approximately
the same average activity in all simulations. If not men-
tioned otherwise gmax = 3.75 1S, gmid = Gmax/2, ans
Jslope = Ymid-

2.5 Input sets and simulation

The activity patterns of the AL are chosen according
to the following prescription. We first choose N¢j.ss ba-
sis patterns x,, ¢ = 1,..., Ncass by randomly choos-
ing ny = paLNaL = 20 active neurons for each pat-
tern. The patterns are stored as binary vectors, where
1 means a neuron is active in this input pattern and 0
means it is quiescent. The basis patterns are chosen in-
dependently. Then we use each of the basis patterns to
generate a class of input patterns, x;;, v = 1,..., Nclass
by switching active neurons off (replacing 1 by 0) and
other, randomly chosen, neurons on (replacing the pre-
vious value by 1). This perturbation happens with a
probability pperturb Which determines the similarity of
patterns within a class; the lower pperturh, the more sim-
ilar are the input patterns within each class. We used
DPperturb = 0.1 in most simulations. By this mechanism
we get classes of inputs that are highly correlated within
the class and uncorrelated across classes. The fluctua-
tion in the number of active neurons is small (Fig. 2B)
and stems solely from perturbations in which an active
neuron is switched off and the chosen replacement was
already active.

The resulting patterns resemble the observed activity
in the AL of locust with respect to the average activity of
PNs of about 20% per local field potential cycle and the
distribution of active neurons that is close to a binomial
distribution [43]. So far no measurements of the spiking
activity pattern of the complete AL could be performed.
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Testing our system with observed activity patterns from
the AL of, e.g., locust would be of great interest but
will have to be delayed until such data become available.
During the initial experience phase during which the sys-
tem forms its representation of odor inputs, it periodi-
cally receives randomly picked input patterns. All input
patterns are perfectly synchronized assuming that there
is no information contained in the spike timing within
a 50 ms time window. The experienced system and the
naive are then tested on a new set of inputs that was
generated from the same class basis vectors as the train-
ing set. Synapses stay plastic during the testing phase
except when the naive system’s performance is tested. In
testing, all inputs are given in a fixed order, each input
once.

2.6 Computational procedures

The system is implemented in C++-, compiled with the
GNU g++ compiler version 2.96 (RedHat) and run on
a RedHat Linux MOSIX cluster with 22 AMD Athlon
processors. 100 simulated seconds execute on a single
processor in about 2000 minutes.

2.7 Distance functions

We investigated the classification performance in terms
of distances of activity vectors of the total activity in 50
ms snapshots. The norm of an activity vector is |z| =
Zf\z |2%|, where 2%, i = 1,..., Nx, denotes the entries
of the Nx dimensional vector z, that represent whether
there is a spike (1) or not (0) in the ith neuron. The
distance between two activity patterns is D(z,,z,) =
|z, — 2,,|. The average class vector of class p is defined as
(zu) = (2,)y = ncllass Y027 2l The inter-class distance
is then measured as the distance between average class
vectors,

Nelass—1
1
Dinter = E E D(<Z >a <Zl/>)7
Nclass (Nclass - ]-)/2 =1 v>p .

(7)
whereas the intra-class distance is measured as the aver-
age distance of class members to the average class vector,

Nelass
1 1 v=1 v
Dintra = D(Zp,a <ZH>)' (8)

Nclass 1 Nclass Mclass

For a fair comparison between distances of activity pat-
terns in layers of different sizes and average activity lev-
els, we normalized distances to the number of active neu-
rons. In particular,

Dact (2, 20) = D(2p, 2) /(2] + [20])- (9)

This normalized distance is bounded between zero and
one, 0 < D,y < 1 and was used in the calculation of
Dinter and Dipgra bounding them in the same way.

3 Results
3.1 General classification performance

Our main tool for analyzing classification performance is
the comparison of the total activity within one snapshot
in the different layers of the olfactory system in response
to different input patterns. For this analysis we represent
the activity in the three layers of the system as binary
vectors of dimension Nx, X representing AL, MB or LB.
Each entry in these vectors is one, if the corresponding
neuron spiked within a 50 ms time window, and zero, if
it did not. Because of the sparseness of activity in the
system, there are never two spikes within the 50 ms time
window corresponding to one snapshot. We measure the
separation of responses to inputs of different classes and
the identification of inputs of the same class using dis-
tance functions of activity vectors. In particular, we com-
pare the distance between the average activity vectors of
classes of inputs, Dipter, to the average distance of the
activity vectors of inputs within each class to the aver-
age activity vector, Diptra- To compare between repre-
sentations in the different layers of the system that have
different size, all distances are normalized by the total
activity. Details are given in the description of the dis-
tance functions (section 2.7). Fig. 3 shows an example of
the normalized distances between the activity patterns
in response to individual inputs in the different layers for
sets of inputs with 10, 20, 50 and 100 input classes of 10
inputs each, obtained without gain control in the MB.
For details about the choice of input classes confer to
the model description (section 2.5). The structure of the
input is apparent from the distances in the AL. While
being rather large between inputs of different classes, the
distances within the classes are rather small. In the iKCs
both types of distances are enlarged, even in terms of the
normalized distance per active neuron. In the MB lobes
the differences between distances within classes and be-
tween classes are smeared out in the naive system. After
learning, however, the distances are enlarged between
classes and diminished within the classes. The system
successfully self-organizes and chooses an efficient rep-
resentation for the encountered structured input. The
quantitative analysis in terms of inter- and intra- dis-
tances is shown in Fig. 4. For 10, 20 and 50 input classes
the system successfully classifies all inputs after 100 s ex-
perience with one input per 50 ms. Class representations
in the eKCs of the MB lobes are formed by disjoint sets
of representing neurons for each class, i.e., each neuron
is active for only one class. Depending on the number of
input classes the representation of the classes is more or
less sparse. If the number of input classes is small the
system has sufficiently many eKCs to represent classes
by the activity of several neurons for each class with-
out overlaps. Such redundancy in representing few input
classes is indeed observed. If the number of different in-
put classes is larger, less and less neurons are available
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Fig. 3 Pairwise distances of activity patterns in the AL, MB
and LB in response to inputs structured in input classes. the
color of the square at (x,y) shows the normalized distance
D.ct between input number x and y. The inputs are ordered
by classes, i.e., the first 10 inputs are from class 1, the next
from class 2, and so on. The color white corresponds to quies-
cence in response to one (or both) of the inputs. The system
successfully classifies for 10, 20, and 50 input classes whereas
cases of no response in the LB layer appear for 100 input
classes.

to represent a class and the system adjusts accordingly
keeping the representations disjoint. Strictly disjoint rep-
resentations eventually lead to a partial failure in the
form of no response to some inputs if the number of in-
put classes reaches the number of eKC, see the results
for 100 input classes in Fig. 4. As the MB is not the only
olfactory pathway and has been shown to not be essen-
tial for basic odor perceptions by ablation experiments
[16,7] this mode of failure should be interpreted as a fail-
ure to remember all classes rather than as a failure to
perceive input odors. In contrast to an n-winner-take-all
representation [33], the self-organized representation of
odors in our system is solely determined by the learn-
ing rule, connectivity and type of activity in the sys-
tem. Other, e.g., non-disjoint, representations were not
observed even when changing the learning rule parame-
ters or the maximal conductances of iKC-eKC synapses.
Overly weak synapses lead to complete quiescence in the
MB lobes and overly strong synapses, caused by a high
upper limit of the synapse strength or too efficient rein-
forcement, drove the system to a complete activation for
any input.

It is natural to ask what happens if the experienced
system encounters inputs of a new, unknown input class.
As the black symbols in figure 3 show, the inputs of
the new class mostly lead to quiescence of the output
neurons. We interpret this as the system not recogniz-
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Fig. 4 The gray symbols show the system performance with
(triangles) and without (circles) gain control. All data are
averages over 4 independently chosen sets of inputs. The error
bars mark the averages of the standard deviations within the
individual trials. The effect of gain control can be seen in the
reduced standard deviation of the average number of active
iKC. Apart from a slight increase in overall eKC activity no
significant changes occur in the MB lobes. The black symbols
show the response to inputs of a new, unknown class after
the system experienced a set of input classes for 100 s. The
clearly reduced activity and the large intra-distance in the
MB lobes for the new inputs show that the system classifies
the new input as unknown rather than as a member of a
known class.

ing these inputs as being inputs of any of the known
classes. The reinforcement of synaptic strength decays
slowly over time which allows the system in principle to
re-organize its representation if the new input class is
consistently encountered. The detailed investigation of
this aspect is, however, beyond the scope of this paper.

3.2 Gain control

The general statistical properties of non-specific connec-
tivities restrict the activity levels for successful classifica-
tion to a small set of allowed levels [19], and the olfactory
system, at least in locust, indeed seems to have a gain
control mechanisms to regulate activity levels in the in
the AL and the MB [43]. The gain control within the AL
is mediated by inhibitory interneurons whereas the iKCs
of the MB are subject to a feed-forward periodic inhi-
bition. The feedforward inhibition has two functions. It
separates the activity of the AL into discrete snapshots
as discussed in the introduction and because it is driven
by the average activity of the PNs in AL it also provides
a feedforward gain control on the iKCs of the MB. From
the prevalence of gain control mechanisms in the system
one expects that gain control is an important factor. It
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turns out, however, that for the input classes with small
overlaps used here, gain control for the activity of iKCs
does not seem to be of a major advantage (Fig. 4). We
show below that gain control in the iKCs becomes im-
portant when input classes overlap more significantly.
The irrelevance of gain control for a low degree of over-
lap in the input classes indicates inherent robustness of
the structure of the olfactory system. The use of input
patterns of nearly constant activity levels in this work
implies, however, the assumption of efficient gain control
in the AL.

3.8 MB-LB connectivity

Learning in a statistical framework consists of removing
or introducing synaptic connections. In biological sys-
tems, however, connectivity is much less plastic, at least
in the adult animal. Here, learning consists of changing
synaptic conductances of existing synapses rather than
forming new synaptic connections. To test whether the
ability to form any connection between iKCs and eKCs
is important for the classification task, we introduced
randomly chosen fixed connectivities of varying connec-
tivity degree and compared the learning success. Fig. 5A
shows the classification performance for different connec-
tivity degrees, pikc, ekc = 1, 0.75, 0.5, and 0.2, while the
probability of existing synapses to be initially active is
kept the same, p;g(Q okc = 0.2. For an unbiased compar-
ison we adjusted the synaptic strengths of the iIKC-eKC
synapses, such that the expectation value of the total
synaptic strength of afferent synapses to each eKC is the
same for all connectivities used. The resulting parame-
ter sets are shown in table 1. Fig. 5A shows that the
performance of the system is not significantly reduced if
the number of available synapses is decreased. Only the
intra-distances seem to be somewhat larger than for the
full connectivity. Even though the robustness the sys-
tem against removal of possible connections might seem
surprising, closer analysis reveals that the learned input
classes are stored in just a few of the total number of
synapses (Fig. 5B,C). Our classification system thus is
extremely robust as it finds its way to work quite effi-
ciently regardless of the initial conditions of connections
from iKCs to eKCs.

8.4 Structure of input classes

It is clear from the Fig. 4 and 5 that system perfor-
mance depends on the number of trained input classes.
The other limiting factor is, obviously, the structure of
the input. For the analysis presented thus far we always
used input sets with very clearly separated classes char-
acterized by the low value pperturb = 0.1. Fig. 6 shows
the classification performance for two less structured sets
of inputs with pperturb = 0.2 and pperturb = 0.3. Here,
one can clearly see a failure of the system for the less
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Fig. 5 A) System performance depending on the connec-
tivity between iKCs and eKCs. Data points and standard
deviations are again averages over 4 input sets. The circles
correspond to full, triangles to 75%, diamonds to 50% and
squares to 20% connectivity between iKCs and eKCs. The
main changes with decreasing connectivity degree are de-
creased activity in the lobes in the naive state as well as
in the experienced state and slightly higher intra-distances.
B) Final distribution of synapse strengths after 100s experi-
ence. C) Percentile of strengthened (with final strength > 1
nS) and weakened (with final strength < 0.05 nS) synapses.
Only a small number of synapses carries the learned infor-
mation.

structured input and large numbers of input classes. The
failure appears in form of quiescence of the lobe neurons
in response to all input (not shown explicitly in Fig. 6,
see Supplement). Fig. 6 also shows that for large over-
laps between classes, gain control plays a critical role to
increase the number of classifiable inputs.

Finally we can predict that, according to this anal-
ysis, the maximum number of statistically independent
input classes of the type investigated here that a system
of Drosophila size can classify lies between 20 and 50.

In order to compare to behavioral experiments a few
more steps are necessary:

1. To observe the representation of odors in the AL ex-
perimentally and calculate the distances of the repre-
sentations of as many odors/odor classes as possible.
The distances have to be measured on the projec-
tion neuron response patterns. This would allow to
estimate the structure of the input space.

2. Use this input space for our learning machine to au-
tomatically separate classes.

3. Determine in our simulations how many input classes
of the observed type the model system can learn.



Thomas Nowotny et al.

Table 1 Parameter sets used to compare
performance with different connectivities
between iKCs and eKCs. The parameters

PIKC, eKC  Gikc, excDS] o [nS] 9;‘}—(0 exc DS U+[HS] Gmax[0S] have been chosen to keep the total synap-
1 0.25 0.05 2.5 0.5 7.5 tic strength of all afferent synapses to each
0.75 0.333333 0.0666667  3.333333 0.666667 10 eKC constant on average.
0.5 0.5 0.1 5 1 15
0.2 1.25 0.25 12.5 2.5 37.5
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Fig. 6 System performance depending on the structure of
the input set. Sets with a different degree of variability in the
individual input classes were tested with the usual protocol.
Pperturb Was chosen as pperturb = 0.1 (circles), 0.2 (upward
triangles without and downward triangles with gain control),
and 0.3 (diamonds without and squares with gain control).
The performance decreases with increasing variability in the
input classes. While this decrease is negligible for few (10, 20)
input classes it becomes quite considerable for 50 and leads
to failure to classify for 100. Gain control in the MB improves
the results considerably. The shown data are averages over 4
independent input sets each.

4. Compare this prediction to behavioral experiments
with the insect, e.g., in an appetitive associative learn-
ing paradigm.

4 Discussion

Several attempts have been made to understand odor
discrimination in models of the olfactory system [17,
51,13,26,9,3,32,19]. The model discussed here is, how-
ever, fundamentally different in providing a classification
scheme that solely relies on the fan-in, fan-out proper-
ties of synaptic connections, the known locus of learning
in the MB and otherwise entirely non-specific connec-
tivity. At the same time it has been implemented with
realistic enough model components to make it a plausi-
ble candidate for describing the olfactory system of in-
sects. We have shown that our model system can accom-
plish successful classification of odor input patterns. The

ticity and mutual inhibition to classify combinatorially
encoded input classes with simple, disjoint representa-
tions. We proved the robustness of the scheme in two
ways. First, broadly modifying the connectivity between
iKCs and eKCs does not prevent the system from good
performance. Secondly, the odor classifications system
also works well for a range of gains in the iKCs. The ex-
isting gain control only improves classification when the
input classes overlap significantly. Based on our success-
ful and robust classification scheme, we make a predic-
tion on the number of uncorrelated input odor classes
a system of Drosophila size can discriminate. Finally,
the self-organized disjoint representation is suitable for
associative learning which corresponds with the widely
accepted hypothesis that odor conditioning has its neu-
ral correlate in the MB structure.

Our model was constructed with an unspecific con-
nectivity for the projections from the AL to the MB
as well as for the connections between iKCs and eKCs.
We were able to show that there is no need for an ex-
plicitly or algorithmically specified special connectivity.
The classification works on a purely statistical basis. In
recent work in Drosophila [29,23,55,44] the specificity of
PN projections to the MB and the protocerebrum has
been investigated. Marin et al. [29], e.g., state: “inspec-
tion of axon collateral projections of different classes of
PNs did not reveal obvious stereotype as compared to
the striking stereotype of lateral horn axon branching
pattern and terminal fields .” Other authors interpret
the data differently such that the situation remains as
yet unclear. With respect to the model presented here,
while specificity is, as discussed, not a requirement for
the system, a suitable refinement of completely unspeci-
fied connectivity might even improve the representations
in the MB. In this sense the classification performance
of the model presented in this paper would be a lower
limit to the possible performance of systems with more
specific connectivity.

The main limitations of our olfactory classification
system are the total number of input classes and the
amount of structure in the input set. If the number of in-
put classes exceeds the number of eKCs in the MB lobes,
disjoint representation becomes impossible and the sys-
tem fails to respond to some of the inputs. It is notewor-
thy that even in this condition the system still success-
fully separates input classes. It is therefore not driven
into complete failure by overwhelmingly large numbers
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of different inputs. Rather than misclassifying inputs, it
is quiescent in response to some inputs while classifying
the remaining inputs correctly. The failure to respond
to some of the inputs can be interpreted as a failure to
remember all input classes. The odor inputs that lead
to such a response failure can still be perceived through
parallel olfactory pathways consistent with the observa-
tion that MBs are not essential for basic odor perception.
If the structure of the input, i.e., the ratio of intra- and
inter-distances, becomes less and less pronounced, the
system either starts to resolve sub-classes for small num-
bers of input classes or is driven into quiescence earlier
than for more structured input. Again, system failure
does not result in misclassification but in a failure to
respond to some of the inputs. We have not addressed
the role of entrainment or experience time in detail here.
It is, however, quite amazing that the system classifies
inputs correctly even if, as in the example of 100 input
classes, on average only 20 inputs from each class were
presented to the system.

Noise in the olfactory receptors and AL dynamics is
encoded in the variations of inputs within input classes,
whereas internal noise in the iKCs and eKCs has not
been considered. Experimental data shows [35] that at
least the iKCs seem to suffer very little from internal
noise. We suggest that the remaining noise will be neu-
tralized through the redundancy of multiple snapshots,
i.e., the temporal aspects of the olfactory code in the AL
[42]. Thus, processing single temporal snapshots is suf-
ficient for clearly distinguishable odorants where noise
does not play a major role whereas more complex stim-
uli, including mixtures of odors, require processing of
multiple snapshots [10,53].

There is some evidence that the MB is a multi-modal
integration region combining, apart from olfactory in-
puts, also visual [2,8] and possibly other information.
The system investigated in this paper does not depend
on the type and source of information projected to the
MB. Without modification, it classifies events of coinci-
dent multimodal input in the MB in the same way as
purely olfactory input. In this sense the system is a uni-
versal classifier.
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