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ELECTROMAGNETIC DETECTORS*

GLEN R. LAMBERTSON
Accelerator and Fusion Research Division
Lawrence Berkeley Laboratory
1 Cyclotron Road
Berkeley, CA 94720 USA

1. INTRODUCTION

Monitors of the particle beams in accelerators are most commonly electromagnetic devices that
extract a small amount of energy from the beam but are substantially non-interfering. Of course,
one aspect of the design of such detectors is the avoidance of spurious strong interactions that
are undesired. Before examining in some detail the principles of these devices some illustrative
examples of detector types will be mentioned. A very common type is the “capacitance” pickup
(Fig. 1) which consists of an antenna or surface that is exposed to the electric field of the beam
and connected to a signal amplifier or monitor. Variations in the position or intensity of the beam
change the induced charges in the exposed electrode and are monitored by the external circuit.
A so-called “magnetic” pickup would be-a loop of conductor exposed to the changing magnetic
field of the beam. The loop may have a core of magnetic material for increased sensitivity. If
the loop is made in the form of a two-conductor TEM transmission line as illustrated in Fig. 2,
it becomes the stripline or directional coupler, as used in €electronic circuitry. It has the property
that if the beam particles and the wave in the line travel at the same velocity, for example, c,
the induced signal appears only at the upstream end and the downstream termination of the line
plays no part in its function. This directional behavior may be visualized as being a result of the
combination of capacitive and magnetic effects, or alternatively as current waves induced into the
ends of the line. Contrasting with this is the response of a disc-loaded waveguide or a helix in
which an induced signal can build up as the beam moves along the structure if the guide phase
velocity and the beam velocity are made alike. One should notice that in order to extract energy
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Fig. 1. Schematic capacitive pickup.

* This work was supported by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics,
High Energy Physics Division, U.S. Dept. of Energy, under Contract No. DE-AC03-76SF00098.



Fig. 2. Schematic stripline pi.ckup.

from the fields of the beam, all these passive devices must in fact interact with the electric fields
E, not the magnetic field, B. Also none has response down to zero frequency. To these rules
there are a few exceptions, such as (1) the dc current transformer with a nonlinear magnetic
material and active feedback, and (2) the deflection of a stream of electrons by the magnetic field
of a beam. When excited by an external source, a pickup structure may be used as a kicker to
produce a change in the longitudinal or transverse momentum of the particles in the beam.

2. RESPONSE FUNCTIONS

The electromagnetic detector is characterized primarily by the voltage, or power, available at
its output terminal from a unit of beam current within some band of frequencies. A commonly
used parameter is the transfer impedance, Zp, which is the complex ratio of the voltage Vp
produced to the current of the beam, I'p, at a given frequency.

Vp

T (2.1)

Zp(w,v) =

The wave of beam current in the longitudinal, s-direction is Ip e/(“*=*%) with velocity v = w/k.
Because Zp will be seen to depend upon the output impedance Z¢ of the detector circuit, it is
important to state if that value is different from the usual value R, = 50 ohm. If the phase of
the response is not needed, then a useful quantity that is independent of output impedance is the
power, available at the output, which is

2 RT?

Here we have introduced R||T2, the longitudinal shunt impedance times the square of the transit
time factor for the electrode when used as a kicker. This quantity which is a convenient measure
of efficiency will be discussed more later.

For a detector used to determine the transverse position z of a beam, the parameter of interest
is the transverse impedance '
1 dVp
Z' ——— ———— 2.
pwv) = 7 (23)
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usually written as
Vp
Zh =
P BT
for a beam displaced z away from a central position at which the detector output is zero. And,
in analogy with the longitudinal case, we have the output power

(2.4)

(2.5)

in terms of a transverse shunt impedance R, T2.

3. CONCEPTS OF IMAGES AND INDUCTION, SOME EXAMPLES

In a straightforward approach to calculating the response of a pickup structure, one would
assume that the motion of the beam particles is negligibly altered by their interaction with the
pickup and then solve the electromagnetic boundary-value problem for the particular electrode
geometry to obtain the voltages and currents in the electrodes. Except for very simple cases or
for approximations, this can be an involved problem; for that reason, an alternative approach
will be described later. However for pickup electrodes that are small compared to the wavelength
of the signal, the concepts of image charges and currents and magnetic coupling are very useful;
as intuitive solutions to boundary-value problems, these can guide one’s understanding and in-

“ventiveness. For most accelerator applications, images in the conducting wall of the beam tube

effectively duplicate in longitudinal distribution the currents in the beam. This correspondence
between beam and image is in part a result of the relativistic foreshortening of the electromagnetic
fields of high-velocity particles. Hence, if an electrode forms part of the beam tube surface we
can estimate the charges and currents induced in it.

(a) Cdpacitive pickup. Apply this to the case of a small “button” electrode of area A on the
surface of a beam tube of radius a. The linear charge density of the beam'is Ip/fc; the button

will then receive a charge

A Ip
1= 58 Be (3.1)
as a result of an induced current
. jw A
= = — I
L= Bc 27a 5
= jklgIp (3.2)

where we have introduced an effective length ! and a coverage factor ¢ = A/2wal representing
that fraction of the 27 angular space around the beam that is occupied by the electrode. This
nomenclature will be useful later for larger electrodes. The response of the electrode of Fig. 1 is
then the signal developed by this current in the RC circuit shown:

) ) lg
P 712 + jwC J 713 + jwC (3:3)
and
) lg
Zp = jk—d . 3.4
P=7 ]1; + jwC (3.4)



Above the frequency for which wRC >> 1 the capacitance effectively infegra.tes the current to
make the device a broadband monitor with response

lg

(b) Stripline. The image current is useful in explaining the basic features of the response of
a stripline pickup (Fig. 2). In this geometry the stripline receives a fraction g ~ w/2ra of the
image current. As a short pulse of the, assumed positive, beam current i g(¢) reaches the upstream
end, it repels positive charges into the output line and along the stripline. If the characteristic
impedances of both these are Zy, a prompt signal of 1/2 Zgig(t) is seen at the output and an
equal pulse propagates downstream with velocity c. At time I/c later the beam, assumed to have
velocity ¢, and the pulse arrive at the downstream end where the departing beam releases into the
stripline a negative pulse — gi. One half of this cancels the positive current traveling downstream
and one half survives to propagate upstream. It enters the output line at time 2!/c and is seen as a
negative pulse of voltage —1/2 Z1 g7 (upper Fig. 3). It is now easy to see what signals are produced
if the beam velocity Bc were low. The output then will depend upon how the downstream end is
terminated. In Fig. 3 are shown the signals for three cases of downstream termination. Lack of
fidelity in the response results if reflections arise from imperfect impedance matching especially
where the stripline joins the outgoing lines. The seemingly superfluous downstream matching
resistor may be desired to absorb some of these reflections. If one Fourier analyzes the response
for # = 1, the result is:

Zp = Zpged "2k sink, 1 (3.6)
with k, = w/c and at output Z;. This response is all real and a maximum at k)l =7w/2,ie., at
! = A\/4. For this reason the device is often called a “quarter-wave loop.” Zeroes in the response

occur when the line length is a multiple of one-half wavelength. (These zeroes may be removed if
the signals from the downstream end can be suppressed; this has been done with ferrite absorbers
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Fig. 3. Stripline signals for various back terminations.



and by exponentially tapering the cross section of the stripline.!) As sketched in Fig. 2 the output
of the stripline would depend upon the position of the beam in the tube through variation of the
geometric factor g. Hence the difference signal from two striplines located on opposing sides of
the beam can be used to monitor transverse position. Conversely, the sum signal from such a pair
is very weakly responsive to position, or if a single electrode is widened to completely encircle
the beam so as to make g = 1 in Eq. 3.6, the signal is nearly independent of beam position up to
frequencies for which the wavelength is comparable with the tube circumference.

(¢) Magnetic loop. In the foregoing examination of the stripline loop, intuitively or by just
knowing the answer we ignored effects of capacitive or magnetic induction in the central part of
the electrode. It is true that these effects cancel or at least should not be added to the assumed
image currents. But if the stripline were very short, it will be recognized as a magnetic pickup
loop for which it would seem proper to consider the magnetic coupling to the beam current.
To pursue that concept examine now the signal from a small loop made of a short stripline of
conductor of width w enclosing area A. This loop at distance a from the beam will develop a

voltage from dB/dt of

‘ A
Ip = jkoZo5—Ip. (3.7)

Vp = jwio )
wa

Here Z, is the impedance u,c = 1207 ohm. To compare this with Eq. 3.6 for the longer stripline,
insert in that relation _
7y &~ ZyAfllw
g~ w/2ra
sink, ~ k,l <<'1

and we note that the result is identical to Eq. 3.7. Thus, magnetic loops are part of the stripline
family. The magnetic coupling may be increased by forming the loop around a core of permeable
material such as ferrite that partially or fully encircles the beam. This effectively increases the
line impedance Zy, lowers the line velocity, and shifts the first zero of the response to a lower
frequency for a given line length. Nevertheless up to frequencies of about 400 MHz ferrite makes
the stripline very compact. This feature has been applied in the pickups for stochastic cooling in
the Antiproton Accumulator at CERN? for the frequency band 50-to-500 MHz.

(d) D.C. current transformer. The magnetic loop is, of course, a transformer and may be made
with multiple turns around a core to provide a strong signal at high output impedance. The
high impedance is not a problem for low signal frequencies and the beam current transformer
has been developed for sensitive monitoring of the lower-frequency beam currents. The response
of the current transformer can be extended down to zero frequency by detecting the nonlinear
magnetization of a core of permalloy. One winding on the core is strongly excited with a modulator
current at perhaps 250 Hz. - This excitation of the core, sensed on a secondary winding, is analyzed
for second harmonic content. Any net demagnetization by the beam current will magnetically bias
the operating point on the B — H curve of the core material and produce second harmonic. The
second harmonic response is returned to zero by feedback to a third dc bias winding; the current
required in that winding is then a measure of the d¢ beam current it is opposing. To avoid the
250 Hz modulation coupling to the beam, two oppositely-wound cores are used. This arrangement
can measure dc and low frequency beam currents as small as a few pyA. The frequency of the
system may be extended by adding a third or more cores to sense the ac beam currents as shown
in Fig. 4. Rejecting contamination by the modulation frequency requires special circuits if the
extended frequency response is desired.
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Fig. 4. DC current transformer circuit.

(e) Wall current monitor. If the conducting beam tube is interrupted by a gap, the ac image
currents will develop a voltage across whatever external impedance bridges the gap. This external
impedance may be an r.f. cavity for selected high frequencies or a band of resistors for a very
broad frequency response. The resistively-loaded gap should be enclosed by an inductively-loaded
cavity (Fig. 5) to avoid signals from sources external to the beam tube and to keep beam signals
from radiating into the surrounding equipment. Typically the resistive band is an array of 50
or 100 resistors in parallel making a total resistance R =~ 1 ohm or less. The voltage developed °
across the gap is then RIp and is sampled at two or four points around the circumference by
50-ohm cables. The low-frequency cutoff w = R/L is limited by the inductance L of the ferrite-
loaded cavity. The gap capacitance and parasitic inductances distort the high frequency response,
typically limiting the usable frequency to about 1.5 GHz. Such a wall-current monitor will also
show a difference in voltage across the diameter if a bunched beam passes in the tube off-center.
At low frequencies this difference signal is reduced by azimuthal redistribution of the non-uniform
wall currents flowing towards the gap. The gap can be viewed as an azimuthal slot line loaded
by conductance per unit length of G' = (27aR)~! and specific inductance L'.* Attenuation of
currents flowing along this line will preserve the azimuthal distribution above a frequency for
which '

wL'2ma > 8R. , (3.8)

(f) Resonant cavity. A detector with narrow band width would be formed by a gap loaded by a
high-Q resonant cavity. The impedance offered to the wall current will be the shunt impedance
of the cavity as loaded by the detector output load. One half of the power extracted from the
beam is available as signal. But the analysis of a cavity is more adequately dealt with using the
alternative method to which we now turn.

4. USEFUL THEOREMS

(a) Reciprocity. For obtaining the pickup impedance function, application of the Lorentz reci-
procity theorem can transform the boundary-value problem containing the beam current into the
usually easier calculation of the response of a beam when the structure is powered externally and
used as an accelerating or deflecting electrode, commonly called a kicker. The calculation then
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Fig. 5. Resistive wall-current monitor.

proceeds in three separable steps: first, the calculation or estimation of the longitudinal electric
field along beam trajectory in the kicker, second, the evaluation of the integrated longitudinal
electric field (kick) that would act upon a particle that travels upstream, and third, a simple
‘multiplication of this kick by Z¢/2 to obtain the transfer impedance.

The reciprocity theorem relates the electromagnetic fields within a volume, which result in-
dependently from two different sources of excitation, in our case the kicker power supply and the
beam current, designated by subscripts K and B. The volume is bounded by surface S. The basic
form of the theorem, in which fields and currents are expressed as complex phasors or vectors
with time dependence e/“?, is® _

§ (Bx x s~ Eg x fix)-a5 = [ (Ep-Ji— Exc- Ta)d vol. (41)
S ) vol

In the schematic diagram of a pickup in Fig. 6 the outgoing signal Vg generated by Ip is the
pickup signal that earlier we have called Vp. The characteristic impedance of the signal port is
Zc; it may be a coaxial cable of this impedance. The inwardly traveling kicker driving voltage
Vi is also at impedance Z¢. Vi produces the fields Ex and By and, only in resistive media
in the structure, the currents Jg. This implies we ignore any perturbations of the beam current
caused by the kicker fields. The volume integral vanishes in resistive media because J = oE,
leaving only the term in Ef - Jp containing free current. The portion of the surface integral
covering the entrance and exit beam ports may be made zero if traveling waves are attenuated or
the beam pipes are small enough to prevent propagation. At the signal port entering and exiting

> 1,

Fig. 6. Pickup diagram for appliéation of reciprocity theorem.



TEM waves contribute to the surface integral two additive terms of Vg Vg/Zc. If in an actual
circuit Vg or Vi waves have reflections, we must exclude the reflected Vg signals because those
arise outside the surface S. Reflections of the Vi waves are allowed but do not contribute to the
~ surface integral. Therefore, Eq. 4.1 becomes

VKVB = —/EKdeUOl
Z¢
vol

2

or

Zc L — ' L
Vg = ——=— | Eg-Jpdvol. 4.2
B 3 Vi Kk - JB | (4.2)
) vol v

In this equation, note that Jp is a sinusoidal wave of beam current and the integral is evaluated
at one instant in time. It is clear that if we can calculate the s-directed fields in the pickup when

it is excited by Vi from the outside, then Eq. 4.2 will give the pickup response.

The equation will be simplified if we assume that Ex does not vary greatly over the beam
cross section and also insert the s-dependence e=7%* of Jp. Integrating over z and y gives

/ EK~dezdy=EK~fBe—jk’ (4.3)
) 1l
and the pickup transfer impedance becomes
ZC —jks -
= - == -ds'. .
Zp 7 / e FEg -ds (4.4)

3

This integral has a physical interpretation that we can recognize if we calculate the energy gain
AU that a kicker imparts to a beam charge if the beam travels in the negative s sense.

a
av = /ej“tEK-dE with s = —uvt (4.5)
e .
s=h
AU a b
— = /e_jk’ Ex.ds = — / eI Er . ds. (4.6)
b a

But AU/e is just Vi times K, the kicker constant; therefore comparing the above with Eq. 4.4,
we see that :

ZoAU

P= 2eVye

If we can evaluate the electrode’s effectiveness as a kicker for particles moving upstream, then its
response as a pickup for downstream current is also known. '

1
= 5 ZcK;. : (4.7)

(b) The voltage gain V. It will be convenient to give the voltage kick AU/e the symbol V and
write the defining integral as applied to a particle moving in the positive sense of coordinate s.

b -
V(z,y, k) = /ejk’ E,ds (4.8)

a

for the purpose of calculating electrode responses. The kicker constant K is then V/Vyg and we
simply remember that when used as a pickup the beam moves in the opposite sense. A position



detector will be designed to have a strong transverse variation of V, which produces the response
through Eq. 2.3: '
1 dK I 1Z¢cdV :
-Z2¢c—— = - — 4.
29C 4z 2 Vg dz (4.9)
The determination of the field E, for use in calculating V is itself a boundary value problem
but it does not involve the beam as a source. This.is a considerable simplification especially if the
beam velocity is less than c. Also, one can make use of all the techniques available for working
with r.f. structures. It is for accelerating devices that the shunt impedance, noted in Eq. 2.2, is

used in the equation for power dissipated:

V2 wW

P= 2R”T2“ - 73 » (4.10)

o

where W is the stored electromagnetic energy. The exponential factor in Eq. 4.8 brings in the
transit-time factor.

In many cases the evaluation of V' within the beam tube is made easier by knowledge of the
field Eg at the wall of the beam tube. The electrode surfaces of a pickup often form part of the
cylindrical beam tube surface and in that case, the potentials of those electrodes when excited as
a kicker are calculable and therefore the longitudinal integrals of the electric fields are calculable
at that surface. We examine next how to find V(z, y, &) from its value on the cylindrical surface.

We wish to study the spatial variation of V' within the beam tube. For this purpose and with
greater generality let V' now include the total time dependence of the field E, rather than just
one frequency component. The definition then becomes:

b
V(z,y,t) = /E(z,y,s,t)ds ‘ (4.11)

in which E is the s-directed field taken at the time ¢ = s/8c when the particle passes each value
of s. This electric field must satisfy the wave equation
1 9’E

~Z57 =0 (4.12)

ViE
Now we shall use this to find a two-dimensional differential equation involving the quantity

v 9V
2 — e— —
viv = 57+ 57 _ (4.13)

Differentiate Eq. 4.11 and insert Eq. 4.12:

b
2 2
viv=/v'iEds = /(ciz%tzg - %’;3) ds (4.14)

a

The variables s and ¢ are related through ds/dt = B¢, which we use in integrating Eq. 4.14 to
obtain '



. ' b
OE 1 8E\1® 1 [ 8%E ‘
2 — — —— — — —— — ——— —
viv ( 5 = )} Gop | o ds. (4.15)

The last term may be written in terms of V to give ‘ :

1 oW ( OFE 1 6E>]‘+(b—0)/ﬂc

+(ﬂ e o % -,5—6575— (4-16)

viv

The spatial variation of V is determined by this Eq. 4.16. In many detectors or kickers, the limits
a and b may be chosen to be where the fields are zero or alike, making the right-hand side zero.
Equation 4.16 then simplifies to the modified wave equation

1 8V
VJ-V+(,B Y 8t2 = 0.‘ . (4.17)
or if variation e/*! is assumed,
' 2
vViv - (;) V = 0. _ (4.18)

Note that while the velocity of the beam particles did not enter into determining the kicker fields
in the peripheral cylinder surface, that velocity does enter into calculating V' on that boundary
and in the internal region through the factor v in Eq. 4.18. If y for the particle beam is large,
Eq. 4.18 approaches Laplace’s equation and then it is very convenient to use electrostatics to find
the variation of V' within the aperture.

(c) Panofsky-Wenzel. The effect of a kicker that deflects the beam is to produce a transverse
momentum kick of Ap, per particle from an input kicker voltage V. Analogous to the integral
defining V', we have for Ap,

APJ"BC /(EL + T x B)e’k" ds. (4.19)

A basic relation between V and Ap is provided by the Panofsky-Wenzel theorem®:

ov . Ap,

5. = I (4.20)

This theorem for any electromagnetic device in which the particle trajectory is essentially a
straight line points out that for an interaction with the particle beam, there must be longitudinal
electric fields or field gradients. A consequence of this is the fact that a structure with purely

transverse electric fields, i.e., TE modes, cannot detect or kick a beam.
Further in analogy to the longitudinal kicker, we define R} T2 from the kicker power through
the equations
p_ LIVEl _ 1|AP fe/ef?
T 2Zc 2 R, T?

Using Eqs. 4.9, 4.20, and 4.21 the real part of the pickup impedance is found in terms of the

(4.21)

10



transverse shunt impedance to be

ReZ), = g-\/zc R.T?. (4.22)

5. RESONANT CAVITY

The cavity resonator, because of its high @-value can be a very sensitive detector within its
narrow frequency response band. For simple shapes the shunt impedance is readily calculated and,
using the reciprocity relation, also gives the response as a detector. For example, a moderately-
sized beam tube may be attached to the rectangular cavity as in Fig. 7 and it will retain the basic
features of a closed-box cavity. The lowest cavity mode with maximum electric field along the
centerline is mode TMj;¢ for which the wavelength is V/2b and the electric field is

Y

.7z
. S E = E,,cosT cos 3= (5.1)

uniform in the s-direction.

To calculate R"T2, we can use Eq. 4.10 for power absorbed by the cavity when driven at
resonance. The quality factor @ applies to the unloaded cavity and W is the energy stored in the
cavity given by

W = %eo /.E2dvol. (5.2)
vol
Inserting E from Eq. 5.1, we find
1 .
W=ze EX?1. (5.3)

,—"V
.'. E '
4«
-

" Fig. 7. Square cavity resonator.

11



For V we use Eq. 4.8 and the value of E at z = y = 0 to get

sin 8

V = E,l 7

= E,IT - (5.4)

with 8 = wl/2v = k,!/28 and T = sin#/6. Insert W and V in Eq. 4.10 to find

41 2 o
RyT? = ~Zoy QT? = =% kol QT? (5.5)

l N .
=480 QT?ohm. : (5.6)

As an example of another shape resonator, for a cxrcula.r cavity (pillbox) with mode TMojo,
for which the field is

E = E, Jo (kr), (5.7
one can find that : »
. 2
RT = ——— T? 5.8
L (o031 Jo(/’m)]2 Q ' (5:8)
in which pg; = 2.405 giving
RyT? = 484 é QT? ohm. ' ‘ (5.9)

This result is nearly identical with that for the square cavity. For 8 = 1, a broad maximum in
the quantity /QT?/) occurs at § = 1.37 radians for which I/A = 0.37 and T? = 0.51. At that
optimum length, the simple cavity then gives

R)T? =108 Q ohm . (5.10)

This can be increased about 25% by reducing the longitudinal gap in the region immediately
surrounding the beam tube.

In these equations, the Q-factor for the unloaded cavity is used, which may be in the region
of 30,000 at 1 GHz. For maximum efficiency, a matched coupling to an external load R, typically
50 ohm, will reduce the @ of the circuit by a factor of 2. The peak response in terms of pickup
impedance, using Fig. 2.2 is, still using the unloaded @)-value,

1
Zp = 5,/R0R"T2 (5.11)

Zp = 37+/Qohm (5.12)

and using R, = 50 ohm,

and Aw/w = 2/Q.
The peak response of a cavity used as a transverse detector is found from a calculation of
R, T?. As for any resonator, the kicker power is wW/Q and from Eqs. 4.20 and 4.21 we find

:_(10V\ Q@
R, T? = (k 69:) R (5.13)

12
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The cavity of Fig. 7, if excited in the TMj;9 mode will have the longitudinal field

Ty

; (5.14)

E = E, sin g_z_x_ cos ——
and A = 2a//5. Use Eq. 4.8 to calculate V(z). W and T are the same as in Egs. 5.3 and 5.4 and
we find using Eq. 5.13

!
R\T* == zo B~ QT2 (5.15)

RiT? = 153.6 47 é QT? ohm. (5.16)
At B = 1 the maximum value of IQT?/)\ occurs at § = 1.41 and gives
R, T? = 33.7 Q ohm, : A (5.17)
and from Eq. 4.22 into a 50-ohm load

Z' = 21 ko+/Q ohm/m. (5.18)

In the foregoing, we assumed that the cavity fields were not altered by the beam tube apertures
in the end walls. But there are small changes and, besides effects on the frequency and @, the
apertures affect the variation of sensitivity across the tube. To calculate this we can use Eq. 4.17
to find V within the aperture from values at the edge. As a well-known example, consider the
circular cavity with attached circular tubes of radius a. With an azimuthally symmetric mode,
the value of V(r, ¢) at radius a will be the same for all values of ¢. Call this value V(a) and solve
Eq. 4.17 with this boundary value. The result is

V(r) = V(a) I"E:"Tﬁ;’; (5.19)

The modified Bessel function defines a reduced sensitivity at the tube center, unlike the function
J, that applies to the closed cavity, which is strongest at the center. The reduction is usually
small; for fully relativistic particles it is zero and the sensitivity is perfectly uniform.

This approach can be applied to other cases if some estimate of the azimuthal variation of V
at the tube radius is known. In that case, for each n*! azimuthal Fourier harmonic in V(a, ¢),
the radial dependence will be I,(k,r/87).

To determine the pickup’s response more exactly, one can calculate numerically reasonably
simple cavities having nose cones and beam tubes. But to include the effects of the coupled
external load and details of construction, measurements are needed. To measure this using a
current-carrying wire to simulate the beam is complicated by the strong coupling if Q, and
therefore RT?, is large. But for the narrow-bandwidth structure, RT? and Zp can be determined
using the perturbing-bead method.

In the perturbation method, the cavity is excited at its resonant frequency w. Then a small
object of volume A7 is introduced at a point on the beam trajectory and the change in resonant
frequency Aw is measured. If the scalar amplitudes of the field at the point where the object was
placed were originally E and H, the perturbation is given by Slater”8 as

13



Aw AT
T (poar H? — €,a.E?) (5.20)

The coefficients o} and a. are determined by the shape of the perturbing object. For small

spheres (beads) of metal or of dielectric with € = €€, these are:

= 3/2
metallic {ah / (5.21)
Qem = 3
. . € — 1
dielectric aeq = 3 w3

In a longitudinal pickup with only s-directed field E(s) on the beam trajectory, one can
measure as a function of s the Aw/w caused by a metallic bead and find from Eq. 5.20 for

insertion in Eq. 4.8

E? _ 4Z,c Aw
. W ' QAT w
Equation 4.10 then gives
v? _2Z,Q

/ \/—7 etks ds] (5.22)

which is numerically evalﬁated from measured data. The equation shows the unloaded @ factor,
but the bandwidth when used would correspond to the loaded Q.

2 _
BT =

2wWQ T koaemAT 0 Uem AT

A transverse pickup cavity will not generally have a purely TM field; some transverse F

appears in the neighborhood of the beam tube apertures. Then it is convenient if we can measure

both E, and H) along a line where Ej| is zero and evaluate the integral in Eq. 4.19. If we use a

metal sphere and a dielectric sphere of the same size, we measure with the metal sphere -A‘-di"- m
as in Eq. 5.20 using a.m and with the dielectric we measure

Awl —Ar

4w

Solve these response equations for E and H and use Eqgs. 4.19, 4.20, and 5.13 to calculate R T?:

2
R\T? = _22.Q _Zh Aw _ Gem Aw % ds (5.24)
oahAT aed W m Qg W ld

A very sensitive detector for transverse motions or Schottky signals in the Tevatron has been
made using a rectangular cavity,® 15 cm on each side machined from aluminum. Its characteristics
as a Schottky detector are

LAY (5.23)

f = 2.045 GHz
Q = 9500
2

RiT” 590

Zp =81 x10° ohm/m

Noise limit = 4.2 x 10~13 ampére meter

14



6. CAPACITIVE PICKUPS

The various configurations of the capacitive electrode can be analyzed using reciprocity and
the function V. An example is the long plate connected at its center to a resonant circuit as
sketched in Fig. 8. Regard the plate as a center-driven open transmission line with characteristic
impedance Z;. The open line presents at its center the impedance —1/2;Z cot(k,!/2) plus
losses. Resonate this capacitive reactance with the external inductor and let R represent the
total circuit losses without the matched output load resistor. In terms of the unloaded Q-value,

then
| R= %QZL cot(kol/2) . (6.1)

Let the excited circuit have voltage V, at the center-tap. This will produce at the ends of the
line V,sec(k,l/2) and the associated fields E,(s) at the beam will be concentrated at the ends
of the TEM line at points separated by an effective length [. At each end the integral of E, ds
is +g Vsec(k,l/2) in which ¢ is a geometric factor determined by the transverse placements of
beam and electrode. If the extent in the s-direction of each of these end fields is small relative to
B\ = 1/k, then the value of V calculated from Eq. 4.8 is approximately ' '

V= / eI E, ds

A ST R 7
V= cos(k,1/2) [~ +e]
sin(kl/2)

V=;Vo2g cos(kl/2) (6.2)
We find R”T2 from the power dissipated
‘ VDZ V2 )
T 2R T 2R|T? - (6:3)
giving »
' in2(kl/2)
RT? = 22 4° sin ( : :
I 2L9°Q Coa1]2) sn(kal]2) (6.4)
As a pickup the available coupling impedance at resonance into R, will be, using Eq. 5.11,
L R.Z
1Zp| = g sin(kl/2) Ro21Q (6.5)

sinko,!

Fig. 8. Resonated capacitive plate.
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For the short plate, it is sensible to write this in terms of the total capacitance C. Therefore
insert Zy = I/cC to obtain

gl [eReQ (6.6)
208¢ C ,

Comparing this resonated detector with the resistively-loaded and broader-bandwidth case given
in Eq. 3.4 shows the reasonable result that the detector output power density has increased by
at least a factor Q/2. ' ,

The factor ¢ can be evaluated by solving, perhaps numerically, Eq. 4.18 for the distribution
of V within the aperture cross section bounded by the beam tube and the electrode plate as in
the axial view in Fig. 8. At the electrode plate, the value of V' is Eq. 6.2 with g = 1. The solution
for V depends upon the particle velocity fc. We see that strictly only if v = 1 is that solution

Zp =

given by an electrostatic calculation.

The response of the detector to transverse beam position is found from V V. A position
detector will often have two or more plates. In this case, the interelectrode coupling (capacitances)
must be included in calculating RT? and in the design of external circuits that select the difference
signal.

A recent application of tuned-plate detectors for measuring the position of small extracted
beam currents at Fermilab!? has been able to resolve 0.1 mm with a beam current of 1.7 x 10~8
ampere with plates one meter long. The circuits operate at 53.1 MHz and have an unloaded @
of about 380. ‘

A detector geometry used to obtain a linear response to transverse position, usually at low
frequency, is that shown in Fig. 9. Two capacitive electrodes are formed by a diagonal cut through
a section of beam tube. The arbitrary cross section sketched is intended to convey that the linear
response is obtained with any shape cylindrical cross section. For electrodes small compared to
B~ this is true.

A proof of this may be demonstrated by applying Eq. 4.18 with the boundary values defined
by the diagonal cut. For near linearity we must have k,!/8 << 1 and the excursion z << Bv/k,.

The compact arrangement shown in Fig. 10 is used in the CERN PS to monitor horizontal
and vertical positions and the total current.!! The frequency range is 0.1 to > 200 MHz. The
noise limit is +2 mm with 5 x 10° particles per bunch; at higher currents, the resolution limit is
0.1 mm.

iy

Fig. 9. Diagonally-cut cylinder pickup.
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Fig. 10. Combined H and V electrodes.

7. THE STRIPLINE FAMILY

As we have seen, image-current concepts can give a good physical picture of the function
of stripline detectors. But the stripline is so widely used as a broad-band detector that some
supplementary analysis by the alternative method is worthwhile. Therefore, let us examine the
pair of striplines sketched in Fig. 11 to be used as a sum current detector. Imagine the two lines,
each of impedance Z; and wave number k; = w/vy driven in parallel from an R, = 50 ohm
source with voltage V. To provide the stripline voltages of Vi, a transformer is needed and the
value of Vi required is Vg = Vi+/2R,/Z;. For evaluating the function V', the voltage waves

" must travel in the negative s sense as noted in Section 4; thus the voltage at s = —1[ is Vi e=7kz!
when it is V[ at s = 0. As with the capacitive plate, we visualize the E, fields to be concentrate.:
near s = 0 and s = —[ so that the integral for V is given approximately by

V=g [V(o)e® — V(—s)e_jkl]
V=g (1 = ikl
V= 2g” VLej(”ﬂ_o) sin @ (7.1)

in which 8 = (k + k1){/2. The pickup impedance is nbw found using Eq. 4.7 to be

1 1%
ZP—§ROV_K

|R.Z : .
Zp = 5 L g”eJ(W/Z_a) siné. (72)
. Z
PO I 2, - h

o = =1y
| ~——
X

L__'__I—Ly _Ll;?[df

Fig. 11. Stripline pair.
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This response is shown in Fig. 12. There are some differences between this result and Eq. 3.6
because here we have two lines driven from impedance R, and the g-factor represents the coverage
of the perimeter by the two lines combined; we also have separate values of k and kj to allow for
different velocities in the beam and the lines. The transformation to R, does not appear in the
response if it is given in terms of shunt impedance:

RyT? = 2Z; (g)sin6). (7.3)

The response of the pair of lines excited with opposite polarities when used as a position
detector, obtained by differentiating Eq. 7.2, would contain dgj/dz, which we express as g 12/h;

this is written
Zh = /RL:ZZE 9L % I (/2-9) gin (7.4)

, 2 _
RiT? = 2ZL(%1L— sino) . (1.5)

and

But we must note that when used with a difference signal, the coupling between lines is smaller
and the impedance Z; must be reduced accordingly. .

Long arrays of many stripline pickups have been used in beam cooling rings at CERN and at
Fermilab. In this case it was necessary to design the gain-vs.-position to fit a particular function,
using the spatial variation of g for the recessed plates shown in Fig. 10. In this case V(z,y) is
an electrostatics problem with a rather simple analytic solution. At the center point z =y =0
between plates the g-factors are:

2 1. m™w ‘
g = = tan~! (sinh —27) ‘ . (7.6)
gy = tanh ﬂ (77)

2h

The electrodes used in the Fermilab antiproton accumulator!? are in arrays of 128 loop pairs
with signals delayed and combined in phase. The striplines have Z; ~ 100 ohm, Zp = 40 ohm
per pair, and are used in the band 1-to-2 GHz. For most applications, it is convenient to use

amplitude

, e=ﬂ(_1_+.1_)
v v
o Phase 2 L

Fig. 12. Response of stripline pickup.
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lower line impedance. Typical stripline electrode pairs have

Zp =~ 25-—100 Q

1
g 2 3
Zp ~ 18-35Q
RyT? =~ 25-100 Q.

Because stripline electrodes are directional couplers and have terminals at both ends, their
signals may be added by simple series connection. Such an array is shown in Fig. 13. The
sinusoidal signals, progressing upstream add in phase if the closely-spaced loops are A\/4 long
at mid-band and the connecting transmission lines, all of impedance Zp, are A\/2 long. Assume
vg = vy = c, then the : sponse of two strings each with n loops is just n times Eq. 7.2 but with

a transit-time factor that defines a more narrow bandwidth:

R.Z
Zp = \|ZEng T (7.8)

_ Sin2né o (2n-1)9)
~ 2ncos¢ ¢ (7.9)

in which

with ¢ = kyl, = k,l/n. The bandwidth Aw within half-power frequencies is, for n > 2 approxi-
mately 0.9 w/n.

This series array provides flexibility to exchange bandwidth for gain, much as we have by
resonating the capacitive pickup. This has been applied in the CERN antiproton accumulator!?®
where the reduced bandwidth arrays were desired to match power amplifier bandwidths. The
electrode unit consists of two loops in series.

We can examineé the series-connected loops here to illustrate the general rule that the product
of peak power gain and bandwidth is proportional to the pickup length. For series loops of total
length [, one can show that, with T = 1,

3.6
R”T2Aw ~ T ZLc(kog“)Z l. ' ‘(7.10)

Some other examples of this product are:

ff g

TU‘U%

Fig. 13. Series loops.

1,
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Resonated capacitive strip pair (for 8 = 1):

tan(k,l/2
Zyc(kogy)? —————Ig ;2/ ) (7.11)
Square cavity:.
4 B sin(kl/2a) 2
— Zsc < 15 l. (7.12)

8. TRAVELING-WAVE DEVICES

A linear array of pickups with signals properly phased and combined creates a traveling wave
of impedance to extract energy from the moving particle. But in this case, the signals are added
in external combiners that add powers, not voltages. In a true traveling-wave structure such as
a waveguide or a helical line there is the possibility of building up signal voltage proportional
to length and hence power proportional to the square of length. This can be realized but with
some loss in bandwidth caused by dispersion in the phase velocity. An additional attraction of
traveling-wave structures is their lesser complexity as rf structures, particularly at frequencies in
the multi-gigahertz range.

On the axis of a helical line Fig. 14, there is a longitudinal electric field with reduced velocity
Brcl415 The shunt impedance of this electrode treated as a sheath helix is given by

RT? = _Zo_(i)z (Boha) _ Kol (sindy: 1)

27 I,(ha) Jo(hb)

in which 7% = —Er, h = 375'7—-, and 8 = (k — kL) . The modified Bessel functions I, and
K, for small arguments, that is, for BrvrA > b reduce to the form

RT* =

Zo_ 1,2 (M ﬂ)z. (8.2)
2rB,  a\y% 8 v
In this we recognize (Z,/27)In(b/a) as the impedance of a coaxial line of radii a and b. Also,
we see sin 6/ as the transit-time factor in which ¢ is a measure of the phase slip between beam
and traveling wave. To avoid large dispersion in the wave velocity in this periodic structure, 8z A
must be greater than twice the pitch of the helix. In an example use,'® the helix was effective
at f = 200 MHz and g = 0.5. However, the factor 724 makes the device ineffective for very
relativistic particles.

The slotted-coax coupler shown in Fig. 15 communicates with the beam tube through a row of
holes or slots in the outer wall of a coaxial line parallel to the beam. There is a net energy transfer
from a beam particle to the coaxial line until either an equilibrium is reached or a sufficient phase

NN _N_N_N_N
/uuuu\/\>IB

«—— 2b —»

Fig. 14. Beam on axis of helical line.
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Fig. 15. Slotted coax on beam tube.

difference develops between beam and coax signé.l. The slots that provide the coupling also reduce
the phase velocity in the coax and cause dispersion in that velocity. Perturbation calculga,tions17
for the geometry of Fig. 15 show that the coupling and the velocity are so related that the pickup

impedance becomes simply

kolr e_jg sin 6
2’)’%b 6

Zp = —j\/R.Z1 (8.3)

where Z| is the impedance of the coax and vy and 8 are as in E.q. 8.1. The shunt iinpedance is
then

kolr sinG) 2

2
R = 255 7

(8.4)
This is very similar to the result for the helix, but here a very small velocity reduction introduces
dispersion that limits the use of the slotted coupler as a broad-band device to 81 >~ 0.95.
Although it is a weak coupler, it is a good high-frequency structure and is useful where strong
coupling is not demanded. In this role it has been used in cooling the antiproton stack in the

CERN AA ring.!®

The phase velocity of a TM waveguide may be reduced to correspond to beam velocity by
loading its walls with dielectric or corrugations. Linacs employ such structures. A corrugated
guide has been developed!® for experiments on stochastic cooling in the CERN SPS. This differ-
ence pickup is sketched in Fig. 16. It has a bandwidth of about 1 GHz at an operating frequency
of 11 GHz. It has transverse shunt impedancé of '

R, T? = 1.76 x 10* ohm
and
. Zp = 108 ohm/mm.

This performance is exceptionally strong compared with the other types of pickup. The aperture
is 16 x 22.9 mm and the length of the guide is 0.3 meter. The loaded guide is rather straightforward
but the transition from guide to coax has required some development. '
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Fig. 16. Downstream end of corrugated-guide pickup.

We can inquire if the TW structure also has a gain-bandwidth product proportional to length.
But for reference, first consider the standing-wave device with bandwidth Aw = 2w/@Q in terms
of the unloaded quality factor. Its kicker power is given by Eq. 4.10

p= L _ W
2RT? Q
From these relations, we find
V2 .
RT*Aw = W (8.6)

which is proportional to length as we have seen for some particular cases. The equivalent starting

point for the TW structure is

w
P = l”” (8.7)
where v, is the group velocity in the structure. The shunt impedar‘lce is then
17421
2 _ .
RT® = S W _ (8.8)

To find the band width, we shall equate the transit time factor to 1 /V?2 at £Aw/2. T is given by

12 .
T = .1. / vejkse—jkl,sds — 511019 (8.9)

l
_1/2

where 6 = (kp — k)I/2. At £Aw/2, 6 has the value § = §; = +1.39 radian. To first order we have

Aw d8 Awl ,dkp dk
O~ —— = — (55— - =) .
P2 dw rel il ) (810)
Using k = w/vp and dkj/dw = 1/vy, we find |
491 1 1.2
Aw =~ T(Z; - 5) (8.11)
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Combining this with Eq. 8.8 and the value of 8;, we get

‘ v 28
vB
Here we see again a factor propoftional to length; furthermore comparison with Eq. 8.6 also shows
that indeed the TW structure could reasonably be a much stronger pickup than the standing-wave
types. This last relation stands as a guide for the further development of TW devices as beam

detectors.
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