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ABSTRACT

Different challenges exist in the area of control, including but not limited to
the high computational cost, model uncertainty, disturbances, nonlinearity, multi-
objective optimization, constraints handling of partial differential equations, imple-
mentation, and real-time computation. In this dissertation, we focused on solving
the issues of high computational cost, model uncertainty, nonlinearity, and distur-
bances in control design. The curse of dimensionality is a common issue for control
design. Many mechanical systems with multi-degrees of freedom are underactuated
by design. The dynamics of these systems live in a relatively high dimensional state
space. However, many states are less controllable or observable for the high dimen-
sional system. To keep the most controllable and observable states in the system, it
is highly advantageous to develop a reduced order model. It turns out to be highly
advantageous to develop a reduced order model to keep the most controllable and
observable states in the system. Moreover, the curse of dimensionality also exists
in the computation of neural networks solutions. The high computational cost is a
severe issue in solving the neural network solutions in optimal control. In this dis-
sertation, we adopted the balanced truncation and empirical balanced truncation to
reduce the order of the dynamics systems. Moreover, the radial basis function neural
networks (RBFNN) are adopted to solve the Hamilton-Jacobi-Bellman (HJB) equa-
tion in optimal control. The high-speed train bogie and the Quanser Qube2 system
are adopted as practical applications to test the performance of the reduced order
model-based control design. Especially for the Qube2 system, extensive numerical
simulations and experimental validations show that the RBFNN with a reduced
order model save the computational power and improve the optimal controller’s
robustness. Furthermore, transfer learning is adopted to improve the performance
of the radial basis function based HJB solutions with limited experimental data.
Except for reducing the dimension of the system, a new neural networks structure
- separable Gaussian neural networks is proposed to reduce the computation cost
by making use of the factorizable property of the Gaussian activation functions in
RBFNN. Numerical simulation results show that the separable gaussian functions
reduce the computation cost and the required parameters in neural networks to solve
the partial differential equations.

Model uncertainty and disturbances also play an important role in control
design. The Luenberger, extended state observers and neural networks are adopted
to estimate the unmeasurable system states and approximate unmodelled system

xviii



dynamics. The minimum number of sensors to estimate the unknown dynamics are
investigated with the help of the special structure of the extended state observer.
With the unknown dynamics estimated, the recursive least squares algorithm is
adopted to identify the parameters in the unknown dynamics if the persistent ex-
citation condition is satisfied. Numerical examples show that the extended state
observer performs well in estimating the unknown dynamics with a limited number
of sensors. Except for using the observers, neural networks are also adopted to ap-
proximate the unknown dynamics of the system. Here, we adopted the Delta robot
as an engineering application to illustrate the performance of a neural networks
model with sliding mode control. By leveraging the machine learning techniques,
the model uncertainty issue can be well-solved during the control design.

xix



Chapter 1

INTRODUCTION

1.1 Background

1.1.1 Nonlinear Optimal Control

The theory of optimal control has been well developed and documented [3,
4]. The literature on applications of optimal controls is vast. Various optimal
controls for linear systems such as the linear quadratic regulator (LQR) have been
well studied and reported in the literature. However, when the dynamic system
is nonlinear and when the performance is not quadratic, the solution of optimal
controls is quite challenging to obtain. One popular way to formulate the optimal
control problem is to make use of the HJB equation. There have been many studies
of HJB equations in the mathematics and controls community.

The HJB equation is a nonlinear partial differential equation for the value
function of the optimal control problem after the control in terms of the value func-
tion is substituted, and is subject to a terminal condition when the control horizon is
finite. There have been many studies on the solution of the HJB equation. Crandall
and Lions proposed the viscosity solution of the HJB equation [5], and found that
the HJB equation exists a non-smoothness solution. A sequential alternating least
squares method for solving a high dimensional linear HJB equation was proposed
in [6]. In addition to the numerical methods such as viscosity solution, finite differ-
ence and finite element, neural networks are other promising approaches that have
garnered recent interest [7].

Neural networks have been extensively studied for solving partial differen-
tial equations (PDEs) [8–10]. The well-known classical Ritz method was also im-
plemented with the help of neural networks [11, 12]. A comprehensive survey on
numerical algorithms, including the Monte Carlo algorithm and machine learning,
for solving high dimensional PDEs can be found in [13]. It is in general difficult to
obtain the analytical solutions of the HJB equation. Neural networks have also been
applied to the HJB equation in the past thirty years [14, 15]. The value function
is approximated by neural networks, which can be trained in the spatial domain or
along the response trajectory. A nearly optimal solution for nonlinear systems in
the spatial domain was obtained in the form of the neural networks with polynomial
base functions [16]. The least squares algorithm with a time-domain discounting fac-
tor was introduced to improve the smoothness and convergence of neural networks
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training to find the optimal control in the spatial domain [17]. A neural-networks-
based online HJB solution for uncertain nonlinear systems was developed in [18].
A RBF neural networks and a query network with warm-up network weights [19]
were adopted to compute the HJB solution along response trajectory in [20]. The
HJB equation with action constraints [16, 21] and fixed final time [22, 23] have also
been studied with the help of neural networks. To incorporate the control lim-
its in the cost function, a convex conjugate function was introduced to transform
the constrained optimization problem into an unconstrained problem in [24]. The
normalized Gaussian networks were adopted to develop a reinforcement learning
framework to obtain the global value function for continuous-time systems while
training the networks along different trajectories [25]. The actor-critic reinforce-
ment learning together with the RBFNN was also applied to obtain the optimal
control for a discrete-time system [20].

Recently, interest in solving the HJB solution in high dimensional state space
has been increasing [26,27]. A neural network with the sigmoid activation function
is proposed to compute the viability sets for nonlinear continuous systems in [28].
A causality-free neural network method is proposed to solve high dimensional HJB
equations that include the co-state vector as part of the solution [29,30]. Two neural
networks architectures were introduced using minimum plus algebra to solve high
dimensional optimal control problems with specified terminal costs [31]. Indeed,
neural networks can obtain excellent approximations of the value function and the
solution of the HJB equation leading to the optimal policy.

1.1.2 Challenges

Challenges exist in the area of optimal control, including but not limited
to the high computational cost, model uncertainty, nonlinearity, multi-objective
optimization, constraints handling of partial differential equations, practical imple-
mentation and real-time computation [32]. It is computationally intensive to solve
complex optimization problems in optimal control for some cases, especially when
the dimension of the system is relatively high. This issue can also be observed in
the computation of neural networks to solve the HJB equation. The curse of dimen-
sionality is a common issue in the neural networks solutions for solving the HJB
equation. When the dimension n ≥ 4, it is computational cost to solve the neural
networks. Most optimal control cases are characterized by constraints on control in-
puts, state variables and solutions, resulting in boundary value problems in ordinary
differential equations. Additionally, in real applications there exists nonlinearity and
uncertain parameters in the model. Most optimal control algorithms are performed
in simulation and may be not applicable in practice. As a result, solving optimal
control problems can be quite challenging.
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1.2 Contributions

As mentioned in Section 1.1.2, solving the optimal control problems is chal-
lenging. In this dissertation, we intended to address the issues of high-dimensionality,
nonlinearity, model uncertainty, implementaion, and real-time computation in opti-
mal control. Many mechanical systems with multi-degrees of freedom are underactu-
ated by design. The dynamics of these systems live in a relatively high dimensional
state space. Discovering a reduced order model of the system is highly advanta-
geous, as it allows for limited control efforts to be focused on stabilizing the system
and achieving improved tracking performance. Moreover, solving for the HJB equa-
tion for nonlinear control systems can be numerically complex, but a reduced order
model can help to decrease these complexities. To ensure effective implementation
of the control algorithm, it is crucial to find a reduced order model.

The model reduction technique - balanced truncation is applied to obtain the
reduced order model of the system. To test its performance, the linear quadratic
regulator is adopted as a special case. Several state observers, including the Luen-
berger observer and extended state observer are adopted to estimate the states and
unknown dynamics in the systems since LQR is a full state feedback control. The
observability of the extended state observer is analyzed to investigate the minimum
number of sensors to estimate the system states.

The extensive use of neural networks has been observed in solving the HJB
equation in optimal control problems. However, there are still many issues with the
neural networks solution of the HJB equation, such as high computational cost of
deep neural networks, generality of neural networks architecture, and requirements
for extensive training data. Moreover, less investigation is done on the performance
of optimal controls obtained in terms of the RBFNN. The RBFNN with Gaussian
activation functions are adopted to solve the HJB equation for various optimal
control problems and demonstrate the robustness of the optimal controls with the
model reduction and transfer learning technique in machine learning.

In summary, the main contributions of this dissertation are addressed in the
following:

1. To overcome the numerical issues of the high-dimensional system, we adopted
the model reduction technique to reduce the order of the system. The opti-
mal control solution from the reduced-order model was tested and proved to
outperform the original model-based control in terms of robustness. Further-
more, the performance of the optimal policy is maintained while reducing the
computational complexity of neural networks.

2. Instead of using a deep neural network, the RBFNN with one hidden layer is
adopted to solve the HJB equations for multi-degree-of-freedom systems with
high control performance in regions of the state space far away from equilib-
rium in trajectory tracking applications. The RBFNN solutions perform well
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both in simulations and practicals. Furthermore, the RBFNN’s single hidden
layer property enhances its applicability by facilitating hardware implementa-
tion and real-time computation.

3. As the control determined by the HJB equation uses the nominal model of
the physical system with uncertainties and disturbances, the transfer learning
technique is adopted to further improve the performance of the optimal control
with experimental data to compensate for the model uncertainties.

4. Once the system is effectively controlled, the extended state observer is adopted
to estimate the unknown dyanmics. The minimum number of sensors required
to estimate the unknowns is determined with the help of the special structure
of the extended state observer and the Hautus test in linear control.

1.3 Dissertation Organization

The rest of the dissertation is organized as follows: In Chapter 2 “Nonlin-
ear Optimal Control”, the optimal control problem is formulated by discussing the
Hamilton-Jacobi-Bellman equation and linear quadratic regulator. This chapter is
the fundamental for understanding nonlinear optimal control problems.

In Chapter 3 “Model Reduction for Control Design”, the balanced trunca-
tion and empirical balanced truncation are introduced to obtain the reduced order
model. The reduced order model based optimal control is designed to stabilize the
dynamic system. This chapter is the fundamental to understand the model reduc-
tion techniques and the implementation in control design.

In Chapter 4 “RBFNN Optimal Control with Model Reduction and Trans-
fer Learning”, the RBFNN is introduced to solve the optimal control problems.
Furthermore, the model reduction and transfer learning techniques are introduced
in this chapter to overcome the curse of dimensionality and to deal with model
uncertainties.

In Chapter 5 “Extended State Observer with System Identification”, the ex-
tended state observer is adopted to estimate the unknown dynamics of the system.
The observability of the extended state observer is analyzed to investigate the min-
imum number of sensors to estimate the unknowns. The estimated dynamics can
be further used for parameters identification with recursive least squares algorithm.

In Chapter 6 “Engineering Application I”, the algorithms developed from
Chapter 2 to Chapter 3 are applied to the high-speed train bogie.

In Chapter 7 “Engineering Application II”, a neural network model of a
Delta robot is developed and is used to design a sliding mode control for trajectory
tracking applications.

Chapter 8 concludes the dissertation and briefly discusses future work for
current algorithms. Most of the chapters in the dissertation are based upon the
published papers [33–35]. Chapter 9 serves as the appendix.
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Chapter 2

NONLINEAR OPTIMAL CONTROL

In this chapter, the optimal control problem for nonlinear systems is formu-
lated. The HJB equation is explained in detail and the linear quadratic regulator is
introduced as a special optimal control problem for linear systems.

2.1 Optimal Control Formulation

Consider a nonlinear dynamic system governed by the state equation

ẋ = F(x,u, t), x(t0) = x0, (2.1)

where t0 is the initial time, x0 is the initial state, x ∈ Rn×1, u ∈ Rm×1 and F(·) is a
nonlinear function of its arguments. Define a target set at a terminal time t = T as

Ψ(x(T ), T ) = 0, (2.2)

where Ψ ∈ Rp×1. Ψ defines a set where the terminal state x(T ) must settle at time
T .

The optimal control problem amounts to finding a control u in an admissible
set U ⊂ Rm×1 that drives the system from the initial state x0 to the target set
Ψ(x(T ), T ) such that the following performance index J is minimized while the
state equation is satisfied.

J = φ(x(T ), T ) + νTΨ(xT , T ) +

T∫
t0

[
L(x(τ),u(τ), τ) + λT (t)(F(x,u, t)− ẋ)

]
dτ,

(2.3)
where φ(x(T ), T ) ≥ 0 is the terminal cost, and L(x(t),u(t), t) > 0 is called the
Lagrange function.

The above optimal control statement defines a constrained optimization prob-
lem. With the help of the method of Lagrange multiplier, the following equations
are obtained to determine the optimal control.
State Equation

ẋ =
∂H

∂λ
= F(x,u, t). (2.4)
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Co-state Equation

λ̇ = −∂H
∂x

= −∂L
∂x
− ∂FT

∂x
λ. (2.5)

Optimality Condition
∂H

∂u
= 0. (2.6)

Initial and Terminal Conditions

−H(x,u,λ, t0)dt0 + λT (t0)dx(t0) = 0, (2.7)[
∂

∂x

(
φ+ ΨTν

)
− λ(T )

]T
dx(T )+[

∂

∂t

(
φ+ ΨTν

)
+H(x,u,λ, T )

]
dT = 0. (2.8)

Target Set
Ψ (x(T ), T ) = 0. (2.9)

where the Hamiltonian function H is defined as

H(x,u,λ, t) = L(x,u, t) + λT (t)F(x,u, t). (2.10)

When the admissible control u lies in a bounded subset U of Rm×1, the
optimality condition may not hold in U . In this case, it is replaced by Pontryagin’s
minimum principle, which is stated as

H(x∗,u∗,λ∗, t) ≤ H(x∗,u,λ∗, t), ∀u ∈ U ⊂ Rm×1, (2.11)

where x∗, u∗ and λ∗ denote the optimal solutions. Another way to state the mini-
mum principle is

u∗ = arg

[
min

∀u∈U⊂Rm×1
H(x∗,u,λ∗, t)

]
. (2.12)

Note that Pontryagin’s minimum principle is both a necessary and sufficient
condition, while the optimality condition (2.6) is only necessary.
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2.2 The Hamilton-Jacobi-Bellman Equation

Define a value function along the optimal trajectory based on the performance
index as

V (x∗(t), t) = φ(x∗(T ), T ) +

T∫
t

L(x∗(τ),u∗(τ), τ)dτ (2.13)

= min
u

φ(x∗(T ), T ) +

T∫
t

L(x∗,u, τ)dτ

 .
By definition, the following properties of the value function are given as

V (x∗(T ), T ) = φ(x∗(T ), T ),

V (x∗(t), t0) = J. (2.14)

Take the derivative of the value function with respect to time t based on the
definition in Equation (2.13)

dV (x∗(t), t)

dt
= −L(x∗(t),u∗(t), t). (2.15)

A remark on the role of the value function is in order. By definition,

V (x∗(t), t) ≥ 0,
dV (x∗(t), t)

dt
≤ 0. (2.16)

Hence, V (x∗(t), t) is a Lyapunov function. The existence of the Lyapunov function
implies that the system under the optimal control u∗(t) is stable.

By treating V (x∗(t), t) as a multi-variable function of the state and time,
applying the chain rule of differentiation along the optimal path to obtain

dV (x∗(t), t)

dt
=
∂V (x∗(t), t)

∂t
+
∂V (x∗(t), t)T

∂x
ẋ∗(t) (2.17)

=
∂V (x∗(t), t)

∂t
+
∂V (x∗(t), t)T

∂x
F(x∗(t),u∗(t), t).
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Equating these two derivatives yields

∂V (x∗(t), t)

∂t
= −L(x∗(t),u∗(t), t) (2.18)

− ∂V (x∗(t), t)T

∂x
F(x∗(t),u∗(t), t)

= −H
(

x∗(t),u∗(t),
∂V (x∗(t), t)

∂x
, t

)
= −min

u
H

(
x∗(t),u(t),

∂V (x∗(t), t)

∂x
, t

)
.

This is a partial differential equation defined in the state space governing the value
function and is known as the Hamilton-Jacobi-Bellman equation (HJB).

According to the definition of the value function, we have a terminal condition
for the HJB equation as V (x∗(T ), T ) = φ(x∗(T ), T ). When there are constraints
imposed on the states, boundary conditions can also be imposed to the HJB equa-
tion.

The optimality condition in Equation (2.18) indicates that ∂V
∂x

plays the role
of λ in the Hamiltonian in Equations (2.10) and (2.12). Hence, an expression of the
optimal control in terms of the value function is obtained as,

u∗(t) = −R−1gT (x∗)
∂V (x∗(t), t)

∂x
. (2.19)

2.3 Linear Quadratic Regulator

Consider the linear time invariant (LTI) system as a special case,

ẋ = Ax + Bu(t),x(t0) = x0 (2.20)

y = Cx (2.21)

For the generality of discussions, we assume that x ∈ Rn×1, A ∈ Rn×n, B ∈ Rn×m,
C ∈ Rp×n, u ∈ Rm×1, and y ∈ Rp×1. The optimal LQR control is designed to
minimize the following performance index subject to the constraint of Equation
(2.21) [36]

L(x,u) =
1

2

[
xT (t)Qx(t) + uT (t)Ru(t)

]
, (2.22)

where the matrix Q ∈ Rn×n is semi-positive definite and R ∈ Rm×m is positive
definite. The optimal control for this case is given by

u∗(t) = −R−1BT (x∗)λ∗(t). (2.23)

8



The optimality condition in Equation (2.18) indicates that ∂V
∂x

plays the role of λ in
the Hamiltonian in Equations (2.10) and (2.12). Hence, an expression of the optimal
control in terms of the value function is obtained as,

u∗(t) = −R−1BT (x∗)
∂V (x∗(t), t)

∂x
. (2.24)

The LQR formulation for LTI system also leads to the Riccati equation

ATP + PA−PBR−1BTP + Q = 0 (2.25)

which yields the optimal gain Kopt = R−1BTP such that the optimal feedback
control reads

u∗(t) = −Koptx
∗ = −R−1BT (x∗)

∂V (x∗(t), t)

∂x
(2.26)

It can be shown that the algebraic Riccati equation (2.25) has a solution P
such that A−BP−1BTP is a stable matrix. The optimal feedback law in Equation
(2.26) minimizes the performance index in Equation (2.22).
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Chapter 3

MODEL REDUCTION FOR CONTROL DESIGN

The balanced truncation model reduction (BTMR) method was first proposed
by Moore in 1981 with the help of signal processing techniques–the principal compo-
nent analysis and singular value decomposition [37]. Implementation of the method
involves quite some matrix computations and proper definitions of the truncation
error and its bounds. The BTMR method has since received much attention from
the research community. An excellent review of computational methods and error
bounds can be found in [38]. The BTMR method in the state-space representation
for discrete-time systems is discussed in [39]. Model reduction in finite time and
frequency intervals is examined in [40]. A simultaneous diagonalization algorithm
is studied in [41]. The singular value decomposition for computing the balancing
transformations is proposed, and proved to be a practical and popular calculation
technique [41]. In this chapter, the balanced truncation algorithm is adopted to de-
rive the reduced-order model of the system, followed by the development of control
design based on the low-dimensional model.

3.1 Balanced Truncation

In this section, the BTMR method is introduced for control design. Recall
the LTI system in Equation (2.21),

ẋ = Ax + Bu(t),x(t0) = x0 (3.1)

y = Cx (3.2)

However, the traditional BTMR method is only applicable to stable LTI sys-
tems. To deal with unstable LTI systems, we decompose the system into stable and
unstable subsystems with the help of Schur decomposition and another transforma-
tion determined by the Sylvester equation. The balanced truncation order reduction
is then applied to the stable subsystem. A global transformation for the whole sys-
tem is then defined that combines several matrices from Schur decomposition and
balanced truncation. We first discuss the method of Schur decomposition.
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3.1.1 Schur Decomposition

The real Schur transformation can decompose the system into stable and
unstable subsystems [42]. Two steps are included leading to the stable-unstable
decomposition of the system without the coupling between two subsystems.

The first step applies the real Schur decomposition to transform the system
into an upper triangular block structure as shown below. For the system in (6.2),
there exists an orthogonal matrix U such that x = Uxrs. The transformed system
matrices are given as

Ars = U−1AU =

[
Ars1 Ars2

0 Ars3

]
Brs = U−1B =

[
Brs1

Brs2

]
(3.3)

Crs = CU =
[
Crs1 Crs2

]
where Ars1 ∈ Rnus×nus , Ars2 ∈ Rns×nus , Ars3 ∈ Rns×ns , ns + nus = n, ns is the
dimension of the stable subsystem and nus is the dimension of the unstable subsys-
tem. xrs denotes the states after the real Schur decomposition, Ars3 corresponds
to the stable subsystem, Ars1 represents the unstable subsystem. The upper right
block Ars2 describes the coupling between the stable and unstable subsystems.

In the second step, we attempt to decouple the stable and unstable subsys-
tems by considering a transformation S determined by the Sylvester equation,

Ars1S− SArs3 = Ars2 (3.4)

A unique solution S ∈ Rnus×ns of the Sylvester equation exists when the
matrices Ars1 and Ars3 do not have common eigenvalues [43]. A new transformation
V for the full state vector that can fully decouple the stable and unstable subsystems
is given by [44]

V =

[
Ius −S
0 Is

]
(3.5)

where Ius ∈ Rnus×nus and Is ∈ Rns×ns are both identity matrices. It is interesting to
show that the inverse of V can be obtained as

V−1 =

[
Ius −S
0 Is

]−1

=

[
Ius S
0 Is

]
(3.6)

Define the transformation xrs = Vxd. xd is the new state vector of the transformed
system whose stable and unstable states are fully decoupled, as shown next. The
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state vector xd = [xus,xs]
T satisfies the following equation.

ẋd(t) = Adxd(t) + Bdu(t) (3.7)

y(t) = Cdxd(t)

where xs ∈ Rns×1 and xus ∈ Rnus×1,

Ad = V−1U−1AUV =

[
Aus 0
0 As

]
(3.8)

Bd = V−1U−1B =

[
Bus

Bs

]
(3.9)

Cd = CUV =
[
Cus Cs

]
Aus denotes the state matrix of the unstable part of the system. As denotes the
stable part of the system. B and C are also decomposed into the stable and unstable
parts. Clearly, the stable and unstable subsystems are decoupled.

In the following, we shall apply the BTMR method to develop a reduced order
model of the stable subsystem. In other words, we shall work with the matrices As,
Bs and Cs of the stable subsystem.

3.1.2 Model-based Balanced Truncation

In this section, we present the procedure of the BTMR method in [41]. The
balanced truncation reduced order model is realized by introducing a transformation
Ts to the state xs(t) such that xs = Tsxb which leads to a so-called balanced form
of the system. In the following, we show how to find the transformation Ts in order
to obtain the desired balanced order system.

Let Wc and Wo be the controllability and observability Gramians of the
stable subsystem. Consider two continuous time Lyapunov equations,

AsWc + WcA
T
s + BsB

T
s = 0 (3.10)

AT
s Wo + WoAs + CT

s Cs = 0

If As is stable, the Lyapunov equations have unique symmetric positive definite
solutions [45] Wc and Wo ∈ Rns×ns , which are the controllability and observability
Gramians of the system [40, 46]. After obtaining Wc and Wo, we compute the
transformation Ts through the following steps.

1. Evaluate the Cholesky decomposition of Gramians Wc and Wo,

Wc = RRT , Wo = QQT (3.11)
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2. Evaluate the singular value decomposition of the Hankel matrix defined as
H = QTR,

H = UHΣVT
H (3.12)

3. The transformation Ts can be obtained as,

Ts = RVHΣ1/2, T−1
s = Σ−1/2UT

HQT (3.13)

where Σ = diag(σ1, σ2, ..., σns), σ1 > σ2 > · · ·σns ≥ 0. σi are called the Hankel
singular values of the matrix H.

Define the transformed Gramians as W̄c = T−1
s WcT

−T
s and W̄o = TT

s WoTs =
Σ. The singular values Σ can be rewritten as

Σ =

[
Σ1 0
0 Σ2

]
(3.14)

where Σ1 = diag(σ1, σ2, ..., σr), Σ2 = diag(σr+1, σr+2, ..., σns). Σ2 will be truncated
to obtain the reduced order system. Hence, in the transformed state xb = T−1

s xs, we
neglect the components xb,i for i = r + 1, r + 2, · · · , ns. r < ns denotes the number
of states to be included in the reduced order model of the stable subsystem.

Let xr(t) ∈ Rr×1 denote the truncated state vector, Ar ∈ Rr×r be the corre-
sponding state matrix, Br ∈ Rr×m the reduced order control influence matrix and
Cr ∈ Rp×r the reduced order output matrix. The reduced order system output
yr ∈ Rp×1 has the same dimension as that of the original output of the system. It
will be shown later in Equation (3.26) that yr is approximately equal to the original
output y. The reduced order system is given as,

ẋr(t) = Arxr(t) + Bru(t) (3.15)

yr(t) = Crxr(t)

where Ar = T−1
sr ATsr, Br = T−1

sr B and Cr = CTsr. Tsr ∈ Rns×r is part of
the transformation Ts after the columns corresponding to the truncated states are
removed. Let xt ∈ R(ns−r)×1 represent the truncated states in xb. We rewrite xb
and the transformation Ts as

xb =

[
xr
xt

]
, Ts = [Tsr,Tst], (3.16)

where Tst ∈ Rns×(ns−r). Hence, we have

xs = Tsxb = Tsrxr + Tstxt. (3.17)
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Remark 3.1.1. The Gramian W̄c indicates the ability to control the states with
the current control configuration and W̄o suggests the potential to observe the
state from the output. The transformation Ts aims to make the truncated system
equally controllable and observable such that the transformed Gramians are equal
W̄c = W̄o, and share the same diagonal elements σi. This is the meaning of
the word “balanced” in the name of the method. From energy point of view, the
minimum energy to control a system to track the desired trajectories is measured
by the integral of the control norm squared, as σ−1

i , then smaller σi requires more
energy to control and suggests that the corresponding states are less important [47].

We now return to the system with both the stable and unstable systems in
Equation (3.7). Let Ius ∈ Rnus×nus be an identity matrix. The matrices for the
balanced system can be obtained as,

ABT =

[
Ius 0
0 Ts

]−1 [
Aus 0

0 As

] [
Ius 0
0 Ts

]
(3.18)

=

[
I−1
us 0
0 T−1

s

]
V−1U−1AUV

[
Ius 0
0 Ts

]
Introduce a matrix T

T = UVTn, Tn =

[
Ius 0
0 Ts

]
(3.19)

such that the transformed state matrix is given by

ABT = T−1
n V−1U−1AUVTn

= T−1AT (3.20)

where ABT denotes the balanced form of the matrix A of the original system.
The same transformations can be applied to other matrices of the original system.
Furthermore, we have x = TxBT where xBT is the full state vector of the transformed
model and is defined as

xBT =

[
xr
xt

]
. (3.21)

Here, we must point out that xr as part of xBT at this point on may contain unstable
modes if the original system is unstable.

Remark 3.1.2. Note that the Hankel singular values for the unstable subsystem
do not exist and are infinite for the corresponding unstable dynamics of the system.
The Hankel singular values for the stable subsystem are given by Equation (3.14).
The order truncation will be applied to the whole balanced system to obtain the
reduced order system. Hence, we obtain a reduced order system for LTI systems
with both stable and unstable dynamics.
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The accuracy of the response computed from the reduced order system has
been well studied in the literature. An error bound can be defined to describe
the quality of the approximation in frequency domain [48]. Consider the transfer
functions from the input to the output of the original system and the reduced order
system,

G(s) = Cs(sI−As)
−1Bs + Ds

Ĝ(s) = Cr(sI−Ar)
−1Br + Dr

(3.22)

The error bound for the system with zero initial conditions can be expressed as

E∞ = ||G(s)− Ĝ(s)||∞ ≤ 2γ (3.23)

where ||·||∞ denotes the H∞ norm, γ = σr+1+· · ·+σns and σi (i = r+1, r+2, · · · , ns)
are the truncated Hankel singular values in Σ2. A flowchart illustrating the steps of
the balanced truncation model reduction method is shown in Figure 3.1.

Remark 3.1.3. When the original system is stable, there is no need for Schur
decomposition and the subsequent transformation. The balancing transformation
Ts can be applied to the original system directly.

3.1.3 Non-zero Initial Conditions

The error bound in Equation (3.23) is defined with the help of transfer func-
tions in the frequency domain, which does not include the effect of non-zero initial
conditions. When the balanced truncation model reduction method is applied to the
system with non-zero initial conditions, the output error of the reduced order model
can grow unbounded. There have been attempts to address the issue of [49–52].
In this section, the X0-balanced truncation method in [50] is adopted for the LTI
system with non-zero initial conditions.

Assume that the original system (6.2) has an initial condition x0. Let X0

denote a matrix whose columns spanning a linear space, to which x0 belongs. Hence,
there exists a vector v0 in the linear space such that x0 = X0v0. The simplest choice
of X0 is such that each of its column is a unit base vector of the linear space, i.e.
X0 is an identity matrix. That is, the spanned space is Rn. For convenience, we
shall denote the linear space spanned by the columns of X0 as X0. With this, we
consider an augmented system defined as,

ẋ(t) = Ax(t) + [B,X0]

[
u(t)
u0(t)

]
(3.24)

y(t) = Cx(t)

where u0(t) is an auxiliary input to generate the effect of non-zero initial conditions.
The procedure of the BTMR method discussed earlier can be applied to Equation
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(3.24) when the original system has an arbitrary initial condition x0 ∈ X0. This
leads to the transformation Ts, which is partitioned in Equation (3.16) to obtain
the reduced order vector xr in Equation (3.17). The reduced order system reads,

ẋr(t) = Arxr(t) + [Br,X0r]

[
u(t)
u0(t)

]
(3.25)

yr(t) = Crxr(t)

where X0r = T−1
sr X0.

The output error bound between the reduced order model (3.25) and the
original system (3.24) reads,

‖y(t)− yr(t)‖L2 ≤ 2γ‖u(t)‖L2 + 3‖Σ
1
2 A‖

1
3
2 ‖X0‖

1
3
2 γ

2
3‖v0‖2 (3.26)

where ‖·‖ is the Euclidian norm of a vector. Detail discussions of the error bound
analysis can be found in [50]. We should point out that Equation (3.25) for the
reduced order model has no specified initial conditions, while Equation (6.2) has
non-zero initial conditions. As discussed in [50], an impulsive function for u0(t) can
be selected to generate the equivalent effect of the same initial conditions as those
for Equation (6.2).

Remark 3.1.4. Application of the BTMR method to the system (3.24) creates the
transformations which in the end leads to the global transformation T defined in
Equation (3.19). We then apply the global transformation T to the system with
non-zero initial conditions defined in Equation (6.2), leading to the BT reduced
order model of the system. When we simulate the BT reduced order model, we can
now impose the same initial conditions as the one for the original system.

3.2 Empirical Balanced Truncation

The controllability and observability gramians used in the balanced trun-
cation method are defined for linear systems and are usually model-based. For
nonlinear systems without a detailed mathematical model, the controllability and
observability gramians can be estimated from input-output data. These are called
the empirical gramians. The empirical gramians yield the exactly same balanced
truncation transformations for stable linear system. However, it has been studied
that the reduced order model from the empirical gramians contains more accurate
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Figure 3.1: Flowchart of balanced truncation model reduction algorithm for LTI
systems with unstable dynamics.
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information than the traditional model-based balanced truncation [53,54]. The em-
pirical controllability gramian and observability gramian are defined as,

Ŵc :=

p∑
i=1

s∑
m=1

r∑
l=1

1

rsc2
m

∫ ∞
0

Φilm(t)dt (3.27)

Ŵo :=
s∑

m=1

r∑
l=1

1

rsc2
m

∫ ∞
0

Tlψ
lm(t)TT

l dt (3.28)

where

τn = {T1, · · · ,Tr; Ti ∈ Rn×n,TT
i ∗Ti = I, i = 1, · · · , r} (3.29)

M = {c1, · · · , cs; ci ∈ R, ci > 0, i = 1, · · · , s} (3.30)

εn = {e1, · · · , en} (3.31)

Φilm(t) = (xilm(t)− x̄ilm)(xilm(t)− x̄ilm)T (3.32)

ψlm
ij (t) = (yilm(t)− ȳilm)T (yjlm(t)− ȳjlm), (3.33)

and xilm(t) is the state trajectories with impluse input given as u(t) = cmTleiδ(t),
yilm(t) is the output trajectories of the system with the inital condition as x0 =
cmTlei, ei are unit vectors. Same calculation procedures from Equation (3.11) to
Equation (3.13) can be applied to the empirical gramians to obtain the transfor-
mation matrix T and the reduced order model in Equation (3.15). It has been
extensively investigated that the empirical gramians are applicable to obtain the
reduced order model for the nonlinear systems using the empirical Gramian frame-
work [55]. The key idea of the empirical gramians in Equation (3.28) is the averaging
over local Gramians obtained from varying initial states around an operating point
near a steady-state [56]. However, the reduced nonlinear model is locally since it
is computed through data on different trajectories with certain initial conditions
near a steady state. In this study, the empirical gramians are only applied to lin-
ear systems to make them compatible with the RBFNN optimal control algorithm
mentioned in chapter 4 since RBFNN is designed to find the solution in a particular
spatial domain. The result from empirical gramians could be misleading if RBFNN
is computated over the region of the operation for the reduced order nonlinear sys-
tem.

3.3 Reduced Order Model Control

We are now ready to design the control for dynamic system by using the
reduced order model in Equation (3.15). The control is ultimately implemented
on the original system. There are many options for the design of control. In this
section, we use the LQR control to demonstrate the utility of the reduced order
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model. In connection with the control, a Luenberger observer is designed for the
state estimation.

3.3.1 LQR Control

Recall the reduced order system (3.15). The optimal LQR control is designed
to minimize the following performance index subject to the constraint of Equation
(3.15) [36]

J =
1

2

∫ ∞
0

[xr(t)
TQxr(t) + u(t)TRu(t)]dt (3.34)

where the matrix Q ∈ Rr×r is semi-positive definite and R ∈ Rm×m is positive
definite.

The optimal feedback control reads

u = −Koptxr (3.35)

In order to implement the feedback control in Equation (3.35) with the output
y(t) of the original system, we must estimate the state vector xr(t). Different type
of observers, including the Luenberger observer, Kalman filter or extended state
observer can be considered to estimate the state vector x(t). To this end, we adopt
the well-documented Luenberger observer.

3.3.2 Luenberger Observer

For practical reasons, it is often not possible to measure all the states of a
system. An observer can be designed to estimate the unmeasurable states. We
decide to adopt the popular Luenberger observer. The structure of the Luenberger
observer is shown below,

˙̂xr(t) = Arx̂r(t) + Bru(t) + L[y(t)− ŷr(t)] (3.36)

ŷr(t) = Crx̂r(t) (3.37)

where y(t) is the original system output and ŷr(t) is an estimate of the output of
the BT reduced order model.

According to Equation (3.26), yr(t) ≈ y(t). In the following analysis, we
replace y(t) with yr(t). In the control implementation, the original system output
y(t) is still used as the input to the Luenberger observer.

The output estimation error is then defined as yr(t)−ŷr(t). It is the feedback
signal to the observer. L is the observer gain matrix. Define the state error as
x̃r(t) = xr(t)− x̂r(t) where x̂r(t) is the estimate of the state xr(t). From Equation
(3.36), we obtain the equation governing the state estimation error,

˙̃xr(t) = (Ar − LCr)x̃r(t) (3.38)
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We can show that the pair (Ar,Cr) of the reduced order model is observable.
Hence, we can find a gain matrix L such that Ar − LCr is stable. The state
estimation error will converge to zero.

3.4 Conclusions

We have presented a balanced truncation reduced order model for the high-
dimensional dynamic systems, which can be severely underactuated and difficult
to control. The balanced truncation model reduction is usually applied to stable
systems. In this chapter, we first apply the real Schur decomposition to separate the
stable and unstable modes of the dynamics system. The balanced truncation model
reduction is then carried out for the stable subsystem. An augmented X0-balanced
truncation algorithm is also considered to deal with the dependence of the balanced
truncation model reduction on initial conditions. The reduced order subsystem is
then combined with the unstable subsystem. A linear quadratic regulator control
together with a Luenberger observer for the state estimation is designed for the
dynamic system with non-zero initial conditions.
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Chapter 4

RBFNN OPTIMAL CONTROL WITH MODEL
REDUCTION AND TRANSFER LEARNING

While the solutions of HJB equation have been extensively studied, less re-
search is done on the performance of optimal controls obtained in terms of the
RBFNN. This chapter presents an approach based on radial basis function neural
networks with Gaussian activation functions to solve the HJB equation for vari-
ous optimal control problems and demonstrate the robustness of the optimal con-
trols with the model reduction and transfer learning technique in machine learning.
We address the robustness improvement of the optimal controls obtained with the
RBFNN, model reduction and transfer learning.

Since the mathematical model of nonlinear control systems can never per-
fectly capture the dynamics of the real system, the RBFNN based control built
with the mathematical model may need fine tuning or retraining when it is applied
to the physical system in an experimental setting. This is where the transfer learn-
ing technique of machine learning comes in. After we obtain certain experimental
data, we can partially retrain the neural networks in order to further improve the
performance of the control.

4.1 Universal Approximation Theorem for Neural Networks

The universal approximation theorem [57] for neural networks states that a
feedforward neural network with a single hidden layer can approximate any con-
tinuous function to arbitrary precision, given enough neurons in the hidden layer.
This theorem demonstrates the capability of neural networks as a universal func-
tion approximator, meaning that the neural networks can be used to model various
complex mathematical functions. There are different ways to formulate the neural
networks sturctures, including the feedforward neural networks, convolutional neural
networks, recurrent neural networks, autoencoders, generative adversarial networks
and transformers. Among all the structures of neural networks, RBFNN is an ex-
ample of feedforward neural networks with a single hidden layer and radial basis
activation functions. The RBFNN satisfies the universal approximation property as
shown in [58]. In this chapter, we adopted the RBFNN to approximate the value
function in optimal control problems.
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There are many studies on the method of RBFNN itself. An adaptive ex-
tended Kalman filter (AEKF) is developed for estimating the weights, centers, and
width of RBFNN [59]. It has been shown that the RBFNN with one hidden layer
and the same smoothing factor in each kernel are broad enough for universal ap-
proximation as concluded in [58]. An excellent review on RBFNN for regression
and classification can be found in [60]. The advantages of RBFNN are compared
with other neural networks architectures in [61]. An application of the RBFNN in
control design can be found in [62] to approximate the error model in vibration sup-
pression. It has been found that RBFNN have an advantage over the conventional
sigmoid neural networks (NN) owing to that the nth-dimensional gaussian function
is well-established from probability theory, Kalman filtering, etc [63].

4.2 Solution of Optimal Control Problems with Radial Basis Function
Neural Networks

4.2.1 Neural Networks Solution of Value Function

Recall the optimal control problem with Hamilton-Jacobi-Bellman equation
in Section 2.2. In the following, we shall focus on the special time-invariant case
when the terminal time T → ∞, the terminal cost φ(x(T ), T ) → 0, and the value
function is a function of the state only, i.e. V = V (x).

We express the value function in terms of radial basis function neural net-
works with Gaussian activation functions,

V (x,w(k)) =

NG∑
j=1

wj(k)g(x,µj,Σj) + C

= wT (k)h(x) + C

= hT (x)w(k) + C,

(4.1)

where NG is the number of Gaussian functions g(x,µj,Σj) and C is an arbitrary
integration constant to guarantee the value function to be non-negative.

g(x,µj,Σj) =
n∏
i=1

1√
2πσj,i

exp

[
− 1

2σ2
j,i

(xi − µj,i)2

]
. (4.2)

The vectors and matrices in the above equations are defined as

w(k) = [w1(k), w2(k), · · · , wNG(k)]T ∈ RNG×1,

h(x) = [g(x,µ1,Σ1), g(x,µ2,Σ2), · · · , g(x,µNG ,ΣNG)]T ∈ RNG×1,

µj = [µj,i] ∈ RNG×n, (4.3)

Σj = [σj,i] ∈ RNG×n,
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where k is the iteration index of the policy iteration algorithm introduced next. The
covariance matrix Σj is taken to be diagonal.

4.2.2 Implementation of RBFNN

In this study, the Gaussian functions are adopted as kernels to approximate
an unknown function as is commonly done in statistics and mesh-free finite ele-
ments [64–66] That is to say, a domain D of interest in the state space can be
divided into grids and take the grid coordinates as the mean µj. Furthermore, the
covariance matrix Σj is taken to be diagonal and the same constant for all Gaussian
functions. It is noteworthy that with these choices of the mean and covariance ma-
trix can indeed deliver sufficiently accurate solutions of nonlinear partial differential
equations [67–69]. It is shown in this chapter that the optimal control for nonlinear
dynamic systems can also be obtained in this manner, which allows us to focus on
the issues in the control design.

Future efforts will treat both µj and Σj as trainable coefficients. The effect
of varying means and standard deviations on the optimal control solution will be
studied in a separate paper.

4.2.3 Policy Iteration (PI) Algorithm

Recall the optimal control and consider the RBFNN solution of the value
function in Equation (4.1). At the kth step of iterations, we have

u(x, k) = −R−1gT (x)
∂V (x,w(k))

∂x
, (4.4)

where u(x, k) and V (x(t),w(k)) denote the control and value function at the kth

step of iterations. u(t, k = 0) is chosen to be a stabilizing initial control. The value
function is updated with the following equation,

∂V T (x,w(k + 1))

∂x
[f(x) + g(x)u(x, k)] + L(x,u(x, k)) = 0. (4.5)

According to Theorem 4 of reference [70], the pair {u(x, k), V (x,w(k))} de-
termined by Equations (4.4) and (4.5) leads to a convergent sequence such that

V (x,w(k)) ≥ V (x,w(k + 1)),

lim
k→∞

V (x,w(k)) = V ∗(x),

lim
k→∞

u(x, k) = u∗(x) = −R−1gT (x)
∂V ∗(x)

∂x
. (4.6)
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where V ∗(x) denotes the true optimal value function and u∗(x) is the true optimal
control. Given a random value function and iteratively updating the new value func-
tion with the greedy policy is called value iteration or successive approximation [70].
Instead of updating the value function, the policy iteration is defined as iteratively
updating the greedy policy to the optimal solution. Since the control u(x, k) and the
value function are both iteratively updated during the calculation of the RBFNN,
it is hard to distinguish it as value iteration or policy iteration. In this case, it is
treated as policy iteration. The proof of convergence of the similar algorithm for
saturated controls can be found in [16,71]. Many examples reported in the literature
also confirm the convergence of the successive approximation algorithm [17].

Next, we shall present the updating equation in matrix form. Consider the
partial derivative,

∂V (x,w(k))

∂xi
=

NG∑
j=1

−(xi − µj,i)
σ2
j,i

wj(k)g(x,µj,Σj)

≡
NG∑
j=1

di,j(x)wj(k),

(4.7)

where

di,j(x) =
−(xi − µj,i)

σ2
j,i

g(x,µj,Σj). (4.8)

Hence, we have the gradient of the value function as

∂V (x,w(k))

∂x
= D(x)w(k) ∈ Rn×1, (4.9)

where D = [di,j] ∈ Rn×NG . The control can now be written in the matrix form as

u(x, k) = −R−1gT (x)D(x)w(k). (4.10)

Define another matrix as

G(x) = gR−1gT (x)D(x) ∈ Rn×NG . (4.11)

Then, the control term in the equation of motion reads

g(x)u(x, k) = −G(x)w(k). (4.12)

Consider the control term in L(x,u).

1

2
uTRu(x, k) =

1

2
wT (k)H(x)w(k), (4.13)

24



where
H(x) = DTgR−1gTD(x) ∈ RNG×NG . (4.14)

Substituting all the matrix notations to the updating equation (4.5), we arrive
at the equation for updating the coefficient vector w(k + 1) as

ST (x)w(k + 1) + L(x,u(x, k)) = 0, (4.15)

where S ∈ RNG×1 and

ST (x) = [f(x)−G(x)w(k)]TD(x)

= fT (x)D(x)−wT (k)GT (x)D(x) (4.16)

L(x,u(x, k)) =
1

2
xQx(t) +

1

2
wT (k)H(x)w(k). (4.17)

Define the error of the HJB equation due to the neural networks approxima-
tion as

e(x,w(k + 1)) = ST (x)w(k + 1) + L(x,u(x, k)). (4.18)

An integrated squared error in the state space Rn×1 is defined as

JHJB(w(k + 1)) =

∫
Rn×1

1

2
e2(x,w(k + 1))dx. (4.19)

4.2.4 Sampling Method for Integration

Computation of JHJB(w(k+1)) involves integration in high dimensional space
and can be intensive. Instead of integration, we can uniformly sample a large number
of points xs ∈ D ⊂ Rn×1 to compute an approximate value of JHJB(w(k + 1)). We
obtain a sampled value Js of JHJB as

Js(w(k + 1)) =
1

2

Ns∑
s=1

e2(xs,w(k + 1)) (4.20)

=
1

2

Ns∑
s=1

[ST (xs)w(k + 1) + L(xs,u(xs, k))]2

=
1

2

Ns∑
s=1

[
wT (k + 1)S(xs)S

T (xs)w(k + 1)

+ 2L(xs,u(xs, k))ST (xs)w(k + 1) +L2(xs,u(xs, k))
]
,
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where Ns is the number of sampled points xs in the domain D. Define the following
matrix and vectors as

Ag(k) = AT
g (k) =

Ns∑
s=1

SST (xs) ∈ RNG×NG (4.21)

b(k) =
Ns∑
s=1

L(xs,u(xs, k))S(xs) ∈ RNG×1 (4.22)

d(k) =
1

2

Ns∑
s=1

L2(xs,u(xs, k)) ∈ R1 (4.23)

The sampled performance index reads

Js(w(k + 1)) =
1

2
wT (k + 1)Ag(k)w(k + 1) + w(k + 1)Tb(k) + d(k). (4.24)

The optimal coefficient vector at each iteration step can be obtained as

w(k + 1) = −A−1
g (k)b(k) (4.25)

assuming that the inverse of the matrix A−1(k) exists. It has been found that when
Ns > NG, the inverse usually exists [67–69].
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4.2.5 Dominant System

If the policy iteration algorithm starts with an initial estimate of the value
function in terms of the RBFNN with randomly generated coefficients, the resulting
control can push the system on to a track leading to instability for unstable systems.
Hence, it is recommended to begin the policy iterations of an unstable system with
a stabilizing initial control, which will ensure system stability through the iteration
process. We introduce the concept of dominant system to create the stabilizing
initial control. The dominant system is defined as an unstable linear system that
has poles with larger positive real parts than that of the original system. A LQR
control is employed to stabilize the dominant system and is used as the initial
control to start the policy iteration. There are different ways to design the initial
control, such as the supervised learning based control [72] and the unconstrained
LQR control [16]. It should be noted that for stable systems, randomly generated
initial coefficients w(1) for the RBFNN always make the policy iteration convergent.

Then, the issue is how to estimate the unstable poles of linear systems or
unstable dynamics of nonlinear systems. If the mathematical model is available, this
information can be extracted from the model. If the model is not available or reliable,
we can estimate the Lyapunov exponents of the system from the experimental data.

4.3 Numerical Examples

In the following, we present numerical examples of linear and nonlinear opti-
mal control problems to illustrate the proposed RBFNN solution method. Since it
is very difficult to obtain or simulate optimal controls for general nonlinear dynamic
systems, we use the linear quadratic regulator suboptimal control as a benchmark
to check the accuracy of the RBFNN solution for linear and nonlinear dynamic
systems. We first review the suboptimal LQR control.

4.3.1 Linear Systems

Reconsider the linear quadratic regulator (LQR) design defined in the follow-
ing. The state equation of the system is linear.

ẋ(t) = Ax + Bu. (4.26)

The value function is quadratic given by

V (x(t)) =
1

2

∞∫
t

[
xT (τ)Qx(τ) + uT (τ)Ru(τ)

]
dτ =

1

2
xT (t)Sx(t). (4.27)

where S is the symmetric matrix solution of the algebraic Riccati equation [32]

SA + ATS− SBR−1BTS + Q = 0 (4.28)
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The optimal control is given by

u(t) = −R−1BT ∂V (x(t))

∂x
= −R−1BTSx (4.29)

This is a general solution for any dimension n of the state space. Now, we apply
the RBFNN solution method to compute the value function and the optimal control
for linear and nonlinear dynamic systems and compare with this optimal control
solution.

4.3.2 First-Order System

Let us first consider a first-order system to illustrate the solution process of
the RBFNN method.

ẋ = −ax+ f(x) + bu, x(0) = x0, (4.30)

where a and b are constant parameters of the system, and f(x) is a nonlinear function
of x. x0 is an initial condition. Consider a performance index,

J =

∞∫
0

L(x, u)dt (4.31)

where L(x, u) = 1
2
(xQx+ uRu), Q ≥ 0 and, R > 0. Recall the Bellman equation,

∂V (x)T

∂x
[−ax+ f(x) + bu] + L(x, u) = 0 (4.32)

For the linear system f(x) = 0, the optimal control is given by Equation
(4.29). For the general nonlinear system f(x) 6= 0, an explicit analytical expression
of the optimal control is hard to find. Here, we apply the RBFNN method to solve
the HJB equation to find the optimal control for both linear and nonlinear systems.
We have chosen Q = 10, R = 1 and the number of neurons NG = 30.

The number of sampling points Ns is chosen to be larger than the number
of neurons NG to ensure the invertibility of the matrix A in Equation (4.22). For
different systems, the sampling region Xs is larger than the maximum amplitude of
the system response while the region for the mean of Gaussian functions Xg should
cover the sampling region Xs.
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4.3.2.1 Case 1: Linear 1D System

ẋ = −x+ u,

x(0) = x0,
(4.33)

The sampling region for case 1 is chosen as Xs ∈ [−5, 5] and the region for the mean
of Gaussian functions is Xg ∈ [−6, 6]. The weights converge to the optimal solution
after 15 iterations and the performance index reaches 10−10. Figure 4.1 shows the
results comparison between the RBFNN control and LQR control. From Figure 4.1
we can see that for linear one-dimensional (1D) system, the RBFNN finds exactly
same optimal control law as LQR. The bottom figure in Figure 4.1 indicates that
the RBFNN finds a global solution in terms of spatial domain x. This can also be
validated through investigating the system response with different initial conditions,
the results are shown in Figure 4.2. With initial condition ranges from [−20, 20],
which is far beyond the sampling region of Xs, the system under RBFNN control
exponentially asymptotically converges to the equilibrium point xe = 0.

29



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-10

-5

0
RBF-NN control

LQR control

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5
RBF-NN control

LQR control

-5 -4 -3 -2 -1 0 1 2 3 4 5

-10

0

10
RBF-NN control

LQR control

Figure 4.1: Top: Comparison of control law u(t) between RBFNN control and
LQR for the linear 1D system. Middle: Comparison of system re-
sponse x(t) between RBFNN and LQR. The initial condition x(0) = 5.
Bottom: Comparison of control law u in spatial domain x between
RBFNN and LQR.
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Figure 4.2: Performance of RBFNN control with different initial conditions for the
linear 1D system.
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4.3.2.2 Case 2: Nonlinear 1D System

ẋ = x+ 10 sin(x) + u,

x(0) = x0,
(4.34)

The sampling region for case 2 is chosen as Xs ∈ [−11, 11] and the region of neural
networks is Xg ∈ [−12, 12]. Q and R are same as the linear 1D system. Figure 4.3
shows the system responses under RBFNN control and LQR control. Here LQR
control is designed based on the linear system without nonlinear term. Figure 4.4
shows the system responses under RBFNN control and LQR control. LQR control
is designed based on the linearized nonlinear system. We can see that for the first
case LQR control cannot stabilize the system under certian initial conditions and
for the second case LQR control can stabilize the nonlinear system, however, there
is a control saturation during the stabilization. Compared to LQR control in 4.4,
RBFNN control doesn’t have serious control saturaion and can stabilize the sysetm
in a short time. The RBFNN control finds the nonlinear relationship between the
control law u and state space x, which gives us the optimal control solution for
nonlinear system shown in the bottom in Figure 4.3. For nonlinear system, different
initial conditions in the region of sampling points Xs are chosen to validate the
performance of the optimal control. From Figure 4.5 we can see that for different
initial conditions in Xs, the optimal control performs well to stabilize the system.
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Figure 4.3: Top: Comparison of control law u(t) between RBFNN control and
LQR for the nonlinear 1D system. Middle: Comparison of system
response x(t) between RBFNN control and LQR. The initial condition
x(0) = 5. Bottom: Comparison of control law u in spatial domain x
between RBFNN control and LQR. Here LQR is designed based on
linear system without considering the nonlinear terms.
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Figure 4.4: Top: Comparison of control law u(t) between RBFNN control and
LQR for the nonlinear 1D system. Middle: Comparison of system
response x(t) between RBFNN control and LQR. The initial condition
x(0) = 5. Bottom: Comparison of control law u in spatial domain x
between RBFNN control and LQR. Here LQR is designed based on
the linearized nonlinear system.
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Figure 4.5: Performance of RBFNN control with different initial conditions for the
nonlinear 1D system.
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4.3.3 Second-Order System

4.3.3.1 Case 3: Linear 2D System

Consider a linear 2D system,[
ẋ1

ẋ2

]
=

[
0 1
− k
m
− c
m

] [
x1

x2

]
+

[
0
1

]
u (4.35)

where m = 1, c = 2 and k = 1. The neural networks region is chosen as Xg ∈
[−2, 2]× [−6, 6] and sampling region is chosen as Xs ∈ [−1, 1]× [−3, 3]. The number
of neurons NG × NG are 9 × 9 and the sampling points are 2NG × 2NG along the
state space vectors. Q and R are chosen as,

Q =

[
10 0
0 10

]
,R = 1 (4.36)

The results are shown from Figure 4.6 to Figure 4.8. From Figure 4.6 and
Figure 4.7 we can see that RBFNN can exactly find the same optimal solution as
LQR for 2D system. The value function is shown in Figure 4.8.
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Figure 4.6: Top: Comparison of control law u(t) between RBFNN control and
LQR for the linear 2D system. Middle: Comparison of system re-
sponse x1(t) between RBFNN control and LQR. Bottom: Compari-
son of system response x2(t) between RBFNN control and LQR. The
initial condition of the system is x(0) = [1, 1]T .
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Figure 4.7: Comparison of control law u in spatial domain x between RBFNN
control and LQR for the linear 2D system.
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Figure 4.8: Value function V (x) from RBFNN control of the linear 2D system.
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4.3.3.2 Case 4: Nonlinear 2D System

[
ẋ1

ẋ2

]
=

[
0 1
− k
m
− c
m

] [
x1

x2

]
+

[
0
β

]
sinx1 +

[
0
1

]
u (4.37)

where m = 1, c = 2, k = 1 and β = 4. The neural networks region is chosen as
Xg ∈ [−8, 8]× [−9, 9] and sampling region is chosen as Xs ∈ [−5, 5]× [−6, 6]. The
number of neurons NG×NG are 9×9 and the sampling points are 2NG×2NG along
the state space vectors. Q and R are chosen same as the linear 2D system.

From Figure 4.9 to Figure 4.10 we can see that RBFNN find the nonlinear
optimal solution to stabilize the system. Compared to LQR, RBFNN find the control
law u(x) as nonlinear function of the system state x. The value function is shown
in Figure 4.11.
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Figure 4.9: Top: Comparison of control law u(t) between RBFNN control and
LQR for the nonlinear 2D system. Middle: Comparison of system
response x1(t) between RBFNN control and LQR. Bottom: Compari-
son of system response x2(t) between RBFNN control and LQR. The
initial condition of the system is x(0) = [1, 1]T .
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Figure 4.10: Comparison of control law u in spatial domain x between RBFNN
control and LQR for the nonlinear 2D system.
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Figure 4.11: Value function V (x) from RBFNN control of the nonlinear 2D system.
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All the simulations are done on a ALIENWARE running Windows 10 with
32MB of RAM. With a limited number of neurons, the two-layer RBFNN is powerful
enough to find the solution of the optimal control in a very short time. Without using
a deep neural networks with plenty of parameters, RBFNN shows high efficiency and
good performance to find the optimal solution of nonlinear systems.

Remark 4.3.1. The sampling region and neural networks region are chosen based
on the properties of the system dynamics. Here the neural networks region needs
to be at least 5σ larger than the region of sampling, to guarantee the existence of
the matrix inverse A−1(k).

4.3.4 Robustness of RBFNN

4.3.4.1 A Second Order System

Neural networks with polynomial activation functions (Poly-NN) have been
extensively applied to find the solutions of the optimal control problems in rein-
forcement learning [16,21–23,73–77]. In the following, we compare the performance
of controls expressed in terms of the RBFNN with Gaussian neurons and the poly-
nomial neural networks (Poly-NN). Consider a second order nonlinear system,

ẋ1 = x1 + x2 − x1(x2
1 + x2

2)

ẋ2 = −x1 + x2 − x2(x2
1 + x2

2) + u (4.38)

We take the Poly-NN reported in [16] to compare with the proposed RBFNN
control. No control constraints are imposed in the comparison. Both the neural
networks are trained in the sampling region Xs ∈ [−1, 1] × [−1, 1] and applied to
two regions Xs1 ∈ [−1, 1]× [−1, 1] and Xs2 ∈ [−2, 2]× [−2, 2] to check their ability
to provide good control performance beyond the training region. This is a way to
study the generalization of the neural networks.

The Poly-NN has 24 neurons where the RBFNN has NG = 5 × 5 = 25 neu-
rons. The sampling points are Ns = 22NG for both neural networks. The standard
deviations of Gaussian neurons are σ1 = σ2 = 0.75. To investigate robustness of
the controls, we consider a disturbance d(t) to each state of the system as shown in
Figure 4.12.

d(t) =


1 + g(t), 10 ≤ t ≤ 11

5 + g(t), 20 ≤ t ≤ 21

10 + g(t), 30 ≤ t ≤ 31

g(t), else

(4.39)

where g(t) is the Gaussian white noise. Its signal-to-noise (SNR) ratio is 50dB.
The closed-loop responses are shown from Figure 4.13. Within the training

region Xs ∈ [−1, 1] × [−1, 1], the RBFNN, Poly-NN and LQR controls have about
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Figure 4.12: Disturbances to the second order nonlinear system.

the same performance when the system starts from the same initial condition x0 =
[0.5, 0.5]T and is subject to the disturbance d(t). Note that the LQR control is
designed based on the linearized system. When the disturbance becomes stronger,
the RBFNN control can still stabilize the system with reasonable effort. However,
the Poly-NN control performs poorly.

This is due to the well-known fact that polynomials generate large extrap-
olation errors in regression applications. In the case of optimal control design,
both the RBFNN and Poly-NN are trained with the sampled data in the region
Xs1 ∈ [−1, 1]× [−1, 1]. When the response of the system moves out of this region,
both the RBFNN and Poly-NN controls are based on the extrapolated solution of
the HJB equation. It is found that the Poly-NN control does not perform as good
as the RBFNN control. It is interesting to show both the controls in the training
region Xs1 ∈ [−1, 1]× [−1, 1] and in a larger region Xs2 ∈ [−2, 2]× [−2, 2]. As seen
from the figure, the Poly-NN control grows unbounded quickly outside the training
region and can no longer stabilize the system, while the RBFNN control remains
bounded and can still stabilize the system in this larger region. As a matter of
fact, the RBFNN control will remain bounded and approach zero at locations far
away from the training region, because all the Gaussian neurons with means in the
training region decrease exponentially.

Hence, the Poly-NN control is not readily ‘generalizable’ beyond the train-
ing region and thus not robust to large disturbances. The RBFNN with Gaussian
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neurons obtains nonlinear optimal controls that deliver better performance and ro-
bustness to larger disturbances than the Poly-NN can handle, and has better ability
to ‘generalize’ beyond the training region than the Poly-NN.
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Figure 4.13: Performance comparison of RBFNN, Poly-NN, and LQR controls
for the nonlinear system in Equation (4.38). Top: The control u(t).
Middle: The response x1(t). Bottom: The response x2(t).

4.3.4.2 Duffing System

Consider the Duffing system as another example to test the robustness of
RBFNN controller with changing parameters,[

ẋ1

ẋ2

]
=

[
0 1
0 −0.1

] [
x1

x2

]
+

[
0
1

]
u+

[
0
β

]
x3

1 (4.40)

The sampling region is Xs ∈ [−2, 2]× [−8, 8]. Corresponding to the sampling
region, the means of Gaussian neurons are uniformly distributed in the region Xg ∈
[−3, 3]× [−9, 9].

We take β = 2 as the nominal value and allow β to vary in a known range
[1, 6]. Both the RBFNN and LQR controls are designed with the nominal value of
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Figure 4.14: Comparison of spatial distribution of RBFNN and Poly-NN optimal
controls u as a function of the state x. Left: The control u(x) plotted
in the training region Xs1 ∈ [−1, 1] × [−1, 1]. Right: The control
u(x) plotted beyond the training region into the larger region Xs2 ∈
[−2, 2]× [−2, 2].

β. Note that the LQR control is designed for the linearized system at β = 2. The
performance index J of the LQR design is defined as,

J(x,u) =
1

2

ns∑
k=0

[
xT (k)Qx(k) +Ru2(k)

]
. (4.41)

where k is the discrete time index, and ns is number of integration steps of the
simulation. The matrices are given by

Q =

[
10 0
0 10

]
, R = 1 (4.42)

We have chosen ns = 1000. The integration time step is ∆t = 0.01 seconds.
We simulate the closed-loop system starting from the same initial condition x0 =
[0.7, 0.7]T .

The index J is used to evaluate the performance of both the RBFNN and LQR
controls. Figure 4.15 shows the performance index J as a function of β for both the
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RBFNN and LQR controls. When the actual value of β is less than 2, the nominal
value used in control design, the linearized model of the system remains valid. As
a result, the LQR control is slightly better than the RBFNN control. However,
when β > 2, the linearized model at β = 2 becomes less accurate, resulting in
poor performance of the LQR control compared with the RBFNN control. When β
reaches a critical value βcr, marked by the vertical lines in the figure, the closed-loop
system becomes unstable and the performance index J grows unbounded. For the
LQR control, βcr = 4.1579, while for the RBFNN control, βcr = 4.5263. This is a
quantitative measurement of robustness to model uncertainty.
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Figure 4.15: Robustness of the RBFNN and LQR controls with respect to the
model uncertainty β. The vertical dash lines mark the critical value
of β, beyond which the closed-loop system becomes unstable.

Finally, we should point out that the RBFNN with one hidden layer can
find optimal controls with good performance and robustness for nonlinear dynamic
systems. The design of RBFNN itself is not optimized in this study. However, there
are studies on how to design RBFNN in the literature, such as ErrCor algorithm
[61], hierarchical growing strategy (GGAP algorithm) [78], MRAN algorithm [79],
resource allocation algorithm [80], and adaptive RBF algorithms [81–83]. These
algorithms can be considered for optimal design of RBFNN architecture in the future
study.

Remark 4.3.2. Numerical examples shown above illustrate that RBFNN show sig-
nificant performance in terms of finding nonlinear optimal solutions. However, there
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is still a problem regarding to the design of RBFNN even with one hidden layer.
There are some developed algorithms found in literature for RBFNN construction,
such as ErrCor algorithm [61], hierarchical growing strategy (GGAP algorithm) [78],
MRAN algorithm [79] and so on [80]. Resources about ErrCor algorithm can be
found in: https://www.eng.auburn.edu/~wilambm/nnt/index.htm. Some adap-
tive RBF algorithms can also be found in [81–83]. These algorithms can be consid-
ered for RBFNN design in the future study.
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4.4 RBFNN with Model Reduction and Transfer Learning

In this section, the RBFNN optimal control is combined with model reduction
technique to obtain the reduced order model based optimal control. Transfer learn-
ing is introduced to compensate the model uncertianty that between the simulated
model and the hardware.

4.4.1 RBFNN Optimal Control with Reduced Order Model

Apply the RBFNN optimal control algorithm in Section 4.2.1 to the reduced
order system in Equation (3.15), the trainable weights of RBFNN can be obtained
and denoted as wr. Based on Equation (4.10) the RBFNN optimal control for the
reduced order model can be expressed as,

u(t) = −R−1
r BT

r Dg(xr(t))wr (4.43)

where Rr is the LQR gain matrix for the reduced order model. In the following sec-
tions, we illustrate how to implement the trained RBFNN and control law designed
with the reduced order system to the original system.

In this section, we discuss how to implement the optimal policy obtained
with the reduced order model to the original system. Consider two cases - stabiliza-
tion and trajectory tracking, which are two typical control problems for mechanical
systems.

For stabilization, the control law for the reduced order model can be designed
as,

u(t) = −R−1
r BT

r Dg(xr(t))wr (4.44)

For trajectory tracking case, at first define a desired trajectory as xrefr(t) for
the reduced order system. The optimal control problem amounts to finding control
u in an admissible set that drives the system from the initial state x0r to track the
desired trajectory xrefr(t). The controller is designed based on the LQR feedback
control for linear system and given as,

u(t) = −K(xr(t)− xrefr(t)) (4.45)

= Kxrefr(t)−Kxr(t) (4.46)

Recall Equation (4.10). The feedback law of the RBFNN optimal control is given
as,

u = −Kx = −R−1BTDg(x)w (4.47)
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Substitute Equation (4.47) into Equation (4.46), the control law for the reduced
order model can be obtained as,

u(t) = −R−1
r BT

r (Dg(xr(t))−Dg(xrefr(t)))wr (4.48)

A block diagram is shown in Figure 4.16 to illustrate the reduced order model based
control design.

Figure 4.16: Block diagram of the RBFNN optimal control algorithm with model
reduction.

4.4.2 RBFNN Optimal Control with Transfer Learning

When the RBFNN control presented in the previous section is well trained
using the data simulated with a sufficiently accurate model of the dynamic system, it
gives good control performance. When there are model uncertainties, unknown hard-
ware gains and external disturbances, the performance of the model-based RBFNN
control may deteriorate. To improve the robustness of the RBFNN control, we
make use of the transfer learning concept to retrain the neural networks with the
experimental data.

Transfer learning is a machine learning technique for fine tuning network
weights [84] for performance improvement when new data become available. It is
common to freeze the weights in the hidden layers of the neural networks, and retrain
the weights in the output layer with the new data. In this study, we only have one
hidden layer whose weights are retrained with the experimental data. This is done
by applying the new data to Equation (4.20) and update the network coefficients
according to Equation (4.25) during the policy iteration. The system response x(t)
is used to update the system dynamics and performance index. The system response
x(t) is collected from experiments and used to retrain the RBFNN. Note that part of
the system dynamics parameters remain model-based during the RBFNN training.
The idea is making use of the model of the system and introducing the experimental
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data to update the performance of the optimal controls. The concept of transfer
learning is compatible with this approach, allowing knowledge to be transferred from
one domain (model-based) to another (experimental).

The retrained RBFNN control is experimentally evaluated and compared
with the original model-based RBFNN control. A flowchart in Figure 4.17 summa-
rizes the RBFNN control design procedure discussed in the previous sections.

Figure 4.17: Flowchart of the RBFNN optimal control algorithm with model re-
duction and transfer learning.
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4.5 Experimental Validations

4.5.1 Quanser Qube2

In this section, the inverted pendulum is adopted to validate the RBFNN
control with a reduced-order model in Section 3.1. The rotary pendulum is a popular
dynamic system to test the performance of neural networks controls. Ref. [85]
proposes a stable adaptive neural network control scheme to suppress oscillations
and compensate external disturbances for rotary inverted pendulum. Meanwhile the
rotary pendulum has two degrees of freedom. The state space is four dimensional,
which makes the computation of RBFNN control more complicated.

4.5.2 Qube2 with Balanced Truncation

4.5.2.1 Numerical Simulations

The linearized model of the rotary pendulum at the equilibrium point is
defined as,

Jrθ̈ +mplrα̈ = τ − brθ̇ (4.49)

Jpα̈ +mplrθ̈ +mpglα = −bpα̇ (4.50)

where θ is the angle of the rotary arm, α is the angle of the pendulum, τ is the
applied torque at the base of the rotary arm. Jr = mrr

2/3 is the moment of inertia
of the rotary arm with respect to the axis of rotation of rotary arm, Jp = mpL

2
p/3

is the moment of inertial of the pendulum link relative to the axis of rotation of
pendulum, br and bp are the viscous damping of the rotary arm and the pendulum,
respectively. mr is the mass of the rotary arm and mp is the mass of the pendulum,
Lp is the length of the pendulum and l = Lp/2. The nominal values of the rotary
pendulum parameters are listed in Table 4.1. A schematic of the rotary inverted
pendulum is shown in Figure 4.18.

Note that the parameters in Table 4.1 are the nominal values provided by
Quanser. These nominal parameters and the linearized model in Equation (4.49)
and Equation (4.50) may not describe the physical system accurately.

With the linear model in Equation (4.49) and Equation (4.50) and the nom-
inal values of the parameters in Table 4.1, the pendulum model in the state space
form is given as,

ẋ(t) =


0 0 1.0 0
0 0 0 1.0
0 152.0057 −12.2542 −0.5005
0 264.3080 −12.1117 −0.8702

x(t) +


0
0

50.6372
50.0484

 τ (4.51)

y(t) =

[
1 0 0 0
0 1 0 0

]
x(t) (4.52)
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Table 4.1: Parameters of the rotary pendulum system.

Symbol Description Value

mr Mass of rotary arm 0.095 kg
r Total length of rotary arm 0.085 m
Jr Moment inertial of rotary arm 2.29×10−4 kg ·m2

br Viscous damping of rotary arm 10−3N ·m · s/rad
mp Mass of pendulum 0.024 kg
Lp Total length of pendulum 0.129 m
l Half length of pendulum 0.0645 m
Jp Primary lateral stiffness per axle 1.33×10−4 kg ·m2

bp Viscous damping coefficient 5×10−5N ·m · s/rad
g Secondary lateral stiffness 9.81 m · s2

where x = [θ, α, θ̇, α̇]T is the state vector of the rotary pendulum. The outputs are
the angles of rotary arm θ and pendulum α. For simulation purpose, it is assumed
that all the system states are the outputs to test the performance of the full state
feedback controller. In real experiment, the derivatives of the angle measurements
can be obtained through a low pass filter given as,

H(s) =
50s

s+ 50
(4.53)

We apply the balanced truncation model reduction technique in Section 3.1
to obtain the reduced order model of the rotary pendulum. The Hankel singular
values of the rotary pendulum are shown in Figure 4.19. The first two columns
represent the unstable modes of the system with infinite values, which are actually
out of the bounds of the plot. The last two columns represent the stable modes
of the system with finite singular values. Figure 4.19 suggests that the first three
eigen-modes dominate the system. Hence, the order of the reduced order model is
chosen as r = 3 to approximate the original model based on the theory of balanced
truncation.

The traditional LQR algorithm is applied to the original system as a bench-
mark to compare with the results from RBFNN. Once the reduced order model is
obtained, the LQR gain matrices for the original model and reduced order model
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Figure 4.18: Schematic of the rotary inverted pendulum.

are given as,

Q =


5 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,Qr =

Q11 0 0
0 1 0
0 0 1

 ,R = Rr = 1. (4.54)

Different values of Q11 can be chosen to test the performance of RBFNN. The
RBFNN optimal control is implemented once the reduced order model is obtained.
The sampling region for the reduced order model is chosen as X1s × X2s × X3s =
[−1, 1]× [−1, 1]× [−1, 1]. The region for Gaussian neurons is chosen as X1g×X2g×
X3g = [−4, 4]× [−4, 4]× [−4, 4]. The number of neurons NG×NG×NG are 4×4×4
and the sampling points are 2NG × 2NG × 2NG. The trained weights are denoted
as wr for the reduced order model.

Next, we apply the control to the trajectory tracking problem. The reference
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Figure 4.19: Hankel singular values of the rotary pendulum. The first two columns
represent the unstable modes of the system with infinite values.

signal is chosen as,
xref = [θr, 0, 0, 0]T (4.55)

It can be projected onto the reduced order model space through the transformation
matrix Tr in Section 3.1.2,

xrefr = T−1
r xref (4.56)

The optimal control is then given as,

u(t) = −R−1
r BT

r (Dg(xr(t))−Dg(xrefr(t)))wr (4.57)

A square wave is chosen as θr. Figures 4.20 and 4.21 show the tracking
performance of the rotary pendulum for the cases when Q11 = 5 and Q11 = 100.
A root mean square (RMS) error is defined to quantify the performance of the
trajectory tracking,

eRMS =

√√√√ 1

ns

ns∑
i=1

(θ(i)− θr(i))2 (4.58)

where ns = 50000 in the simulated rotary pendulum system with t ∈ [0, 50],∆t =
0.001. From Figure 4.20, we can see that the RBFNN optimal control has the ability
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to track the desired trajectory and shows similar results compared to LQR. The
root mean square errors of the original LQR and RBFNN are shown in Figure 4.22.
When Qr has the same diagonal value as matrix Q, the RMS of RBFNN is 4.12,
which is a little larger than 3.71 for LQR. In this case, the RBFNN controller has less
saturation compared to the LQR as shown in Figure 4.20. However, it can still track
the desired trajectory with low RMS error. In Figure 4.21, when Q11 is increased to
100, the RBFNN controller shows better tracking performance compared to LQR.
The RMS error of RBFNN controller is 3.13 which is less than LQR. Meantime
RBFNN control shows fast tracking response and comparable control saturation in
contrast to LQR.
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Figure 4.20: Tracking tracking of the rotary pendulum with the reduced order
model based RBFNN. Q11 = 5.

4.5.2.2 A Summary of Simulation Results

In this section we numerically demonstrate that the proposed RBFNN op-
timal control with reduced order model shows good performance in terms of the
trajectory tracking of the rotary pendulum. In the simulation, the RBFNN is pre-
trained and can be adopted as the initial RBFNN control for the hardware. In the
following section, we apply the pre-trained RBFNN control to the Quanser-Servo2
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Figure 4.21: Tracking tracking of the rotary pendulum with the reduced order
model based RBFNN. Q11 = 100.

inverted pendulum system to validate its performance and further apply transfer
leaning to update the RBFNN.

The rotary pendulum model not only suffers from the curse of dimensionally,
but also it is extremely hard to find a good initial stabilizing random control for the
rotary pendulum to start the policy iteration for the RBFNN optimal control. This
could be due to the unstable equilibrium of the inverted pendulum. It is found that
numerically it is much easier to find an initial stabilizer for the reduced order system
to make the RBFNN solution converge to the optimal one. This is an interesting
phenomenon that deserves further investigations.

4.5.2.3 Experimental Validation

In this section, Quanser-Servo2 inverted pendulum system is adopted to val-
idate the RBFNN optimal control algorithm. The RBFNN optimal control with
Q11 = 300 is first applied to the Quanser-Servo2. To deomonstrate the performance
of the RBFNN control, two different cases - pendulum balancing and rotary arm
trajectory tracking - are tested. The hardware setup of the Quanser-Servo2 is shown
in Figure 4.23. First, we apply RBFNN optimal control for the trajectory tracking.
A square wave is chosen as the reference signal for the rotary arm, and the tracking
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Figure 4.22: Variation of the tracking error of the rotary pendulum with differ-
ent Q11 for the reduced order model based RBFNN. The dash line
represents the tracking error of the traditional LQR and serves as a
benchmark to illustrate the performance of the reduced order model
based RBFNN.

responses from the RBFNN control are shown in Figure 4.24. The RBFNN optimal
control shows good performance to track the desired trajectory. With the trajectory
tracking experimental data available, the data in the rectangle zone on the figure
is selected to retrain the RBFNN offline to improve tracking performance. All the
experiments are done with the help of Quanser HIL and MATLAB Simulink with
t ∈ [0, 60], ∆t = 0.002.

We should point it out that the data needs to be carefully selected to retrain
the RBFNN. A chosen criterion is the error of the HJB equation during the training.
The data from experiments does not satisfy the model-based RBFNN accurately,
however, the error of the HJB equation will converge to a certain value as the weights
converge.

Quanser adopted Deep Deterministic Policy Gradient (DDPG) [86] in rein-
forcement learning to balance the inverted pendulum with designed reward function
and constrains on the rotary arm, inverted pendulum angle and motor voltage. The
nonlinear model of Quanser-Servo2 is used to train the reinforcement learning in sim-
ulation considering the safety issue of hardware. To better illustrate the performance
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Figure 4.23: Quanser-Servo2 inverted pendulum system hardware [1].

and advantages of the RBFNN optimal control, the Quanser default LQR example,
the pre-trained RBFNN in Section 4.5.2.1 and the RL policies from Qunaser [87]
are implemented to balance the pendulum and compared with the results from the
retrained RBFNN. The controls are designed to stabilize the rotary arm at 0◦. The
LQR gain matrices are same as in Section 4.5.2.1. There are two different RL policies
provided from Quanser, one is denoted as RL and another is denoted as DDPG to
follow the file names QubeIPBalRLPolicy.mat and QubeIPBalDDPG09.mat in
Quanser QUBE-Servo2 pendulum control reinforcement learning module [88]. The
performances are shown in Figures 4.25 and 4.26 in the balancing performance of
Quanser-Servo2 inverted pendulum.

Figures 4.25 to 4.26 show that there are two main issues with the RL policies
from Quanser. The RL policies are able to balance the pendulum rapidly. However,
the balanced position of the rotary arm is at around 25◦. It appears that the
reference angle of the rotary arm is not included in the reinforcement learning design.
Moreover, one of the RL policies shown as dot line in Figure 4.25 is not stable in long
time execution. It has large oscillations when t ∈ [40, 55]. The LQR and the pre-
trained RBFNN optimal control both are able to balance the pendulum with small
oscillations. However, the retrained RBFNN control shows significant suppression of
oscillations when balancing the pendulum and stabilize the rotary arm at 0◦. There
are almost no oscillations for both rotary arm and pendulum in the operation over
a long time. The voltages from different algorithms are shown in Figure 4.26. It
is obvious to see that the retrained RBFNN control requires less energy to balance
the pendulum compared to the other algorithms.
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Figure 4.24: The trajectory tracking experimental data of Quanser-Servo2 with
the pre-trained RBFNN optimal control and the selected data in the
highlighted box for re-training.

The retrained RBFNN control is also applied to track a square wave. In
this case, RL policies cannot track the desired trajectories. The tracking results of
LQR, pre-trained RBFNN and retrained RBFNN are shown in Figure 4.27. It is
shown that the retrained RBFNN control also shows much suppressed oscillations
compared to the LQR and original RBFNN. A measure of control effort is defined
in terms of the integrated absolute control voltage v(t), which is given by,

ueffort =
ns∑
i=1

|v(i)| (4.59)

A summary of the total control effort and RMS error for balancing and trajectory
tracking is listed Table 4.2.
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Figure 4.25: Rotation angle comparisons between LQR, pre-trained RBFNN, re-
trained RBFNN and the DDPG RL polices in terms of the balancing
of Quanser-Servo2. Top: Angle of pendulum θ. Bottom: Angle of
rotary arm α.

Table 4.2: Summary of control performance for LQR, RBFNN, retrained RBFNN
and DDPG RL policies.

Case Algorithm RMS ueffort

LQR 4.54 5610.35
RBFNN 2.31 5238.32

Stabilization Retrained RBFNN 1.83 2132.15
RL 4.99 3225.95
DDPG 4.99 3087.94
LQR 4.67 7410.10

Trajectory tracking RBFNN 4.08 7468.42
Retrained RBFNN 2.77 6667.54
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Figure 4.26: DC motor voltage comparisons between LQR, pre-trained RBFNN,
retrained RBFNN and the DDPG RL polices in terms of the balanc-
ing of Quanser-Servo2.
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Figure 4.27: Rotation angle comparisons between LQR, pre-trained RBFNN and
retrained RBFNN in terms of the trajectory tracking of Quanser-
Servo2. Top: Angle of pendulum θ. Bottom: Angle of rotary arm α.
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4.5.3 Qube2 with Empirical Balanced Truncation

In this section, the RBFNN optimal control is applied to the reduced order
model from empirical balanced truncation. Both numerical simulations and ex-
perimetal validations are persented in this section to illustrate the performance of
RBFNN optimal control with empirical balanced truncation.

4.5.3.1 Numerical Simulations

Figure 4.28 shows the relative output error em of the two reduced order
models compared to the output of the original system when the same input ut(t) =
e−100(t−0.2)2 is applied. em is defined as

em =

√∑ns
t=1 |y(t)− yr(t)|2∑ns

t=1 |y(t)|2
(4.60)

where ns is the number of integration steps and i is the discrete time index, corre-
sponding to the physical time t = i∆t. ∆t is the integration time step or sample
time in experiments. The relative output error of the empirical balanced trunca-
tion is less than the model-based balanced truncation as seen in Figure 4.28. This
indicates that the empirical gramians contain more accurate information than the
model-based balanced gramians.
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Figure 4.28: Top: Relative output errors of the reduced order model by the bal-
anced truncation and empirical balanced truncation. Bottom: The
input signal.
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The LQR control of the original system is taken as a benchmark to com-
pare with the performance of the RBFNN controls designed with the reduced order
models. The Q and R matrices for the LQR control of the original system and the
reduced order models are given by,

Q =


5 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , Qbt =

100 0 0
0 1 0
0 0 1

 , (4.61)

Qebt =

100 0 0
0 100 0
0 0 30

 , R = Rbt = Rebt = 1.

The sampling region for the RBFNN method with the reduced order model
is chosen as Xs = [−1, 1] × [−1, 1] × [−1, 1]. The means of Gaussian neurons are
uniformly distributed in the region: Xg = [−4, 4]× [−4, 4]× [−4, 4]. The standard
deviations of Gaussian neurons are σ1 = σ2 = σ3 = 2.6667. The number of neurons
NG = 43 = 64 and the sampling points Ns = 23NG. wr denotes the trainable
weights of the RBFNN for the reduced order model.

Consider tracking control again, the reference signal is chosen as,

xref = [θr, 0, 0, 0]T (4.62)

After that, the reference in the reduced order model space reads,

xrefr = T−1
r xref (4.63)

The optimal control is given Equation (4.57). A root mean square (RMS) error is
defined to quantify the performance of the tracking control,

eRMS =

√√√√ 1

ns

ns∑
i=1

(θ(i)− θr(i))2 (4.64)

We have chosen the time duration of 50 seconds and integration step ∆t = 0.001
seconds. Hence, the number of integration steps ns = 50000.

Consider a square wave reference. Figure 4.29 shows the performance of
the controls under consideration. From the figure, we can see that the RBFNN
optimal control has the ability to track the desired trajectory with different reduced
order models and shows similar results compared to the LQR control of the original
system. The RMS tracking errors of the RBFNN controls based on the model-based
BT and empirical BT reduced order model and the LQR are 3.13, 3.16 and 3.71,
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respectively.
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Figure 4.29: Tracking the square wave of the rotary army in simulations. In
the legend, ‘LQR’ denotes the LQR control designed with the origi-
nal model; ‘RBFNN’ denotes the RBFNN control designed with the
model-based BT; ‘Empirical RBFNN’ denotes the RBFNN control
designed with the empirical BT.
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4.5.3.2 Experimental Validation

Two control experiments of pendulum balancing and rotary arm trajectory
tracking are carried out on the Quanser-Servo2 Inverted Pendulum system with the
RBFNN optimal controllers. All the experiments are done with Quanser HIL and
MATLAB Simulink. The sample time is set to ∆t = 0.002 seconds. The tests runs
for 60 seconds. The closed-loop responses tracking the square wave as the reference
signal for rotary arm are shown in Figure 4.30. Both the RBFNN optimal controls
deliver better tracking performance than the LQR control.
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Figure 4.30: The closed-loop tracking responses θ(t) of the rotary arm of Quanser-
Servo2. Legends are the same as in Figure 4.29.

Experimental data has been obtained to improve the control performance
through retraining the neural networks. The transient responses of the system have
been eliminated and the remaining data has been restricted to the time interval
t ∈ [3, 12]s for the model-based BT design and t ∈ [3, 10]s for the empirical BT
design. The effect of re-training on balancing control is shown in Figure 4.31. It
is clear that the re-training of the neural networks with experimental data benefits
the control designed with the empirical BT most.

Figure 4.32 shows the effect of re-training on tracking control. Compared
to Figure 4.30, the performance improvement of tracking the angle θ(t) is obvious.
Moreover, suppression of many spiky responses of α(t) angle in Figure 4.33 is a
strong evidence of the benefits of re-training.
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Figure 4.31: The closed-loop responses θ(t) of the rotary arm under various con-
trols for balancing the inverted pendulum of Quanser-Servo2. Top:
Responses before re-training. Bottom: Responses after re-training.
Legends are the same as in Figure 4.29.

Table 4.3 lists the RMS tracking errors and total energies of all the controls
under consideration including the effects of re-training. It is worth noting that the
RBFNN control designed with empirical BT has the smallest RMS error.
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Table 4.3: Summary of control performance for LQR, RBFNN, empirical RBFNN,
retrained RBFNN and empirical retrained RBFNN.

Case Algorithm eRMS ueffort

LQR 4.54 4667.64
RBFNN 2.31 4080.89

Stabilization Retrained RBFNN 1.83 2769.3
Empirical RBFNN 2.86 4343.8
Retrained Empirical 0.57 3210.1
LQR 4.67 7410.1
RBFNN 4.08 7468.4

Trajectory tracking Retrained RBFNN 2.77 6667.5
Empirical RBFNN 4.34 6794.8
Retrained Empirical 3.21 8380.3
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Figure 4.32: The closed-loop tracking response θ(t) of the rotary arm of Quanser-
Servo2. Legends are the same as in Figure 4.29.
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Figure 4.33: The closed-loop response α(t) of the pendulum in the rotary arm
tracking control of Quanser-Servo2. Legends are the same as in Fig-
ure 4.29.
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The robustness of the balancing control to disturbance was also investi-
gated through experimental evaluation. A torque disturbance d(t) is injected at
t ∈ [5, 5.5]s by introducing a voltage pulse to the motor. Figure 4.34 shows that the
retrained empirical RBFNN has superb robustness to disturbance compared to the
other two controls.
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Figure 4.34: Robustness comparisons of all the controls under consideration. Top:
The closed-loop angle response θ(t) of the rotary arm in balancing
control of Quanser-Servo2. Bottom: Disturbance d(t). Legends are
the same as in Figure 4.29.

4.5.4 Conclusions

This section has applied the RBFNN optimal control approach with Gaus-
sian activation functions for Quanser Qube2 system. Instead of analytically solving
the HJB equation, the RBFNN compute the optimal control solution with high
efficiency and performance. The optimal control solution is computed off-line in
spatial domain for linear Qube2 system. Extensive numerical results and experi-
mental studies have been presented and suggest that RBFNN optimal control with
model reduction and transfer learning show good performance in terms of stabiliza-
tion and robustness. The most meaningful advantage of RBFNN optimal control is
that it shows significantly robustness improvement in terms of the optimal control
for Qube2 system with reduced order model. Moreover, the RBFNN optimal control
has the ability improve the performance by updating the neural networks weights
through limited experimental data from Qube2.
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4.6 Efficiency Improvement

The curse of dimensionality is a common issue in the neural networks so-
lutions for solving the HJB equation. To improve the computation efficiency, we
propose using RBFNN with separable Gaussian functions, taking advantage of the
factorizable property of Gaussian functions. Moreover, it is found that the com-
putation between the separable Gaussian function can be facilitated by the Kro-
necker product. In the following, a new nerual networks structure named separable
Gaussian neural networks (SGNN) is introduced. Extensive numerical examples
demonstrate that using SGNN in combination with the Kronecker product leads to
significant speedups in computation efficiency, ranging from 3× ∼ 6×.

4.6.1 Separable Gaussian Neural Networks

The Gaussian functions are adopted as activation functions in the RBFNN,
recall that the Gaussian function is defined as,

g(x,µj,Σj) =
n∏
i=1

1√
2πσj,i

exp

[
− 1

2σ2
j,i

(xi − µj,i)2

]
. (4.65)

Equation (4.65) is equivalent to the product of multiple 1-D Gaussian func-
tions expressed as,

g(x,µj,Σj) = G1(x1) ·G2(x2) · · ·Gn(xn) (4.66)

where G(xk) = 1√
2πσjk

exp(− (xk−µjk)2

2σ2
jk

).

Here the separable Gaussian neural networks (SGNN) is proposed by making
use of the factorization property of the Gaussian functions. The outputs of each
hidden layer and output layer for SGNN are proposed as,

H1 = G1(x1,µ1,σ1) (4.67)

H2 = G2(x2,µ2,σ2)(

ng1∑
i=1

ng2∑
j=1

w1
ijh1i + bi) (4.68)

· · · (4.69)

Hn = Gn(xn,µn,σn)(

ngn−1∑
i=1

ngn∑
j=1

wn−1
ij h(n−1)i + bi) (4.70)

(4.71)

where Hn represents the output from nth hidden layer, wnij represents the weights
from nth layer, i and j represent the index of outputs from previous hidden layer
and the current hidden layer. ngn represents the number of neurons at the nth
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hidden layer, hni represents outputs i from Gaussian function at the nth hidden
layer. Details of SGNN are given as:

1. Each Gaussian function can be considered as a single hidden layer in a feed-
forward neural network. Each hidden layer are connected by weights wij and
biases bi.

2. Each state space serves as a seperable input to each hidden layer.

3. To slove HJB, the state space is discritized in the specified domain. In this case,
the output from each hidden layer can be calculated by Kronecker product.
Equation 4.66 can be written as,

g(x) = G1(x1)
⊗

G2(x2)
⊗

G3(x3) · · ·Gn(xn) (4.72)

4. The weights wij and biases bi between each hidden layer are set to be 1 and
untrainable when solving the HJB equation.

5. For general applications, the standard deviations σ, mean values µ, weights
wij and biases bi are all trainable.

A diagram can be found in th Figure 4.35 to illustrate the structure of sepa-
rable Gaussian neural networks.

4.6.2 Numerical Simulations

The SGNN is found to be efficient to solve the HJB equations in optimal con-
trol. It is numerically computational expensive to solve the HJB equations when the
dimension of the system n ≥ 4. This issue can also be observed in the computation
of neural networks. To improve the computation efficiency, the SGNN is adopted to
solve the optimal control problem in terms of different dynamic systems. Additional,
the control law u and the drivative of the Gaussian functions Dg are computated
on each dimension seperately to improve the calculation efficiency. The algorithm
is shown in Algorithm 1. The matrices in Algorithm 1 are defined following the
RBFNN optimal control algorithm in Section 4.2.

Table 4.4 summarizes the performance of SGNN and compares it with RBFNN,
using 2D, 3D, and 4D systems as examples. Here NG denotes the total number of
neurons, NS denotes the total number of sampling points. Details of the design for
2D, 3D and 4D systems can be found from Section 4.6.2.2 to Section 4.6.2.3. Figure
4.36 shows the computation time comparisons for different cases with RBFNN and
SGNN. From Figure 4.36 it can be found that compared to RBFNN, the achieved
speedups of SGNN are in the range of 3× ∼ 6×.
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Figure 4.35: Flowchart of the separable Gaussian neural networks.

4.6.2.1 Case 1: 2D System

Consider the linear 2D system in Section 4.3.3.1,[
ẋ1

ẋ2

]
=

[
0 1
− k
m
− c
m

] [
x1

x2

]
+

[
0
1

]
u (4.73)

where m = 1, c = 2 and k = 1. The neural networks region is chosen as Xg ∈
[−2, 2]× [−6, 6] and sampling region is chosen as Xs ∈ [−1, 1]× [−3, 3]. The number
of neurons NG×NG are 12× 12 and the sampling points are (2NG− 1)× (2NG− 1)
along the state space vectors. The standard deviations are chosen to be σ1 = 0.4444,
σ2 = 1.3333.
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4.6.2.2 Case 2: 3D System

Consider the linear 3D system,ẋ1

ẋ2

ẋ3

 =

−2 −1 1
1 −1 0
0 0 −1

x1

x2

x3

+

0 1
1 0
1 1

 [u1 u2

]
(4.74)

The neural networks region is chosen as Xg ∈ [−3, 3]× [−3, 3]× [−3, 3] and sampling
region is chosen as Xs ∈ [−2, 2]× [−2, 2]× [−2, 2]. The number of neurons NG×NG

are 10 × 10 × 10 and the sampling points are 13 × 13 × 13 along the state space
vectors. The standard deviations are chosen to be σ1 = σ2 = σ3 = 0.6667.

4.6.2.3 Case 3: 4D System

Consider the linear 4D system,
ẋ1

ẋ2

ẋ3

ẋ4

 =


−2 −1 1 −1
−1 −1 0 1
−1 0 −1 −1
−1 −1 0 −1



x1

x2

x3

x4

+


1
1
1
1

u (4.75)

The neural networks region is chosen as Xg ∈ [−3, 3]× [−3, 3]× [−3, 3]× [−3, 3] and
sampling region is chosen as Xs ∈ [−1, 1]× [−1, 1]× [−1, 1]× [−1, 1]. The number
of neurons NG1 ×NG2 ×NG3 ×NG4 are 5 × 5 × 5 × 5 and the sampling points are
7× 7× 7× 7 along the state space vectors. The standard deviations are chosen to
be σ1 = σ2 = σ3 = σ4 = 1.5.

Table 4.4: Summary of computation performance for RBFNN and SGNN.

Neural Networks Performance 2D 3D 4D

Time(s) 0.7789 4.2669 13.3796
SGNN NG 144 1000 625

NS 529 1331 2401
Time(s) 2.9278 23.0905 56.8583

RBFNN NG 144 1000 625
NS 529 1331 2401

75



2D 3D 4D

0

10

20

30

40

50

60

RBFNN

SGNN

Figure 4.36: Computation time comparisons between RBFNN and SGNN for 2D,
3D and 4D systems.
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Algorithm 1 SGNN solution for optimal control algorithm

1: RBF setting: Number of neurons NG, number of sampling pointsNS, µi and
σi are fixed.

2: LQR setting: Q, R are diagonal matrices.
3: Initialize:
4: w0 ← NG × 1 . Initialize the initial weights of RBF
5: u← NS ×m . m is the number of controls.
6: k ← 1 . Initialize iteration step
7: while i < Ns do
8: Dg(i, :, :) ← NS ×NG × n . Calculate the matrix Dg from Kronecker

product, n is the dimension of the system.
9: S1 = f(xs(:, i)) ∗Dg(i, :, :)
10: L1 = 1

2
∗ xs(:, i)

T ∗Q ∗ xs(:, i)
11: i = i+ 1
12: end while
13: gt = gT ← m× n
14: while k ≤ Time points do
15: S2 ← NS ×NG . All the elements in S2 are set to be zero
16: L2 ← NS × 1 . All the elements in L2 are set to be zero
17: BDg ← NS ×m . All the elements in BDg are set to be zero
18: while i < m do
19: while j < n do
20: BDg(:, i) = BDg(:, i) + gt(i, j) ∗Dg(:, :, j) ∗w(:, k)
21: j = j + 1
22: end while
23: u(:, i) = −1/R(i, i) ∗BDg(:, i)
24: L2 = L2 + 1

2
∗ u(:, i) · u(:, i) ∗R(i, i) . · represent the doc product

25: i = i+ 1
26: end while
27: uTBT = u ∗ gt ← Ns × n
28: while i < n do
29: S2 = S2 + uTBT(:, i) ·Dg(:, :, i)
30: i = i+ 1
31: end while
32: S = S1 + S2

33: L = L1 + L2

34: Ag = ST ∗ S
35: b = L ∗ S
36: w(:, k + 1) = −A−1

g ∗ b
37: k ← k + 1
38: end while
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4.7 Conclusions

This section has presented a RBFNN optimal control approach with Gaussian
activation functions. Instead of analytically solving the HJB equation, the RBFNN
compute the optimal control solution with high efficiency and performance. The op-
timal control solution is computed off-line in the spatial domain for linear dynamic
systems. Extensive numerical results and experimental studies have been presented
and suggest that the RBFNN optimal control with model reduction and transfer
learning show good performance in terms of computational cost, better approxima-
tion and control performance owing to its simple and fixed architecture. Optimal
control from LQR and neural networks with reinforcement learning are chosen as
benchmarks to compare with the performance of the proposed RBFNN control. The
significant advantage of RBFNN optimal control is that it can improve the control
performance by updating the neural networks weights through limited experimental
data. Balanced truncation is introduced to reduce the order of the dynamic systems
so as to improve the computation efficiency. Moreover, a seperable Gaussian neural
networks is first proposed to solve the optimal control problem and improve the
computation process of the neural networks. Numerical examples show that SGNN
speeds up to 3× ∼ 6× compared to original RBFNN.
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Chapter 5

EXTENDED STATE OBSERVERS WITH RECURSIVE
LEAST SQUARES ALGORITHM

The ESO was first proposed in [89] and is one of the core concepts in active
disturbance rejection control (ADRC). A linear ESO was proposed in [90], which
was much simpler to design than the general nonlinear ESO. Without exploiting the
mathematical model of uncertainties, the ESO has been proven to be an effective
approach to estimate disturbances and uncertainties [91]. This is the key advan-
tage of the ESO. The ESO-based controls have been widely studied including the
control of DC motor [92], wind energy system [93] and hypersonic vehicles [94]. A
good survey about the development of the extended state observer can be found
in reference [95]. The extensive applications and accurate performance of the ESO
motivate us to explore it for estimation of unknown dynamics. Without dealing
with either the complex matrix calculation in the Kalman filter or the data require-
ments in machine learning, the ESO is simple to implement and yields the same
accurate results as the Kalman filter and neural networks would. To implement the
ESO, the reconstructed extended observer system is required to be observable. The
observability of the ESO has drawn much attention from researchers when dealing
with large scale systems. The sufficient condition for observability of the ESO for
structural systems with rigid body and elastic modes has been found in [96]. To
investigate the observability of the ESO for reconstructed extended observer system,
the special structure of the ESO helps us find the minimum number of sensors to
estimate the unkonwn dynamics, which has not been studied in other publications
to the best of the author’s knowledge.

5.1 Extended State Observer

Consider the LTI system with unknown dynamics given as,

ẋ = Ax + Bu(t) + Bf f(t),x(t0) = x0 (5.1)

y = Cx (5.2)
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where A ∈ Rn×n, B ∈ Rn×q, Bf ∈ Rn×p, f(t) ∈ Rp×1, C ∈ Rm×n. In this section, we
design the observers to estimate the time-varying unknown dynamics f(t). In order
to estimate the unknown dynamics f(t), we introduce a new state as,

xn(t) = f(t) ∈ Rp×1 (5.3)

Define an extended state vector as xe(t) = [x(t); xn(t)] ∈ R(n+p)×1. The extended
state equation reads,

ẋe(t) = Aexe(t) + Beu(t) + Bhh (5.4)

ye(t) = Cexe(t)

where the output of the extended state system is the same as the original output
ye(t) = y(t) ∈ Rm×1. The extended state system matrices and vectors Ae, Be, Ce,
Bh, and h are given by

Ae =

[
As Bf

0p×n 0p×p

]
∈ R(n+p)×(n+p), Be =

[
Bu

0p×q

]
∈ R(n+p)×q

Ce =
[
C,0m×p

]
∈ Rm×(n+p), Bh =

[
0n×p
Ip

]
∈ R(n+p)×p (5.5)

h ≈ ḟ(t) ∈ Rp×1

It should be noted that h is an estimate of the derivative of the unknown dynamics
ḟ(t). More discussions about it will be presented later. A linear extended state
observer (LESO) for the extended state system in Equation (5.4) can be designed
as [90]

˙̂xe(t) = Aex̂e(t) + Beu(t) + L(y(t)− ŷ(t)) (5.6)

ŷ(t) = Cex̂e(t) (5.7)

where L is the observer gain matrix, x̂e(t) is an estimate of the extended state xe(t).
Define the estimation error as x̃e(t) = xe(t)− x̂e(t). Making use of Equation (5.6),
we obtain

˙̃xe(t) = (Ae − LCe)x̃e(t) + Bhh (5.8)

Since the term Bhh can be viewed as an external disturbance to the observer,
when the pair (Ae,Ce) is observable, we can find a gain matrix L to make the
matrix Ae − LCe Hurwitz stable. Hence, when the ESO system is observable and
h is bounded, the estimation error x̃e(t) will be bounded.

The sensor system design usually addresses these issues: what and how many
of physical quantities should be measured as the outputs so that the ESO in Equation
(5.6) is observable. In the following sections, we first study the observability of the
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ESO and then the sensor choices to estimate the unknown dynamics in the system.

5.2 Observability Analysis

The observability matrix is defined as

O =


Ce

CeAe

CeA
2
e

...
CeA

n−1
e

 (5.9)

When O has a full rank n, the system is observable. However, when the order of
the system is high (n � 1) and when the state matrix Ae is ill-conditioned, the
numerical evaluation of the rank of O becomes highly unreliable.

An alternative way to check observability is to use the PBH test as stated in
the following theorem.

Theorem 5.2.1. Consider the extended state matrix Ae ∈ R(n+p)×(n+p) and the
output matrix Ce ∈ Rm×(n+p). The pair (Ae,Ce) is observable if and only if the
(n+ p+m)× (n+ p) matrix,

Oλ ≡
[
Ae − λeI(n+p)

Ce

]
(5.10)

has rank n+ p for every eigenvalue λe of Ae, and for the corresponding right eigen-
vector a of Ae such that Cea 6= 0.

The proof of the theorem can be found in [97]. We shall apply Theorem 5.2.1
to determine the observability of the pair (Ae, Ce) for the ESO.

5.2.1 Properties of Block Matrix Rank

Let us first review the mathematical properties of the rank of block matrices.
Consider the matrices M ∈ Rm×n, N ∈ Rl×n, P ∈ Rm×k, and 0 ∈ Rl×k. We use
r(·) to denote the rank of a matrix. The rank of block matrices has the following
equality properties [98, 99].

1.

r

([
M P
N 0

])
= r(N) + r(P) + r((Im −PP+)M(In −N+N)) (5.11)
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2.

r(In −M+M) = n− r(M) (5.12)

r(Im −MM+) = m− r(M) (5.13)

where M+, N+, P+ are defined as the Moore-Penrose inverses of the matrix
M, N and P.

5.2.2 Rank of Observability Matrix Oλ
In this section, we shall find the necessary condition for observability of the

ESO. Before we present a lemma, let us introduce the matrices involved in the
observability.

The matrices for the ESO are given by,

Ae =

[
As Bf

0 0

]
∈ R(n+p)×(n+p), Ce =

[
C,0

]
∈ Rm×(n+p) (5.14)

where As ∈ Rn×n, Bf ∈ Rn×p, C ∈ Rm×n. λe is an eigenvalue of matrix Ae. We
apply the PBH test in Theorem 5.2.1 to determine the observability of pair (Ae,Ce)
and study the rank of the matrix Oλ for every eigenvalue λe of the matrix Ae,

Oλ =

[
Ae − λeI(n+p)

Ce

]
=

As − λeIn Bf

0 −λeIp
C 0

 =

[
Ash Bfh

C 0

]
(5.15)

where Bfh and Ash are defined as,

Ash =

[
As − λeIn

0

]
∈ R(n+p)×n,Bfh =

[
Bf

−λeIp

]
∈ R(n+p)×p (5.16)

Lemma 5.2.2. The observability matrix Oλ is full rank if the following conditions
hold.

1.

r((In −BfhB
+
fh)Ash(In −C+C)) = min(r(In −BfhB

+
fh), r(In −C+C)) for λe 6= 0

r((In −BfB
+
f )As(In −C+C)) = min(r(In −BfB

+
f ), r(In −C+C)) for λe = 0

(5.17)

2. The number of the output m ≥ p

where m is the number of rows of the matrix C, p is the number of columns of the
matrix Bf and λe is an eigenvalue of the matrix Ae.
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Proof. Making use of Property 1 of block matrices in Equation (5.11), we obtain
the rank of the matrix Oλ as,

r(Oλ) = r(C) + r(Bfh) + r((In+p −BfhB
+
fh)Ash(In −C+C))

= m+ p+ r((In+p −BfhB
+
fh)Ash(In −C+C)) (5.18)

where we have used the results r(C) = m and r(Bfh) = r(Bf ) = p.
Since the eigenvalues of the matrix Ae consist of the non-zero eigenvalues

of the matrix As and p zero eigenvalues associated with the extended states. We
consider these two cases separately.

Making use of Property 2, we have

r(In+p −BfhB
+
fh) = n+ p− r(Bfh) = n (5.19)

r(In −C+C) = n− r(C) = n−m (5.20)

If Condition 1 in Lemma 5.2.2 holds, we have

r((In+p −BfhB
+
fh)Ash(In −C+C))

= min(r(In+p −BfhB
+
fh), r(In −C+C)) = n−m

(5.21)

Hence,
r(Oλ) = n+ p (5.22)

That is, the observability matrix Oλ is full rank.
For the zero eigenvalues λe = 0, the rank of the block matrix can be obtained

as follows.

r(Oλ) = r

As Bf

0 0
C 0

 = r

([
As Bf

C 0

])
= r(C) + r(Bf ) + r((In −BfB

+
f )As(In −C+C)) (5.23)

Based on Property 2, the rank of matrices (In −BfB
+
f ) can be obtained as,

r(In −BfB
+
f ) = n− r(Bf ) = n− p (5.24)

When both Conditions 1 and 2 (m ≥ p) of Lemma 5.2.2 hold, we obtain the
following,

r((In −BfB
+
f )As(In −C+C))

= min(r(In −BfB
+
f ), r(In −C+C)) = n−m

(5.25)
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Hence, the matrix Oλ has a full rank, which is given by,

r(Oλ) = m+ p+ (n−m) = n+ p (5.26)

Remark 5.2.1. We should point out the implication of the second condition, i.e.
m ≥ p, of Lemma 5.2.2. The number p of independent unknown dynamics terms
is clearly a lower bound for the number of sensors needed in order to make the
extended state observable.

Another condition of Theorem 5.2.1, Cea 6= 0, has to be checked separately
to confirm the observability of the extended state system.

5.3 Recursive Least Squares Algorithm

Once the unknown dynamics are estimated with the help of extended state
observer, the recursive least squares (RLS) algorithm [100] can be applied to estimate
the system parameters contained in the dynamics. The RLS algorithm is one of
the least squares algorithms that is used to estimate the parameters of a linear
model in real-time. The RLS algorithm is particularly useful when the data is
collected sequentially over time, through computing the optimal estimate of the
regression coefficients by minimizing the sum of the squared errors between the
observations and predictions. One of the advantages of the RLS algorithm is that
it can identify dynamic system parameters in real-time, saving computation power.
The RLS algorithm is a powerful tool for modeling and predicting time-series data
with wide applications to signal processing, control systems and communications.
The specific details of how the algorithm is computed can be found below.

Define an objective function as,

J =
1

2

ns∑
i=1

(f̂(i)−ϕT (i)η̂)2 (5.27)

where ns is the number of sampled data points of the motion signals and η̂ is an
estimate of the parameter vector η ∈ Rnp×1. np is the number of parameters to

estimate. f̂(i) is the estimated unknown dynamics at each sampling point, f̂ ∈
Rns×1. Note that same derivations can be extended to f̂ ∈ Rns×p. η̂ is determined
to minimize the objective function J . Introduce a data vector and a data matrix as

f̂ = [f̂(1), f̂(2), · · · , f̂(ns)]
T ∈ Rns×1 (5.28)

φ(ns) = [ϕ(1),ϕ(2), · · ·ϕ(ns)]
T ∈ Rns×np (5.29)
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Assume that for a given number ns of data points, the data matrix φTφ(ns) ∈
Rnp×np is non-singular. The optimal estimate of the parameter can be obtained as,

η̂(ns) = P(ns)φ
T f̂ (5.30)

where
P(ns) = (φT (ns)φ(ns))

−1 (5.31)

The optimal estimate can be computed with the recursive least squares algorithm
when there is a sufficient number of data points, i.e. when ns � 1 [100]. Making
use of Equations (5.30) and (5.31), we re-write the estimated parameter as,

η̂(ns) = P(ns)
ns∑
i=1

ϕ(i)f̂(i) (5.32)

= P(ns)

[
ns−1∑
i=1

ϕ(i)f̂(i) +ϕ(ns)f̂(ns)

]
(5.33)

= P(ns)[P
−1(ns − 1)η̂(ns − 1) +ϕ(ns)f̂(ns)] (5.34)

From Equation (5.31), we have

P−1(ns) = φT (ns)φ(ns) =
ns∑
i=1

ϕ(i)ϕT (i) (5.35)

=
ns−1∑
i=1

ϕ(i)ϕT (i) +ϕ(ns)ϕ
T (ns)

= P−1(ns − 1) +ϕ(ns)ϕ
T (ns)

where P−1(ns − 1) can be computed as,

P−1(ns − 1) = P−1(ns)−ϕ(ns)ϕ
T (ns) (5.36)

The final recursive equations are summarized as follows.

η̂(ns) = η̂(ns − 1) + K(ns)[f̂(ns)−ϕT (ns)η̂(ns − 1)] (5.37)

where

K(ns) = P(ns)ϕ(ns)

= P(ns − 1)ϕ(ns)[I +ϕT (ns)P(ns − 1)ϕ(ns)]
−1 (5.38)

P(ns) = [I−K(ns)ϕ
T (ns)]P(ns − 1) (5.39)
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5.4 Conclusions

In this section, the ESO is adopted to estimate the unknown dynamics. Fur-
thermore, the observability of the ESO for reconstructed extended observer system
has been investigated in detail. The special structure of the ESO can help us find
the minimum number of sensors to estimate the unknown dynamics. Once the un-
known dynamics are estimated, the recursive least squares algorithm is adopted to
identify the system parameters.
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Chapter 6

ENGINEERING APPLICATION I

6.1 High Speed Train Bogie

To date, high-speed train plays an important role in the transportation and
has become the fastest ground-level infrastructure worldwide. Dynamics and control
of the high-speed train for the improvement of stability and safety has attracted
tremendous attention from scholars and engineers [101–103]. As a crucial subsystem
of the high-speed train, the bogie interacts with the rail through the suspension and
heavily influences the stability of the system. The bogie has quite a few degrees
of freedom, and is usually quite restricted in terms of the placement of sensors
and actuators. Furthermore, the interaction forces between the wheel and rail are
typically nonlinear and destabilizing when the speed of the train is high enough. As
the bogie is an underactuated mechanical system with complex interactions with the
environment, it remains quite challenging to develop effective controls for improving
the stability of the train at a high speed. For example, the actuators installed
on the bogie do not have direct controls over the wheel-rail interactions which are
responsible for the hunting instability. The control must take advantages of dynamic
coupling of different degrees of freedom in order to increase the train speed while
maintaining stability. This chapter presents a control design making use of the
balanced truncation reduced order model, which assists us in finding the dominant
coupled dynamics of the bogie and thus streamlines control design.

There have been many control studies of the bogie [104, 105], in particular,
to improve the hunting stability [2, 106]. The semi-active controls of the suspen-
sion have been studied including the H∞ control [107] and optimal control with
magnetorheological (MR) dampers [108]. These semi-active controls also improve
the riding comfort. Other active strategies using feedback controls to enhance the
hunting stability of the bogie have also been developed [104, 105, 109]. The ge-
netic algorithm NAGA-II is adopted to optimize controls for improving the hunting
stability [2] and to find the optimal suspension parameters [110].

Not much attention has been paid on exploration of the nature of being
underactuated as well as the high dimensions of the bogie in the literature. To
address these issues, this section presents a new control approach by developing
an extended balanced truncation model reduction (BTMR) method to increase the
critical train speed while keeping the bogie stable. The BTMR has been applied to
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control design for high dimensional systems with thousands of degrees of freedom
[111, 112]. The BTMR method is applied to study the dynamics of a high-speed
bogie in [113], where the responses of the reduced order system is compared to
those of the full order model. However, the BTMR method has not been adopted
for the control design of the bogie in the literature. This section introduces the
BTMR method to design control for high dimensional underactuated multi-input-
multi-output (MIMO) bogie system. The main contributions of this chapter are
summarized below.

1. The BTMR method is introduced to deal with the underactuated property of
the high dimensional bogie system with unstable dynamics.

2. The balanced truncation (BT) reduced order model of the system is created
that captures the system dynamics accurately, and provides a platform for
control design.

3. The BTMR method with non-zero initial conditions is extended to the control
design problem of underactuated mechanical systems.

6.1.1 Model of Bogie

The bogie satisfies the equations of motion of Newton’s law in reference to the
compartment. This formulation implies an assumption that the compartment body
moves with a constant speed in a straight path and that its dynamics is ignored
in the description of the bogie motion. In particular, we consider the model of the
bogie with 8 degrees of freedom as reported in [2].

Mz̈ + CDż + Kz = Eu (6.1)

where z = [yw1, ϕw1, yw2, ϕw2, yf , ϕf , ym1, ym2]T ∈ R8×1 consists of eight linear and
rotational displacements of the bogie. u ∈ R2×1 are two controls as indicated in
Figure 6.1. M ∈ R8×8 is the symmetric and positive definite mass matrix. CD ∈
R8×8 is the symmetric semi-positive definite damping matrix. K ∈ R8×8 is the
stiffness matrix. E ∈ R8×2 is the matrix describing the influence of controls on the
motion of the bogie. The stiffness matrix as given in [2] contains the rail-wheel
interaction forces which destroy the symmetry of the matrix. This is the source
of instability of hunting motion. When the system has enough damping when the
train travels at relatively low speed, the dynamics is still stable. When the train
speed increases beyond a critical value, the damping decreases enough so that the
rail-wheel interaction forces destabilize the system and cause hunting motion.
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Figure 6.1: Dynamic model of bogie system (Picture from [2]).

Define a state vector as x = [z, ż]T ∈ R16×1. We arrive at a LTI system in
the state space,

ẋ(t) = Ax(t) + Bu(t) (6.2)

y(t) = Cx(t)

where y is a vector of measured outputs of the system. The matrices A, B and C
are given by

A =

[
0 I

−M−1K −M−1CD

]
∈ R16×16 (6.3)

B =

[
0

M−1E

]
∈ R16×2, C = [I,0] ∈ R4×16

All the definitions of displacements, system parameters and matrices of the
bogie can be found in [2]. By examining matrices A and B, it is obvious that the
bogie is a relatively high dimensional, strongly coupled underactuated system. In
Section 3.1, we introduce the BTMR method to find a reduced order model of the
system, which keeps the main features of the original system and is amenable to the
control design. We should also note that the condition for existence of the unique
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solution of Equation (3.4) in Chapter 3 is satisfied by the bogie model as we find
out in the numerical simulations.

6.1.2 BT Reduced Order Model of the Bogie

We now apply the BTMR method to the bogie. Recall that some components
of the damping matrix CD of the bogie decreases as the train speed increases. When
the speed is sufficiently high, the wheel-rail interaction terms as asymmetric parts of
the stiffness matrix drive the train into hunting instability. Hence, we must apply the
extended BTMR method presented earlier to the system with unstable dynamics.

There are many ways to investigate the instability as a function of the train
speed. Since we always compute the eigenvalues of the bogie, we can use the relative
stability criterion, i.e. the damping ratio of the complex eigenvalues, to find the
critical speed of the bogie. The minimum damping ratio of all the eigenvalues is
calculated with respect to the train speed. Figure 6.13 shows the damping ratio as
a function of the train speed for various cases. The minimum damping ratio is equal
to zero when the train speed is said to be critical. For the current bogie system, the
open-loop critical train speed is found to be 415 km/h.

In the following, we show two examples of application of the BTMR method
to the bogie. The first one is for the stable case when the train speed v = 360 km/h
is below the critical speed. The Hankel singular values, transformation matrix T and
the balanced truncation reduced order model of the bogie can be obtained directly.
In all the computations, we have chosen X0 to be the unit matrix as discussed
previously. From Equation (3.26), we know that the norm of the output error is
bounded. Figure 6.2 shows the norm of the original system output and reduced
model output in open loop. The difference between the two is indeed bounded and
the norm of error between the outputs is also shown in Figure 6.2. The Hankel
singular values of the bogie are shown in Figure 6.5. Recall that the bogie model
has 8 degrees of freedom, i.e. 16 states. Figure 6.5 suggests that the last twelve
states with low energy can be truncated. This result also implies that when the
bogie is stable, there are only two modes which dominate the system response. This
further suggests that only two properly placed controls may be sufficient to control
the dominant dynamics of the bogie.

The physical degrees of freedom contributing to the two stable dominant
modes can be identified as follows.

Recall the transformation of the BT method in Equation (3.20). We have

A = TABTT−1 (6.4)

Apply the modal decomposition to the matrix ABT . We have

ABT = M−1DM (6.5)
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Figure 6.2: Top: Comparison of the L2 norm of the original system and reduced
order model output in stable case. The two outputs are almost indis-
tinguishable. Bottom: The L2 norm of the output error.

where M is the modal matrix of ABT and D is a diagonal matrix consisting of
eigenvalues of ABT . Hence, the matrix A reads

A = TM−1DMT−1 = H−1DH (6.6)

where H = MT−1. The columns of the matrix H are the modal eigenvectors of
A, while the diagonal matrix D consists of the eigenvalues of A. By examining
the matrix D, we can identify the two stable dominant modes in the transformed
system. The modal participation of the physical degrees of freedom in the two
dominant modes is shown in Figure 6.3. It is clear that the two dominant modes
consist of special linear combinations of the physical degrees of freedom.

The second example considers the unstable bogie when the train speed is
beyond the critical speed 415 km/h. We select v = 432 km/h. We must apply
the extended BTMR method discussed earlier. Figure 6.4 shows the comparison
between the original system output and the reduced order system output. The error
bound in Figure 6.4 shows that the reduced order system is a good approximation
of the original system in terms of the output for unstable case. This allows us to
further investigate the control design probability by making use of the reduced order
system in later section. Figure 6.6 shows the Hankel singular values. The two stars
represent the unstable modes of the system with infinite values, which are actually
out of the bounds of the plot. The circles represent the stable modes of the bogie
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Figure 6.3: Modal participation of the physical degrees of freedom to the two
dominant stable modes in the transformed system. The variable
number refers to the position of various displacements in the vector
z = [yw1, ϕw1, yw2, ϕw2, yf , ϕf , ym1, ym2]T .

with finite singular values.
If we choose the same truncation criterion by considering the Hankel singular

values, we would keep 6 states, i.e. two unstable states and the first four stable
states. The reduced order model is thus of order six. To be able to fully control
these states, we would need three properly designed controls. On the other hand,
if we continue to keep only four states, i.e. two unstable and two stable states, the
reduced order model would be of order four. Two controls could fully regulate the
motion of the reduced order model dynamics.

Finally, we point out that the BT reduced order model retains the unstable
states and has the same stability properties as the original system.

6.1.3 Simulations of Bogie Control

In this section, we shall simulate the control with the Luenberger observer
designed in Section 3.3.2. We consider both the stable and unstable cases of the
bogie. To better illustrate the performance of the control, a numerical criterion is
introduced. Assume that all the states converge to zero under the control. The
numerical criterion is defined as the settling time ts such that for t ≥ ts, ||x(t)||L2 ≤
0.01 .
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Figure 6.4: Top: Comparison of the L2 norm of the original system and reduced
order model output in unstable case. The two outputs are almost
indistinguishable. Bottom: The L2 norm of the output error.
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Figure 6.5: Hankel singular values of the stable bogie when the train speed v = 360
km/h is below the critical speed.
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Figure 6.6: Hankel singular values of the unstable bogie when the train speed
v = 432 km/h is beyond the critical speed. The two stars represent
the unstable modes of the system with infinite values.
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Figure 6.7: Example of estimated states and estimation errors when the train
speed is v = 360km/h. Top: The estimated state x̂r1(t). Bottom:
The norm of the estimation errors ey(t).
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Figure 6.8: Example of estimated states and estimation errors when the train
speed is v = 432km/h. That is, the open-loop is unstable. Top: The
estimated state x̂r1(t). Bottom: The norm of the estimation errors
ey(t).

6.1.3.1 Stable Case

Let the train velocity be 360 km/h less than the critical speed 415 km/h.
The initial conditions are xi(0) = 0.01 for 1 ≤ i ≤ 16. The matrices for the LQR
control are selected as,

Q = 100000I,R =

[
10−6 0

0 10−6

]
(6.7)

where I ∈ R4×4 is the identity matrix. The observer gain L is designed to make
the state estimation converge fast than the closed-loop pole of the control. In the
examples reported later, we have chosen the closed-loop poles of the observer at
−245.5 ± i1234.6. Note that this is a double pole, and 10 to 100 times faster than
the closed-loop poles of the control.

Figure 6.9 shows the time history of the two controls and the first state x1(t)
of both the open-loop and closed-loop system. Other states have similar behavior
and are not shown for the sake of clarity.

The control drives the states to zero faster than the naturally damped free
response. The norms of the state vector of the closed-loop and open-loop system
are shown in Figure 6.10. In this case, the control leads to a settling time ts = 4.10
seconds as compared to ts = 6.14 seconds of the free response.
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Figure 6.9: Controls and state x1(t) of the stable bogie.
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Figure 6.10: Comparison of the norms of the open-loop and closed-loop state x(t)
for the stable bogie.
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Figure 6.11: Controls and state x1(t) of the unstable bogie.

6.1.3.2 Unstable Case

Let the train speed be v = 432 km/h. For the unstable bogie, we keep the
same initial conditions, matrices Q and R as for the stable bogie. Figure 6.11 shows
the controls and state x1(t). Results show that the BTMR method works well to
stabilize the unstable bogie system and to further improve the hunting stability of
the train at a speed higher than the open-loop critical speed 415 km/h.

In simulations, it takes about 8.78 seconds for the controlled bogie system
to settle in the range ||x||L2 ≤ 0.01. Recall that the response of the open-loop
system grows unbounded as time increases. The L2 norm of the states of the closed-
loop system is shown in Figure 6.12. The figure indicates that all the states of the
closed-loop system are stabilized.

6.1.3.3 Robustness and Stability Improvement

Results in Section 6.1.3.1 and Section 6.1.3.2 prove that the LQR control is
effective in improving the hunting stability of the bogie at high speed. It should
be pointed out that the train speed can be viewed as a design parameter when the
LQR control is considered. Since the train speed changes during operation, and
there are disturbances and uncertainties, it is necessary to examine the robustness
of the control. One question we like to address is: If the control is designed for a
given train speed, is the closed-loop system still stable for other speeds, particularly
for higher speed than the design targeted speed?
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Figure 6.12: Norm of the closed-loop state x(t) for unstable case. The norm of
the open-loop state grows unbounded.

With the control law in Equation (3.35), the closed-loop system can be writ-
ten as,

ẋ = Ax(t)−BKoptxr(t) (6.8)

Recall the total transformation x = TxBT where

xBT =

[
xr
xt

]
= T−1x. (6.9)

It is noted again that the reduced order state vector xr in the above equation may
contain unstable states if the transformation T is designed for the bogie traveling
at speed above 415 km/h. Let us partition the inverse transformation T−1 as

T−1 =

[
T−1
r

T−1
t

]
. (6.10)

where T−1
r ∈ Rr×n. Hence, we have

xr = T−1
r x. (6.11)

The closed-loop system matrix Acl becomes,

Acl = A−BKoptT
−1
r (6.12)
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The variation of the closed-loop minimum damping ratio ζmin with the train
speed is shown in Figure 6.13. It is seen from the figure that the control designed
for a specific train speed keeps the bogie stable for a wide range of train speed
including the speed higher than the targeted design speed and even higher than the
critical speed of the open-loop system. For example, the control designed at speed
432 km/h stabilizes the system up to the speed 490 km/h. This is an excellent
control robustness. Hence, the proposed control has potential to increase the train
speed without hunting instability.

Figure 6.13 also shows that ζmin achieves a maximum at some speed, which
represents the highest stability margin of the given control. An interesting question
to ask is: Can we design the control such that the maximum of ζmin occurs at
a desired train speed? With a proper choice of Q and R matrices in the LQR
formulation such as,

Q = 100000I,R =

[
10−7 0

0 10−7

]
(6.13)

we can indeed place the maximum of ζmin at 400 km/h, for example. The dashed
curve in Figure 6.13 shows the result of the example. An optimization procedure is
yet to be developed to do this kind of control design systematically.
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Figure 6.13: The minimum damping ratio ζ of all the eigenvalues of the matrix Acl.
The diamonds represent different targeted train speeds for the control
design. The circles denote the open-loop and closed-loop critical
speeds of the bogie. The higher dashed line with∇ symbol represents
the case when the control is designed for the speed vtarget = 400km/h
with the choice of Q and R in Equation (6.13). The dotted line
indicates the open-loop critical speed v = 415 km/h. The positive
and negative symbols of ζmin were switched to better illustrate the
figure.
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6.1.4 Conclusions

We have presented a balanced truncation reduced order model for the bogie
of high-speed train, which is severely underactuated and difficult to control. The
reduced order model allows us to focus on the dominant dynamics of the system and
to develop effective controls to improve the hunting stability and increase the critical
speed. Although various methods for model reduction have been well studied in the
literature, the application of these methods to such a complex and multi-degree-
of-freedom underactuated dynamic system is rare. The reduced order model opens
the opportunities to choose various controls for the bogie. As an example, the
LQR optimal control is designed for the reduced order model of the bogie together
with a Leunberger observer. The control is then implemented on the full model of
the bogie. Extensive numerical simulations have been presented and suggest that
the control designed with the help of the reduced order model can substantially
improve the hunting stability over a wide range of train speeds. This indicates a
strong robustness of the control with respect to the train speed, as measured by the
stability robustness measure introduced in this section. We have also examined the
effect of the train speed, which is pre-selected in the control design. An optimization
problem can be formulated such that the closed-loop system has the largest stability
margin at a preferred speed. This will be the topic of a subsequent study.
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6.2 Wheel-rail Interactions Estimation

Wheel-rail contact forces are usually nonlinear, motion dependent, time vary-
ing, and destabilizing. The wear, irregularity, and fatigue of the wheel and rail are
primarily due to the wheel-rail contact forces. As interest in high-speed trains con-
tinue to increase, stability and the safety of operations have received much attention
from the research community. It has become apparent that in order to design ef-
fective controls to improve the performance of the train in motion, and to monitor
the health of the wheel and rail, we need a good knowledge of the wheel-rail contact
forces. However, these contact forces cannot be directly measured when the train
travels at high speed. Effective estimation of the wheel-rail contact dynamics from
the train motion signals becomes a highly appealing approach. This section presents
a method to estimate the wheel-rail contact forces and the corresponding parame-
ters of a wheel-rail contact force model by making use of the motion measurements
of a bogie.

There have been many studies of estimation of the wheel-rail contact forces
in the literature. Various methods for estimation have been considered, including
inverse modeling, a filter based system identification method, and modern machine
learning algorithm with neural networks. The inverse identification technique was
first proposed and applied to the wheel-rail contact force estimation in [114]. Later, a
low-cost and constrained inverse wagon model was developed to estimate the wheel-
rail contact forces [115]. The gray box inverse wagon model estimation method [116]
was further investigated to overcome the limitations of the white box approach
in [115]. The indirect method is another form of inverse modeling. An indirect
model-based estimation method was proposed to investigate the wheel-rail contact
force based on the derailment criteria [117]. The lateral forces on two different
sides of the wheel were estimated through the improved indirect method [118]. The
inverse methods are highly dependent upon the system model and are not effective
with estimation of the time-varying dynamics.

The filter-based estimation of the wheel-rail interface force was first proposed
in [119] using the extended Kalman filter, which was further developed in [120] as a
nonlinear estimator and applied in [121] to estimate the lateral track irregularities.
The advantage of the extended Kalman filter lies in that the parameters of the
vehicle system can be estimated separately, with the help of a linearized model of
the system. Kalman filter is a model-based estimation algorithm which requires
the full system state to be measured [122]. Kalman filter is still a popular choice
for researchers to estimate the wheel-rail contact forces [123, 124]. The Kalman
filter, particle filter, and linear extended state observer are three state of the art
real-time estimation algorithms [125]. Numerical simulations prove that these three
algorithms all have excellent performance. The vast applications of Kalman filter
mentioned above indicate that the model-based estimation algorithm is practical
and has the potential to estimate wheel-rail dynamics in real time.
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Neural networks from the machine learning area is another technique that
has been used to estimate the wheel-rail contact forces and track irregularity [126]
and to predict the safety of railway vehicles [127]. Neural networks can approximate
the nonlinear complex functional relationship between the vehicle response and the
wheel-rail contact forces without the need of a detailed model of the system.

The wheel-rail contact forces are inherently nonlinear, and change with the
operating environment including temperature, cross winds, rain, etc. These make
it a challenge to model and estimate the contact forces. Moreover, the wheel-rail
contact forces determine the hunting stability of the bogie system and play an im-
portant role in the maintenance and fault detection of the high-speed train. Inverse
modeling, the filtered-based estimation method, and machine learning algorithm
have been extensively applied to estimate the wheel-rail contact force. However,
these algorithms have quite limitations on the dynamic model, matrices calculation
and system signals. These deficiencies of the existing algorithms motivate us to
develop an algorithm to estimate the slow time-varying wheel-rail contact forces
by making use of limited system signals without relying on the unknown dynamic
model. Furthermore, once the wheel-rail contact forces are estimated, how to make
full use of the estimated contact force for maintenance and fault detection of the
high-speed train will be another crucial question. In this section, the wheel-rail con-
tact forces combined with the time-varying gravitational stiffness effect are viewed
as unknown dynamics. An extended state observer (ESO) is implemented to esti-
mate the unknown dynamics due to the wheel-rail interaction. Moreover, we would
like to build a relationship between the motion signals and wear prediction. This
has not been covered in the literature and will be a future study topic.

In this section, we adopt the linear ESO discussed in Section 5 to estimate
the wheel-rail interactions from motion measurements for a high-speed train bogie.
We also investigate the observability of the linear ESO when applied to the bogie
system. The main contributions of the section are summarized below.

1. The wheel-rail interactions are first treated as unknown dynamics, which are
estimated with an ESO from motion signals. The proposed ESO is proven to
be observable and is shown to be able to capture the time-varying wheel-rail
interactions with the motion measurements using a limited number of sensors.

2. A regression method is proposed to identify two key parameters of a wheel-rail
contact force model: the lateral creep coefficient fη and gravitational stiffness
kgy. The regression model is then used to compute the wheel-rail contact
forces. This result lays a foundation for further study of wheel creep damage
and fatigue in the future.
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6.2.1 Extended State Observer for Bogie System

Consider the eight degree-of-freedom mathematical model of the bogie in [2]

Mz̈ + CDż + Kz = Kusz + Eu (6.14)

where z = [yw1, ϕw1, yw2, ϕw2, yf , ϕf , ym1, ym2]T ∈ R8×1 consists of eight linear and
rotational displacements of the bogie. u ∈ R2×1 are two controls. M ∈ R8×8 is the
symmetric and positive definite mass matrix. CD ∈ R8×8 is the symmetric semi-
positive definite damping matrix. K ∈ R8×8 is the symmetric semi-positive stiffness
matrix. E ∈ R8×2 is the matrix describing the influence of controls on the motion
of the bogie.

The matrix Kus is defined as

Kus =

[
Kλ 04×4

04×4 04×4

]
∈ R8×8 (6.15)

where

Kλ =


kgy −2fη 0 0

2λel0fξ
r0

0 0 0

0 0 kgy −2fη
0 0

2λel0fξ
r0

0

 ∈ R4×4 (6.16)

Kusz describes the wheel-rail interaction forces. The matrix Kus ∈ R8×8 is
not symmetrical. It is the source of instability of hunting motion. An objective
of this work is to develop an extended state observer to estimate the wheel-rail
interactions. All the matrices and their numerical values are available in Section
9.1.

We first convert the equation of motion to the state space form as

ẋ(t) = Asx(t) + Buu(t) + Bf f(t) (6.17)

y(t) = Cx(t)
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Table 6.1: Definition of the parameters in the matrix Kλ.

Symbol Description

kgy The gravitational stiffness
λe Wheel-rail contact conicity
2l0 Distance of the contact spot
fξ The longitudinal creep coefficient
fη The lateral creep coefficient
r0 The wheel rolling radius

where x(t) = [z, ż]T ∈ R16×1 is the state vector, and all other matrices are given by

As =

[
08×8 I8

−M−1Ks −M−1CD

]
∈ R16×16,

Bu =

[
08×2

M−1E

]
∈ R16×2, (6.18)

Bf =

08×4

I4

04×4

 ∈ R16×4,

M−1Kusz(t) =

[
f(t)
04×1

]
∈ R8×1, f(t) ∈ R4×1, C ∈ Rm×16,

We denote In as the n× n identity matrix. C is the output matrix. The dimension
m of C is equal to the number of the outputs. The choice of the outputs determines
the observability of the system and is discussed in Section 5.2.

6.2.2 Model for the Wheel-rail Interaction

The parameters in the matrix Kλ in Equation (6.16) are defined in Table 6.1.
These parameters describe the wheel-rail geometry and material creep behavior. The
wheel-rail contact equivalent conicity λe in particular is a result of the wheel-rail
interaction dynamics. In the linear theory, the wheel-rail contact equivalent conicity
λe is taken to be a constant. In the nonlinear theory, λe is usually taken as a time-
varying nonlinear function of the lateral displacement of the wheel set yw(t) [128].
The gravitational stiffness kgy is a function of λe and the weight given by,

kgy =
λeW

10
(6.19)
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where W is the weight of the bogie.
It is apparent that the parameters in the matrix Kλ are all dynamic and may

change with time. Hence, the unknown dynamics f(t) in Equation (6.17) cannot be
determined a priori. The unknown dynamics f(t) must be estimated in real-time in
order to design effective controls to stabilize the bogie at high speeds. To this end,
we propose an extended state estimation (ESO) algorithm to estimate f(t).

6.2.3 Simulations of Bogie Dynamics Estimation

In this section, the ESO for the bogie is simulated to estimate the unknown
dynamics in the system. The bogie is controlled using feedback controller.

6.2.3.1 Observability of ESO for the Bogie

We have observed difficulty that the state matrix Ae is ill-conditioned as
mentioned in chapter 5.2 with the state matrix of the bogie. The conditions of
Lemma 5.2.2 must be checked numerically in order to determine the observability
of the ESO for general dynamic systems. Introduce the output matrix C of bogie
system as,

C = [I4,04×12] (6.20)

For the bogie problem, we can numerically verify that indeed the ESO for the bogie
satisfies the condition 1 of Lemma 5.2.2. The observability matrix Oλ is full rank
when the row number m of matrix C satisfies the condition m ≥ p = 4, and the
second condition of Theorem 5.2.1 Cea 6= 0 is also numerically checked satisfied
for the bogie system. Hence, the conditions in Theorem 5.2.1 are all satisfied to
conclude that the ESO for the bogie is observable.

The numerical results of the PBH test for observability are summarized in
Table 6.2. It is seen from the table that the computed rank of the observability ma-
trix with ill-conditioned system matrices is not reliable. For example, theoretically
if the number of the output m is equal to the degrees of freedom 8 of the bogie, the
system must be observable. However, the rank of the observability matrix indicates
that the system is not observable.

The PBH test avoids the numerical difficulties in dealing with ill-conditioned
matrices. The PDH test results indicate that the extended state system for the
bogie can be observable with limited sensors. The ESO for the bogie can indeed
estimate the unknown dynamics. This will be demonstrated later.
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Table 6.2: Numerical results of two observability criterions for the extended state
of the bogie.

No. of output m rank(O) rank(Oλ)
3 7 19
4 9 20
6 9 20
8 9 20

6.2.3.2 Estimation of Unknown Dynamics

Next, we report the results of estimation of the unknown wheel-rail contact
dynamics. We select m = 6 as an example. The train speed is v = 360km/h. The
observer gain L is chosen such that the observer poles are 8 to 10 times faster than
the poles of the closed-loop control system. The accuracy of the ESO estimation is
examined in terms of the norm of the output error defined as,

||ey(t)|| = ||ŷ(t)− y(t)|| (6.21)

where || · || denotes the L2 norm.
The top sub-figure of Figure 6.14 compares the estimated and true value of

the first component of the output vector ŷ1(t) and y1(t). Note that y1(t) = yw1(t).
The estimated output ŷ1(t) tracks the true value closely. The error ey(t) of the
entire output vector is shown in the bottom sub-figure of Figure 6.14. The error is
of order 10−5.
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Figure 6.14: Top: Comparison of the estimated output ŷ1(t) from the ESO with
the reference system output y1(t) at the train speed v = 360 km/h.
Bottom: The norm of the output error vector ey(t).
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The estimated wheel-rail contact dynamics are shown in Figure 6.15. For each
component of wheel-rail contact dynamics f(t), the estimated contact dynamics f̂(t)
closely follow the reference f(t). These and other simulation results indicate that
the ESO can indeed estimate the outputs and states with a high accuracy, and the
extended state f(t), i.e. the wheel-rail contact dynamics with small bounded errors.

We also investigate the robustness of the ESO to disturbances. At t = 11s,
a square-impulse disturbance d(t) is introduced as,

d(t) = 5× 10−3(H(t− 11)−H(t− 11.6)) (6.22)

where H(t) is the Heaviside step function. The results in Figure 6.15 show that the
observer tracks the output and wheel-rail contact dynamics quickly and is hence
robust to disturbance. To further test the performance, the ESO is applied to the
bogie at different train speeds: v = 100 km/h and v = 200 km/h. The results are
shown in Figures 6.16 and 6.17.
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Figure 6.15: Comparison of the estimated wheel-rail contact dynamics f̂(t) from
the ESO with the reference f(t) at train speed v = 360 km/h.
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Figure 6.16: Comparison of the estimated wheel-rail contact dynamics f̂(t) from
the ESO with the reference f(t) at train speed v = 100 km/h.
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Figure 6.17: Comparison of the estimated wheel-rail contact dynamics f̂(t) from
the ESO with the reference f(t) at train speed v = 200 km/h.

6.2.4 Conclusions

In this section, we have developed a method to estimate the wheel-rail contact
forces of the high-speed train bogie from its motion measurements. The extended
state observer is used to estimate the wheel-rail contact dynamics, from which the
components of the contact forces can be computed. We have studied the condition
for observability of the extended state observer as a function of number of motion
sensors. The observed wheel-rail contact forces together with the corresponding
motion measurements are then used to estimate parameters of the wheel-rail contact
force model. These results can help engineers to monitor the health of wheel and
rail from motion signals. We should note that the knowledge of wheel-rail contact
forces provides a foundation for wheel damage prediction. This will be the topic
of a separate study. Extensive numerical simulations have been done. The results
indicate that the extended state observer delivers excellent estimation performance
for the bogie with a limited number of motion measurements. Finally, we should
point out that the study reported in this section is built on the knowledge of the
simplified mathematical model of the bogie. The algorithm is proved to be efficient.
The methodology developed in this work is applicable to a train compartment when
a complex nominal model of the system is available.
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6.3 Wheel Wear Prediction

Maintenance of high-speed train includes wear inspection of the wheel tread.
The inspection is usually done over 30 thousand kilo-meters or a fixed time interval
[129]. The maintenance schedule of wheel wear induces labor and equipment cost.
An efficient and reliable maintenance schedule of the wheel relies on the accurate
estimation of the wear. This section proposes a wheel wear estimation method. The
method makes use of the estimated external disturbances of a control observer in
real-time from motion measurements, and updates a solid mechanics model of wheel
wear with estimated model parameters. The resulting model of wheel wear is much
more reliable and is used as a surrogate to simulate extensive wheel wear data. The
simulated wear data are then used to develop a neural networks model that can
predict the wheel wear directly from motion measurements of the train.

Estimation of wheel wear requires a knowledge of dynamic interaction forces
between the wheel and rail. Since the direct measurement of the interaction forces in
real-time is impossible, methods to estimate them are highly desirable to have. In an
early control study of stabilization of the train bogie [33], we developed an extended
state observer (ESO) to estimate the state variables of the bogie dynamics as well as
the unknown external disturbances which include the wheel-rail interaction forces.
The ESO was first proposed in [89] and is one of the core concepts in the active
disturbance rejection control (ADRC) [90,91]. This section explores the application
of the estimated interaction forces to the wheel wear problem.

Given the interaction forces, a wear model is needed to estimate the creep
and wear of the material. There have been many studies in the literature on contact
mechanics, creep and wear of solids. The contact theories due to Hertz [130] and
Kalker [131] are the foundation for most theoretical studies. A brief survey on the
wheel-rail contact mechanics can be found in [132]. Archard’s wear model [133] and
energy dissipation method [134] are commonly adopted for wheel wear prediction.
The energy dissipation method is used to study the two-dimensional wheel-rail con-
tact problem with friction [135]. Archard’s wear model is used to predict the wear of
commuter rail network in Stockholm. The predictions are compared with the mea-
sured wheel profiles [136]. Archard’s wear model is also applied to the wheel wear
prediction of high speed trains [137, 138]. In this section, we shall adopt Archard’s
wear model as appeared in [136–138].

The wheel-rail interaction forces are nonlinear functions of the train motion
and the geometry of the rail. These forces are inherently time-varying and tem-
perature dependent, and are heavily influenced by environmental conditions such
as cross wind, rain, snow, and ice. Furthermore, the parameters in Archard’s wear
model are usually determined under certain experimental conditions. The nomi-
nal values of these parameters from the literature or handbook are likely different
from the real ones of the train operating in complex environments. For this reason,
we propose an algorithm using motion data to update those parameter in order to
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improve the accuracy of wheel wear prediction.
Since the wheel-rail interaction forces cause the wear and are functions of the

train motion and rail geometry, the wheel wear must also be functions of the train
motion and rail geometry. However, such functions are implicit and highly nonlinear.
In the second part of this section, we apply Archard’s wear model together with the
estimated wheel-rail interaction forces to simulate wheel wear damages. We then
use simulated motions and damages to build a neural networks model that takes
the motion measurements as input and predict the wheel wear. When the real
wear damage data become available in the future, they can be used to update the
neural networks model. Nevertheless, this neural networks model offers a potential
to predict wheel wear directly from the motion data of the train. We must point
out that it is expensive and time consuming to collect real wear data in reality and
it is almost impossible to obtain the real wear data as a function of the motion of
the train. Because of this, the proposed approach to use Archard’s wear model as a
surrogate to generate simulated wheel wear data is of high engineering value.

Neural networks has been extensively studied in many areas of research in-
cluding remaining life estimation [139] and wear prediction [140] of mechanical sys-
tems. Neural networks has also been investigated for wheel and rail wear prediction.
The wheel wear prediction using neural networks under different contact conditions
is reported in [141]. A chaotic quantum particle swarm optimization based extreme
learning machine algorithm is applied to the wheel tread profile optimization and
tread wear prediction [142]. This section creates a new wheel wear neural networks
model that uses motion measurements of the train to predict wheel wear. The main
contributions of this section are summarized as below.

1. An extended state observer of a control system is for the first time used to
predict wheel-rail interaction forces for the purpose of predicting wheel wear.

2. A data-driven algorithm is proposed to update the parameters of Archard’s
wear model by using motion measurements of the train.

3. Archard’s wear model is then used as a surrogate to generate simulated wheel
wear data to enable the development of a neural networks model of wheel
wear with motion measurements as inputs. This approach has a potential to
substantially expand our ability to accurately predict wheel wear and therefore
to schedule maintenance in an optimal manner.

We adopt Archard’s model to predict the wear damage, which describes the
wheel-rail contact behavior. The parameters of Archard’s model are determined in
the ideal laboratory environment and usually treated as constant. However, wheel-
rail contact is a complex nonlinear time-varying process during the train operation.
This suggests that the parameters of Archard’s model may also be time-varying
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and different from the nominal values determined in the laboratory setting. In this
section, a recursive least squares algorithm is adopted to update the contact model
parameters by making use of real-time motion measurements, when such new data
become available in the real application.

6.3.1 Wheel-rail Interactions

Recall the bogie model in Equation (6.17), the top four lines involving the
wheel-rail contact forces and moments are explicitly listed below,

mwÿw1 − kpyẏw1 − bkpyϕ̇w1 + kpyyw1 = −Fla1

Iwϕ̈w1 − l21kpxϕ̇w1 + l21kpxϕw1 = −Mla1

mwÿw2 − kpyẏw2 − bkpyϕ̇w2 + kpyyw2 = −Fla2

Iwϕ̈w2 − l21kpxϕ̇w2 + l21kpxϕw2 = −Mla2

(6.23)

where Fla1, Mla1, Fla2 and Mla2 are the wheel-rail contact forces and moments, and
can be expressed as,

Fla1 =
2fη
v
ẏw1 − 2fηϕw1 + kgyyw1

Mla1 =
2l20fξ
v

ϕ̇w1 +
2λel0fξ
r0

yw1 + kgψϕw1

Fla2 =
2fη
v
ẏw2 − 2fηϕw2 + kgyyw2

Mla2 =
2l20fξ
v

ϕ̇w2 +
2λel0fξ
r0

yw2 + kgψϕw2

(6.24)

In reference [33], these terms appear in the damping and stiffness matrices as asym-
metrical elements and are responsible for hunting instability as the train speed
increases. In this work, we explicitly state their nature, i.e. the wheel-rail contact
forces and moments

Define a vector Fun = [Fla1,Mla1, Fla2,Mla2]T . Fun is related to f(t) in Equa-
tion (6.18) as follows,

Fla(t) =

[
Fun

04×1

]
= −M

[
f(t)
04×1

]
(6.25)

The parameters in Equation (6.24) include the lateral creep coefficient fη,
longitudinal creep coefficient fξ, gravitational stiffness kgy. fη describes the contact
between the wheel and rail in the lateral direction. fξ describes the wheel-rail
contact in the longitudinal direction. kgy is related to the normal force at the wheel-
rail contact point. These three parameters are usually determined in the laboratory
and can be updated if and when the new data is available to improve the accuracy of

114



wear prediction. A recursive least squares (RLS) algorithm is adopted for updating
the parameters.

Let Fla1(i) and Mla1(i) denote their values at the ith sample time step. ẏw1(i),
yw1(i), ϕ̇w1(i) and ϕw1(i) are the motion measurements at the same time. Consider
identification of the three parameters fη, fξ and kgy. By definition, we have[

Fla1(i)
Mla1(i)

]
=

[ (
2ẏw1(i)

v
− 2ϕw1(i)

)
fη + kgyyw1(i)

(
2l20
v
ϕ̇w1(i) + 2λel0

r0
yw1(i))fξ + kgψϕw1(i)

]
or

yla1(i) = ϕ(i)η (6.26)

where

yla1(i) =

[
Fla1(i)
Mla1(i)

]
(6.27)

ϕ(i) =

[
2ẏw1(i)

v
− 2ϕw1(i) 0 yw1(i)

0
2l20
v
ϕ̇w1(i) + 2λel0

r0
yw1(i) 0

]
(6.28)

η = [fη, fξ, kgy]
T (6.29)

yla1(i) ∈ R2×1, ϕ(i) ∈ R2×3 and η ∈ R3×1.
Define an objective function as,

J =
1

2

ns∑
i=1

||yla1(i)−ϕ(i)η̂||2

=
1

2

ns∑
i=1

(yla1(i)−ϕ(i)η̂)T (yla1(i)−ϕ(i)η̂)

=
1

2

ns∑
i=1

[yTla1(i)yla1(i)− 2yTla1(i)ϕ(i)η̂ + η̂TϕT (i)ϕ(i)η̂]

where ns is the number of sampled data points of the motion signals and η̂ is an
estimate of the parameter vector η. η̂ is determined to minimize the objective
function J . The optimal parameters can be computed with the recursive least
squares algorithm [100] as illustrated in Section 5.3. The final recursive equations
are summarized as follows.

η̂(ns) = η̂(ns − 1) + K(ns)[yla1(ns)−ϕ(ns)η̂(ns − 1)] (6.30)
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Table 6.3: Comparison between the nominal and estimated parameters

Symbol Nominal value Estimated value Percentage error

fη 8624000 8590626 0.3870
fξ 8624000 8683803 0.3870
kgy 27596 27742 0.2637

where

K(ns) = P(ns)ϕ
T (ns) (6.31)

= P(ns − 1)ϕT (ns)[I +ϕ(ns)P(ns − 1)ϕT (ns)]
−1

P(ns) = [I−K(ns)ϕ(ns)]P(ns − 1) (6.32)

Some simulation results are presented below. Figure 6.18 shows the con-
vergence of parameter estimation with the RLS algorithm. As an example, the
predicted lateral force F̂la1 and its error are shown in Figure 6.19. Recall that once
the parameters are determined, the normal force N between the wheel and rail can
be obtained from Equation (6.39). Table 6.3 summarizes the percentage error of es-
timation. The small error strongly supports the validity of the proposed parameter
estimation approach.

A remark on the computational setting is in order. The time history of
simulated motion measurements is about t ≈ 10s long with a sampling rate 0.0001s.
After discarding the transient responses, we use 2000 data points to obtain the initial
estimate in Equation (5.30).

In the simulations, the parameters fη, fξ and kgy are assumed to be constant.
When they are treated as slowly time-varying, as is the case during the train opera-
tion, the exponential forgetting RLS can be implemented to deal with time-varying
nature of the parameters.

In the data of bogie motion, some terms such as kgψϕw1 and kgψϕw2 in Equa-
tion (6.24) have smaller values than others by several orders of magnitude. The
parameters in those terms can be difficult to accurately identify with the RLS al-
gorithm from noisy measurements because of the low signal-to-noise ratio. Since
those terms are small and influence wheel wear to a lesser extend, their nominal
parameters can be used for wear studies without the risk of significant error.

6.3.2 Wheel Wear Estimation

In this section, we present the procedure to estimate wheel wear. We make
use of Archard’s wear model [133], which is a common model for wheel wear of
rail vehicles. The estimated lateral force in Section 6.3.1 determines the wheel-rail
normal force, which is used in Archard’s wear model.
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Figure 6.18: Estimation convergence of unknown parameters.

The lateral force is first estimated from MATLAB Simulink with 30 km run-
ning distance and then applied in Archard’s model for wheel wear depth prediction.
We first introduce Archard’s wear model.

6.3.2.1 Wear Model

As discussed in the introduction, we adopt Archard’s wear model in [136–138].
It is defined as,

W =
KNs

H
(6.33)

where W (mm3) is the total volume of wear. K is the dimensionless wear coefficient.
N (Newton) is the total normal force acting on the wheel at the contact point, as
shown in Figure 6.20. s (mm) is the sliding distance between the wheel and rail.
H (MPa) is the hardness of the softest contacting surfaces. To estimate the wheel
wear, we obtain the normal force at the contact point of wheel and rail from the
estimated lateral force on the wheel.

Recall the equation of motion for bogie system in the lateral direction,

mwÿw1 +
2fη
v
ẏw1 + kpyyw1 + kgyyw1 − 2fηϕw1 − kpyẏw1 − bkpyϕ̇w1 = 0 (6.34)

The equation contains lateral creep forces and gravitational stiffness effect. The
combination of these terms are estimated by the ESO as discussed before. The
lateral creep force is defined as,

Fcreep =
2fη
v
ẏw1 − 2fηϕw1 (6.35)
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Figure 6.19: Top: Comparison between the predicted lateral force F̂la1 and the
observed lateral force Fla1. Bottom: Prediction error of the lateral
force.

The gravitational stiffness effect is given by,

Fgravity = kgyyw1 (6.36)

The estimated lateral force of a single wheelset of the bogie is given by,

Fla1 = Fcreep + Fgravity =
2fη
v
ẏw1 − 2fηϕw1 + kgyyw1 (6.37)

The relationship between the normal force and the gravitational stiffness
effect is given by,

N sin β = kgyyw1 (6.38)

From Equations (6.37) and (6.38), the normal force can be obtained in terms of the
estimated lateral force and creep force,

N =
Fla1 + 2fηϕw1 − 2fη

v
ẏw1

sin β
=
kgyyw1

sin β
(6.39)

where N is the normal force at the contact area, Fla1 is the lateral force acting on
a single wheel from the estimated force Fla in Section 6.3.1, and β is the contact
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Figure 6.20: Contact force diagram between the wheel and rail.

angle between the wheel and rail. yw1, ϕw1 and ẏw1 are the motion signals, which
are either directly measured by sensors or estimated from the ESO. When fη are
kgy are known, the normal force can be obtained from Equation (6.39).

Note that the gravitational force is not drawn in Figure 6.20. However, its
effect is included in the estimated lateral force. The contact angle β at flange is
in a range from 65◦ to 70◦ [143]. In this study the contact angle is taken to be
70◦. The softest material in the wheel and rail contact is usually the wheel. E8N
wheel steel is considered because it is commonly used for train wheels in China and
Europe [144]. The hardness of E8N steel is chosen as H = 290 (HV) = 290× 9.807
= 2844.03 (MPa) [145].

The wear coefficient K can be obtained from laboratory measurements [136].
The coefficient K in wheel-rail contact problem is determined by the sliding velocity
and contact pressure between the wheel and rail, as illustrated by the chart in Figure
6.21. The wear coefficient is chosen based on the calculated sliding velocity vslip.
The rigid slip distance s between wheel and rail is given by,

s = |vslip|
∆x

v
(6.40)

where vslip is the sliding velocity, ∆x is length of contact along the longitudinal
axes, v is the velocity of the wheel and is the same as the speed of the train in this
study.

The sliding velocity vslip can be calculated by making use of Kalker’s theory.
Kalker found that the rigid slip velocity between wheel and rail could be expressed
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Figure 6.21: Archard map of the wear coefficient K as a function of sliding velocity
and contact pressure.

as [146],

vslip = v[(ξx − ξspy)i+ (ξy + ξspx)j]− v∂ud
∂x

+
∂ud
∂t

(6.41)

where i and j are unit vectors in the x and y directions, ud is the displacement
difference vector between wheel and rail in the x − y plane. Consider steady state
rolling and neglect the influence of elastic part. The rigid slip velocity can be further
simplified as

vslip = v[(ξx − ξspy)i+ (ξy + ξspx)j] (6.42)

where ξx, ξy and ξsp are the longitudinal, lateral and spin creepages. x and y are
the Cartesian coordinates of the contact area. The longitudinal, lateral and spin
creepages are given by [147],

ξx =
γyw1

R1

+
Dc

2

ϕ̇

v

ξy =
ẏw1

v
− ϕ (6.43)

ξsp = −ϕ
v

cos γ +
1

R1

sin γ

where ϕ is the yaw angle, R1 is the principal rolling radius of the wheel, yw1 is
the lateral displacement, γ is the wheel conicity and Dc is the distance between
the contact spots. The creepages can be calculated by making use of the available
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bogie parameters and the estimated data from the observer. Once these creepages
are available, we are ready to determine the sliding velocity with the wheel-rail
contact area. The shape and size of the contact area between the wheel and rail are
determined by Hertz’s static solution. The shape of the contact region is assumed
to be an ellipse. The area of the ellipse contact region is described by the semi-axes
a and b,

a = mh

(
3

2
N

1− ν2

E

1

A+B

) 1
3

(6.44)

b = nh

(
3

2
N

1− ν2

E

1

A+B

) 1
3

(6.45)

where

A =
1

2R1

, B =
1

2

(
1

R′1
+

1

R′2

)
(6.46)

where R′1, R′2 are the principal transverse radii of curvature of the wheel and rail at
contact point. ν is Poisson’s ratio of the wheel, E is Young’s modulus of elasticity
of the wheel. mh and nh are Hertzian dimensionless coefficients related to the angle
θ defined by [147],

θ = cos−1 |B − A|
B + A

(6.47)

Table 6.4 lists the coefficients mh and nh for various angles θ.

Table 6.4: Hertz coefficients mh and nh.

θ◦ mh nh θ◦ mh nh θ◦ mh nh

10 6.604 0.3112 40 2.136 0.567 70 1.284 0.802

20 3.813 1.4123 50 1.754 0.641 80 1.128 0.893

30 2.731 0.493 60 1.486 0.717 90 1.000 1.000

Once the contact area is determined, Hertz’s theory also gives the normal
pressure acting on the wheel contact area [146],

P (x, y) =
3N

2πab

√
1−

(x
a

)2

−
(y
b

)2

(6.48)

To compute the wear using Archard’s wear model in Equation (6.33), we
discretize the contact area into nc = 50 small elements. Assume that the pressure
is constant over the small element. Let (xi, yi) denote the center of the element and
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Ni = P (xi, yi) denote the pressure on the element (i = 1, 2, · · · , nc). According to
Equation (6.33), the wear in each element is obtained as,

∆wi =
KNis

H
(6.49)

The average wear in the sliding region is given by,

∆w̄ =
1

nc

nc∑
i=1

∆wi (6.50)

All the parameters for the wear study of the wheel and rail are listed in Table 6.5.
Figure 6.22 shows the wheel wear prediction over a travel distance 30 km.

We can see that with increasing distance, more wheel wear is accumulated. The
proposed method clearly can estimate the wheel wear over longer travel distance
from the data of train motion measurements. Note that all the parameters of bogie
system and wheel-rail contact parameters are referred from [2, 143–145, 147], other
complicated wear model or different parameters can also be considered in the algo-
rithm to predict the wheel-rail wear. Here we use the linear Archard’s model [133]
and a simplified bogie system from [2] to illustrate the potential of the algorithm. A
flowchart is shown in Figure 6.23 to illustrate the overall wear estimation algorithm.
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Figure 6.22: Accumulated wheel wear in the travel distance 30km.
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Figure 6.23: Flowchart of the wear estimation algorithm.
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Table 6.5: Parameters of the wheel wear.

Symbol Description Value

W Weight of the bogie 1639 kg
Dc Distance of the contact spot 1.493 m
γ Wheel rail conicity 0.2
ν Poisson’s ratio 0.3
E Young’s modulus of elasticity 2.1E11 N/m2

R1 Principal rolling radius of the wheel 0.625 m
R′1 Principal rolling radius of the wheel 2.56 m
R′2 Principal rolling radius of the wheel 0.25 m
H Hardness of the wheel 290 HV
β Contact angle 70◦

K Wear coefficient -
mh Hertz coefficient -
nh Hertz coefficient -
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6.3.3 Neural Networks based Wear Prediction

The previous model-based study of wheel wear establishes the fact that mo-
tion measurements of the train contain the information that determines wheel wear.
In other words, wheel wear is a highly nonlinear and complex function of the motion
of the train, as suggested by Archard’s wear model. The question we would like to
address next is: can we estimate wheel wear directly from motion measurements.
To this end, we explore the use of neural networks, which is known to be able to
model highly nonlinear and complex input-output relationships.

We treat the previous wear model as a surrogate to generate wear data for
training the neural networks. The neural networks model takes motion measure-
ments as input and outputs wear prediction. This is a valuable approach because
wheel wear measurements are rare and cannot be obtained in real time. Once neu-
ral networks is trained, it can be used to better schedule wheel wear inspection and
maintenance.

6.3.3.1 Neural Networks Model

We consider a deep neural networks to model the relationship between wheel
wear and motion measurements of the bogie. It should be pointed out that each
wheel can have a model. In the following, we consider wheelset #1 only. The
inputs of the neural networks model include lateral displacement yw1, its velocity
ẏw1 and yaw angular velocity ϕ̇w1. The output is the wear depth ∆w̄ of wheelset
#1. This selection of input and output for the neural networks model is based on
the observation of Archard’s wear model. The neural networks model establishes a
nonlinear functional relationship denoted as,

∆w̄ = NN(yw1, ẏw1, ϕ̇w1) (6.51)

The structure of the neural networks model is shown in Figure 6.24. There
are five hidden layers in the neural networks with 50 neurons for each layer. The
activation function is chosen as the hyperbolic tangent function tanh(x). There are
many other activation functions available in the neural networks library, including
the sigmoid function, ReLU and Leaky ReLU. The choice of the number of hidden
layers and neurons is made based on numerical experiments with the data. The
neural networks used in this study is intended to demonstrate the feasibility of the
proposed method and is not optimized.

The Adam optimization algorithm is used to train the neural networks [148].
Adam is a well studied stochastic gradient descent algorithm with many advantages,
including high computational efficiency and available Python implementation in
TensorFlow. The loss function of neural networks is the mean squared error of wear
prediction defined as,

J =
1

2
(∆w̄data −∆w̄predict)

2 (6.52)
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Figure 6.24: Structure of the neural networks model.

where ∆w̄data is the simulated wear depth from Archard’s wear model, ∆w̄predict is
the predicted wear depth by the neural networks model. An early stopping criterion
is imposed to avoid over-fitting. That is to say, if the monitored loss function J does
not decrease in consecutive 50 epochs, training stops.

The training data is generated by simulating the motion of the bogie at
different operating velocities, such as 200 km/h, 250 km/h and 300 km/h. There
are 8322 simulated input-output datasets. Pre-processing is crucial for training
neural networks. All the input and output data are scaled to the range of [0,1]. 75
percent of the data is for training while the remaining 25 percent is for validation.

A sample history of the loss function is shown in Figure 6.25. The prediction
of a test sample for the purpose of validation is shown in Figure 6.26. The cor-
responding predication error is shown in Figure 6.27. These figures show that the
order of magnitude of the loss function converges to 10−4, while the prediction of
the neural networks on the test data is highly accurate. The training is done on a
MacBook Air in 59.87 seconds.
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Figure 6.25: Loss function of the neural networks in training.
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Figure 6.26: Validation of the neural networks on the test data.
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Figure 6.27: Prediction error of the neural networks on the test data.
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6.3.3.2 Transfer Learning

The trained neural network in Section 6.3.3.1 gives good prediction over the
test dataset. Note that the test data are part of the original dataset and related
to the training data to some extend. During the operation of the train, the data
collected in real time are influenced by environmental and operating conditions. The
prediction of the trained neural networks with the real data collected in different
conditions may not be accurate enough. To improve the performance and generality
of the neural networks model, we make use of the transfer learning concept to
partially retrain the neural networks with the new data.

Transfer learning is a machine learning technique to accomplish new similar
tasks with the trained neural networks model. Here, we adopt the fine tuning
technique of transfer learning [84]. Assume that the neural networks model is well
trained with the available data. In the transfer learning, we freeze the weights in the
hidden layers of the neural networks, and fine-tune the weights in the last layer with
the new data. For the wheel wear prediction of the train, the neural networks model
is first trained with the data generated from a given initial condition. Fine-tuning
is then applied to update the neural networks model with the data from different
initial conditions. The training of transfer learning takes 12.80 seconds on the same
MacBook.

The predictions of the pre-trained neural network and the fine-tuned neural
network are shown in Figures 6.28 and 6.29. It is observed that the neural networks
model with the fine-tuning technique delivers much improved prediction with the
new data. In fact, the re-trained neural networks model reaches a comprise between
the new data and the old data, as can be seen by comparing Figures 6.26, 6.28, 6.29
and 6.30.

6.3.3.3 Wear Distribution

With the trained neural networks model, it is possible to study the influence
of train motions on the wheel wear depth ∆w̄. In Archard’s wear model, we can
view inputs yw1, ẏw1 and ϕ̇w1 as independent time-varying parameters. The wear
can then be predicted with the help of the neural networks model in a range of
possible motions. That is to say, we can obtain the distribution of the wear in the
space of the possible motions and discover the hot spots in the space where certain
combinations of the motions may cause the most wear. The results of this finding
are presented in a ternary wear diagram.

In the ternary wear diagram, the inputs are normalized in the range [0, 1].
The normalized inputs are further scaled such that their sum is either one or 100%
[149]. The ternary wear diagram is shown in Figure 6.31, where ȳw1, ˙̄yw1 and ˙̄ϕw1

represents the normalized inputs of the neural networks model.
The yellow region of high wear value in Figure 6.31 indicates that the combi-

nations of middle level lateral displacement yw1 and rotational speed ϕ̇w1 together
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Figure 6.28: Validation of the original neural networks on the new test data.

with relatively smaller lateral velocity ẏw1 result in larger wheel wear depth. yw1

appears to be positively correlated to the value of wear depth. ẏw1 has a negative
correlation to the wear depth. The wear appears to reach maximum in a middle
range of ϕ̇w1 regardless the lateral displacement and its velocity.

6.3.4 Conclusions

In this section, we have presented a method to estimate the wheel wear from
motion measurements of the train. The extended state observer of a control system
is used to estimate wheel-rail interaction forces, which help to determine all the
force terms in Archard’s wear model. A parameter updating algorithm is developed
to update the wear and creep parameters of Archard’s model, thus making it more
accurate for the actual train. The updated Archard’s wear model is then used
as a surrogate to simulate a large dataset of wheel wear from extensive complex
train motions. A neural networks model is then developed to predict the wear as
output while using simulated motions as inputs. A transfer learning technique is
used to fine-tune the neural networks model when new data is fed to it, leading to
a comprise of the neural networks model between the early training data and the
new data. An example of application of the neural networks model is presented to
discover the effect of train motions on the wear. The neural networks model has a
potential to help engineers to develop effective and optimal schedule for inspection
and maintenance of high-speed train wheels for wear damages.
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Figure 6.29: Validation of the retrained neural networks on the new test data.
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Figure 6.30: Validation of the retrained neural networks on the old test data. This
is to be compared with Figure 6.26.
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Figure 6.31: Wheel wear as a function of train motions (yw1,ẏw1,ϕ̇w1) based on pre-
dictions of the neural network model. The original ranges of ternary
diagram axes are: yw1 ∈ [0.0024, 0.0095], ẏw1 ∈ [0.0017, 0.3119],
ϕ̇w1 ∈ [−0.4379, 0.1364].
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Chapter 7

ENGINEERING APPLICATION II

A Delta robot is an over-actuated parallel robot composed of three arms
connected to an end effector mounted on the base. Delta robots are known for their
high speed, accuracy, and versatility, making them suitable for various tasks such as
assembly, pick-and-place, and classification. One key aspect of Delta robot control
is the dynamic model, which describes the relationship between the joint inputs
and the position of the end effector. There are several approaches to modeling the
Delta robot. One of the most popular approaches is Lagrangian dynamics [150–152].
Another common approach to modeling the Delta robot is to use inverse kinematics
[153,154], with the help of the geometry of the robot’s joints and links. Additionally,
screw theory, which represents the robot’s motion in terms of screw axes and twists,
has also been adopted to model the dynamics of the Delta robot [155]. The dynamic
model is essential for motion planning and trajectory tracking, as it allows the
controller to calculate the required joint inputs to achieve a desired end effector
position.

Delta robot has a highly nonlinear complicated dynamic model, making its
control design challenging. Plenty of nonlinear and adaptive control algorithms
have been implemented for the trajectory tracking and disturbance rejection of the
Delta robot. Sliding mode control is one of the most popular nonlinear control al-
gorithms. It has been extensively applied to the trajectory tracking of Delta robot
combined with fuzzy neural network [156], nonlinear proportional-derivative (PD)
control [157], and synergetic control [158]. RBFNN were adopted in [158] to com-
pensate for the unknown disturbances. Ref. [159] proposed an online estimation
approach to compensate for various uncertainties in the Delta robot. An adap-
tive active disturbance rejection control was adopted for the output-based robust
trajectory tracking of the Delta robot in [150]. Iterative learning control has also
been applied to the trajectory tracking of the Delta robot with high performance.
Ref. [160] proposed a PD-type ILC combined with a PD controller to improve the it-
eration performance. Model-free iterative learning control was further implemented
on the Delta robot with nonrepetitive trajectories [161]. An online estimation ap-
proach was proposed to compensate for the uncertainties to improve the tracking
performance in [159]. Moreover, a model reference adaptive control has also been
adopted for control of the Delta robot. Combining an identified linear model with
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the mode reference adaptive control has shown a significant performance improve-
ment compared to the three commonly used methods: PID, adaptive control, and
sliding mode control algorithms [162].

Most of the advanced control algorithms mentioned above are either data-
driven or model based. Model-based control algorithms are highly dependent on
the accuracy of the model. Therefore, they have high requirements on the con-
trol robustness in terms of the model uncertainties and disturbances. On the other
hand, data-driven algorithms have no requirements for the accuracy of the model.
However, the safety issue needs to be considered carefully during the operation.
Therefore, the robustness and performance of trajectory tracking are significant
challenges in the control design of the Delta robot. Moreover, another challenge
in Delta robot control is the singularity, which occurs when the end effector is po-
sitioned at specific locations where the kinematic model degenerates and the joint
angles become indeterminate, which can lead to erratic behavior and potential dam-
age to the robot. Therefore, understanding the robot’s geometry and workspace is
crucial to avoid singularities, which can cause significant problems during operation.

In this study, a Delta robot is designed with stepper motors as inputs. Once
the desired trajectory of the end effector is determined, inverse kinematics can be
adopted to solve for the joint inputs analytically or numerically using optimization
methods. Moreover, control algorithms can be implemented to further improve the
motion reliability and the trajectory tracking accuracy of the Delta robot. Instead of
using optimal control, this section proposes a hybrid of the data-driven and model-
based sliding mode control algorithm to improve its trajectory tracking performance.
The inverse kinematics of the Delta robot is analytically difficult to be expressed
in the control-affine form, which complicates the control design process. Here, a
neural network structure is proposed to approximate the dynamic model of the Delta
robot, considering the stepper motor angles and velocities as inputs. Furthermore,
the model-based sliding mode control is adopted for trajectory tracking. A data-
driven neural networks algorithm that makes full use of the inverse kinematics is
developed to approximate the dynamic model of the system. Sliding mode control
is implemented to ensure the trajectory tracking performance of the Delta robot.

Section 7.1 presents the dynamic model approximation using neural networks.
Section 7.2 presents the sliding mode control with neural networks approximated
model. Section 7.3 concludes the work.

7.1 Dynamic Model of Delta Robot

A mechanical strucutre of the three DOF Delta robot is shown in Figure 7.1.
Figure 7.2 shows the geometry of the Delta robot in 3D. A typical Delta robot is
composed of a fixed platform, a moving platform, three active arms and three passive
arms connected to an end effector mounted on the base. The active arms of the
robot are driven by the rotation actuators, which are stepper motors in this study.
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The parameters of the Delta robot are given in Table 7.1 and the specifications of
components used for fabricating the Delta robot are shown in Table 7.2.

Figure 7.1: Mechanical structure of the Delta robot.

Table 7.1: Parameters of the Delta robot.

Description Notation Value

Radius of the fixed platform R 0.325 m
Radius of the moving platform r 0.075 m
Length of the active arm rf 0.5 m
Length of the passive arm re 0.25 m
Mass of the active arm mf 0.205 kg
Mass of the passive arm me 0.153 kg
Mass of the end effector mb 0.653 kg
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Table 7.2: The specifications of the components utilized in the construction of the
Delta robot.

Product Model Specification

Stepper Motor 23HS30-5004D-E1000 Motor type: Bipolar
Holding torque: 2.00 N·m
Step accuracy: ±5%
Resistance: 0.42±10%
Inductance: 1.72±20%

Stepper Motor Driver CL57T Weight: 290 g
Input voltage: 24-48 VDC
Pulse input frequency: 0-500 kHz
Min. Pulse width: 1µS

Planetary Gearbox PLE23-G10-D8 Gear ratio: 10
Efficiency: 94.00%
Max.Permissible Torque: 10 N·m
Moment permissible torque: 20 N·m
Backlash(arcmin): ≤15
Noise ≤ 60dB

Angle Sensor AS5600 12-bit DAC output resolution
I2C interface

Laser Sensor VL53L1X 50 Hz ranging frequency
Field-of-View : 27◦

I2C interface
Raspberry pi 4 Model B 64-bit Cortex-A72 processor

4GB LPDDR4 RAM
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7.1.1 Inverse Kinematics

One of the most important algorithms of modeling the Delta robot is inverse
kinematics. The inverse kinematics of the Delta robot can be solved geometrically
by making use of the links and joints. From Figure 7.2, the relationship between
the positions of the joints and the joint angles θi can be given as,

θi = arctan

(
ZJi

YFi − YJi

)
(7.1)

where YFi and YJi are the positions of the point Fi and Ji in Y direction, ZJi is the
position of the point Ji in Z direction. The positions of the joint YFi and YJi satisfy
the geometry conditions,{

(YJi − YFi)2 + (ZJi − ZFi)2 = r2
f

(YJi − YE′i)2 + (ZJi − ZE′i)2 = r2
e − x2

0

(7.2)

Once the desired joint angles are obtained, one solution to compute the desired joint
velocities is to discretize the desired joint angle θi(k∆t) at each discrete time step
k, the joint velocities θ̇i is given as,

θ̇i = (θi(k∆t)− θi((k − 1)∆t))/∆t (7.3)

in the time interval [(k − 1)∆t, k∆t]. Another solution is to calculate the inverse
velocity kinematics [163] that can be described by the Jacobian matrix J relates to
the joint velocities θ̇ = [θ̇1, θ̇2, θ̇3]T and the desired end effector position velocities
V = [ẋ0, ẏ0, ż0]T ,

θ̇ = J(x0, y0, z0)V (7.4)

where (x0, y0, z0) describes the position of the end effector at the centroid. From
Equations (7.1) to (7.4), it is suggested that the desired joint velocities are nonlinear
functions of the desired positions and its velocities.

In this study, the inputs from stepper motors [θ, θ̇] are treated as control to
the dynamic system. When using the discretization or Jacobian matrix method to
compute joint velocities, it is typical for minor errors in the computed velocities to
accumulate over time. These errors can lead to increasing position error, which can
be problematic in the trajectory tracking control that requires high accuracy. Due
to its complex and nonlinear structure, the equations of motion for the Delta robot
are not clearly described by the inverse kinematics or inverse velocity kinematics.
Therefore, it is essential to accurately model its dynamics to design efficient control
algorithms for the Delta robot. One approach to solving this problem is using
the approximation property of neural networks. Neural networks are a type of
machine learning algorithm that can learn the underlying physics model between
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Figure 7.2: Figures illustrating the geometry for modeling the inverse kinematics
of a Delta robot. Left: 3D geometry of the Delta robot. Right: 2D
geometry of the Delta robot joints and links.

inputs and outputs. Training a neural network on input-output datasets obtained
from the Delta robot makes it possible to accurately approximate the dynamics,
especially when the experimental data is available. More details regarding to the
neural network approximation of the Delta robot’s dynamics can be found in the
following section.

7.1.2 Neural Networks Model

In this section, the neural networks are proposed to approximate the dynamic
model of the Delta robot.

Assumption 1. The dynamic model is assumed to be a nonlinear control-affine
system with joint angles and velocities as inputs. Control-affine systems have a
simpler structure that makes the control design relatively straightforward.

Consider the nonlinear control-affine model of Delta robot given as,

ẍ = f(x, ẋ) + g(x, ẋ)u (7.5)

where x = [px, py, pz]
T , u = [θ1, θ2, θ3, θ̇1, θ̇2, θ̇3]T , f(·) ∈ R3×1 and g(·) ∈ R3×6 are

nonlinear functions of their arguments, px, py, pz represent the position of the end
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effector at the centroid along x, y and z axis. Deriving the equation of motion of
the Delta robot in control-affine form with specific control inputs is challenging.
Although several dynamic models are available for the Delta robot that uses the
computed-torque approach, they are not applicable in this study since the inputs
of the Delta robot are the joint angles and velocities. Therefore, an alternative
approach needs to be used to model the Delta robot’s dynamics. Here, the neu-
ral networks are adopted to approximate the dynamic model of the Delta robot
designed in this study. Two neural networks are constructed to approximate the
nonlinear functions f(·) and g(·), respectively. Notably, one neural network can also
be apoted to approximate the two nonlinear functions with an extra hidden layer
and an extra input. Finding the relationship between the control inputs and system
states matters.

To cover the typical workspace of the Delta robot, the joint angles are ran-
domly generated within a bounded range θi ∈ [−30◦, 120◦] as shown in Figure 7.3.
These joint angles were inputs to collect x, ẋ, ẍ and θ̇i from the SimScape model of
Delta robot. The generated position points of the end effector are shown in Figure
7.4. This Figure shows the maximum workspace of the robot with parameters listed
in Table 7.1. The inputs for neural networks are x, ẋ and u. The output for the
neural networks is ¨̂x, which can be expressed in terms of the two neural networks
f̂(x, ẋ) and ĝ(x, ẋ),

¨̂x(i) = f̂(x(i), ẋ(i)) + ĝ(x(i), ẋ(i))u (7.6)

where i is the index for the sampling point. The structure of neural networks is
shown in Figure 7.5. The objective function is defined as,

J =
1

2

ns∑
i=1

(¨̂x(i)− ẍ(i))2 (7.7)

where ¨̂x(i) is the prediction from neural networks, ẍ(i) is the system response data
collected from simulation or experimental, ns is the total sampling points. De-
tailed information of the number of hidden layers, type of activation function and
number of neurons can be found in Table 7.3. The number of training epochs is
set to be 20000. The optimization algorithm chosen is stochastic gradient descent
(SGD). Dropout with a frequency of 0.5 is adopted to prevent overfitting. The
SGD algorithm [164] is one of the most popular stochastic optimization methods
in the machine learning and deep learning community. It has been adopted as the
optimization algorithm to train the neural networks in this study. The stochastic
gradient descent maintains a single learning rate to update all weights compared to
Adam [148].
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Figure 7.3: Random joint angles for SimScape Delta robot model. Top: Joint
angle θ1 for steppter motor 1. Middle: Joint angle θ2 for stepper
motor 2. Bottom: Joint angle θ3 for stepper motor 3.

Figure 7.4: Random sampling points for Delta robot in 3D.
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Table 7.3: Summary of neural networks.

Function No. of hidden layers Activation function No. of neurons

f̂(x) 1 sigmoid 100
ĝ(x) 1 sigmoid 100

7.2 Sliding Mode Control

Recall the control-affine nonlinear model in terms of the neural networks in
Equation (7.5),

ẍ = f̂(x, ẋ) + ĝ(x, ẋ)u (7.8)

Assume that the Delta robot will track the desired trajectory xd(t). The
tracking error and its derivative are given as,

e(t) = xd(t)− x(t), ė(t) = ẋd(t)− ẋ(t) (7.9)

Design the sliding surface as,

s(t) = Ce(t) + ė(t) (7.10)

where C ∈ R3×3 is positive definite and satisfies Hurwitz condition. Design the
sliding mode control as [165]

u(t) = ĝ−1
(
γ tanh

(s

ε

)
+ αs + C(ẋd − ẋ) + ẍd − f̂

)
(7.11)

where γ > 0 and α > 0 are constant gains, and ε > 0. To reduce the chattering
in sliding mode control, the continuous function tanh(·) is adopted to replace the
discontinuous sign function [166]. ε determines the steepness of tanh(·) as an ap-
proximation of the sign function. To prove the stability of the sliding mode control,
we shall need the following lemma.

Lemma 7.2.1. Let f, V : [0 : ∞) ∈ R, then V̇ ≤ −αV + f , ∀t ≥ t0 ≥ 0 implies
that [168],

V (t) ≤ e−α(t−t0)V (t0) +

∫ t

t0

e−α(t−τ)f(τ)dτ (7.12)
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Figure 7.5: A flowchart illustrating the neural networks model of a Delta robot.

Define a Lyapunov function as,

V =
1

2
sT s (7.13)

Then
V̇ = sT ṡ (7.14)

Since

ṡ = Cė(t) + ë(t) (7.15)

= C(ẋd − ẋ) + (ẍd − ẍ)

= C(ẋd − ẋ) + (ẍd − f̂ − ĝu)

= −γ tanh
(s

ε

)
− αs
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Therefore

V̇ (t) = sT
(
−γ tanh

(s

ε

)
− αs

)
(7.16)

= −αsT s− γsT tanh
(s

ε

)
≤ 0

Hence, the closed-loop system is stable. Furthermore, we have

V̇ (t) =

{
−2(α + γ/ε)V (t) si ≤ ε for all i
−2αV (t) si > ε for all i

(7.17)

According to Lemma 7.2.1, we conclude that V (t) exponentially decreases at
the rate 2(α + γ/ε) when s is outside the boundary layer defined by ε, and at the
rate 2α when s is inside the boundary layer. In both cases, we have

lim
t→∞

V (t)→ 0 (7.18)

Hence, the tracking error of the sliding mode control for the system in Equation
(7.8) converges asymptotically to zero at the exponential rate. When the neural
networks model of the Delta robot has sufficiently small error, we would expect that
the sliding mode control will deliver similar tracking performance in experiments.
This is a subject of on-going work. The results will be reported in the future. In
this paper, we shall apply the sliding mode control designed based on the neural
networks model to the physics and geometry based model of the Delta robot to
check the validity of the proposed modeling and control design approach.

In the following examples, we take C as 10× I where I is the identity matrix,
α = 0.1, γ = 0.1, and ε = 1.

Three different paths are adopted to test the performance of the proposed
sliding mode control. The expressions of the three paths - heart curve, logarithmic
spiral, and spiral are given as,

Heart curve:


x = 0.01(16 sin3(2.1πt/te))

y = 0.01(13 cos(2.1πt/te)− 5 cos(4.1πt/te)

−2 cos(6.1πt/te)− cos(8.1πt/te))

z = −0.6

(7.19)

143



Logarithmic spiral:


a = 0.2e(−0.48πt/te)

x = a cos(8πt/te)

y = −a sin(8πt/te)

z = 0.1 sin(0.5πt/te)− 0.55

(7.20)

Spiral:


x = 0.05 sin(5πt/te)

y = 0.22 cos(5πt/te)

z = −0.25t/te − 0.35

(7.21)

where te is the end of the time. The 3D tracking results and part of the control
inputs θi for different paths are shown from Figure 7.6 to Figure 7.11. The neural
networks model-based sliding mode control demonstrates remarkable performance
in trajectory tracking of various paths while maintaining bounded control inputs.
This indicates that the trained neural networks model accurately captures the Delta
robot’s nonlinear property. The trajectory tracking errors of spiral curve for x, y,
and z axis are shown in Figure 7.12 as an example. The errors of sliding mode
control for different curves are shown in Figure 7.13.

Figure 7.6: 3D trajectory tracking of heart curve using sliding mode control with
neural networks model.
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Figure 7.7: Control law from sliding mode control with neural networks model for
heart curve trajectory tracking.

Figure 7.8: 3D trajectory tracking of logarithmic spiral curve using sliding mode
control with neural network approximated model.

145



0 20 40 60 80 100
-20

-10

0

10

20

1

2

3

0 20 40 60 80 100

0

50

100

Figure 7.9: Control law from sliding mode control with neural networks model for
logarithmic spiral curve trajectory tracking.

Figure 7.10: 3D trajectory tracking of spiral curve using sliding mode control with
neural network model.
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Figure 7.11: Control law from sliding mode control with neural networks model
for spiral curve trajectory tracking.
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Figure 7.12: Spiral trajectory tracking errors for x, y, and z axis with sliding mode
control.
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Figure 7.13: Error of sliding mode control in Equation (7.9) for trajectory track-
ing of different curves. Up: Error of sliding mode control for spiral
trajectory tracking. Middle: Error of sliding mode control for log-
arithmic spiral trajectory tracking. Bottom: Error of sliding mode
control for heart curve trajectory tracking.
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7.3 Conclusions

Delta robot has highly nonlinear dynamics. Finding a control-affine model
to describe the Delta robot analytically with joint angles and velocities as inputs is
difficult. In this study, the neural networks are adopted to approximate the nonlinear
model of the Delta robot with randomly sampled data in the workspace. Then, the
sliding mode control is applied to the approximated model to track the desired
trajectory. Extensive numerical results show that the neural networks model-based
sliding mode control is highly effective for trajectory tracking for different paths.
However, in real-world applications this control approach can be challenging due to
differences in parameters of the frames, arms, and joints, as well as the presence of
backlash and flexibility in the joints of the Delta robot. These factors can affect
the implementation of neural networks based sliding mode control on hardware.
Moreover, the parameters of the sliding mode control need to be fine-tuned based on
the specific hardware being used, and high-frequency data collection is required for
successful implementation. To overcome these challenges, further work is required
to successfully implement neural networks-based sliding mode control on hardware.
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Chapter 8

CONCLUSIONS AND FUTURE WORK

8.1 Concluding Remarks

This dissertation mainly explores model reduction and machine learning tech-
niques to solve nonlinear optimal control problems. To improve the control perfo-
mance and computational efficiency of optimal controls, various methods such as
balanced truncation, empirical balanced truncation, radial basis neural networks,
and transfer learning are adopted. Unlike the traditional LQR control approach,
the proposed neural networks HJB solution solves the nonlinear problems and uti-
lizes data to improve control performance. Except for solving the HJB equation,
neural networks are also adopted to approximate the nonlinear functions for dynamic
systems. The main focus of this dissertation is the neural networks solutions of op-
timal control. By leveraging both model and data, the performance of the optimal
controller has been improved significantly. Combining data-driven algorithms and
model-based control is a promising approach to enhancing optimal control perfor-
mance. Moreover, the extended state observer and Luenberger observer are imple-
mented to estimate the unknown dynamics or system states, facilitating the full-state
feedback control design. Once the unknown dynamics are estimated, the recursive
least squares algorithm is adopted to identify the unobservable or slow time-varying
system parameters. The above mentioned algorithms have been tested on different
engineering systems, including the high-speed train bogie, Quanser inverted pen-
dulum, and Delta robot. Extensive numerical simulations and experimental results
have shown that these algorithms are practical, efficient, and powerful for dynamic
systems.

8.2 Future Work

8.2.1 RBFNN Optimal Control with Time-varying Dynamics

RBFNN have shown good performance in solving the optimal control prob-
lems for different dynamic systems. Nevertheless, it remains challenging to apply
RBFNN when the system has complex dynamics, such as time-varying systems. In
these situations, the value function V is a function of both state space and time,
making the convergence of the solution more difficult. Consequently, it would be
an interesting research topic to explore RBFNN optimal control for systems with
time-varying dynamics for future work.
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8.2.2 Optimization of RBFNN

In this dissertation, we adopted the RBFNN with fixed standard deviations
and mean values to address the HJB equation solutions. Nonetheless, fixed standard
deviations and mean values may not be optimal for different dynamic systems.
To overcome this limitation, an optimization algorithm can be developed to solve
the optimal control problem with trainable standard deviations, mean values, and
weights. Several algorithms exist to optimize the RBFNN. However, exploring a
more computationally efficient and generalized algorithm for future research will be
very promising.

8.2.3 Hardware Implementation of Neural Networks based Sliding Mode
Control

Numerically it shows that the neural networks model with sliding mode con-
trol has excellent trajectory tracking performance. However, in real-world applica-
tions the parameters of the frames, arms, and joints can be different. These factors
can affect the implementation of neural networks based sliding mode control on
hardware. The training of neural networks using experimental data is a highly chal-
lenging task. Moreover, the parameters of the sliding mode control need to be tuned
based on the hardware. How to successfully implement the neural networks based
sliding mode control on hardware can be a future work.
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Chapter 9

APPENDIX

9.1 Bogie Model

The matrices M, CD, K and E of the bogie are given as [2],

M =



mw

Iw
mw

Iw
mf

If
mm

mm



CD =



2fη
v

2l20fξ
v

2fη
v

2l20fξ
v

csy + 2cmy −cmy −cmy
l22csx + l2mcmy −lmcmy lmcmy

−cmy −lmcmy cmy
−cmy lmcmy cmy



E =

[
0 0 0 0 1 le 0 0
0 0 0 0 1 −le 0 0

]T
K =

[
K11 K12

K21 K22

]
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where

K11 =


kpy

l21kpx
kpy

l21kpx



K12 = K21 =


−kpy −bkpy 0 0

0 −l21kpx 0 0
−kpy bkpy 0 0

0 l21kpx 0 0



K22 =


2kpy + ksy + 2kmy 0 −kmy −kmy

0 k66 −lmkmy lmkmy
−kmy −lmkmy kmy 0
−kmy lmkmy 0 kmy


and k66 = l22ksx + 2l21kpx + 2b2kpy + 2l2mkmy.
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Table 9.1: Parameters of the bogie system.

Symbol Description Value

mw Mass of the wheelset 2585 kg
Iw Yaw inertia of the wheelset 2024 kg·m2

mf Mass of the frame 7186 kg
If Yaw inertia of the frame 9.75×103 m
mm Mass of motor 1765 kg
λe Wheel-rail contact conicity 0.1
kpx Primary longitudinal stiffness per axle 40 kN/mm
kpy Primary lateral stiffness per axle 6 kN/mm
ksx Secondary longitudinal stiffness 0.8 kN/mm
ksy Secondary lateral stiffness 0.8 kN/mm
csx Yaw damper damping 10 kN·s/m
csy Secondary lateral stiffness 60 kN·s/m
2l1 Lateral spacing of primary suspension 2.2 m
le Longitudinal distance from end beam 1 m
2b Wheel base 2.5 m
2l0 Distance of the contact spot 1.493 m
2l2 Lateral spacing of the secondary suspension 1.9 m
lm Distance from motor suspension to the frame 0.5 m
r0 Wheel rolling radius 0.625 m
fζ Longitudinal creep coefficient 8.144×106 N
fη Lateral creep coefficient 8.624×106 N
fmy Motor suspension frequency 1.8 Hz
ξmy Motor suspension damping ratio 0.2
kgy Gravitational stiffness -
kgψ Secondary lateral stiffness -
v Train speed 360 km/h
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