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ABSTRACT

Accurate and timely precipitation estimates are critical for monitoring and forecasting natural disasters

such as floods. Despite having high-resolution satellite information, precipitation estimation from remotely

sensed data still suffers frommethodological limitations. State-of-the-art deep learning algorithms, renowned

for their skill in learning accurate patterns within large and complex datasets, appear well suited to the task

of precipitation estimation, given the ample amount of high-resolution satellite data. In this study, the ef-

fectiveness of applying convolutional neural networks (CNNs) together with the infrared (IR) and water

vapor (WV) channels from geostationary satellites for estimating precipitation rate is explored. The proposed

model performances are evaluated during summer 2012 and 2013 over central CONUS at the spatial reso-

lution of 0.088 and at an hourly time scale. PrecipitationEstimation fromRemotely Sensed InformationUsing

Artificial Neural Networks (PERSIANN)–Cloud Classification System (CCS), which is an operational

satellite-based product, and PERSIANN–Stacked Denoising Autoencoder (PERSIANN-SDAE) are em-

ployed as baseline models. Results demonstrate that the proposed model (PERSIANN-CNN) provides more

accurate rainfall estimates compared to the baseline models at various temporal and spatial scales. Specifi-

cally, PERSIANN-CNN outperforms PERSIANN-CCS (and PERSIANN-SDAE) by 54% (and 23%) in the

critical success index (CSI), demonstrating the detection skills of the model. Furthermore, the root-mean-

square error (RMSE) of the rainfall estimates with respect to the National Centers for Environmental Pre-

diction (NCEP) Stage IV gauge–radar data, for PERSIANN-CNN was lower than that of PERSIANN-CCS

(PERSIANN-SDAE) by 37% (14%), showing the estimation accuracy of the proposed model.

1. Introduction

Precipitation is the main driver of the hydrological

cycle, and it plays a key role in hydrometeorological and

climate studies (Trenberth et al. 2003). Accurate and

timely precipitation estimates are of paramount impor-

tance for water resources management, as well as many

hydrological applications such as flood forecasting,

drought modeling, and soil moisture monitoring (Beck

et al. 2017;Miao et al. 2015).Rain gauges, weather radars,

and Earth-observing satellites are the most common in-

struments for estimating precipitation. Ground-based

rain gauges provide direct rainfall measurement and are

considered the most reliable method for rainfall esti-

mation (Huffman et al. 1997). Yet, the inadequacy and

the sparsity of gauge networks over remote and high el-

evation areas that receive large amounts of precipitation

tend to undermine the applicability of gauge-based es-

timates (Gehne et al. 2016; Huffman et al. 2001). Ad-

ditionally, there are no gauge data over water bodies andCorresponding author: Mojtaba Sadeghi, mojtabas@uci.edu

VOLUME 20 JOURNAL OF HYDROMETEOROLOGY DECEMBER 2019

DOI: 10.1175/JHM-D-19-0110.1

� 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

2273

mailto:mojtabas@uci.edu
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


oceans (Maggioni et al. 2016). Radar networks provide a

continuous precipitation measurement with high temporal

and spatial resolutions (Habib et al. 2012). However,

radar networks do not cover many countries and remote

regions around the world (Guo et al. 2015; Yilmaz et al.

2005). Additionally, they suffer from beam overshooting

and beam blockage by mountains, which makes them

suitable mostly for flat regions (Germann et al. 2006).

Satellite-based quantitative precipitation estimation

(QPE) is a promising alternative to ground-based rain

gauge and radar measurements, offering global precip-

itation estimates with high spatial and temporal resolu-

tions over land surfaces and oceans (Sun et al. 2018).

Satellite-based QPEs can be derived from a range of

observations with different types of sensors. The most

commonly used satellite sensors are infrared (IR)

from geosynchronous Earth-orbiting (GEO) satellites

and passive microwave (PMW) data from low-Earth-

orbiting (LEO) satellites (Michaelides et al. 2009;

Sorooshian et al. 2002; Weng et al. 2003). PMW obser-

vations have the advantage of being directly retrieved by

measuring microphysical information including both

liquid and frozen hydrometeors within the clouds, while

IR information is limited to cloud-top information

(Joyce et al. 2004). PMW sensors are only onboard LEO

satellites, which provide a relatively poor temporal and

spatial sampling (Behrangi et al. 2009; Marzano et al.

2004). IR images are produced at least once per hour

and provide useful information regarding cloud-top

texture (e.g., size and phase of cloud particles) (Grecu

et al. 2004). In addition, the resolution of IR sensors is

around 4km, while the resolutions of LEO sensors are

typically not better than 50km over the oceans and

10 km over land (Kidd and Levizzani 2011). Thus, the

IR-based products have the advantage in terms of tem-

poral and spatial resolutions among other satellite-based

QPEs and better meet the requirements many near-real-

time applications. Such applications include monitoring

the complete evolution of local precipitation events and

flash floods, where the life cycle of most storms occurs

within a short period of time and is confined to a small

area (Arkin and Meisner 1987; Behrangi et al. 2009).

Different methodologies have been proposed in order

to establish the relationships between IR observations

and precipitation rate (Ba and Gruber 2001; Behrangi

et al. 2009; Bellerby et al. 2000; Hsu et al. 1997; Roebeling

and Holleman 2009). One well-known algorithm and

product is Precipitation Estimation from Remotely

Sensed Information Using Artificial Neural Networks

(PERSIANN) which relates cloud-top temperature

data obtained from IR imagery to the precipitation rate

(Hsu et al. 1997). PERSIANN is a near-real-time data-

set with 0.258 (i.e., 25 km) spatial and hourly temporal

resolutions (Sorooshian et al. 2000). PERSIANN–Cloud

Classification System (PERSIANN-CCS; Hong et al.

2004) is the next generation of PERSIANN, which im-

proves the estimation algorithm by employing techniques

to identify the cloud patch features. PERSIANN-CCS

data are a product at 0.048 (i.e., 4 km) spatial and half-

hourly temporal resolutions. Both PERSIANN and

PERSIANN-CCS extract information based on manu-

ally defined features including coldness, texture, and

geometry, which limits the capability of these products

for precipitation estimation (Hong et al. 2004; Shen

2018).Manual feature extraction is always limited due to

the tendency of humans to select the most relevant and

physically obvious features that have a direct impact

on a phenomenon. However, due to the complexity and

nonlinear behavior of the precipitation phenomena, there

may be some factors hidden to humans that play signifi-

cant roles in increasing the accuracy of simulations. Ad-

ditionally, in practice, human-based feature selection is

biased toward themost obvious factors due to insufficient

time to explore and test all related and co-related factors.

Therefore, applying more advanced data-driven meth-

odologies for automatically extracting features from the

input datawill enhance precipitation estimation accuracy.

Recent advances in the field of machine learning

(ML) offer exciting opportunities to expand our

knowledge about the Earth system (Lary et al. 2016).

Among the different machine learning methods, the

deep neural network (DNN) method is a fast-growing

branch characterized by its flexibility and capacity to deal

with huge and complex datasets, especially extracting

features from a large amount of image data (Bengio et al.

2007; Hinton et al. 2006). DNN’s ability to deal with

huge amounts of data allows us to better exploit spatial

and temporal structures in the data from multisatellite

imageries for precipitation estimation. Akbari Asanjan

et al. (2018) employed a deep neural network frame-

work and proposed a short-term quantitative precipita-

tion forecasting model. A more closely related work for

applying DNNs for precipitation estimation is the re-

search conducted by Tao et al. (2018), who employed

the stacked denoising autoencoders technique. The

proposed model, referred to as PERSIANN stacked

denoising autoencoders (PERSIANN-SDAE), utilizes

IR and water vapor (WV) channels to detect rain/no-rain

and then estimate the precipitation. The results suggest

that PERSIANN-SDAE can better capture both the

spatial pattern and the peak precipitation compared to

PERSIANN-CCS. Although PERSIANN-SDAE has

the advantage of automatic feature extraction from the

IR data, it cannot efficiently use the neighborhood in-

formation in retrieving the rain rate at each pixel due to

an inefficient structure for learning from image datasets.
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In other words, for each output pixel estimated by

SDAE and in general Fully connected (FC) neural

networks, information from the corresponding pixel of

the input datasets is utilized instead of using information

from neighboring pixels in the same image. The ineffi-

cient structure of SDAE and FC networks leads to results

focusing on the pixel-to-pixel relationship between cloud-

top temperature and rainfall rate. However, in addition to

the one-to-one relation of IR temperature and rain rate,

local spatial variations in IR provide useful factors for

accurate rainfall estimation. For example, frontal rainfalls

can be well described by spatial variations in IR. Frontal

rainfalls happen when cold and warm regimes collide, and

this is only captured by leveraging spatial patterns.

Convolution neural networks (CNNs) are one of the

most popular and efficient types of DNN frameworks

(Rezaee et al. 2018). CNNs rely on efficient structures

for learning the essential features without requiring

prior feature extraction and thereby offer a greater

generalization capability (Long et al. 2017). One of the

main advantages of CNNs for image processing is that

they can more efficiently use local neighborhood fea-

tures via convolution transformation (Miao et al. 2015).

In other words, CNNs use the n3 n neighborhood pixels

centered by the targeted pixel to estimate the rain rate at

that pixel. This feature is due to the CNN structure,

which allows sharing the same filter in a single layer. By

offering this unique feature, the CNN can extract valu-

able features from the hidden layer without requiring

large amounts of data. This greatly reduces the number

of parameters in the network and allows the model to

have more layers (deeper structure), which are good for

capturing more complex patterns, and to be more effi-

cient by reducing the number of parameters compared

to FC models (Chen et al. 2016).

Due to the rapid growth in the amount of annotated

data and the uniqueness of CNN structures, remote

sensing and hydrology communities have exploited

CNN techniques for many applications. These include

land cover and land use classification (Castelluccio et al.

2015; Chen et al. 2014; Luus et al. 2015; Makantasis et al.

2015; Rezaee et al. 2018; �Sevo and Avramović 2016),

image segmentation (Basaeed et al. 2016; Längkvist
et al. 2016), object localization (Long et al. 2017; Salberg

2015), extreme event detection (Liu et al. 2016), urban

water flow and water level prediction (Assem et al.

2017), tropical cyclone intensity estimation (Pradhan

et al. 2018), and extreme precipitation prediction

(Zhuang andDing 2016). The CNN structure can also be

utilized to address the drawback of PERSIANN-SDAE

to efficiently utilize neighborhood pixel information for

rain-rate estimation (Shen 2018). The CNN offers a vi-

able tool for precipitation estimation problems since it

can gain more abstract and more expressive informa-

tion from multispectral channels. Recently, a CNN

was implemented to estimate precipitation based on

the dynamic andmoisture fields from numerical weather

model analysis (Pan et al. 2018). Pan et al. (2018) showed

that the CNN technique can improve numerical precipi-

tation estimation on the west and east coasts of United

States. Miao et al. (2019) applied a combination of CNN

and long short-term memory (LSTM) to improve the

resolution and accuracy of precipitation estimates based

on dynamical simulations. Both of these studies employ

predictions from the numericalmodel’s resolved dynamic

and moisture fields. However, there is no remote sensing

information being explicitly utilized in their models.

In this study, we propose a framework for real-time

precipitation estimation using the IR and WV infor-

mation and applying a CNN model. The National Cen-

ters for Environmental Prediction (NCEP) Stage IV

QPE has been utilized as the ground-truth observation

for training the model. The proposed model will be

called PERSIANN–Convolutional Neural Network

(PERSIANN-CNN) hereafter. Then, the effectiveness

of this model has been evaluated, and its performance

is compared with two baseline models. The detailed

objectives of this study are

1) to introduce a rainfall estimation model based on the

bispectral satellite information (IR and WV chan-

nels) using convolutional neural networks;

2) to evaluate the performance of the proposed model

(PERSIANN-CNN) through various categorical and

continuous verification indices and contrast the pro-

posedmodel with PERSIANN-CCS and PERSIANN-

SDAE at hourly and daily time scales; and

3) to verify the performance of PERSIANN-CNN in

capturing the characteristics of an extreme rainfall

event throughout its evolution stages.

The remainder of this paper is organized as follows. Sec-

tion 2 covers information regarding the utilized data and

the study area. Section 3 describes the details of the applied

model and evaluation metrics. Section 4 covers the eval-

uation of the PERSIANN-CNN model and comparison

with the baseline models at hourly and daily scales. The

main conclusions of this study are summarized in section 5.

2. Data and study area

a. Model inputs and the observational dataset

1) NOAA GOES IMAGERY (IR AND WV)

The input data used in this study are IR and WV

channels from Geostationary Operational Environmental
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Satellite (GOES) satellites with wavelengths of 10.7 and

6.7mm, respectively. The WV channel is utilized as a

supplementary input to the IR data since previous

studies by Ba and Gruber (2001) and Behrangi et al.

(2009) have shown the contribution theWV channel can

add for rainfall estimation. Physically, the conversion of

water vapor is necessary for precipitation formation

(Stohl and James 2004). Previous studies have shown

that the WV channel in conjunction with IR can

recover a great amount of missing precipitation under

warm clouds (Kurino 1997; Tao et al. 2017). In this

study, both IR and WV channel data from GOES are

processed to an hourly scale with a 0.088 (8 km) spa-

tial resolution.

2) NCEP STAGE IV QPE PRODUCT

The NCEP Stage IV QPE is often assumed to be

the best long-term precipitation observation over the

CONUS due to its extensive quality control procedures

and uniform space–time grid (Smalley et al. 2014). This

product, hereafter referred to Stage IV, combines the

national Weather Surveillance Radar-1988 Doppler

(WSR-88D) network of ground radars and surface

gauges for precipitation estimation (Lin and Mitchell

2005). For this study, hourly NCEP Stage IV QPE

precipitation accumulations at 0.048 (4 km) spatial

resolution were obtained from the Stage IV QPE dis-

tribution website to serve as the ground-truth observa-

tions (http://www.emc.ncep.noaa.gov/mmb/ylin/pcpanl/

stage4/). The original 0.048 dataset was resampled to

0.088 (8 km) spatial resolution to match the resolution of

the IR and WV data.

b. Baseline models

1) PERSIANN-CCS

PERSIANN-CCS is a near-real-time precipitation

estimation at 0.048 spatial resolution and half-hourly

temporal resolution and has become popular as an

operational product. The PERSIANN-CCS algorithm

employs IR satellite imagery to extract local and re-

gional cloud features to estimate rainfall (Hong et al.

2004) in four steps:

1) Cloud segmentation separates IR imagery into dis-

tinctive cloud patches using an incremental temper-

ature threshold algorithm.

2) Feature extraction extracts local and regional cloud

patch features, including coldness, texture, and

geometry.

3) Cloud classification clusters cloud patches into well-

organized subgroups using self-organizing feature

maps (SOFMS) based on cloud patch features.

4) Rainfall mapping uses cloud-top temperature and

rainfall relationships for each classified cloud cluster.

In step 4, the relationship between the cloud-top

temperature and the rain rate is obtained for every clus-

ter by applying probability matching method (PMM) and

an exponential curve fitting. One of themain advantages

of this algorithm is its simplicity and its ability to capture

extreme precipitation events (Hong et al. 2004). For this

study, PERSIANN-CCS (downloaded from https://

chrsdata.eng.uci.edu/) was resampled to a 0.088 spatial
resolution and an hourly temporal resolution for the

purpose of comparison.

2) PERSIANN-SDAE

Developed by Tao et al. (2018), the PERSIANN-

SDAE algorithm uses IR and WV data in a fully con-

nected deep neural networkmodel to detect and estimate

the rainfall rate. The SDAE technique, introduced by

Vincent et al. (2008), is an unsupervised pretraining

method to extract useful information from the input

data and is particularly useful for image recognition

tasks. The PERSIANN-SDAE algorithm applies a

three layer fully connected neural network employing

a greedy layer-wise pretraining based on stacked

denoising autoencoders utilizing IR and WV channels

(Tao et al. 2016, 2017). Kullback–Leibler (KL) diver-

gence and mean square error (MSE) were used as the

loss functions in the PERSIANN-SDAE algorithm.

These objective functions help decrease estimation er-

ror while preserving the distribution of the rainfall.

Another advantage of the SDAE algorithm is that it can

automatically extract useful features from the input

data. This results in a complicated functional mapping

between the raw input data and the observational data.

On the other hand, traditional neural networks like

PERSIANN-CCS use manually designed features for

data extraction (Tao et al. 2016), which does not effi-

ciently utilize the neighborhood pixels’ information for

precipitation estimation of each pixel (Aoki 2017). In this

study, we utilize the same dataset for PERSIANN-SDAE

that Tao et al. (2016) presented.

c. Study area

The study area of this research is the central United

States within the latitudes 308–458N and longitudes

908–1058W (Fig. 1). This region has been chosen pri-

marily because of its predominant convective pre-

cipitation mechanism that leads to intense storms

during summertime. As a result, many satellite-based

precipitation retrieval algorithms experience chal-

lenges in detection and estimation of rainfall in the

region (Houze 2012). Another reason for choosing
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this study area is the availability of high quality radar

data, which allows for better training and more ac-

curate verification of the models.

3. Methodology

a. CNN architecture

The CNN is one of themost widely used deep learning

algorithms, having recently gained much interest in the

field of image processing (Zhu et al. 2017). The CNN

is superior to other DNN algorithms due to its ability

to preserve the spatial information by maintaining the

interconnection between pixels (Rezaee et al. 2018).

The CNN is one type of feed-forward neural network in

which an input passes through one or multiple layers of

‘‘neurons.’’ Each neuron represents a linear combina-

tion of inputs that passes through a typically nonlinear

function, called the activation layer, and then passes to

the next layer. The model can then be trained with a

backpropagation algorithm (Walker et al. 2015). The goal

of training is to update sets of weight matrices and bias

vectors to minimize the loss function, that is, the distance

between the estimation and observation. A CNN net-

work is typically constructed with one or more convolu-

tion layers and pooling layers (Krizhevsky et al. 2012;

Shen 2018). In convolution layers, outputs (feature

maps) of the previous layer are convolved by sliding

convolution filters, which have learnable weights, to

FIG. 1. Map of the study region in the central United States.

FIG. 2. (a) An example of a 33 3 convolutional filter applied to a 43 4matrix; (b) an example of 33 3max-pooling/

average-pooling filter applied to a 4 3 4 matrix.
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extract hidden features from the input. Figure 2a rep-

resents an example of applying a two-dimensional con-

volutional filter (Conv 2D) to an input matrix. Each

element of the output is obtained from summing the

element-wise product of the input matrix and the con-

volutional filter. The output of the convolution operator

is added by a separately trained bias vector. The result

is plugged into an activation function to construct

the feature map of the next layer (Yang et al. 2015). A

convolution layer is often paired with a pooling layer

(also called subsampling layer). In the pooling layer,

the spatial resolution of feature maps is reduced to

decrease the number of parameters; thus decreasing

the computation cost and avoiding overfitting. There

are many methods for subsampling, such as average

pooling and max pooling (Van Doorn 2014). In an

average-pooling layer, elements of the input are av-

eraged within a window to form the output, while the

maximum element of that window is obtained as the

output in a max-pooling layer (Fig. 2b). For this study

we utilized max-pooling layers since they can further

reduce the scale of the input and greatly decrease the

model’s dimensionality to avoid overfitting (Walker

et al. 2015).

b. Model setup

1) OVERVIEW OF THE LAYERS

The architecture of the proposed CNN model with

details of input shape, filter size, stride size and output is

shown in Fig. 3. The inputs are two 32 3 32 matrices

containing the IR and WV channels of GOES-West

satellite. The inputs are separately convolved in order

to learn information from each channel individually.

Then, we utilize a concatenation function to merge the

two map features. The output can be upsampled from

low resolution to high resolution in two steps using

a two-dimensional convolutional transpose function

(2D ConvTranspose). Then the final feature maps were

derived after convolving the output of the previous

layers for two times. The output of the model is the rain

rate with the same spatial and temporal resolutions as

the input data. Furthermore, in all steps we utilize a

rectified linear unit (ReLU) activation function for

nonlinearity. The ReLU function is f(x) 5 max(0, x),

(Walker et al. 2015).This function can be quickly

computed since it does not have any exponential or

multiplication function and assigned zero for negative

elements. Furthermore, computing the gradient of the

ReLU function is simple and can be either 0 or 1 based

on the sign of the element.

2) PARAMETER TUNING

The inputs (IR and WV) and target (Stage IV) data-

sets are divided into the training, validation, and test

periods. Summer 2012 (June–August) and the first

month of summer 2013 (June) were used for training and

July 2013 was used for validation. The training and

validation dataset are utilized to optimize the model

parameters and also prevent overfitting. August 2013

was kept unused during the training phase and was used

for testing the developed model. Various combinations

of the hyperparameters were tested during the training

phase of the CNN model to optimize the 869665 learn-

able parameters of the proposedmodel. Hyperparameters

are the variables which determine the structure of a

DNN (i.e., layer type, neuron size) and the variables that

determine how the CNN network should be trained (i.e.,

FIG. 3. Schematic of the proposed CNN model.
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learning rate) (Erhan et al. 2010). MSE was defined as

the loss function to minimize during the training and

validation phases. The initial values of the parameters

are randomly selected from a standard normal distri-

bution. Then, the parameters are trained using the gra-

dient descent method in order to minimize the errors at

each epoch. Also, an early stopping criterion was in-

troduced that halted the training if the objective function

value did not improve after 10 epochs. The lowestMSE in

both training and validation periods are achieved by de-

fining the model specific hyperparameters leading to the

configuration shown in Fig. 3. Furthermore, a learning

rate of 0.01, a minibatch size of 32, and an epoch size of

100 were determined through the minimizing processes.

c. Performance measurements

1) CATEGORICAL EVALUATION STATISTICS

Categorical evaluation statistics are used to evaluate

the abilities of the models in detecting rain/no-rain

pixels. These statistical indices include the probability

of detection (POD), false alarm ratio (FAR), and the

critical success index (CSI). The mathematical formu-

lations for each of these indices are given below:

POD5
TP

TP1MS
(range: from 0 to 1;

desirable value: 1) ,

FAR5
FP

TP1MS
(range: from 0 to 1;

desirable value: 0) ,

CSI5
TP

TP1FP1MS
(range: from 0 to 1;

desirable value: 1),

where TP is the number of pixels correctly classified as

rain (true positive events), FP is the number of pixels

incorrectly classified as rain (false positive events), and

MS is the number of pixels incorrectly classified as no

rain (missing events).

2) CONTINUOUS EVALUATION STATISTICS

Continuous indices are employed to evaluate the skill

of each algorithm in estimating rainfall intensity. Sta-

tistics in this category include root-mean-square error

(RMSE), correlation coefficient (CC), and mean abso-

lute error (MAE), which are calculated by the following

equations:

RMSE5
1

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
n

i51

(Sim
i
2Obs

i
)2

s
,

CC5

1

n
�
n

i51

(Sim
i
2 Sim

i
)(Obs

i
2Obs

i
)

s
Sim

s
Obs

,

MAE5
1

n
�
n

i51

jSim
i
2Obs

i
j ,

where ‘‘Sim’’ is simulation (PERSIANN-CCS,

PERSIANN-SDAE, PERSIANN-CNN) and ‘‘Obs’’ is

ground reference observation (Stage IV).

4. Results and discussion

a. Performance evaluation at hourly scale

An extreme storm that occurred on 3August 2013 over

the study area is examined to compare the performance

of PERSIANN-CNN against PERSIANN-CCS and

PERSIANN-SDAE. At 1100 UTC 3 August 2013, two

separate cloud patches can be detected using the IR

(Fig. 4a) andWV channels (Fig. 4b), which show intense

rainfalls mostly near the central areas of the larger

patch (Fig. 4c). As shown in Fig. 4e, PERSIANN-CNN

provides a more realistic representation of the extent and

the pattern of the rainfall patches (Fig. 4c) as compared

to PERSIANN-CCS (Fig. 4f) and PERSIANN-SDAE

(Fig. 4d). Both PERSIANN-SDAE and PERSIANN-CCS

falsely detect precipitation occurrence over the majority

of the larger cloud patch where the cloud temperature

is relatively lower. Also, PERSIANN-CNN is more

accurate than the other two models in identifying the

location of the rainfall patches. This can be observed

by looking at the location of the smaller rainfall patch,

where the PERSIANN-SDAE estimates seems to have a

northward shift. PERSIANN-CNN gives more accurate

intensity estimates compared with PERSIANN-SDAE

and PERSIANN-CCS (Figs. 4d,f), which underestimate

and overestimate, respectively. Overall, Fig. 4 demon-

strates that PERSIANN-CNN is capable of providing

more accurate estimates of the shape, location, and in-

tensity of precipitation in comparison to PERSIANN-

CCS and PERSIANN-SDAE. Similar maps for another

case study (0900 UTC 16 August 2013) also demon-

strate the superior performance of PERSIANN-CNN

in detecting the precipitation spatial pattern and the

magnitude (Fig. 5).These observations can be justified

based on the models’ structures. PERSIANN-SDAE

employs a pixel-based approach that does not leverage

the neighborhood information efficiently. In specific,

SDAE links all of the pixels of IR and WV to all of the

hidden neurons in the autoencoder algorithm. This ar-

chitecture known as a fully connected network makes it

hard to efficiently and effectively learn the structure of

the rainy patches and thus estimate the correct shapes
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and rainfall rates. Due to the higher complexity level of

fully connected networks for learning spatially corre-

lated data (i.e., images), they tend to restrict the learning

to one-on-one pixels in most cases, meaning that they

train the parameters of each pixel separately. In addi-

tion, in most cases due to the fuzzy and patchy nature

of rainfall spatial structure, the SDAE model cannot

effectively link neighborhood information. Therefore,

SDAE learns an indirect relationship between the cloud

temperature and the rain rate, resulting in colder clouds

showingmore intense precipitation and in larger patches

of rainfall compared to ground-truth radar observations.

On the other hand, PERSIANN-CCS is a patch-based

approach which classifies each rainfall event based on its

cold cloud patches and the patch features; however, in

the last step of the algorithm which is the rainfall

mapping step (i.e., nonlinear regression), a fully con-

nected layer is assigned to find the relationship of infrared

brightness temperature and rainfall rates. The same de-

ficiencies of the above-explained fully connected for

SDAE apply to the rainfall mapping step of PERSIANN-

CCS also resulting in estimating larger patches of rainfall

compared to ground-truth radar observations.

Table 1 summarizes the performance of eachmodel in

terms of categorical (POD, FAR, and CSI) and contin-

uous (MAE, RMSE, and CC) metrics throughout the

verification period of August 2013. All verification

metrics were computed for each pixel and at hourly time

scale over the study area for the entire verification period.

In addition, Fig. 6 presents the spatial distribution of

the mentioned metrics of the PERSIANN-CNN and the

two baseline models for the verification period. In gen-

eral, PERSIANN-CNN shows substantial improvement

compared to PERSIANN-CCS and PERSIANN-SDAE

according to the performance metrics. Compared to

the baseline models, PERSIANN-CNN shows a sig-

nificant improvement in POD and CSI, especially in

the central and western regions of the study area. For

FAR, the performance of the PERSIANN-CNN and

PERSIANN-SDAE is almost the same and obviously

better than PERSIANN-CCS, which is also obvious

from the FAR values presented in Table 1. Further-

more, PERSIANN-CNN calculates more accurate

rainfall intensity estimates as evident by its lower

MAE, RMSE, and higher CORR values during the

verification period (Table 1 and Fig. 6). As shown in the

FIG. 4. Case study I: Maps of cloud-top temperature (K) from (a) IR imagery and (b) WV imagery, and precipitation rate (mmh21) from

(c) Stage IV radar observation, (d) PERSIANN-SDAE, (e) PERSIANN-CNN, and (f) PERSIANN-CCS for 1100 UTC 3 Aug 2013.
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figures, PERSIANN-CNN performance metrics are

more homogeneous compared to PERSIANN-CCS

and PERSIANN-SDAE across space over the whole

study area. This spatial homogeneity is more noticeable

in the spatial pattern of FAR where PERSIANN-CNN

performs almost the same for the entire study area

while PERSIANN-SDAE performs well in some areas

and poor for other parts. This shows the capability of

the PERSIANN-CNN to generalize features across

spatial domains; conversely, PERSIANN-CCS and

PERSIANN-SDAE show diverse performances metrics

across the case-study area, showing their localized fea-

tures. The localized performance of PERSIANN-SDAE

is partially due to selecting a small and fixed portion of

study area for the training samples of the model (Tao

et al. 2018).

b. Performance evaluation at daily scale

The proposed model, PERSIANN-CNN, was also

evaluated and comparedwith the baselinemodels at a daily

time scale. To do so, hourly estimates were accumulated

to daily values for the extreme event that occurred from

3 to 10 August 2013. According to the National Weather

Service, heavy rainfalls were observed in various locations

across Missouri, southeast Kansas, and Arkansas from

3 to 10 August 2013 (https://www.weather.gov/sgf/

events_2013aug3). Rainfall rates of around 5mmh21

are reported across these areas for several days, receiving

between 20 and 25mmaccumulated rain in a short window

of time in some locations. This extreme amount of

precipitation resulted in flash flooding causing three

deaths withmany water rescues and hundreds of flooded

roadways in those areas. Specifically on 3 August, an

FIG. 5. Case study II: Maps of cloud-top temperature (K) from (a) IR imagery and (b) WV imagery, and precipitation rate

(mm h21) from (c) Stage IV, (d) PERSIANN-SDAE, (e) PERSIANN-CNN, and (f) PERSIANN-CCS snapshots for 0900 UTC

16 Aug 2013.

TABLE 1. Summary of hourly precipitation estimation perfor-

mance for discussed models over the test periods. Bold text indi-

cates the numbers that are better in terms of performance (higher

values for POD,CSI, andCC and lower values for FAR,MAE, and

RMSE).

POD FAR CSI

MAE

(mm)

RMSE

(mmh21) CC

PERSIANN-CCS 0.39 0.66 0.24 0.19 1.40 0.22

PERSIANN-SDAE 0.45 0.52 0.30 0.14 1.02 0.28

PERSIANN-CNN 0.67 0.56 0.37 0.12 0.88 0.41
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FIG. 6. Categorical (POD, FAR,CSI) and continuous (MAE,RMSE,CORR)metrics of PERSIANN-CCS,

PERSIANN-SDAE, and PERSIANN-CNN over the entire verification period.
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extreme heavy rainfall occurred in Missouri, Kansas,

andArkansaswith an intensity of approximately 5mmh21,

lasting almost 12 h from 0400 to 1500 UTC (https://

www.weather.gov/ict/event_08042013). Some areas

received between 40 and 60mm of precipitation in a

short period of time. This considerable amount of

rainfall triggered dangerous flash floods, with lots of

property damages.

Figures 7 and 8 present the daily values for the ex-

treme precipitation event that occurred on 3 and

10August 2013, respectively. In both cases PERSIANN-

CNN provides a more accurate detection of the rainfall

pattern compared to the baseline models. Fur-

thermore, the spatial variation of the PERSIANN-

CNN estimation for this day is more similar to that

of the radar observations than the PERSIANN-CCS

and PERSIANN-SDAE estimations. For the ex-

treme event on 3 August, both PERSIANN-CCS and

PERSIANN-SDAE overestimate the rain rate and

assign heavy rainfall to larger areas, while PERSIANN-

CNN provides a more realistic representation of

heavy rainfall areas (Fig. 7). For the 10 August

event, the peak of heavy extreme rainfall can be

observed mostly at the northern part of Arkansas

State (Fig. 8). PERSIANN-CCS captures both the

spatial pattern and intensity of the rainfall fairly well.

On the other hand, PERSIANN-CCS and PERSIANN-

SDAE underestimate the rain rate. In addition, a

northward shifting can be seen in PERSIANN-SDAE’s

estimates.

FIG. 7. Comparison of daily rainfall from radar, PERSIANN-CNN, PERSIANN-SDAE, and PERSIANN CCS

estimates at 0.088 for 3 Aug 2013.
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These two daily case studies emphasize the superior of

the CNN-based model compared to the baseline models

in terms of accurately estimating the rainfall distribution.

Similar to the hourly performance, PERSIANN-CNN

estimates the spatial pattern and volumetric of the rainfall

more accurately than the baseline models due to its effi-

cient structure. In addition, althoughPERSIANN-SDAE

uses KL divergence, which was utilized for preserving

the rainfall distribution, along with MSE as the loss

functions, PERSIANN-CNN can perform better only by

applying the MSE loss function in the training process.

This indicates that CNN-based models can effectively

learn features for preserving the spatial and volu-

metric distribution of precipitation during the train-

ing process without needing to add some other terms

to the loss function.

Figure 9 demonstrates how the proposed model and

the baseline models perform in detecting and esti-

mating the rainfall intensity throughout the different

evolution stages of the intense storm that occurred

over latitude 348–388N and longitude 908–1008W on

3 August 2013. Time series plots for the hourly rainfall

estimates by the radar observations, PERSIANN-CNN,

PERSIANN-CCS, and PERSIANN-SDAE are shown

in Fig. 9a. PERSIANN-CCS and PERSIANN-SDAE

overestimate the rainfall for the entire event. However,

PERSIANN-CNN’s estimates correspond well with the

radar observations although there is a slight overestima-

tion and underestimation before and after 1100 UTC, re-

spectively. The time series plot of the CC (Fig. 9b) reveals

that PERSIANN-CNN’s estimates have higher correla-

tion with Stage IV radar observations during the event

FIG. 8. Comparison of daily rainfall from radar, PERSIANN-CNN, PERSIANN-SDAE, and PERSIANN CCS

estimates at 0.088 for 10 Aug 2013.
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compared to PERSIANN-CCS and PERSIANN-SDAE.

PERSIANN-CCS and PERSIANN-SDAE demonstrate

positive bias ratios with maximums of approximately 10

and 4mmh21, respectively (Fig. 9c), However, the bias

ratio for PERSIANN-CNN (approximately 1mmh21)

is noticeably less than that of the baseline models. For

detection skill (Fig. 9d), all of the models performmore

or less the same, each outperforming the other two

models at some stages of the storm’s evolution.
To explore the daily performance of PERSIANN-CNN

against PERSIANN-CCS and PERSIANN-SDAE at

various spatial resolutions, scatterplots of their daily

precipitation estimation versus the radar observations

for 3 August 2013 are presented (Fig. 10). These figures

demonstrate the pixel by pixel association between the

satellite-based estimates and the radar observations for

various spatial resolutions and at daily time scale. As

shown, during the described extreme event on 3 August

2013, both PERSIANN-CNN and PERSIANN-CCS

show a high correlation (0.75) with the radar observa-

tions at 0.088 spatial resolution. However, RMSE and

MAE for PERSIANN-CCS are relatively higher than

for PERSIANN-CNN and PERSIANN-SDAE. Fur-

thermore, it can be seen that PERSIANN-CCS tends to

overestimate intense precipitation in all spatial resolutions,

while PERSIANN-SDAE and PERSIANN-CNN tend

to underestimate rain rates at both 0.088 and 0.168 res-
olution, but underestimation of heavy precipitation is

improved as the resolution decreases to 0.258 and 0.58.

5. Conclusions

In this study, the application of convolutional neural

networks (CNNs) in detecting and estimating precipi-

tation from bispectral satellite imagery (IR and WV

channels) was explored. A case study over the central

United States was conducted to assess the effectiveness

of the presented model at 0.088 spatial for both hourly

and daily temporal resolution. The proposed model

was evaluated against Stage IV radar observations and

two existing satellite datasets, PERSIANN-CCS and

PERSIANN-SDAE.

Model evaluation procedures at hourly and daily

scales showed that PERSIANN-CNN outperforms

PERSIANN-CCS and PERSIANN-SDAE in captur-

ing the extent and shape of the rainfall patches by

providing a more realistic representation of the pre-

cipitation pattern. Model evaluation during the verifi-

cation period showed that the proposed model performs

better than the baseline models in rainfall detection.

FIG. 9. Time series plots of (a) hourly rainfall estimates, (b) correlation coefficient, (c)

bias (mmh21), and (d) CSI derived from Stage IV radar observation, PERSIANN-CCS,

PERSIANN-SDAE, and PERSIANN-CNN throughout the evolution of the storm event from

0400 to 1500 UTC 3 Aug 2013.
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In terms of POD and CSI, PERSIANN-CNN out-

performed PERSIANN-CCS (PERSIANN-SDAE) by

72% (49%) and 54% (23%), respectively. In terms of

FAR, PERSIANN-CNN performed better than

PERSIANN-SDAE by 12%; however, it performed

poorer than PERSIANN-CCS by 10%. Despite the

lower performance of PERSIANN-CNN for FAR

compared to PERSIANN-SDAE, PERSIANN-CNN

has a more homogeneous and consistent performance

for the various evaluation metrics, especially FAR.

Additionally, the proposed model had the best overall

performance in estimation accuracy over the verifi-

cation period. For RMSE and MAE, PERSIANN-

CNN was more accurate than PERSIANN-CCS

(PERSIANN-SDAE) by 37% (14%) and 8% (74%)

respectively.

To assess the performance of the models in estimating

extreme precipitation, a storm event that affected the

central United States in August 2013 was selected. Re-

sults indicate that PERSIANN-CNN can capture the

spatial shape and peak values of rainfalls more pre-

cisely than the baseline models according to the RMSE

and MAE indices. Furthermore, rain rate time series dem-

onstrated better overall performance by PERSIANN-CNN.

Specifically, the proposed model gave the closest ap-

proximations to Stage IV radar for the hourly rainfall, as

well as the lowest bias values across the hourly time

steps. Finally, a pixel-by-pixel performance evaluation

of the PERSIANN-CNN and baseline models with re-

spect to the radar observations was implemented at

various spatial resolutions (0.088, 0.168, 0.258, and

0.58). Results of this analysis demonstrated that

PERSIANN-CNN and PERSIANN-CCS show higher

correlation (0.75) with the radar observations at 0.088
spatial resolution compared to PERSIANN-SDAE.

However, RMSE and MAE of PERSIANN-CCS are

relatively higher than PERSIANN-CNN and PERSIANN-

SDAE. In addition PERSIANN-CCS overestimates the

rain rate for all spatial resolutions, while PERSIANN-CNN

and PERSIANN-SDAE tended to underestimate

very intense precipitation at a high spatial resolu-

tion; however, their underestimations of extreme

precipitation were improved as the spatial resolu-

tion decreased.

FIG. 10. Scatterplots of radarmeasurements vs PERSIANN-CCS, PERSIANN-SDAE, and PERSIANN-CNN: daily rainfall estimation at

four spatial scales for the study area on 3 Aug 2013.
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Expanding on the research presented here, re-

searchers at the Center for Hydrometeorology and

Remote Sensing (CHRS) will implement the framework

to a larger spatial extent with longer verification periods

to investigate the stability of the model. The presented

model’s skill in capturing meaningful IR features can

leverage PMW information to better describe the pre-

cipitation phenomenon. We are currently extending the

proposed model to provide near-real-time global pre-

cipitation estimation using PMW information as obser-

vation for training the model. In addition, NOAA’s

latest GOES-R Series satellites will provide data at

higher temporal and spatial resolutions for use in the

model framework.
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