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1 2 3 4

Input
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FIGURE 1.1: A simple memory access pattern in which each processor
reads a contiguous bounded neighborhood of input (each neighborhood has a
different hatching pattern) and produces one output item.

1.1 Introduction

We have witnessed a phenomenal increase in computational resources for
graphics processors (GPU) over the last few years. The highest perform-
ing graphics processors from both ATI and NVIDIA already have billions of
transistors, resulting in more than a teraflop of peak processing power. This
incredible processing power comes from the presence of hundreds of processing
cores, all on the same chip.

This computational resource has historically been designed to be best
suited for the stream programming model, which has many independent threads
of execution. In this model a single program operates in parallel on each in-
put, producing one output element for each input element. This model ex-
tends nicely to problems in which each output element depends on a small,
bounded neighborhood of inputs. This simple streaming memory access pat-
tern is shown in Figure 1.1.

Many interesting problems (sorting, sparse matrix operations) require more
general access patterns in which each output may depend on a variable num-
ber of inputs. In addition, the ratio between the number of input elements
and the number of output elements may not be constant. This implies that
processing cores may produce a variable number (including zero) of elements.
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1 2 3 4
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FIGURE 1.2: A more general memory access pattern in which each pro-
cessor reads input of variable length and produces output of variable length.
Processor 2 produces no output.

Two different scenarios may occur: expansion, in which a smaller number of
input elements produces a large number of output elements; and contraction,
in which a larger number of input elements produces a smaller number of
output elements. Figure 1.2 shows a variable input/output memory access
pattern. Elements being processed by processor core 1 undergo an expansion
while those processed by cores 2, 3 and 4 undergo a contraction.

This is a challenging scenario for fine-grained parallelism, since we would
like each processor core to work independently on its section of the input, and
also to write its output independently into the output array. To allow this
parallel execution, the key question is “where in the output array does each
processor core write its data?”. To answer this question, each processor core
needs to know where the processor core to its left will finish writing its data,
resulting in an apparent serial dependency.

A recurrence relation is yet another common case in which a serial depen-
dency arises. This is expressed in the following loop.

for all i
B[i] = f(B[i-1], A[i])

In this case each result element B[i] depends on all elements to its left.
In Section 1.3 we describe a family of algorithmic primitives, the scan

primitives, that let us solve such seemingly serial problems efficiently in the
data-parallel world. But first it is helpful to look at our programming envi-
ronment, so that we can present code snippets along the way.
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Grid of Blocks

Block of Threads

Warp 0 Warp 1

FIGURE 1.3: In the hierarchical architecture of the CUDA programming
model, a grid is composed of multiple thread blocks, each of which is composed
of multiple warps of threads (squiggly lines). This diagram shows only four
threads per warp for simplicity.

1.2 CUDA—a general-purpose parallel computing archi-
tecture for graphics processors

We chose NVIDIA’s CUDA GPU Computing environment [14, 15] for our
implementation. CUDA provides a direct, general-purpose C language inter-
face to the programmable processing cores (also called Streaming Multipro-
cessors or SMs) on NVIDIA GPUs, eliminating much of the complexity of
writing non-graphics applications using graphics APIs such as OpenGL.

CUDA executes GPU programs using a grid of thread blocks of up to
512 threads each. Each thread executes functions that are either declared
__global__, which means they can be called from the CPU, or __device__,
which means they can be called from other __global__ or __device__ func-
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tions. The host program specifies the number of thread blocks and threads
per block, and the hardware and drivers map thread blocks to processing
cores on the GPU. Within a thread block, threads can communicate through
shared memory and cooperate using simple thread synchronization. Threads
are scheduled on processor cores in groups of 32 called warps. All threads
in a warp execute one instruction at a time in lockstep. This hierarchy is
shown in Figure 1.3. Another popular programming environment for paral-
lel processors, OpenCL [13], has an identical hierarchy, albeit with different
terminology.

1.3 Scan: an algorithmic primitive for efficient data-
parallel computation

Scan is an algorithmic primitive that solves a wide class of interesting
problems on processors that have been designed to provide maximum perfor-
mance for streaming access [2, 3]. These operations are the analogs of parallel
prefix circuits [11], which have a long history, and have been widely used in
collection-oriented languages dating back to APL [10].

Even though the scan primitive is conceptually quite simple, it forms the
basis for a surprisingly rich class of algorithms. These include various sorting
algorithms (radix, quick, merge), computational geometry algorithms (clos-
est pair, quickhull, line of sight), graph algorithms (minimum spanning tree,
maximum flow, maximal independent set) and numerical algorithms (sparse
matrix-dense vector multiply) [2]. They also form the basis for efficiently map-
ping nested data-parallel languages such as NESL [4] on to flat data-parallel
machines. In the following sections we look at scan and its segmented variant.

1.3.1 Scan

Given an input sequence a and an associative1 binary operator⊕ with iden-
tity I, an inclusive scan produces an output sequence b = scan<inclusive>(a,⊕)
where bi = a0 ⊕ · · · ⊕ ai. Similarly, an exclusive scan produces an output se-
quence b = scan<exclusive>(a,⊕) where bi = I ⊕ · · · ⊕ ai−1. Some common
binary associative operators are add (prefix-sum), min (min-scan), max (max-
scan) and multiply (mul-scan).

As a concrete example, consider the input sequence:

a = [ 3 1 7 0 4 1 6 3 ]

1In practice, this requirement is often relaxed to include pseudo-associative operations,
such as addition of floating point numbers.
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template<class OP, class T>
T scan(T *values, unsigned int n)
{

for(unsigned int i=1; i<n; ++i)
values[i] = OP::apply(values[i-1] , values[i]);

}

FIGURE 1.4: Serial implementation of inclusive scan for generic operator
OP over values of type T.

Applying an inclusive scan operation to this array with the usual addition
operator produces the result

scan<inclusive>(a, +) = [ 3 4 11 11 15 16 22 25 ]

and the exclusive scan operation produces the result

scan<exclusive>(a, +) = [ 0 3 4 11 11 15 16 22 ]

As always, the first element in the result produced by the exclusive scan is
the identity element for the operator, which in this case is 0.

1.3.1.1 A serial implementation

Implementing scan primitives on a serial processor is trivial, as shown in
Figure 1.4. Note that throughout this paper, we use C++ templates to make
scan generic over the operator OP and the datatype of values T.

1.3.1.2 A basic parallel implementation

Figure 1.5 shows a simple CUDA C implementation of a well-known par-
allel scan algorithm [5, 9]. This code scans the binary operator OP across an
array of n = 2k values using a single thread block of 2k threads. We make two
assumptions—the number of values is a power of 2 and each thread inputs
exactly 1 value—to simplify the presentation of the algorithm.

Analyzing the behavior of this algorithm, we see that it will perform only
log2 n iterations of the loop, which is optimal. However, this algorithm ap-
plies the operator O(n log n) times, which is asymptotically inefficient com-
pared to the O(n) applications performed by the serial algorithm. It also has
practical disadvantages, such as requiring 2 log2 n barrier synchronizations
(__syncthreads()).

1.3.2 Segmented Scan

Segmented scan generalizes the scan primitive by simultaneously perform-
ing separate parallel scans on arbitrary contiguous partitions (“segments”) of
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template<class OP, class T>
__device__ T scan(T *values)
{

// ID of this thread
unsigned int i = threadIdx.x;

// number of threads in block
unsigned int n = blockDim.x;

for(unsigned int offset=1; offset<n; offset *= 2)
{

T t;

if(i>=offset) t = values[i-offset];
__syncthreads();

if(i>=offset) values[i] = OP::apply(t, values[i]);
__syncthreads();

}
}

FIGURE 1.5: Simple parallel scan of 2k elements with a single thread block
of 2k threads.
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FIGURE 1.6: We show the memory access pattern for the code snippet
shown in Fig 1.5. Arrows show the movement of data. Circles show the
binary operation. Since our input has 8 elements we need 3 iterations of the
for loop.

the input vector. For example, an inclusive scan of the + operator over a
sequence of integer sequences would give the following result:

a = [ [3 1] [7 0 4] [1 6] [3] ]
segscan(a, +) = [ [3 4] [7 7 11] [1 7] [3] ]

Segmented scans provide as much parallelism as unsegmented scans, but op-
erate on data-dependent regions. Consequently, they are extremely helpful in
mapping irregular computations such as quicksort and sparse matrix-vector
multiplication onto regular execution structures, such as CUDA’s thread blocks.

Segmented sequences of this kind are typically represented by a combina-
tion of (1) a sequence of values and (2) a segment descriptor that encodes how
the sequence is divided into segments. Of the many possible encodings of the
segment descriptor, we focus on using a head flags array that stores a 1 for
each element that begins a segment and 0 for all others. This representation
is convenient for massively parallel machines. All other representations (for
example, every element knows the index of the first and/or the last index of
its own segment) can naturally be converted to this form.

The head flags representation for the example sequence above is:

a.values = [ 3 1 7 0 4 1 6 3 ]
a.flags = [ 1 0 1 0 0 1 0 1 ]
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For simplicity of presentation, we will treat the head flags array as a sequence
of 32-bit integers; however, it may in practice be preferable to represent flags
as bits packed in words.

Schwartz demonstrated that segmented scan can be implemented in terms
of (unsegmented) scan by a transformation of the given operator [2, 16]. Given
the operator ⊕ we can construct a new operator ⊕s that operates on flag-value
pairs (fx, x) as follows:

(fx, x)⊕s (fy, y) = (fx ∨ fy, if fy then y else x⊕ y)

Segmented scan can also be implemented directly rather than by operator
transformation [6, 17]. In Section 1.5 we explore both of these implementation
strategies.

In the next two sections, we turn to the question of how to efficiently
implement the scan primitives on modern graphics processors.

1.4 Design of an efficient scan algorithm

1.4.1 Hierarchy of the scan algorithm

The most efficient CUDA code respects the block granularity imposed by
the CUDA programming model and the warp granularity of the underlying
hardware. For example, threads within a block can efficiently cooperate and
share data using on-chip shared memory and barrier synchronization. Threads
within a warp, however, do not need explicit barrier synchronization in order
to share data because they execute in lockstep.

We organize our algorithms to match the natural execution granularities
of warps and blocks in order to maximize efficiency. At the lowest level,
we design an intra-warp primitive to perform a scan across a single warp of
threads. We then construct an intra-block primitive that composes intra-warp
scans together in parallel in order to perform a scan across a block of threads.
Finally, we combine grids of intra-block scans into a global scan of arbitrary
length.

To simplify the discussion, we assume that there is exactly 1 thread per
element in the sequence being scanned. The code we present is templated
on the input data type and binary operator used, which is assumed to be
associative and to possess an identity value. Input arrays to our scan functions
(e.g., ptr and hd) are assumed to be located in fast on-chip shared memory.
The code invoking the scan functions is responsible for loading array data from
global (off-chip) device memory into (on-chip) shared memory and storing
results back.
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template<class OP, ScanKind Kind, class T>
__device__ T scan_warp(volatile T *ptr,

const uint idx=threadIdx.x)
{

// index of thread in warp (0..31)
const uint lane = idx & 31;

if (lane >= 1)
ptr[idx] = OP::apply(ptr[idx - 1] , ptr[idx]);

if (lane >= 2)
ptr[idx] = OP::apply(ptr[idx - 2] , ptr[idx]);

if (lane >= 4)
ptr[idx] = OP::apply(ptr[idx - 4] , ptr[idx]);

if (lane >= 8)
ptr[idx] = OP::apply(ptr[idx - 8] , ptr[idx]);

if (lane >= 16)
ptr[idx] = OP::apply(ptr[idx - 16] , ptr[idx]);

if( Kind==inclusive )
return ptr[idx];

else
return (lane>0) ? ptr[idx-1] : OP::identity();

}

FIGURE 1.7: Scan routine for a warp of 32 threads with operator OP over
values of type T. The Kind parameter is either inclusive or exclusive.

1.4.2 Intra-Warp Scan Algorithm

We begin by defining a routine to perform a scan over a warp of 32 threads,
shown in Figure 1.7. It uses precisely the same algorithm as shown in Fig-
ure 1.5, but with a few basic optimizations. First, we take advantage of the
synchronous execution of threads in a warp to eliminate the need for barriers.
Second, since we know the size of the sequence is fixed at 32, we unroll the
loop. We also add the ability to select either an inclusive or exclusive scan via
a ScanKind template parameter.

For a warp of size w, this algorithm performs O(w logw) work rather than
the optimal O(w) work performed by a work-efficient algorithm [2]. However,
since the threads of a warp execute in lockstep, there is actually no advantage
in decreasing work at the expense of increasing the number of steps taken.
Each instruction executed by the warp has the same cost, whether executed
by a single thread or all threads of the warp. Since the work-efficient reduce/-
downsweep algorithm [2] performs twice as many steps as the algorithm used
here, it leads to measurably lower performance in practice.

The removal of explicit barrier synchronization from warp-synchronous
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code has an unintended consequence. Without synchronization barriers, an
optimizing compiler may choose to keep data in registers rather than writing
it to shared memory, causing cooperating threads in a warp to read incorrect
values from shared memory. Therefore shared variables used without synchro-
nization by multiple threads in a warp must be declared volatile to force the
compiler to store the data in shared memory, as shown in Figures 1.7, 1.10,
and 1.11.

1.4.3 Intra-Block Scan Algorithm

We now construct an algorithm to scan across all the threads of a block
using this intra-warp primitive. For simplicity, we assume that the maximum
block size is at most the square of the warp width, which is true for the GPUs
we target. Given this assumption, the intra-block scan algorithm is quite
simple.

1. Scan all warps in parallel using inclusive scan_warp().

2. Record the last partial result from each warp i

3. With a single warp, perform scan_warp() on the partial results from
Step 2.

4. For each thread of warp i, accumulate the partial results from Step 3
into that thread’s output element from Step 1.

This organization of the algorithm is only possible because of our assumption
that the scan operator is associative. The CUDA implementation of this algo-
rithm is shown in Figure 1.8. The individual steps are labeled and correspond
to the algorithm outline.

1.4.4 Global Scan Algorithm

The scan_block() routine performs a scan of fixed size, corresponding to
the size of the thread blocks. We use this routine to construct a “global” scan
routine for sequences of any length as follows.

1. Scan all blocks in parallel using scan_block().

2. Store the partial result (last element) from each block i to block_results[i].

3. Perform a scan of block_results.

4. Each thread of block i combines element i from Step 3 to its output
element from Step 1. The combination simply uses the binary operator
for the scan operation. For example, if the operation is add, the element
i from Step 3 is added to all output elements from Step 1.
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template<class OP, ScanKind Kind, class T>
__device__ T scan_block(T *ptr,

const uint idx=threadIdx.x)
{

const uint lane = idx & 31;
const uint warpid = idx >> 5;

// Step 1: Intra-warp scan in each warp
T val = scan_warp<OP,Kind>(ptr, idx);
__syncthreads();

// Step 2: Collect per-warp partial results
if( lane==31 ) ptr[warpid] = ptr[idx];
__syncthreads();

// Step 3: Use 1st warp to scan per-warp results
if( warpid==0 ) scan_warp<OP,inclusive>(ptr, idx);
__syncthreads();

// Step 4: Accumulate results from Steps 1 and 3
if (warpid > 0) val = OP::apply(ptr[warpid-1], val);
__syncthreads();

// Step 5: Write and return the final result
ptr[idx] = val;
__syncthreads();

return val;
}

FIGURE 1.8: Intra-block scan routine composed from scan_warp() primi-
tives.
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Because they require global synchronization, Steps 1 and 2 are performed
by the same CUDA kernel, while Steps 3 and 4 are performed in their own
separate kernels; thus we require three separate CUDA kernel invocations.
Indeed, Step 3 may require recursive application of the global scan algorithm
if the number of blocks in Step 1 is greater than the block size.

Aside from the decomposition into kernels, the structure of this global
algorithm is strikingly similar to the intra-block algorithm. Indeed, they are
nearly identical except for Step 3, where the fixed width of blocks guarantees
that the intra-block routine can scan per-warp partial results using a single
warp, while the variable block count necessary in the global scan does not
provide an analogous guarantee.

1.5 Design of an efficient segmented scan algorithm

To implement efficient segmented scan routines, we follow the same design
strategy already outlined in Section 1.4 for scan. We begin by defining an
intra-warp primitive, from which we can build an intra-block primitive, and
ultimately a global segmented scan algorithm. The implementations are also
quite similar, with the added complications of dealing with arrays of head
flags.

1.5.1 Operator Transformation

As described in Section 1.3.2, segmented scan can be implemented by
transforming the operator ⊕ into a segmented operator ⊕s that operates on
flag–value pairs [16]. This leads to a particularly simple strategy of defining
a segmented<> template such that scan<segmented<OP>> applied to an array
of flag–value pairs accomplishes the desired segmented scan. Sample code
for such a transformer is shown in Figure 1.9. This trivially converts the
inclusive scan_warp() and scan_block() routines given in Section 1.4 into
segmented scans. Achieving a correct exclusive segmented scan via operator
transformation requires additional changes to the inclusive/exclusive logic in
these routines.

Although a reasonable approach, one downside of relying purely on opera-
tor transformation is that it alters the external interface of the scan routines.
It accepts a sequence of flag–value pairs rather than corresponding sequences
of values and flags. We can restore our desired interface, and simultane-
ously accommodate correct handling of exclusive scans, by explicitly expand-
ing scan_warp<segmented<OP>>() into the segscan_warp() routine shown in
Figure 1.10. The structure of this procedure is exactly the same as the one
shown in Figure 1.7 except that (1) it does roughly twice as many operations
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template<class OP>
struct segmented
{

template<class T>
static __host__ __device__

inline T apply(const T a, const T b)
{

T c;
c.flag = b.flag | a.flag;
c.value =

b.flag ? b.value : OP::apply(a.value, b.value);
return c;

}
};

FIGURE 1.9: Code for transforming operator OP on values of type T into an
operator segmented<OP> on flag–value pairs.

and (2) requires slightly different logic for determining the final inclusive/ex-
clusive result.

1.5.2 Direct Intra-Warp Segmented Scan

We have also explored an alternative technique for adapting our basic
scan_warp procedure into an intra-warp segmented scan. This routine, which
is shown in Figure 1.11, operates by augmenting the conditionals used in the
indexing of the successive steps of the algorithm. Each thread computes the
index of the head of its segment, or 0 if the head is not within its warp. This
is the minimum index of the segment, and is recorded in the variable mindex.
We compute mindex by writing the index of each segment head to the hd

array and propagating it within the warp to other elements of its segment via
a max-scan operation (as defined in Section 1.3.1). We take advantage of the
unpacked format of the head flags and use them as temporary scratch space.

We use the minimum segment indices to guarantee that elements from
different segments are never accumulated. The unsegmented routine shown
in Figure 1.7 is essentially just the special case where mindex=0. Figure 1.12
illustrates an example of the resulting data movement for a warp of size 8.

1.5.3 Block and Global Segmented Scan Algorithms

As we have done in section 1.4.1, to maximize efficiency, we need to orga-
nize our algorithms to match the natural execution granularities of warp and
block. At the lowest level, we have shown two ways to design an intra-warp
primitive to perform a segmented scan across a single warp of threads. We can
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template<class OP, ScanKind Kind, class T>
__device__ T segscan_warp(volatile T *ptr,

volatile flag_type *hd,
const uint idx = threadIdx.x)

{
const uint lane = idx & 31;

if (lane >= 1) {
ptr[idx] =

hd[idx] ?
ptr[idx] : OP::apply(ptr[idx - 1] , ptr[idx]);

hd[idx] = hd[idx - 1] | hd[idx];
}
if (lane >= 2) {

ptr[idx] =
hd[idx] ?
ptr[idx] : OP::apply(ptr[idx - 2] , ptr[idx]);

hd[idx] = hd[idx - 2] | hd[idx];
}
if (lane >= 4) {

ptr[idx] =
hd[idx] ?
ptr[idx] : OP::apply(ptr[idx - 4] , ptr[idx]);

hd[idx] = hd[idx - 4] | hd[idx];
}
if (lane >= 8) {

ptr[idx] =
hd[idx] ?
ptr[idx] : OP::apply(ptr[idx - 8] , ptr[idx]);

hd[idx] = hd[idx - 8] | hd[idx];
}
if (lane >= 16) {

ptr[idx] =
hd[idx] ?
ptr[idx] : OP::apply(ptr[idx - 16] , ptr[idx]);

hd[idx] = hd[idx - 16] | hd[idx];
}

if( Kind==inclusive )
return ptr[idx];

else
return (lane>0 && !flag) ?

ptr[idx-1] : OP::identity();
}

FIGURE 1.10: Intra-warp segmented scan derived by expanding
scan_warp<segmented<OP>>.
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template<class OP, ScanKind Kind, class T>
__device__ T segscan_warp(volatile T *ptr,

volatile flag_type *hd,
const uint idx = threadIdx.x)

{
const uint lane = idx & 31;

// Step 1: Convert head flags to minimum-index form
if( hd[idx] ) hd[idx] = lane;
flag_type mindex = scan_warp<op_max, inclusive>(hd);

// Step 2: Perform segmented scan across warp
// of size 32
if( lane >= mindex + 1 )

ptr[idx] = OP::apply(ptr[idx - 1] , ptr[idx]);
if( lane >= mindex + 2 )

ptr[idx] = OP::apply(ptr[idx - 2] , ptr[idx]);
if( lane >= mindex + 4 )

ptr[idx] = OP::apply(ptr[idx - 4] , ptr[idx]);
if( lane >= mindex + 8 )

ptr[idx] = OP::apply(ptr[idx - 8] , ptr[idx]);
if( lane >= mindex +16 )

ptr[idx] = OP::apply(ptr[idx -16] , ptr[idx]);

// Step 3: Return correct value for
// inclusive/exclusive kinds
if( Kind==inclusive )

return ptr[idx];
else

return (lane>0 && mindex!=lane) ?
ptr[idx-1] : OP::identity();

}

FIGURE 1.11: Intra-warp segmented scan using conditional indexing.
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FIGURE 1.12: Data movement in intra-warp segmented scan code shown
in Figure 1.11 for threads 0–7 of an 8-thread warp. Data movement in the
unsegmented case (dotted arrows) crossing segment boundaries (vertical lines)
are not allowed.
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Divide into fixed sized chunks (warps/blocks) 

segmented scan on each chunk in parallel 

write last value and flag - one per chunk 

segmented scan (maybe recursive) 

add result to first segment (unshaded)

Input

FIGURE 1.13: Constructing block/global segmented scans from warp/block
segmented scans. The unshaded part in the last row shows the extent of the
first segment.

then use either of these two ways to construct an intra-block primitive that
composes intra-warp segmented scans together to perform a segmented scan
across a block of threads. Finally, we combine grids of intra-block segmented
scans into a global segmented scan of arbitrary length.

The methodology used for constructing an intra-block segmented scan is
essentially identical to our construction of the intra-block scan routine in Sec-
tion 1.4.3, with two additional complications. First, when writing the partial
result produced by the last thread of each warp in Step 2, we also write an ag-
gregate segment flag for the entire warp. This flag indicates whether there is a
segment boundary within the warp, and is simply the (implicit) or-reduction2

of the flags of the warp. Second, we accumulate the per-warp offsets in Step 4
only to elements of the first segment of each warp. This process is illustrated
in Figure 1.13.

The full CUDA implementation of this algorithm is shown in Figure 1.14.
We first record if the warp starts with a new segment, because the flags array is

2a reduction operation with the logical OR operator. See Section 1.7.1 for an explanation
of reduction.
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template<class OP, ScanKind Kind, class T>
__device__ T segscan_block(T *ptr, flag_type *hd,

const uint idx = threadIdx.x)
{

// Right shift by 5 as warp size is 32
uint warpid = idx >> 5;

uint warp_first = warpid << 5;
uint warp_last = warp_first + 31;

// Step 1a:
// Before overwriting the input head flags, record whether
// this warp begins with an "open" segment.
bool warp_is_open = (hd[warp_first] == 0);
__syncthreads();

// Step 1b:
// Intra-warp segmented scan in each warp.
T val = segscan_warp<OP,Kind>(ptr, hd, idx);

// Step 2a:
// Since ptr[] contains *inclusive* results, irrespective of Kind,
// the last value is the correct partial result.
T warp_total = ptr[warp_last];

// Step 2b:
// warp_flag is the OR-reduction of the flags in a warp and is
// computed indirectly from the mindex values in hd[].
// will_accumulate indicates that a thread will only accumulate a
// partial result in Step 4 if there is no segment boundary to
// its left.
flag_type warp_flag = hd[warp_last]!=0 || !warp_is_open;
bool will_accumulate = warp_is_open && hd[idx]==0;

__syncthreads();

// Step 2c: The last thread in each warp writes partial results
if( idx == warp_last )
{

ptr[warpid] = warp_total;
hd[warpid] = warp_flag;

}
__syncthreads();

// Step 3: One warp scans the per-warp results
if( warpid == 0 )

segscan_warp<OP,inclusive>(ptr, hd, idx);

__syncthreads();

// Step 4: Accumulate results from Step 3, as appropriate.
if( warpid != 0 && will_accumulate )

val = OP::apply(ptr[warpid-1], val);
__syncthreads();

ptr[idx] = val;
__syncthreads();

return val;
}

FIGURE 1.14: Intra-block segmented scan routine built using intra-warp
segmented scans.
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converted to mindex-form by the first segscan_warp() call. Step 2b determines
whether any flag in a warp was set. This step also determines if the thread
belongs to the first segment in its warp by checking if (1) the first element
of the warp is not the first element of a segment (the warp is open) and (2)
the index of the head of the segment is 0. The remaining steps compute warp
offsets using a segmented scan of per-warp partial results and accumulates
them to the per-thread results computed in Step 1.

The global segmented scan algorithm can be built in the same way. We
observe that another way to check if a thread belongs to the first segment of a
warp (or block) is to do a min-reduction of hd. This gives the index of the first
element of the second segment in each warp. Each thread then checks if its
thread index is less than this index before adding the result in Step 4. This
is a typical time vs. space tradeoff. The method used in Figure 1.14 must
carry one value per thread but no reduction is necessary; this alternative
must carry only one value per warp but requires a reduction. We use the
former when propagating data between warps because shared memory loads
and stores are cheap. However, when we are doing a global segmented scan,
Steps 1 and 3 happen in different kernel invocations, so data must be written
to global memory, which is much slower. Therefore for global scans we do a
min-reduction and write only one index per block instead of one per thread.

1.6 Algorithmic Complexity

Given the hierarchy of blocks and warps described above, we can calculate
the algorithmic complexity to scan n elements. Let B and w represent the
block and warp size in threads, respectively. We assume that each block scans
O(B) elements (i.e., O(1) elements per thread). To scan n elements we use
n/B blocks. Let S and W denote step and work complexity, respectively. The
work complexity of an algorithm is defined as the total number of operations
the algorithm performs. Multiple operations may be performed in parallel
in each step. The step complexity of an algorithm is the number of steps
required to complete the algorithm given an infinite number of threads/pro-
cessors; this is essentially equivalent to the critical path length through the
data dependency graph of the computation. A subscript of n, b or w indicates
the complexity of the whole array, a block, or a warp, respectively.

As already discussed, our scan_warp() routine has step complexity Sw =
O(log2 w) and work complexity Ww = O(w log2 w). For a block containing
B/w warps, we arrive at the following step and work complexity for a block
scan.
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Sb = O(Sw logw B) = O

(
(log2 w)

(
log2 B

log2 w

))
= O(log2 B) (1.1)
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wi
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 = w log2 w
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⌈
B

wi

⌉ = O (B log2 w)

(1.2)
The same pattern extends to the array (global) level. The step and work

complexity for an array comprising an arbitrary number of blocks, n/B, is
given by the following expressions.

Sn = O(Sb logB n) = O((log2 w)(logB n)) = O(log2 n) (1.3)
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⌉ logw B∑
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B

wj

⌉ = O (n log2 w)

(1.4)
For any given machine, it is safe to assume that the warp size w is in fact
some constant number. Under this assumption, the step complexity of our
algorithm is Sn = O(log n) and the work complexity is Wn = O(n), both of
which are asymptotically optimal.

1.7 Some alternate designs for scan algorithms
In this section we show two different ways to structure the data flow among

the various levels of a scan implementation. Both work at the intra-block
and the inter-block level and they can be combined. They also work for
both segmented and unsegmented scans, though for the sake of simplicity we
restrict the discussion to the unsegmented version. We also refer readers to
the recent technical report by Merrill and Grimshaw [12] with their memory-
bandwidth-bound scan implementation and extensive performance analysis.

1.7.1 Saving Bandwidth by performing a Reduction

Dotsenko et al. [7] have showed an alternate strategy for an efficient scan
implementation. They too follow a bottom up strategy where the intra-block
scan is built from smaller scans (which could be warp-wide or smaller, but
rarely larger for efficiency reasons) and the scan of an arbitrary number of
elements is based on intra-block scans.



22 Book title goes here

The key contribution of this method is the use of a reduction operation
as the first stage. A reduction operation on an array of elements is a binary
operator applied to all elements in a “telescopic” fashion. This means the
binary operator is applied to the first two elements, the result of which is
combined with the third element by the same operator. A simple example is
performing a reduce on an array with an add operator that produces the sum
of all elements in the array.

To illustrate, we show how a scan of an arbitrary number of elements can be
performed using a block wide reduce (reduce_block()) and scan (scan_block())
primitive.

1. Do a reduction operation on all blocks in parallel using reduce_block()

and store the result from each block i to block_results[i].

2. Perform a scan of block_results.

3. One thread of each block i combines element i from Step 3 to its first
element from Step 1. The combination just uses the binary operator for
the scan operation. For example, if the operation is add, the element i
from Step 3 is added to the first output element from block i in Step 1.

4. Scan all blocks in parallel using scan_block().

The same strategy can be used to construct an intra-block scan (scan_block())
by doing a reduction and subsequent scan on warp-wide or even smaller set
of elements. The reduction and scan at this level is done sequentially: one
thread does the reduction and scan operation on all elements of this smallest
set.

An interesting thing to note is that this method has to save less state
between Step 1 and Step 4. While the method shown in section 1.4.4 has
to write out N elements at the end of Step 1, this one only writes out N/B
elements where B is the block size. On the other hand this method does
more computation since the simple add operation in Step 4 in section 1.4.4
is replaced by a reduction operation in Step 1 here. This is a commonly
used optimization strategy on GPUs where off-chip bandwidth is limited while
computational resources are rarely so.

On the flip side, a possible disadvantage is that such a combination of
reduction then scan may assume that the operator is commutative. This
would restrict the operators that can be used for scan to those which are now
not only associative but also commutative.

1.7.2 Eliminating recursion by performing more work per
block

Step 3 in the method described in section 1.4.4 and Step 2 in the method
described in section 1.7.1 require a recursive call to scan. If each block is
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performing a scan on B elements, then block_results ends up with N/B
elements after the first step. If N/B > TC, where TC is the number of
threads in a block, we have to do a global scan on block_results recursively.
Otherwise we can use our intra-block scan algorithm (Section 1.4.3) to scan
block_results, eliminating all further recursive kernel calls and associated
data transfer to and from off-chip memory.

Thus given an N we choose B such that N/B ≤ TC. Given that all our
intra-block algorithms assume that each thread processes one element, and
given that each block can only have TC threads (TC can take a maximum
value of 512 in current architectures), for large enough N , TC will be smaller
than B.

Figure 1.15 shows that small modifications to the existing intra-block al-
gorithm (Section 1.4.3) allow us to perform a scan on a block of B elements
when TC ≤ B. As we can see, the function scan_block_anylength divides
the elements into blocks of TC and iterates over the block serially. The key
difference is the presence of the variable reduceValue that carries the result
of the reduce operator on one block of TC elements to the next.

The same kind of modification can be done to the approach shown in Sec-
tion 1.7.1 to make the intra-block scan function operate on inputs of arbitrary
length.

1.8 Optimizations in CUDPP
The code given in Sections 1.4 and 1.5 illustrate the core parallel scan al-

gorithms we use. We make our implementation available as open-source com-
ponents of CUDPP, the “CUDA Data Parallel Primitives” library (available at
http://www.gpgpu.org/developer/cudpp/). To achieve peak performance
for scan kernels, our CUDPP library combines the basic algorithms described
above with an orthogonal set of further optimizations.

The biggest efficiency gain comes from optimizing the amount of work per-
formed by each thread. We find that processing one element per thread does
not generate enough computation to hide the I/O latency to off-chip memory,
and so we assign eight input elements to each thread. In our implementations
this is handled when data is loaded from global device memory into shared
memory. Each thread reads two groups of four elements from global memory
and scans both groups of four sequentially. The rightmost result in each group
of four (i.e., the reduction of the four inputs) is fed as input to a routine very
similar to the block level routines shown in Figure 1.8 and Figure 1.14. The
key difference is that the block level routines are slightly modified to handle
two inputs per thread instead of one as shown here. When the block level rou-
tine terminates, the result is accumulated back to the groups of four elements
that were scanned serially.
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template<class OP, ScanKind Kind, class T>
__device__ void scan_block_anylength(T *ptr,

const T *in,
T *out,
const uint B,
const uint idx=threadIdx.x,
const uint bidx=blockIdx.x,
const uint TC=blockDim.x)

{
const uint nPasses = float(ceil(B/float(TC)));

T reduceValue = OP::identity();

for (uint i = 0; i < nPasses, ++i)
{

const uint offset = i * TC + (bidx * B);

// Step 1: Read TC elements from global (off-chip)
// memory to shared memory (on-chip)
T input = ptr[idx] = in[offset + idx];
__syncthreads();

// Step 2: Perform scan on TC elements
T val = scan_block<OP, Kind, T>(ptr);

// Step 3: Propagate reduced result from previous block
// of TC elements
val = OP::apply(val, reduceValue);

// Step 4: Write out data to global memory
out[offset + idx] = val;

// Step 5: Choose reduced value for next iteration
if (idx == (TC-1))
{

ptr[idx] =
(Kind == exclusive) ?
OP::apply(input, val) : val;

}
__syncthreads();

reduceValue = ptr[TC-1];
__syncthreads();

}
}

FIGURE 1.15: A block level scan that scans a block of B elements with
the help of scan_block, which does a scan of TC elements at a time, where
TC ≤ B. TC is the number of threads in a block.
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The next most important set of optimizations focuses on minimizing the
number of registers used. The GPU architecture relies on multithreading to
hide memory access latency, and the number of threads that can be co-resident
at one time is often limited by their register requirements. Therefore, it is
important to maximize the number of available co-resident threads by mini-
mizing register usage. Optmizing register usage is particularly important for
segmented scan since many more registers are needed to store and manipulate
head flags. The CUDPP code uses a number of low-level code optimizations
designed to limit register requirements, including packing multiple head flags
into the bits of registers after they are loaded from off-chip memory.

1.9 Performance Analysis
In this section, we analyze the performance of the scan and segmented scan

routines that we have described and compare them to some alternative ap-
proaches. All running times were collected on an NVIDIA GeForce GTX 280
GPU with 30 Streaming Multiprocessors (SMs). These measurements do not
include any transfers of data between CPU and GPU memory, under the as-
sumption that scan and segmented scan will be used as building blocks in
more complicated applications on GPUs.

Our first test consists of running both scan and segmented scan routines
over sequences of varying length using the CUDPP test apparatus. These
tests scan the addition operator over sequences of single-precision floating
point values.

Figure 1.16 compares two scan implementations: our warp-wise scan and
the reduce/downsweep algorithm used by Sengupta et al. [17]. Our warp-wise
approach is 1 to 20% faster, improving most on scans of non-power-of-two
arrays and for arrays smaller than 65K elements. Figure 1.16 compares the
reduce/downsweep segmented scan [17] with both of our warp-wise segmented
scan kernels: one based on conditional indexing (Fig. 1.11) and one based on
operator transformation (Fig. 1.10). We see the same trend as in the un-
segmented case. Our direct warp-based algorithm using conditional indexing
is up to 29% faster than the reduce/downsweep algorithm. The kernel de-
rived from operator transformation improves on it by a further 6 to 10%.
Compared to the results reported by Sengupta et al. [17] for sequences of
1,048,576 elements running on an older NVIDIA GeForce 8800 GTX GPU,
our scan implementation is 2.8 times faster and our segmented scan is 4.2
times faster on the same hardware.

Multiple factors contribute to the performance increase in scan and seg-
mented scan. First, using warp-wise execution minimizes the need for barrier
synchronization, because most thread communication is within warps. In
contrast, the reduce/downsweep algorithm requires barrier synchronizations



26 Book title goes here

0 

2 

4 

6 

8 

10 

12 

0  5  10  15  20  25  30  35  40 

Ti
m
e 
(m

s)
 

Number of Elements  Millions 

Scan: Reduce/Downsweep 

Scan: Warp‐wise 

Seg. Scan: Reduce/Downsweep 

Seg. Scan: Warp‐wise (indexing) 

Seg. Scan: Warp‐wise (transform) 

FIGURE 1.16: Scan and Segmented Scan performance.

between each step in both the reduce and downsweep stages. Second, we halve
the number of parallel steps required, as compared to the reduce/downsweep
algorithm. This comes at the “expense” of additional work, which is actually
not a cost at all since threads in a warp execute in lock step. The intra-
warp step complexity is in fact optimal. Third, our segmented scan based
on operator transformation interleaves scans of flags and data. Like software
pipelining, this increases the distance between dependent instructions. Con-
sequently, the performance of this kernel is higher than the indexing kernel,
which performs the scan of the flags before the scan of the values. Finally,
while our reduce/downsweep implementations expend much effort to avoid
shared memory bank conflicts [8], the intra-warp scan algorithm is inherently
conflict-free.

The main efficiency advantage of segmented scan is that its performance
is largely invariant to the way in which the sequence is decomposed into sub-
sequences. Thus, it implicitly load-balances work across potentially quite
unbalanced subsequences. Bell and Garland [1] explore this phenomenon in
detail using the very important case of sparse-matrix vector multiplication.

Finally, Figure 1.17 illustrates the scaling of our segmented scan algorithm
on sequences of various sizes. We use the running time on 3 SMs of a GeForce
GTX 280 as a base line and show the speed-up achieved over this base line
for 6–30 SMs. Small sequences show relatively little scaling, as they are small
enough to be processed efficiently by a small number of SMs. For sequence
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sizes above 512K elements, we see strong linear scaling. Scaling results for
the scan algorithm are similar. This demonstrates the scalability of both the
GPU architecture itself and our algorithmic design.

1.10 Conclusions
The modern many-core GPU is a massively parallel processor and the

CUDA programming model provides a straightforward way of writing scalable
parallel programs to execute on the GPU. Because of its deeply multithreaded
design, a program must expose substantial amounts of fine-grained paral-
lelism to efficiently utilize the GPU. Data-parallel techniques provide a con-
venient way of expressing such parallelism. Furthermore, the GPU is designed
to deliver maximum performance for regular execution paths—via its SIMD
architecture—and regular data access patterns—via memory coalescing—and
data-parallel algorithms generally fit these expectations quite well.

We have described the design of efficient scan and segmented scan routines,
which are essential primitives in a broad range of data-parallel algorithms.
By tailoring our algorithms to the natural granularities of the machine and
minimizing synchronization, we have produced one of the fastest scan and
segmented scan algorithms yet designed for the GPU.
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