
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Smart Traffic Operation: from Human-Driven Cars to Mixed Vehicle Autonomy

Permalink
https://escholarship.org/uc/item/9854h7wn

Author
Zahedi Mehr, Negar Zahedi

Publication Date
2019
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9854h7wn
https://escholarship.org
http://www.cdlib.org/


Smart Traffic Operation: from Human–Driven Cars to Mixed Vehicle Autonomy

by

Negar Zahedi Mehr

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering - Mechanical Engineering

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Roberto Horowitz, Chair
Professor Francesco Borrelli

Professor Murat Arcak

Summer 2019



Smart Traffic Operation: from Human–Driven Cars to Mixed Vehicle Autonomy

Copyright 2019
by

Negar Zahedi Mehr



1

Abstract

Smart Traffic Operation: from Human–Driven Cars to Mixed Vehicle Autonomy

by

Negar Zahedi Mehr

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Roberto Horowitz, Chair

The goal of my research is to enhance urban mobility by developing reliable and efficient
traffic control and management strategies. As cities grow everywhere, and urban road-
ways become overburdened, the need for the development of such strategies becomes
more evident. With the prevalence of smart sensing devices, such as smart phones and
smart intersections, cities are becoming smart. Moreover, with the emergence of new and
inevitable technologies, such as autonomous and connected vehicles, electric vehicles,
and mobility on demand systems, smart cities are rapidly evolving. As we experience the
arrival of such technologies, there is an opportunity to reclaim urban mobility. However,
a blind utilization of these technologies may deflect us from reaching this goal. In this
dissertation, we study the efficient operation of smart cities via management strategies
that can guarantee overall societal benefits both in the cities of today and future.

We focus on two natural instances of this agenda. In the first part, we tackle some of the
existing challenges in the smart operation of traffic networks which are solely shared by
human–driven cars. If all vehicles are human–driven, there is room for improving the ef-
ficiency of traffic networks by appropriate coordination and control of traffic signal lights.
For these networks, we develop signal control algorithms that are capable of minimizing
the number of stop–and–go movements, encoding fairness among vehicular arrivals, and
are robust to the knowledge of system parameters. In the second part, we analyze fun-
damentals of traffic networks with mixed vehicle autonomy, where both human–driven
and autonomous cars coexist on roadways. We study the mobility implications of self-
ish autonomy, i.e. autonomous cars that are not concerned about their overall impact
and simply attempt to optimize their own travel benefits. Having shown the negative
consequences that the increased deployment of selfish autonomy may have, we develop
a pricing mechanism which can guarantee the overall societal–scale efficiency of traffic
networks with mixed vehicle autonomy. Finally, we show how autonomy can act altru-
istically, i.e. by taking into account the decision making process of humans, autonomous
cars can potentially plan for their actions in the favor of the overall good.
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Chapter 1

Introduction

Mobility is the lifeblood of every city. However, as cities grow everywhere, and urban
roadways become overburdened, the costs that are incurred by individuals and the in-
frastructure increase. Only in the U.S., congestion caused 5.5 billion hours of extra wait
time and 2.9 billion gallons of extra burnt fuel in 2011 [99]. This led to an overall cost of
$121 billion in the U.S. in 2011 excluding the environmental costs. It is further anticipated
that congestion will likely grow 40% by 2025. The significance of congestion costs as well
as the expected growth of congestion costs point to the need for development of efficient
strategies that are capable of reducing or even avoiding congestion. An immediate so-
lution for alleviating congestion is to expand the physical infrastructure to increase the
capacity of road networks. However, due to the over–priced and prolonged nature of
road constructions, the growth rate of traffic demand is normally higher than the expan-
sion rate of the physical infrastructure. As a result, infrastructure expansion is not enough
for better operation of traffic networks; further traffic management and control strategies
are required to attain the maximum efficiency of the existing physical infrastructure.

With the prevalence of smart sensing and Internet of Things (IoT) devices, such as net-
work of road sensors, smart phones, and sensors on autonomous vehicles, critical phys-
ical infrastructures that our society heavily relies on are being connected to the cyber
world. As a result of this connectivity, cities are becoming smart. Cities are becoming
cyber–physical systems that are competent of monitoring and controlling their operation
in real time. Such competency of smart cities can be leveraged for better management and
control of the operation of city infrastructures including traffic networks. Moreover, with
the emergence of new and inevitable technologies, such as autonomous vehicles, mobility
on demand systems, and electric vehicles smart cities are rapidly evolving. However, the
sole act of introducing and injecting new technologies into a society will not necessarily
solve its challenges; it may even exacerbate the situation. For example, mobility on de-
mand systems which are widely used all over the world are now known to contribute to
congestion rises in major cities such as San Francisco [82]. Or, for instance, the adoption of
navigation apps such as waze has led to issues in public safety in cities such as Los Ange-
les as cars take more unsafe turns and more unpermitted directions due to the shortcuts
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that such navigation apps suggest [81]. With this type of experience, as we prepare for the
emergence and deployment of autonomous cars in the cities of future, how do we know
that we are not going to face the same experience with autonomous cars? Are we guar-
anteed that we will not face exacerbated congestion of autonomous cars? Will the cities
benefit or suffer from the presence of autonomy? There is an opportunity to reclaim urban
mobility provided that a proactive approach is taken in the deployment of autonomy in the
cities of future. We need to plan for autonomy deployment such that societal–scale mo-
bility benefits are attained. This brings us to a key fundamental problem that we would
like to study: how to leverage the connectivity that is inherent in smart cities as well as
the opportunities that autonomous cars provide, to achieve efficient operation of smart
cities? We study this problem in both current cities which include only human–driven
cars and future cities where both human–driven and autonomous cars will coexist, i.e.
traffic networks with “mixed vehicle autonomy”.

1.1 Thesis Approach
In order to study mobility in smart cities, we divide this thesis into two parts. First, we
focus on traffic networks that contain only human–driven cars. For these networks, the
major control input that is effective, is the exogenous control that the infrastructure im-
poses through signal lights. Therefore, when studying such networks, the key challenge
is to decide on the appropriate exogenous control such as the signal timing plans at in-
tersections. However, since the timing plan of one intersection will affect the operation
of its adjacent intersections, intersections cannot be considered in isolation. Due to this
coupling effect, for better efficiency of traffic networks, coordinated signal control strate-
gies that can optimize the overall performance of a traffic network are required. In the
first part, we tackle some of the challenges in the development of efficient coordinated
signal control strategies in urban traffic networks. In particular, we study and develop
the following:

1. Coordination of signal lights via appropriate selection of signal offsets for maxi-
mization of the green wave that cars will face along their paths, aka. paths’ band-
width.

2. Coordination of signal and perimeter control for stabilizing traffic networks when
traffic demand exceeds the network supply while guaranteeing fairness among ve-
hicular demand.

3. Coordination of signal control strategies for stabilizing traffic networks when vehic-
ular demands and link capacities are unknown to the controller.

In the second part, we study mobility in mixed–autonomy traffic networks. One of the
key aspects for predicting and studying the performance of mixed–autonomy networks
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is to understand how humans will behave in the presence of autonomy and in general
the decision making process of humans. Cities involve competitive decision–making hu-
mans, where everyone seeks to optimize their own objective which may not necessarily
be aligned with the overall performance of the system. For instance, when traveling from
an origin to a destination, every traveler selects the shortest available route, regardless
of how their route choice will affect the overall delay. Our approach to study cities with
mixed autonomy is to model the humans’ decision making and the dynamics of the physi-
cal world, and leverage these models to study how humans would change their behavior
once autonomous cars are deployed. For example, how would a traveler change their
route once autonomy is present in the system. Then, taking into account how humans
would behave in the presence of autonomy, we can plan for control strategies that guar-
antee increased mobility in the cities of future. This approach is multilateral, and we
bridge ideas from control theory, game theory, and transportation engineering. In partic-
ular, for mixed–autonomy networks, we discuss the following:

1. Societal–scale mobility in the presence of selfish autonomy.

2. Achieving better efficiency via exogenous control inputs such as pricing mecha-
nisms under selfish autonomy.

3. Altruistic autonomy, i.e. taking into account how humans would decide, how au-
tonomous systems can act in the favor of the overall mobility.

In the remainder of this chapter, we discuss the contributions of this thesis in more
detail.

1.2 Contributions
Offset Selection for Bandwidth Maximization

If demand is within the capacity of a network, and all network parameters and traffic
patterns are known, the green duration of fixed–time signals are determined such that
stability is guaranteed. Then, signal offsets which determine the relative starting time of
signals with respect to a global clock can be further determined to increase the green du-
ration that cars will experience while traversing their paths, i.e. the bandwidths that cars
on multiple routes receive. In Chapter 3, we consider the problem of coordinating signal
offsets for fixed–time signals in an urban network of arbitrary shape so as to maximize
the bandwidths that cars experience. Assuming that all signals have a common cycle
time, we define and utilize the concept of relative path offsets and formulate the prob-
lem of maximizing a weighted sum of path bandwidths. This leads to a nonlinear opti-
mization problem. We demonstrate how this optimization problem can be converted to
a mixed–integer linear program; hence, providing a scalable computational framework.
Our approach is in fact a generalization of a previous method in which the single arterial
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problem was found to be equivalent to a linear program [35], and is distinct from the
traditional formulation as a mixed–integer program. We further show the practicality of
our approach in a case study of a traffic network in San Diego, California. This work is
previously published in:

• [70] N. Mehr, M. Sanselme, N. Orr, R. Horowitz, G. Gomes, Offset Selection for
Bandwidth Maximization on Multiple Routes, in Annual American Control Confer-
ence 2018.

Joint Perimeter and Signal Control

The majority of coordinated signal control strategies are developed for stabilizing traffic
networks subject to feasible demands, i.e., the demand profiles that lie within the capac-
ity of traffic networks. But, with the ongoing rise of demand in traffic networks, traffic
networks normally face situations where the demand exceeds network capacity. This is
a typical scenario during rush and peak hours in metropolitan area for instance. To deal
with these situations, congestion control has become of major importance for urban areas.
In Chapter 4, we introduce the notion of network utility maximization for boundary flow
control of urban networks a.k.a. congestion control. We describe how maximizing the
aggregate utility of the network leads to a fair allocation of network resources to different
demands while maintaining system stability. We demonstrate how utility maximization
problem can be solved using Alternating Direction Method of Multipliers (ADMM). We
further show how our algorithm can be partially distributed such that each entry link
finds its appropriate demand value for maximizing its own objective while maximizing
the total utility of the network. We showcase the performance of our algorithm in an
example illustrating fast convergence of our method and its capability to stabilize the
network. The results of this chapter were previously included in the following publica-
tion:

• [69] N. Mehr, J. Lioris, R. Horowitz, R. Pedarsani, Joint Perimeter and Signal Control
of Urban Traffic via Network Utility Maximization, in 20th International Conference
on Intelligent Transportation Systems, 2017.

Signal Control with Unknown System Parameters

Among several signal control strategies that have been proposed in the literature, a key
assumption is that system parameters including link capacities or service rates and the
value of demand are known. However, this may not necessarily be the case as the average
demand of vehicles is normally unknown. Furthermore, it is envisaged that in the next
generation of transportation networks with mixed autonomy, system parameters such as
service rates or capacities may vary as a function of autonomy penetration rate. In such
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scenarios, a coordinated signal control strategy which can, in real time, learn the stabiliz-
ing signal timing is required. Aligned with this, in chapter 5, we propose a signal control
strategy which, unlike previous approaches, can handle both unknown mean network
demands and service rates. To this end, we use stochastic gradient projection to develop
a cyclic iterative control, where at every cycle, the timing plan of the signals is updated.
At each iteration, the update rule is based on the measured changes in the network queue
lengths. If the network mean arrival and service rates are assumed to be constant, the
proposed iterative signal control is guaranteed to converge to an optimal solution. We
describe the intuition behind our algorithm, and further demonstrate through simulation
studies that our iterative control scheme can successfully stabilize the system. The work
discussed in this chapter has previously appeared in the following publication:

• [71] N. Mehr, J. Lioris, R. Horowitz, R. Pedarsani, Signal Control for Urban Traffic
Networks with Unknown System Parameters, in 21st International Conference on
Intelligent Transportation Systems, 2018.

Mobility in the Presence of Selfish Autonomy

As autonomous cars are becoming tangible technologies, it is expected that autonomy
deployment will transform mobility in cities. One major feature of autonomous cars that
is believed to dramatically affect mobility is that connected and autonomous cars are ca-
pable of maintaining a shorter headway and distance when they form platoons of cars.
Thus, such technologies can potentially increase the road capacities of traffic networks.
Consequently, it is envisioned that their deployment will also increase the overall net-
work mobility. In Chapter 6, we examine the validity of this expected impact, taking into
account that travelers select their routes selfishly, in traffic networks with mixed vehicle
autonomy, i.e. traffic networks with both human–driven and autonomous cars. We con-
sider a nonatomic routing game on a network with inelastic (fixed) demands for a set
of network O/D pairs, and study how replacing a fraction of human–driven cars by au-
tonomous cars will affect mobility at equilibrium. Using well known US bureau of public
roads (BPR) traffic delay models, we show that the resulting Wardrop equilibrium is not
necessarily unique for networks with mixed autonomy. Then, we state the conditions
under which the total network delay at equilibrium is guaranteed to not increase as the
fraction of autonomous cars increases. However, we show that when these conditions do
not hold, counterintuitive behaviors may occur: the total network delay can grow as the
fraction of autonomous cars increases. In particular, we prove that for networks with a
single origin–destination (O/D) pair, if the road degrees of capacity asymmetry (i.e. the
ratio between the road capacity when all cars are human–driven and the road capacity
when all cars are autonomous) are homogeneous, the total delay is 1) unique, and 2) a
nonincreasing continuous function of the fraction of autonomous cars in the network.
We show that for heterogeneous degrees of capacity asymmetry, the total delay is not
unique, and it can further grow as the fraction of autonomous cars increases. We demon-
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strate that similar behaviors may be observed in networks with multiple O/D pairs. We
further bound such performance degradations due to the introduction of autonomy in
general homogeneous networks. Chapter 6 is written using the material presented in the
following publications.

• [62] N. Mehr, R. Horowitz, Can the Presence of Autonomous Vehicles Worsen the
Equilibrium State of Traffic Networks?, in IEEE Conference on Decision and Control
(CDC), 2018.

• [63] N. Mehr, R. Horowitz, How Will the Presence of Autonomous Vehicles Affect
the Equilibrium State of Traffic Networks?, to appear in IEEE Transactions on Con-
trol of Network Systems.

Socially–Aware Control of Mixed–Autonomy Networks

Since travelers select their routes selfishly, traffic networks normally operate at an equi-
librium characterized by Wardrop conditions. However, it is well known that equilibria
are inefficient in general. In addition to the intrinsic inefficiency of equilibria, as shown in
Chapter 6, in mixed–autonomy networks in which autonomous cars maintain a shorter
headway than human–driven cars, increasing the fraction of autonomous cars in the net-
work may increase the inefficiency of equilibria. In Chapter 7, we study the possibility
of obviating the inefficiency of equilibria in mixed–autonomy traffic networks via pricing
mechanisms. In particular, we study assigning prices to network links such that the over-
all or social delay of the resulting equilibria is minimum. First, we study the possibility
of inducing such optimal equilibria by imposing a set of undifferentiated prices, i.e. a set
of prices that treat both human–driven and autonomous cars similarly at each link. We
provide an example which demonstrates that undifferentiated pricing is not sufficient for
achieving minimum social delay. Then, we study differentiated pricing where the price
of traversing each link may depend on whether cars are human–driven or autonomous.
Under differentiated pricing, we prove that link prices obtained from the marginal cost
taxation of links will induce equilibria with minimum social delay if the degrees of road
capacity asymmetry (i.e. the ratio between the road capacity when all cars are human–
driven and the road capacity when all cars are autonomous) are homogeneous among
network links. Our discussion in Chapter 7 is presented in the following publication:

• [64] N. Mehr, R. Horowitz, Pricing Traffic Networks with Mixed Vehicle Autonomy,
in Annual American Control Conference, 2019.

Altruistic Autonomy

In traffic networks with mixed vehicle autonomy, if autonomous cars have a good model
of how humans make their decisions, they can plan for their actions such that when
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human–driven cars respond to their actions, the overall mobility of the system is in-
creased, i.e. autonomous cars can plan for their actions altruistically. For instance, when it
comes to lane choices, autonomous cars can choose their lanes such that the overall mobil-
ity of the system is increased. An influential instance of such lane choices occur at traffic
diverges where bypassing behavior is observed. Vehicle bypassing is known to increase
delay at traffic diverges. However, due to the complexities of this phenomenon, accurate
and yet simple models of such lane change maneuvers are hard to develop. In Chapter 8,
we first develop a model for human drivers’ lane choices and then show how this model
can be leveraged by autonomous cars for achieving better efficiency of the traffic system
at a traffic diverge.

We develop a macroscopic model for predicting the number of vehicles that perform
a bypass at a traffic diverge for taking an exit link. We interpret the bypassing maneuver
of vehicles at a traffic diverge as drivers acting selfishly; every vehicle selects lanes such
that its own cost of travel is minimized. We discuss how we model the costs that are
incurred by the vehicles. Then, taking into account the selfish behavior of vehicles, we
model the lane choice of vehicles at a traffic diverge as an equilibrium. We state and
prove the properties of the equilibrium in our model. We show that there always exists
an equilibrium for our model. Moreover, although our model is an instance of nonlinear
asymmetrical routing games which in general have multiple equilibria, we prove that
the equilibrium of our model is unique under certain assumptions that we observed to
hold in all our case studies. We discuss how our model can be calibrated by running a
simple optimization problem. Then, using our calibrated model, we validate it through
simulation studies and demonstrate that our model successfully predicts the aggregate
lane change maneuvers that are performed by vehicles at a traffic diverge.

Having shown the predictive power of our model, we discuss how our model can be
employed to obtain the optimal lane choice behavior of vehicles, where the social or the
overall cost of all vehicles is minimized. This analysis is motivated by the full–autonomy
scenario where all vehicles are autonomous, and the lane choice of every car can be con-
trolled in the favor of the overall mobility. Finally, we demonstrate how our model can be
utilized in scenarios where a central authority can dictate the lane choice and trajectory of
certain vehicles so as to increase the overall mobility at a traffic diverge. Examples of such
scenarios include the case when both human driven and autonomous vehicles coexist in
the network. We show how certain decisions of the central authority can affect the overall
delay via examples. This work is previously published in:

• [67] N. Mehr, R. Li, and, R. Horowitz, A Game Theoretic Model for Aggregate By-
passing Behavior of Vehicles at Traffic Diverges, in 21st International Conference on
Intelligent Transportation Systems (ITSC), 2018.

• [68] N. Mehr, R. Li, and R. Horowitz, A Game Theoretic Macroscopic Model of By-
passing at Traffic Diverges with Applications to Mixed–Autonomy Networks, arXiv
preprint arXiv:1809.02762, 2018.
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Chapter 2

Preliminaries

In this chapter, we discuss the preliminaries required for analysis of traffic networks. In
particular, this chapter is mainly devoted to describing the modeling framework that we
will utilize in subsequent chapters. We start by reviewing how we model the “dynamics”
of traffic networks; this model will be further used for the development of appropriate
traffic controllers in the first part of this thesis. Then, we will discuss how travelers’ “route
choices” are normally modeled in traffic networks. We will use this model for predicting
how travelers will select their routes in the presence of autonomy in the second part of
this thesis.

2.1 PointQ Model of Traffic Networks
To model the dynamics of a traffic network, we use the PointQ model proposed in [108].
PointQ models traffic networks as store and forward queuing systems. PointQ allows for
easily characterizing feasible demand profiles and stabilizing signal controls. We let the
traffic network be denoted by G = (N ,L), where N is the set of network nodes, and L is
the set of network edges. The set of nodes N and edges L represent the sets of network
intersections and links respectively. Let |N | = N and and |L| = L be the number of
network nodes, and network links respectively.

In pointQ, network links are divided into three types: entry links Lentry, internal links
Linter, and exit links Lexit. Entry links are the links that carry exogenous arrivals or de-
mands to the network. They are identified by the fact that entry links do not have any
starting node in the network. Internal links connect network nodes; hence, they have
both starting and end nodes. Finally, exit links are the ones through which vehicles leave
the network; thus, exit links do not have any end nodes in the network.

We consider two settings of the PointQ model. Network parameters such as exoge-
nous demands are modeled either as deterministic or random variables. In the stochastic
setting, for each link l ∈ L, let fl represent the long run average of the flow of the vehicles
that leave link l, and dl be the mean value of the exogenous demand on link l respectively.
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If network is modeled deterministically, for each link l ∈ L, fl and dl represent the abso-
lute values of link flows and exogenous demand. Note that since we have assumed that
the exogenous demands enter the network only through entry links, dl = 0 for all links
l ∈ Linter ∪ Lexit.

At each node n ∈ N , only certain movements or phases are allowed. For each such
movement, a separate queue is considered in PointQ. We use queues and movements
interchangeably in this thesis. Each movement is characterized by its origin and destina-
tion links. Moreover, for each pair of links l, m ∈ L, we let f (l, m) be the (average) flow
of vehicles moving from l to m (in the stochastic setting). We further use r(l, m) to rep-
resent the fraction of vehicles that join link m when they leave link l in the deterministic
setting, or equivalently, in the case of stochastic demands and capacities, the probability
of the event that a random vehicle joins link m when departing link l. It is assumed that
r(l, m)’s are known a priori. Moreover, for each movement from link l ∈ L to link m ∈ L,
we use µ(l, m) to represent the saturation flow or service rate of the movement. In the
stochastic setting, for each link l ∈ L, µ(l, m) is interpreted as the mean saturation flow
or service rate of the movement. In the remainder of this section, for simplicity, we dis-
cuss the model for the deterministic setting although the framework generalizes to the
stochastic setting with the stochastic interpretation of the discussed parameters.

At each node n ∈ N , let I(n) and O(n) be the incoming and outgoing links. Since at
each network node, flow conservation holds, we have

∑
l∈I(n)

fl = ∑
m∈O(n)

fm, ∀n ∈ N . (2.1)

Furthermore, for each l, m, and o ∈ L, link flows and the movement flows must satisfy
the following:

fl = dl, f (l, m) = r(l, m) fl, if l ∈ Lentry, (2.2)

fl = ∑
o∈L

f (o, l), f (o, l) = r(o, l) fo, if l ∈ Linter ∪ Lexit. (2.3)

With the description of network flows, we can proceed to describe the signalization cyclic
control in our PointQ model.

Signalization Cyclic Control

Assume that all signal controllers in the signalized intersections are cyclic, i.e. they op-
erate on a common cycle time T. We assume that each actuator, allocates a fraction of its
cycle time to a certain set of movements. We call such a set of movements a stage. For
this type of controllers, at each node n ∈ N , there exist multiple stages sn

j , 1 ≤ j ≤ Sn,
where Sn is the total number of stages at node n. Each stage sn

j is a set of non–conflicting
movements that can be actuated simultaneously. Assume that stage sn

j receives green
for gn

j fraction of the cycle time. A single stage might contain several non–conflicting
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movements. Additionally, a movement might be actuated during multiple stages. For a
movement from link l to m belonging to stage sn

j , we use gn
j (l, m) to denote the fraction

of green that this movement receives during stage sn
j . Clearly, if multiple movements are

actuated during a stage sn
j , the green durations that they receive during stage sn

j must be
equal. In other words, if movements from links l and u to links m and v respectively are
two of such movements that belong to the same stage sn

j , we must have

gn
j (l, m) = gn

j (u, v) = gn
j , ∀ (l, m) and (u, v) ∈ sn

j . (2.4)

Note that at each node n ∈ N , stage green durations gn
j must add up to 1; therefore,

we must have

Sn

∑
j=1

gn
j = 1, ∀n ∈ N . (2.5)

Remark 1. In Equation (2.5), no clearance time between signal stages is considered. If
clearance times are also taken into account, gn

j ’s must add up to 1− εn, where εn is the
fraction of the cycle time during which “all red” undergoes at node n.

At a node n ∈ N , since movements may receive green during multiple stages, for each
movement from l to m, we use p(l, m) to denote the total fraction of green duration that
the movement receives during a cycle time

p(l, m) =
Sn

∑
j=1

gn
j (l, m). (2.6)

Using this definition, a given demand pattern is called feasible if and only if there exists
a set of stages for all network nodes such that for every l, m ∈ L, we have

f (l, m) ≤ µ(l, m)p(l, m). (2.7)

Example: To illustrate the notation, consider the intersection shown in Figure 2.1. There
is only one node in this network. Let this node be indexed by 1. Thus, superscript 1 is
considered for the single node of the network. The intersection has 8 links with links 2,
4, 6, and 8 being entry links, and 1, 3, 5 and 7 being exit links. There is no internal link
in this example. Assuming that there exist only through and right movements, there are
eight queues in the network, where the origin–destination links for all network queues
are: (2,5), (4,7), (8,3), (6,1), (2,3), (4,5), (6,7) and (8,1). Assume that there are only 2 stages at
the intersection such that each stage lasts half of the cycle time. Assume that the following
movements are actuated during each stage.
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Figure 2.1: Schematic of an intersection.

First Stage: (2,5), (4,5), (2,3), (6,1), (8,1), and (6,7).
Second Stage: (4,7), (6,7), (4,5), (8,3), (8,1), and (2,3).
Then, using our notation, for the first stage, we have

g1
1(2, 5) = g1

1(4, 5) = g1
1(2, 3) = g1

1(6, 1) = g1
1(8, 1) = g1

1(6, 7) = g1
1 = 0.5;

while, for the second stage, we have

g1
2(4, 7) = g1

2(6, 7) = g1
2(4, 5) = g1

2(8, 3) = g1
2(8, 1) = g1

2(2, 3) = g1
2 = 0.5.

Note that following (2.5), we must have

g1
1 + g1

2 = 1.

Finally, the total green fraction of each movement is the following

p(2, 5) = p(6, 1) = p(4, 7) = p(8, 3) = 0.5,
p(4, 5) = p(2, 3) = p(8, 1) = p(6, 7) = 1.

Compact Notation of the Model

For readability purposes, we introduce a compact notation of the model parameters and
variables. We use a notation similar to the one adopted in [69]. We use d ∈ RL

+ and
f ∈ RL

+ to represent the vectors of demands and flows for all links in the network. Each
element dl of the vector d is simply equal to the exogenous arrival on link l if l is an entry
link and zero otherwise. We can also collect the turning ratios r(l, m)’s into the matrix
R ∈ RL×L such that Rlm = r(l, m). Using this notation, the set of Equations (2.2) and (2.3)
can be simply written as:

f = (I − RT)−1d. (2.8)
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In addition to the vector of link flows, we can construct the vector of movement flows.
Assume that there exists a total of B possible movements in the network. We let ϕ ∈ RB

+
be the vector of movement flows f (l, m), for all l, m ∈ L such that a movement from link
l to link m is allowed. Likewise, we collect the total fraction of green that each movement
receives, p(l, m)’s, in the allocation vector p ∈ RB. We further collect the service rates of
all network queues, µ(l, m)’s, in the diagonal matrix M, where the ith diagonal element is
equal to the service rate of the ith movement.

Using Equations (2.2) and (2.3), it is easy to see that the linear mapping from the vector
of link flows f to the vector of movement flows ϕ can be encoded using a matrix Γ ∈ RB×L

ϕ = Γ f , (2.9)

where Γ is such that at its jth row, all elements are zero except for the jth element which is
equal to r(l, m) with l and m being the origin and destination links of the jth movement.
Using this compact notation and (2.8), the stability condition (2.7) can be encoded as

Γ(I − RT)−1d ≤ Mp. (2.10)

Next, to represent conditions (2.4), (2.5), and (2.6), we collect the fractions of green that
movements receive during all signal stages, gn

j (l, m)’s in the vector g ∈ RH, where H is
the total number of such durations. Then, we can rewrite Equation (2.6) for all queues as:

p = Ag→pg, (2.11)

where Ag→p is the linear mapping of appropriate dimension. Moreover, we define the
linear mapping Aeq to encode (2.4) for all pairs of queues that belong to the same stage at
an intersection,

Aeqg = 0, (2.12)

where 0 is vector of zeros. Finally, we use the linear transformation Asum in order to
enforce (2.5) for all nodes in the network

Asumg = 1N×1, (2.13)

where 1N×1 is an N dimensional vector of 1’s. Thus, the requirements imposed for cyclic
implementation of a timing plan are represented by Equations (2.11), (2.12), and (2.13).
Equations (2.12), and (2.13) encode the properties required for a timing plan to be imple-
mentable. We concatenate all these equations in the matrix Ac and vector bc to represent
implementability conditions via the following.

Acg = bc, (2.14)

where Ac and bc are matrices of the appropriate dimensions.
Finally, we need to define the vector of queue lengths for all network queues. We let

q ∈ RB denote the vector of queue lengths for all queues in the network.
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2.2 Travelers’ Selfish Route Choice
In the previous section, the assumption was that travelers’ route choices were fixed and
known to the controller through the matrix of turning ratios. But, to plan for the cities
of future where autonomy is integrated in the city, we need to model how humans will
change their behavior in the presence of autonomy, we need to model the decision making
process of travelers. In this section, we discuss how travelers’ route choices in a mixed–
autonomy setting are modeled via nonatomic selfish routing games.

Nonatomic Selfish Routing

We model a traffic network by a directed graph G = (N ,L,W), where N and L are
respectively the set of nodes and links in the network. Each link l ∈ L in the network is a
pair of distinct nodes (u, v) and represents a directed edge from u towards v. We assume
that each link joins two distinct nodes; thus, no self loops are allowed. Define W =
{(o1, d1), (o2, d2), · · · , (ok, dk)} to be the set of origin destination (O/D) vertex pairs of the
network. A node n ∈ N can appear in multiple O/D pairs. In a nonatomic selfish routing
game, if each O/D pair has a fixed given nonzero demand, then it is called a nonatomic
selfish routing game with inelastic demand. Each O/D pair consists of infinitesimally
small agents where every agent decides on their path such that their own delay of travel
is minimized. The delay of each path depends on how network paths are shared among
different O/D pairs. For each O/D pair w = (oi, di), 1 ≤ i ≤ k, we let Pw denote the set of
all possible network paths from oi to di. We assume that the network topology is such that
for each O/D pair w ∈ W , there exists at least one path from its origin to its destination,
i.e. Pw 6= ∅. We further let P = ∪w∈WPw denote the set of all network paths.

For an O/D pair w ∈ W , let rw be the given fixed demand of cars associated with
w. It is important to note that in our setting, each O/D pair w has two classes of cars:
autonomous and human–driven. Consequently, for each O/D pair w ∈ W , we define
αw to be the fraction of cars in rw that are autonomous. We let r = (rw : w ∈ W) and
α = (αw : w ∈ W) be the vectors of network demand and autonomy fraction respectively.
We define rh

w = (1− αw)rw and ra
w = (αwrw) to respectively be the demand of human–

driven and autonomous cars for each O/D pair w ∈ W . Furthermore, for a path p ∈ Pw,
let fp be the total flow of O/D pair w along path p. Note that each path connects exactly
one origin to one and only one destination; thereby, once a path is fixed, its origin and
destination are uniquely determined. Consequently, there is no need to explicitly include
path O/D pairs in the notation used for fp. Also, for each path p ∈ Pw, we use f h

p and
f a
p to respectively denote the flow of human–driven and autonomous cars along path p.

Note that for each path p ∈ P , we have fp = f h
p + f a

p . Define the network flow vector f to
be a nonnegative vector of human–driven and autonomous flows along network paths,
i.e. f = ( f h

p , f a
p : p ∈ P). A flow vector f is called feasible for a given network G, if for
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each O/D pair w ∈ W ,

∑
p∈Pw

f h
p = (1− αw)rw, and ∑

p∈Pw

f a
p = αwrw, (2.15a)

f h
p ≥ 0, and f a

p ≥ 0, ∀p ∈ Pw. (2.15b)

For each link l ∈ L, fl is the total flow of cars along link l, i.e. fl = ∑p∈P :l∈p fp. Since we
need to decompose the total link flow into human–driven and autonomous cars, we let f h

l
and f a

l be the total flow of human–driven and autonomous cars along link l respectively.
In fact, f h

l and f a
l are the summation of the flow of human–driven and autonomous cars

on all routes containing link l,

f h
l = ∑

p∈P :l∈p
f h
p , and f a

l = ∑
p∈P :l∈p

f a
p .

Note that if all cars are either human–driven or autonomous for an O/D pair w ∈ W ,
i.e. either αw = 0 or αw = 1, then, we only have a single class of cars along that O/D
pair, and for each path p ∈ Pw, either fp = f h

p or fp = f a
p . If for all network O/D pairs

w ∈ W , the autonomy fraction αw = 0, then fl = f h
l for all links l ∈ L. In fact, if all cars

are human–driven, our routing game reduces to a single class game.

(∀w ∈ W , αw = 0)⇐⇒
(
∀p ∈ P , fp = f h

p

)
. (2.16)

In order to be able to model the incurred delays when cars are routed throughout
the network, it is assumed that each link l ∈ L has a delay per unit of flow function
el : R2 → R. For a given class of link delay functions e = (el( f h

l , f a
l ) : l ∈ L) and a given

demand vector r, we let the triple (G, r, e) represent a routing game on G with demand
r and link delay functions e. We further assume that the delay per unit of flow for each
path p ∈ P is obtained by the summation of link delays over the links that form p,

ep( f ) = ∑
l∈L:l∈p

el( f h
l , f a

l ). (2.17)

Equation (2.17) implies that the delay of each path p ∈ P depends not only on the flows
of human–driven and autonomous cars along path p, but also on the flows along other
paths. The overall network delay or social delay is given by

J( f ) = ∑
p∈P

fpep( f ). (2.18)

A flow vector f ∗ = ( f h
p
∗
, f a

p
∗ : p ∈ P) is socially optimal if and only if it minimizes J( f )

subject to relations (2.15). The optimal social delay is denoted by J∗ = J( f ∗).
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Wardrop Equilibrium

It is well known in the transportation literature that if there are many noncooperative
agents, namely, flows that behave selfishly [95], a network is at an equilibrium if the
Wardrop conditions hold [109]. The Wardrop conditions state that at equilibrium, no user
has any incentive for unilaterally changing their path. This implies that for an equilibrium
flow vector f , if there exists a path p ∈ Pw such that either f h

p 6= 0 or f a
p 6= 0, we must

have that ep( f ) ≤ ep′( f ) for all paths p′ ∈ Pw.

Definition 1. For a routing game (G, r, e), a feasible flow vector f is a Wardrop equilibrium if
and only if for every O/D pair w ∈ W and every pair of paths p, p′ ∈ Pw,

f h
p

(
ep( f )− ep′( f )

)
≤ 0, (2.19a)

f a
p

(
ep( f )− ep′( f )

)
≤ 0. (2.19b)

Note that an implication of the above definition is that for each O/D pair w ∈ W , and
any two paths p, p′ ∈ Pw such that fp 6= 0 and fp′ 6= 0, we must have that ep( f ) = ep′( f ).

Definition 2. Given an equilibrium flow vector f for a routing game (G, r, e), we define the delay
of travel for each O/D pair w ∈ W to be

ew( f ) := min
p∈Pw

ep( f ). (2.20)

Motivated by the above discussion, ew( f ) is precisely the delay across all paths p ∈ Pw
which have a nonzero flow. Moreover, the equilibrium conditions imply that for a path
p ∈ Pw with zero flow, we have ep( f ) ≥ ew( f ).

It is worth mentioning that when there are no autonomous cars, i.e. for all O/D pairs
w ∈ W , αw = 0, since f h

p = fp for all paths p ∈ P , Conditions (2.19) reduce to

fp

(
ep( f )− ep′( f )

)
≤ 0, ∀w ∈ W , ∀p, p′ ∈ Pw. (2.21)

Delay Characterization

We first specify the structure of our delay model. If there is only the single class of human–
driven cars in the network, the US bureau of public roads (BPR) [92] suggests the follow-
ing form of delay functions.

Assumption 1. When network links are shared by only human–driven cars, the link delay func-
tions el : R→ R are of the following form

el( fl) =

(
al + γl

(
fl
Cl

)βl
)

, (2.22)

where Cl is the capacity of link l, and al, γl, and βl are nonnegative link parameters.
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In practice, al is normally the free–flow travel time on link l, γl is a constant link parame-
ter, and βl is a positive integer ranging from 1 to 4. However, we only require that al and
γl be nonnegative link parameters, and βl be a positive integer. In order to characterize
the delay function in networks with mixed autonomy, where we have two classes of cars,
we first need to model the impact of autonomous cars on link capacities. It was shown
in [50] that in networks with mixed autonomy, Cl depends on the autonomy fraction of
link l defined as

αl :=
f a
l

f a
l + f h

l
. (2.23)

We use Cl(αl) to emphasize this dependence. Let ml and Ml be the capacity of link l
when all cars are human–driven and autonomous respectively. Since autonomous cars
are capable of maintaining shorter headways, it is normally the case that ml

Ml
≤ 1. When

the two classes of human–driven and autonomous cars are present in the network, using
the results in [50], we have

Cl(αl) =
ml Ml

αlml + (1− αl)Ml
. (2.24)

We adopt this capacity model throughout this thesis. Since for each link l ∈ L, αl =
f a
l

f a
l + f h

l

and fl = f a
l + f h

l , using (2.24), for networks with mixed autonomy, the delay func-
tion (2.22) can be modified as

el( f h
l , f a

l ) =

al + γl

 f h
l + f a

l
ml Ml( f h

l + f a
l )

ml f a
l +Ml f h

l


βl
 (2.25)

=

al + γl

(
f a
l

Ml
+

f h
l

ml

)βl
 . (2.26)

Note that when only human–driven cars are present in the network, for each link l ∈ L,
since fl = f h

l , the link delay function reverts to

el( fl) =

al + γl

(
f h
l

ml

)βl
 . (2.27)

Link Prices

To exploit the potential mobility benefits of autonomous cars, regulatory mechanisms
such as toll collection, may be required. In the simplest possible form, tolls are collected
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for traversing network links. We review the selfish routing game setting in the presence
of link prices. If one decides to set link prices in a mixed–autonomy setting, for each
link l ∈ L, define τh

l ≥ 0 and τa
l ≥ 0 to respectively be the price for human–driven and

autonomous cars along link l. Let τ = (τh
l , τa

l : l ∈ L) be the vector of link prices. The
price of human–driven cars along a path p ∈ P is defined as τh

p = ∑l∈L:l∈p τh
l . Likewise,

define τa
p = ∑l∈L:l∈p τa

l to be the price of autonomous cars along path p.
Note that when prices are set, there are both travel time and monetary costs for each

agent. Hence, for traversing a path p ∈ P , an agent experiences a delay ep( f ) and pays
a price equal to either τh

p or τa
p . Thus, assuming that all agents value travel delays and

monetary costs identically, the cost of an agent along a path p is either ep( f )+ τh
p or ep( f )+

τa
p dependent on whether the agent is human–driven or autonomous. We define the link

traversal cost functions ch
l and ca

l to be the following

ch
l ( f h

l , f a
l ) = el( f h

l , f a
l ) + τh

l , (2.28a)

ca
l ( f h

l , f a
l ) = el( f h

l , f a
l ) + τa

l . (2.28b)

Similarly, we define the cost of traversing a path p ∈ P for human–driven and au-
tonomous cars to respectively be

ch
p( f ) = ep( f ) + τh

p , (2.29a)

ca
p( f ) = ep( f ) + τa

p . (2.29b)

For a given vector of link prices τ inducing a vector of link cost functions c = (ch
l , ca

l , l ∈
L), we define a nonatomic selfish routing by a triple of the form (G, r, c).

Remark 2. For every link l ∈ L, we use the term link cost for human–driven or autonomous
cars to respectively refer to ch

l ( f r
l , f a

l ) or ca
l ( f r

l , f a
l ), where both the travel delays and link

prices are included. However, we use the term link delay to refer solely to e( f r
l , f a

l ), which
is the delay of travel along link l. Note that the cost of traversing a link l ∈ L might be
different for human–driven and autonomous cars; but, the delay of traversing link l is the
same for both classes of cars.

Remark 3. When a price vector τ is set, although the traversal cost of a link perceived by
every agent may be different from the delay of travel along that link, the overall perfor-
mance of the system is still measured via the overall delay incurred by all agents. The goal
of setting link prices is to find prices such that the overall delay of the system perceived
by the society is minimized.

The overall cost of a routing game (G, r, c) is defined by

C( f ) = ∑
p∈P

f h
p ch

p( f ) + f a
pca

p( f ). (2.30)

For a priced network, Wardrop equilibria are defined via the following.
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Definition 3. For a priced routing game (G, r, c), a feasible flow vector f = ( f h
p , f a

p : p ∈ P) is
an equilibrium if and only if for every O/D pair w ∈ W and every pair of paths p, p′ ∈ Pw, we
have

f h
p

(
ch

p( f )− ch
p′( f )

)
≤ 0, (2.31a)

f a
p

(
ca

p( f )− ca
p′( f )

)
≤ 0. (2.31b)

Remark 4. In general, despite the classical setting of a single vehicle class where Wardrop
equilibrium is unique [101], in our mixed–autonomy setting, there may exist multiple
Wardrop equilibria satisfying (2.31) .

Notice that equations (2.31) imply that if for an O/D pair w ∈ W , and two paths p, p′ ∈
Pw, the flows f h

p and f h
p′ are nonzero, then, we must have ch

p( f ) = ch
p′( f ) (we can argue

similarly for autonomous cars). Moreover if at equilibrium, the flow along a path is zero,
its travel cost cannot be smaller than that of the other paths with nonzero flow of the same
vehicle class. Therefore, we can define the following.

Definition 4. For a priced routing game (G, r, c), if f is an equilibrium flow vector, for each O/D
pair w ∈ W define the cost of travel for human–driven and autonomous cars to be

ch
w( f ) = min

p∈Pw
ch

p( f ), (2.32a)

ca
w( f ) = min

p∈Pw
ca

p( f ). (2.32b)

Since at equilibrium, for each O/D pair w and each class of cars, the cost of travel along
the paths that have nonzero flow of that class is the same and equal to cost of travel for
that class, we have

C( f ) = ∑
w∈W

rh
wch

w( f ) + ra
wca

w( f ). (2.33)

Relevant Prior Results

In the remainder of this chapter, we review some prior results in the literature of routing
games. We will use these results in part III of this thesis to prove and analyze some
properties of mixed–autonomy networks. Some of these results hold for routing games
with only a single class of cars, but since our setting has two classes of cars, these results
do not directly apply to our setting of mixed vehicle autonomy. However, we will discuss
in part III how these results can be leveraged for the mixed–autonomy setting.

Existence of Equilibrium

We state the following proposition from the theorem in [12] which studies the conditions
under which a Wardrop Equilibrium exists for a multiclass traffic network.
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Proposition 1. Given a routing game (G, r, e), if the link delay functions are continuous and
monotone in the link flow of each vehicle class; then, there exists at least one Wardrop equilibrium.

Corollary 1. Using (2.26), in the mixed–autonomy setting, since our assumed delay functions are
nonnegative, continuous, and monotone in the flow of each vehicle class, Proposition 1 implies that
there always exists at least one Wardrop equilibrium for a routing game with mixed autonomy.

Uniqueness of Equilibrium

Now, we review some known results regarding the uniqueness of Wardrop equilibria.
When there is a single class of cars in the network (e.g. only human–driven or au-
tonomous cars), equilibrium uniqueness holds in a weak sense (See Theorem 3 from [101]).

Proposition 2. Given a routing game G with a single class of human–driven cars for each O/D
pair, if the delay functions are of the form (2.27), for a given demand vector r, we have

1. The equilibrium is unique in a weak sense, i.e. for each link l, the total flow fl is unique for
all Wardrop equilibrium flow vectors f .

2. For each O/D pair w ∈ W , the delay of travel ew( f ) is unique for all Wardrop equilibrium
flow vectors f . Thus, the delay of travel for each O/D pair at equilibrium, i.e. ew( f ), only
depends on network demand vector r. Hence, we may unambiguously define ew(r) to denote
this unique value.

In general, in our mixed–autonomy setting, the equilibrium may not be unique. How-
ever, we will use the following result from [4] in Chapter 7 to establish some properties
of equilibria in the mixed–autonomy setting in the presence of prices.

Proposition 3. For a priced routing game (G, r, c), if along each link l ∈ L, the link traversal cost
functions ch

l and ca
l are strictly increasing functions of the total flow along that link fl = f h

l + f a
l ,

and the link cost functions ch
l and ca

l are identical up to additive constants, then, at equilibrium,
the total flow along each link l ∈ L is unique.

It is important to mention that in our mixed–autonomy setting, since the link cost
functions (2.28) depend on the flow of each vehicle class, not the total flow along the
link, Proposition 3 does not apply to our setting, but we will further use Proposition 3 in
proving some of our results.

Monotonicity of the Delay of Travel

As we discussed above, in general, the equilibrium may not be unique. However, if the
conditions of Proposition 2 hold for a network, the social delay and the delay of travel for
each O/D pair are unique. For a single class routing game on G = (N ,L,W), we recall
the following from Theorem 3 in [38].
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Proposition 4. Consider a routing game (G, r, e), where there exists only one class of cars. As-
sume that for each link l ∈ L, el(.) is continuous, positive valued, and monotonically increasing.
Then, for each O/D pair w ∈ W , the delay of travel ew(r) is a continuous function of the demand
vector r. Furthermore, ew(.) is nondecreasing in rw when all other demands rw′ , w′ 6= w, are
fixed.

Marginal Cost Pricing

The following proposition regarding marginal cost pricing is a generalization of the re-
sults in [22].

Proposition 5. For a priced routing game (G, r, c), let f ∗ be an optimizer of the network social
delay J in Equation (2.18), and J∗ be the minimum social delay of the network. If for each link
l ∈ L, link prices τ are set to be

τh
l = ( f h

l
∗
+ f a

l
∗)

(
∂

∂ f h
l

el( f h
l , f a

l )

) ∣∣∣∣
f ∗

, (2.34a)

τa
l = ( f h

l
∗
+ f a

l
∗)

(
∂

∂ f a
l

el( f h
l , f a

l )

) ∣∣∣∣
f ∗

, (2.34b)

then, there exists at least one equilibrium flow vector f for the routing game (G, r, c) such that the
network social delay is optimal at this equilibrium, i.e. J( f ) = J∗.

Proof. It is easy to verify that (2.34) renders f ∗ an equilibrium flow vector by verifying the
KKT conditions at the optimal point f ∗. For completeness, we have included the proof of
Proposition 5 in here.

Since the social delay defined by (2.18) is a continuous function of flows along network
paths, and the set of feasible flows satisfying (2.15) is compact, there exists a flow vector
f ∗ that optimizes the social delay, i.e. f ∗ is the optimizer of the following optimization
problem

min
f

J( f )

subject to ∀p ∈ P : f h
p ≥ 0, f a

p ≥ 0,

∀w ∈ W : ∑
p∈Pw

f h
p = rh

w, ∑
p∈Pw

f a
p = ra

w.
(2.35)

Note that all constraints in (2.35) are affine functions of the decision variable f . There-
fore, the regularity conditions hold for (2.35) (see, for instance, Theorem 5.1.3 and Lemma
5.1.4 in [9]). Thus, the optimizer f ∗ must satisfy the KKT conditions. For each path p ∈ P ,
let λh

p ≥ 0 and λa
p ≥ 0 be the Lagrange multipliers associated with the nonnegativity con-

straint of the flows of human–driven and autonomous cars along path p respectively.
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Similarly, for each O/D pair w ∈ W , let νh
w and νa

w be the Lagrange multipliers asso-
ciated with the flow conservation constraints for human–driven and autonomous cars
along O/D pair w, respectively. Then, for a fixed path p ∈ Pw associated to an O/D
pair w ∈ W , for the flow of human–driven cars, the stationarity condition imposes the
following

∂

∂ f h
p

J( f )
∣∣∣∣

f ∗
= λh

p − νh
w. (2.36)

From (2.17), (2.18), and (2.34), we have

∂

∂ f h
p

J( f )
∣∣∣∣

f ∗
=

∑
l∈L:l∈p

(
el( f h

l , f a
l ) + ( f h

l + f a
l )

∂

∂ f h
l

el( f h
l , f a

l )
)∣∣∣∣

f ∗

= ep( f ∗) + τh
p .

Using this together with (2.36), we can conclude that for every path p ∈ P , we have

ep( f ∗) + τh
p = λh

p − νh
w. (2.37)

On the other hand, complementary slackness requires that for every path p ∈ P

λh
p f h

p = 0. (2.38)

Now, for a fixed O/D pair w ∈ W , consider a pair of paths p, p′ ∈ Pw. If f h
p > 0,

from (2.38), we must have λh
p = 0. Then, from (2.37) and nonnegativity of λh

p′ , we have

ep( f ∗) + τh
p = −νh

w ≤ λh
p′ − νh

w = ep′( f ∗) + τh
p′ , (2.39)

where in the last equality, we have used (2.37) for the path p′. Similarly, for autonomous
cars along the two paths p and p′, if f a

p > 0, we must have

ep( f ∗) + τa
p = −νa

w ≤ λa
p′ − νa

w = ep′( f ∗) + τa
p′ . (2.40)

Note that (2.39) implies (2.31a), the reason being that if f h
p = 0, (2.31a) automatically

holds, and if f h
p > 0, (2.31a) holds since as we showed above, ch

p( f ∗) ≤ ch
p′( f ∗). Likewise,

(2.40) implies (2.31b). Hence, once prices are set according to (2.34), the optimal flow f ∗

is a Wardrop equilibrium for the game (G, r, c). Thus, there exists at least one induced
equilibrium with minimum social delay once prices are obtained from (7.2).
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Part II

Networks of Human–Driven Cars
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Chapter 3

Bandwidth Maximization

It is well known that the parameters of traffic signals such as cycle length, green times,
and offsets play a key role in shaping traffic streams and network efficiency in general.
The focus of this chapter is on how to select the offsets of signalized intersections in an
urban network in order to reduce stop–and–go waves. Traffic signals are normally de-
signed to guarantee that conflicting movements are not allowed at the same time at an
intersection. In addition to these safety requirements, it is desired to design traffic signals
such that the number of stops that cars make at intersections is minimized, which leads to
increases in average traffic speed. Early traffic signal control systems focused primarily
on maintaining the speed limit along a single path through the network.

The problem of selecting signal offsets for maximizing the size of uninterrupted pla-
toons, that is, maximizing the two–way bandwidth along an arterial route, was first for-
mulated in [79]. This work used a simple model where every signal was assumed to
have only two stages. Moreover, it was assumed that no stage allowed for simultane-
ous actuation of through and left–turn movements. It was shown that maximization of
the bandwidth could be achieved by an exhaustive search of order of 2n, where n is the
number of intersections. The computational hindrances of [79] were addressed in [83] by
utilizing the symmetry of the bandwidth definition introduced in [79].

In [58], traffic signal synchronization was first formulated as a mathematical program.
The approach allowed the optimization of other control parameters, in addition to the
offsets, such as cycle length and speeds. This resulted in a mixed–integer linear pro-
gram. An improved numerical approach was proposed in [88]. An algorithm based
on the concept of interference minimization was introduced at IBM and implemented
in [10]. This approach was further extended in [73] to enable the consideration of more
than two stages. Cross–street flows were incorporated into the problem with work on
multi–bandwidth methods beginning with [32]. The implementation of this approach
can be found in MULTIBAND [102]. This approach was also extended in [31] to capture
complex networks going beyond the arterial case. In [18, 19], the network queueing pro-
cess was approximated by sinusoidal waves, and a semidefinite relaxation for the offset
optimization problem was proposed.
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As a result of the ongoing rise of interest in online adaptation of signal offsets, various
algorithms for online tuning of offsets such as SCATS, SCOOT, OPAC and RHODES have
been developed [61, 41, 29, 76]. The majority of these programs operate by making small
adjustments to the parameters such that the timing plans evolve to match the measured
traffic data. In [33], an adaptive algorithm for online tuning of offsets was proposed. The
utilized framework was a data–driven approach where the collected data from the on–site
sensors was utilized to find offsets such that the majority of the traffic was accommodated
by the green window.

Recently, a new formulation of bandwidth maximization was proposed in [36]. This
formulation was a generalization of the class of methods that derive from [58], in that it
considered as given the distributions of car arrivals, rather than the green times. In this
framework, the case of given green times is equivalent to an assumption of “pulse” car
arrival functions, or non–dispersing platoons. It was shown that bandwidth maximiza-
tion problem can be formulated as a linear program in the case of pulse arrival functions,
reducing the computational complexity with respect to previous methods. However, the
approach only considered a single two-way arterial, and did not generalize to networks
of arbitrary topology.

In the present chapter, we generalize the framework of [36] and develop a formulation
that is applicable to arbitrary networks. We first derive an explicit formula for the band-
width as a function of the so–called “relative offsets”. The formulation assumes given a
set of “target routes”. The target routes may be the routes with larger demands or the ma-
jor routes taken by cars in the network. The goal of the problem is to select the offsets for
the intersections encountered along these routes, so as to maximize a weighted sum of the
route (or path) specific bandwidths. Note that these paths correspond to the directions
taken by the aggregate flow of cars; they are not specific to a single car. The formulation
also assumes that green times, cycle length, and phase sequences are fixed and given. We
show that this optimization problem can be converted into a mixed–integer linear pro-
gram. The efficacy of the approach is demonstrated with several examples and a case
study. It is important to mention that although [36] can handle general car arrival func-
tions (corresponding to different platoon dispersion characteristics and signal actuation),
this chapter is restricted to the traditional case in which car arrivals are pulsed.

3.1 Path Relative Offsets
We formulate the problem of finding the offsets of network nodes in terms of path relative
offsets. To define relative offsets, we need to define the following. Let G = (N ,L) be
the graph of traffic network. Each link l ∈ L is characterized by its travel time t(l) > 0.
We assume that link travel times, t(l) are given for all links l ∈ L and the current traffic
conditions. It is assumed that a set of paths P through the network is given. Each path
p ∈ P consists of an ordered sequence of links Lp and nodes N p leading from the start
to the end of the path. It is further assumed that these paths are linear, connected, and
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Figure 3.1: Schematic of the sample network.

contain no loops.
Let Ns ⊆ N denote the subset of the nodes that are signalized. A movement is defined

to be an input/output link pair on a signalized node, e.g. the north-bound left-turn move-
ment. The set of movements for signalized node n ∈ Ns is denoted withMn. A signalized
node with 4 incoming links and 4 outgoing links might have up to sixteen movements,
but typically has only eight since U–turns and right–turns are often unsignalized. We
let Mp ⊆ M denote the set of signalized movements encountered by a vehicle follow-
ing path p. Throughout the paper, superscripts refer to paths whereas subscripts refer to
nodes.

Example: Consider the network shown in 3.1. There are two paths p and p′ on this
network, with

Lp = {l1, l2, l3, l5, l7}
Lp′ = {l1, l2, l4, l6, l7}
Mp = {(l1, l2), (l2, l3), (l3, l5), (l5, l7)}
Mp′ = {(l1, l2), (l2, l4), (l4, l6), (l6, l7)}

It is assumed that all of the signals operate on a periodic fixed–time schedule with a com-
mon cycle time C, where the controller provides a certain amount of green time to each
movement within a cycle. It is further assumed that each movement receives a green
indication only once during a cycle. The green time for each movement m ∈ Mn is
characterized by its duration g(m) > 0 and its offset θ(m) with respect to a global pe-
riodic clock. Each movement offset θ(m) is the time measured to the midpoint of the
movement’s green period. In each signalized node n ∈ Ns, for each pair of movements
m, m′ ∈ Mn, δ(m, m′) is defined as:

δ(m, m′) =
(
θ(m)− θ(m′)

)
mod∗ C. (3.1)

The mod∗ C is a modulo operator which returns the signed distance from the nearest
multiple of C, as in [36]. This implies that for any real number x, x mod∗ C always lies in
the interval [−C

2 , C
2 ] . As an example, 6 mod∗ 5 = 1 while 4 mod∗ 5 = −1. In fact, δ(m, m′)

measures the time between the midpoint of the green periods for movements m and m′

in the same signalized node. Note that δ(m, m′) is a signed variable whose sign indicates
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the ordering of the green periods of movements m and m′. Positive δ(m, m′) implies that
actuation of the midpoint of the green period belonging to movement m happens after
the actuation of the same quantity for movement m′. The assumption of given green
durations, cycle time, and phase sequences implies that the values of δ(m, m′)’s are fixed
and given in the problem. Hence, we are only allowed to select a single offset for each
signalized node n ∈ Ns, which determines the displacement of the given timing plan
with respect to a fixed clock.

For a movement m encountered while traversing a path p, we let ωp(m) represent the
relative offset of this movement with respect to path p. For a path p, as illustrated in
Figure 3.2, path relative offsets measure the center of the green period of a movement m
with respect to a coordinate frame that moves along path p at the speed of traffic (i.e. in
accordance with the travel time t(l) in each link l), but without stopping at red lights.
Thus, for each movement m on path p (m ∈ Mp), belonging to the node n (m ∈ Mn), we
have:

ωp(m) =
(
θ(m)− Tp

n
)

mod∗ C, (3.2)

where Tp
n is the travel time from the path p’s origin to node n. It is computed as the sum

of the travel times t(l) for all links l ∈ Lp preceding node n:

Tp
n = ∑

l∈Lp

l precedes n

t(l). (3.3)

The relative offset defined in Equation (3.2) is in fact the actuation time of the midpoint of
the green period of movement m in the reference frame of path p. In other words, it is the
time between the middle of the green phase utilized by path p at node n, and the arrival
time of a test vehicle along that path. Figure 3.2 shows reference trajectories for the paths
p and p′ from our previous example. The relative offsets are measured with respect to
these reference trajectories, and to the center of the green periods (rectangles).

3.2 Path Bandwidth
As mentioned previously, in the case where there exist multiple paths, we define a band-
width for each path. The bandwidth for a path p ∈ P is defined as the portion of the
cycle during which a vehicle may start a journey along p and complete it without stop-
ping. Normally, there will be only one interval of time during which an uninterrupted
trip can be initiated. If there are several disconnected such intervals, then, we will de-
fine the bandwidth as the largest one. For long paths (or poorly coordinated signals)
the bandwidth may reduce to zero, meaning that it is impossible to traverse the entire
path without encountering a red light. Our goal for signal coordination is to maximize
a weighted sum of the bandwidths for the desired paths included in P . The weights as-
signed to the paths determine the priority or importance of some paths over the others.
This allows us to present a generalization of the bandwidth definition provided in [36].
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Figure 3.2: Reference trajectories for p and p′. Note that Mp = {m1, m3, m5, m7} and
Mp′ = {m2, m4, m6, m8}.

In [36], maximization of bandwidth was proposed for the basic case of a single road with
two paths: inbound and outbound.

The computation of bandwidth for a single path is analogous to the problem of finding
the intersection of q intervals on the real line: {[αj, β j], 1 ≤ j ≤ q}. The length of the
intersection of these q intervals is:

max
(

0, min
j,k

(β j − αk)

)
. (3.4)

A path bandwidth bp is the intersection of all green intervals for the movements belong-
ing to path p. The green interval for a movement m utilized by path p, can be expressed
in terms of the path relative offsets as [ωp(m)− g(m)

2 , ωp(m) + g(m)
2 ]. Hence, bp can be ex-

pressed in terms of relative offsets as the intersection of green intervals for all movements
belonging to path p:

bp(ωωω) =
⋂

m∈Mp

(
[ωp(m)− g(m)

2
, ωp(m) +

g(m)

2
]

)
, (3.5)

where ωωω denotes the vector of relative offsets for all movements and paths in the network.
Therefore, using Eq. (3.4), replacing β’s and α’s with ωp(m) ± g(m)/2, we obtain the
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bandwidth for path p as a function of the offsets:

bp(ωωω) = max

(
0, min

m,m′∈Mp
(ωp(m)−ωp(m′) + ḡ(m, m′))

)
, (3.6)

where ḡ(m, m′) is the average of g(m) and g(m′). Note that since movement green times
g(m) and g(m′) are always positive, ḡ(m, m′) is also always positive.

3.3 Problem Formulation
Our objective is to find the node offsets such that a weighted sum of the bandwidths for
a given set of network paths is maximized. This is expressed as a mathematical program
as follows.

maximize
ωωω

∑
p∈P

λp bp(ωωω)

subject to ωωω ∈ Ω,
(3.7)

Here λp is the weight associated with path p. Moreover, Ω is the set of feasible relative
offsets, which following Eq. (3.2) is a hypercube in Rr with sides of length C and centered
at the origin, where r is the number of unknown relative offsets. As stated earlier, the
assigned weights reflect the importance of certain paths and directions in the network.
For instance, one may assign more weight to the paths with larger demands.

Optimization problem (3.7) allows for finding relative offsets independent of each
other. However, if fixed timing plans are given, as has been assumed, relative offsets
of movements must be such that they conform with the given timing plans. Thus, we
need additional constraints to encode this requirement.

To encode the dependence amongst relative offsets in a single intersection, we use
the following. For each pair of distinct paths p and p′ that have a common signalized
intersection n ∈ Ns, with respective movements m, m′ ∈ Mn ∩Mp ∩Mp′ , we have

ωp(m)−ωp′(m′) =
(
θ(m)− Tp

n
)

mod∗C−(
θ(m′)− Tp′

n

)
mod∗C.

(3.8)

Equation (3.8) can be rewritten as:

(
ωp(m)−ωp′(m′)

)
mod∗C =

( (
θ(m)− θ(m′)

)
−

(Tp
n − Tp′

n )
)

mod∗C.
(3.9)

which can be expressed in terms of δ(m, m′) (which is fixed and given). Introduce the
notation,

∆p,p′(m, m′) =
(

δ(m, m′)− (Tp
n − Tp′

n )
)

mod∗C (3.10)
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and note that the value of ∆p,p′(m, m′) is known and fixed by the assumption of fixed
timing plans. Thus, using (3.10) and (3.9), we have(

ωp(m)−ωp′(m′)
)

mod∗C = ∆p,p′(m, m′). (3.11)

Adding this constraint to the optimization problem, we obtain,

maximize
ωωω

∑
p∈P

λp bp(ωωω)

subject to ωωω ∈ Ω,(
ωp(m)−ωp′(m′)

)
mod∗C = ∆p,p′(m, m′),

∀n, ∀m, m′ ∈ Mn ∩Mp ∩Mp′ .

(3.12)

The objective function in the above optimization problem is non-linear, non-convex, and
non-differentiable. The constraints are also nonlinear. Next, we will describe how the
above optimization problem can be solved.

3.4 Problem Relaxation
In order to solve (3.12), we show that it can be encoded as a mixed–integer linear program.
For each path p, define the binary variable αp such that αp = 1 if bp > 0 and αp = 0 if
bp = 0. In fact, αp is an indicator variable for the “max” operator in Eq. (3.6), taking the
value 1 when minm,m′∈Mp(ωp(m)−ωp(m′) + ḡ(m, m′)) is positive, and 0 otherwise. With
the introduction of these binary variables and using Equation (3.6), we can rewrite (3.12)
as:

maximize
ωωω,bp,αp ∑

p∈P
αp λp bp

subject to:
ωωω ∈ Ω,
αp ∈ {0, 1},(

ωp(m)−ωp′(m′)
)

mod∗C = ∆p,p′(m, m′),

∀n, ∀m, m′ ∈ Mn ∩Mp ∩Mp′ ,

bp ≤ ωp(m′)−ωp(m′′) + ḡm′,m′′ ,

∀p, ∀m′, m′′ ∈ Mp.

(3.13)

Note that the decision variables in optimization problem (3.13) are relative offsets ωωω,
path bandwidths bp and binary variables αp’s while the solution of the above optimization
problem is equivalent to that of (3.12). Now, the objective function of (3.13) is mixed
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bilinear. Alternatively, we can move the binary variables, αp’s, to the constraints:

maximize
ωωω,bp,αp ∑

p∈P
λp bp

subject to:
ωωω ∈ Ω,
αp ∈ {0, 1},(

ωp(m)−ωp′(m′)
)

mod∗C = ∆p,p′(m, m′),

∀n, ∀m, m′ ∈ Mn ∩Mp ∩Mp′ ,

bp ≤ αp (ωp(m′)−ωp(m′′) + ḡm′,m′′
)

,

∀p, ∀m′, m′′ ∈ Mp.

(3.14)

The above conversion is true because any bp whose αp is set to zero will naturally rise to
its upper bound at bp = 0. Note that the inequality constraints in the optimization prob-
lem (3.14) are encoded for every pair of movements including the repeated movements.
It is crucial to enforce these constraints for the repeated pairs of movements too so as to
make sure that the path bandwidth is always smaller than or equal to the green duration
of every movement belonging to that path.

The next step will be to relax the bilinear constraints to an equivalent mixed–integer
form. Define the continuous variables Kp(m′, m′′) as:

Kp(m′, m′′) := ωp(m′)−ωp(m′′) + ḡm′,m′′ . (3.15)

We know that Kp(m′, m′′) is bounded above by 2C, since |ω| ≤ C/2 and g ≤ C. Now, as
suggested in [34], the inequality constraints bp ≤ αp Kp(m′, m′′) in (3.14) can be replaced
by

bp ≤ αp(2C), (3.16)

bp ≤ (1− αp)(2C) + Kp(m′, m′′). (3.17)

When αp = 0, the first inequality becomes bp ≤ 0 and the second is redundant; while,
when αp = 1, the second inequality is bp ≤ K(p, m′, m′′) and the first is redundant. Thus,
we have converted our mixed bilinear problem into the following problem:
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maximize
ωωω,bp,αp ∑

p∈P
λp bp

subject to:
ωωω ∈ Ω,
αp ∈ {0, 1},(

ωp(m)−ωp′(m′)
)

mod∗C = ∆p,p′(m, m′),

∀n, ∀m, m′ ∈ Mn ∩Mp ∩Mp′ ,
bp ≤ αp(2C), ∀p,

bp ≤ (1− αp)(2C) + Kp(m′, m′′),
∀p, ∀m′, m′′ ∈ Mp,

Kp(m′, m′′) = ωp(m′)−ωp(m′′) + ḡm′,m′′

∀p, ∀m′, m′′ ∈ Mp.

(3.18)

Now, what remains for being able to solve (3.18) is to encode the equality constraints
such that the resulting optimization problem becomes a mixed–integer linear program. It
is important to note that ∆p,p′(m, m′) can be easily computed for every movement pair at
an intersection given the timing plans and the path travel times. Now, note that in order
for the equality constraints to be true, we must have that:

ωp(m)−ωp′(m′) = βp,p′(m, m′)C + ∆p,p′(m, m′), (3.19)

where βp,p′(m, m′) ∈ Z is an integer variable. In other words, for the equality con-
straints, we must have that ωp(m)− ωp′(m′) is equal to a multiple of cycle time C plus
∆p,p′(m, m′). Since relative offsets are restricted to lie in [−C

2 , C
2 ], we are guaranteed that(

ωp(m)−ωp′(m′)
)

is bounded above and below by C and −C. Thus, the only possi-

ble values for βp,p′(m, m′) are -1, 0, and 1. Hence, we can solve the optimization prob-
lem (3.18) by solving the following:

maximize ∑
p∈P

λp bp

subject to:
ωωω ∈ Ω,

ωp(m)−ωp′(m′) = ∆p,p′(m, m′) + βp,p′(m, m′)C,

∀n, ∀m, m′ ∈ Mn ∩Mp ∩Mp′ ,

βp,p′(m, m′) ∈ {−1, 0, 1}, ∀n, ∀m, m′ ∈ Mn ∩Mp ∩Mp′ ,
bp ≤ αp(2C), ∀p
bp ≤ (1− αp)(2C) + Kp(m′, m′′), ∀p, ∀m′, m′′ ∈ Mp.

(3.20)
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Figure 3.3: A linear arterial. The three colored paths are samples of the generated paths.

Now, optimization problem (3.20) is a mixed–integer linear program which can be easily
solved via the available mixed–integer solvers. The decision variables in this optimization
problem are ωp’s, bp’s, αp’s, and βp,p′(m, m′)’s. Once the optimal solutions are found,
optimal offsets of the network intersections can be extracted from the optimal absolute
movement offsets θ(m)’s. It is noteworthy that when it comes to computing θ’s, addition
or subtraction of multiples of cycle time C to θ(m)’s does not matter.

3.5 Numerical Experiments
The objective of this experiment is to demonstrate the ability of the technique to pro-
duce positive bandwidths on multiple paths simultaneously. The test network is a two–
way linear arterial street with 8 intersections (Figure 3.3). One hundred instances of this
network were generated, each with different segment travel times (selected uniformly be-
tween 60 and 150 seconds) and with different signal plans (selected from real–world plans
found along Huntington Dr. in Arcadia, CA). Each of the sample networks was provided
with 8 different paths with positive weights. Both the paths and the weights were gener-
ated randomly. The weights represent the relative magnitudes of the demands on each of
the paths.

The 100 mixed integer linear programs were solved using the CPLEX software [1].
The experiment was repeated with 100 arterials with 5 intersections. Results are shown in
Figure 3.4. The two histograms report the number of paths with positive bandwidth in the
5 and 8 intersection networks respectively. In the case of arterials with 5 intersections, the
algorithm was able to assign positive bandwidth to an average of 6.3 paths, whereas for
8 intersections the average was 6.1. Thus, approximately 79% of paths could be traversed
without stopping by some portion of the demand.

3.6 Case Study
So far, we have examined the capability of the algorithm in finding non–zero bandwidths
for certain subsets of network paths. However, this does not necessarily mean that the
overall network performance measures such as travel time are improved. To investigate
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Figure 3.4: Histogram of positive bandwidths.

this, we focused on a traffic network in San Diego whose topology is shown in Figure 3.5.
The grid–like geometry of the network allowed for examining the effect of bandwidth
maximization in non–arterial networks. We considered 7 scenarios. In each scenario, cer-
tain numbers of paths were assumed to exist in the network. All paths were weighted
equally. For each scenario, we simulated the network evolution for 1 hour using BeATS
(Berkeley Advanced Traffic Simulator), in 100 experiments with randomly generated off-
sets for the network signals. We further used Yalmip [60] to optimize for the signal offsets
such that the sum of path bandwidths in each scenario is maximized. We simulated the
behavior of the network with optimized offsets for each scenario as well and computed
the total travel time of the network in each experiment.

Figure 3.6, summarizes the results of our experiments. The figure shows the mean and
standard deviation of the total travel time of the network for 100 random offsets versus
the total travel time for the case when optimized offsets were picked in each scenario. We
are excited to observe that using bandwidth maximization, we can achieve much smaller
travel times in the network. In particular, when 7 paths were assumed to exist, major
reduction in travel times was observed, pointing to the practicality of our framework for
networks with general shapes and multiples routes. The observed reductions in total
travel time further imply that although bandwidth is not a direct measure of the network
delay, maximizing it can be used as a proxy for reducing the overall delays. Note that for



CHAPTER 3. BANDWIDTH MAXIMIZATION 35

Figure 3.5: Topology of a traffic Network in San Diego.

the case of 1 and 2 paths, we recovered the offsets found by the framework of [36].

3.7 Chapter Summary
This chapter presented a first extension to the method proposed in [36]. The formulation
relies on an external specification of the paths to be optimized, as well as their relative
importance given by the weights. The optimization problem that resulted is non-convex
and non-differentiable, but was found to be amenable to relaxations that turn the prob-
lem into a mixed–integer linear program. The experiments we have presented, although
preliminary, show that the technique can be used to compute offsets that provide a sig-
nificant bandwidth to a majority of the paths simultaneously. We further observed that
bandwidth maximization leads to improvements in performance measure of the system
such as total travel time in a case study. As a next step, it would be interesting to investi-
gate how removing certain paths from bandwidth maximization can lead to better overall
performance in the network. Moreover, it is important to analyze the effects of weights
and their correlations with the total travel time of the network.
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Chapter 4

Joint Perimeter and Signal Control

The focus of this chapter is on optimizing the performance of a network of signalized in-
tersections in the presence of infeasible demands via scalable joint signal and perimeter
control algorithms. A large body of the traffic control literature focuses on the develop-
ment of signal control strategies for the regime of feasible demands, i.e. when demand
lies within the capacity of the network. The simplest form of such signal controls is fixed–
time control where each light operates cyclically, and each phase receives a fixed amount
of green splits during the cycle. Various tools such as SYNCHRO [42], VISGAOST [105],
SCOOT [93], and OPAC [30] have been proposed for determining the timing plan of
fixed–time controllers either in real time or a priori. A queueing–theoretic analysis of
fixed–time control policies is conducted in [80].

Other than fixed–time controllers, in [108], Max Pressure (MP) control is presented,
which is a distributed control scheme that provably maximizes the network throughput
and stabilizes the network in the presence of feasible arrivals. Using MP control, each in-
tersection selects a stage of actuation that depends only on the length of adjacent queues.
Due to nonlinearities and complexities of transportation networks, model predictive con-
trol laws have also been shown to be successful in reducing total travel time in both urban
networks and freeways [54, 46, 65, 55]. Recently, synthesis from temporal logic specifica-
tion has also been utilized for signal control [17, 98, 65, 72]. In such methods, the assump-
tion is that the desired properties of the system can be encoded as formal specifications.
Therefore, the control is found such that the temporal properties of interest are satisfied
by the system trajectories.

The aforementioned controllers are beneficial mostly in the regime of feasible demand
or arrivals. In fact, when the arrivals are not in the feasible region, regardless of the type
of control that is deployed inside the network, the network is destabilized. In order to ad-
dress this problem, TUC [25], which is a traffic responsive control strategy, has been pro-
posed for handling the saturated traffic conditions. In [25], the highly nonlinear dynamics
of urban roads are simplified into linear dynamics, and the feedback gains obtained from
solving an infinite horizon linear quadratic regulator are implemented. In [47], traffic re-
sponsive control is developed for heterogeneous networks via perimeter control, where



CHAPTER 4. JOINT PERIMETER AND SIGNAL CONTROL 38

the amount of boundary flow between different urban regions is determined using a PI
controller. The authors in [47] model traffic evolution in each region through Macroscopic
Fundamental Diagrams (MFDs).

In this chapter, we define a novel methodology for joint perimeter control and signal
control of a single network for the case of infeasible arrivals. We consider a network
with oversaturated arrivals and determine the timing plans and the amount of arrivals
allowed to enter the network such that the network remains stable and free of congestion,
the network utility is maximized, and different arrivals are treated fairly. Our approach is
different from [47] as we consider perimeter control for a single network; thus, we do not
require MFDs and partitioning the network. For a single network, we synthesize a joint
congestion and signal control policy, and find the optimal boundary flows.

We adopt PointQ as our urban traffic model, and use the notion of utility maximization
which is a well known congestion control scheme in communication networks [43, 84]
for our control problem. We form an optimization problem that maximizes the aggregate
utility of the network. Moreover, we demonstrate that by constructing the augmented
Lagrangian and using Alternating Direction Method of Multipliers (ADMM) [11], the op-
timization problem can be solved iteratively such that the update step of the arrivals can
be distributed while guaranteeing that network queues will remain stable. Since our iter-
ative control utilizes ADMM for distributing its computations, it converges much faster
than that of the previous work in [85] where dual decomposition is used. This fast conver-
gence is crucial since for physical systems such as transportation networks, we do require
to stabilize the system in the minimum possible number of time steps.

A unique and important feature of our work is that it allows us to introduce a notion
of fairness among arrivals. Fairness is of paramount practical importance as vehicles in
all network links must finally get the right of accessing the network regardless of where
in the network they arrive. However, to the best of our knowledge, fairness has not been
considered in the literature of traffic control except for our previous work, where we
utilized utility maximization for fair control of freeway arrivals [66].

4.1 Control Algorithm
We use the modeling framework introduced in Section 2.1. We consider pointQ model
in its deterministic setting, where arrivals and network parameters are all assumed to be
deterministic. Throughout this chapter, we use demand and arrival interchangeably.

Problem Formulation

When the demand is infeasible, i.e. network cannot accommodate all vehicular arrivals,
we wish to maximize the utilization of the network capacity while making sure that the
network can be stabilized. At a high level, we aim to maximize the amount of flow al-
lowed to enter the network, while network stability is preserved, and arrivals are treated
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fairly. To this end, for every entry link l ∈ Lentry, we define U( fl) to be a utility function
of the total flow along link l. This utility function will be used as measure of fairness
among vehicular arrivals on the network entry links. We need to decide on the amount
of flow that we let enter the network dl through every entry link l ∈ Lentry as well as the
green duration that each movement receives during a cycle g. Using (2.10) and (2.11), the
stability condition can be rewritten as

Γ(I − RT)−1d ≤ MAg→pg. (4.1)

We propose to maximize the total utility of network arrivals subject to the stability condi-
tion (4.1). In particular, we wish to solve the following optimization problem:

maximize
d,g

∑
l∈Lentry

U(dl)

subject to Γ(I − RT)−1d ≤ MAg→pg.
(4.2)

The utility function, U(.) in Equation (4.2) is a strictly concave increasing function of ar-
rival rate dl. Examples of such utility functions include log(x) and xa for a < 1. Such
functions have been extensively used for incorporating the notion of fairness among ar-
rivals in communication networks [77]. The constraints in optimization problem (4.2)
guarantee that the system stability conditions are satisfied. Optimization (4.2) can be
solved by a central authority. However, one can distribute the computation of solution
of (4.2). Rather than directly imposing the set of implementablility constraints (2.14) onto
optimization problem (4.2) and solving it centrally, we propose to solve (4.2) iteratively to
make parts of the computation distributed. Note that we have not directly included the
constraints that g must satisfy to be an implementable vector of green fractions. Recall
from Section 2.1 that in order for g to be implementable, g must satisfy (2.12) and (2.13).
As discussed in Section 2.1, we summarize (2.12) and (2.13) by requiring g to satisfy

Acg = bc. (4.3)

Before we proceed on how we distribute the computation of finding the optimizer
of (4.2), note that we can summarize the linear inequality constraints in (4.2) by Add +
Agg ≤ 0. Additionally, we convert inequality constraints to equality constraints, we
utilize slack variables 0 ≤ δ ∈ RB

+, to rewrite (4.2) as:

maximize
d,g

∑
l∈Lentry

U(dl)

subject to Add + Agg + δ = 0.
(4.4)

Iterative Solution of Utility Maximization Problem

The special structure of optimization problem (4.4) enables us to use ideas from Aug-
mented Lagrangian [89] and ADMM [11] techniques to solve (4.4) iteratively such that
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the update step of g is separated from d. This further leads to distributing the update
step of d such that each entry link solves its own optimization problem to decide on the
amount of flow it can let in. Before proceeding, we convert maximization problem (4.4)
to a minimization problem

minimize
d,g

− ∑
l∈Lentry

U(dl)

subject to Add + Agg + δ = 0.
(4.5)

Now, to achieve our goal, we construct the augmented Lagrangian of (4.5) as follows:

Lρ = − ∑
l∈Lentry

U(dl) + αT(Add + Agg + δ)+

1
2

ρ‖Add + Agg + δ‖2.
(4.6)

In (4.6), α ∈ RB
+ is the vector of dual variables or prices, and ρ is a finite positive number

or increasing sequence penalizing for deviations from equality constraints. We can then
solve (4.6) iteratively. Let αk, dk, and δk be the values of these quantities in the kth iteration.
Then, using ADMM, (4.5) can be solved via the following algorithm:

1. At k = 0, initialize α0, d0, δ0, and ρ > 0 arbitrarily.

2. Update gk and δk as follows:

[gk+1, δk+1] = argmin
g,δ

αkT
(Addk + Agg + δ)

+
1
2

ρ‖Addk + Agg + δ‖2 (4.7)

subject to Acg = bc. (4.8)

3. Update dk as follows:

dk+1 = argmin
d
− ∑

l∈Lentry

U(dl) + αkT
(Add + Aggk+1+

δk+1) +
1
2

ρ‖Add + Aggk+1 + δk+1‖2.

(4.9)

4. Update α by:

αk+1 = αk + ρ(Addk+1 + Aggk+1 + δk+1). (4.10)
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5. Apply dk+1 and gk+1 to the system and go to step 2 in the next cycle time T.

The implicit assumption in the above implementation is that the time step of the algo-
rithm is the cycle time of the fixed–time control. In other words, at the beginning of every
cycle time, we update g and d, apply them and repeat the same procedure in the next cy-
cle time. It is important to mention that the additional control requirements are satisfied
by constraining g in step 2. This further assures that the obtained green ratios satisfy the
hard constraints that are essential to synthesize a valid signal plan that is implementable
at each cycle.

Note that optimization problem (4.9) is an unconstrained optimization problem. More-
over, for each arrival i, its objective function consists of U(di), quadratic terms and a linear
term. In fact, optimization problem (4.9) has the following format:

dk+1 =argmin
d

∑
l∈Lentry

−U(dl) + ∑
l,m∈Lentry

hlm(dl, dm), (4.11)

with U(dl) being strictly concave and quadratic forms hlm(dl, dm) = βlm(dldm) + γdl be-
ing such that ∑l,m∈Lentry hlm(dl, dm) is in the form of convex quadratic functions. The spe-
cial structure of this objective function allows us to solve (4.11) in a distributed fashion
using Min Sum Message Passing Algorithm as follows [78]:

1. At i = 0, initialize d̃[0] > 0 arbitrarily.

2. Communicate d̃[i]s to entry links.

3. Let each entry link l update its arrival rate by:

dl[i + 1] =argmin
d

−U(d) + ∑
m∈Lentry−l

βlm(dd̃m) +γd + βlld2. (4.12)

4. Go to step 2 and repeat the procedure.

In the above algorithm, dl[i] is the value of dl at the ith communication of the message
passage algorithm. This is different from dk

l which is dl at time step k. Note that dk
l

is implemented at time step k, whereas, dl[i] is only utilized when it converges to the
optimal solution. Once the algorithm converges, we use the obtained updated arrival
rates to update the dual variables via (4.10). An interesting property of (4.12) is that
it has an analytical solution which eliminates the need for further computations. Let
flm(d, d̃m) = βlm(dd̃m). It is easy to verify that the solution to (4.12) satisfies:

−U′(d) + ∑
m∈Lentry−l

βlmd̃m + γ + 2βld = 0, (4.13)

where βlmd̃m + γ is simply a constant known value and U′(d) is the derivative of the
utility function. Note that distributing the computation is compulsory when dealing with
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Figure 4.1: Topology of the example network.

cyber–physical Systems such as transportation networks where there is normally limited
computational capacity on the field; thus, we do require to formulate the problem such
that it can be solved in a distributed fashion.

The solution to this problem would be fully distributed provided that (4.7) can also
be distributed. Due to the hard constraints on g, it is generally hard to achieve this goal.
Nonetheless, since we have introduced a quadratic program in (4.7), we can use active
set methods [39] to distribute (4.7) with few number of communications and iterations as
illustrated in [45]. This implies that formulating the problem such that we end up with a
quadratic program in (4.7) paves the way for distributing (4.7) as well.

4.2 Numerical Experiment
In order to evaluate the performance of our algorithm, we utilize it for boundary flow
control and signal control of the network shown in Figure 4.1. The network is subject
to arrivals in links 1, 8, 5, and 13. We wish to regulate the flow that is allowed to enter
through entry links by our algorithm while guaranteeing that the network is free of con-
gestion. The network contains 17 links and 20 queues. Turning ratios at intersections are
known and assumed to be constant. We used log(.) function as our utility function. The
cycle time for all intersections is 90 seconds.

Figure 4.2 illustrates the arrivals and green ratios found during 80 time steps. As
it can be observed, the algorithm converges to the optimal solution of maximizing the
aggregate network utility in a small number of iterations. We further ran the simple dual-
decomposition-based method (without the extra quadratic term in the Lagrangian) on the
same network. However, it took more than 4000 time steps for the solution to converge,
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Figure 4.2: Arrivals and green ratios of the queues obtained from the utility maximization
algorithm.
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which makes it essentially impractical for transportation networks where the time step of
the system is at the order of cycle times.

In order to verify that our control algorithm can successfully stabilize the network, we
examine the queue lengths for all movements in the network to assure that they remain
bounded. Figure 4.3 demonstrates the evolution of the sum of all queues in the network,
which clearly remains bounded throughout the simulation demonstrating that the control
successfully preserves network stability.
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Figure 4.3: Sum of all queues vs. time.

4.3 Chapter Summary
In summary, in this chapter, we have introduced the notion of network utility maximiza-
tion for fair allocation of available network resources to different arrivals that want to
enter the network while stabilizing the network. To the best of our knowledge, no other
control law has been proposed in the literature capable of encoding this property and
synthesizing joint network congestion control and signal control. We demonstrated how
our algorithm can be partially distributed to reduce the computational burden. We fur-
ther showed that using ADMM, our algorithm can achieve much faster convergence rate
compared to the existing dual decomposition methods for utility maximization. Finally,
we illustrated that our algorithm successfully stabilizes an example network.
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We note that for our solution to be fully distributed, we need to be able to distribute
the computation required for updating the timings. Utilizing distributed active set or
ε–exact penalty function [44] methods for achieving this goal can be of importance and
interest. Additionally, since our iterative control algorithm can potentially adapt to the
changes of system parameters, it can be employed for developing control policies that are
adaptive and robust.
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Chapter 5

Signalization Control with Unknown
System Parameters

In this chapter, we focus on the design of signal control strategies for urban networks
when some of system parameters such as arrivals and saturation flow rate of movements
are unknown to the controller.

A common feature of the majority of the literature of traffic control strategies is that
it is normally assumed that network parameters such as service rates of queues and net-
work demands are known to the controller. These works range from fixed time controllers
to temporal logic based controls. For instance, Max Pressure control, although robust to
the knowledge of demand values, requires the knowledge of service rates [108]. How-
ever, this assumption may not necessarily hold in practice. As an example, connected
vehicle technology (CVT) which has recently gained significant attention is going to be
used for creating platoons of vehicles. It is shown that as the penetration rate of connected
vehicles on the road varies, the service rates of network queues may vary as well [57, 50].
This implies that the higher the penetration rate is, the higher the service rates will be.
Moreover, the prediction and estimation of arrivals is in general a challenging task, and
it is normally the case that the demand values are not exactly known. Hence, the pre-
vious approaches which assume that these parameters are known to the controller may
not be directly applicable to traffic networks. Therefore, it is important to come up with
strategies that are robust to the knowledge of these parameters.

In this chapter, we propose a signal control strategy that is robust to the knowledge
of both network service rates and demands similar to [85, 84, 86]. We show how the
framework of [86] which was first introduced for communication networks can be ap-
plied to traffic networks when network demands and service rates are unknown. We de-
termine the green durations of every stage such that the control converges to the timing
plan which is desired for maximizing the network throughput. Our approach is different
from the existing literature in that it learns the timing plans iteratively by measuring the
changes in the queue lengths. In our approach, we still assume that turning ratios of the
network are known, but this is not a restrictive assumption since network turning ratios
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can be estimated by measuring link flows at intersections and running a calibration of
the PointQ model [107]. We use the PointQ model introduced in Section 2.1 to formally
define an urban network as a queuing system. We describe how the green duration of
each stage can be updated using a gradient projection algorithm such that all the flows
in the network are balanced. Our iterative control scheme is guaranteed to converge to
an optimal and “balanced” signal plan when the network parameters are constant. We
further demonstrate the capability and performance of our algorithm in a simulation en-
vironment.

5.1 Control Algorithm
We assume that our controller is a cyclic controller, i.e. it has a fixed cycle time, and the
controller determines the green duration of each phase adaptively. We consider PointQ
model in its stochastic setting where network arrivals and service rates are stochastic. We
further assume that the turning ratios are known to the controller. Recall from Section 2.1
that the turning ratios define matrices R and Γ. Therefore, we assume that matrices R
and Γ are known to the controller. Before we proceed to the description of our algorithm,
we need to describe some notations and definitions. We define the convex set C to be the
following

C = {p ∈ RB | ∃ g ≥ 0, such that p = Ag→pg,
Aeqg = 0, and Asumg = 1},

(5.1)

where, as defined in Section 2.1, p is the vector of total green duration during a cycle for
all movements in the network, and g is the vector of green duration for all movements
during each relevant stage. Also, the matrices Aeq and Asum encode the specifications
required for implementability of a cyclic control. The set C is indeed the set of all p’s
for which there exists a corresponding vector g that satisfies the constraints required by
(2.11), (2.12), and (2.13). We use k to denote the cycle or time index. Every time step
of the controller is assumed to last a cycle time T. We let pk and gk be the aggregate
green durations and stage green durations of network movements during cycle k. We let
Ek ∈ RB×B be a diagonal matrix with each diagonal entry eii being 1 if the ith queue is
nonempty at the beginning of the kth cycle and zero otherwise. We further let qk be the
vector of queue lengths for all network queues at the beginning of cycle k. We also define
the sequence of step sizes or learning rates {βk} to be a decreasing sequence such that

βk → 0 as k→ ∞,
∞

∑
k=0

βk = ∞,

∞

∑
k=0

β2
k < ∞. (5.2)
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The above conditions on βk are standard assumptions required for the convergence of
stochastic gradient projection algorithms. Notice that examples of such sequences include
βk = 1

k which satisfies the above conditions. We also use ∆qk = qk − qk−1 to denote the
vector of difference in queue lengths at each time step k, where k ≥ 1. Finally, we define
matrix Λ ∈ RL×B to be such that at each link row i ∈ L, all elements of the matrix are zero
except for the elements located at jth columns with j being the index of the queues that
originated from link i. For such elements, Λij = 1.
Example: Consider a network for which there are two queues from link 2 to links 5, 8.
Assume that the indices of the queues for movements (2, 5) and (2, 8) are 3 and 6 respec-
tively. Then, the elements Λ23 and Λ26 are equal to 1, while other elements of the second
row of Λ are zero. Each row of Λ can be constructed similarly.

With the introduced notation, we are ready to state our iterative adaptive control al-
gorithm. At the beginning of every cycle k, we update the vector of total green duration
of movements p through the following algorithm:

1. Initialize p0 with an arbitrary feasible value (i.e. p0 ∈ C).

2. At each time step k, k ≥ 1, update vector p by

pk =
[

pk−1 + βk

(
ΓEk(I − RT)−1Λ∆qk

)]
C

, (5.3)

where [.]C is the convex projection on the set C, and Γ is the matrix relating link
flows to movement flows through turning ratios.

3. Apply the updated control pk to the system, and let the system evolve to the next
cycle time; then, measure ∆qk and repeat step 2.

It is important to mention that in step 3, for implementing a control law, we need gk
rather than pk. In other words, once pk is found, a vector gk such that pk = Ag→pgk is
required for implementing the new timing plan. Since there might be multiple vectors
gk such that pk = Ag→pgk, we can obtain a vector of stage green durations gk by simply
solving a least squares problem for an updated pk.

gk = min
x

∥∥pk − Ag→px
∥∥2 .

Now, we explain the intuition behind our algorithm. If the vector of demand mean
values d were known, then, the vector of movement flows ϕ would have been easily
obtained by

ϕ = Γ(I − RT)−1d.
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Figure 5.1: Sum of all queues vs. time.

Moreover, if the matrix of service rates M were also known, then, the gradient projection
update rules of the form

pk = [pk−1 − βk−1(Γ fk−1 −Mpk−1)]C

would have solved the following optimization problem:

minimize
p

1
2
‖ϕ−Mp‖2

subject to p ∈ C.
(5.4)

Note that the solution of optimization problem (5.4) yields the optimal signal plan
that would have balanced all the flows in the network while guaranteeing stability of the
queues. However, when the service rates matrix M and demand vector d are unknown,
the vector of movement flows ϕ and the matrix of service rates M are not available. Con-
sequently, we use ∆qk to estimate (Γ f −Mpk) as ∆qk is indeed an unbiased estimator of
the gradient term with finite variance. Therefore, our update rule in (5.3) is a stochastic
gradient projection algorithm for a convex optimization problem, which is guaranteed
to converge for appropriate choices of the step size in (5.2). Moreover, as pk converges
to the optimal signal plan p∗ that is the solution of (5.4), one can show that the network
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Figure 5.2: Green duration of stages in node 6.

queues remain stable using proof ideas similar to the one in [86]. The framework we have
used in this work was first introduced in [86] for communication networks. In this work,
we have shown how the framework can be employed for traffic networks; therefore, we
do not repeat the proofs on convergence of the algorithm and its optimality. Interested
reader is referred to [85, 86]. It is also important to mention that the convergence was
formally guaranteed for stationary demand and service rates. However, in practice, it has
been observed that as long as the changes in the network demand and service rates are
slow enough, the algorithm can learn to adapt itself to the new set of system parameters.

It is noteworthy that, in general, measurement of queue length may not be available
for all queues in the network. But, queue estimation methods have been proposed in
the literature using loop detectors, GPS data or combination of the two for queue estima-
tion [59, 8, 6, 110]. Hence, when queue lengths are not available, such methods can be
utilized for estimating queue lengths and ∆qk as a result.

5.2 Numerical Example
To illustrate the performance of our control algorithm, consider the network shown in
Figure 4.1. The network has 6 nodes, 17 links, and 20 queues. All network intersections
have a common cycle time of T = 90 seconds. All nodes have cyclic controllers with
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Figure 5.3: Sum of all queues as a function of time when the service rates were varied.

known stages. Nodes 2,3,5 and 6 have 2 stages, while nodes 1 and 4 are not signalized.
The turning probabilities of the network queues are known to the controller. We assumed
that the mean demand of the network and network service rates were unknown to the
controller. For the simulation purpose, we used a typical set of demand profiles with
feasible Poisson arrivals with fixed mean value. We used pointQ simulator [56] for our
analysis.

We ran our control algorithm in closed loop with the simulation environment for 120
cycles. We started from a set of arbitrary yet feasible vector of stage and movement green
durations. As Figure 5.1 demonstrates, the network queues remained stable (the sum of
all queues in the network was not growing and remained bounded). In addition to the
network stability, the convergence of network timing plans was also achieved as shown
in Figure 5.2. Figure 5.2 shows the convergence of the stage green durations for node 6.
Using Figure 5.2, we observe that the control algorithm learned a stabilizing timing plan
over time despite the arbitrarily provided initial timing plan. Moreover, the convergence
occurred quite fast, around 30th cycle. The simulation was carried out for longer durations
so as to showcase that convergence was achieved. Similar behavior and convergence
results were achieved for other network nodes too.

In order to verify the practicality of the proposed control algorithm, we further re-
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Figure 5.4: Green duration of the stages in node 6 when the service rates are varied.

peated the simulation but decreased service rates by 20% at the 20th cycle to investigate
how the control adapted to the new changes. As shown in Figure 5.3, since the demand
was still feasible with the reduced service rates, the controller could successfully maintain
the stability of the system queues. Figure 5.4 demonstrates the green durations of the two
stages at node 6. The convergence of the green durations was achieved in this case too.
During our simulations, we found that convergence and stability were achieved for other
feasible demands too that we omit reporting due to the similarity of behavior.

5.3 Chapter Summary
In conclusion, we proposed an iterative cyclic signal control for network of signalized
intersections such that the control is unaware of the network mean demands and service
rates. Our control is iterative in the sense that at the beginning of every cycle time, it
decides on the green durations based on the measured changes in the lengths of queues.
We demonstrated through simulation studies that our controller can successfully stabilize
the system. The next step of this work will be to evaluate the performance of our algo-
rithm when estimates of the queue length rather than actual queue length are used. Also,
finding the maximum tolerable rate of changes in the demand profiles will be of interest.
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Moreover, since the current approach is a centralized approach, it will be interesting to
study how the designed controller can be implemented in a decentralized fashion.
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Part III

Networks with Mixed Vehicle Autonomy
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Chapter 6

Mobility in the Presence of Selfish
Autonomy

Connected and autonomous cars technology has attracted significant attention as a result
of its potentials for increasing vehicular safety and drivers’ comfort. Connected technolo-
gies can be used to inform drivers about the existing hazards through car to car (V2V)
or car to infrastructure (V2I) communication. Aligned with these safety considerations,
automobile companies have started to equip cars with autonomous capabilities. In fact,
some of these capabilities, such as driver assistive technologies and adaptive cruise con-
trol (ACC) have already been deployed in cars.

The impact of these technologies is not limited to cars safety. Connected and au-
tonomous cars technology can facilitate car platooning. Platoons of cars are groups of more
than one car capable of maintaining shorter headways. Thus, platooning can lead to in-
creases in the capacities of network links [57]. Such increases can be up to three–fold [57]
if all cars are autonomous and connected. In addition to mobility benefits, platooning can
have sustainability benefits, it can reduce energy consumption for heavy duty vehicles [2,
53, 3].

The mobility benefits of autonomous capabilities of cars are not limited to increasing
network capacities. There has been a focus on how to utilize car autonomy and car con-
nectivity to remove signal lights from intersections and coordinate conflicting movements
such that the network throughput is improved [113, 106, 74, 27]. However, in order for
such approaches to be implemented, all cars in the network need to have autonomous
capabilities. To reach the point where all cars are autonomous, transportation networks
need to face a transient era, when both human–driven and autonomous cars coexist in the
networks. Therefore, it is crucial to study networks with mixed vehicle autonomy.

In [7], the performance of traffic networks with mixed autonomy was studied via sim-
ulations. Moreover, it was shown in multiple works that in networks with mixed au-
tonomy, autonomous cars can be utilized to stabilize the low–level dynamics of traffic
networks and damp congestion shockwaves [111, 24, 112, 90, 104]. In [67], altruistic lane
choice of autonomous cars was studied in mixed–autonomy settings. In [50], the capacity
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of network links was modeled in a traffic setting with mixed autonomy. This modeling
framework was further used in [51] to calculate the price of anarchy of traffic networks
with mixed autonomy, where the price of anarchy is an indicator of how far the equi-
librium of networks with mixed autonomy is from their social optimum that could have
been achieved if a social planner had routed all cars. In [52], it was shown that the local
actions of the autonomous cars can lead to optimal car orderings for the global network
properties such as link capacities.

It is well known that due to the selfish route choice behavior of drivers, traffic net-
works normally operate in an equilibrium state, where no car can decrease its trip time by
unilaterally changing its route [101]. In this chapter, we wish to study how the introduc-
tion of autonomous cars in a network will affect the equilibrium state of traffic networks
compared to the case when all cars are nonautonomous. We extend our initial results
presented in [62]. In particular, given a fixed demand of cars, we study how increasing
the fraction of autonomous and connected cars over the total number of autonomous and
human–driven cars in the network, henceforth referred to as the network autonomy frac-
tion, will affect the equilibrium state of traffic networks. We study the system behavior
when both human–driven and autonomous cars select their routes selfishly to investigate
the necessity of centrally enforcing autonomous cars routing by a network manager. We
state the conditions under which increasing the network autonomy fraction is guaranteed
to not increase the overall network delay at equilibrium. Moreover, we show that when
these conditions do not hold, counterintuitive and undesirable behaviors might occur,
such as the case when increasing the network autonomy fraction can increase the overall
network delay at equilibrium. Such behaviors are similar to Braess’s paradox where the
construction of a new road or expanding link capacities may increase total network delay.

We model the network in a macroscopic framework where route choices are taken
into account. We model the selfish route choice behavior of drivers as a nonatomic rout-
ing game [96] where drivers choose their routes selfishly until a Wardrop Equilibrium
is achieved [109]. We represent a traffic network by a directed graph with a certain set
of origin destination (O/D) pairs. For each O/D pair, we consider two classes of cars,
human–driven and autonomous. For a given fixed demand profile along O/D pairs, we
study how increasing the autonomy fraction of O/D pairs will affect the total delay of the
network at equilibrium.

We first show that the equilibrium may not be unique. Then, we study networks with
a single O/D pair and prove that if the degrees of road capacity asymmetry (i.e. the ratio
between the road capacity when all cars are human–driven and the road capacity when
all cars are autonomous) are homogeneous in the network, at equilibrium, the social or
total delay of the network is unique, and further it is a monotone nonincreasing function
of the network autonomy fraction. However, in networks with heterogeneous degrees of
road capacity asymmetry, we first show that the social delay is not necessarily unique at
equilibrium. Then, we demonstrate that, surprisingly, increasing the autonomy fraction
of the network might lead to an increase in the overall network delay at equilibrium. This
is a counterintuitive behavior as we may expect that having more autonomous cars in
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Figure 6.1: A network with a single O/D pair and two paths.

the network will always be beneficial in terms of total network delay. For networks with
multiple O/D pairs, we show that similar complicated behaviors may occur, namely in-
creasing the autonomy fraction of a single O/D pair might worsen the social delay of
the network at equilibrium. Our work in fact shows that traffic paradoxes similar to the
well known Braess’s Paradox [13], can occur due to the capacity increases provided by
autonomous cars. We further bound such performance degradations that can arise due
to the presence of autonomy.

6.1 Equilibrium Uniqueness
Now, we study equilibrium uniqueness in the mixed autonomy setting. We adopt the
modeling framework introduced in Section 2.2. Using Corollary 1, we know that there
exists at least one equilibrium. However, since in our setting we have two classes of
cars, Proposition 2 does not apply. Indeed, we demonstrate through an example that the
equilibrium is not unique even in the weak sense introduced in Proposition 2.

Example 1. Consider the network shown in Figure 6.1. Let p1 and p2 be the ABD and ACD
paths respectively. For each link l = 1, · · · , 4, let the link parameters be βl = 1, al = 1, ml = 1,

and Ml = 2. Thus, for each link l ∈ L, the link delay function is el( f h
l , f a

l ) = 1 + f h
l +

f a
l
2

.
Assume that the demand from node A to D is r = 2, and α = 0.5. The example is simple enough
so that we can compute the equilibrium flows manually. Let f h

1 and f a
1 be the human–driven and

autonomous flows along p1, and f h
2 and f a

2 be the human–driven and autonomous flows along p2.
At equilibrium, using the symmetry of the network, we must have

2 + 2 f h
1 + f a

1 = 2 + 2 f h
2 + f a

2

f h
1 + f h

2 = 1
f a
1 + f a

2 = 1

f h
1 , f a

1 , f h
2 , f a

2 ≥ 0.
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Clearly, there is no unique solution to the above set of equations. Moreover, among the set of all
possible equilibrium flow vectors, for each link, the maximum link flow at equilibrium is 1.25,
whereas the minimum link flow is 0.75 at equilibrium. This implies that equilibrium uniqueness
does not hold in traffic networks with mixed autonomy.

6.2 Networks with a Single O/D Pair
In this section, we study two–terminal networks which have a single O/D pair. For such
networks, since there is only one O/D pair, all paths originate from a common source o
and end in a common destination d. Since the set of O/D pairsW is singleton, we omit
the subscript w from rw, ew and αw throughout this section. Note that when the network
has a single O/D pair, r and α are scalars.

Having observed that in the mixed–autonomy setting the equilibrium is not unique, it
is important to study if the social delay at equilibrium is unique for all network equilib-
rium flow vectors. In the remainder of this chapter, we use the term social delay to refer
to the social delay of the network at equilibrium. In the following, we study the properties
of the social delay including its uniqueness for networks with a single O/D pair. But,
before proceeding, we need to define the notion of degree of road capacity asymmetry
introduced in [50] via the following.

Definition 5. Given a network G = (N ,L,W), for each link l ∈ L, we define µl := ml/Ml to
be the degree of road capacity asymmetry of link l.

Note that since we assumed that autonomous cars’ headway is less than or equal to that of
human–driven cars, in the remainder of this chapter, we assume that for each link l ∈ L,
µl ≤ 1. Using Definition 5, in the sequel, we consider two scenarios for investigating the
properties of social delay:

1. Homogeneous degrees of road capacity asymmetry, where µl is the same for all
links, i.e. µl = µ for all links l ∈ L, where µ is the common value of capacity
asymmetry.

2. Heterogeneous degrees of capacity asymmetry, where µl varies along different links.

Homogeneous Degrees of Capacity Asymmetry

In this case, we can establish the uniqueness of social delay, and characterize the relation-
ship between social delay and network autonomy fraction.

Theorem 1. Given a routing game (G, r, e), where G has a single O/D pair and a homogeneous
degree of capacity asymmetry µ, for any value of total demand r > 0, we have:

1. For a fixed autonomy fraction 0 ≤ α ≤ 1, the social delay J( f ) is unique for all Wardrop
equilibrium flow vectors f .
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2. If for each 0 ≤ α ≤ 1, we denote the common value of social delay in the above by J(α), then
J(.) is continuous and nonincreasing.

Proof. Fix r > 0 and 0 ≤ α ≤ 1. Recalling Corollary 1, we know that a Wardrop equi-
librium exists. Let f = ( f h

p , f a
p : p ∈ P) be such an equilibrium flow vector where

fp = f a
p + f h

p for each path p in P . Define emin( f ) := minp∈P ep( f ). Since the network
has only one O/D pair, and the delay associated with all paths with nonzero flows are
the same, denoting this uniform path delay by emin( f ), we realize that the social delay is
given by J( f ) = remin( f ). For each path p ∈ P , define the fictitious single-class human–
driven flow f̃p := f h

p + µ f a
p . We claim that the flow vector f̃ = ( f̃p : p ∈ P) is a Wardrop

equilibrium for a routing game (G, r̃, ẽ) with a single class of human–driven cars and a
total demand of r̃ = r(1− α) + rαµ with the link delay functions (ẽl : l ∈ L) defined as

ẽl( f̃l) =

(
al + γl

(
f̃l

ml

)βl
)

.

To see this, for each p ∈ P , we show that relations (2.21) hold. Fix p, p′ ∈ P and note
that since f was a Wardrop equilibrium in the original setting, we know that f h

p (ep( f )−
ep′( f )) ≤ 0, and f a

p(ep( f )− ep′( f )) ≤ 0. Multiplying the latter by the positive constant µ

and adding the two inequalities, for every pair of paths p, p′ ∈ P , we have

f̃p(ep( f )− ep′( f )) ≤ 0. (6.1)

Now, we claim that for all p ∈ P , we have ep( f ) = ẽp( f̃ ). Note that for each link l ∈ L,
we have f̃l = f h

l + µ f a
l . Using the fact that µ = ml/Ml for all links l ∈ L, we get

ẽp( f̃ ) = ∑
l∈p

al + γl

(
f h
l + ml

Ml
f a
l

ml

)βl


= ∑
l∈p

al + γl

(
f h
l

ml
+

f a
l

Ml

)βl
 = ep( f ).

(6.2)

Substituting into (6.1), we realize that for each pair of paths p, p′ ∈ P , we have

f̃p(ẽp( f̃ )− ẽp′( f̃ )) ≤ 0, (6.3)

which means that f̃ is an equilibrium flow vector. Clearly, the total demand of this new
routing game is r̃ = ∑p∈P f̃p = ∑p∈P f h

p + µ f a
p = (1− α)r + µαr. Moreover, define ẽmin( f̃ )

to be the minimum of ẽp( f̃ ) among p ∈ P . Since w is the single O/D pair of the network,
ẽmin( f̃ ) is indeed equal to ẽw( f̃ ), the travel delay of the single O/D pair of the network
associated with f̃ . Note that Proposition 2 implies that ẽmin( f̃ ) is a function of r̃ only. On
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Figure 6.2: A network with a single O/D pair (A to D) and three paths from A to D.

the other hand, (6.2) implies that ẽmin( f̃ ) = emin( f ). Putting these together, we realize
that

J( f ) = remin( f ) = rẽmin( f̃ ) = rẽw(r̃). (6.4)

Note that the right hand side of the above identity does not depend on f , which estab-
lishes the proof of the first part of the theorem. In fact, this shows that

J(α) = rẽw (r(1− α) + αµr) .

From Proposition 4, we know that ẽw(.) is continuous and nondecreasing. Also, since
µ ≤ 1, the map r 7→ r(1− α) + αµr is continuous and nonincreasing. This completes the
proof of the second part of the theorem.

Heterogeneous Degrees of Capacity Asymmetry

Now, we allow µl to vary among network links. We show that this makes the behavior of
the system more complex. First, we show via the following example that the social delay
is not necessarily unique in this case.

Example 2. Consider the network shown in Figure 6.2. Assume that γl = 1, βl = 1, for l =
1, 2, · · · , 5. Let other link parameters be the following: {a1 = 1, m1 = 1, M1 = 1}, {a2 =
2, m2 = 1, M2 = 3}, {a3 = 1, m3 = 1, M3 = 2}, {a4 = 1, m4 = 1, M4 = 4}, and {a5 =
3, m5 = 1, M5 = 3}. Moreover, let the total flow from origin A to destination D be 2. Now, if we
compute the social delay for this network for any α > 0 at the different equilibria of the system,
we observe that the social delay is not unique. In particular, Figure 6.3 shows the plots of the
maximum and minimum social delay of the system at equilibrium for every value of α. To obtain
Figure 6.3, we solved two optimization problems for finding maximum and minimum social delay
subject to the equilibrium constraints using Mathematica. As Figure 6.3 shows, as soon as α starts
to increase from 0, the uniqueness of social delay is lost. Once, α = 1, the uniqueness of social
delay is again preserved.

Now, we study the effect of increasing the fraction of autonomous cars on the social
delay. In the previous example, both the maximum and minimum social delays decreased
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Figure 6.3: Maximum and minimum social delay at equilibrium for Example 2.

as a function of α. But, is this necessarily the case? We use the following examples to
demonstrate that it may not be true in general, as increasing network autonomy may
increase social delay in some networks.

Example 3. Consider the network shown in Figure 6.2. Let γl = 1 and βl = 1 for all links.
Select the other network parameters to be the following, {a1 = 0, m1 = 0.1, M1 = 0.1}, {a2 =
50, m2 = 1, M2 = 1}, {a3 = 50, m3 = 1, M3 = 1}, {a4 = 0, m4 = 0.1, M4 = 0.1},
{a5 = 10, m5 = 0.5, M5 = 1}. Let the total O/D demand be r = 6. In the absence of autonomy
(α = 0), the social delay is J = 504.3. However, if we increase the autonomy fraction to α = 1

10 ,
J = 518.6. Clearly, in this case, the social delay increases when the network autonomy fraction α
is increased. Note that since µl = 1 for l = 1, 2, 3, 4 and µ5 = 0.5 < 1, this can be viewed as an
instance of the classical Braess’s Paradox [13], where an increase in the capacity of the middle link
of a Wheatstone network can paradoxically lead to an increase in the social delay.

One might argue that if we allow µl to be strictly less than 1 for all network links l ∈ L,
the network social delay will decrease by increasing the autonomy fraction. We use the
following example to show that even in this case, increasing autonomy can worsen social
delay.

Example 4. Consider the previous example with the total flow r = 6, but change Ml’s to be,
M1 = 1

9 , M2 = 1.1, M3 = 1.1, M4 = 1
9 , and M5 = 1. In this case, clearly, µl < 1, for all l ∈ L.

We computed the maximum and minimum social delay at equilibrium for every autonomy fraction
α. Figure 6.4 shows the maximum and minimum social delay in this example for different values of
α. Figure 6.4 demonstrates that the maximum social delay increases as we increase α from 0, until
we reach a local maximum. The minimum social delay decreases as we increase α from 0, until we
reach a local minimum, and then, it increases sharply to values that are higher than the social delay
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Figure 6.4: Maximum and minimum social delays at equilibrium for Example 4.

at α = 0. Surprisingly, when all cars are autonomous (α = 1) the social delay is greater than the
social delay when α = 0, i.e. J(α = 1) > J(α = 0). This might be counterintuitive as we expect
the network with full autonomy to have smaller social delay. However, this example shows that
when capacity increases are heterogeneous across the network, the selfish behavior of cars when
making their route choices might actually lead to worsening the social delay of the network.

As mentioned previously, the increase in social delay due to an increase in the fraction
of autonomous cars is in fact similar to Braess’s paradox. Braess’s Paradox is the counter-
intuitive but well known fact that removing edges from a network or increasing the delay
functions on certain links can improve the delay of all cars at equilibrium [95]. It was
shown in previous studies that Braess’s paradox is prevalent in traffic networks [103] as
the occurrence of Braess’s paradox heavily depends on network topology and the param-
eters of link delay functions [94, 37, 75]. However, the phenomenon that we observed in
this chapter for mixed–autonomy networks is different from the classical Braess’s paradox
in that link capacities are a function of the flows along links in a multiclass routing game.
In other words, link capacity variations depend on how flows are routed throughout the
network.

6.3 Networks with Multiple O/D Pairs
So far, we have seen that even in a network with only one O/D pair, the introduction
of autonomous cars can result in complex behaviors. Thus, it should be expected that a
general network with multiple O/D pairs will exhibit similar counterintuitive behaviors.
In the previous section, we saw that in a network with a single O/D pair, the existence
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Figure 6.5: A network with three O/D pairs.

of a homogeneous degree of capacity asymmetry throughout the network is sufficient for
guaranteeing improvements in the social delay by increasing the fraction of autonomous
cars. We now show, via the following example, that this is not the case for networks with
multiple O/D pairs.

Example 5. Consider the network shown in Figure 6.5 which was first introduced in [28]. There
are three O/D pairs, W = {(A,B), (B,C), (A,C)}. The total demand of the network O/D pairs are
rAB = 17, rAC = 20, and rBC = 90. Assume that γl = 1, βl = 1, for all links l ∈ L. Let the other
link parameters be {a1 = 0, m1 = 1, , M1 = 4}, {a2 = 0, m2 = 1}, and {a3 = 90, m3 = 1}. Let
the cars that travel from A to C, and from B to C be all human–driven cars, i.e. αAC = αBC = 0.
Figure 6.6 shows a plot of the network social delay versus the fraction of autonomous cars traveling
along O/D pair AB denoted by αAB. As the figure shows, as the autonomy fraction along O/D pair
AB increases, so does the social delay. Intuitively, by increasing the autonomy fraction along
O/D pair AB, the travel delay along link 1 decreases. As a result, compared to the no–autonomy
case, a higher number of the cars traveling from A to C are encouraged to take advantage of the
lower delay along link 1. This in turn will lead to an increase in the travel delay along O/D
pair BC. This increase combined with the high demand of cars along O/D pair BC leads to an
increase in the overall social delay. This example shows that allowing vehicle autonomy along
certain network O/D pairs can result in worsening the overall or social delay of the network even
if the road degrees of capacity asymmetry are homogeneous. This is of paramount importance
in practice. For instance, if O/D pair AB belongs to a high–income neighborhood, autonomous
cars may first be deployed along this O/D pair, while other neighborhood or O/D pairs may still
travel via human–driven cars. Then, although the early adoption of autonomous cars along O/D
pair AB may lead to a decrease in travel delay of O/D pair AB, it worsens the social delay in the
network and increases the delays experienced by users along other O/D pairs. This example shows
that even with homogeneous degrees of capacity asymmetry, when there exist multiple O/D pairs,
different autonomy fractions along network O/D pairs can be another source of heterogeneity in
the network.

It was shown in [28, 23] that a decrease in the total demand of a single O/D pair, might
lead to an increase in delay of travel along other network O/D pairs and the social delay.
In the previous example, we showed that a similar behavior can also be observed due
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Figure 6.6: Social delay in Example 5 for different fractions of autonomous cars traveling
along O/D pair AB when cars along all other O/D pairs are human–driven.

to the presence of autonomous cars. In fact, what we have shown so far is that the long
known paradoxical traffic behavior resulting from constructing more roads or reducing
demands can actually happen in networks with mixed autonomy due to the presence of
autonomous cars. Thus, the mobility benefits of increasing car autonomy in a network
are not immediate.

6.4 Bounding Performance Degradation
So far, we have shown that the social delay can increase as a consequence of the presence
of autonomous cars in networks with mixed autonomy. Now, we wish to study whether
we can bound this degradation in the network performance to estimate how much social
delay can degrade by increasing the fraction of autonomous cars. To answer this, we
derive a bound on the performance degradation that can result from all possible demand
and autonomy fraction vectors in general networks that have a homogeneous degree of
capacity asymmetry. To this end, for a given routing game (G, r, e), define the vector of
fictitious reduced demand r̃ = (r̃w : w ∈ W) to be r̃w = (1− αw)rw + µαwrw for each O/D
pair w ∈ W . Consider an auxiliary fictitious routing game (G, r̃, ẽ) with a total demand
r̃ of only human–driven cars on G. For this auxiliary game, similar to Theorem 1, define
(ẽl : l ∈ L) to be

ẽl( f̃l) =

(
al + γl

(
f̃l

ml

)βl
)

. (6.5)
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Let ẽw(r̃) be the delay of travel for each O/D pair w ∈ W in this auxiliary game. Then,
using the auxiliary fictitious game, we can state the following proposition.

Proposition 6. Consider a routing game (G, r, e), where G is a general network with a homoge-
neous degree of capacity asymmetry µ ≤ 1 for all of its links. For any demand vector r with a fixed
vector of autonomy fraction α = (αw : w ∈ W) such that 0 ≤ αw ≤ 1 for all w ∈ W , we have

1. The social delay J( f ) is unique for all Wardrop equilibrium flow vectors f .

2. The social delay of the original game is given by J( f ) = ∑w∈W rw ẽw(r̃w) for all Wardrop
equilibrium flow vectors f .

Proof. Fix r and α, such that for each O/D pair w ∈ W , 0 < rw and 0 ≤ αw ≤ 1. Recalling
Corollary 1, we know that there exists at least one equilibrium. Let f = ( f h

p , f a
p : p ∈ P) be

such an equilibrium flow vector for (G, r, e). For each path p ∈ P , define f̃p := f h
p + µ f a

p .
By generalizing the proof of Theorem 1, it is easy to see that f̃ = ( f̃p : p ∈ P) is an
equilibrium for the defined auxiliary routing game on G with reduced demand r̃ of only
human–driven cars. Moreover, for each path p ∈ P , ep( f ) = ẽp( f̃ ). Therefore, for each
O/D pair w ∈ W , ẽw( f̃ ) = minp∈Pw ẽp( f̃ ) = minp∈Pw ep( f ) = ew( f ). Hence,

J( f ) = ∑
w∈W

rwew( f ) = ∑
w∈W

rw ẽw( f̃ ). (6.6)

Since f̃ contains only human–driven cars, recalling Proposition 2, for each w ∈ W , the
delay of travel ẽw( f̃ ) is unique for a given r̃. Thus, following a derivation similar to (6.4),
we have

J( f ) = ∑
w∈W

rw ẽw(r̃). (6.7)

As r̃ is uniquely determined for a given demand vector r and a vector of autonomy
fraction α, the social delay J( f ) is unique for all Wardrop equilibrium flow vectors f and
can be obtained via (6.7).

The uniqueness of social delay established by Proposition 6 implies that for a fixed
demand vector r, the social delay is a well defined function of autonomy fraction α. With
a slight abuse of notation, we use J(α) to emphasize the dependence of the social delay
on the vector of autonomy fraction α. Note that Proposition 6 establishes a connection
between our original routing game, which has two classes of cars, with a fictitious aux-
iliary routing game, which has only human–driven cars and a reduced demand vector r̃.
We exploit this connection in the remainder of the chapter. Since the auxiliary game has
only one class of cars, the results in [20] hold for this game. Before proceeding, we need
to adopt and review some of the definitions in [20] for the auxiliary game.
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In the auxiliary game, for a given demand vector r̃, a flow vector f̃ is feasible if f̃p ≥ 0
for all paths p ∈ P , and ∑p∈Pw f̃p = r̃w for all O/D pairs w ∈ W . Let φ ∈ R|L| be a vector
of link flows that result from a feasible flow vector f̃ , where |L| is the number of links in
the network. Also, let Φ represent the set of all feasible link flow vectors φ for a given
reduced demand vector r̃. Then, for a vector of link delay functions (ẽl : l ∈ L) of the
form (6.5) and any vector v ∈ Φ, define

λ
(
(ẽl : l ∈ L), v

)
:= max

x∈R
|L|
≥0

∑l∈L
(
ẽl(vl)− ẽl(xl)

)
xl

∑l∈L ẽl(vl)vl
, (6.8)

where 0/0 is considered to be 0. Additionally, let Ẽ be the class of delay functions repre-
sented by (6.5). Define

λ(Ẽ) := sup
(ẽl :l∈L)∈Ẽ ,v∈Φ

λ ((ẽl : l ∈ L), v) . (6.9)

It is important to mention that since the class of delay functions Ẽ is monotone, λ(Ẽ) ≤
1 (See Section 4 in [20]). Note that λ(Ẽ) can be easily computed for certain classes of
delay functions such as polynomials. For instance, λ(Ẽ) = 1

4 for the class of linear delay
functions.

Now, we can bound the network performance degradation due to the introduction of
autonomy in homogeneous networks via the following theorem.

Theorem 2. Consider a routing game (G, r, e) with G being a general network with a homoge-
neous degree of capacity asymmetry µ. Fix the demand vector r. Let Jo be the social delay when all
cars are nonautonomous, i.e. αw = 0 for all O/D pairs w ∈ W . Then, for any vector of autonomy
fraction α such that 0 ≤ αw ≤ 1 for all w ∈ W , we have

J(α) ≤ (1− λ(Ẽ))−1 Jo, (6.10)

where J(α) is the social delay for a given vector of autonomy fraction α.

Proof. Fix the demand vector r. Let f o = ( f o
p : p ∈ P) be an equilibrium flow vector when

all cars are human–driven. We further use f o
l to denote the flow along link l ∈ L in this

case. Note that using Proposition 2 , we know that at equilibrium, f o
l is unique for every

link l ∈ L. Moreover, for each path p ∈ P , we use eo
p to represent the delay along path

p when all cars are human–driven. Using Proposition 2, in the absence of autonomy, the
delay of travel for each O/D pair w ∈ W is unique. Thus, in the no–autonomy case, the
unique social delay is Jo = ∑w∈W rweo

w(r), where eo
w(r) is the delay of travel for O/D pair

w ∈ W when all cars are human–driven.
On the other hand, when there are autonomous cars with a given autonomy fraction

α in the network, as defined in Proposition 6, construct the auxiliary game (G, r̃, ẽ) with
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fictitious reduced demand r̃ = (r̃w : w ∈ W) of only human–driven cars, where r̃w =
(1− αw)rw + µrwαw for every w ∈ W . Let f̃ = ( f̃p : p ∈ P) be an equilibrium flow vector
for the auxiliary game (G, r̃, ẽ). Using Proposition 6, the social delay of the network with
autonomy is given by J(α) = ∑w∈W rw ẽw(r̃). First, we claim that

J(α) = ∑
w∈W

rw ẽw(r̃) ≤ ∑
l∈L

f o
l ẽl(r̃). (6.11)

To see this, note that for every link l ∈ L, we have f o
l = ∑p∈P :l∈p f o

p . Furthermore, the
origin and destination of each path p ∈ P are unique. Hence, each path p belongs to one
and exactly one O/D pair w ∈ W . Consequently, f o

l = ∑w∈W ∑p∈Pw :l∈p f o
p , and we have

∑
l∈L

f o
l ẽl(r̃) = ∑

l∈L

(
∑

w∈W
∑

p∈Pw :l∈p
f o
p

)
ẽl(r̃)

= ∑
w∈W

∑
l∈L

(
∑

p∈Pw :l∈p
f o
p

)
ẽl(r̃)

= ∑
w∈W

∑
p∈Pw

f o
p ∑

l:l∈p
ẽl(r̃)

= ∑
w∈W

∑
p∈Pw

f o
p ẽp(r̃),

where ẽp(r̃) is the delay of travel along path p ∈ Pw in the auxiliary game. Recalling
Definition 2, for the auxiliary game, the travel delay of an O/D pair w ∈ W is given by
ẽw(r̃) = minp∈Pw ẽp(r̃); thus, we have

∑
w∈W

∑
p∈Pw

f o
p ẽp(r̃) ≥ ∑

w∈W
∑

p∈Pw

f o
p ẽw(r̃)

= ∑
w∈W

ẽw(r̃) ∑
p∈Pw

f o
p

= ∑
w∈W

rw ẽw(r̃),

which proves our claim in (6.11). Now, since the auxiliary game has only one class of
cars, we can use Lemma 4.1 from [20]. More precisely, since f̃ is an equilibrium for the
auxiliary game, then Lemma 4.1 from [20] states that for every nonnegative vector of link
flows x ∈ R

|L|
≥0 (x is not necessarily a feasible link flow vector), we have

∑
l∈L

xl ẽl( f̃l) ≤ ∑
l∈L

xl ẽl(xl) + λ(Ẽ) ∑
l∈L

f̃l ẽl( f̃l). (6.12)

Since f o
l is nonnegative for every link l ∈ L, substituting xl by f o

l in (6.12), we get

∑
l∈L

f o
l ẽl( f̃l) ≤ ∑

l∈L
f o
l ẽl( f o

l ) + λ(Ẽ) ∑
l∈L

f̃l ẽl( f̃l). (6.13)
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Now, note that since both the auxiliary game and the game with no autonomy have only
human–driven cars, utilizing (6.5), we realize that

ẽl( f o
l ) =

(
al + γl

(
f o
l

ml

)βl
)

= eo
l ( f o

l ).

Thus,

∑
l∈L

f o
l ẽl( f o

l ) = ∑
l∈L

f o
l eo

l ( f o
l ) = Jo. (6.14)

Now, since J(α) = ∑w∈W rw ẽw(r̃), using (6.11), (6.13), and (6.14), we realize that

J(α) ≤ Jo + λ(Ẽ) ∑
l∈L

f̃l ẽl(r̃). (6.15)

As f̃ is an equilibrium for the auxiliary routing game, ∑l∈L f̃l ẽl(r̃) = ∑w∈W r̃w ẽw(r̃). Since
for each O/D pair w ∈ W , we assumed that αw ≤ 1, we can conclude that for each O/D
pair w ∈ W , we have r̃w ≤ rw. Therefore, using Proposition 6, we realize that

∑
w∈W

r̃w ẽw(r̃) ≤ ∑
w∈W

rw ẽw(r̃) = J(α). (6.16)

Using (6.16) and (6.15), we get

J(α) ≤ Jo + λ(Ẽ)J(α). (6.17)

Hence, for the our monotone class of delay functions Ẽ with λ(Ẽ) < 1, we can conclude
that

J(α) ≤ (1− λ(Ẽ))−1 Jo,

which completes the proof.

Theorem 2 provides an upper bound on the severity of increases in traffic delays when
a fraction of human–driven cars is replaced by autonomous cars.

We now postulate, as an analogous concept to the price of anarchy [97], the price of
vehicle autonomy in homogeneous networks under every demand vector r as follows:

η := max
α: ∀w, 0≤αw≤1

J(α)
Jo . (6.18)

Theorem 2 indicates that η ≤ (1− λ(Ẽ))−1. For polynomial delay functions of degree
less than or equal to 4, (1− λ(Ẽ))−1 = 2.151 [20]. The bound that we have derived for
the price of car autonomy is similar to the bounds derived for the price of anarchy of
routing games with a single class of users in [97]. However, unlike the bounds for price
of anarchy, the tightness of our bound for η needs further investigation.
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6.5 Chapter Summary
In this chapter, we studied how the coexistence of autonomous and human–driven cars
in traffic networks will affect network mobility when all cars select their routes selfishly.
We compared the total network delay at a Wardrop equilibrium in networks with mixed
autonomy with that of the networks with only human–driven cars. Having shown that
the equilibrium is not unique in the mixed–autonomy setting, we proved that the total
delay is unique when the road degree of capacity asymmetry, which is the ratio between
the roadway capacity with only human–driven cars and the roadway capacity with only
autonomous cars, is homogeneous among its roadway. We further proved that the total
delay is a nonincreasing and continuous function of the fraction of autonomous cars on
the roadways (a.k.a. the autonomy fraction) when the network has only one O/D pair.
However, we showed that allowing for heterogeneous degrees of capacity asymmetry or
multiple O/D pairs in the network results in counterintuitive behaviors such as the fact
that increasing network autonomy fraction can worsen the network total delay. Finally,
we derived an upper bound for the “price of vehicles autonomy” in networks with a
homogeneous degree of capacity asymmetry, which estimates the worst possible increase
in network social delay due to the presence of autonomous cars.
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Chapter 7

Pricing Mixed–Autonomy Networks

Since cars select their routes selfishly, traffic networks tend to operate at equilibria char-
acterized by Wardrop conditions, where vehicular flows are routed along the network
paths such that no car can gain any savings in its travel time by unilaterally changing
its route [109]. However, it is known that due to the selfish behavior of cars, network
equilibria are in general inefficient. As an example, well known Braess’s paradox [12]
described an extreme scenario where adding a link to a network increased the overall
network delay at equilibrium. Inefficiency of equilibria is commonly measured via the
price of anarchy [97]. In [51], the price of anarchy of traffic networks with mixed vehi-
cle autonomy was computed, and it was shown that the price of anarchy of networks
with mixed vehicle autonomy is larger than that of networks with no autonomy. This im-
plies that although the optimal overall delay of networks with mixed autonomy is lower
(due to the capacity increase of autonomous cars), at equilibrium, the overall delay of
networks with mixed autonomy is further from its optimum. Furthermore, in Chapter 6,
we showed that under constant vehicular demand, if the fraction of autonomous cars
increases, the overall network delay may grow at equilibrium.

In this chapter, we study how to cope with the inefficiency of equilibria in traffic
networks with mixed vehicle autonomy such that the potential mobility benefits of au-
tonomy is achieved, and minimum overall network delay also known as social delay is
achieved at equilibrium. In particular, we study how to set prices on network links such
that equilibria with minimum social delay are induced. Pricing has been extensively stud-
ied as a tool to create efficient equilibria in the previous literature (See [14, 16, 15, 40]). For
traffic networks with only a single class of cars, a marginal cost taxation of network links
was proposed in [87] which was proven to induce equilibria with minimum social de-
lay. However, when there are multiple classes of cars, traffic networks exhibit complex
behavior such as nonuniqueness of equilibria [21]; thereby, prices that are obtained from
marginal costs of network links may not be sufficient for inducing optimality of social
delay at all possible equilibria [22, 100].

In this chapter, we first study whether minimum social delay can be induced by set-
ting undifferentiated prices on network links i.e. a set of prices that treat both human–
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Figure 7.1: A network with two O/D pairs from A to B and A to C.

driven and autonomous cars similarly at each link. We show through an example that
undifferentiated prices are not in general enough for inducing minimum social delay at
equilibrium. Then, we consider the setting where differentiated prices are assigned on
network links, i.e. at every network link, the price assigned to human–driven cars can be
different from that of autonomous cars. We prove that despite the fact that equilibrium is
not necessarily unique in traffic networks with mixed autonomy, for traffic networks with
a homogeneous degree of capacity asymmetry (networks where the ratio of the link ca-
pacities when all cars are human–driven over the capacity when all cars are autonomous
is uniform throughout the network), with an appropriate set of prices, the social net-
work delay of all induced equilibria is minimum. This is of paramount importance since
uniqueness of social delay guarantees that regardless of which equilibrium the network
operates at, the social delay will be minimum. In the absence of such a guarantee, the
social delay may be optimal only for certain subsets of the induced equilibria.

7.1 Undifferentiated Prices
When it comes to setting prices for network links, generally, an ideal set of prices is the
one that induces an equilibrium flow vector that minimizes the network social delay.
When there are multiple classes of cars in a network, for instance human–driven and
autonomous cars in our scenario, it is important to determine whether it is possible to
induce an equilibrium that optimizes social delay via prices that do not differentiate car
classes. This is of practical significance because undifferentiated prices are much easier
to implement. Unfortunately, in this section, we show through a counterexample that,
for traffic networks with mixed autonomy, it is not always possible to induce equilibrium
flows with minimum social delay by simply applying undifferentiated prices, even in
networks with a homogeneous degree of capacity asymmetry.

Example 6. Consider the network shown in Figure 7.1. Assume that the network has a homo-
geneous degree of capacity asymmetry µ = 1

3 . There are two O/D pairs W = {AB, AC}. For
each O/D pair, there are two possible paths. The demand of O/D pairs are rh

AB = 7.5, ra
AB = 4.5,
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rh
AC = 1.2, and ra

AC = 4.8. For every link l, 1 ≤ l ≤ 4, assume that γl = 1, and βl = 1. The other
link parameters are a1 = 9, a2 = 3, a3 = 0.6, and a4 = 0.6 while m1 = 3, m2 = 0.5, m3 = 0.7,
and m4 = 0.5. Note that for each link l, the parameter Ml is determined through the relation
Ml = ml/µ. For this network, it is easy to compute the optimal social delay, which is J∗ = 193.54.
In order to see whether a set of undifferentiated prices can achieve this optimal social delay, we solve
the following optimization problem for this network

min ∑
p∈P

( f h
p + f a

p)ep( f )

subject to Equations (2.15),
Equations (2.31),

∀l ∈ L : τh
l = τa

l ≥ 0,

(7.1)

Note that if the minimum social delay J∗ can be achieved via undifferentiated prices, the optimal
value of optimization problem (7.1) must be equal to J∗. However, the minimum value of (7.1)
for the network in Figure 7.1 is 195.597 which is clearly greater than J∗. This indicates that
an equilibrium with socially optimal delay cannot necessarily be induced by undifferentiated link
prices in general.

7.2 Differentiated prices
Having shown in Example 6 that in general, undifferentiated pricing cannot induce an
equilibrium with socially optimal delay, a natural question is whether differentiated prices
can be employed to induce an equilibrium with minimum social delay. In other words,
if at every link l ∈ L, we allow τh

l and τa
l to be different, does there exist a price vector

τ = (τh
l , τa

l : l ∈ L) that induces equilibria with minimum social delay? In this section,
we prove that such differentiated prices exist, and we find them.

Homogeneous Networks

The following theorem establishes the existence of optimal prices for traffic networks with
a homogeneous degree of capacity asymmetry and also provides a recipe for how to find
the optimal price values.

Theorem 3. Consider a priced routing game (G, r, c) with a homogeneous degree of capacity
asymmetry µ. For a given vector of autonomy fraction α, let f ∗ and J∗ be an optimizer and the
minimum value of social delay respectively. Then, for each link l ∈ L, if the link prices are set to
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be

τh
l = ( f h

l
∗
+ f a

l
∗)

(
∂

∂ f h
l

el( f h
l , f a

l )

) ∣∣∣∣
f ∗

, (7.2a)

τa
l = ( f h

l
∗
+ f a

l
∗)

(
∂

∂ f a
l

el( f h
l , f a

l )

) ∣∣∣∣
f ∗

, (7.2b)

then, all induced equilibria of the game (G, r, c) have the same social delay, which is equal to J∗.

Proof. Fix the vector of autonomy fractions α. For the routing game (G, r, c) where the
link prices are obtained via (7.2), Proposition 5 implies that there exists one equilibrium
with minimum social delay J∗. We prove that when the above prices are set, all induced
equilibria of (G, r, c) have the same social delay. This would then imply that all induced
equilibria of the game (G, r, c) have the unique social delay J∗ as was claimed.

Therefore, it remains to prove uniqueness of social delay at equilibria of (G, r, c) when
link prices are obtained from (7.2). Recall that for a given (G, r, c) and fixed α, for each
O/D pair w ∈ W , the demand of human–driven and autonomous cars are obtained via

rh
w = (1− αw)rw (7.3)

ra
w = αwrw. (7.4)

Now, in order to prove uniqueness of social delay, we construct an auxiliary game in-
stance (G, r̃, c̃), with the same network graph G and O/D pairsW , where the demand of
O/D pairs, link traversal delays and cost functions are defined as follows. For each O/D
pair w ∈ W , define the demand of human–driven and autonomous cars r̃h

w and r̃a
w in the

auxiliary game to be

r̃h
w := rh

w, (7.5a)
r̃a

w := µra
w. (7.5b)

Moreover, for every link l ∈ L, let the link delay functions of the auxiliary game (G, r̃, c̃)
be defined as

ẽl( f̃ h
l , f̃ a

l ) := al + γl

(
f̃ h
l + f̃ a

l
ml

)βl

. (7.6)

Additionally, for every link l ∈ L, with the prices as in (7.2), define the link cost functions
in the auxiliary game to be

c̃h
l ( f̃ h

l , f̃ a
l ) := ẽl( f̃ h

l , f̃ a
l ) + τh

l , (7.7a)

c̃a
l ( f̃ h

l , f̃ a
l ) := ẽl( f̃ h

l , f̃ a
l ) + τa

l . (7.7b)
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Now, let f = ( f h
p , f a

p : p ∈ P) be an equilibrium of the original game (G, r, c). For
every path p ∈ P , define f̃ h

p := f h
p and f̃ a

p := µ f a
p . We claim that f̃ = ( f̃ h

p , f̃ a
p : p ∈ P) is an

equilibrium flow vector for the auxiliary game (G, r̃, c̃). It can be easily verified that for
every origin–destination pair w ∈ W , we have ∑p∈Pw f̃ h

p = r̃h
w and ∑p∈Pw f̃ a

p = r̃a
w. Thus,

f̃ is a feasible flow vector for the auxiliary game. Moreover, it is easy to see that for every
link l ∈ L, we have f̃ a

l = µ f a
l ; therefore, using the definition of f̃ and Equations (2.26)

and (7.6), for every link l ∈ L, we establish the following

ẽl( f̃ h
l , f̃ a

l ) = al + γl

(
f̃ h
l + f̃ a

l
ml

)βl

= al + γl

(
f h
l + µ f a

l
ml

)βl

= al + γl

(
f h
l

ml
+

f a
l

Ml

)βl

= el( f h
l , f a

l ).

(7.8)

Thus, from (2.28), (7.7), and (7.8), for every link l ∈ L, we have

c̃h
l ( f̃ h

l , f̃ a
l ) = ch

l ( f h
l , f a

l ) (7.9a)

c̃a
l ( f̃ h

l , f̃ a
l ) = ca

l ( f h
l , f a

l ). (7.9b)

Now since f is an equilibrium for (G, r, c), using (2.31) and (7.9), for every O/D pair
w ∈ W and pair of paths p, p′ ∈ Pw, we have

f h
p

(
c̃h

p( f̃ )− c̃h
p′( f̃ )

)
≤ 0, (7.10a)

f a
p

(
c̃a

p( f̃ )− c̃a
p′( f̃ )

)
≤ 0. (7.10b)

Multiplying (7.10b) by the positive constant µ, we have

f h
p

(
c̃h

p( f̃ )− c̃h
p′( f̃ )

)
≤ 0, (7.11a)

µ f a
p

(
c̃a

p( f̃ )− c̃a
p′( f̃ )

)
≤ 0. (7.11b)

Using the definition of f̃ , from (7.11) we can conclude the following

f̃ h
p

(
c̃h

p( f )− c̃h
p′( f )

)
≤ 0, (7.12a)

f̃ a
p

(
c̃a

p( f̃ )− c̃a
p′( f̃ )

)
≤ 0. (7.12b)



CHAPTER 7. PRICING MIXED–AUTONOMY NETWORKS 75

Note that these are precisely the equilibrium conditions for the auxiliary game (G, r̃, c̃),
which proves our claim that f̃ is an equilibrium for the auxiliary game.

Now, note that the conditions of Proposition 3 hold for the auxiliary game (G, r̃, c̃)
since for the fixed α, at every link l ∈ L, the link traversal costs of human–driven and
autonomous cars c̃h

l and c̃a
l are strictly increasing functions of the total link flow f̃l = f̃ h

l +

f̃ a
l . Moreover, motivated by (7.7), the costs of human-driven and autonomous cars are

identical up to a constant. Thus, using Proposition 3 for (G, r̃, c̃), for every link l ∈ L, the
total link flow f̃l = f̃ h

l + f̃ a
l is unique among all equilibria. Therefore, using the definition

of f̃ , the fact that f̃ is an equilibrium flow vector for (G, r̃, c̃), and the connection between
f and f̃ , we conclude that at every link l ∈ L, we must have that f h

l + µ f a
l is unique for all

equilibria of (G, r, c). Additionally, from (7.6) and (7.7), for every link l ∈ L, uniqueness of
the total link flow at equilibrium in the auxiliary game implies that the link traversal costs
c̃h

l ( f̃ h
l , f̃ a

l ) and c̃a
l ( f̃ h

l , f̃ a
l ) are unique. Hence, from (7.9), we can conclude that in (G, r, c),

for each link l ∈ L, the link traversal costs ch
l ( f h

l , f a
l ) and ca

l ( f h
l , f a

l ) are also unique for
all equilibrium flow vectors f . Thus, for each O/D pair w ∈ W , the travel costs of both
human-driven and autonomous cars ch

w and ca
w are unique. Consequently, from (2.33), we

realize that the overall cost C( f ) is unique for all equilibrium flow vectors f of (G, r, c).
Now, using (2.17), (2.28), and (2.30), we can rewrite the social cost of (G, r, c) as

C( f ) = ∑
l∈L

f h
l ch

l ( f ) + f a
l ca

l ( f ) (7.13)

= ∑
l∈L

( f h
l + f a

l )e
h
l ( f ) + f h

l τh
l + f a

l τa
l (7.14)

= J( f ) + ∑
l∈L

f h
l τh

l + f a
l τa

l . (7.15)

Notice that under homogeneity of the network, using the special structure of (2.26), it is
easy to see that Equations (7.2) imply that for every link l ∈ L, we have

τa
l = µτh

l . (7.16)

Substituting (7.16) in (7.15), we have

C( f ) = J( f ) + ∑
l∈L

τl
h( f l

h + µ f a
l ). (7.17)

Note that using our introduced auxiliary game, we proved that the overall cost C( f ) is
unique for all equilibrium flow vectors f . Furthermore, we proved that for every link l,
f h
l + µ f a

l = f̃ h
l + f̃ a

l is unique for all equilibria. Hence, from (7.17), we can conclude that
the social delay J( f ) is also unique for all equilibrium flow vectors. This completes our
proof.

Note that if for each link l ∈ L, the link prices are obtained from (7.2), since the link
delay function (2.26) is increasing in the flow of each vehicle class, the prices that result
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from (7.2) are always nonnegative which is in accordance with our initial assumption.
The link prices obtained by (7.2) are in fact the extra term in the marginal cost of each
vehicle class.

Heterogeneous Networks

If the road degree of capacity asymmetry is not homogeneous, but a central authority sets
link prices to be obtained from (7.2), there still exists at least one induced equilibrium flow
vector that achieves the minimum social delay. However, for heterogeneous networks,
the social delay is not necessarily unique. Therefore, although the social delay of one
induced equilibrium is optimal, the social delay of other induced equilibria might not
be optimal. For such networks, optimally of the social delay may not be achieved in all
induced equilibria by setting the prices to be obtained from (7.2).

7.3 Chapter Summary
We considered the problem of inducing efficient equilibria in traffic networks with mixed
vehicle autonomy via pricing. We showed that minimum social delay may not be attained
by imposing undifferentiated link prices, in which human–driven and autonomous ve-
hicles are treated identically. Then, we proved that in mixed–autonomy traffic networks
with a homogeneous degree of capacity asymmetry, if differentiated prices are allowed,
which treat human–driven and autonomous vehicles differently, link prices can be deter-
mined such that all induced equilibria have minimum social delay.
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Chapter 8

Altruistic Autonomy

In this chapter, we focus on how autonomy can act altruistically, i.e. by taking into ac-
count the decision making process of humans, autonomous cars can potentially plan for
their actions in the favor of the overall system good. In particular, we consider the altruis-
tic lane choice of autonomous cars in a mixed–autonomy setting at a traffic diverge. First,
we develop a model for the lane choice of human–driven cars. Then, using this model,
we discuss the altruistic lane choice of autonomy at traffic diverges.

8.1 Modeling Framework
We consider a traffic diverge where a two–lane link bifurcates into two links as depicted in
Figure 8.1. This is a common scenario in freeway and arterial forks. We wish to study lane
choices taken by cars in such diverges. At traffic diverges, normally, among the cars with
the same target exit link, a fraction of cars choose to remain in the lane that corresponds
to their intended exit, far upstream of the diverge, while the remaining fraction of the
cars perform bypasses by performing a lane change behavior to the lane that corresponds
to their intended exit link at a proximity close to the diverge (see Figure 8.1). Given the
demand of cars for each exit link, our goal is to derive a macroscopic traffic model that can
predict the fraction of cars which exhibit either of these two behaviors. Note that we wish
to capture the aggregate bypassing behavior of cars in a macro scale rather than deriving
the conditions under which a single car decides to perform or not perform a bypassing
lane change maneuver.

Consider a traffic diverge shown in Figure 8.1. Let I = {P, Q} be the index set of exit
links. Let dP and dQ be the demands of cars that wish to take exit links P and Q respec-
tively. Additionally, we use d = dP + dQ to represent the total demand of cars upstream of
the diverge. We use f P = dP

d and f Q = dQ

d to represent the fraction of cars whose destina-
tions are respectively links P and Q. We describe our model in terms of these normalized
demands rather than the actual demands since it simplifies our analysis. Consequently,
we define F = { f P, f Q} to be the normalized demand configuration for the diverge. For
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xP
s

xQ
b

1

2

P

Q

Figure 8.1: Example of a traffic diverge with two destination links P and Q. For exit link
P, a steadfast car (blue car) constituting xP

s and a bypassing car (orange car) forming xP
b

are shown.

each exit link i ∈ I, we define xi
s to be the fraction of “steadfast” cars taking exit i among

all incoming cars. These are the cars that take the lanes that correspond to their destina-
tion link i far upstream of the diverge and remain on their lanes. We also define xi

b to be
the fraction of “bypassing” cars that choose to perform a lane change maneuver to the
lane that corresponds to their exit link i at a close proximity to the diverge. Figure 8.1
illustrates steadfast and bypassing cars that wish to take exit link P. We assume that cars
change their lanes only once, i.e. if a car is in its target lane, it remains there. We let
x = (xi

s, xi
b : i ∈ I) be the vector of steadfast and bypassing normalized flows for the

two possible destinations of a fork. A normalized flow vector x is feasible for a given
normalized demand configuration F if it satisfies

f i = xi
s + xi

b, ∀i ∈ I, (8.1)

xi
s ≥ 0, xi

b ≥ 0, ∀i ∈ I. (8.2)

Example 7. Consider the diverge shown in Figure 8.1. In this example, there are two upstream
freeway lanes 1 and 2 which respectively connect to exit links P and Q. For this diverge, xP

s is the
fraction of steadfast cars that remain on lane 1 and take exit link P, whereas xP

b is the fraction of
bypassing cars that move along lane 2 and change to lane 1 at a close proximity to the diverge.

For each exit link i ∈ I, we assume that all steadfast cars constituting xi
s experience the

same travel cost. Likewise, all bypassing cars taking an exit link i, experience the same
travel cost. For each destination link i ∈ I, we let Ji

s and Ji
b be the costs incurred by the

cars belonging to xi
s and xi

b respectively. For each pair of exit links i 6= j ∈ I, we model
the cost per unit of flow of the steadfast cars by

Ji
s(x) = Ci

t

(
xi

s + xj
b

)
+ Ci

cxi
b

(
xi

s + xj
b

)
, (8.3)
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where Ct
i and Cc

i are positive constants. The constant Ct
i is associated with cost of travers-

ing the lane that is connected to exit i. Since (xi
s + xj

b) is the total fraction of cars that travel

along the lane associated with exit i, (xi
s + xj

b) is multiplied by Ct
i (e.g. a total of xP

s + xQ
b

traverse link 1 in Figure 8.1). Therefore, the first term in Equation (8.3) indicates that the
more occupied the lanes that correspond to an exit are, the more expensive their traversal
is due to the induced congestion. On the other hand, the constant Ci

c is used to reflect the
negative cross effects caused by the lane change maneuvers of the bypassing fraction of
cars xi

b. This term is used to mimic the fact that as the cars in xi
b bypass and change their

lanes to take the exit i, they use the roads (resources) that join exit i; thus, they will create
delays for the cars that are already in those lanes. Note that since xi

s and xj
b both share

the target link of xi
b up to the vicinity of the diverge, the total fraction of the cars present

in the target lanes of xi
b is (xi

s + xj
b). Hence, Ci

c is multiplied by (xi
s + xj

b) and xi
b. This

multiplication implies that the higher the number of cars that bypass xi
b is, or, the more

occupied the lanes that join exit i are, the larger the incurred cost by the steadfast cars will
be. Note that Ji

s(x) depends not only on xi
s and xi

b but also can depend on xj
s and xj

b.
Now, we describe how we model the costs incurred by the bypassing cars. For each

pair of exit link i 6= j ∈ I, we model Ji
b via

Ji
b(x) = Cj

t

(
xj

s + xi
b

)
+ Cj

cxj
b

(
xj

s + xi
b

)
+ γixi

b, (8.4)

where γi is a positive constant, and Ct
j and Cc

j are as previously defined. If γi = 0, the cost
function (8.4) will be similar to (8.3) for exit j, and Ji

b would simply be equal to the cost
of traversing the lanes that connect to exit j. However, γi > 0 models the additional dis-
comfort cost that the bypassing cars must pay due to traversing a longer path for joining
their appropriate exit and cutting in front of the cars that are already in their target lane.
For a traffic diverge with two exit links, we let C = (Ci

t, Ci
c, γi : i ∈ I) be the vector of cost

coefficients in our model.
Before proceeding, we need to introduce the following definition.

Definition 6. A function h(.) : Rn −→ R is called elementwise monotonically increasing if and
only if for every x, x′ ∈ Rn such that x ≤ x′, where inequalities are interpreted elementwise, we
have

h(x) ≤ h(x′).

Using Equations (8.3) and (8.4), the following remark is evident.

Remark 5. For each exit link i ∈ I, the cost functions Ji
s and Ji

b, are elementwise monotoni-
cally increasing in the sense of Definition 6.
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We will later use Remark 5 to guarantee certain properties of our model.
A reasonable and realistic assumption is that cars act selfishly, i.e. each car acts in

a manner that minimizes its own cost. We now assume that each car has two options:
either to choose its appropriate lane upstream of the diverge or to perform a bypass and
take its target exit at a close proximity to the diverge executing a “tight” lane change.
Intuitively, if for an exit link i ∈ I, xs

i > 0 while xb
i = 0, then cars did not have any

incentive to perform a bypass, i.e. bypassing could not lead to savings in travel time i.e.
Ji
b(x) > Ji

s(x). Likewise, if xs
i = 0 while xb

i > 0, cars did not have any incentive for acting
steadfastly, i.e. Ji

s(x) > Ji
b(x). If both xi

s and xi
b are nonzero, we must have Ji

s(x) = Ji
b(x)

since otherwise, cars will change their choice to the one with lower cost. These conditions
are in fact the equilibrium conditions. Therefore, we propose to model the lane choice of
cars at a traffic diverge as an equilibrium. These conditions are in fact similar to Wardrop
conditions [109] in the transportation literature. In order to describe the formal definition
of Wardrop conditions, let G = (I, F, C) be a tuple enclosing the index set of exit links I,
the demand configuration F, and the vector of cost coefficients C. Then, we model the
lane choice of cars as an equilibrium defined via the following.

Definition 7. For a given G = (I, F, C), a flow vector x is a Wardrop equilibrium if and only if
for every exit link i ∈ I, we have:

xi
s(Ji

s(x)− Ji
b(x)) ≤ 0, (8.5a)

xi
b(Ji

b(x)− Ji
s(x)) ≤ 0. (8.5b)

Note that Equations (8.5) imply that for an exit link i ∈ I, if xi
s 6= 0 and xi

b 6= 0, then at
equilibrium, we must have Ji

s(x) = Ji
b(x). Alternatively, if at equilibrium xi

s = 0 (xi
b =

0) , we have Ji
s(x) ≥ Ji

b(x)
(

Ji
b(x) ≥ Js

i (x)
)
. These conditions are indeed the intuitive

conditions we may expect from cars’ lane choice. Note that the adoption of a Wardrop
assumption implies that cars can be treated infinitesimally, i.e. the change caused by the
unilateral lane change of a single car is negligible. This is in accordance with our goal of
modeling the macroscopic behavior of cars at diverges

8.2 Equilibrium Properties
In this section, we state the properties of the equilibrium in our model including its exis-
tence and uniqueness.

Equilibrium Existence

Using the existence theorem in [12] for the setting of our model, we can conclude the
following
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xi
s

Ji
b(xi

s, xj
s)

Ji
s(xi

s, xj
s)

x̄i
s

(a) Case A

xi
s

Ji
b(xi

s, xj
s)

Ji
s(xi

s, xj
s)

(b) Case B

xi
s

Ji
b(xi

s, xj
s)

Ji
s(xi

s, xj
s)

(c) Case C

Figure 8.2: Three possible configurations of Ji
s(.) and Ji

b(.).

Proposition 7. For a given G = (I, F, C), if for every exit link i ∈ I, the cost functions
Ji
s(x), Ji

b(x) are continuous and elementwise monotone in x, then, there exists at least one Wardrop
equilibrium for G.

Remark 6. For a diverge with two exit links, using Remark 5 and continuity of Ji
s(.) and

Ji
b(.), we can conclude that there always exists at least one equilibrium for every G =
(I, F, C).

Equilibrium Uniqueness

Once the existence of equilibrium is established, it is important to study its uniqueness.
Equilibrium uniqueness is a desired and favorable property for a model to have predic-
tive power. When the equilibrium is unique, the properties of the system at equilibrium
are well defined. For instance, the overall cost at equilibrium is well defined. In this
subsection, we derive the conditions under which our model has this favorable prop-
erty. Equations (8.3) and (8.4) indicate that Ji

s(.) depends not only on xi
s but also on xi

b

and xj
b. In the routing games literature, this dependence is referred to as the cost func-

tions being nonseparable [20]. This nonseparability is further asymmetric, meaning that
the incurred costs that are resulted from the interaction of different flow types are not
the same across vehicle costs. In addition to the cost functions’ asymmetric nonsepara-
bility, they are nonlinear as indicated by Equations (8.3) and (8.4). For such class of cost
functions, it is known in the literature of routing games that, in general, equilibria are
not unique. Equilibrium uniqueness is generally only achieved under very strong as-
sumptions (such as strict monotonicity of the cost functions which is much stricter than
elementwise montonocity), which do not hold in our model’s setting [5]. Despite these
complications, and the fact that none of the existing results in the literature on sufficient
conditions for the uniqueness of an equilibrium can be applied to our model, we are able
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to obtain the conditions under which a given G = (I, F, C) is guaranteed to have a unique
equilibrium in our model.

To prove uniqueness, we first define an auxiliary game such that there exists a con-
nection between the Wardrop equilibrium in our model and the Nash equilibrium of the
auxiliary game. For any given G = (I, F, C), we define a two player game G̃ = 〈V, A, ( J̃v :
v ∈ V)〉, where V = {1, 2} is the index set of players. Since both I and V are the set {1, 2},
we use a bijective correspondence between every v ∈ V and i ∈ I. In fact, v = 1 (v = 2)
implies that i = 1 (i = 2) and vice versa. Therefore, every exit link i ∈ I is associated with
a player v ∈ V. In the defined auxiliary game, A = A1× A2 is the action space of players,
where for each v ∈ V, Av = [0, f v] = [0, f i] is the action set of player v. Moreover, for
each player v ∈ V, J̃v is the cost associated with player v. We let y = (yv, v ∈ V) be the
vector of actions taken by the two players of the game G̃. To make a connection between
our traffic diverge setting and the defined auxiliary game, for a given flow vector x, we
define y to be

y := (xi
s, i ∈ I). (8.6)

Note that given the normalized demand configuration F = { f1, f2}, flow conservation
requires that for every exit link i ∈ I, we have xi

b = f i − xi
s. Thus, with a little abuse of

notation, Ji
s(x) and Ji

b(x) can be written as Ji
s(xi

s, xj
s) and Ji

b(xi
s, xj

s) for every pair of exit
links i 6= j ∈ I. Then, using (8.6), for every v 6= v′ ∈ V, we define J̃v(y) to be

J̃v(y) =
(

Ji
s(yv, yv′)− Ji

b((yv, yv′)
)2

. (8.7)

In the auxiliary game G̃, a vector y is a pure Nash equilibrium if and only if for every
two players v 6= v′ ∈ V, we have

yv = Bv(yv′) (8.8)

= argminyv∈[0, f v] J̃v(yv, yv′) (8.9)

where Bv is the best response function of player v. Note that since for every player v ∈ V,
J̃(y) is a continuous function on a closed interval, a minimum is achieved. Equation (8.8)
implies that if yv′ is fixed, player v takes the best possible action that minimizes its own
cost J̃v(y). The following proposition establishes the connection between the Wardrop
equilibrium of G and the Nash equilibrium of G̃.

Proposition 8. A flow vector x = (xi
s, xi

b : i ∈ I) is a Wardrop equilibrium for G = (I, F, C) if
and only if y = (xi

s, i ∈ I) is a pure Nash equilibrium for G̃ provided that

Ci
t ≥ Ci

c, ∀i ∈ I. (8.10)
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Proof. First we show that for a given xj
s, (8.10) is a sufficient condition for Ji

s(xi
s, xj

s) to be
increasing in xi

s, and Ji
b(xi

s, xj
s) to be decreasing in xi

s . To see this, note that for every
i 6= j ∈ I, we have:

∂Ji
s(xi

s, xj
s)

∂xi
s

= −2Ci
cxi

s + Ci
t + Ci

cxi
s − Ci

c( f j − xj
s). (8.11)

Equation (8.11) is linear in xi
s. Moreover, for each i ∈ I, xi

s is allowed to only take val-
ues in interval [0, f i]. Therefore, in order to obtain sufficient conditions for the positivity

of (8.11), it is sufficient to guarantee that ∂Ji
s(xi

s,xj
s)

∂xi
s

is positive at all possible extreme points

(xi
s, xj

s) which are {(0, 0) ,
(

f 1, 0
)

,
(
0, f 2) ,

(
f 1, f 2)}. Using the fact that the demand frac-

tions must satisfy f 1 + f 2 = 1, it is easy to verify that the smallest possible value of (8.11)

is attained in ( f 1, 0) when f 1 = 1. At the point (1, 0), we have ∂Ji
s

∂xi
s
(1, 0) = Ci

t − Ci
c. There-

fore, (8.10) is a sufficient condition for Ji
s(xi

s, xj
s) to be increasing in xi

s. Similarly, we can

compute ∂Ji
b(xi

s,xj
s)

∂xi
s

which is

∂Ji
b(xi

s, xj
s)

∂xi
s

= −Cj
t − γj − Cj

c( f j − xj
s). (8.12)

Since ( f j − xj
s) is always greater than or equal to zero, and Cj

t and γj are always posi-
tive, clearly, for every i 6= j ∈ I, Ji

b(xi
s, xj

s) is always decreasing in xi
s for any given xj

s.
Now, we can proceed to proving that under (8.10), every Wardrop equilibrium of G is

equivalent to a Nash equilibrium of the auxiliary game G̃. For a player v ∈ V, consider
the best response function Bv(yv′) in (8.8). For a given yv′ = xj

s, in order to minimize
J̃v(yv, yv′) over yv = xi

s, since Ji
s is increasing in xi

s, and Ji
b is decreasing in xi

s under (8.10),
the following three scenarios may occur for a given xj

s (see Figure 8.2):

• Case A: Ji
s(xi

s, xj
s) and Ji

b(xi
s, xj

s) have an intersection on the interval (0, f v). In this
case, there exists a point x̄i

s(xj
s) ∈ (0, f v) such that Ji

s(x̄i
s, xj

s) = Ji
b(x̄i

s, xj
s) (See Fig-

ure 8.2, case A). Using (8.7), it can also be verified that in this case, the intersection
point yv = x̄i

s is the best response for a given yv′ = xj
s. If this is the case, Equa-

tions (8.5) are also satisfied by x̄i
s for a given xj

s. It is easy to see that the reverse is
also true. Indeed, if x̄i

s ∈ (0, f i) satisfies (8.5) for a given xj
s, then, x̄i

s must be the
intersection of Ji

s(xi
s, xj

s) and Ji
b(xi

s, xj
s) on the interval (0, f v). Therefore, yv = xi

s is
the best response of yv′ = xj

s.
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• Case B: Ji
s(xi

s, xj
s) and Ji

b(xi
s, xj

s) do not intersect on the interval (0, f v), and Ji
s(0, xj

s) ≥
Ji
b(0, xj

s) for a given xj
s. In this case, if yv′ = xj

s, for minimizing J̃v, we must have
yv = Bv(yv′) = 0 (See Figure 8.2, case B). Using the connection between the two
games and (8.6), it is easy to see that, xi

s = 0 satisfies (8.5) for a given xj
s since if

xi
s = 0, then, xi

b = f i while Ji
s ≥ Ji

b. The reverse is also true, if xi
s = 0 satisfies (8.5)

for a given xj
s, then yv = xi

s = 0 is the best response of yv′ = xj
s.

• Case C: Ji
s(xi

s, xj
s) and Ji

b(xi
s, xj

s) do not intersect on the interval (0, f v), and Ji
s(0, xj

s) ≤
Ji
b(0, xj

s). In this case, if yv′ = xj
s, then yv = Bv(yv′) = 1. Similar to case B, one can

conclude that yv = xi
s = 1 is equal to Bv(yv′) if and only if xi

s = 1 satisfies (8.5) for a
given xj

s.

So far, we have shown that for every v 6= v′ ∈ V, for a given yv′ , yv is the best response
of yv′ if and only if x = (yv, f v − yv : i ∈ I) satisfies (8.5). Therefore, y = (xi

s : i ∈ I) is a
Nash equilibrium of G̃ if and only if x = (xi

s, f i − xi
s : i ∈ I) is a Wardrop equilibrium of

G.

Remark 7. Notice that using the three cases described in the proof of Proposition 8, for a
given yv′ = xj

s, the best response Bv(yv′) can be found by first intersecting Ji
s(xi

s, xj
s) and

Ji
b(xi

s, xj
s) and then projecting the intersection point x̄i

s(xj
s) onto the interval [0, f i]. We will

use this fact in the remainder to prove equilibrium uniqueness.

Having Proposition 8 in mind, we are ready to state and prove the following.

Theorem 4. For a given diverge G = (I, F, C), a Wardrop equilibrium flow vector x is unique if
for every exit link i ∈ I,

Ci
t ≥ Ci

c, (8.13)

γi ≥ Ci
c. (8.14)

Proof. Construct the auxiliary game G̃ = 〈V, A, ( J̃v, v ∈ V)〉 described above. From
Proposition 8, we know that if (8.13) holds, x is a Wardrop equilibrium for G if and only
if (yv : v ∈ V) = (xi

s : i ∈ I) is a Nash equilibrium for G̃. We now prove that under (8.14),
G̃ has a unique equilibrium; thus, G must also have a unique equilibrium. To see this,
note that y = (xi

s : i ∈ I) is a Nash equilibrium for G̃ if and only if for every v 6= v′,
yv = Bv(yv′), and yv′ = Bv′(yv). These conditions can be rewritten as

yv = Bv(Bv′(yv)), (8.15a)
yv′ = Bv′(Bv(yv′)). (8.15b)
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Equations (8.15) indicate that y is an equilibrium if and only if for every v 6= v′ ∈ V,
yv is a fixed point for Bv (Bv′(.)). Thereby, (yv, yv′) is an equilibrium for G̃ if and only if
Bv(Bv′(.)) intersects the line going through the origin with slope 1 at yv, and Bv′(Bv(.))
intersects the line going through the origin with slope 1 at yv′ . In the remainder, we prove
that under (8.14), the slope of Bv(Bv′(.)) is always positive and smaller than 1 for every
v 6= v′ ∈ V. Therefore, Bv(Bv′(.)) can intersect the identity line at most once. Thus,
knowing that there exits at least one equilibrium, we can conclude that G̃ and therefore
G always has a unique equilibrium if (8.13) and (8.14) hold. To prove this, it suffices to
show that 0 ≤ dBv(yv′ )

dyv′
≤ 1, for every v 6= v′ ∈ V. To see this, let xj

s be such that Ji
s(xi

s, xj
s)

and Ji
b(xi

s, xj
s) intersect each other at x̄i

s(xj
s) ∈ [0, f i]. Using (8.3) and the fact that for every

i ∈ I, xi
b = f i − xi

s, we have

∂Ji
s(xi

s, xj
s)

∂xj
s

= −Ci
t − Ci

c( f i − xi
s). (8.16)

Since ( f i − xi
s) ≥ 0, we can conclude that ∂Ji

s(xi
s,xj

s)

∂xj
s
≤ 0. Similarly, we can compute

∂Ji
b(xi

s, xj
s)

∂xj
s

= Cj
t + Cj

c( f j − xj
s)− Cj

c(xj
s + f i − xi

s). (8.17)

Since ( f j − xj
s) ≥ 0, it is easy to see that if (8.13) holds, ∂Ji

b(xi
s,xj

s)

∂xj
s

is always positive.

Thus, (8.16) and (8.17) imply that as xj
s increases, Ji

s decreases while Ji
b increases. There-

fore, as xj
s increases, x̄i

s(xj
s) can only increase. However, Remark 7 implies that if x̄i

s(xj
s)

lies outside the interval [0, f i], it is projected on this interval. Since xj
s varies on inter-

val [0, f j], interval [0, f j] can be divided into [0, f j] = [0, mj] ∪ [mj, nj] ∪ [nj, f j], such that
x̄i

s(xj
s) is always 0 for xj

s ∈ [0, mj], and always 1 for xj
s ∈ [nj, f j]. Note that either of the

intervals [0, mj], [mj, nj] and [nj, f j] can possibly be empty. Hence, in order to show that
the slope of the best response function Bv(xj

s) is always smaller than 1, it suffices to prove
that it is indeed less than 1 for xj

s being in interval [mj, nj] where Ji
s(xi

s, xj
s) and Ji

b(xi
s, xj

s)

do intersect at x̄i
s ∈ [0, f i].

For a given xj
s ∈ [mj, nj], x̄i

s(xj
s) must satisfy

Ji
s(x̄i

s, xj
s)− Ji

b(x̄i
s, xj

s) = 0.

Therefore, using implicit differentiation, dx̄i
s(xj

s)

dxj
s

can be computed via
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∂

∂xi
s

(
Ji
s(x̄i

s, xj
s)− Ji

b(x̄i
s, xj

s)
) dx̄i

s(xj
s)

dxj
s

+

∂

∂xj
s

(
Ji
s(x̄i

s, xj
s)− Ji

b(x̄i
s, xj

s)
)
= 0.

(8.18)

Using (8.3) and (8.4) , and the fact that xi
b = f i − xi

s for all exit links i ∈ I, we have

∂

∂xj
s

(
Ji
s(x̄i

s, xj
s)− Ji

b(x̄i
s, xj

s)
)
= −Ci

t − Ci
c( f i − xi

s)−

Ci
c + Cj

c(xj
s + f i − xi

s)− Cj
c( f j − xj

s).

(8.19)

Since (8.19) is linear in xi
s and xj

s, its maximum and minimum are attained at its extreme
points. It is easy to check that the maximum possible value for (8.19) is −Ci

t − Cj
t + Cj

c.

If (8.13) holds, −Ci
t − Cj

t + Cj
c ≤ 0. Therefore ∂

∂xj
s

(
Ji
s(x̄i

s, xj
s)− Ji

b(x̄i
s, xj

s)
)
≤ 0 under (8.13).

Using the same approach, one can verify that under (8.13), it always the case that for
every exit link i ∈ I,

∂

∂xi
s

(
Ji
s(x̄i

s, xj
s)− Ji

b(x̄i
s, xj

s)
)
≥ 0.

Hence, using (8.18), under (8.13),

dx̄i
s(xj

s)

dxj
s
≥ 0, ∀i 6= j ∈ I.

Now that we have shown that the slope of the best response function is always positive,

it only remains to prove that dx̄i
s(xj

s)

dxj
s
≤ 1. To prove this, it suffices to show that

∂

∂xi
s
(Ji

s(x̄i
s, xj

s)− Ji
b(x̄i

s, xj
s)) ≥

−
(

∂

∂xj
s

(
Ji
s(x̄i

s, xj
s)− Ji

b(x̄i
s, xj

s)
))

.
(8.20)

Substituting (8.3), (8.4), and (8.19) in (8.20) and computing the linear function at its ex-
treme points, we observe that (8.14) is a sufficient condition for (8.20), which completes
our proof.
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Figure 8.3: The traffic diverge used in our simulations: the blue cars will take the upper
(left) exit link; while the magenta cars will ultimately take the lower (right) exit. Using
Krauss’ car following model, a blue vehicle is bypassing right before the bifurcation.

8.3 Model Validation
Up to now, we have described our model and its properties. In this section, we describe
how our model performs in predicting the bypassing behavior of cars. We use a micro-
scale traffic simulation software, SUMO [48] to generate the data required for calibrating
and validating our proposed macroscopic model. By default, SUMO employs the Krauss
model [49] as the car–following model and the LC2013 model [26] as the lane–changing
model. Krauss’s model is widely used for simulating human drivers’ behavior, and it
enables cars to run at their highest speed as long as safety is guaranteed, i.e., Krauss’s
model is collision–free. A key parameter in Krauss’s model is sigma which characterizes
the randomness of cars’ behavior. Parameter sigma ranges from 0 to 1, with 0 indicating a
uniform behavior. In our simulation, sigma is set by default to be 0.5 so that randomness
in drivers’ behavior is captured. In the LC2013 lane–changing model, there is a param-
eter known as lcSpeedGain, which ranges from 0 to the infinity. This parameter is an
indicator of the cars’ eagerness to perform lane–changing behavior for speed gains. A
higher lcSpeedGain implies that we should expect more lane–changing maneuvers by
more aggressive drivers. In our simulation, we set lcSpeedGain to be 10. Moreover, in the
simulation, we build a sufficiently long upstream link for the diverge and we only record
steadfast and bypassing cars immediately upstream of the road bifurcation and provide
sufficient simulation time to SUMO to achieve steady state. An overview of the diverge
in SUMO is shown in Figure 8.3.

A key element of our model, which affects its functionality, is the coefficient vector C.
Therefore, in order to study the performance of the model, it needs to be calibrated first,
i.e. it is necessary to determine, using microscopic simulation data, the coefficient vector
C that best fits the resulting microscopic traffic simulation data at the diverge.
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Model Calibration

Consider a diverge with two exit links I = {P, Q}. Fix the total flow of cars d = dP + dQ

that enter the diverge. For a given fixed d, assume that there exist measurements from K
possible allocations of demand d among the two exit links. Let (F̃)k = {( f̃ P)k, ( f̃ Q)k}, 1 ≤
k ≤ K, be the demand configuration that corresponds to the kth observed measurement,
where ( f̃ P)k and ( f̃ Q)k denote the fractions of demand that took exits P and Q in the kth
observation respectively. For each measurement k, let (x̃i

s)k and (x̃i
b)k be the measured

fraction of steadfast and bypassing flows taking exit link i ∈ I when kth demand con-
figuration was used. We let (x̃)k represent the vector of measured flows for the kth mea-
surement. When using our model, the vector of cost coefficients C must be determined
such that Equations (8.5) are satisfied by (x̃i

s)k and (x̃i
b)k for every k ≤ K. But, since (8.5)

contains nonlinear inequalities, finding such a C is nontrivial. We propose the following
calibration process for the vector of cost parameters C.

For every k ≤ K and i ∈ I, define the integer variables (zi
s)

k ∈ {0, 1}, and (zi
b)

k ∈ {0, 1}
such that

(x̃i
s)k(Ji

s((x̃)k)− Ji
b((x̃)k)) ≤ 0⇐⇒ (zi

s)k = 0 (8.21a)

(x̃i
s)k(Ji

s((x̃)k)− Ji
b((x̃)k)) > 0⇐⇒ (zi

s)k = 1 (8.21b)

(x̃i
b)k(Ji

b((x̃)k)− Ji
s((x̃)k)) ≤ 0⇐⇒ (zi

b)k = 0 (8.21c)

(x̃i
b)k(Ji

b((x̃)k)− Ji
s((x̃)k)) > 0⇐⇒ (zi

b)k = 1 (8.21d)

Then, letting z be the vector of (zi
s)

k and (zi
b)

k for all k’s and all exit links i ∈ I, we propose
to solve the following optimization problem for calibrating C.

minimize
C,z

∑
k∈K

∑
i∈I

(
(zi

s)k + (zi
b)k

)
subject to Equations (8.21)

Cr ≥ 1,

(8.22)

where Cr is the rth element of C. We use the constraint Cr ≥ 1 to prevent the optimizer
from setting all the elements of C to be zero. It is important to note that since every term
in (8.3) and (8.4), is multiplied by one and only one element of C, and multiplying all
cost functions by the same constant does not change the Wardrop conditions, scaling C
by a single number will not affect the model. Therefore, this constraint does not affect
the model. Note that for every inequality constraint that is violated in (8.22), the cost
is increased by 1. Thus, (8.22) provides a penalty for not satisfying (8.5) which are the
equilibrium conditions. But, how can the optimization problem (8.22) be solved where
the constraints are of the form (8.21)? To answer this, we use the procedure introduced
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in [91]. Let M be a large positive number, and ε be a small positive number close to zero.
For every k, the following is equivalent to (8.21).

(x̃i
s)k(Ji

s((x̃)k)− Ji
b((x̃)k)) ≤ M(zi

s)k − ε, (8.23a)

−(x̃i
s)k(Ji

s((x̃)k)− Ji
b((x̃)k)) ≤ M(1− (zi

s)k)− ε, (8.23b)

(x̃i
b)k(Ji

b((x̃)k)− Ji
s((x̃)k)) ≤ M(zi

b)k − ε, (8.23c)

−(x̃i
b)k(Ji

b((x̃)k)− Ji
s((x̃)k)) ≤ M(1− (zi

b)k)− ε. (8.23d)

Therefore, our model can be calibrated by solving the following optimization problem

minimize
C

∑
k

∑
i∈I

(
(zi

s)
k + (zi

b)
k
)

subject to Equations (8.23)
Cr ≥ 1.

(8.24)

Note that (8.24) is now a mixed–integer linear program that can be easily solved using op-
timization packages. Since (8.24) is solved offline, and, further, the number of required in-
teger variables is small, the computational cost for calibrating our model by solving (8.24)
is not overtaxing.

Model Predictions

Consider the diverge shown in Figure 8.1. We used the microscopic traffic simulator
SUMO [48] to simulate the traffic behavior at the diverge of Figure 8.1 for different de-
mand configurations. A total flow of d = 3000 veh

hour enters the diverge. The capacity of
each lane is 930 veh

hour . At every simulation, a fraction of cars f P is assumed to take the exit
link P while the remaining fraction of cars f Q = 1− f P is assumed to take the exit link 2.
For different values of f P, xP

s , xP
b , xQ

s , and xQ
b are measured. Then, this data set is used to

calibrate the model, i.e. finding the cost parameter vector C that best fits the data by solv-
ing optimization problem (8.24). Since our road geometry is symmetric, we introduced
the additional constraints that CP

t = CQ
t , CP

c = CQ
c , and γ1 = γ2 in (8.24), and obtained

the following values for C.

CP
t = CQ

t = 1, CP
c = CQ

c = 1, γP = γQ = 1.7.

Notice that the obtained values of C satisfy (8.13) and (8.14). Thus, in every scenario,
Theorem 4 implies that there exits only one equilibrium. We used a total of K = 20
fractional demand configurations, which results in a total of 40 integer variables. The
objective function of (8.24) was 4 when fitting C, meaning that only 4 inequalities were
unsatisfied among the 40 inequality constraints of our data set.
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Figure 8.4: The fraction of bypassing cars, xi
b, predicted by our macroscopic model and

the values measured from microscopic simulations as a function of demand fractions f i’s.
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With the calibrated C, we used our model to predict xP
s , xP

b , xQ
s , and xQ

b for the scenar-
ios where the total flow entering the diverge is different from the value that we used to
calibrate our macroscopic diverge. Figure 8.4 demonstrates such a study when the total
demand to the diverge was d = 2500 veh

hour . Figure 8.4 shows both the SUMO microsim-
ulation results and our model predictions values as a function of demand configuration
fractions f i’s. Note that the aggregate number of bypassing cars predicted by SUMO is
obtained by running the micro-scale Krauss car–following model taking into account the
randomness in drivers’ behavior, while our model predictions are solely obtained by solv-
ing the equilibrium conditions using the calibrated parameter vector C. As illustrated by
Figure 8.4, our macroscopic model predicts the fraction of bypassing and steadfast cars
for each destination. Notice that when the demand for exit P is low i.e. f P ≤ 0.5, none of
the cars who aim to take exit P would take the more crowded lane 2; therefore, xP

b ' 0.
But, with the increase of f P, some cars will take lane 2 since it will reduce their cost. This is
in accordance with what we may intuitively expect, when the demand for exit P is lower
than the demand for exit Q, cars taking exit P do not have any incentive for performing
a bypass since lane 2 is more crowded than lane 1, but when the demand for P exceeds
the demand for exit Q, bypassing behavior emerges. Our intial simulation results indi-
cate that our model is capable of predicting the behavior of the cars. We obtained similar
predictive results when the total demand that enters the diverge was varied.

8.4 Socially Optimal Lane Choice
Having shown that our model can potentially be used to predict macroscopic vehicular
bypassing behavior, we can deploy it for further mathematical analysis. Intuitively, one
might argue that if most cars were less selfish, and would have chosen their destination
lane far upstream of the diverge, the total travel cost experienced by cars at the diverge
would reduce. We now show that our model provides a powerful framework for analyt-
ically studying this conjecture. Assume that there is a central authority which can dictate
the lanes that a car must travel on, such that the total cost of cars at the diverge is min-
imum; or equivalently, that the social optimum is achieved. For example, if all cars are
autonomous, then, their lane choices could be encoded so that the sum of the costs of all
cars is minimized. The total or social cost experienced by all cars can be computed using
our macroscopic model as

Jsoc = d

(
∑
i∈I

(
xi

s Ji
s + xi

b Ji
b

))
, (8.25)

where d is the total demand entering the diverge. Then, the lane changing profile re-
quired for attaining the minimum social cost can be determined by solving the following
optimization problem
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minimize
x

Jsoc

subject to xi
s + xi

b = f i, ∀i ∈ I,

xi
s ≥ 0, xi

b ≥ 0, ∀i ∈ I.

(8.26)

Optimization (8.26) can be solved to find the optimal lane choice and bypassing behav-
ior. Note that in (8.26), the decision variables are xi

s, xi
b, for every exit link i ∈ I. Thus, the

objective function of (8.26) is a 3rd order polynomial in the decision variables. Optimiza-
tion problem (8.26) can be easily solved using commercial solvers. This simplicity should
be contrasted to the existing methods, where strategies for finding better lane choices are
heuristically determined through simulation studies.

Using the calibrated vector of cost parameters vector C that was obtained from our
model calibration, we solved (8.26) for the case when the total flow d entering the di-
verge was 3000 veh

hour . Figure 8.5 demonstrates the amount of bypassing that is required
for achieving the optimal overall cost of cars versus the amount of bypassing observed in
microsimulation using Krauss’ model. As Figure 8.5 shows, for every fractional demand
configuration, in the microsimulations, since cars select their lanes selfishly, the number
of bypassing cars is larger than the number of bypassing cars required for optimality.
Moreover, a key outcome of the determination of the vehicular lane change behavior that
minimizes the overall or social cost in (8.28), is that bypassing maneuvers are necessary,
as flow demands increase in order to achieve the minimum socially–optimal cost, as il-
lustrated in Figure 8.5. This result is non–intuitive as it is not necessarily conform to con-
ventional wisdom. Note that the bypassing cars gain a speed increase by their maneuver,
while their maneuver incurs a cost for the steadfast cars. For optimality the trade–off be-
tween these two effects must be found. As it could be observed from Figure 8.5, when the
demand for one of the exit links exceeds certain threshold, it makes sense for a proportion
of the cars to perform a bypass to gain speed increases. However, due to the extra cost
that these cars would incur on the steadfast cars, the amount of bypassing required for
optimality is smaller than the bypassing behavior under selfish lane choices. Therefore,
as illustrated in Figure 8.5, the socially optimal bypassing proportions and the resulting
lane choices are often smaller than those determined by the Wardrop equilibrium, but are
nonzero. Our model allows for quantitatively analyzing this trade–off, which we believe
has not been previously captured in the literature.

8.5 Optimal Lane Choice in Mixed–Autonomy Setting
The mathematical macroscopic model that was derived in previous section allows traffic
engineers to perform further analysis, involving efficient traffic management policies un-
der a mixed autonomy setting. In particular, a novel and important potential use of our
model becomes apparent if we assume that a central authority has control over a fraction
of the cars, and is able to to dictate control actions and lane choices to these compliant
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Figure 8.5: The fraction of bypassing cars, xi
b, from simulation and the values of bypassing

cars required for the social optimality as a function of fi.
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cars such that, when the noncompliant cars react to the actions of the compliant cars, the
overall network performance is improved. In the context of routing games, such control
mechanisms are known as Stackelberg control of cars. As autonomous cars are becom-
ing tangible technologies, it is expected that in the near future both human–driven and
autonomous cars will coexist in traffic networks. It was shown in [62] that only replac-
ing human–driven cars by autonomous cars might not be enough for improving network
mobility, and further control mechanisms are required to exploit the mobility benefits of
autonomous cars. In the context of lane choice of autonomous cars in a mixed–autonomy
setting, it is crucial to note that human–driven cars will respond selfishly to the actions
of autonomous cars. Thus, autonomous cars must take the potential response of human
drivers into account and plan their actions accordingly. Since our model predicts the
lane choice of cars, it can be used for such planning purposes. Aligned with this sce-
nario, in order to increase the mobility of traffic networks with mixed autonomy, lane
choice and bypassing decisions for autonomous cars must be developed such that when
human drivers act selfishly, a decrease in the overall cost of cars is achieved. In this sec-
tion, we use our model to study how the lane choice behavior of autonomous cars in the
mixed–autonomy setting can change the social cost at a traffic diverge with two exit links,
through an example.

Consider the traffic diverge shown in Figure 8.1. Assume that our proposed model
has been calibrated with the cost parameter vector C. Fix the total demand d and the
normalized demand configuration F = { f P, f Q}. Let α be the fraction of cars that are
autonomous among all cars that wish to take exit P. We also assume in this example that
all cars that take exit Q are human–driven. This implies that an α f P percent of the total
cars are autonomous. We also assume that a central authority is able to command a β
fraction of autonomous cars to be steadfast cars, and the remaining (1− β) fraction of
autonomous cars to be bypassing cars i.e. (1− β) fraction of autonomous cars are com-
manded to bypass at the diverge to take exit link P, and the remaining β fraction of the
autonomous cars are commanded to choose lane 1 far upstream of the diverge and re-
main on this lane. Let w = (1− β)α f P and z = βα f P denote the fractions of bypassing
and steadfast autonomous cars respectively with respect to the total demand of cars. For
a fixed w and therefore z, the remaining human–driven cars will react selfishly to the lane
choices of the autonomous cars, and a new Wardrop equilibrium will be achieved. Thus,
every choice of w and z induces a new Wardrop equilibrium of human–driven cars. For
each exit link i ∈ I, we use x̂i

s and x̂i
b to represent the fraction of steadfast and bypass-

ing human–driven cars in the induced equilibrium. Note that in this case, for a given
w and z, flow conservation requires that x̂P

s + x̂P
b = f P − w− z and x̂Q

s + x̂Q
b = f Q. Let

x̂ = (x̂i
s, x̂i

b : i ∈ I) represent the vector of human–driven flows. In this case, the cost of
steadfast and bypassing cars are
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Figure 8.6: The fraction of human–driven bypassing cars versus the fraction of au-
tonomous cars that are commanded to remain steadfast β for different values of auton-
omy fraction α.
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ĴP
s (x̂, w, z) = CP

t

(
x̂P

s + x̂Q
b + z

)
+ CP

c (x̂P
b + w)

(
x̂P

s + x̂Q
b + z

)
,

ĴP
b (x̂, w, z) = CQ

t

(
x̂Q

s + x̂P
b + w

)
+ CQ

c x̂Q
b

(
x̂Q

s + x̂P
b + w

)
+ γP(x̂P

b + w),

ĴQ
s (x̂, w, z) = CQ

t

(
x̂Q

s + x̂P
b + w

)
+ CQ

c x̂Q
b

(
x̂Q

s + x̂P
b + w

)
,

ĴQ
b (x̂, w, z) = CP

t

(
x̂P

s + z + x̂Q
b

)
+ CP

c (x̂P
b + w)

(
x̂P

s + z + x̂Q
b

)
+ γQ x̂Q

b .

Using these modified cost functions, a vector of human–driven flows x̂ is an induced
equilibrium if for every exit link i ∈ I, it satisfies

x̂i
s( Ĵi

s(x̂)− Ĵi
b(x̂)) ≤ 0, (8.27a)

x̂i
b( Ĵi

b(x̂)− Ĵi
s(x̂)) ≤ 0. (8.27b)

Let Ĵsoc be the social cost of the users in the induced equilibrium. Then, the social cost
Ĵsoc(x̂) is obtained via

Ĵsoc(x̂, w, z) = d
(
(x̂P

s + z) ĴP
s (x̂, w, z) + (x̂P

b + w) ĴP
b (x̂, w, z)+

x̂Q
s ĴQ

s (x̂, w, z) + x̂Q
b Ĵb

2( ˆx, w, z)
)
.

(8.28)

To make our exposition more concrete, let the total demand be d = 3000 veh
hour . We

use the cost parameters C obtained from calibration. Now, fix the fractional demand
configuration to be F = { f P = 0.65, f Q = 0.35}. We fix α and vary β from 0 to 1. For each
value of β, we computed the fractions of human–driven steadfast and bypassing cars in
the induced equilibrium using Equations (8.27). Figure 8.6 plots the predicted fractions of
human–driven bypassing cars for different values of β. Then, using Equation (8.28), we
computed the resulting social cost as a function β. As shown in Figure 8.6, in both cases,
when β = 0, i.e. none of the autonomous cars were steadfast, no bypassing was observed
at the equilibrium. As β increased to 0.4 for α = 0.25 and β increases to 0.7 for α = 0.5, the
cars started to bypass at the equilibrium. Intuitively, this means that when the fraction of
commanded steadfast autonomous cars went beyond a threshold, the bypassing behavior
of human–driven cars emerged. Figure 8.7 plots the social cost as a function of the fraction
of autonomous cars that are commanded to remain steadfast β for different values of the
autonomy fraction α. As this figure shows, when α = 0.25, the minimum social cost was
achieved around β = 0.4, and then the social cost remains unchanged for β > 0.4. When
the fraction of autonomous cars was increased to α = 0.5, the minimum social delay was
achieved around β = 0.7, and then the social cost remains unchanged for β > 0.7. The
social cost remains the same after β achieves a given value because the fraction of mixed
bypassing cars (including both human–driven and autonomous cars) remains the same
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Figure 8.7: The social cost per total demand versus the fraction of commanded au-
tonomous steadfast cars β, for two different values of autonomy fractions α.
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after that value. To illustrate this, we take α = 0.5 as an example. Figure 8.8 shows the
curves for the total fraction of bypassing cars taking exit P versus β. We can see from
the figure that the fractions of bypassing cars become constant for β > 0.7, therefore, the
social cost remains unchanged for β > 0.7.

Notice how the parameter α affects the pattern of the social cost plots. For α = 0.25,
all values of β lead to approximately similar values of the social cost, whereas for α = 0.5,
β is more determinative. This is intuitive since when the penetration rate of autonomous
cars is low, controlling the lance choices and bypassing does not have a sufficiently large
impact on the overall system performance. It is interesting to observe that, as the num-
ber of commanded steadfast autonomous cars increases from zero, the overall social cost
of the system decreases, which is what we expect when autonomous cars act steadfastly.
However, when the fraction of commanded steadfast autonomous cars β increases be-
yond a critical value, further increases do not decrease the social cost further. Moreover,
as the penetration rate of autonomous cars increases, this critical value of β increases.
As this example illustrates, our proposed model provides a powerful framework for per-
forming such traffic analysis for planning the actions of autonomous cars. In this section,
we studied the impact of autonomy presence through an example. Our model can be
further used to mathematically find the optimal lane choice of commanded cars for any
given autonomous cars penetration rate.

8.6 Chapter Summary
We provided a game theoretic framework for macroscopically modeling the aggregate
lane choice and bypassing behavior of cars at a traffic diverge, where cars were assumed
to be selfish. We modeled the resulting equilibrium as a Wardrop equilibrium and proved
the existence and uniqueness of this equilibrium. We described how our model can be
easily calibrated and demonstrated via an initial simulation study using data provided
by SUMO, a popular traffic simulation software, that our model could yield promising
results in predicting at the macroscopic level, the lane change and bypassing behavior
of cars. We also showed how our model can potentially be used to determine traffic
management policies that reduce the social cost in traffic networks with mixed vehicle
autonomy.
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Chapter 9

Concluding Remarks

We envision an evolution in how future smart cities will serve the society. To mention
a few of such evolutions, it is anticipated that 1) Mobility will no longer be only about
owning a car, and more people will be moved with fewer vehicles. 2) There will be a
strong reduction in the demand for street parking. 3) Streets will be managed in real time.
4) Streets will be safe for both vehicles and pedestrians. 5) Vehicles will be electrified,
and controlled such that emissions and energy consumption are minimized. To reach
this state, we need to deploy new technologies proactively, and enable the cooperation
between different infrastructures such as transportation and power systems, as well as the
collaboration among public and private sectors such as cities and ride hailing companies.

Among many emerging technologies that can affect transportation systems, it is ex-
pected that autonomous cars will transform the transportation system in the cities of fu-
ture. This thesis has been a key step towards understanding the potential system–level
impact of autonomy on mobility. In this chapter, we would like to conclude this disserta-
tion by discussing some of the limitations of our framework and future directions.

Our work on the mobility implications of selfish autonomy in Chapter 6 reveals that if
autonomous cars are not cognizant of their system–level impact, and like human–driven
cars act selfishly, their presence may even exacerbate traffic congestion. In particular,
Chapter 6 demonstrates that such exacerbation may occur due to the fact that humans
will change their behavior in the presence of autonomy; human–driven cars may change their
routes as soon as autonomy is adopted. This implies that anticipated benefits of auton-
omy adoption are in accordance with the assumption that humans will act as they do.
However, once this assumption is violated, the consequences of autonomy adoption may
not be intuitive. We believe that the results presented in Chapter 6 indicate that the ex-
pected mobility benefits resulting from the wide spread utilization of autonomous vehi-
cles in traffic networks may not be immediate. Thus, in order to take advantage of the
potential mobility benefits of autonomy, it will be necessary to make infrastructure en-
hancements that will homogenize the degree of capacity asymmetry in the network, and
study traffic management and control strategies for mixed–autonomy networks. Further
control and management must be developed for these networks such that the system is
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steered to the equilibria that have lower total delay. Therefore, revisiting routing and
pricing strategies for networks with mixed vehicle autonomy is essential.

Aligned with these results, we showed in Chapter 8 that if we have a good model of
how humans behave, taking into account how humans would respond to the actions of
autonomy, autonomous systems can act altruistically; they can plan for their actions in
the favor of society rather than their own objective function. We showed in Chapter 8 the
benefits of such altruistic actions for the simple example of a traffic diverge. However,
it is crucial to study how such altruistic actions can be extended to different scenarios
at different scales. How efficiently can the system operate if autonomous cars exhibit
altruistic route, lane, speed and acceleration choices? To achieve societal–scale benefits
from the presence of autonomy, we believe that autonomous cars must be socially–aware;
they need to be aware of the externalities their presence will incur and compensate for it
by their altruistic actions.

Even if all autonomous systems act altruistically, still, humans are an inseparable part
of cities. Indeed, there may still be a human taking an autonomous ride to reach her desti-
nation. However, humans are not actuators to follow the commands that a central author-
ity encodes, they need incentive/disincentives for changing their behavior. For instance,
a traveler served by an autonomous car may not desire the altruistic route choice of her
autonomous car unless appropriate incentives are provided. We believe that a key com-
ponent required for the efficient operation of transportation system is to provide the right
incentives/disincentives for humans. In Chapter 7, we studied pricing as a disincentive
mechanism for mixed–autonomy systems in the simple form of pricing network links.
Nevertheless, it may not be practical to price all links in a traffic network. We believe that
autonomous cars will allow for more subtle forms of incentive mechanisms which can be
leveraged for better efficiency of transportation systems. For example, autonomous cars
allow for path–based pricing rather than link prices. It is essential to study the impact of
such subtle forms of incentive mechanisms to achieve further objectives such as collecting
the minimum possible monetary value or obtaining a fair incentive mechanism.
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