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1

 
Abstract—A subsection of the radiating spiral arm, placed in 

parallel, induces a bandstop response at a notch frequency 
proportional to the resonant length of the strip. Detailed 
parametric study on the effect of variation of design parameters 
for an Archimedean spiral antenna and the resonant parallel strip 
(RPS) is presented. Empirical analysis on phase velocity on the 
radiating spiral arms allows characterization of RPS in terms of 
its resonant length. Identified systematic relation between design 
parameters and filter response is applied to design an antenna for 
the 3.1 – 10.5 GHz operating band with the notch response over 
the IEEE 802.11a band, 5.15 to 5.95 GHz. Successful 
implementation is demonstrated through performance 
comparison between simulated and experimental results. 
 

Index Terms—Bandstop filters, notch filters, spiral antennas, 
ultra wideband 

I. INTRODUCTION 

Federal communication committee (FCC) designated 
ultra-wideband (UWB) spectrum with a strict spectral mask 
requirement on the transmitter output to ensure proper 
interoperability with other narrowband wireless standards 
occupying the spectrum [1]. The wideband attribute of 
receivers on UWB systems lead to potential susceptibility to 
interference from RF sources in proximity that share the portion 
of the UWB spectrum. Component filters can be integrated into 
the front-end circuit to mitigate the interference at the expense 
of added cost and increased size. However, the availability of 
component filters in the commercial market has selective 
limitation in its frequency range. Microstrip filters can be 
designed but its size becomes unwieldy for the frequencies in 
the UWB spectrum. Another method of mitigation is to 
integrate a desired filter response in the antenna performance. 
Planar microstrip monopole is a widely used type of UWB 
antenna [2]. Secondary resonant structures (SRS) can be 
designed in into planar monopoles such that the current path 
around SRS corresponds to quarter wavelength of the notch 
frequency, inducing a stopband response [3]. Literature is 
replete with examples of successful implementation of such 
technique [4].  

Theoretically frequency independent nature allows practical 
implementation of spiral antennas for wideband applications in 
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a compact size [5]. Slits in the spiral arms have been observed 
to induce a stopband response [6]. Another method to induce 
spectrally localized impedance mismatch over the 802.11a 
band, and simultaneously in the 3.4 GHz band, has been 
successfully demonstrated for spiral antennas designed to 
operate in the UWB spectrum [7], [8]. A parallel spiral strip, 
placed on the opposite side of the substrate as the radiating 
spiral arms, couples energy at a certain frequency band, 
allowing it to be characterized by its resonant length. Similar 
structure is known to increase the operating bandwidth of the 
antenna [9]. The advantages of using RPS over slits are that it 
can be easily tuned in post fabrication and that the RPS layer 
can be printed separately and be conjoined impermanently. In 
this paper, a detailed parametric study is conducted on RPS and 
its effect on antenna performance. Empirical analysis, and 
design method are developed and presented in this paper along 
with a successful demonstration through experimental results.  

II. ANTENNA DESIGN PARAMETER DESCRIPTION 

A. Two-Arm Archimedean Spiral 

Archimedean spiral can be interpreted as an object moving in 
time in a polar coordinate where the angular velocity is constant 
over time. This translates to the radius and the angle having a 
linear relationship unlike the equiangular spirals. 
Consequently, the radius and the angle maintain a constant 
spacing as well as a constant arm width as the number of turns 
grows. The following set of mathematical equations embodies 
the geometrical description: 
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The constant, ρ0, is the inner radius of the spiral antenna. 

This parameter controls the separation between the two 
opposing spiral arms at the center. The physical width of each 
spiral arm is controlled by the constant, δ, which is the initial 
angular shift. Constant impedance over frequency comes from 
the self-complementary nature of the antenna [10]. For spirals, 
the width and the spacing must be equal to be identified as a 
self-complementary structure [11]. α is the expansion rate of 
the spiral. The independent variable of the equation is the angle, 
θ. The range of this parameter controls the number of turns of 
the spiral. Typically, initial design requirements dictate how 
these parameters are set. Number of turns with the overall 
dimension of the antenna can be controlled to meet the 
frequency range requirement. Therefore, rather than treating 
the expansion rate as a separate variable, it is advantageous to 
describe it in terms of the other variables, as shown below: 
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where, ρf  designates outer radius of the spiral antenna. The total 
number of turns is given by, n. The first arm is modeled by 
using ρ1 and ρ2. And the second arm is given by ρ3 and ρ4 as 
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