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7 Asymptotic Phase, Shadowing and
Reaction-Diffusion Systems

Morris W. Hirsch University of California at Berkeley, Berkeley, California

0 Introduction

It is with pleasure and gratitude that we honor Professor Larry Markus for his contri-
butions to mathematics. In 1956 he published Asymptotically autonomous differential
systems [6] in a series called Contributions to the Study of Nonlinear Oscillations—

a subject which today would be called “Dynamical Systems”. The present article is -

a direct descendant of Markus’ influential paper, through Conway, Hoff and Smoller

[2].
Consider a smooth flow {®,} having an attracting limit cycle 4. It is well known
that if v is a hyperbolic attractor— all Floquet exponents having negative real parts—

‘then every trajectory @,z attracted to « is asymptotic with the trajectory of a unique

point of y. If v is parameterized by the interval [0, 27]then y can be interpreted as
an angle, called the asymptotic phase of x. '

I abstract this notion as follows. Consider a trajectory ®,z attracted to some
positively invariant set A. If y € A is such that lim,_,, ||z — Pyy|| = 0 theh I call y
an asymptotic phase for z. (For clarity I use ||a — || to denote the distance between
points @, b in any metric space.) Notice that uniqueness of y is not required here.

If A is not negatively invariant it may happen that = does not have an asymptotic

phase in A, but that ®,z does, for some s > 0. In this case I say z has an eventual

asymptotic phase in“A.
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It is frequently incorrectly assumed that every orbit approaching an attractor has

an eventual asymptotic phase in the attractor. A common situation is that of a
cascade of two systems, that is, a system of the form:

dr

;ﬁ = F(m,y)
dy
il G(y).

If (x(t),y(t)) is a particular solution such that y(t) — ¢, it is often asserted without
justification that x(t) is asymptotic to a solution of dz/dt = F(z,c). A simple counter-
example in the plane is:

dr  _

FTE
dy_ 3
@ - Y

The goal of this paper is to find conditions ensuring existence of an eventual

asymptotic phase.

1 Main Results

Let a = a(q) denote a nonnegative real-valued function of a variable ¢ whose domain
is understood to be a terminal segment of either the positive reals or the positive
integers. Define ,
Ra = Rym00a(q) = lim sup a(q)%.

q—o0

Then
R(a + b) = max(Ra, Rb),
and for any constant & > 0: '
' - R(xa) = R(a).

Let F' = {F,};>0 be a flow (1more precisely, a partial semiflow) on a metric space X
(ususally, a Banach space). For clarity the distance between points z,y € X is denoted
||z —y||. In applications X is usually a subset of a Banach space. I shall always asswme
the maps F, have the following local Lipschitz property: For any to > 0,20 € X there
exist L > 0 and neighborhoods N € R of t; and U € X of zg such that

|Fix — Fy|| < Lilx - yl|

forallte NyyeU. -
- Denote by A C X a closed subspace having the following properties:




Asymptotic Phase, Shadowing and Reaction—Diffusion Systems ‘ 89

(a) Ais positively invariant under F.

(b) A has the structure of a Riemannian manifold without boundary homeomor-
phically embedded in X. The norm of a tangent vector Y in the Riemannian
metric is denoted by [|Y]].

(c) There is a smooth (=C) tangent vector field G on A whose flow ¢ — {®:}ier
coincides with F;|A for t > 0.

Let K C A denote a nonempty compact set positively invariant under F| so that
K is also ®-invariant. The inset of K under F is the set

In(K)=In(K,F)={ce X : th_fg dist(Fyz, K) =f0}'
For z € In(K) define the rate of approach to K of z to K under F to be the number |
Pz, K,F) = Ri-oodist(Fiz, K).
Evidently 0 < P(z,K,F) < 1. If P(z,K,F) < 11say z is exponentially attracted to
" Fix a Riemannian metric on A. The closed ball in A with radius p > 0 centered
at x € A is denoted by B(p, z).

For a diffeomorphism A between open subsets of A, the ezpansion constant of h
at x € A is the positive number

EC(h#) = [T = i IT.A(Y)].
Here Y denotes tangent vectors to A at z, and ||[T,h|| denotes the operator norm of
the differential of & at x (defined by the Riemannian metric). Thus EC (hy2) > piff

Tzz|| > pl|z|| for all z € Ty, o
Now for any compact subset K C A define

EC(h,K) = néi]g EC(h,z)

It EC(h,K) > v > 0 then it is not hard to see that there exists p, > 0 such that if
€ K and 0 < p < p, then

hB(p,x) D B(up, h(z));

see Hirsch and Pugh [4].
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The ezpansion rate of ® at K is the nonnegative number

E(®,K) = sup EC(®,, K)*.
t>0 »

Since [T, ®;]™! = Ts,.P_;, we have
£(®, K) = sup mip [|To,s 2| *

The expansion rate is is the largest p > 0 having the following property Ho<v<yp
then there exist s > 0, p. > 0 such that

®,B(p,z) D B(v°p, ®,z)

provided z € K and 0 < p < p..

The expansion rate depends on the dynamics and the Riemannian metric. In
some cases it is possible to estimate it from a formula for the vector field, from the
dynamics of its flow, or from estimates using other metrics. Here are several such

estimates.

(i) Assume that A = R" with the standard inner product (-,-) , and denote T, ®, by
D®,(x). The variational equation along orbits of the reversed time flow &_,,
generated by the vector field —G on A, gives the following matrix differential
equation: -

d
%Di)_t(x) = —DG(D_,z)D®_,(z)

Therefore for every nonzero vector Y € R" and every t > 0,y € K we have,
setting y = ¢,z € K:

%IID@-t(y)Yll = IID‘Lt(y)YII"(—DG(Q’-:y)D‘P-z(y)K'D$I>_t(y)Y)

The inner product on the right hand side is bounded above by —8||D®_,(y)Y||?
where 8 = (G, K) denotes the minimum over z € K and unit vectors ¢ € R"
of (DG(x),£). Equivalently, B equals the smallest eigenvalue of the symmetric
matrix 1[DG(z)+DG(z)T] where T denotes the transpose of a matrix. Therefore

d
Z11P2-(2)ll < BIID2-()],
whence
IDS_ ()] < e,

This proves EC(®y,x) > €' for all + > 0,2 € K. We get the convenient
estimate:

E(,K) > PL4F), (1)
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(i) Another estimate is obtained by noticing that

Bl < M = M(G, K) = max || DG(z)||
(using the Schwarz inequality) so that § > —M. This yields the estimate:
E(P,K) > e MIGK), (2)

which will be used in Section 2.

(iii) A different estimate can be obtained in case all forward and backward trajectoies

in K are attracted to hyperbolic periodic orbit (possibly stationary). Suppose
that the real parts of the Floquet exponents of these periodic orbits are all
2 v € R. Then it can be proved that:

£(8,K) > ¢ - 3)

Suppose for example that the flow in A is the gradient flow of a function g:A—
R having a finite set of critical points, and K is a compact attractor containing
all the critical points. Then v is the minimum of the eigenvalues of the Hessian
of g at critical points in K.

(iv) More generally, it can be shown that if L C K is a compact set containing all

alpha and omega limit points in K, then £(®, K ) = &(®, L). The reason is that
any semi-trajectory in K spends all but a finite amount of time in any given
neighborhood of L.

-(v) I K is a smooth submanifold and the flow in K is isometric for some Riemannian

metric, then (¥, K) = 1. This is the case, for example, when K is a periodic
orbit; when K is a smooth submanifold consisting of stationary points; or when
the K is an n-dimensional torus and the flow is translation by a one parameter
subgroup.

(vi) It seems reasonable to conjecture that if ¥ is generated by a vector field H

on A of the form H(z) = ¢(z)G(z) where c is a positive function on A, then
E(P,K)=&(¥,K).

It would be very useful to know that & (¢, ) is preserved, or at least well
controlled, by a smooth or continuous reparameterization of the trajectories, or
by a topological conjugacy between flows. A key test case is a C? flow on a
2-torus without periodic orbits: Is the expansion rate equal to 17
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(vii) Clearly £(®, K) > Ri~wEC(®;, K). The latter number is easier to estimate
and in some ways is more natural. For example it is easy to prove that it is
“independent of the Riemannian metric on A.

The main result says roughly that z is exponentially attracted to K at rate ), while
the ezpansion rate at K of the flow in A is B> A, then x is eventually asymptotic at
rate A to a unique trajectory in A:

Theorem 1.1 Let £(3, K) = u. Suppose ¢ € In(K) approaches K at rate
P(z,K,F) = X < min(1, y).
Then.:
(a) There ezists r > 0,y € A such that
Rivsoo|[Re4rz — Ruy|| = A
(b) Lety be as in (a). Suppose I >0,z € A are such that
Riwool|Peiz — B,2|] < A
Then z and y are on the same orbit of ®.

This is proved in Section 3 below. The same argument yields the analogous result for
. mappings.
The proof of the following corollary is left to the reader:

Corollary 1.2 If P(z,K,F) = )\ < min(1, £(®, K)), then z has an eventual asymp-
totic phase y € K. If £(®,K) > 1 then the ®-trajectory of such a y is unique.

As a simple example illustrating Theorem 1.1, consider a smooth flow in some
manifold 4 having an invariant n-torus K = T = (R/27Z)" in which the flow is
quasiperiodic, the generating vector field G in T™ being covered by a constant vector
field in R". It is clear that &£(®, T") = 1, using the Riemannian metric covered by
the Euclidean metric on R®. Therefore by Theorem 1.1, any orbit attracted to 7" at
a rate of approach less that 1 has an asymptotic phase in 7™. It is not hard to show
that the same conclusion holds if the flow in T" is generated by gG where g is any
smooth real-valued function on 7". The proof is based on the fact that orbits of the
lifted flow in R" stay in parallel lines.

Remark 1.3 Suppase K is a normally hyperbolic submanifold, or a hyperbolic sub-
set, for the flow in A (see [3, 4, 5, 7]). Then any. point z € A attracted to K belongs
to the strong stable manifold of some y € K. Therefore  is exponentially asymptotic
with y.
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Remark 1.4 The main results apply equally to discrete-time systems, i. e. to a
mapping f from an open subset Xo C X to X. Everything makes sense if ¢ is
restricted to the natural numbers, F, is the ¢’th iterate of f, and @ is replaced by the
iterates of the map h = f|A N X,, assumed to be a diffeomorhism from 4g = AN X,
onto a neighborhood of K in A. In fact the main part of the proof of the main
theorem in Section 3 comsists of a proot of the discrete-time case; this is applied to

the mapping f = F; for suitable s > 0.

2 Reaction Diffusion Systems

Theorem 1.1 is applied to reaction diffusion systems of the following kind. Let Qc
R™ be a smooth (i. e. C') compact submanifold with interior . We look for a
_continuous function u(z,t), z € Q, t > 0 with values in R™satisfying for ¢t > 0

Ju m Ou
rril BAU+§Cj(w,U)a—%+f(U), (4)
du '

Here A is the Laplacean in the spatial variable z € §), operating on each component
u; of u; B is a positive definite n X n matrix; each n X n matrix-valued function C; is
continuous in (xz,u); f is a smooth vector field on R"; v is the inward pointing unit
vector field normal to the boundary of (.

It is known that solutions to this system form a solution semiflow S = {S}i»o
in the Sobelev space H'(}, R"): The solution taking initial values u(z,0) = v(z) is
u(z,t) = (Sw)(z).

Let A C H'(},R") denote the linear subspace of constant maps  — R", and

identify A with R" in the natural way. The form of Equation (4) shows A is positively .

invariant under S.

A trajectory of S in A defines a spa,tially homogeneous solution to Equations
(4), (5). Such a solution has the form u(z,t) = y(t) where y is a solution to the
autonomous system dy/dt = f(y). |

The restriction to A of the solution flow S of (4), (5) coincides for ¢ > 0 with the
flow ® obtained by integrating the vector field f. ‘

sSuppose from now on that I' C R" is a compact invariant rectangle! (the product
of n nondegenerate compact intervals.) We identify I" with a compact subset of A,
namely the constant functions with values in T'. Invariance means that if the initial

'More generally, I' can be an invariant region as defined in Conway, Hofl and Smoller [2].




94 ' | Hirsch

map v : § — R" takes values in T' then the same holds for every map Syw. When B
is a diagonal matrix, invariance holds provided that for every y on the boundary of
T, the vector f(y) does not point out of I'.

In [2] a condition is given ensuring that I' attracts every initial v € H' (Q,R")
taking values in T, or in other words, that the set X = H' (Q,T) lies in the inset of
I'. This condition is given in terms of the real parameter

c=bA—M-—cvVm)\ (6)

defined in terms of the following constants: The positive number b is the smallest
eigenvalue of the positive definite matrix B; A (also positive) is the smallest eigenvalue
of —A on ! with homogeneous Neumann boundary conditions (5); c is the maximum
matrix operator norm ||Cj(z,y)||, (1 < j < m,z € Q,y € T'); and as before, M =
‘maxer D)l

It will also be convenient to consider the slightly different parameter:
gy =0—M =bA —2M — cVmA (7)

For each v € X set v, = Siv, and denote by T, € R the average of v, over Q.
Notice that T, is a curve in X, but it need not be a trajectory of the flow S, that is,
Ty(z) need not be a solution to Equations (4, 5).

Let || - ||oo denote the Lo (2, R") norm.

The following result is a corollary of Theorem 3.1 of [2]?

Theorem 2.1 (CoNnwAY, HOFF, SMOLLER [2])
Assume 0 > 0 and let ve X = H'(Q,T). Then:

(a) There is a constant ¢; > 0 such that ||v, — Tl|; < cre~® for all t > 0.

(b) If the matrices Cy,...,C, are zero, or if Cy,...,C, and B-are diagonal, then .

there is a constant c; > 0 such that ||[vy — Uil < cremt for all £ > 0.

" This says that when.o is positive, in the appropriate norm trajectories of the reaction-
diffusion system approach spatially homogeneous functions. In fact in [2] it is proved
that the spatial averages v; satisfy a nonautonomous system dv;/dt = f(7) + ¢(t)
with |Jg(#)[|1 < eze™? for some constant ¢z > 0. Conway, Hoff -and Smoller say that
“because of a result of Markus [6] it follows that the asymptotic behavior of 7; is
determined only by f”.

In the terminology of Section 1 we have:

2The statements of Theorem 2.1 are proved but not stated in this form. The exponent in (b) is

. g . .
~given as —EI" I think incorrectly.
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Corollary 2.2 Under the same hypothesis as Theorem 2.1:

(2) Ricoo(llve —will1) < e |
(b) If the matrices C,...,C, are zero, or if Cy,...,C, and B are diagonal, then

20

.(1130 Rt-—-»oo(”vt _v_t”oo) S e m,

While the Conway-Hoff-Smoller theorem provides much information about such
systems, it leaves open the question of whether trajectories have an asymptotic phase
in A. The following result gives a sufficient condition for this.

Let p = &(2,T), the expansion rate in I' of the flow in A = R” defined by

dy/dt = f(y).

Theorem 2.3 Assume o > 0 and ™ < p. Let v € H'(Q,R") take values in the
invariant rectangle T' C R™. Then the trajectory Sy in In(T) of the solution flow
in H'(Q,R™) of the reaction-diffusion system (4),(5) has an an eventual asymptotic
phase in the space A of constant maps. More precisely, if Sp(z) = u(z,t) then for
every sufficiently large s > 0 there is o unique solution to dy/dt = f(y) such that:

() Rimoo(llu(,t+5) —y(t)|l1) < e~

Moreover, if the matrices Cy,...,C, are zero, or if Cy,...,C, and B are diagonal,
then:

(b) Recsoo(llu(8) = y(#)lloo) < ™.
Corollary 2.4 If g, > 0 then the conclusions of Theorem 2.8 hold.

Proof Corollary 2.2(a) implies v has rate of approach < €77 to I Therefore

Theorem 2.3 follows from Theorem 1.1 (with K =T) and the assumption e™’ < p.
To prove Corollary 2.4, assume o5 > 0. Then ¢ > 0 and e=? < =M (see (7).

Since estimate (2) therefore implies e < & (®,T), the corollary is a consequence of

Theorem 2.3. _ QED

3 Shadowing

The main theorem will be derived from the results of this section. The same notations
and assumptions as in Section 1 are in force, although at first the setting is quite
general,

Let Xo € X be any subset and let g:Xo— X be amap (¢ = some Fy in the
application). Let 0 < A < 1. I call a sequence {yr} in K a A-pseudoorbit for ¢ if

Risoollg(yr-1) — we]l < A.
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Lemma 3.1 Suppose g is a-Holder, 0 < o < 1. Let {y,} be a sequence in X which

i8 A-shadowed by a point u € Xy. Then {yx} is a A\*-pseudoorbit for h. In particular

if g is Lipschitz then {y} is a A-pseudoorbit.
Proof Fix C' > 0 such that ||g(a) — g(b)|| < C||a — b]|*. Observe that

Hg(Umtr-1) = Ymakl] < 1g9(¥mar—1) — g"u]] + [|6°% — Yimasl]
S C”ym-Hc—l - gk—lu”a + “gku - ym+k”-

Therefore (see Section 1)

Ri=ooOllglyr-1) = all < max(Risoo|[gmtn-1 = " ull®, Ricoollg™u — ymssl])
< max(A%,A) = A%
QED

Now set Ag = AN Xo, assume g(Ag) C A and g(K) C K. Set g|Ag = h and assume
from now on that & is a C! diffeomorphism of Ag onto some neighborhood of K in A.

A point u € A (or its orbit) is said to A-shadow the sequence {y;} in case h¥(u)
is defined for all £ € N, and:

Rimsoo| B (1) = Yhsml] < A

for some m > 0.

Theorem 3.2 Assume the ezpansion rate of h in K is EC(h,K) = p > 0. Let {y;}
be a A-pseudoorbit in K such that

0 < A < min(1, p).

Then:

- (&) There exists z € Ag which A-shadows {y}.

(b) If z,w € Aq both A-shadow {yi} then there exist natural numbers I,v such that
Rz = hMw.

Remark 3.3 The proof shows that z in the theorem can be chosen in K if K is a
smooth compact submanifold without boundary, or if K is an attractor for h, or if
the pseudoorbit {yi} is eventually bounded away from the boundary of K in A. In
any case the forward orbit of z is attracted to K and its omega limit set is in I,
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Remark 3.4 The theomm 1s valid under the more genexal hypothesis where p de-
notes sup,.o EC(h*, K)%.

Proof Fix p, > 0 so small that if 0 < p < p« then

B(p,z) D B(up, h(z)) (8)

for all # € K, where B refers to closed balls in A. Then this also holds for all z in
some neighborhood N C Ag of K, since K is compact.
Choose v such that
0 <A <v<min(l,p).

Pick 6 such that
v < 6 < min(1, p).

I claim that for all sufficiently large positive integers k we have:

hB(8°, yi-1) D B(6*, yx). | (9)

To see this observe that 67 < p and B(6*~1, y,._ 1) C N for large j. Therefore by (8 )
it suffices to prove for sufficiently large k that

B(u6™", h(yi-1)) D B(6*, ). (10)
And this last will hold by the triangle inequality provided we show
81 2 85 4 | |h(yi-1) — il (11)

Because {y:} is a A-pseudoorbit, for large k we have

A(ye—1) —gell < v*. (12)
Therefore it suffices to show
pét > 6k 4k (13)
or equivalently |
B2 8+ (5) (14)

for sufficiently large k. This is true, say for k > m, because u > § > v,
Therefore estimate (9) holds for k¥ > m. This mmplies that for n > m the set

Qn = ﬂ,‘>0(hlB(5” 'l/n))—iB(&Hn Yitn)

is not empty, and the orbit of any point in Q,, A-shadows {yrx}. This proves statement
(a) of the theorem. :
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From the assumption EC(h, K) > X it follows easily that Q,, is a singleton for
every n > m. This implies (b). QED

Proof of Theorem 1.1 With the notation and assumptions of Theorem 1.1, fix

r > 0 so that
EC(®,,K) = pg > A.

Set h = @, : Ay — A where Ay denotes the domain of ®,— a neighborhood of K in
A. For k € N let yx € K be a point nearest to h¥(z). It then follows from Lemma
3.1(a) with u = z and ¢ = F,, and the standing assumption that each F, is Lipschitz,
that {yx} is a A-pseudoorbit for . By Theorem 3.2 {yx} is A-shadowed by the orbit
of some z € Ay. It follows that for some m > 0 we have:

Rk—»oo”q)k-{-mx - q)kz” = A (k € N)
Continuity of the flow now implies:
’R't—voo”q)t-{-mx - (I)tZ” =) (t € R)

This proves part (a) of Theorem 1.1.
Part (b) follows similarly from part (b) of Theorem 3.2. QED

Remark 3.5 The connection between asymptotic phase and shadowing is more ex-
tensive. For simplicity consider a diffeomorphism k. Suppose the orbit of some point
z is attracted to a compact invariant set K , ot necessarily at an-exponential rate.
By choosing y; € K to be a point nearest to h¥(z) we obtain a sequence {yr} in
K with the property that ||h(yx_;) — yel| — 0. If h|K has the property of unique
shadowing, described below, then it is easy to see that {yx} 1s asymptotic to the orbit
of a unique point z € K. Such a z would therefore be an asymptotic phase for .

To say the map h|K has unique shadowing means the following. For &§ > 0, {y,)
is an §-pseudoorbit in case ||h(yr_1) — || < 6. “Unique shadowing” means that for
every € > 0 there exists § > 0 such that for every d-pseudoorbit {y;} there is a unique
z € K such that [|yx — h*(2)|| < €, or in other words {yx} is e-shadowed by =.

R. Bowen [1] showed that if K is a hyperbolic invariant set, then h|K has unique
shadowing. Suppose for example that V is a compact smooth invariant submanifold
of A and that 2|V is an Axiom A diffeomorphism in the sense of Smiale 7. tzec A4
is attracted to V then it is easy to see that in fact z is attracted to what Smale calls
a hasic set K for h|V, which is by definition a hyperbolic invariant set. Therefore
Bowen’s theorem implies that z has an asymptotic phase in K, hence also in V.




————
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