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ABSTRACT: Organic chemistry is replete with complex relationships:

for example, how a reactant’s structure relates to the resulting product L
formed; how reaction conditions relate to yield; how a catalyst’s reage*,;t; " additives
structure relates to enantioselectivity. Questions like these are at the - ;
foundation of understanding reactivity and developing novel and : )
improved reactions. An approach to probing these questions that is both * parameter ®
longstanding and contemporary is data-driven modeling. Here, we :

provide a synopsis of the history of data-driven modeling in organic
chemistry and the terms used to describe these endeavors. We include a
timeline of the steps that led to its current state. The case studies
included highlight how, as a community, we have advanced physical organic chemistry tools with the aid of computers and data to
augment the intuition of expert chemists and to facilitate the prediction of structure—activity and structure—property relationships.

N

log(K or k)

methods for data-driven modeling
LFER + Chemometrics + Chemoinformatics + ML

H INTRODUCTION (Figure 1). We include key historical steps that led us to the
current state of machine learning in chemical synthesis (Figure
2). This Outlook does not aim to be a comprehensive review of
modern work but rather will highlight advances in the field with
select case studies. For a more comprehensive review of modern
approaches, we refer readers to other recent reviews of machine

In recent years, machine learning and artificial intelligence have
emerged as powerful tools in organic chemistry.'™® As a
consequence, we thought it prudent to provide the community
with a timeline of events that have both inspired and contributed
to the clear uptick in the applications of various data-driven

. . .. 28
strategies to the chemical sciences. These strategies are rooted in learning in organic chemistry.
linear free energy relationships (LFERs), of which the Hammett . . .
relationship is the paradigmatic example.” Classically, these While machine Iearnlng and
analyses related a single parameter, a mathematical way to artificial intelligence have
describe a subunit or the entirety of a molecule, to chemical emerged as active areas in
reactivity.'’ Although LFERs initially were used to gain . .

hanistic ngicht. | , . organic chemistry, these fields
mechanistic insight, if a model captures underlying chemical . !
reactivity, it can in principle predict the reactivity of unknown stem from a rich hlStOfy of data-
reactions. Nevertheless, the simplicity of LFERs can limit their driven approaches.

predictive ability, particularly in complex chemical systems.
Thus, as time evolved, multiparameter approaches to
correlate chemical reactivity to structure were introduced. In B LINEAR FREE ENERGY RELATIONSHIPS

flddltlo.n, the advent of computers facilitated the. use of Linear free energy relationships (LFERs) represent a well-
increasingly larger data sets and more advanced algorithms to

describe and predict the reactivity of more complex systems.' "> established and powerful method to relate reactivity with

. ) chemical structure, historically represented by quantitative
In parallel with technological advances, many new terms, such as : . .

. . ) : experimental parameters or descriptors (Flgure 3A). Parameters
chemometrics and chemoinformatics, were introduced to

describe the influence of a subunit (substituent) of a molecule
describe these endeavors. Further, the realization that ( ) ’

structure—activity modeling is not restricted to classic
substituent effects, nor to seeking linear relationships of data
to experimental observables, led to another terminology
evolution, e.g., that of machine learning,

Here, we provide a synopsis of the history of data-driven
approaches in organic chemistry alongside a tour through the
evolution of terminology used to describe these endeavors
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Linear Free Energy

Relationships Select Definition: Linear relationships between a para-

meter, used to describe a structure, and logarithms of
thermodynamic or kinetic data.

Applications: Classically descriptive; modern applications to
descriptive and predictive modeling

Descriptors: Experimental & computational

log(Kor k)

Modeling: Linear

parameter

Chemoinformatics Select Definition: “The mixing of those information

resources to transform data into information and
information into knowledge for the intended purpose
of making better decisions faster in the area of drug lead
identification and organization.”'*

Applications: Primarily predictive, associated with bio-
logical reactivity

Descriptors: Based on chemical structure

Modeling: Linear & non-linear

Data Science
in Organic
Chemistry

Select Definition: “A chemical discipline that applies math- Chemometrics

ematics, statistics, and formal logic (a) to design and select
optimal experimental procedures; (b) to provide maximum
relevant chemical information by analyzing chemical data; and
(c) to obtain knowledge about chemical systems.”!3

Applications: Primarily descriptive, predictive secondary

Descriptors: Spectral data (does not require knowledge
about chemical structure)

Modeling: Linear & non-linear, pattern recognition

e Machine Learnin
Select Definintion: A form of artificial intelligence 9

which refers to “computer programs that auto-
matically improve with experience”.'®

Applications: Primarily predictive, mechanistic secondary

Descriptors: Anything that can be used to describe a
compound

Modeling: Linear & non-linear

Figure 1. Fields that have contributed to the development of data science in organic chemistry."?

~1s

1971
General
Origin of B LFER o
Chemometrics A Chemometrics —— Set date
1924 . 1952 VY mvar 0 e Time frame
[l Bronsted catalysis Taft equation 1976 . .
First quantitative attempt Dual substituent-parameter SIMCA ’ Chemoinformatics
to relate equilibria to LFER with electronic and Wold’s earliest
reaction rate steric effects contribution to what we
now call chemometrics
1937 1962 1998 2010s

Hammett equation
Opened the research field

Hansch and Fujita equation
The refinement of Hammett’s

Origin of
Chemoinformatics

of molecular structure- theory and early stage of Popularization of
property relationships QSAR | multivariate LFER
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Introduction of
first computers

Multivariate statistics
started working on
pattern recognition

chemical pattern recognition;
the beginning of Al and ML
used in chemical problems

“Learning machine” applied to

The simultaneous
development of new
analytical instruments
and personal computers

Application of
modern ML tools in
organic chemistry

“Machine learning”
first appears in
chemistry literature

Figure 2. Timeline of major developments of data-driven modeling in organic chemistry.

A Linear Free Energy Relationships

=
X X Y2 X E
— L_V — L_V - =
of X Yiox g
parameter
chemical diversify parameterization compare equilibrium
structure structures or rate constants
B Hammett Parameters
© ®
OH + Hy,0 (0] * HO

Figure 3. (A) Schematic workflow for linear free energy relationships.
(B) Ionization constant of benzoic acid used to derive Hammett
parameters.

an entire chemical structure, or even the solvent. The
relationships are linear in energy, meaning that the changes in
Gibbs free energy resulting from structural modifications are
additive. Thus, these relationships involve logarithms of

1623

thermodynamic and kinetic data (e.g, equilibrium and rate
constants, respectively).'”'® This is readily understood by
recalling that AG® = —RT(aneq).

Many of the first parameters in LFERs were derived from
reaction equilibria. In 1924, Bronsted and co-workers derived
the first quantitative relationship between equilibria and
reaction rate.'” The linear relationship, known now as the
Bronsted catalysis law, relates the ionization constant of acids
(K.s) to the rate of general-acid catalyzed reactions via a
sensitivity factor @ (Figure 4, eq 1). Thus, acid/base dissociation
could be a reference process that is related to the outcomes of
entirely different reactions. One may consider this as the first
correlation that allows for the prediction of reaction behavior
based on quantitative parameters (K, and «). The Bronsted
catalysis law marked the beginning of a revolution in physical
organic chemistry. Through the 1930s, many papers noted
quantitative relationships between reference reactions and
entirely new processes. Specifically, benzoic acid acidity was
found to correlate with the rate for various reactions involving
substrates, reagents, or catalysts bearing substituted aromatics as
well as other fragments.'*~*°

https://doi.org/10.1021/acscentsci.1c00535
ACS Cent. Sci. 2021, 7, 1622—1637
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a: sensitivity factor
K_: ionization constant of acids

Bronsted

Catalysis Law  109(Kead = 0t 10g(K) + C

eq1

K: equilibrium constant
k,: rate constant

p- reaction constant

oy substituent parameter

Hammett
Relationship

log(Ky/ Ky) = poy or
log(ky/ kp) = pox

N

eq

k,: rate constant
p* sensitivity factor to polar
effects

log(ks/ Kcpg) = p*o™ + 0Eg o™ polar substituent constant
J: sensitivity factor to in-
ductive effects
Eg: steric substituent constant

Taft

eq3 Equation

ky: rate constant

Py sensitivity factor

oy substituent constant
F: field

X: induction

a: polarizability

R: resonance

Taft-Topsom  log(ky/ ki) = opOF + pxoy

eq4 Equation + 0,0,+ PROR

C: ICso

k: constant

. difference in water partition

coefficients?

p: sensitivity factor

0. Hammett constant, refers to
ortho position of aromatic ring

log(1/ C) = ke +
k'72? + po+ k”

Hansch-Fujita
Equation

(4]

eq

BA: biological activity
aj;: contribution of a structural
Equation for feature
eq6  Free-Wilson BA=Zax;+u x;: presense® or absense of a
Approach fragmanet
w: average contribution of the
parent molecule

Figure 4. Equations for evolution of free energy relationships.
“Difference between the analogue as compared to the unsubstituted
compound. %x; = 1 if the fragment is present; x; = 0 if it is absent.

Thus, in 1937, Hammett introduced an equation that
provided a quantitative description of these relationships.’
The Hammett parameter, o,, for a substituent x is derived from
the ionization constant of the corresponding substituted benzoic
acid (Figure 3B). The relative stability of an x-substituted
benzoate ion is influenced by the electronics of the substituent;
e.g,, an electron-donating substituent destabilizes the benzoate
ion whereas an electron-withdrawing substituent stabilizes the
benzoate ion. The Hammett relationship (Figure 4, eq 2)
correlates induction and resonance contributions from sub-
stituents (the o,-values) to the reactivity of a wide range of
organic structures. The p-value reveals the sensitivity of a
reaction to the induction and resonance changes imparted by the
x-substituents relative to x = H. Nearly every class of organic
reaction has been analyzed using the Hammett equation or its
extended forms (Figure 4).

An illustrative example in the area of asymmetric catalysis
comes from the Jacobsen group in their development of a Mn™
salen-catalyzed enantioselective epoxidation of alkenes (Figure
SA). Jacobsen and co-workers used an LFER to understand the
impact of changing the salen ligand substituent on the
enantioselectivity (related to AAG*) and the mechanism of
the asymmetric epoxidation reaction.”’ A Hammett plot
demonstrated a linear correlation of the donating ability of the
substituent, as measured by 6, (subscript p here refers to a
substituent in the para position), to the enantioselectivity. On
the basis of this observation and other experimental evidence,
the researchers concluded that the variation in enantioselectivity
resulted from changes in the position of the epoxidation

A Mn(lll)-Catalyzed Enantioselective Epoxidation of Alkenes

Ar R!
A R + NaOCl (a cat.
N q.) —_ca .
o
- 2.09 epoxidation of
R R & o 0._Me
J <N 15 e ©/\)<Me
Mn 5 .
X o | ‘o X 5 1.0 .
Cl 5 ..
tBu  t-Bu o p=-1.37 ~
T 0.5 N
cat. ~
X =NO,, H, OMe 8 "o
0.0 T

T T T T T
-0.4 -0.2 0.0 0.2 0.4 0.6 0.8

Opara

B Mechanistic Implications

AG

X =NO,

Reaction Coordinate

Figure 5. (A) Hammett plot for the Mn™ salen-catalyzed
enantioselective epoxidation of alkenes. (B) Mechanistic implications
for the position of the transition state along the reaction coordinate.
Adapted from ref 22. Copyright 1998 American Chemical Society.

Acid or Base Catalyzed Ester Hydrolysis

o (0]
R H + MeOH
OJLO.

M + HO
oot

Base Catalyzed (Steric and Electronic Dependent)

ks
&7, €)
o o o
M + o P .Me
o’ e OH e} O/{\O,Me
5O OH
neutral negatively
charged
Acid Catalyzed (Steric Dependent) :
.H .H
O H o o
H. \..Me M
g T oo oo™
6+0H2 ®OH2
positively positively
charged charged

Figure 6. Mechanisms of ester hydrolysis under acid or base catalysis.

transition state relative to the reaction coordinate (Figure SB).22
An increase in electron density of the ligand resulted in a milder
oxidant that would proceed via a more product-like transition
state with greater nonbonding interactions between the catalyst
and substrate due to proximity, thus increasing enantioselectiv-
ity.

Mechanistic applications of univariate LFERs, such as the
Jacobsen example, have been successful in cases where

https://doi.org/10.1021/acscentsci.1c00535
ACS Cent. Sci. 2021, 7, 1622—1637
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substrates and catalysts can be systematically modified to isolate
the impact of a single molecular property and mitigate the effects
of other parameters.”” Further, breaks in linearity, or outliers of
the model, often provide additional insights into the
mechanism.”* However, the simplicity of the traditional
descriptors used in an LFER can limit the obtainable insight
in more complex scenarios. A univariate LFER assumes a linear
relationship between a single parameter and reactivity or
selectivity; however, chemical reactions are generally more
complex as reaction outcomes are dependent on numerous
factors and often in a nonlinear manner.

The challenge of modeling reactions influenced by multiple
parameters has been investigated throughout the history of
LFERs. In an overly simplistic sense, all chemical reactivity can
be divided into at least steric and electronic effects (of course,
solvent effects are critical, but our focus is on individual
structural changes to reactants). In this vein, in 1952, Taft
reported a two variable approach that derived electronic and
steric parameters from the rates of acid- and base-catalyzed
esterification/hydrolysis (Figure 6).>> Taft assumed that base-
catalyzed hydrolysis would be influenced by both steric and
electronic effects, whereas acid-catalyzed hydrolysis would only
be influenced by steric effects. This assumption is founded upon
the nature of the rate-determining step: formation of the
tetrahedral-carbon intermediate. In the case of base catalysis,
this step involves a change in charge: a neutral substrate is
converted to a negatively charged intermediate implicating a
dominating role for electronic effects. In contrast, under acidic
conditions, a positively charged substrate is converted into a
positively charged intermediate. Thus, for acid catalysis, there is
no change in formal charge; therefore, electronic effects are
mitigated and steric effects dominate. According to these
assumptions, Taft derived electronic and steric parameters from
the rates of ester hydrolysis under basic and acidic conditions,
respectively. On the basis of these assumptions, he derived a dual
substituent LFER that separated electronic (6*) and steric (E,)
effects (Figure 4, eq 3).>~7

This multiparameter approach inspired others to explore
increasingly more parameters. One particularly well-known
approach, the Taft-Topsom equation, separated several
substituent effects (e.g., Figure 4, eq 4). Here, parameters for
field, induction, polarizability, and resonance and their
contributions to the observed reactivity (the associated o,-
values) were defined.”® Building on this, in 1962, Hansch and
Fujita and co-workers moved the field of LFERs toward
phenomena more relevant to the pharmaceutical sciences and
biochemistry (Figure 4, eq S), introducing correlations with
partition coefficients (such as log P and 7).”” This advance is
recognized as the origin of quantitative structure—activity
relationships (QSAR) as well as the foundation for the field of
chemoinformatics, a term introduced several decades later (vide
infra).

B COMPUTERS

The earliest examples of LFERs relied on the use of
experimentally derived parameters. As quantum chemical
methods have improved, the use of computationally derived
parameters emerged as an alternative to experimental
parameters to describe molecules.’”*" In an early example of
the application of computationally derived parameters to
LFERs, Eyring and co-workers demonstrated that the computed
energy of the highest occupied molecular orbital (HOMO) of
phenols (Figure 7A) linearly correlated with their oxidation

1625

A Highest Occupied MO B Linear Free Energy Relationship

S %
2 0.8 *°
o e
X .
C Predicted Oxidation Potential
I I I I oH 069 v, =2807(C, 20459
0.4 I I I I 1
0.35 0.40 045 0.50 0.55 0.60

(Cpx)? = 0.4167

Predicted V, = 0.711 V (C. )

nx)

Figure 7. (A) Computed highest occupied molecular orbital. (B) LFER
relating (C,,)? a measure of the energy of the HOMO, to oxidation
potential (V). (C) Predicted oxidation potential based on computed

(Cm)2.32

potential (Figure 7B).*> On the basis of this relationship, the
oxidation potentials for 180 additional phenols, some of which
had never been synthesized, were predicted (Figure 7C).
Although the paper does not provide validation for these values,
it serves as an example of the power of computational parameters
to predict the reactivity of molecules before their synthesis.

Computational parameters offer many benefits over exper-
imental ones, such as the ability to parametrize a structure
preceding synthesis or access to parameters with no observable
experimental equivalent. A level of automation can also be
introduced with the derivation of computational parameters.*’
The relatively good accuracy at low computational cost of
density functional theory (DFT)”’ has facilitated the use of
computational parameters in linear free energy relationships.”’
However, when computing several structures, especially in cases
where multiple conformers need to be surveyed, computational
cost can become a challenge. In addition, computational
parameters are sensitive to the model system used, such as
functional/basis set, solvent model, or parametrization of a
single conformer or several conformers.

The introduction of computers also made an epochal shift in
physical organic chemistry by facilitating the use of large data
sets with more extensive computational approaches.'’ Along
with the Free-Wilson approach developed in 1964 (Figure 4, eq
6), the early QSAR models used multivariate regression to relate
biological activity to the presence or absence of certain
substructures in a molecule.***> Also, in this same decade,
pattern recognition approaches born from the field of applied
mathematics from the 1930s entered the chemistry literature
(Figure 2), giving rise to the origin of chemometrics.”® We note
that even LFERs are a form of pattern recognition when ¢, ¢*,
and 6~ Hammett values are compared to find the best linear fit,
which thereby imparts insight into charge and resonance effects.
Importantly, as delineated here, we see a gradual progression of
single variable linear free energy relationships to multivariate
algorithms, leading ultimately to large-data chemometric
methods.

B DATA SETS

Another consideration in the progression of data science in
organic chemistry is the availability of large, high-quality
experimental data sets.””** These data sets have been compiled
from either high-throughput experimentation (HTE) or the
combination of disparate data sets from the literature. Although

https://doi.org/10.1021/acscentsci.1c00535
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https://pubs.acs.org/doi/10.1021/acscentsci.1c00535?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acscentsci.1c00535?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acscentsci.1c00535?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acscentsci.1c00535?fig=fig7&ref=pdf
http://pubs.acs.org/journal/acscii?ref=pdf
https://doi.org/10.1021/acscentsci.1c00535?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

ACS Central Science

http://pubs.acs.org/journal/acscii

HTE has a rich history in the field of biology, its adoption into
the field of chemistry only occurred recently and has mainly
been adopted in industrial settings.’” Alternatively, the organic
literature contains a large volume of data, but it is often stored in
different unstructured formats. Pioneering work from Lowe
introduced an open-access database that extracted data from
USPTO.* Other efforts, such as the Open Reaction Database,
are seeking to expand access to experimental data through open
access schema and a centralized repository.” While compiling
data from the literature has enabled the use of larger data sets, a
challenge with this approach is the bias of literature reactions
toward positive results, such that only reactions with high yields
or selectivity are reported. However, negative results provide
important insight into a chemical system and are necessary to
build predictive models.

The ability to access structured
data sets that represent the
chemical space of a reaction and
provide more information on
reaction progress and outcomes
beyond yield and selectivity will
continue to aid in the develop-
ment of data science in organic
chemistry.

B CHEMOMETRICS

Chemometrics emerged as a discipline })artially due to the ability
: 4143
to use computers in chemistry. In the 1960s, many

multivariate matrix qualitative quantitative
spectra ayy Arp - Ay N
.
- Apy 8pp ... 8y - oy S’
agy agp ... ag . Yool
. PR . oo oo o 4
H H N hLY X
Ay A - g
chemical data data analysis — chemical information

Figure 8. General workflow for chemometrics.

@ YES Category 1

NO
Category 2

Threshold
discriminator

Pattern Summation

Weights

Figure 9. Schematic representation of the binary pattern classifier, the
result of which is multicategory pattern classification by least-squares.
Reproduced from ref 48. Copyright 1969 American Chemical Society.

branches of chemistry were generating large data sets from
spectroscopy, chromatography, kinetics, and other experimental
methods. However, no statistical methods at the time were
available to cope with data sets containing many variables (often
several hundred). With timing that coincides with the advent of

1626

A SIMCA Workflow

Training Principle Component Class
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B Classification of Norboranes
104
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Figure 10. (A) Workflow for Soft Independent Modeling of Class
Analogy (SIMCA). (B) SIMCA used for classifying exo and endo
norboranes.*’

chemometrics, pattern recognition techniques or classification
methods, now referred to as machine learning, were introduced
to the chemical sciences.*”*® In fact, chemical pattern
recognition is now regarded, in part, as an origin of
chemometrics, and the two terms are often synonymous.

In 1971 (Figure 2), Kowalski and Wold coined the word
“chemometrics” (Figure 8) and shortly after founded the
International Chemometrics Society in 1974. Their definition of
chemometrics is very broad: “the application of mathematical and
statistical tools to chemistry”.' While other definitions of
chemometrics have been published,”*” one that we believe is
particularly contemporary comes from Massart et al."” in 1998:
“A chemical discipline that applies mathematics, statistics and
formal logic (a) to design and select optimal experimental
procedures; (b) to provide maximum relevant chemical information
by analyzing chemical data; and (c) to obtain knowledge about
chemical systems.” These definitions are so broad in order to
encompass machine learning or artificial intelligence in any
chemical endeavor, including synthetic methodology develop-
ment.

From 1969 onward (Figure 2), a series of papers applied
a “computerized learning machine” (a historical term for
machine learning methods) to chemical problems. For example,
Jurs, Kowalski, and Isenhour applied a learning machine to the
interpretation of low-resolution mass spectra of organic
compounds, initiating an area of research that would later
culminate in the fully fledged chemical data analysis software
ARTHUR.*' They used a single threshold logic unit (TLU) for
binary classification (Figure 9). The TLU is an early model of an
artificial neuron that returns +1 or —1 based on the sign of the
sum of all vector elements after a linear transformation of the
input. The model is trained by a gradient descent method now
known as “delta rule” from iterative observations of individual
training set members.”> The iterative training method means
that this model truly “learns from experience”, a notion
commonly associated with machine learning.

In this study, each compound was represented by the scaled
intensity at integer m/z ratios in the fixed range of 12—132 u.
The interpretation task was then transformed into a series of 26
binary classifications to determine the number of carbon,
hydrogen, oxygen, and nitrogen atoms in a molecule. This
method was further refined to recognize substructures or
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Figure 11. Representative data analysis methods used in chemometrics and their contributions to other disciplines. Exploratory analysis summarizes
the main characteristics in multidimensional data. For examples, HCA clusters data by distance; PCA projects data to the first few principal
components to seek the largest variance. Pattern recognition analysis and discriminant analysis can both classify data into different groups. Pattern
recognition analysis creates general patterns and classifies new objects into groups. For examples, KNN uses a plurality vote of its k-nearest neighbors
(e.g, inside solid/dashed line circle); SIMCA calculates the residual distance from the disjoint PCA models for each group. Discriminant analysis
requires the label of independent variables (X) for classification. LDA projects X data to seek the greatest separation between the different groups; PLS-
DA is a PLS variant based on categorical dependent variables (Y). As quantitative methods, regression analysis builds the model to give continuous
prediction. MLR regresses Y on the X directly. PCR regresses Y on a subset of the principle components of X. PLS projects both X and Y to a new space,
in which X explains the maximum variance in Y. Black and gray axes describe original and new data spaces, respectively. y, stands for the n™ dependent

variable.

combine information from mass and infrared spectra in the
interpretation tasks.”>>* Aspects of the modeling procedure,
such as training set design and feature selection, remain relevant
to data driven predictive analysis today (see below)."’

Another example of a learning algorithm that was used for
pattern recognition is Cora (“cortex”), which consists of feature
selection and a voting scheme.’® Toffe and co-workers utilized
this tool for modeling catalytic reactivity in two case studies:*®
(1) the activity of oxides as heterogeneous catalysts for CO
oxidation, in which the components were represented by several
physicochemical properties, and (2) the use of V,Oj as a catalyst
for oxidation of various hydrocarbons, in which the starting
materials and products were described by quantum chemical
calculations.

Shortly later, Kowalski and Bender applied unsupervised
learning to visualize high-dimensional chemical feature spaces in
two-dimensional plots using linear projections as well as
nonlinear manifold learning techniques.”””® They first demon-
strated the utility of such two-dimensional representations for
subsequent clustering using a divisive hierarchical clustering
method and classification by the k-nearest neighbor method. As
an example, they demonstrated the clustering and classification
of the acid/base character of element oxides on the basis of six
physicochemical properties of the elements themselves, thus
predicting the reactivity with the parameters indicative of
chemical structure. This is a clear direct tie to the use of
multiparameter LFERS for predictive purposes.

In 1976, Wold* reported the method of Soft Independent
Modeling of Class Analogy (SIMCA). SIMCA separates data
into classifications by first performing a principal component
analysis (PCA) on a data set to determine key features and then
separates the data into classes on the basis of these features
(Figure 10A). SIMCA is considered to be the origin of modern
chemometrics as opposed to simple curve fitting, such as used in
LEERs.***”% As the first example, Wold and co-workers
performed SIMCA analysis of *C NMR data of norbornanes.
The data were analyzed to determine if the structure of a
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norbornane is exo or endo and whether there existed consistent
patterns for each type of molecule (Figure 10B).*" In fact, most
of the early advances involving SIMCA were for classification.*®
As Figure 11 displays, a number of chemometrics agpproaches
have been developed for a variety of disciplines:*® chemo-
. .6l . 62—64 .

informatics,”” metabolomics, medicinal and pharmaceut-
. . 65,66 S 47 ; 67,68
ical chemistry, forensic science,”’ and food science. In
Figure 11, we depict a breakdown of the common chemometrics
methods and their most common graphical results as well as
their general utility. The application of Bayesian statistics has
also been explored.”

B CHEMOINFORMATICS

With the increasing reliance on informatics in many scientific
fields, in silico chemistry has significantly expanded the areas of

molecular descriptors - -
chemical representation
,..2;_’?—‘ X |
ol NG
experimental theoretical molecular | | chemical
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Figure 12. General workflow for chemoinformatics.

possible chemical investigations, i.e., chemoinformatics (Figure
12).”° Even though the term “chemoinformatics” took shape in
late 1990s, the field originated from several beginnings.71 Brown
first defined the term in 1998: “Chemoinformatics is the mixing of
those information resources to transform data into information and
information into knowledge for the intended purpose of making
better decisions faster in the area of drug lead identification and

https://doi.org/10.1021/acscentsci.1c00535
ACS Cent. Sci. 2021, 7, 1622—1637


https://pubs.acs.org/doi/10.1021/acscentsci.1c00535?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acscentsci.1c00535?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acscentsci.1c00535?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acscentsci.1c00535?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acscentsci.1c00535?fig=fig12&ref=pdf
https://pubs.acs.org/doi/10.1021/acscentsci.1c00535?fig=fig12&ref=pdf
https://pubs.acs.org/doi/10.1021/acscentsci.1c00535?fig=fig12&ref=pdf
https://pubs.acs.org/doi/10.1021/acscentsci.1c00535?fig=fig12&ref=pdf
http://pubs.acs.org/journal/acscii?ref=pdf
https://doi.org/10.1021/acscentsci.1c00535?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

ACS Central Science

http://pubs.acs.org/journal/acscii

organization”."* However, modern definitions no longer imply
that chemoinformatics is necessarily only linked to drug
discovery.”””*~"* For example, Gasteiger and Engel generally
defined this discipline as “the application of [the] informatics
method to solve chemical problems”.”> Chemoinformatics can be
described as a theoretical chemistry discipline complementary to
quantum chemistry and force-field molecular modeling,l’76
which focuses on describing molecular structure in a favorable
format (for example, as matrices) for use in statistical modeling.
Irrespective of this broader definition, chemoinformatics is
primarily associated with QSAR or quantitative structure—
property relationships (QSPRs) focused upon drug-lead
identification.”

Early QSAR models, such as Hansch and Free-Wilson
analysis, were generally based on multivariate regression with
limited features.'"”* Although groundbreaking, these ap-
proaches were only valid for closely related compounds and
when linear modeling was applicable. Modern QSAR has
increased the use of global models, which are trained on a broad
range of compounds, even those lacking structural similarity.
Also, the application of sophisticated computational algorithms,
embodied in machine learning techniques (discussed below),
makes chemoinformatics capable of handling large-scale data
sets.”®”” Chemoinformatics covers a broad range of scientific
strategies from chemical data collection and analysis to the
exploration of structure—activity relationships and prediction of
in vivo compound activities.”®

A general chemoinformatics model often has a “two-part
process” to convert molecules to features and then to properties:
(1) encode a compound as feature vectors; (2) map the feature
vectors to the property of interest by applying chemoinformatics
methods (Figure 12).”° Compared with other branches of
computational chemistry, chemoinformatics involves data
processing that cannot be done without in silico mathematics
and depends on large data sets that cannot be compressed to
standard mathematical models.”’ As with chemometrics,
chemoinformatics depends upon mathematical, statistical, and
machine learning methods to translate chemical data into
chemical information with the assistance of a computer. The two
fields have borrowed heavily from each other and use many of
the same methods.”” The difference is that chemometrics uses
multivariate data from instruments (e.g., spectral data), which
often requires no information about chemical structure, while
chemoinformatics concentrates on generating data from the
description of the chemical structure. Although these two
disciplines have a different focus on solving problems in
chemistry, some literature’”’” regards chemometrics as part of
chemoinformatics.

Chemoinformatics can be considered as a very specific
application of machine learning with an emphasis on modeling
structure—property relationships for molecules. Similar to
chemometrics, knowledge external to chemistry (e.g, graph
theory for developing chemical descriptors) can be integrated
into the workflow before machine learning methods are
applied."

B ARTIFICIAL INTELLIGENCE AND MACHINE
LEARNING

Artificial intelligence is a general term for the study and
construction of “intelligent agents”: devices or programs capable
of cognitive functions such as learning, problem solving, and
decision making upon perceiving stimuli.”® This encompasses,
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but is not limited to, the field of machine learning, which refers
to programs that improve with experience at performing a task.'®

With these notions in mind, the application of artificial
intelligence and machine learning in a general sense to chemical
problems began in the late 1960s. Several seminal papers were
published in 1969, including two highly influential projects
based on heuristics, and thus belong to artificial intelligence in a
broader sense: Dendral and Logic and Heuristics Applied to
Synthetic Analysis (LHASA).

Referred to as the first expert system, the Dendral project led
by Feigenbaum, Buchanan, Lederberg, and Djerassi made
extensive use of heuristics with the aim of scientific hypothesis
generation.””" Tts utility for chemical questions was first
demonstrated by the enumeration of isomers of organic
molecules given a molecular formula®' as well as the
interpretation of mass spectral data of ketones.”” Corey and
Wipke’s LHASA™ was the first implementation of the
formalized rules of retrosynthesis that Corey had published
two years prior.”* This marked the beginning of the ongoing and
active development of computer-assisted synthesis planning
software.®® Other groups pursued this goal early on,*° including
Dugundji and Ugi’s use of a matrix representation of molecules®
or Gelernter et al. applying another heuristics-based approach.*®

Around 1988, the term “machine learning” (ML) started
appearing in the titles of chemistry literature (Figure 2).%~
The introduction of machine learning techniques in the early
1990s marked a pivotal point in the evolution of chemical
analysis methodology.” This led to a blur between what is
considered chemometrics or machine learning, but we believe a
subtle distinction has evolved: a reliance on linear relationships
is now more associated with chemometrics, whereas nonlinear
relationships and large data sets are more commonly considered
ML.”° In actuality, there is no sharp distinction between the
statistical methods of chemometrics and machine learning. In
both cases, computers are used to generate models, which have
the capacity to cope with advanced model selection algorithms
that are increasingly more sophisticated as the machine
learning/chemometric community improves their approaches.

While chemometricians will claim support vector machines
(SVMs), artificial neural networks (ANNs), and forest methods
(such as random forest, RF) for their field, organic chemists
generally consider these “advanced chemometrics” methods as
machine learning (Figure 13). There is literature” ™ that
compares the results from traditional chemometric methods to
what is now commonly termed as machine learning methods
(e.g, SVM, ANN, RF). However, we believe these methods
(“traditional” or “advanced”) should not be simply compared by
their performance. The performance of the model relies on
whether the algorithm is suitable for the data, which means that
methods should be selected according to the properties of the
data and the hypothesis to be analyzed. For example, as Brereton
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and Lloyd articulated in their review, most applications of SVM
are on data sets with small numbers of variables in analytical
chemistry.”® However, there is no inherent reason they cannot
be extended to highly multivariable data sets. Both chemo-
metrics and machine learning evolved from the fields of pattern
recognition and computational learning theory by apg)lying
statistical methods to improve model performance.” For
relatively small or sparse data sets, simple machine learning
algorithms (e.g.,, multiple linear regression, linear discriminant
analysis (LDA), PCA, and PLS) may work well. With larger
amounts of data and with higher complexity, especially in high-
throughput screening (HTS) assays, the sought-after predic-
tions often benefit from more sophisticated algorithms (e.g.,
SVM, RF, ANN, etc.).’

Similarly, the early applications of SVMs have rapidly
developed since the late 1990s in several research areas,
including bioinformatics and biometrics. SVMs map data as
points in higher-dimensional spaces that can be used for
classification by identifying hyperplanes that separate clusters in
the data. In the early 2000s, SVMs were introduced to chemistry
for QSAR and protein structure studies.' "% Also, SVM can
be applied to both classification and predictive problems.”®
ANNs are highly complex methods that pass information
through interconnected layers of mathematical transformations,
thereby generating internal representations of the original
data."” In chemistry, the interest in neural-network computing
has grown rapidly since 1986,'"” and different aspects of ANN
methods have been investigated in QSAR studies since the
1990s.'%® More recently, the complex cognitive capacities of
some ANN architectures have enabled applications beyond the
prediction of numerical targets, as described below. RFs are an
ensemble method to improve prediction accuracy based on a
majority-voting scheme, which is an extension of decision tree
algorithms.'*>%

The use of chemometrics and ML in chemical applications
corresponds mainly to either descriptive or predictive settings,
respectively. In descriptive modeling, the focus is to find a
quantitative relationship between probability distributions that
can then be interpreted and applied to make predictions.
Conversely, in a predictive setting, we find that machine learning
is the more commonly used terminology. For example, being
able to make predictions, such as the outcome of a reaction, is
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the primary purpose of these mathematical applications, and the
interpretation is perhaps secondary. Impressive applications
have become possible using machine learning techniques, some
of which autonomously generate scientific hypotheses (see
below). Not only can this streamline the chemical discovery
process, but also it can lead to experiments and discoveries that
might not have been considered on the basis of human intuition
or reasoning alone. This has been illustrated for several tasks
relevant to organic chemistry including molecular design,
synthesis planning, and reaction optimization and discovery.
Thus, we now briefly highlight some representative examples,
but a full discussion of the more recent achievements is out of
the scope of this Outlook.'””

Bl REACTION OPTIMIZATION AND CATALYST
DESIGN

Machine learning has been applied to several aspects of reaction
optimization, including: (a) the qualitative prediction of what
reaction occurs between a set of starting materials and reagents,
(b) the quantitative prediction of reaction outcomes given
examples of a known reaction with variations of reaction
conditions, reagents, or catalysts, and (c) autonomous reaction
exploration, which requires one to select reaction conditions to
try in each successive test iteration.

Qualitative Prediction. Deciding if a reaction occurs
between certain starting materials in the presence of certain
reagents and predicting the product are key intuitive skills that
chemists learn during their training. This skill also serves as the
basis for suggesting novel reactions. Work toward computer
models with such capabilities has been carried out all throughout
the history of Al applications in chemistry.*”"'>'"" Most early
approaches utilized expert-coded reaction templates to map
reactions to starting materials, a daunting task given the sheer
quantity of possible reactions.

An alternative to expert-coded reaction templates is to learn
the chemical reactivity from a large reaction database with
appropriate ML models. One approach to this is the use of
graph-convolutional networks (GCN). In a recent example,
Coley et al. achieved this by representing molecules as annotated
graphs and using a GCN to learn an internal representation of
the atoms and molecules and, finally, predicting the bond
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changes happening in a reaction (Figure 14)."'” Another recent
approach to template-free reaction prediction utilizes techni-
ques originally used in natural language processing. Formally,
the prediction task is treated as a “translation” of the language of
reactants/reagents to the language of the products. In practice,
reaction information is already stored in text form, most
commonly the SMILES (Simplified Molecular-Input In-Line
System) strings.''> Schwaller et al. showed that a transformer
model with a multihead attention mechanism, termed the
molecular transformer, was able to perform this translation task
(Figure 14).""* Both groups employed data sets from the
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USPTO patent database™ to train and test their models. In a
common subset consisting of ca. 400k and 40k reactions for
training and testing, respectively, the GCN model predicted the
highest ranked product correctly in ca. 86% of the test cases and
the molecular transformer correctly in ca. 90%. Both model
outputs ranked lists of possible products, which can further be
used to predict possible side products in a reaction. In the
molecular transformer model, a visualization of the attention
mechanism revealed a fascinating finding. The model learned to
perform atom mapping by correctly connecting the atoms in the
products to the corresponding atoms in the reagents without
having been trained on mechanistic information.'”> In fact,
many other models for reactivity prediction require the atom
mapping as input information along with the reagents and
products of a reaction, which is a major drawback because atom
mapping is a very tedious and error-prone procedure for large
reaction data sets. In some reactions, even the determination of
the correct atom mapping can involve difficult mechanistic
studies.

Quantitative Prediction. The quantitative prediction of
reaction outcomes when changing individual reactants or
reaction conditions is a well-established use of statistics in
chemistry with the previously discussed linear free energy
relationships and the widely used engineering tool of Design of
Experiments''® as prominent examples. These methods work
well when continuous reaction parameters such as temperature
or concentration are changed or when a single molecular
component, such as the catalyst structure, is varied. The change
of several discrete parameters throughout a reaction optimiza-
tion can necessitate high-dimensional molecular representations
and complex machine learning models to predict the reaction
outcomes and potentially discover better-performing catalysts.
For example, Dreher and the Doyle group investigated the
impact of various reaction conditions on the yield of a
Buchwald—Hartwig C—N coupling reaction (Figure 15A).""
They considered changes to the catalyst, base, and one of the
substrates as well as the effect of a potentially reactive additive to
mimic functional group tolerance. Each molecule was
represented by quantum-chemically obtained properties such
as vibrational frequencies or atomic partial charges. A random
forest model was trained to predict the yields of 4608 reactions
in total. The effects of the training set size and composition were
investigated and the interpretation of important features in the
final model led to a mechanistic hypothesis concerning the
challenging electrophilic side reactivity of the functional
additive.

In another example, the Denmark group investigated the
enantioselectivity of chiral phosphoric acid-catalyzed thiol
additions to N-acylimines as a function of the catalyst and
both the substrates (Figure 15B)."'® The catalysts were
represented by their average steric occupancy on a three-
dimensional grid in order to reflect conformational flexibility in
the molecular representation. Using a total of 2150 reactions,
they found that support vector regression and deep feed-forward
neural networks were best suited to predict the enantioselec-
tivity of each reaction. Although the training set for the deep
feed-forward neural network only comprised ligands that gave
less than 80% ee, the model was able to predict the
enantioselectivity of ligands that gave higher than 80% ee.

Many other approaches have been taken to represent
molecules to predictive algorithms without the need for DFT
computed descriptors.''” This includes representations rooted
in chemoinformatics such as molecular fingerprints'*® or text-
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A Synthesis Planning with Monte Carlo Tree Search
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Figure 17. Retrosynthesis algorithm. (A) Schematic overview of the Monte Carlo tree search. (B) Schematic overview of the expansion procedure.
Figure adapted with permission from ref 125. Copyright 2018 Springer Nature.
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Figure 18. (A) Pd-catalyzed Suzuki reaction. (B) Multivariate regression model for the full data set. (C) Contributing parameters and mechanistic
implications. Adapted from ref 134 with permission from AAAS, Copyright 2018.

based fingerprints' ' as well as representations that are intended
to provide a physical description of the molecules such as the
coulomb matrix and its evolution SLATM,'** but a full
discussion of this field is beyond the scope of this Outlook.
Autonomous Reaction Exploration. Reaction automa-
tion has also been used to search for entirely new reactions.
Cronin’s group used an automated synthesis platform to carry
out experiments in a limited chemical space defined by a certain
number of molecules as potential starting materials (Figure
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16)."** A support vector machine classifier was trained to detect
if a reaction has occurred in each experiment, using the result to
populate a reaction database. Using this database, the chemical
space was modeled by linear discriminant analysis (LDA) in
order to suggest successive experiments with a higher probability
of a reactive combination of starting materials. Using this
workflow, four new reactions were identified and reproduced in
separate batch experiments.
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An aspect that sets the field of
machine learning apart from the
pure statistical modeling dis-
cussed in other parts of this
Outlook is the ability to generate
specific scientific hypotheses, en-
able autonomous reaction per-
formance, or enact reaction/syn-
thesis planning.

As discussed at the beginning of this section, computer-
assisted synthesis planning was one of the earliest applications of
artificial intelligence to chemical problems. However, a complete
retrosynthesis is complicated by the number of synthetic steps
that need to be considered, as at each intermediate, multiple
alternative disconnections might be considered before arriving
at the simple starting materials.'** This necessitates a ranking of
individual branches before fully traversing the complete search
tree. In many cases, CASP (Computer Assisted Synthesis
Planning) algorithms rely on heuristics to tackle this. The Waller
group has combined three ANNs with a Monte Carlo tree search
to obtain a retrosynthesis algorithm that does not rely on hand-
coded reaction rules, utilizing 12 million reactions from the
Reaxys database for training (Figure 17A).'** The individual
neural networks are used to suggest precursors at each step,
check if that step is in-scope of a known transformation, and rank
that step within the search tree (Figure 17B). Much progress has
also been achieved with CASP models based on heuristics by
other groups that has led to several commercially available
products,*° including Chematica that was developed by the
Grzybowski group using carefully expert-coded reaction
templates.'”

A common question about machine learning models concerns
their potential for creativity. In domains outside of chemistry,
models have been developed that are capable of generating
images, text, or music by sampling from a learned latent space of
their domain of applicability. **'*” The utility of such generative
models has also been explored in the context of chemical
discovery, most commonly in the context of medicinal chemistry
where molecules with specific physiological and physicochem-
ical properties need to be designed."””’*' One approach is to
represent molecules as text that encodes the full structure, for
example, by SMILES strings''® and adapt text-generating
models to generate SMILES strings corresponding to new
molecules, for example, using techni(}ues developed in the
context of natural language processing.>> This can be used to
generate potential drug candidates by applying desired proper-
ties such as biological activity or solubility as constraints on the
generated SMILES strings133 and, historically, is called chemo-
informatics (see above).

This can lead to the discovery of experiments, catalysts, or
reactions that might not have been considered on the basis of
human intuition alone. In most cases, such hypotheses do not
consist of a single suggested molecule or reaction but rather a
large number of suggestions. Using such tools, the task of a
chemist can shift from generating hypotheses to ranking and
choosing them, thus possibly selecting from a wider pool of
ideas.
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B MODERN EXAMPLES OF LFERs

As presented in this Outlook, ways to describe and predict
chemical reactivity have greatly expanded in the field of
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Figure 19. (A) Volcano plot showing AE(pds) vs AE(rxn). AE(pds) is
the energy difference of the potential-determining step; region I is
reductive elimination, region IT is transmetalation, region III is oxidative
addition. AE(rxn) is the energy difference of oxidative addition. (B)
Catalyst library. Adapted from ref 137. Copyright 2021 American
Chemical Society.

chemistry. Since the initial introduction of linear free energy
relationships, models capable of describing much more complex
problems have emerged. However, these new methods do not
take away from the power of the descriptive and predictive
ability of classic models like linear regression. In a recent report
from the Biscoe and Sigman groups, multivariate LFERs were
highlighted as a way to analyze a reaction mechanism and
predict reactivity (Figure 18)."** The authors found that the
enantiospecificity (es) of a Pd-catalyzed alkyl-Suzuki reaction
could be described by the computed orbital energy of the
phosphorus ligand lone pair (E;p(p)) and the computed energy
of the P—C o* orbitals (Eﬂ*(P_C)), a measure of the -
backbonding ability of the ligand. This correlation suggests that
the stereoinvertive transmetalation proceeds through a coor-
dinatively unsaturated intermediate that would be stabilized by a
strong sigma donation from the ligand. In contrast, the
stereoretentive transmetalation is stabilized by n-backbonding,
indicating that this transformation involves the precoordination
of a donor on the substrate, likely OH™. The addition of two
steric parameters, the Sterimol parameters B,*""” and the length
of the ligand (L), to account for competitive f-hydride
elimination further improved the fit of the model. The model,
which was based on a series of ligands in a training set, gave an
excellent fit (R* = 0.94). It could also predict the es for a
validation set of ligands not included in the original model
(R*(gy) = 0.87).

Developments in machine learning methods have also aided
in the implementation of classic models. For example, volcano
plots have been used in heterogeneous and homogeneous
catalysis to estimate catalyst performance on the basis of
Sabatier’s principle, which states that an active catalyst should
bind substrate neither too tightly nor too loosely (the plateau of
the volcano plot).l35’136 In the context of transition metal-
catalyzed cross-coupling, the Corminboeuf group demonstrated
that a descriptor value such as the relative energies (AE) of
oxidative addition can determine if a catalyst falls into this active
range (Figure 19A)."*” While this descriptor value can be
computed by DFT, the computational cost to do so for
thousands of catalysts is intractable. Instead, machine learning
can be utilized to estimate AE values of oxidative addition, thus
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circumventing costly DFT computations.'*® The catalyst library
(Figure 19B) studied in this work consisted of combinations of
91 ligands (CO, phosphines, N-heterocyclic carbenes, and
pyridines) and 6 transition metals (Nj, Pd, Pt, Cu, Ag, and Au)
for a total of 25 116 possible species for each intermediate. A
kernel ridge regression (KRR) model, trained on 7054
complexes, predicted the AE values of 18062 additional
complexes. Using a preconstructed volcano plot, 557 complexes
were identified to have AE descriptors that would be within the
active window for catalysis. This work highlights the ability of
machine learning to readily screen thousands of possible
catalyst/ligand combinations without the need for costly DFT
computations.

B CONCLUSION

It is clear from the timeline embodied in Figure 2 that the use of
data-driven modeling in chemistry has had a long and rich
history. Over a period of nearly 100 years, chemists have created
a multitude of approaches for examining experimental data to
make mechanistic conclusions and predictions of reactivity. The
earliest correlations evaluated differences in free energies and
took the form of linear univariate (or sometimes multivariate)
relationships involving parameters, mainly derived from
experimental measurements arising from substituent effects
that are dictated by systematic changes in chemical structures
(e.g, PK,, o, E, etc.). These linear free energy relationships
correlated substituent effects (induction, resonance, sterics, etc.)
to reactivity and are primarily used to explore reaction
mechanisms, but, as we have noted, it is important to realize
that the correlations can also be predictive. If parameters for new
chemical structures are known, the linear relationships will
reveal where the new structures will fall in a spectrum of
reactivities. By the early 21st century, this predictive power
compelled chemists to become increasingly more sophisticated
in the kinds of correlations used, resulting in the use of nonlinear
kernel functions, multilayered neural nets, or random forest trees
(Figure 13) as well as other mathematical and statistical
approaches commonly referred to as “machine learning”. In
these studies, the parameters have become far broader and often
include spectral or computational data, while still retaining
elements of electronic and steric substituent effects.

Along this 100-year journey, new terminology was introduced
into the literature to differentiate the applications and advent of
mathematical techniques as well as experimental analyses and
predictive approaches. To follow this evolution of terms, we
return to the timeline of Figure 2 and the definitions we choose
for this Outlook given in Figure 1. Chemometrics, as originally
defined (see discussion of Figure 8 above), is so broad that it
encompasses the use of any kind of mathematical and/or
statistical approaches involving structural changes, experimental
data, or computational parameters to understand and predict a
chemical phenomenon. This would include computer analysis,
and if being able to predict is dependent upon having learned, it
would include the use of machine learning in chemistry. We have
emphasized that the exact same protocols are the tools used in
both chemometrics and machine learning, i.e,, PCA, SVM, RF,
ANN, etc. The definition of chemoinformatics is similarly broad,
encompassing the use of “informatics” to solve chemical
problems of any kind (see discussion of Figure 12 above),
where informatics is defined as describing a molecular structure
in a computer-readable format, such as a matrix of values. While
chemoinformatics was, and still is, primarily associated with drug
discovery, the terminology used in this field is only subtly
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different than that used in chemometrics and, therefore, also
machine learning. This brings us to the terminology associated
with machine learning, where an additional feature is explicit
irrespective of the field in which it is applied, that of
automatically improving with experience. If performed with a
computer, this implies an artificial intelligence, where there is a
cognitive function such as learning, problem solving, and
decision making upon perceiving stimuli. When used in organic
chemistry for reaction discovery or optimization, the application
of computational and statistical methods involving computer
analysis to perform these cognitive functions is a subtle, but
important, difference from chemometrics and chemoinfor-
matics. The upshot is there is a tangled web of interrelationships
of terminology as the field of data-driven science in organic
chemistry has evolved over the past 100 years.

With all of these traditional tools in play, there is no wonder
that we have seen a significant uptick in machine learning reports
in organic chemistry. This has been aligned with questions of
how to more effectively use available data, especially in industrial
settings, and how to design data acquisition with the intention of
using machine learning techniques from the outset. This focus
on the “data” aspect is aligned with all types of exciting directions
to streamline the goal of the synthetic endeavor by integrating
more modern and sophisticated data/computer science
algorithms, such as molecular/ catalyst design, complex molecule
synthesis, reaction optimization, and mechanistic interrogation.
Each of these areas will also be aided by updates to parallel
reaction screening technologies that integrate data rich outputs
(e.g., temporal and kinetic measures'”), likely resulting in fully
automated reaction discovery and optimization workflows.
Finally, the entire premise of this field, providing understanding
of chemical processes through quantitative featurization, is
foundational in how one can imagine using data science in
everyday mechanistic investigations and reaction methodology
development.

Thus, with such an appreciation and celebration, we can
appropriately place any future approaches and applications in
catalyst design into perspective with a historical lens, as we have
done herein.

The combination of mathematics
in any form with chemical pa-
rameters of any form with the use
of a machine can and will
continue to allow predictions of
catalyst kinetics and thermody-
namics, which in turn dictate
reaction yield as well as enantio-
and diastereoselectivity, i.e., the
experimental outcomes that syn-
thetic chemists care about the
most.
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