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ABSTRACT
The Keweenawan Midcontinent Rift of North America records 

signifi cant continental rifting between ca. 1110 and 1085 Ma, and 
preserves the most detailed paleomagnetic record of plate motion 
of any continent in Precambrian time. U/Pb dates from extrusive 
and intrusive rocks of the western Lake Superior Basin suggest a 
latent stage of reduced magmatic activity from ca. 1106 to 1100 Ma 
that places constraints on the dynamics of rift development and the 
record of plate motion. However, it has remained unclear whether 
this stage is a feature of the entire >2500-km-long rift. The succes-
sion of picritic and basaltic lava fl ows at Mamainse Point in the 
eastern Lake Superior Basin may be the most continuous and best 
exposed record of rift-related volcanism and magnetic reversals, but 
its age and duration relative to the latent stage has been uncertain 
due to a lack of radioisotopic dates. We present a weighted mean 
206Pb/238U date of 1100.36 ± 0.25 Ma on zircon crystals isolated from 
a newly discovered tuff within the upper reversed polarity portion of 
the stratigraphy below the Great Conglomerate.  This date indicates 
that eruptive activity at Mamainse Point continued during the inter-
val of diminished magmatic activity in the western Lake Superior 
Basin. This result strengthens the chronostratigraphic framework 
of rift development while explaining the preservation of additional 
geomagnetic reversals at Mamainse Point and the record of progres-
sively decreasing paleomagnetic inclination that is indicative of rapid 
paleogeographic change.

INTRODUCTION
Over a period of ~25 m.y. in the late Mesoproterozoic, more than 

2.0 × 106 km3 of volcanic rocks formed from eruptions in the middle of 
the Laurentian craton associated with the development of the Keween-
awan Midcontinent Rift (Cannon, 1992). Rifting ceased prior to conti-
nental dismemberment and the resulting failed rift preserves rocks and 
structures that can be used to gain insight into the mechanisms and time 
scale of rifting (e.g., Stein et al., 2011). Paleomagnetic data from these 
rocks serve as the central record for reconstructing paleogeography at 
that time, when the supercontinent Rodinia is hypothesized to have been 
assembling. High-precision temporal constraints on rift rocks and robust 
chronostratigraphic correlation between extrusive successions are vital for 
understanding the pace and geometry of rift development and for inter-
preting the paleomagnetic record.

A popular model for Midcontinent Rift development proposes four 
stages of magmatism: early (1109–1106 Ma), latent (1106–1100 Ma), 
main (1100–1094 Ma), and late (1094–1086 Ma) (Fig. 1; Miller and Ver-
voort, 1996; Davis and Green 1997; Vervoort et al., 2007). U-Pb dates 
from extrusive (Davis and Green 1997) and intrusive (Paces and Miller, 
1993; Vervoort et al., 2007) sequences in the western part of the Lake 
Superior Basin are primarily within the early or main magmatic stages, 
leading to the interpretation that the period between them was a latent 
stage characterized by minimal eruptive activity (Halls, 1974; Miller and 
Vervoort, 1996; Vervoort et al., 2007). The early stage of magmatism is 
characterized by magnetizations of steeply reversed polarity, while the 
main stage of Midcontinent Rift volcanism is characterized by magneti-

zations of relatively shallow normal polarity (Fig. 1). In the Powder Mill 
Group and the North Shore Volcanic Group, U-Pb dates on extrusive fel-
sic units (Davis and Green, 1997; Zartman et al., 1997) suggest signifi -
cant hiatuses in volcanism during the time period of the latent stage, dur-
ing which there was a change from reversed to normal magnetic polarity 
(Fig. 1). In contrast, the Mamainse Point succession of eastern Lake Su-
perior has been interpreted to represent a more continuous record span-
ning nearly the entire duration of rift volcanism (Shirey et al., 1994). 
The Mamainse Point volcanics are exposed close to where the covered 
southeast arm of the rift intersects the lake (Figs. 1 and 2), and range in 
composition from picrite to basaltic andesite (Shirey et al., 1994). The 
interpretation of relatively continuous magmatism at Mamainse Point 
has stemmed from the presence of multiple geomagnetic reversals that 
have not been recognized in other extrusive successions (Fig. 1). Major 
element, trace element, and isotopic data demonstrate that the Mamainse 
Point polarity zones are distinct; these data and the lack of geological ev-
idence for fault repetition support the interpretation that the succession 
records three geomagnetic reversals (Klewin and Berg, 1990; Shirey et 
al., 1994). While the presence of additional reversals may suggest that 
eruptive activity continued at Mamainse Point during the latent stage 
magmatic hiatus elsewhere, Midcontinent Rift correlation schemes hy-
pothesize that deposition of an ~300-m-thick conglomerate at Mamainse 
Point (the Great Conglomerate; Figs. 1 and 2) corresponds to the entire-
ty of the latent magmatic stage (Miller and Vervoort, 1996; Nicholson et 
al., 1997; Miller, 2007). This correlation model implies that the eastern 
Lake Superior Basin underwent the same period of extended magmatic 
quiescence inferred in the west.

Determining the temporal and spatial extent of magmatism within 
the rift basin and how the succession at Mamainse Point correlates to other 
records of rift volcanism is essential for the following reasons.

1. In order to evaluate whether initiation, progression, and ultimate fail-
ure of the rift were isochronous, we need to determine the comparative 
histories of the west and east arms.

2. High-volume silicic magmatism in the North Shore Volcanic Group 
has been argued to be associated with prolonged crustal heating during 
the hypothesized latent stage (Vervoort et al., 2007). Is the comparative 
lack of silicic fl ows further east (Fig. 1) due to contrasting temporal 
evolution?

3. The paleomagnetic record is used to understand the geometry of 
the geomagnetic fi eld and the progression of plate motion at this crucial 
time period of Rodinia assembly. If the additional geomagnetic reversals 
at Mamainse Point correspond to a period of missing stratigraphy in other 
successions, then the progressive decrease in paleomagnetic inclination at 
Mamainse Point provides a strong case for rapid equatorward motion of 
Laurentia (Davis and Green, 1997; Swanson-Hysell et al., 2009). Alterna-
tive correlations complicate this interpretation and could support models 
of large-scale deviations from dipolar geomagnetic fi eld behavior (Pe-
sonen and Nevanlinna, 1981; Davis et al., 1995).

Despite the importance of integrating the Mamainse Point succes-
sion into chronostratigraphic correlation schemes, radioisotopic dates 
have been diffi cult to obtain due to a lack of zircon-bearing extrusive 
volcanic rocks.
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PALEOMAGNETIC DATA AND AGE CONSTRAINTS FOR THE 
MAMAINSE POINT STRATIGRAPHY

Due to the large changes in paleomagnetic inclination throughout 
Midcontinent Rift development (Davis and Green, 1997; Swanson-Hysell 
et al., 2009), paleomagnetic data can be used to provide chronostrati-
graphic constraints through comparison of undated paleomagnetic poles 
to poles constrained by radioisotopic dates. Swanson-Hysell et al. (2009) 
presented paleomagnetic data obtained from 72 lava fl ows within the Ma-
mainse Point stratigraphy. Here we present data from an additional 27 
fl ows (Fig. 2; Table DR2 in the GSA Data Repository1) that reinforce posi-
tive reversal tests on the three reversals in the succession (described in the 
Data Repository).

Flows from the lower 600 m (227.0°E, 49.5°N, A95 = 5.3°, N = 24; 
lower R pole 1 in Table DR3) of the Mamainse Point stratigraphy yield 
virtual geomagnetic poles (VGPs) that pass the Watson Vw and bootstrap 
tests for a common mean with data from the Siemens Creek Formation 
volcanics (n = 10; sites 15–24 of Palmer and Halls, 1986, from the panel 
with the most robust tilt correction). The Siemens Creek Volcanics are 
older than 1107.3 ± 1.7 Ma, on the basis of a U-Pb date on a rhyolite from 
the overlying Kallander Creek Formation (Fig. 1; Davis and Green, 1997). 
Flows from the 1000 m of the upper normal polarity zone immediately 
above the Great Conglomerate (183.1°E, 33.7°N, A95 = 2.0°, N = 27) yield 
VGPs that pass tests for a common mean with data from fl ows of the 

North Shore Volcanic Group (N = 47; Tauxe and Kodama, 2009) between 
the 40th Avenue icelandite and Palisade rhyolite  (U-Pb dates of 1098.4 
± 2.0 Ma and 1096.6 ± 1.8 Ma, respectively; Fig. 1; Davis and Green, 
1997). These comparisons suggest that the lowest reversed polarity zone 
at Mamainse Point corresponds to the early magmatic stage, while the up-
permost normal polarity zone at Mamainse Point corresponds to the main 
magmatic stage (Fig. 1).

Previously Dated Unit within the Mamainse Point Succession
A 207Pb/206Pb zircon date of 1096.2 ± 1.9 Ma was reported by Da-

vis et al. (1995) from a felsic unit within the lower reversed zone at 
Mamainse Point that was interpreted to be an extrusive fl ow. Davis and 
Green (1997, p. 482) considered the implications of this date if the unit 
was extrusive, but stated “it has not been possible to publish these data 
due to the diffi culty in establishing beyond doubt the eruptive nature of 
the dated unit.” In the literature, the dated unit has both been accepted 
as extrusive (Heaman et al., 2007), and questioned as such (Nicholson 
et al., 1997). An extrusive interpretation for the unit (1) implies that all 
geomagnetic reversals within the Mamainse Point succession occurred 
during, or after, the main magmatic stage, in confl ict with the consis-
tently normal polarity of that stage elsewhere in the rift, and (2) suggests 
signifi cant reversal asymmetry, as high paleolatitudes implied by data 
low in the Mamainse Point stratigraphy would postdate the relatively 
low implied paleolatitudes of normally magnetized strata elsewhere in 
the rift (Davis and Green, 1997).

New fi eld observations document a crosscutting relationship with 
the felsic unit both overlying and underlying the pahoehoe fl ow top of a 
single basalt fl ow (Fig. 2B). This relationship demonstrates that the unit is 
intrusive and imperfectly intruded along a preexisting fl ow boundary. The 
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Figure 1. Summary lithostratigraphic columns across the Midcontinent Rift. Lithostratigraphy adapted from Davis and Green (1997) for the 
North Shore Volcanic Group, Hollings et al. (2007) for the Osler Volcanic Group, Cannon and Nicholson (2001) for the Bergland Group, and 
Hubbard (1975) for the Powder Mill Group. Dates are colored by reference (weighted mean dates were recalculated). Correlation using the 
new Flour Bay tuff date shows the middle reversed and normal polarity zones at Mamainse Point to be missing from other successions, 
commonly in association with unconformities at the time of the latent stage. Comparisons between dates are complicated by the change in 
the assumed ratio of 238U/235U; however, the 207Pb/206Pb date of 1102.4 ± 0.69 Ma for the Flour Bay tuff calculated with the previously assumed 
ratio also supports the correlation shown here.

1GSA Data Repository item 2014164, chemical abrasion–thermal ioniza-
tion mass spectrometry U-Pb methods and data, paleomagnetic and stratigraphic 
data, and details of statistical analysis, is available online at www.geosociety.org
/pubs/ft2014.htm, or on request from editing@geosociety.org or Documents Sec-
retary, GSA, P.O. Box 9140, Boulder, CO 80301, USA.
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date of 1096.2 ± 1.9 Ma provides a minimum age constraint on the lower 
reversed polarity zone at Mamainse Point.

New Age Constraint for the Mamainse Point Succession
Low lake levels recently led to improved exposure in Flour Bay, re-

vealing a crystal-rich tuff below the Great Conglomerate within the up-
per reversed polarity zone (Fig. 2; Fig. DR3). This tuff yielded abundant 
euhedral zircons that we treated with the chemical abrasion method prior 
to acquiring U-Pb isotope dilution thermal ionization mass spectrometry 
data (Figs. DR1 and DR2; see the Data Repository for methods and data). 
Data from nine grains yield a weighted mean 206Pb/238U date of 1100.36 
± 0.25/0.42 Ma (mean square of weighted deviates, MSWD = 1.4), a 
weighted mean 207Pb/235U date of 1100.82 ± 0.31/0.33 Ma (MSWD = 
0.63), and a weighted mean 207Pb/206Pb date of 1101.51 ± 0.64/0.69 Ma 
(MSWD = 0.63). Three of the 12 analyzed grains were not used in the cal-
culation of the weighted means based on distinctly older 206Pb/238U dates. 
The uncertainties associated with the dates are reported as ± X/Y, where 
X is the internal (analytical) uncertainty in the absence of all external er-
rors, and Y incorporates the U-Pb tracer calibration error for comparison 
to U-Pb dates developed with different tracers.

Crystallization ages reported from Midcontinent Rift rocks primarily 
have been 207Pb/206Pb dates calculated using an assumed 238U/235U ratio of 
137.88. The 207Pb/206Pb date reported here for the Flour Bay tuff uses the 
new recommended 238U/235U ratio of zircon (Hiess et al., 2012). For com-
parisons with previously published dates, our new date can be recalculated 
using the legacy 238U/235U ratio; doing so yields a 207Pb/206Pb date of 1102.4 
± 0.69 Ma, an increase of almost 1 m.y. We regard the 206Pb/238U date of 
1100.36 ± 0.25/0.42 Ma (n = 9, MSWD = 1.4) as the most precise and 

accurate estimate for the age of the Flour Bay tuff. This date provides an 
age constraint on a paleomagnetic pole calculated from fl ows of the lower 
normal and upper reversed polarity zones (189.7°E, 36.1°N, A95 = 4.9°, N 
= 24; Table DR3).

DISCUSSION AND CONCLUSIONS
The new date from the Flour Bay tuff anchors the Mamainse Point 

stratigraphy in time and indicates that the lava fl ows below the Great Con-
glomerate correlate to the period of magmatic quiescence elsewhere in the 
rift (Fig. 1). Therefore, the conglomeratic unit represents a shorter period 
of magmatic quiescence than has been hypothesized. This result adds sup-
port to the hypothesis that the succession at Mamainse Point is the most 
complete in the rift. Vervoort et al. (2007) hypothesized that the silicic vol-
canism in the North Shore Volcanic Group, where rhyolites comprise as 
much as 25% of the stratigraphy (Fig. 1), could be related to longer term 
crustal heating during the latent stage that contributed to partial melting 
in higher levels of the crust. In contrast, at Mamainse Point there is a rela-
tive lack of felsic magmatism in a location where the record of volcanism 
appears to be more continuous, lending support to the hypothesized con-
nection between the latent stage and the abundance of silicic magmatism 
in the western Lake Superior Basin. The relatively continuous record of 
magmatism at Mamainse Point is also consistent with the model of the rift 
as a developing plate boundary (e.g., Merino et al., 2013), as opposed to 
distinct pulses of magmatic activity across the entirety of the rift.

The dominance of reversed magnetic polarity in older Midcontinent 
Rift rocks and normal magnetic polarity in younger ones (Fig. 1) has led 
to much discussion in the literature of the age of a single geomagnetic re-
versal that occurred during rifting. The multiple reversals through the Ma-
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mainse Point stratigraphy demonstrate that referring to a single reversal in 
the history of the rift is not appropriate. At Mamainse Point, two reversals 
of the geomagnetic fi eld are recorded in mafi c lavas prior to the 1100.36 
± 0.25/0.42 Ma Flour Bay tuff and one afterward (Fig. 1). The temporal 
correlation of these reversals with latent stage magmatic quiescence in 
much of the rift explains why these reversals have not been identifi ed in 
other rift localities (Fig. 1).

There is a signifi cant decrease in paleomagnetic inclination between 
the reversed polarity rocks of the early magmatic stage and the normal 
polarity rocks of the main magmatic stage. Interpretation of this inclina-
tion difference as a stepwise change led to the hypothesis of geomagnetic 
reversal asymmetry resulting from large non-dipole contributions to the 
geomagnetic fi eld in the late Mesoproterozoic (Pesonen and Nevanlinna, 
1981). The record at Mamainse Point is not consistent with this hypoth-
esis because it reveals a progressive decrease in paleomagnetic inclination 
moving upward through the stratigraphy across multiple reversals. Instead, 
data support the interpretation of signifi cant plate motion of North Amer-
ica from 1110 to 1095 Ma, where the inclination decrease corresponds to 
decreasing paleolatitude at rates that may have exceeded 20 cm/yr (Davis 
and Green, 1997; Swanson-Hysell et al., 2009). Successions missing the 
intervening polarity zones between the early and main magmatic stages, 
as a result of latent stage magmatic quiescence, will record a stepwise 
inclination decrease as a result of not recording the progressive paleogeo-
graphic change. Reconstructions of the assembly history of Rodinia rely 
on this record of equatorward plate motion that we can now demonstrate 
was ongoing throughout rift development.
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