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A region-specific code for generalized representations across hippocampus and 

prefrontal cortex 

Jennifer Ann Guidera 

 

Abstract 

In novel situations, animals can leverage past experiences to learn rapidly. This ability is 

thought to depend on abstraction: the representation of the common structure across 

related experiences. In mammals, the hippocampus (HPc) and the prefrontal cortex 

(PFC), including its medial prefrontal (mPFC) and orbitofrontal (OFC) subregions, are 

thought to support abstraction by expressing neuronal firing patterns that represent 

generalized features of experiences. Whether these firing patterns reflect a single, 

distributed representation of generalized features of experience, or whether each area 

specializes to represent particular features at particular times, remains unknown. To 

address this, we continuously monitored large neural ensembles in the HPc, mPFC, and 

OFC of freely behaving rats performing a cognitive task. We found evidence for regional 

specialization in the coding of generalized task features. First, HPc firing patterns were 

consistent with a primarily route-based coding scheme, whereas mPFC and OFC firing 

patterns were organized around the act of traveling between goal locations and the 

specific actions required to reach goals. Second, task representations in mPFC and 

OFC were most reliable during distinct task phases, suggesting these areas specialize 

to express consistent task representations in distinct behavioral periods. 
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Chapter 1 

Cognitive maps in hippocampus and prefrontal cortex: a review of the literature 

1.1 Overview 

Over the last several decades, there has been a shift in thinking on how the brain is 

thought to give rise to behavior. In the early- to mid-20th century, a prevailing view was 

that the brain learns to associate particular sensory inputs with particular behavioral 

outputs to maximize reward and minimize punishment1. An alternative view to this 

“behaviorist” conception arose, which held that rather than learn to associate stimuli 

with responses, the brain constructs mental models of the underlying structure of 

experiences2,3. These mental models were thought to influence how an organism 

interprets incoming sensory information and plans responses and were a departure 

from the direct stimulus-response connections envisioned by behaviorists3. 

A conception of the brain as building mental models and deploying them to guide 

behavior prevails today. However, relatively little is known about how mental models are 

instantiated in the brain. In this introductory chapter, we review previous findings from 

the literature that address this unknown. We limit our scope to two brain regions that 

have been implicated in this function, the hippocampus (HPc) and the prefrontal cortex 

(PFC). 

We organize our discussion as follows. First, we briefly review early conceptions 

of mental models from the field of psychology that influenced present-day views of the 

brain. We then proceed to consider the literature that speaks to how mental models are 

instantiated in the HPc and PFC, considering each region in turn. We next discuss 
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studies that provide a direct comparison of these areas in how they may implement 

mental models. We end by describing gaps in our understanding of how mental models 

are implemented in the brain, that we hope our study as well as future ones may be 

able to address. 

 

1.2 Origins of the concept of a “mental model” in psychology 

Present-day notions of mental models derive from ones advanced by psychologists in 

the early- to mid-20th century. Particularly influential were those of Bartlett, Piaget, and 

Tolman. 

Among these individuals, Bartlett was first to advance a view of mental models2. 

Bartlett’s view was meant to provide a theory of how we remember. According to 

Bartlett, remembering is a constructive process that draws upon organized groupings of 

past experiences and responses, which Bartlett termed “schemata” (plural of schema). 

One of Bartlett’s research studies provides an example of this. In the study, subjects 

were told a ghost story that had typical and atypical elements and asked to recall it 

sometime later. In their recollection, subjects would often leave out atypical elements of 

the story, suggesting they had forgotten these. Conversely, subjects would falsely recall 

details that had not been in the original story but that one might expect to have been. 

Bartlett interpreted these patterns as suggesting that subjects had reconstructed their 

memory of the original story in terms of an organization of similar stories that they had 

heard before. This “schema” facilitated their remembrance of typical elements, their 
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forgetting of atypical elements, and their mistaken recollection of details that had not 

been in the original story but that had been in other, similar stories. 

Piaget subsequently popularized the notion of schema in the context of a theory 

of cognitive development in children4. Piaget noted that the kinds of mistakes children 

would make in identifying objects changed over time, suggesting children organized 

information differently as they aged. For instance, younger children may tend to 

misidentify a zebra as a horse, on the basis of identifying all four-legged creatures with 

a horse. In keeping with Bartlett, Piaget termed these organizations of past experiences 

schemata. Piaget’s account provided further support for the notion that humans 

organize past experiences, and these organizations influence how we process 

information and respond in everyday life. 

Tolman formulated a notion of mental models through observing the behavior of 

rats3. Rats exhibited particular behaviors that suggested to Tolman they form a mental 

map of their environment, which Tolman termed a “cognitive map”. Tolman envisioned 

similar maps may form of non-spatial entities as well. These cognitive maps differed 

from the stimulus-response connections envisioned by behaviorists in several ways. 

They appeared to form in the absence of reward or punishment, and they could be used 

to reason about the optimal response to entirely novel sets of stimuli. As evidence 

suggesting that rats form these kinds of cognitive maps, Tolman observed that rats 

learn to take a direct route through a maze from a starting location to a reward much 

faster if they had previously explored the maze in the absence of reward, than if they 

were encountering the maze for the first time3. Tolman interpreted this as suggesting 
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that rats that had explored the maze had constructed a mental model of it, which they 

were able to deploy to efficiently navigate to a reward that was later introduced. 

Here, we take a simplified view and refer to notions of a schema as envisioned 

by Bartlett and Piaget and of a cognitive map as envisioned by Tolman together, as 

supporting a single notion of mental models. 

 

1.3 Neural implementations of cognitive maps 

Here, we review evidence in support of the theory that the hippocampus and prefrontal 

cortex serve a cognitive mapping function. 

 

1.3.1 The hippocampus as a cognitive map 

Perhaps the earliest conceptualization of a neural instantiation of a cognitive map was 

of the hippocampus as a cognitive map of space. This view was inspired by the 

discovery of spatially selective cells in the hippocampus of rats in the early 1970’s5. 

These so-called “place cells” discharged at particular locations within an environment. 

By providing information about an organism’s physical location, place cells appeared 

capable of supporting a representation of physical space in the abstract6. The 

envisioned notion was of a three-dimensional Euclidean space that existed independent 

of an organism (“allocentric space”)6. Thus, it was proposed that the hippocampus 

instantiates a cognitive map of the kind originally envisioned by Tolman, applied to the 

particular case of allocentric space6. 
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In the years that followed, several observations arose that challenged this initial 

conception. As rats ran back and forth on linear alleyways, the majority of place cells 

were found to fire selectively as rats traveled in one direction or the other, inconsistent 

with the notion that place cells signal global location in space7. In a separate study, 

about a third of place cells were found to fire at distinct locations depending on whether 

animals took variable or more stereotyped trajectories through an environment8. This 

finding indicated that the place cell signal was sensitive to non-spatial factors. Further 

work identified a subset of place cells that fired differently as animals passed through 

the same location in the same direction depending upon where the animal had come 

from or where it was headed, suggesting that the place cell signal could reflect elements 

of the past or future9,10.  

An alternative view of the hippocampus thus arose that could account for the 

apparent modulation of hippocampal place cells by aspects of an animals’ past, current, 

or future experience as identified by these and other studies. The view conceived of the 

hippocampus as implementing a “relational map” that links events experienced in 

succession11–13. Traveling through space provided sequential experiences and is thus 

mapped by the hippocampus, according to this view. The proposed relational map was 

envisioned as flexible, in that nodes on the map that had not been directly linked during 

experience could nevertheless be related by virtue of their placement in relation to 

others. Recent theoretical work has provided a rigorous account of this conception of 

the hippocampus as providing a relational map14. 
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The kinds of deficits that result from inactivating the hippocampus are consistent 

with the view that the area provides a relational map. Inactivating the hippocampus 

impairs rats’ ability to relate two stimuli never experienced together but which were both 

paired with a third stimulus15,16. This deficit in transitive inference is expected if the 

intact hippocampus supports a relational map of the stimuli. Inactivation of the dorsal 

hippocampus was recently shown to disrupt the ability of rats to plan optimal actions in 

a task that requires anticipating how a sequence of actions relates to a final outcome17. 

This impairment in planning is expected if the hippocampus supports a relational map of 

the action–action and action–outcome relationships in the task. 

Electrophysiological studies are also consistent with the notion that the 

hippocampus serves as a relational map. Akin to how place cells map space by virtue of 

firing in select locations, hippocampal cells were found to map a sequence of auditory 

frequencies by virtue of firing at select frequencies in the sequence18. This 

demonstrates that hippocampal cells are capable of mapping a series of non-spatial 

experiences, consistent with the notion that the hippocampus can form relational maps 

of all kinds. A separate study found that as non-human primates navigate distinct mazes 

in virtual reality, a subset of hippocampal cells encode subjects’ abstract position in the 

task invariant to spatial location, consistent with mapping of an abstract task 

coordinate19. Additional work has shown that hippocampal ensembles in primates have 

a capacity for representing non-spatial task variables in an abstract format20. These 

studies identify neurophysiological correlates in hippocampus that could support 

relational mapping of experiences, broadly speaking.  
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1.3.2 The prefrontal cortex as a cognitive map 

A longstanding view of PFC function is that the PFC organizes behaviors directed 

towards goals (“goal-directed behaviors”)21–23. Although accounts of this view have not 

made explicit reference to the notions of a “cognitive map” or “schema” from 

psychology, the view has been cast in terms that bear strong resemblance to these 

notions. For instance, an influential account proposed that the PFC’s role in organizing 

goal-directed behavior depends upon its representation of goals and the actions 

required to obtain them23. This bears resemblance to a proposal that the PFC serves as 

a cognitive map or schema of goal-directed behaviors.  

In more recent years, the PFC has been explicitly theorized to support a 

“cognitive map”24 or “schema”25. Two subregions of the PFC, the medial prefrontal 

cortex (mPFC) and the orbitofrontal cortex (OFC), have been implicated through 

separate lines of evidence. These lines of evidence respectively draw upon established 

ideas from long-term memory formation in the case of the mPFC25,26, and reinforcement 

learning in the case of the OFC24,27. These proposals go beyond a straightforward 

reinterpretation of the dominant view of PFC function as organizing goal-directed 

behaviors. 

We will first review longstanding evidence suggesting a primary role for PFC in 

organizing goal-directed behaviors, and briefly discuss how this evidence is consistent 

with a conceptualization of the PFC as a cognitive map of goal-directed behaviors. We 
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then consider the lines of evidence which have led to explicit proposals that the mPFC 

and OFC serve as cognitive maps. 

 

1.3.2.1 A prevailing view of the PFC as organizing goal-directed behaviors, cast 

as a cognitive mapping function 

A prevailing view of PFC function is that the area is dedicated to the organization of 

behaviors directed towards goals22,23,21. The PFC is thought to accomplish this overall 

function through supporting several subordinate abilities, including attending to relevant 

stimuli and conversely inhibiting automatic tendencies that would otherwise distract from 

this (“inhibition”), holding items in memory for short periods (“working memory”), and 

adapting to changes in circumstances (“cognitive flexibility”)21,28. These subordinate 

functions are termed “executive functions” as they are viewed as exerting top-down 

control over other mental processes and an organisms’s behavior22,28. This prevailing 

conceptualization of the PFC derives from findings from lesion and electrophysiological 

studies, which we review next. 

Lesion studies support the view that the PFC is essential for organizing behavior 

directed towards goals. Patients with PFC lesions often maintain an ability to execute 

simple motor actions, but have difficulty carrying out sequences of actions towards 

goals21,23,29. The specific deficits underlying this impairment vary by the PFC subregion 

that sustained damage. In particular, three distinct “prefrontal syndromes” have been 

described that result from lesions to three distinct areas of the PFC in humans29. 

Lesions to the dorsolateral PFC (dlPFC) disrupt an ability to correctly sequence actions 
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and adapt to changes in rules21,29,30. By contrast, lesions to the medial prefrontal cortex 

(mPFC), and particularly its anterior cingulate cortex (ACC) region, result in an 

indifference to circumstances and a decreased will to act31,32,29,21. In extreme cases 

seen with bilateral lesions, patients will not talk, eat, or act on their own volition, despite 

an intact ability to do so33. By contrast, lesions to the orbitofrontal cortex (OFC) result in 

socially inappropriate and disinhibited behavior, vacillation, and suboptimal choices 

among options associated with distinct long-term values34,35. 

Electrophysiological studies also support a role for the PFC in organizing 

behavior towards goals. These studies typically provide subjects with a task: a set of 

conditions for attaining some goal, often a reward of some kind. To perform the task, 

subjects must direct their behavior towards attaining the goal. Seemingly all 

experimenter-defined aspects of a task have been found to be encoded by PFC 

neurons, including information about stimuli, responses, and outcomes36–42. Oftentimes 

PFC neurons exhibit complex responses to multiple aspects of a task, a feature that has 

been shown to increase the representational capacity of a network and may thereby be 

useful for the representation of complex entities like cognitive behaviors42. Also notable 

is that PFC neurons can encode information that is not accessible from current sensory 

inputs but is relevant for attaining a goal. As an example of this, early 

electrophysiological studies of PFC identified cells that appeared to encode the memory 

of a stimulus relevant for making a choice sometime later43–45. As another rather striking 

example, in a task that rewards monkeys for responding to stimuli according to an 

abstract rule, the most prevalent type of encoding observed was of the abstract rule46. 
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In summary, lesion studies demonstrate an essential role for PFC in carrying out 

goal-directed behaviors. Electrophysiological studies demonstrate that PFC activity is 

structured around sequences of sensory input, actions, and hidden context that are 

relevant for this purpose. On this basis, the PFC has been conceived of as expressing 

representations of goals and the means required to attain them, which then support the 

structuring of actions to reach goals23.  

This conception bears resemblance to a proposal that the PFC supports a 

cognitive map or schema of goal-directed behaviors, of the kind described in 

psychology. The PFC representation is reminiscent of a model of how events will unfold 

over time during goal-directed behaviors. Aspects of the past and future important to 

attaining goals are represented. In this way, the past and future bear upon the present, 

as Bartlett had originally conceived of schema2. Meanwhile, the prominent 

representation of abstract rules governing which actions result in goal attainment 

demonstrates a capacity for invariance to sensory specifics in the PFC representation 

that may support inference to never-before-seen sets of stimuli, characteristic of the 

cognitive maps envisioned by Tolman3,46.  

More recently, the PFC has been explicitly proposed to represent a cognitive 

map or schema. Proposals have arisen separately for mPFC and OFC through distinct 

lines of evidence. We review these proposals next, beginning with the proposal that 

mPFC represents a cognitive map. 
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1.3.2.2 The medial prefrontal cortex as a cognitive map 

Recent work has cast the mPFC as encoding “schema” of the kind described by Bartlett 

and Piaget25. This conceptualization derives from an influential theory known as 

systems consolidation theory which provides an account of how new memories are 

transformed into long-lasting ones. The theory conceives of the PFC as storing long-

term memories that are more semantic in nature47,48. We briefly review this theory to 

provide context for the proposal that the mPFC serves to represent schema.  

Systems consolidation theory holds that memories are encoded parallelly in 

hippocampus and neocortex: initially strongly in the hippocampus and weakly in the 

neocortex48,49. Over time, the replay of hippocampal memories is thought to strengthen 

corresponding neocortical memory traces, eventually producing long-lasting neocortical 

memories which can be recalled independently of the hippocampus48. 

The basis for this theory was the observation that hippocampal damage impairs 

the formation of new memories while sparing remote ones48. Subsequent work in rodent 

models reproduced this deficit and identified the opposite pattern of deficits following 

damage to the prefrontal cortex50,51. For instance, in one such model, mPFC lesions 

made at successive timepoints following conditioning of an eye blink response impaired 

retention of the response more and more as time passed50. By contrast, HPc lesions 

resulted in the opposite pattern, initially impairing retention of the learned response but 

having less of an impact as time went on and eventually no effect by four weeks after 

the initial learning50. A follow-up electrophysiological study employing the same animal 

model identified putative neural correlates of the long-term memory in the mPFC: single 
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cell responses to the learned response formed on a gradual timescale that paralleled 

the increasing memory dependence identified by the original lesion study52.  

The gradual nature of the consolidation process is thought to promote the 

formation of representations that are more semantic in nature and reflect similarities 

across multiple related experiences in the PFC47,48. Single cell firing patterns observed 

in the mPFC of rats performing navigational tasks agree with this prediction53,54. Cells in 

the mPFC tend to fire at particular phases of a navigation task, with a diversity of 

preferred phases across the ensemble53,54. These firing patterns are in marked contrast 

to the spatially selective firing observed in the rodent HPc in spatial navigation settings7. 

These studies support the notion that relatively more semantic memories exist in the 

mPFC. 

The initial study that proposed a specialized role for the mPFC in schema 

representation drew upon systems consolidation theory and the notion of a schema as 

introduced by Bartlett and Piaget25,26. The study employed a rat model of knowledge 

frameworks26. Rats learn to associate particular locations in an arena with particular 

flavors of foods: the flavor of food received in a starting box would predict where more 

of that same flavored food could be found out in the arena. Once rats were well-trained 

on an initial set of flavor-location associations, they learned a novel flavor-location 

association. This new learning was rapid, consistent with the idea that rats had formed a 

schema-like representation of the task during initial learning that could facilitate rapid 

assimilation of new information26. Expression patterns of two immediate early genes 

(IEGs) that serve as markers of synaptic plasticity, Zif268 and Arc, were examined in 
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the brains of rats that learned a novel flavor-location association after having been well-

trained on an initial set of flavor-location associations. It was thought that during the 

learning of this novel association, rats incorporated a new memory into their preexisting 

schema. IEGs were found to be upregulated in a set of cortical areas that included 

subregions of the mPFC. Additionally, disruption of neurotransmission in the prelimbic 

region of the mPFC, which had the greatest upregulation of IEGs among cortical areas 

examined, impaired learning of the novel association. On this basis, the authors 

proposed an essential role for the mPFC in supporting schema. 

 

1.3.2.3 The orbitofrontal cortex as a cognitive map 

The OFC has historically been viewed as a region essential for choosing among options 

based on their costs and benefits (“value-guided decision-making”)55. This view arose 

from the observation that humans with damage to the OFC exhibit deficits in value-

guided decision-making while performing normally on classic tasks of executive 

function35,56–60. In parallel, non-human primates and rodents with OFC lesions are prone 

to make suboptimal choices following a reversal of the values of two different options, 

consistent with a role for the OFC in value-guided decision-making61–65. Complementing 

these behavioral findings, cells in the OFC encode subjective value66 and other value-

based quantities39,41,67–69, constituting a potential neurophysiological basis for the OFC’s 

role in value-guided decision-making70. 

More recently, however, the OFC has been theorized to have a much broader 

role as representing a cognitive map of tasks24. This theory arose as a parsimonious 
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explanation for the specific nature of the deficits in value-guided decision-making 

observed following OFC damage in animal models, and it draws upon ideas in 

reinforcement learning. In particular, non-human primates and rats with OFC damage 

are able to learn novel stimulus-reward associations at the same rate as control 

subjects, but are impaired in subsequently reversing those associations when a 

stimulus no longer predicts reward (“reversal learning”)62–65. It was proposed that these 

deficits are well described by a failure of subjects to form a mental model of the task 

that incorporates “hidden” information about which stimulus-outcome relationship is 

operative at any given time24. The identity of the rewarding stimulus is hidden in that it is 

not explicitly signaled and must be inferred from experiencing how a stimulus leads to 

an outcome. It is thought that by representing this hidden information, subjects can 

maintain distinct sets of stimulus-outcome relationships for distinct identities of the 

rewarding stimulus. Applying this idea to the case of reversal learning, subjects faced 

with a reversal can maintain the originally learned stimulus-outcome relationships, and 

learn a separate, parallel set of stimulus-outcome associations. By contrast, subjects 

that do not incorporate this hidden information about the identity of the rewarding 

stimulus into their model of the task must first unlearn previous stimulus-outcome 

associations, a lengthier process. Reinforcement learning models implementing these 

different learning strategies could match the behavior of control and OFC-lesioned 

subjects from previous studies24, providing support for the theory that OFC is important 

for representing hidden task states. 
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The idea that the OFC represents a cognitive map of tasks has since gained 

further support. Inactivation of the OFC impaired the ability of rats to predict whether a 

stimulus would result in reward when this required inference based on previously 

experienced stimulus-stimulus associations71. In a separate study, inactivation of the 

OFC disrupted planning based on previously experienced action-outcome 

associations17. These findings suggest an essential role for the OFC in inferring unseen 

relationships between task elements, as would be expected if the OFC supports a 

relational map of tasks that flexibly links stimuli, actions, and outcomes relevant to task 

performance. 

Complementary findings from studies of brain activity also support the proposal 

that the OFC represents a cognitive map of tasks. In human subjects performing a task 

that requires representing hidden information inaccessible from current sensory input, 

hidden information could be decoded from the blood-level oxygen dependent (BOLD) 

signal in the OFC72. The ability to decode hidden information was positively correlated 

with task performance, suggesting the representation of hidden information in the OFC 

may support task performance72. In a brain-wide analysis of BOLD activity, a region 

within the OFC was the only area from which all hidden information could be decoded, 

suggesting a specialized role for the OFC in encoding hidden information72. These 

findings are consistent with the proposal that the OFC represents a “complete” cognitive 

map of tasks including hidden aspects that cannot be directly observed but are essential 

for task performance. Consistent with the proposal that OFC represents a cognitive map 
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of tasks, several studies have identified a variety of task-related correlates of single cell 

firing in the OFC38,40,73,74. 

 

1.3.3 Comparisons of HPc, mPFC, and OFC as cognitive maps 

A limited number of neuropsychological and electrophysiological studies have directly 

compared the hippocampus, mPFC, and/or OFC. We next discuss studies that make 

these direct comparisons and provide insight into potential similarities and differences in 

how these regions may represent cognitive maps.  

 

1.3.3.1 HPc vs. mPFC 

Neurophysiological studies suggest that single cell and population-level representations 

of tasks generalize across contexts to a greater extent in the mPFC relative to in the 

HPc. In a spatial navigation task, cells in the mPFC had a greater tendency to fire 

similarly across distinct paths in a maze in comparison to HPc cells53. In a separate 

study, as mice performed an alternation task across spatial and motor contexts, single 

cell and population-level representations of the task generalized across contexts to a 

greater extent in the mPFC than in the HPC75. These studies support a longstanding 

theory that more generalized memories exist in the PFC as compared to HPc47,76 and 

suggest that cognitive maps in each area may respectively emphasize similarities and 

differences across experiences. 

 The mPFC and HPc also appear to differ in the time frame in which they support 

memory. The HPc supports more recent memories, whereas the mPFC supports more 
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distant ones50,51,77. Thus, the HPc cognitive map may serve as a temporary site for 

newly learned relations, whereas the mPFC cognitive map may serve as a long-term 

store for relations, in keeping with systems consolidation theory48.  

 

1.3.3.2 HPc vs. OFC 

A pair of neurophysiological studies examined firing properties of HPc and OFC 

ensembles as rats performed an associative memory task and identified a relative 

emphasis on spatial and reward related information in these respective areas78,79. In the 

task, rats were placed in rectangular environments and were allowed to retrieve a 

reward consistently paired with one of two objects in the environment. Rats had 

previously learned the associations between the environments and whether each object 

would or would not contain reward. The activity of HPc and OFC ensembles tended to 

emphasize distinct types of task information. HPc firing patterns most prominently 

distinguished environments, followed by the position of objects within an environment, 

followed by whether objects did or did not contain reward, and lastly by the identity of 

the object78. By contrast, OFC firing patterns most prominently distinguished whether 

objects did or did not contain reward, followed by the conjunction of object and 

environment, and lastly by the position of objects within an environment79.  

These findings reveal a distinct hierarchical preferencing of task information in 

HPc and OFC, with a relative emphasis on spatial context in HPc, and on reward 

outcomes in OFC, but representation of the other type of information in each area. 

Correspondingly, it has been proposed that the HPc and OFC contain cognitive maps 
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with distinct emphases: on biological relevance in OFC, and on spatially and temporally 

linked events in HPc80.  

 

1.3.3.3 mPFC vs. OFC 

Several lesion studies suggest that the mPFC and OFC make distinct contributions to 

decision-making. In non-human primates, lesions to the mPFC were found to disrupt 

decision making on the basis of action-outcome associations but not stimulus-outcome 

associations, whereas the opposite deficit was seen following OFC lesions81. These 

findings suggest that mPFC and OFC may play greater roles in decision making based 

on motor or sensory information, respectively. In rats, lesions to the ACC led to a 

reduction in the amount of effort subjects were willing to invest in rewards, whereas 

lesions to the OFC led to a reduction in how long subjects were willing to wait for 

rewards82. These findings suggest that these areas make distinct contributions to the 

processing of costs and benefits. Finally, in non-human primates performing a decision-

making task, behavioral impairments following ACC sulcus or OFC lesions were 

consistent with selective roles for the ACC sulcus in action selection, and the OFC in 

rapidly updating associations following a change in reward contingency83.  

 Some neurophysiological studies have identified distinct functional properties in 

mPFC and OFC cells during decision-making tasks. In rodents performing a spatial two-

arm bandit task, signals related to upcoming choice were identified in the mPFC but not 

in the OFC84. By contrast, the value of chosen options and reward prediction error were 

represented more prominently in the OFC than in the mPFC84. These findings may be 
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consistent with specialized roles for mPFC in action selection and OFC in updating the 

values of options. Of note, however, a study in non-human primates found value signals 

for decision variables were more prevalent in ACC than in OFC, and reward prediction 

error signals only in ACC85.  

 

1.4 Remaining questions  

Several questions remain about how cognitive maps are instantiated in the brain. One 

question relates to the nature of cognitive maps in mPFC and OFC. Lesions in these 

areas produce distinct behavioral impairments82,83, yet multiple task variables are 

encoded in both regions37,46. It remains unclear whether these areas exhibit differences 

in how they represent experiences that could help explain the distinct behavioral deficits 

that result from their damage.  

More generally, it is unclear whether there are organizational principles 

governing how generalized representations are distributed in the brain. One possibility 

is that there is a single, distributed representation of generalized features, and areas 

differ in the extent to which their representations are generalized. A distinct possibility is 

that different areas specialize to represent distinct generalized features at different 

times.  

An additional question is how cognitive maps in distinct areas may interface with 

each other to support learning and behavior. A prevailing theory is that HPc memories 

are replayed, and this promotes the formation of long-lasting neocortical memories that 

are more semantic in nature48. Thus, one hypothesis is that the HPc cognitive map 
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primarily functions to construct long-lasting neocortical cognitive maps. Little is known 

about the precise neurophysiological mechanisms governing this hypothesized process. 

For example, hippocampal network events thought to reflect memory replay are known 

to modulate the activity of PFC cells86, but the long-term impacts of this coordinated 

activity on PFC representations remains unclear. For instance, it remains to be 

determined whether these patterns of coordination result in an upregulation or 

downregulation of accompanying PFC memories, some complex combination of these, 

or neither. Multisite recording in HPc, mPFC, and OFC may help in addressing these 

unknowns about how cognitive maps get built up in the brain, and their precise 

implementation within and distribution across distinct brain areas. 
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Chapter 2 

Heterogeneous task representations in the hippocampus and prefrontal cortex 

 

2.1 Overview 

In this chapter, we describe experimental procedures and analyses aimed at studying 

hippocampal and prefrontal representations of a cognitive task in rats. We then describe 

the results of analyses. 

  

2.2 Methods  

Animals. Data from five male Long-Evans rats (550–700g) (Charles River Laboratories) 

were included in this study. Prior to continuous recordings, rats were housed in a 

temperature- and humidity-controlled facility on a 12-hour light/dark cycle (6AM–6PM). 

Rats were initially housed with 1–2 cage mates and had unlimited access to chow. Rats 

were singly housed once food restriction began. During continuous recordings, rats 

were housed in a separate facility on a 12-hour light/dark cycle (7AM–7PM). All 

procedures were approved by the University of California San Francisco Institutional 

Animal Care and Use Committee. 

 

Pre-surgical linear track training. Rats were food restricted to 85–90% of their free-

feeding weight and trained to run on an elevated linear track (1.1m, 84cm elevation from 

floor) with reward wells affixed on either end87. This training served to familiarize 

subjects with running on an elevated surface and receiving reward at set locations in an 
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environment. The training also taught subjects to wait up to two seconds at locations to 

receive reward. In each training session, rats were placed on the linear track for 15 

minutes and allowed to behave freely. They were rewarded with a drop of sweetened 

evaporated milk reward (Nestle sweetened condensed milk plus 25g of sugar; 

approximately 80–82μL) at reward wells. Milk reward was delivered automatically via 

syringe pump through plastic tubing (Tygon, 3.18mm inner diameter, 6.35 outer 

diameter). Reward became available at a well once rats visited the other well. Over 

successive training sessions, a temporal delay between when rats arrived to a well and 

when reward was delivered was gradually introduced. The duration of the delay was 

fixed within each training session, and increased across training sessions from 0s, to 

0.5s, to 1s, to 2s in duration. Once rats achieved a criterion of receiving 30 or more 

rewards in a session, the delay increased in the next session. Upon reaching this 

criterion with the 2s delay, pre-surgical linear track training ended, and subjects 

returned to a diet of ad libitum chow. 

 

Tetrode microdrive. Tetrodes were spun from 12.5μm diameter nichrome wire and 

annealed via heat gun using an automated tetrode spinner (SpikeGadgets). Twenty-four 

tetrodes were loaded into independently moveable shuttles within a 3D printed body87. 

 

Polymer probes. One hundred twenty-eight channel polymer probes were obtained from 

Lawrence Livermore National Laboratory. Each probe has four shanks spaced 250μm 
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apart. Each shank has 32 linearly arranged contacts (15μm diameter) spaced 26μm 

apart. Probes were sterilized with ethylene oxide prior to implantation.  

 

Polymer probe and tetrode microdrive implantation. Anesthetized rats underwent 

stereotactic implantation of 128-channel polymer probes (Lawrence Livermore National 

Laboratory) and a tetrode microdrive under sterile conditions. Rats were deeply 

anesthetized with isoflurane, and a mixture of ketamine (50 mg/kg), xylazine (6 mg/kg), 

and atropine (0.14 mg/kg) was injected intraperitoneally. For the duration of the surgery, 

anesthesia was maintained using isoflurane and additional intraperitoneal injections of a 

mixture of ketamine (25 mg/kg) and atropine (0.07 mg/kg) as needed. Body temperature 

was maintained using a water-based heating pad. Hydration was maintained via 

subcutaneous delivery of lactated ringers. Lidocaine (0.2 mL) was injected locally into 

the scalp and an anterior-posterior incision was made to expose the skull. Connective 

tissue was carefully removed from the surface of the skull. A ground screw was placed 

over the cerebellum, and additional screws were placed in the rear and front of the skull 

to provide additional anchoring for the implant.  

Polymer probes were targeted to one or both hemispheres of the dorsal medial 

prefrontal cortex (mPFC) (+3.2 mm AP, ±0.89–0.94  mm ML, -3.2– 3.6 mm DV, 0–10° 

tilt) and/or orbitofrontal cortex (OFC) (+3.94–4.5 mm AP, ±1.91–2.34 mm ML, -3.6–4.05 

mm DV) using a previously published aproach88. In one animal, polymer probes were 

also targeted to the infralimbic region of the mPFC (+3.2 mm AP, ±0.41–0.44 mm ML, -

4.28–4.33 mm DV). A silicon elastomer (Kwik-Sil) was used to seal craniotomies. A 24-
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tetrode microdrive was placed over the dorsal hippocampus (-3.8mm AP, ±2.6mm ML). 

Hippocampal craniotomies were sealed with a silicon sheet. The microdrive was then 

anchored to the skull using dental cement. A custom-build hybrid headstage 

(SpikeGadgets) was attached to the electronic interface board on the tetrode microdrive 

and to the intan boards connected to probes. A 3D printed funnel was placed around 

the front of the implant and filled with silicon elastomer in order to stabilize the probe 

electronics. A 3D printed case was placed around the entire implant. Bupivacaine (0.2 

mL) was injected locally in the scalp, and sutures were placed to approximate skin in 

front of and behind the implant. Buprenorphine (0.01–0.02 mg/kg) and meloxicam (2 

mg/kg) were administered subcutaneously following surgery for analgesia, and 

enrofloxacin (5 mg/kg) was given as an antibiotic. Rats were closely monitored in the 

days following the surgery for signs of discomfort and additional doses of buprenorphine 

and/or meloxicam were administered as needed to achieve analgesia. 

 

Tetrode adjustment. In the weeks following surgery, 1–2 tetrodes were targeted to 

corpus callosum to serve as a reference, and the remaining tetrodes were slowly 

advanced to dorsal hippocampus. The presence of sharp-wave ripples and the 

orientation of sharp waves were used to estimate tetrode depth relative to the 

hippocampal cell layer89. 

 

Post-surgical linear track training. Between 3 and 6 weeks after surgery, rats were food 

restricted to 85–90% of their free-feeding weight and reintroduced to running on the 
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linear track. Every 1–2 days for 1–1.5 weeks, rats performed 1–3 15-minute sessions 

per day on the linear track with a 2s delay between well arrival and reward delivery. 

During this period, rats were also habituated to the home cage that would serve as their 

overnight housing during 24-hour recordings. 

 

Alternation task behavior 

Fork maze. Behavior took place in fork-shaped mazes. Each maze was custom-built 

from acrylic (TAP Plastics). Each maze consists of four arms measuring 73.0cm 

attached a central segment measuring 82.2cm. Two of these arms, the “handle” and 

“center” arms, attach perpendicularly to the connecting segment at its midpoint and 

head in opposite directions. The other two arms, the “left” and “right” arms, attach to the 

connecting segment at its left and right endpoints and head parallel to the center arm. 

The passageways along the arms and connecting segment are 7.6cm wide and flanked 

by walls 3.7cm tall. At the ends of each arm is an expanded rectangular segment 

measuring 12.1cm by 11.1cm and containing a reward well87. Each reward well has an 

opening for milk reward delivery and an infrared diode to detect arrival to wells. We refer 

to reward wells as “goal locations” or when it is clear from context, simply “goals”. 

Mazes were elevated approximately 81cm from the floor.  

 

Alternation task. In the fork maze, rats learned and subsequently performed a memory-

based spatial alteration task9. In the task, rats receive milk reward at goal locations 

according to an alteration rule (Figure 2.4A). The rule specifies that subjects should 
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make alternating visits to the left and right goals from a designated home goal. Thus, 

from the left and right goals, rats receive reward at the designated home goal, and from 

the designated home goal, rats receive reward at the least recently visited of the left and 

right goals. On any trial, the designated home goal is either the center or handle goal as 

dictated by the variant of the task described in Context exposures. On the first goal visit 

of each session, rats receive reward at any of the left goal, right goal, and designated 

home goal.  

An automated behavioral program written in Statescript (Spike Gadgets) detects 

infrared beam breaks at reward wells and delivers reward via syringe pump through 

plastic tubing (Tygon, 3.18mm inner diameter, 6.35 outer diameter) following a 2s delay. 

The syringe pumps were estimated to deliver 81–85uL of reward, with the exception of 

the first animal, for whom pumps were estimated to deliver 64–82μL of reward due to a 

pump programming error. 

Goal visits are deemed “correct”, “incorrect”, or “neither correct nor incorrect” 

according to the following convention: on trials in which rats could possibly receive 

reward according to the alternation rule, a goal visit is considered correct if rats receive 

reward and incorrect if they do not. On the other hand, if rats did not have the 

opportunity to receive reward per the alternation rule, as on the first goal visit of a 

session or when the animals are starting from the arm that is never rewarded in the 

operative sequence, a goal visit is considered neither correct nor incorrect. 
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Fork maze environments. Rats learn to perform the alternation task in three distinct 

environments. Each environment is an enclosed compartment of a room containing a 

dedicated fork maze surrounded by a distinct set of global cues. Two environments, 

“Haight left” (HL) and “Haight right” (HR), are located in a first room, and walls prevent 

the animal from seeing one environment while located within the other. The third 

environment, “San Anselmo” (SA), is located in a second room. 

 

Continuous neural recordings. Throughout behavior on the alternation task, including 

the initial and all subsequent exposures to the task and the environments, continuous 

neural recordings were performed 7 days a week and 24 hours a day with the exception 

of time between recording sessions or in sporadic cases of recording hardware failure. 

Rats were weighed daily prior to the first sleep session and following the final sleep 

session and received chow after daily experiments to maintain 85–90% of their free-

feeding weight. Occasionally, tetrodes were adjusted after the final sleep session. Rats 

were house overnight in a home cage (33cm x 65cm x 51cm) located in the first room.  

 

Daily training sessions on the alternation task. Each day, rats performed up to eight 20-

min behavioral sessions. In each session, the rat was placed on one of the three fork 

mazes and allowed to behave freely. Rats were rewarded according to a variant of the 

alternation task as described below. These behavioral sessions were flanked by rest 

sessions approximately 45-min in length in a small box (32cm x 33cm x 41cm) located 

in Haight.  
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Context exposures. Rats underwent a series of exposures to the alternation task in 

distinct contexts (Figure 2.1). These contexts varied along two dimensions: the 

environment in which the task was performed, and the identity of the designated home 

goal. We defined the performance in a session as “at criterion” if at least 80% of the 

total number of correct and incorrect goal visits in a session were correct goal visits. 

Rats were exposed to contexts in the following order. 

 

Figure 2.1: Order of context exposures. Context exposures are depicted for the case 
where the first experienced environment (E1) is “Haight right” and the first experienced 
sequence (S1) includes the center goal. Exposures are depicted in order from left to 
right, top to bottom. 
 

Initial learning of the alternation task. Rats encounter the alternation task in a first 

environment (E1), either HL or HR, and with a first sequence of goal visits (S1), in which 

the designated home goal is either the handle or center goal (Figure 2.1A). We 

counterbalanced these assignments across rats. Once rats reached the performance 

criterion in each of two consecutive sessions, they performed an additional 2–3 

sessions at criterion. These additional sessions were intended to ensure that rats had 

learned the task well before proceeding to novel contexts.  
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Reacquisition of the alternation task in novel contexts. Rats were then exposed to the 

alternation task in a variety of novel contexts, where they reacquired the task. Rats were 

said to have reacquired the task in a novel context once they performed at criterion in 

each of two consecutive sessions. Each exposure to a novel context occurred on a new 

day, with the exception of a single novel context exposure for the first rat to perform 

experiments. Novel context exposures were started on new days to match conditions 

during initial learning of the task to the extent possible, within the constraint that rats 

would first perform “reminder” sessions in familiar contexts as described below. 

On the day of each novel context exposure, rats first performed reminder 

sessions in 1–2 familiar contexts. Rats typically performed these “reminder” sessions at 

criterion, but in the event they did not, they continued performing sessions in the familiar 

context until reaching criterion. These reminder sessions were meant to facilitate the 

study of memory generalization in two ways. First, we reasoned that for rats to 

generalize a memory of the task, they must have a memory of the task. We viewed rats 

performing at criterion as suggesting they maintained a memory of how to perform the 

task. Second, the reminder sessions facilitated the comparison of neural activity in 

familiar and novel contexts by increasing the chance of monitoring the same units 

across contexts due to close temporal proximity. Following reacquisition of the task in a 

novel context, in the next session rats entered a post-reacquisition phase in which they 

switched between familiar and novel contexts. Sessions from this phase allow 
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comparison of task representations across familiar and novel contexts following 

learning.  

The first context in which rats reacquired the previously learned task consisted of 

the previously learned sequence (S1) in a novel environment (E2) (Figure 2.1B). For 

each rat, E2 was the environment among HL and HR that had not yet been 

encountered. Upon reaching criterion in the novel context, rats performed S1 in E1 and 

S1 in E2 on alternating sessions until reaching a performance criterion of 80% correct in 

two consecutive sessions, one in each environment (Figure 2.1C). Rats next learned S2 

in E1 (Figure 2.1D). Upon reaching criterion, rats performed S1 in E1 and S2 in E1 on 

alternating sessions until reaching a performance criterion of 80% correct in two 

consecutive sessions, one on each sequence (Figure 2.1E). Rats were then exposed to 

S2 in E2 (Figure 2.1F). Upon reaching criterion, rats entered a multi-day period in which 

they switched among all four contexts according to several rotations (Figure 2.1G). 

Rotation 1 is defined as E2S1, E1S1, E1S2, E2S2. Rotation 2 is defined as E2S1, 

E2S2, E1S2, E1S1. Rotation 3 is defined as E2S1, E1S2, E2S2, E1S1. Rotation 4 is 

defined as E2S1, E1S1, E2S2, E1S2. Rats cycled twice through rotation 1, twice 

through rotation 2, once through rotation 3, and once through rotation 4.   

Rats next learned to perform the task as the designated home goal reversed 

within a single session (Figure 2.1H). In this variant of the task, the home goal changed 

following eight consecutive correct trials. Across sessions, the environment and which 

sequence was operative first were varied. Rats completed this stage after encountering 

this reversal variant of the task in all sessions of a single day. 
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Rats next reacquired the first experienced sequence (S1) in a third novel 

environment (E3) located in a second room (Figure 2.1I). Upon reaching criterion, rats 

performed S1 in E1, E2, and E3 until reaching a performance criterion of 80% correct in 

three consecutive sessions, one in each environment (Figure 2.1J). Rats next 

reacquired S2 in E3 (Figure 2.1K). Upon reaching criterion, rats performed S2 in E1, E2, 

and E3 until reaching a performance criterion of 80% correct in three consecutive 

sessions, one in each environment (Figure 2.1L). Next, rats rotated among all six 

contexts in the order: E1S1, E2S2, E3S1, E1S2, E2S1, E3S2, repeating this three times 

(Figure 2.1M). Rats subsequently performed the variant of the task with the designated 

home well reversing within a session across environments for several days (Figure 

2.1N). 

 

Histology. Rats were deeply anesthetized with isoflurane, and electrolytic lesions were 

made at the ends of tetrodes. A day or more later, rats were deeply anesthetized with 

isoflurane, euthanized via injection of 1mL euthasol, and perfused with 4% 

paraformaldehyde (PFA). The head was placed in 4% PFA. After approximately one 

day in PFA, the brain was extracted and placed in 4% PFA for an additional day. The 

brain was then transferred to a sucrose solution for approximately five days for 

cryoprotection, then sliced in 60–80-micron coronal sections on a cryostat. 

Immunohistochemistry was performed to facilitate visualization of electrode tracts. 

Hippocampal sections were stained with 4’,6-diamidino-2-phenylindole (DAPI) and 

cresyl violet or fluorescent Nissl (NeuroTrace 435/455 Blue, ThermoFisher). OFC and 



 32 

mPFC sections were stained to visualize glial fibrillary acidic protein (GFAP) (primary 

antibody: mouse anti-GFAP antibody, Sigma-Aldrich; secondary antibody: donkey anti-

mouse Alexa 594 antibody, ThermoFisher), and with fluorescent Nissl and DAPI. 

Stained sections were visualized using fluorescence or light microscopy (Nikon Ti-E 

Microscope) (Figure 2.2). We estimated the locations of electrodes by aligning sections 

containing tracts to the Paxinos and Watson rat brain atlas (6th edition)90.  

 

Figure 2.2: Histological identification of electrode sites. Fluorescence (mPFC and 
OFC) and brightfield (HPc) imaging of histological sections containing electrode tracts 
from one rat. Arrows point to tracts (mPFC and OFC) or a lesion site (HPc). 
 
Data acquisition. Neural data (electric potential at polymer probe and tetrode contacts 

relative to a ground screw placed over the cerebellum) and behavioral events (infrared 

beam breaks at reward wells and syringe pump triggers) were continuously sampled at 

30 KHz using a Spike Gadgets acquisition system. Video of behavior was obtained from 

an overhead camera at a rate between 41–50 frames per second. A set of red and 

green LEDs was mounted on the rat’s head and used to track position.  
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Data Processing 

Position tracking. The centroid of red and green LEDs was estimated using an offline 

tracking algorithm (SpikeGadgets). Head position measurements were obtained through 

smoothing and interpolation of these centroids over time. 

 

Spike sorting. Spike sorting was performed to identify putative spikes of single neurons 

(“single-units”). In preparation for spike sorting, hippocampal tetrode recordings were 

referenced to a tetrode targeted to corpus callosum and bandpass filtered between 600 

and 6000 KHz. Cortical recordings from 128 channel polymer probes were referenced 

to the median of recording traces on the same shank and bandpass filtered between 

300 and 6000 KHz. Putative artifact times were identified as the two milliseconds 

around times when voltage exceeded 8 standard deviations or 500 mV on over one 

quarter of channels, and these times were excluded. 

We performed spike sorting using MountainSort4, an automated spike sorting 

algorithm91. For hippocampal recordings, units were identified across tetrodes across 

concatenated run sessions within a day. For 128 channel polymer probes, units were 

identified in neighborhoods of channels within 115 microns of each other across 

concatenated run and sleep sessions within a day. 

A first round of curation was performed on the units identified by MountainSort4 

in an automated fashion using metrics calculated in SpikeInterface92. Units with metrics 

exceeding any of the following thresholds were rejected: a nearest neighbor noise 
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overlap of 0.03, an interspike interval violation ratio of 0.0025, and a time shift in the 

waveform peak of two samples91,92.  

A second round of curation was performed on the remaining units to further 

improve the identification of single-units. This round of curation involved visual 

inspection and had two objectives. First, different units that appeared to correspond to a 

single neuron whose spikes had been incorrectly split during spikesorting were merged. 

Second, individual units that appeared to correspond to more than one neuron were 

excluded. In the case of merging units that appeared to have been incorrectly split, we 

identified putative instances of two scenarios: the spikes of a single bursting neuron split 

into two clusters, and the spikes of a non-bursting neuron split into two clusters.  

To identify unit pairs putatively corresponding to a single bursting neuron, we 

visually inspected unit pairs that met three criteria: 1) cosine similarity of average 

waveforms > 0.6; 2) interspike interval violation ratio less than 0.1; 3) cross correlogram 

constructed from spikes occurring within 100ms of each other has at least 100 spikes 

and meets an asymmetry criteria: the ratio of the sum of the density on the side of the 

correlogram with the greatest density and half the density at zero, to the total density, is 

greater than 0.6, and 4) the average waveform of the unit that tends to spike first versus 

second within a 200ms window has the larger peak amplitude. Of these candidate unit 

pairs, those whose spikes appeared to belong to a single neuron exhibiting successive 

bursts of spikes with decrementing amplitudes within tens of milliseconds were merged. 

Second, to identify remaining cases of unit pairs that appeared to correspond to 

a single neuron, we visually inspected unit pairs with: 1) similarly shaped waveforms as 
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indicated by a cosine similarity of average waveforms of the two units greater than 0.7; 

2) interspike interval violation less than 0.1; 3) cross correlogram constructed from 

spikes occurring within 100ms of each other has at least 100 spikes; 4) waveform 

amplitude densities have an overlap93 greater than 0.7. Unit pairs that appeared to 

correspond to a single neuron were merged.  

A very small number of units that did not pass these criteria, but appeared to 

correspond to a single neuron, were also merged. A third and final round of curation 

was performed on the resulting units using the same procedure employed during the 

first round of curation. Finally, units for which the maximal amplitude across waveforms 

occurred on a waveform measured on a channel outside of a target region 

(hippocampus, dorsomedial PFC including mPFC and ACC, and OFC) were excluded. 

The remaining units were used in downstream analyses. 

 

Data analysis 

Software. Analyses were performed in Python 3.7. Analysis pipelines were constructed 

using Datajoint94. 

 

Data inclusion. In this report, we focus on patterns of activity in dorsal mPFC, OFC, and 

HPc once rats have learned the task well. In one rat, the tetrode drive was found to 

have been placed too anteriorly, resulting in a large fraction of tetrodes mistargeted to 

areas anterior to the HPc. Due to concerns about the extent to which this data was 

representative of HPc, we excluded this data. For each rat, we included run sessions in 
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one day during which animals rotated among the four contexts in the first room (E1S1, 

E2S1, E1S2, E2S2) (6–8 run sessions per rat) (Figure 2.1G). By this time, rats were 

performing the task well above chance (Figure 2.3). 

 
Figure 2.3: Task performance. Percent of trials performed correctly in the behavioral 
sessions analyzed in this work. Marker shapes correspond to individual rats and lines 
connect consecutive run sessions in a day. 
 

Single-unit inclusion. All recorded units with an average firing rate of at least 0.1 Hz in 

the session being analyzed were included in analyses. 

 

Statistics. We employed a hierarchical bootstrap procedure95 to test for statistical 

significance and generate confidence intervals. The hierarchical bootstrap procedure 

provides a way to leverage power from repeated measurements at multiple levels of a 

dataset without increasing the rate of false positives95. The procedure consists of 

resampling with replacement at each level, then recomputing the test statistic of 

interest. This procedure is repeated several times to produce a “bootstrap distribution” 

of values that mimics what one may have observed from repeating an experiment 

several times. The 1 − 	𝛼	confidence interval of the test statistic is formed from the 

𝛼/2	and 1 − 	𝛼/2	percentiles of the bootstrap distribution.  
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To test for a significant difference between two group means, we performed the 

above hierarchical bootstrap procedure using the difference in group means as the test 

statistic and drawing one thousand bootstrap samples. A difference was deemed 

significant if the 1 − 	𝛼	confidence interval of the resulting bootstrap distribution did not 

contain zero. To provide information about the strength of significance, we report the 

smallest significance level among 𝛼 = 0.05, 0.01, 0.001, 0.0001	at which results were 

significant. Confidence intervals shown in plots were constructed using a significance 

level of 𝛼 = 0.05. 

 

Definition of goal arrival and departure. Arrival to a goal location was identified as the 

start of the first “down” state of the digital input detecting infrared beam breaks at the 

goal location, following a down state at another goal location. Departure from a goal 

location was identified as the end of the final down state at the location, prior to a down 

state at another goal location. 

 

Trials. We define a trial as the time from the departure at one well to the departure at 

another well. We consider subsets of trials that correspond to distinct behavioral 

periods, as described in Task periods. When clear from context, we refer to these 

subsets as trials.  

 

Task periods. For the purposes of analysis, we divided each trial into three task periods. 

The “path traversal” period begins upon a subject’s departure from a goal location and 
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ends upon their arrival at a different goal location. The “delay” period begins upon 

arrival to a goal location and ends 2s later. At this time, a milk reward is delivered if the 

goal visit was correct. The “post-delay” period begins at the end of the delay period and 

ends when a subject departs from the goal location. 

 

Task progression. During path traversals, we define task progression as the fraction of 

path rats have traversed. During the delay period, we define task progression as the 

time elapsed following goal arrival. During the post-delay period, we define task 

progression as the relative time between the end of the 2s delay period and departure 

from the goal location. 

 

Unit order in Figure 2.4E. In Figure 2.4E, simultaneously recorded units from each brain 

region were sorted in ascending order by the location of average peak firing during a 

concatenation of the average firing rate in a session during traversals along the shown 

path, delay periods at the shown goal, and post-delay periods at the shown goal. For 

path traversals, we found the average firing rate in bins spanning 5% of total path length 

(approximately 3.65 cm) and convolved this with a Gaussian kernel of the same width. 

For the 2s-delay period, we found the average firing rate in 100ms bins spanning the 

delay period and convolved this with a 100ms Gaussian kernel. For the post-delay 

period, we found the firing rate in 100ms bins that spanned the period from 2s after goal 

arrival to departure and convolved this with a 100ms Gaussian kernel. Since this post-

delay period can be of variable length depending on how long rats stay at the goal, we 
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converted time in each trial to the fraction of time elapsed between the end of the 2s 

delay period and departure from the goal. To form the firing rate map, we interpolated 

firing rate at twenty evenly spaced locations on this relative time axis. 

 

Firing rate vectors. Population-level analyses, including principal component analysis 

(PCA), UMAP embeddings, and neural state trajectory analyses, were performed on 

vectors of single-unit firing rates estimated every 100ms. Single-unit firing rates were 

estimated by convolving spike times with a 100ms Gaussian kernel. To check 

robustness of results to z-scoring in Figure 2.12, single-unit firing rates were z-scored 

prior to forming firing rate vectors. 

 

PCA of population activity. PCA was performed on firing rate vectors spanning 

individual behavioral sessions (Figure 2.5). For each brain region, the smallest number 

of principal components (PCs) needed to explain at least 80% of the variance in the 

data was identified (Figure 2.5A). The mean and associated 95% confidence intervals of 

this number across rats and sessions were found (Figure 2.5B). To assess how this 

number varies with ensemble size, we recomputed the number after randomly 

subsampling units without replacement to obtain ensemble sizes ranging from 5 to the 

number of units recorded in the brain region (Figure 2.5C).  

 

UMAP embeddings. We used Uniform Manifold Approximation and Projection (UMAP) 

to visualize two-dimensional non-linear embeddings of the high-dimensional neural 
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activity space in which each axis corresponds to the firing rate of a single-unit96. UMAP 

embeds high-dimensional data in a lower dimensional space with the goal of preserving 

the local distance relationships between nearby data points. We embedded firing rate 

vectors (see Firing rate vectors) spanning single behavioral sessions.  

We colored embedded neural states to visualize their organization with respect to 

task variables of interest, including task progression and path context (Figure 2.6, 

Figure 2.7). We visualized these variables separately in each of the three task periods. 

We defined task progression during each period as above (see Task progression). We 

defined path context during path traversals as the identity of the path the rat was on, 

and during the delay and post-delay periods as the identity of the path the rat had taken 

to the current goal. To obtain colors representing task progression, we discretized task 

progression values in one hundred equally spaced bins and mapped these to one 

hundred values from the jet color map. To obtain colors representing path context, we 

mapped path identity to a predefined color. 

 

Method for estimating levels of generality in single-unit representations of task 

progression. 

Overview. Progression through task periods occurs within distinct spatial contexts 

provided by the different paths and goal locations in a maze. In principle, single-unit 

representations of these progressions may be similar ("generalize”) across any number 

of the distinct contexts. For instance, a single unit may exhibit characteristic firing rate 

modulations over the course of the delay period at a subset of goal locations. We use 
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the term “level of generality” to refer to the number of spatial contexts across which 

representations of task progression are invariant. Given 𝑁 contexts, there are 𝑁 levels 

of generality, one for each number from 1,… ,𝑁. At each level of generality, the number 

of ways to show generalized activity patterns across contexts is given by the binomial 

coefficient:  

𝑁!
𝑘! (𝑁 − 𝑘)!	 

where 𝑁 is the number of available contexts and 𝑘 is the number of contexts 

generalized across, i.e., the level of generality. 

We aimed to estimate the extent to which representations at different levels of 

generality contributed to single-unit representations of task progression. One approach 

to this could be to directly model single-unit firing as a function of covariates that 

represent task progression at distinct levels of generality. For instance, using a 

generalized linear model (GLM) framework, single-unit firing could be modeled as a 

function of a linear combination of covariates representing task progression at particular 

levels of generality. The fit coefficients for these covariates could be considered as 

reflecting contributions of representations of task progression at distinct levels of 

generality to the single unit firing. A potential pitfall of this approach, however, is that 

covariates at nearby levels of generality are likely to be correlated, and collinearity is a 

known challenge for coefficient estimation.  

We therefore took an alternative approach to estimate the levels of generality in 

single-unit representations of task progression. Our approach relies on the idea that if 

the firing of a single unit represents task progression in the same manner across a 
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subset of contexts, then a model of the unit activity trained in any context in the subset 

should perform equally well in predicting activity in the other contexts in the subset, and 

perform poorly in predicting activity in contexts outside the subset. Consequently, 

distinct patterns of generalized representation across contexts should manifest as 

distinct patterns of cross-context model performance. From the observed pattern of 

cross-context model performance, we can estimate the contribution of representations 

at distinct levels of generality to single-unit representations.  

To implement this approach, we first model the firing rates of individual units as a 

function of task progression in each context using a GLM and quantify the extent to 

which models trained in one context predict firing in others. We then model the pattern 

of cross-context generalization as a positive linear combination of patterns each 

reflecting generalization of firing across a particular subset of contexts. We consider the 

resulting coefficient for each pattern to be an estimate of its contribution to the observed 

single-unit representation of task progression. We describe this approach in detail next.  

 

GLM of single-unit firing as a function of task progression. We modeled single-unit firing 

as a function of task progression using an established GLM framework97–100. In the 

framework, spikes are assumed to be derived from a Poisson process with a time-

varying rate parameter that is function of a linear combination of covariates at each 

time. The function is chosen to be the exponential function with base 𝑒, which serves to 

guarantee that the rate parameter will be positive, as is required for the Poisson 

distribution. The rate parameter λ is thus: 
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λ 4𝑐!, … , 𝑐", 𝑥!(𝑡), … , 𝑥"(𝑡)8 = 	 𝑒
∑ $!%!(')
"
!#$  

where 𝑥)(𝑡) is the jth covariate at time t and 𝑐) is the coefficient for the jth covariate. 

We built separate GLMs to predict firing during the path traversal and delay 

periods. We defined sets of covariates to capture task progression in each case using a 

raised cosine basis as described in Park et al.99. Compared to an indicator basis that 

represents the presence or absence of the rat in task progression bins with a binary 

variable, the raised cosine basis allows us to model task progression with relatively 

fewer covariates, which is expected to reduce overfitting. For GLMs of task progression 

during the path traversal period, we defined fourteen evenly spaced raised cosine 

bumps along each of the four potentially rewarded paths, for a total of 56 covariates. 

For GLMs of task progression during the delay period, we defined fourteen evenly 

spaced raised cosine bumps across the time in the delay at each of the three potentially 

rewarded goals, for a total of 42 covariates. 

We trained and tested GLMs using the statsmodels python package101. During 

training, Broyden–Fletcher–Goldfarb–Shanno optimization102 was used to find 

coefficients 𝑐!, … , 𝑐" that minimize the following cost function given a set of spike counts 

and covariates in 20ms time bins:  

−
𝑙
𝑛 + 𝛼

∑ 𝑐)*
"
)+!

2  

In the first term, 𝑙 is the model log likelihood and 𝑛 is the number of observations, which 

in our case is the number of time bins in the training set. The second term is an L2 

penalty that we included to improve stability during training. In this term, 𝑐) is the 

coefficient for the jth covariate, and 𝛼 is a free parameter that scales the impact of the 
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regularization term on the overall cost. We set 𝛼 = 0.00005. During testing, a trained 

model was used to predict spike counts based upon on covariate values in 20ms time 

bins. 

 

Training and testing GLMs across contexts.  

For path traversals and the delay periods at goal locations, we trained a model in each 

context and tested that model in the same and every other context. During path 

traversals, we defined context as path identity. During delay periods, we defined context 

as goal identity. For computational tractability, we considered only the subset of paths 

and goals that could yield reward according to the variant of the alternation task 

operative in a given session (“potentially rewarded”).  

These analyses were performed across data from many trials, where each trial 

corresponds to distinct traversals of a path in the case of the path traversal period, and 

distinct 2s-delays at a goal in the case of the delay period. When testing a model in the 

same context as that in which it was trained, we performed leave one out cross 

validation: we tested each trial on a model trained on all but that trial. We then 

combined results across trials. When testing a model on a different context from that in 

which it was trained, we tested on all trials from one context using a model trained on all 

trials from the other context. 

For each pair of train and test context, we quantified model performance as the 

Pearson correlation coefficient between predicted and actual firing rates. We chose this 

metric as it in part reflects the informativeness of unit firing about progression through 
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the task period. As an extreme example of this, a cell that fires during a task period but 

exhibits no reliable modulations will have a low correlation value. By contrast, an area-

based measure would yield a high value for such a cell. With regard to our dataset, this 

is particularly relevant for prefrontal cortex neurons as these tend to have nonzero 

baseline firing rates, resulting in high area-based values even when no significant 

modulations in firing rate are present. 

To obtain firing rates, we convolved spike counts with a 100ms Gaussian kernel. 

We found the average and associated 95% confidence intervals of the correlation 

between predicted and actual firing rates for each brain region during the path traversal 

and delay periods across the following levels: rats, sessions, and contexts (Figure 2.9). 

 

Estimation of levels of generality in single-unit representations. 

For each single-unit, we approximated the vector of model performance values for pairs 

of train and test contexts with a positive linear combination of basis vectors that together 

capture all possible subsets of contexts across which a representation could generalize 

(Figure 2.10): 

𝑣, ≈?𝑎-𝑥-

.

-+!

	 

where 𝑣, is the observed vector of correlation coefficients between actual and predicted 

firing rates for each possible pair of train and test contexts for unit 𝑖, 𝑥- is the vector of 

correlation coefficients between actual and predicted firing rates for each possible pair 

of train and test contexts given generalization across the bth subset of contexts, 𝑎- are 
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positive coefficients, and 𝐵 is the total number of bases. The total number of bases is 

the sum of the number of ways to generalize across contexts at each level of generality: 

	𝐵 = ?
𝑁!

𝑘! (𝑁 − 𝑘)!

/

0+!

	 

where 𝑁 is the total number of contexts. 

Each basis contains model performance values that would be expected given a 

perfectly reliable representation of task progression that generalizes across a particular 

subset of contexts. Specifically, a basis that represents generalization of a task 

progression representation across exactly 𝑗 contexts would have model performance 

values of one for train/test pairs formed from the 𝑗 contexts, and model performance 

value of zero for any other train/test pair. 

To approximate 𝑣,, the observed vector of correlation coefficients between actual 

and predicted firing rates for pairs of train and test contexts for unit 𝑖, as a positive linear 

combination of basis vectors, we used non-negative least squares. To aid interpretation, 

we scaled the fit coefficients for each basis vector. Specifically, we multiplied each 

coefficient by the number of contexts to which it applies, and divided by the number of 

contexts in which there was at least one spike. As an illustration of the utility of this, 

consider two units that both represent task progression across all four possible path 

contexts, but in distinct ways. The first unit exhibits different firing rate patterns along 

different paths, whereas the second unit exhibits the same firing rate pattern along 

different paths. The first unit would have a coefficient of one for each of the four basis 

vectors corresponding to representation of a single context, resulting in a sum of 

coefficients of four. By contrast, the second unit would have a coefficient of one for the 
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single basis vector that corresponds to generalized representation across the four 

paths. After scaling coefficients as above, the two units would both have a coefficient 

sum of one, which accords with our intuition that both units reliably represent task 

progression across the maximum number of contexts. 

Prior to performing this estimation, we set the prediction value to zero for pairs of 

train and test contexts for which no spikes occurred in the train context, to reflect the 

fact that no information about the testing context should be available from the training 

context. Similarly, for pairs of train and test contexts for which no spikes occurred in the 

test context, we set the prediction value to zero to reflect the fact that there are no 

events in the test context to predict. 

We performed the above procedure for each unit. We show the resulting scaled 

coefficients for an example recording (Figure 2.8G). We also found the mean and 

associated 95% confidence intervals of scaled coefficients within each brain region and 

level of generality across sessions and rats (Figure 2.8H).  

 

Single-trial firing rate maps. In Figure 2.8A–C, we computed single-trial firing rates as a 

function of path fraction in 20 bins spanning the path (approximately 3.65 cm bin width) 

and convolved the resulting values with a Gaussian kernel of the same width. In Figure 

2.8D–F, we computed single-trial firing rates as a function of time in the delay period in 

100ms bins and convolved the resulting values with a 100ms Gaussian kernel. 
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Examination of the geometry and dynamics of population-level neural activity.  

We examined the geometry and dynamics of the population-level neural activity during 

task progression within the high-dimensional space in which each axis corresponds to 

the firing rate of a single-unit. We examined geometry in terms of the Euclidean 

distances between neural states and dynamics in terms of the directions in which neural 

states evolved. 

 First, we approximated the neural trajectory during task progression using a 

piece-wise linear curve103. The curve consists of straight line segments joined end to 

end. To define the curve, we specify the “knots”: the locations where two line segments 

intersect. We define the knots in terms of the activity within task progression bins as 

follows. We define ten bins of equal width spanning each path, and ten bins of equal 

width spanning the relative time in the delay period at each goal location. We define 

knots as the average of consecutive neural states within each of these bins. The series 

of these knots over time and the line segments that connect them comprise the curve. 

 

Comparison of average dynamics across neural state trajectories along distinct paths. 

To test the hypothesis that the dynamics of neural state trajectories are more similar 

along paths with the same versus a different set of turn directions, we compared the 

direction in which neural states evolved from one task progression bin to the next on 

average (Figure 2.11A). Specifically, we found the average of the difference vectors 

along each path that connect each pair of contiguous task progression bins and 

computed the cosine similarity of average difference vectors at corresponding path 
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progressions along paths that did or did not share the same set of turn directions, with 

the exception of pairs of paths that branched from a common maze segment which we 

excluded in order to avoid confounding by spatial tuning. The cosine similarity between 

two vectors 𝑎 and 𝑏 is: 

𝑎 ⋅ 𝑏
||𝑎||	||𝑏|| 

where ⋅ is the dot product, and || ⋅ || denotes vector length.  

For each brain region and rat, we found the average and associated 95% 

confidence intervals of the cosine similarity of difference vectors across path pairs and 

sessions (Figure 2.11B, Figure 2.12). To summarize results across rats, we found the 

average and associated 95% confidence intervals of the cosine similarity of difference 

vectors in the first, middle, and last third of paths across path pairs, sessions, and rats 

(Figure 2.11C). 

 

Quantification of the consistency of neural state dynamics during task progression. To 

quantify the consistency in the neural state dynamics as a function of task progression 

across trials, we computed the cosine similarity between pairs of difference vectors 

separated by more than ten seconds occurring at a given position in the task 

progression along each path or in the ensuing the delay period (Figure 2.14A). We 

found the average of this measure and associated 95% confidence intervals for each rat 

and brain region across contexts and sessions (Figure 2.14B).  
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Quantification of the consistency of neural state geometry during task progression. To 

quantify the consistency in the neural state geometry as a function of task progression 

across trials, we computed the Euclidean distances between firing rate states within the 

same and different task progression bins separated by at least 10s. We did this 

separately for path traversals and the ensuing the delay periods (Figure 2.15A). An 

example of the resulting values is shown for an individual session (Figure 2.15B). To 

compare the distances of neural states within the same task progression bin to those in 

different task progression bins, we defined a “similarity metric” as one minus the ratio of 

these distances. A greater value indicates that states in the same task progression bin 

tend to be closer in comparison to those in different task progression bins. For each rat 

and brain region, we found the average of this similarity metric and associated 95% 

confidence intervals across paths and sessions (Figure 2.15C). 

 

Population decoding. We decoded task progression during path traversals or the delay 

period using a previously published Bayesian state space model104. Separately for the 

path traversal and delay period, we decode each trial using held out trials. In each case, 

we defined a set of contiguous 2ms time bins that spanned trials, denoted as 𝑡!, … , 𝑡1 

where 𝑡0 is the kth time bin. We define latent variable 𝑥0 that correspond to the neural 

representation of task progression at 𝑡0. For the purposes of algorithm fitting, we scaled 

task progression to have similar range to linear position, which was the original use 

case for the algorithm. We perform the inverse scaling on the algorithm output to display 

results on the original scale of task progression.  
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We define 𝐼0, a discrete latent variable that denotes whether the neural 

representation of task progression evolves according to continuous or fragmented 

dynamics. The model simultaneously estimates the posterior probability of task 

progression and the dynamics: 𝑝(𝑥0 , 𝐼0 	|	𝑂!:1) where 𝑂!:1 is the set of observed spike 

counts in each time bin from 1 through T. The estimation is carried out via a pair of 

equations. First, we apply a causal filter equation, beginning with initial conditions 

𝑝(𝑥3, 𝐼3)	and recursively iterating from 𝑡! to 𝑡1: 

𝑝(𝑥0 , 𝐼0 	|	𝑂!:0) 	

∝ 𝑝(𝑂0|	𝑥0 , 𝐼0)? K𝑝(𝑥0 	|	𝑥04!, 𝐼0 , 𝐼04!)𝑃𝑟(𝐼0 	|	𝐼04!)
5%&$

𝑝(𝑥04!, 𝐼04!	|	𝑂!:04!)𝑑𝑥04! 

Second, we apply an acausal smoother equation, recursively iterating backwards in 

time from 𝑡1 to 𝑡!: 

𝑝(𝑥0 , 𝐼0 	|	𝑂!:1) 	

∝ 𝑝(𝑥0 , 𝐼0 	|	𝑂!:0)	? K
𝑝(𝑥06!	|	𝑥0 , 𝐼06!, 𝐼0)𝑃𝑟(𝐼06!	|	𝐼0)

𝑝(𝑥06!, 𝐼06!	|	𝑂!:0)5%'$
	𝑝(𝑥06!, 𝐼06!	|	𝑂!:1)𝑑𝑥06! 

where: 

𝑝(𝑥06!, 𝐼06!	|	𝑂!:0) =? K𝑝(𝑥06!	|	𝑥0 , 𝐼06!, 𝐼0)𝑃𝑟(𝐼06!	|	𝐼0)
5%

𝑝(𝑥0 , 𝐼0 	|	𝑂!:0)𝑑𝑥0 

Four quantities must be defined or estimated in order to specify this model: the initial 

conditions 𝑝(𝑥3, 𝐼3), the dynamics movement model 𝑃𝑟(𝑥0 	|	𝑥04!, 𝐼0 , 𝐼04!), the dynamics 

transition matrix 𝑃𝑟(𝐼0 	|	𝐼04!), and the likelihood of the observations 𝑝(𝑂0 	|	𝑥0 , 𝐼0). To 

reflect our lack of prior knowledge about the initial latent positions and dynamics, we 

define the initial latent positions and initial dynamics as uniformly distributed:  
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𝑝(𝑥3, 𝐼3) = 	
1

𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒	𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑠 𝑈(min 𝑥 ,max 𝑥) 

where 𝑈 denotes the uniform distribution.  

The neural representations may evolve with distinct dynamics. The algorithm 

aims to model this explicitly. Two dynamics are specified that respectively capture 

continuous and non-continuous evolution of task progression. In the “continuous” 

dynamic, the next latent variable value is normally distributed around the current latent 

variable value. In the “fragmented” dynamic, the next latent variable value is uniformly 

distributed over all possible values of the latent variable. We assume that we have no 

information about the value of the latent variable when transitioning to or from the 

fragmented state, which we capture using the fragmented dynamic. These choices are 

reflected in the dynamics movement model: 

Pr(𝑥0 	|		𝑥04!, 𝐼0 , 𝐼04!) = 	 ]
𝑁(𝑥04!, 6.0) 𝑈(𝑚𝑖𝑛	𝑥,𝑚𝑎𝑥	𝑥)

𝑈(𝑚𝑖𝑛	𝑥,𝑚𝑎𝑥	𝑥) 𝑈(𝑚𝑖𝑛	𝑥,𝑚𝑎𝑥	𝑥)_	 

with row indices corresponding to 𝐼04! = [𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠, 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑒𝑑] and column indices 

corresponding to 𝐼0 = [𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠, 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑒𝑑]. We define the dynamics transition 

matrix to reflect the prior expectations that dynamics last 100ms on average, and that 

there is a small probability of changing to other dynamics: 

Pr(𝐼0 	|	𝐼04!) = 	 c
0.98 0.02
0.02 0.98f 

with row indices corresponding to 𝐼04! = [𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠, 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑒𝑑] and column indices 

corresponding to 𝐼0 = [𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠, 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑒𝑑]. 

We compute the likelihood of observations 𝑝(𝑂0 	|		𝑥0 , 𝐼0) using an encoding 

model: 
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𝑝(𝑂0 	|		𝑥0 , 𝐼0) 	∝ 	g(𝜆,(𝑡0|𝑥0)Δ0)
/(%
)

7

,+!

𝑒48)('%|%%):% 

where 𝑁'%
, represents a spike in time bin 𝑘 from cell 𝑖, Δ0 is the size of the time bin, and 

𝜆,(𝑡0|𝑥0) is the instantaneous firing rate of cell 𝑖 given 𝑥0. We estimate 𝜆,(𝑡0|𝑥0) through 

kernel density estimation. We perform decoding using leave one out cross validation on 

trials during the path traversal or delay periods. 
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2.3 Results 

We recorded from large ensembles of neurons in the mPFC, OFC, and HPc as rats 

performed a spatial alternation task (Figure 2.4). In the task, rats are rewarded for 

traveling between goal locations according to an alternation rule (Figure 2.4A). Subjects 

perform the task within different environments and with distinct sets of goal locations 

within the same environment (Figure 2.4C).  

Figure 2.4: Multisite recordings in rats performing a cognitive task. A: Alternation 
rule. Rats receive a milk reward at a designated “home” goal from the “left” or 
“right” goals, and at the least recently visited of the left and right goals from 
the designated home goal. A sequence of correct well visits according to this rule is 
illustrated with home A as the designated home goal. B: Task periods defined for the 
purpose of analysis. The “path traversal” period begins upon departure from a goal 
location and ends upon arrival at a different goal location. The “delay” period begins 
upon arrival at a goal location and ends 2s later. At the end of this period, a milk reward 
is delivered if the correct goal location had been visited. The “post-delay” period begins 
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at the end of the delay period and ends upon departure from the goal location. C: After 
learning the alternation rule in a first environment and with an initial designated home 
goal, rats reacquire the rule in novel environments and with a different designated home 
goal. D: Recording sites. E: Spike times from simultaneously recorded HPc, mPFC, and 
OFC units during one trial of a 20-min behavioral session. 

 

Figure 2.5: Principal component analysis of population activity. A: Cumulative 
variance explained as a function of the number (bottom axis) or fraction (top axis) of 
PCs, for HPc (top), mPFC (middle), and OFC (bottom) firing rate vectors during a 20-
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min behavioral session. Vertical lines mark the smallest number of PCs needed to 
explain at least 80% of the variance. Horizontal lines mark the corresponding variance 
explained. B: Fraction of PCs needed to explain at least 80% of the variance in single 
sessions (markers) or on average across sessions and rats (horizontal lines) 
(associated 95% confidence intervals shown with vertical lines). C: Fraction of PCs 
needed to explain at least 80% of the variance as a function of subsampled ensemble 
size, shown for one representative session from each rat. 

For this study we focused on activity recorded once animals were familiar with 

the environments and the task, allowing us to understand the relationship between 

neural activity and behavior under conditions of minimal behavioral variability (See Data 

Inclusion in methods). 

We first set out to identify the key task-related variables represented in each 

region. In the context of recordings from large populations of neurons, the current 

standard approach is to use a linear dimensionality reduction technique such as PCA to 

identify a low-dimensional subspace of activity that can be visualized and that captures 

the majority of the variance in neuronal firing rates over time105,106. We therefore began 

by measuring neuronal firing rates in 100ms bins throughout each run session on the 

track and applied PCA to these data.  

We found that the neural firing patterns in our task were not low dimensional 

(Figure 2.5). Instead, the number of dimensions required to explain 80% of the variance 

in the data grew approximately linearly with the number of neurons measured in a given 

region (up to ~250). Given the absence of a clear low-dimensional subspace that could 

be derived from linear methods, we turned to a method that can capture low-

dimensional, non-linear structure in the data, UMAP (uniform manifold approximation 

and projection96), to gain insight into the structure of the neural activity patterns. UMAP 

produces lower dimensional spaces wherein the relative distances among points are 
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preserved to the greatest extent possible. As such, firing rate vectors that are close 

together in the full neural firing rate space are mapped to lower dimensional vectors that 

remain close together. 

Applying a 2D UMAP to the same firing rate vectors revealed striking differences 

in the structure of embedded neural population activity in relation to the task across 

brain areas. Examining these visualizations led us to divide each trial into three non-

overlapping periods (path traversal, defined as the time from when the animal left one 

reward well and arrived at another; delay, defined as the two second period beginning 

at arrival to a reward well and terminating, on rewarded trials, at the time of reward 

delivery; and post-delay, defined as a the time from the end of the delay until the animal 

left the reward well). Here we show 2D embeddings color coded to reflect the 

progression of firing rate vectors across each of these periods (Figure 2.6). 

As expected from the well-established spatial and directional specificity of 

hippocampal “place cells”7, embedded HPc activity was primarily organized around a 

subject’s physical location and direction of travel. This organization persisted during the 

delay period and to some extent following the delay, with an additional progression 

consistent with the transition from movement- to immobility-related place activity107,108. 

By contrast, embedded mPFC and OFC activity was chiefly organized around the 

trial structure and the associated journey from one goal location to another (Figure 

2.6A). Within this global organization, embedded neural states in both areas diverged 

along paths that required distinct turn sequences (Figure 2.6B). Thus, within the overall 

task-related progression, there appeared to be a nested representation of the actions 



 58 

required to reach goals. These findings suggested a first organizational principle: that 

both mPFC and OFC show hierarchical structuring of activity around journeys to goals, 

with the journey between any two goal locations represented most prominently, followed 

by representations of specific kinds of journeys.  

A close inspection of the embeddings further suggested an additional 

organizational principle. Namely, we observed a striking difference between mPFC and 

OFC subregions in when these activity patterns appeared most reliable. In mPFC, there 

was clear segregation between same turn paths along much of their extent. This 

segregation was less prominent in OFC. Conversely, in OFC, neural states appeared 

increasingly organized around task progression with proximity to the arrival at goal 

locations and into the delay period (Figure 2A). The same dynamic pattern was not 

evident in the mPFC activity (Figure 2A). This led us to hypothesize that mPFC and 

OFC might specialize to express reliable representations of task progression at distinct 

behavioral phases of the task.  

Figure 2.6: Nonlinear embedding of ensemble activity. UMAP embeddings of HPc, 
mPFC, and OFC firing rate vectors (left, middle, and right in each panel) during a single 
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behavioral session. Embedded neural states are colored according to task progression 
(A) or path identity (B) during path traversals (top), the delay period following goal 
arrival (middle) and the post-delay period (bottom). A: Embedded firing rate states are 
colored according to the fraction of any path traversed (top), time in the delay period 
(middle), and relative time in the post-delay period (bottom). B: Embedded firing rate 
states are colored according to the identity of the path rats were on (top) or had come 
from if at a goal location (middle and bottom). 

We next set out to test these hypotheses at the single-unit and population levels. 

We included data from sessions in different environments and with different goal 

locations, because the patterns we had observed in population activity embeddings 

were evident across these conditions (Figure 2.7). 

Figure 2.7: Nonlinear embedding of ensemble activity in distinct environment and 
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sequence contexts. As in Figure 2.6, UMAP embeddings of HPc, mPFC, and OFC 
firing rate vectors (left, middle, and right in each panel). Embeddings are of neural data 
from the same rat as in Figure 2.6, but from a session in a different environment (A–B) 
or with a different set of rewarded wells i.e., a different sequence (C–D). Embedded 
neural states are colored according to task progression (A, C) or path identity (B, D) 
during path traversals, the delay period and the post-delay period (top, middle, and 
bottom in each panel). 

 

Figure 2.8: Single-unit firing patterns during task performance. A–F: single-unit 
firing rate patterns in HPc (A, D), mPFC (B, E), and OFC (C, F), during path traversals 
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(A–C) and the delay period (D–F). For each single-unit, the following is shown from left 
to right: first, single trial firing rates (top) and mean firing rates across trials with 25th and 
75th percentiles of single trial firing rates (bottom) are shown for each path (A–C) or goal 
location (D–F) context. Second, the correlations between predicted and actual firing 
rates for each pair of train and test context are shown in matrix form. Third, scaled 
coefficients reflecting the estimated contribution of representations at distinct levels of 
generality are shown. For coefficients >= 0.1, corresponding contexts are abbreviated to 
the right. Mazes depict path and goal contexts. G: Stacked scaled coefficients for 
single-units from a single behavioral session, grouped by brain region. Each column 
corresponds to a single-unit. Scaled coefficients at lower levels of generality are lower in 
the stack. Within brain region, units are further grouped according to the level of 
generality estimated to contribute the most to the representation. Within this grouping, 
units are sorted by the magnitude of the scaled coefficient sum. H: Average scaled 
coefficient sum for each level of generality, for each brain region. Horizontal line and 
error bars show the mean across rats, sessions, and units and corresponding 95% 
confidence intervals. Markers show the mean across sessions and units for individual 
rats. 

We began at the single-unit level, by inspecting single-unit firing patterns along 

the journey to goal locations and following arrival at these locations. HPc units tended to 

fire in a distinct manner along different paths and at different goal locations, consistent 

with the known location and directional selectivity of HPc neurons7 and also with the 

organization around location and heading direction that we observed in the embedded 

HPc population activity (Figure 2.8A,D). By contrast, mPFC and OFC units tended to 

fire similarly across several paths or goal locations (Figure 2.8B–C, E–F).  

To quantify these observations, we used a GLM-based approach to estimate the 

extent to which representations at distinct levels of generality contribute to the observed 

firing patterns during task progression (Figure 2.10). As expected, lower levels of 

generality contribute more to HPc unit firing patterns, whereas higher levels of 

generality contribute more to mPFC and OFC firing patterns (Figure 2.8G–H). These 

biases were present during path traversals as well as following arrival at goals (Figure 

2.8G–H), suggesting their conservation across distinct behavioral phases of the task. 
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These results agree with previous reports demonstrating a relative bias towards 

context-specific representations in HPc and towards context-generalized 

representations in mPFC53,75, and further suggest a relative bias towards context-

generalized representations in the OFC. We next considered our results in relation to 

our first hypothesis that task progression is coded in a hierarchical manner across 

contexts in the mPFC and OFC. Consistent with our hypothesis, a representation of the 

journey between any two goal locations contributed the most to mPFC and OFC firing 

patterns, whereas more context-specific representations of particular kinds of journeys 

contributed less (Figure 2.8H).  

We next considered our second hypothesis, that despite a similar overall 

organization of activity, mPFC and OFC specialize to express reliable representations of 

task progression in distinct behavioral periods. To test this hypothesis, we examined the 

correlations between predicted and actual firing rates during the path traversal and 

delay periods in these areas. Consistent with our second hypothesis, correlations were 

higher in mPFC than in OFC during path traversals, whereas they were higher in OFC 

than in mPFC during the delay period (Figure 2.9). 
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Figure 2.9: Single-trial reliability of single-unit task progression representations. 
Box plots showing the distribution of correlations between actual and GLM-predicted 
firing rates across trials during path traversals (left in each panel) and the delay period 
(right in each panel) for single-units in individual contexts (paths for path traversals and 
goals for the delay period). 
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Figure 2.10: Approach to quantifying levels of generality in single-unit 
representations of task progression. Here, we illustrate the process for path 
traversals, although we performed an analogous process for the delay period. We begin 
with the spike times during individual trials along the four potentially rewarded paths in a 
behavioral session (top row). We find spike counts in 20ms bins. Using a Poisson GLM, 
we model spike counts as a function of fraction of path traversed. We quantify the 
extent to which models trained on one path can predict firing on the same and other 
paths in terms of the correlation between predicted and actual firing rates (middle row). 
We approximate the observed pattern of correlations as a positive linear combination of 
patterns reflecting representations at distinct levels of generality (bottom row, left). We 
consider the resulting coefficients an estimate of the contribution of distinct levels of 
generality to task progression representations (bottom row, right). 
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We next set out to examine our hypotheses at a population level. To do so, we 

returned to the original neural state space in which each axis corresponds to the firing 

rate of a single-unit. We began by examining our first hypothesis that representations of 

specific kinds of paths, such as those that share the same turn direction, are expressed 

by mPFC and OFC, in addition to a representation of the journey between any two goal 

locations. We examined this in terms of changes in neural state, or in other words, 

neural state dynamics. We asked whether neural state vectors evolve in more similar 

directions along paths that share the same sets of turns as compared to those that do 

not. We fit a piece-wise linear curve to the average neural state trajectory during the 

progression along each path. We quantified the similarity in average neural state 

dynamics across paths as the cosine similarity between corresponding average neural 

state difference vectors (Figure 2.11A). In both the mPFC and OFC, average neural 

state dynamics were more similar along paths that shared turn directions as compared 

to those that did not, and this difference was most prominent towards the middle of 

journeys where the turns are present (Figure 2.11B–C, Figure 2.12). However, even 

along paths that did not share turn directions, neural states proceed in similar directions 

on average towards the beginning and ends of traversals (Figure 2.11B–C, Figure 

2.12). Together, these findings suggest that at the level of average population 

dynamics, the extent to which more generalized or specific representations of journeys 

are expressed by the mPFC and OFC changes over the course of journeys. We asked 

whether the greater differences in neural state dynamics that we observed across paths 

with different turn directions were likely explainable by differences in speed along these 
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paths and concluded that this seems unlikely, as the speed profiles were not 

consistently more dissimilar along these paths relative to those with the same turn 

directions (Figure 2.13). Our findings were also robust to the use of firing rates that were 

normalized within each unit (Figure 2.12).  

 

 
Figure 2.11: Comparison of average neural state dynamics when similar or 
different actions are required to reach a goal. A: Conceptual approach. Dots depict 
average neural states along two paths. Lines depict average neural state difference 
vectors. The similarity in neural state evolution across paths is quantified in terms of the 
cosine similarity of average neural state difference vectors at corresponding positions 
along paths. Note that although this approach is schematized with three dimensions, we 
performed the analysis in the full neural state space. B: Cosine similarity of average 
difference vectors along paths with the same (dark colors) or different (light colors) turn 
directions through different spaces. The mean across path pairs and sessions and 
associated 95% confidence intervals are shown for one subject. Vertical lines mark the 
locations of maze junctions. C: Cosine similarity of average difference vectors in the 
first, second, or final third of the track. The mean across path fraction bins in a track 
segment, path pairs, sessions, and rats and associated 95% confidence intervals are 
shown. 
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Figure 2.12: Additional data for Figure 2.11. A, C: Cosine similarity of average 
difference vectors formed from non-z-scored (A) or z-scored (C) firing rates along pairs 
of paths with the same (dark colors) or different (light colors) turn directions through 
different spaces. The mean across path pairs and sessions and associated 95% 
confidence intervals are shown for each rat. B, D: Cosine similarity of average 
difference vectors formed from non-z-scored (B) or z-scored (D) firing rates in the first, 
second, and final third of the track. The mean across path pairs and sessions and 
associated 95% confidence intervals are shown for each rat. 

 

 
Figure 2.13: Speed during traversals of different paths. Mean head speed and 
associated 95% confidence intervals along potentially rewarded paths in each 
behavioral session of a day from the rat whose data is shown in Figure 2.11B. 

We next examined our second hypothesis, that mPFC and OFC express reliable 

task progression representations at distinct behavioral phases of the task. To this end, 
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we quantified the consistency in neural state dynamics and geometry during task 

progression across single trials. Beginning with dynamics, we computed the cosine 

similarity between single trial neural state difference vectors spanning the progression 

along paths or in the delay period (Figure 2.14A). Consistent with our hypothesis, neural 

state dynamics were more consistent in the mPFC during path traversals, and in the 

OFC following arrival at goal locations (Figure 2.14B). 

Figure 2.14: Single trial reliability of neural state dynamics during task 
progression. A: Conceptual approach illustrated in the case of path traversals. Blue 
dots depict neural states on different trials along the same path. Lines depict neural 
state difference vectors. Consistency of neural state dynamics across trials is quantified 
in terms of the cosine similarity of corresponding neural state difference vectors on pairs 
of trials. Note that although this approach is schematized with three dimensions, we 
performed the analysis in the full neural state space. B: Mean cosine similarity of single 
trial difference vectors during path traversals (left) or during the 2s delay period (right) 
for each subject. Vertical lines mark the locations of maze junctions. 

We next assessed the single-trial consistency in the geometry of neural states 

during task progression. If neural activity patterns unfold in a reliable manner across 

single trials, neural states should be closer together at similar positions in the task 

relative to at different positions. To determine if this was the case, we compared the 

distances of neural states in the same task progression bin to the distances of neural 
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states in different task progression bins (Figure 2.15A). In both mPFC and OFC, neural 

states expressed at similar points in the task progression were closer together than 

those occurring at different locations (Figure 2.15B–C). However, this was more so the 

case in the mPFC relative to the OFC during path traversals, and in the OFC relative to 

the mPFC during the delay period (Figure 2.15B–C). These distinct patterns of reliability 

of neural state geometry in the mPFC and OFC are consistent with our second 

hypothesis that these areas express reliable representations of task progression at 

distinct behavioral phases. Overall, our population-level findings suggest that at both the 

level of neural state geometry and dynamics, there is a functional division of labor within 

the PFC in the reliable expression of representations of task progression during distinct 

behavioral periods.  
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Figure 2.15: Single trial reliability of neural state geometry during task 
progression. A: Conceptual approach. As in 2.14A, except consistency of geometry is 
quantified. The quantification is in terms of the relative closeness of neural states within 
the same versus in different task progression bins. B: Average Euclidean distance 
between pairs of firing rate vectors for different pairs of task progression bins, during 
either traversals of the center to right path (left) or during the ensuing delay period at the 
right well (right) for mPFC (top) and OFC (bottom) neural states from a subject during 
one behavioral session. C: Similarity metric (one minus the ratio of firing rate vector 
distances within the same and different task progression bins) as a function of task 
progression during the path traversal (left) or delay period (right) for each subject. 
Vertical lines mark the locations of maze junctions. 

  We next sought to understand how the differential reliability of task progression 

representations in the mPFC and OFC during path traversals and the delay period 

might relate to how well task progression can be decoded from these areas during 

these distinct periods. To address this, we decoded task progression along paths and 
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during the delay period from the spiking activity in each area104. Progression along 

paths could be decoded more reliably from mPFC ensemble spikes, relative to spikes 

from an equally sized OFC ensemble, whereas the opposite was seen during the delay 

period (Figure 2.16). These results provide further support for our second hypothesis 

that the mPFC and OFC exhibit a dissociation in when during the task they express 

reliable information about task progression. 
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Figure 2.16: Task progression decoding during distinct task phases. Progression 
along paths (left) and in the delay period (right) was decoded from the spiking activity of 
a randomly selected 50 units in the mPFC and OFC each. A: Mean decoding error and 
associated 95% confidence intervals as a function of task progression during path 
traversals (left) or the delay period (right) during a representative behavioral session 
from each rat. Vertical lines mark the locations of maze junctions. Horizontal line marks 
an estimate of chance.  
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Chapter 3 

Conclusions and Implications 

The HPc, mPFC, and OFC are each thought to represent generalized features of 

experience, providing a “cognitive map” for guiding behavior. Generalized 

representations have been observed in each of these areas19,75,109,110, with a relative 

bias towards more context-generalized representations in the PFC as compared to the 

HPc53,75. Here, we asked whether there are organizational principles that govern how 

generalized representations are distributed across these areas. To do so, we examined 

single-unit and population-level activity patterns across HPc, mPFC, and OFC as rats 

performed a spatial navigation task. As rats traversed paths, HPc activity signaled 

progression along particular spatial routes, consistent with decades of previous 

research on place cells7. By contrast, mPFC and OFC activity was chiefly organized 

around the journey between any two goal locations. Furthermore, activity in these areas 

was more similar across journeys requiring similar as opposed to different actions, 

suggestive of a concurrent representation of the set of actions required to reach goals. 

Our results are consistent with previous reports demonstrating that activity in the mPFC 

tends to generalize across contexts by way of representing distinct spatial routes as 

similar53,54,111. Our results further identify the OFC with this property. The turn-based 

representations that we observed in the OFC are consistent with a previous report 

describing prominent turn-related activity in the OFC38. Our results further identify the 

mPFC with turn-based representation of journeys. 

Our findings also provide new insight into the extent to which mPFC and OFC 

represent progression through the task at distinct levels of generality. Using a GLM-
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based approach, we estimated the contribution of representations of task progression at 

distinct levels of generality to single-unit firing during the journey to goals and in the 

delay period that followed. Our findings suggest that across the entire extent of journeys 

along paths, single cell firing patterns tend to reflect a generalized representation of the 

journey between any two goal locations, and, to a lesser extent, more specific 

representations of the journey between particular subsets of goals. We also examined 

the average evolution of population activity along journeys in mPFC and OFC, with the 

goal of understanding how population activity dynamics compared along journeys 

requiring the same or different turn directions. We found that dynamics were more 

similar across paths with different directions towards the beginning and end of journeys, 

and relatively more distinct towards the middle of journeys where turns are present, 

suggesting a dynamic modulation of journey representations at distinct levels of 

generality. 

Although we found that mPFC and OFC exhibited similar kinds of generalized 

representation during the task, we further identified evidence that these areas specialize 

to express reliable representations of task progression at distinct behavioral phases. In 

comparison to OFC, mPFC activity more reliably represented progression along paths 

between goal locations. By contrast, in comparison to mPFC, OFC activity more reliably 

represented progression in the delay period following arrival at a goal location. We 

hypothesize that these distinct patterns of consistency in representation reflect the 

extent to which these areas are engaged in computations during these respective 

behavioral periods. If correct, this could help explain why lesions to these areas produce 
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distinct behavioral deficits. In rats, OFC lesions bias subjects towards small, quickly 

available rewards over much larger, delayed rewards but do not impair effort-based 

decision making, whereas the opposite pattern of deficits is seen with ACC lesions82. 

OFC lesions have also been found to reduce the extent to which rats modulate how 

long they will wait for rewards depending on task difficulty112, consistent with a role for 

the OFC in representing decision confidence113. In our study, relative to the mPFC, the 

OFC expressed more consistent representations of task progression after rats arrived at 

goals and were faced with a choice of whether or not to wait for a potential upcoming 

reward. We hypothesize that this may relate to a specialized role for OFC in processing 

during this period and bears on rats’ decision to stay at or leave a goal location.  

More broadly, our findings raise the possibility that trial-by-trial consistency in 

activity patterns underlies regional specialization, a principle that could help reconcile 

why several task variables are coded in several brain areas, yet lesions to different 

areas can produce distinct behavioral deficits. It may be that the consistency of 

representations during a behavioral period, rather than their existence per se, is 

reflective of an area’s involvement in computations essential to that period. 
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