
UCSF
UC San Francisco Previously Published Works

Title
Single-cell meta-analysis of SARS-CoV-2 entry genes across tissues and demographics.

Permalink
https://escholarship.org/uc/item/9896w6b5

Journal
Nature Medicine, 27(3)

Authors
Muus, Christoph
Luecken, Malte
Eraslan, Gökcen
et al.

Publication Date
2021-03-01

DOI
10.1038/s41591-020-01227-z
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9896w6b5
https://escholarship.org/uc/item/9896w6b5#author
https://escholarship.org
http://www.cdlib.org/


Single-cell meta-analysis of SARS-CoV-2 entry genes across 
tissues and demographics

A full list of authors and affiliations appears at the end of the article.

Abstract

ACE2 and accessory proteases (TMPRSS2, CTSL) are needed for SARS-CoV-2 cellular entry, 

and their expression may shed light on viral tropism and impact across the body. We assess the 

cell type-specific expression of ACE2, TMPRSS2, and CTSL across 107 single-cell RNA-Seq 

studies from different tissues. ACE2, TMPRSS2, and CTSL are co-expressed in specific subsets 

of respiratory epithelial cells in the nasal passages, airways, and alveoli, and in cells from other 

organs associated with COVID-19 transmission or pathology. We performed a meta-analysis of 

31 lung scRNA-seq studies with 1,320,896 cells from 377 nasal, airway, and lung parenchyma 

samples from 228 individuals. This revealed cell type specific associations of age, sex, and 

smoking with expression levels of ACE2, TMPRSS2, and CTSL. Expression of entry factors 

increased with age and in males, including in airway secretory cells and alveolar AT2 cells. 

Expression programs shared by ACE2+TMPRSS2+ cells in nasal, lung and gut tissues included 
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genes that may mediate viral entry, key immune functions and epithelial-macrophage cross-talk, 

such as genes involved in the IL6, IL1, TNF and complement pathways. Cell type-specific 

expression patterns may contribute to COVID-19 pathogenesis , and our work highlights putative 

molecular pathways for therapeutic intervention.

INTRODUCTION

COVID-19, caused by SARS-CoV-2 infection, can manifest with pathologies in multiple 

systems, including the lungs and airways, gastrointestinal tract, kidney, liver, and heart, and 

multiorgan failure1-3. SARS-CoV-2 RNA has been found in nasal and throat secretions, 

saliva and stool specimens4.

Virion infection of host cells is initiated by the viral spike (S)-protein binding to ACE2. 

ACE2 expression has been correlated with increased viral load in human cell lines5,6 and in 

mice7. Viral infection further requires proteolytic cleavage of the S-protein, and TMPRSS2 

or Cathepsin L, encoded by the CTSL gene, can provide this role for cellular entry8.

There is substantial variation in the clinical consequences of infection across individuals, 

from asymptomatic to death. Disease severity and mortality rise with age9,10, with a slightly 

higher incidence and mortality in men2. Children are significantly less likely to develop 

severe acute disease11. Smoking may be associated with more severe disease12. Finally, 

adults with pre-existing cardiovascular disease may have higher rates of disease acuity and 

death2.

Identifying specific cell types that can be infected by SARS-CoV-2 and relating SARS-

CoV-2 entry factors to key co-variates, like age or sex could inform our understanding of 

COVID-19 tropism and heterogeneity in disease outcomes. The Human Cell Atlas (HCA) 

community has generated single-cell cell atlases of diverse tissues in healthy individuals, 

which can now be leveraged to enable such studies. Early analyses of Human Cell Atlas data 

revealed that some of the cells of the nasal passages, airways, lung parenchyma, and gut 

express ACE2 and TMPRSS213,14, most notably nasal goblet cells and multiciliated cells13 

in the airways and AT2 cells in the distal lung13,15,16, and identified ACE2 and TMPRSS2 
expression in colonic enterocytes13,17.

Here, we chart the cell-type-specific expression patterns of ACE2 and accessory proteases 

by integrated analysis of 116 single-cell and single-nucleus RNA-Seq studies, including 31 

studies of the lung and airways, and 85 studies of other diverse tissues. With the lung and 

airway studies, we performed the first single-cell meta-analysis of atlas datasets associating 

cell type specific changes in expression level with age, sex and smoking status. We identify 

cross-tissue and tissue-specific gene programs enriched in immune-associated genes in 

ACE2+TMPRSS2+ cells and highlight other proteases that are significantly co-expressed 

with ACE2 and could play a role in infection.
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RESULTS

Double positive ACE2+TMPRSS2+ cells across the lung, airways and other organs 
associated with COVID-19

We enumerated the proportion of double positive ACE2+TMPRSS2+ cells and 

ACE2+CTSL+ cells across 92 human single-cell or single-nucleus RNA-seq (sc/snRNA-seq) 

studies (including seven of the lung and airways) (Fig. 1, Methods, Supplementary Table 1 

and 2). We surveyed published datasets, assigning cells to five broad categories (Fig. 1a,b, 

Extended Data Fig. 1, Extended Data Fig. 2, Supplementary Table 1), and analyzed more 

finely annotated published and unpublished datasets (Methods, Fig. 1c,d, Supplementary 

Table 1,3).

ACE2+TMPRSS2+ epithelial cells were most prevalent (in order) within the ileum, liver, 

lung, nasal mucosa, bladder, testis, prostate, and kidney (Fig. 1a). Consistent with previous 

reports33, double positive ACE2+TMPRSS2+ cells in the nose and airways were largely 

secretory goblet and multiciliated cells, and double positive cells in the distal lung were 

largely AT2 cells (Fig. 1c, Extended Data Fig. 3a). ACE2 and TMPRSS2 expression 

in secretory and AT2 cells is also supported by scATAC-seq from the primary carina 

and subpleural parenchyma of one adult individual, respectively, as well as secretory 

and multiciliated cells, and to a lesser extent some basal and tuft cells (Supplementary 

Fig. 1a-d, n=3 samples per location, n=1 patient, Methods). In a larger aggregation of 

lung and nasal datasets (Methods), we observed ACE2+TMPRSS2+ cells in various lung 

epithelial cells in pediatric samples (Extended Data Fig. 3b,c), also supported by single-

cell chromatin accessibility by transposome hypersensitive sites sequencing (scTHS-Seq)18 

(Extended Data Fig. 4, Methods). Significant double positive ACE2+TMPRSS2+ cells in 

other tissues included enterocytes, pancreatic ductal cells, prostate luminal epithelial cells, 

brain oligodendrocytes, kidney proximal tubular cells and principal cells of the collecting 

duct, inhibitory enteric neurons, heart fibroblasts/pericytes, and fibroblasts and pericytes 

in multiple tissues (Fig. 1a-c). Notably, some of the cell types in which there are double 

positive cells (including brain oligodendrocytes, multiciliated cells of the upper respiratory 

tract, and sustentacular cells in olfactory epithelium) are cell types that also express 

MYRF (albeit not always significant triple expressors; Supplementary Fig. 2). MYRF is 

a transcription factor that induces expression of the myelin proteins MBP (myelin basic 

protein) and MOG (myelin oligodendrocyte glycoprotein)19 Autoimmune reactions against 

these proteins are known to potentially induce neurological symptoms (Discussion).

ACE2+CTSL+ co-expressing cells were enriched among AT1 and AT2 cells, enterocytes, 

ventricular cardiomyocytes and heart macrophages, as well as fibroblasts and pericytes 

in multiple tissues, including the placenta, heart, lung, kidney and ENS (Fig. 1d). We 

did not observe substantial ACE2 mRNA expression in scRNA-seq profiles in the bone 

marrow or cord blood (Fig. 1a,b), although there was ACE2 expression in alveolar 

and heart macrophages (Extended Data Fig. 5). Notably, in human placenta20-22, ACE2 
was expressed (1.4%) in maternal decidual/stromal cells, maternal pericytes, and fetal 

extravillous trophoblasts, cytotrophoblasts, and syncytiotrophoblast in both first-trimester 

and term placenta (Fig. 1d). While there was little expression of TMPRSS2 (0.2%), CTSL 
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was expressed in most cells (56%), and there were ACE2+CTSL+ double positive cells 

(1.3%).

Cell type specific expression of additional proteases that may be relevant to infection

SARS-CoV-2 infects cells in the absence of TMPRSS28, so additional proteases likely 

play roles in proteolytic cleavage of viral proteins for entry and egress. To predict such 

proteases, we tested the co-expression of ACE2 with each of 625 annotated human protease 

genes23 in a declined donor transplant dataset (“Regev/Rajagopal”, Supplementary Table 

1). TMPRSS2 was significantly co-expressed in multiple lung epithelial cell types (Fig. 

2a, Supplementary Table 4, 5), as were multiple members of the proprotein convertase 

subtilisin kexin (PCSK) family (Fig. 2a,b), including FURIN, PCSK2, PCSK5, PCSK6 
and PCSK7 in AT2 cells. Proprotein convertases have known roles in coronavirus S-

protein priming. We obtained similar results in an independent dataset from 40 samples 

(Extended Data Fig. 6a,b, Supplementary Table 1, datasets “Barbry”, “Kropski”, “Lafyatis/

Rojas”, “Misharin_new”, “Nawijn/Teichmann”, “Northwestern_Misharin_ 2018Reyfman”, 

“Sanger_Meyer_2019Madissoon”). As previously reported24, the SARS-CoV-2 S-protein 

has a polybasic motif in the S1/S2 region (Extended Data Fig. 6c) that corresponds to 

cleavage motifs of PCSK family proteases (Extended Data Fig. 6d)24 and an additional site 

at the S2’ position (Extended Data Fig. 6e)25.

FURIN, PCSK5 and PCSK7 were co-expressed with ACE2 across multiple lung cell 

types (Fig. 2c, Extended Data Fig. 6f), PCSK1 and PCSK2 were mostly restricted to 

neuroendocrine cells26, and PCSK2 also detected in some AT2 cells (Fig. 2d, Extended 

Data Fig. 6g). In AT2 cells, proximal multiciliated cells, and basal cells, dual expression of 

PCSKs with ACE2 was at fractions comparable to or higher than ACE2+TMPRSS2+ cells 

(Fig. 2e, Extended Data Fig. 6h). Co-expression is significant across other tissues (Extended 

Data Fig. 6i,j), including liver, ileum, kidney, and nasal airways.

Because different host proteases may contribute to different stages of the viral life cycle25, 

we examined the prevalence of ACE2+TMPRSS2+PCSK+ triple-positive cells (TPs) in the 

lung. ACE2+TMPRSS2+PCSK7+ were the main TPs in multiciliated (0.75%) and secretory 

(0.72%) cells of proximal airways, and ACE2+TMPRSS2+FURIN+ TPs were the most 

common within AT2 cells (0.36%) (Extended Data Fig. 6k). Among all known human 

proteases (Fig. 2f, Supplementary Fig. 3), cathepsins (CTSB, CTSC, CTSD, CTSL, CTSS), 

proteasome subunits (PSMB2, PSMB4, PSMB5), and complement proteases (C1R, C2, 

CFI), were the most commonly co-expressed with ACE2 in lung epithelial cell types.

Orthogonal validation of ACE2, TMPRSS2 and CTSL expression in the lungs

As ACE2 expression is quite low, we next validated some of these patterns by fluorescence 

in situ hybridization and immunofluorescence in tissue sections of airways and alveoli 

from three healthy donor lungs that were rejected for lung transplantation. ACE2, CTSL 
and TMPRSS2 were co-expressed by fluorescence in situ hybridization in alveolar cells, 

albeit at low levels (Fig. 1e,f). Co-staining with cell type-specific markers, showed 

ACE2 expression and TMPRSS2 expression in some HTII-280+ AT2 cells (Fig. 1g,h); 

we confirmed the latter by TMPRSS2 protein immunostaining (Extended Data Fig. 7d). 
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TMPRSS2 protein was expressed at low levels in some AT1 cells (identified by AGER, 

Extended Data Fig. 7d). Some non-epithelial cells also expressed these three genes. We 

further validated ACE2 expression by bulk mRNA-seq of sorted AT2 cells (Extended Data 

Fig. 7e). Immunohistochemistry with antibodies used previously to block cellular viral entry 

specifically labeled adult pro-SFTPC+ AT2 cells (Extended Data Fig. 7c, Supplementary 

Table 6, Methods).

Previous studies revealed that ACE2 is highly enriched in nasal and intestinal mucous 

cells13,14. While mucous cells are relatively rare in healthy surface airway epithelium, they 

are abundant in submucosal glands (SMGs). scRNA-seq of microdissected SMGs of healthy 

donors showed enrichment of ACE2, TMPRSS2 and CTSL in mucous cells (Extended Data 

Fig. 7f). In situ analysis confirmed the presence of ACE2 transcripts in acinar epithelial 

cells of the SMGs (Extended Data Fig. 7g), and cells expressing ACE2 in the large airway 

epithelium (Extended Data Fig. 7).

Association of ACE2, TMPRSS2, and CTSL expression in lung and airway cells with age, 
sex and smoking

We next asked how the expression of ACE2, TMPRSS2, and CTSL in specific cell subsets 

relates to three key covariates associated with disease severity: age (older individuals are 

more severely affected), sex (males are more severely affected), and smoking (smokers are 

more severely affected)27. As no single dataset to date was sufficiently large, we aggregated 

samples across 31 sc/snRNA-seq studies (Supplementary Table 2; 14 published16,28-38; 17 

not yet published39,40). This analysis spanned 1,320,896 cells from 228 individuals without 

known lung disease or from histologically normal-appearing lung adjacent to the site of 

disease, across 377 nasal, lung, and airway samples from either brushes, scrapings, biopsies, 

bronchoalveolar lavages, resections, entire lungs that could not be used for transplant or 

post mortem examinations (Fig. 3a). From unpublished data, we only obtained single-cell 

expression counts for the three genes (pre-processed by each data generator), total UMI 

counts per cell, cell identity annotations (which we harmonized to three resolution levels 

across studies; Fig. 3a,b, Supplementary Table 2, Extended Data Fig. 8, Methods), and 

age, sex, and smoking status (when ascertained). We modeled the association between 

the expression counts of each gene and age, sex, and smoking status using a linear 

model, accounting for technical variation arising from dataset-related factors and covariate 

interactions (Methods). We fitted this model within each cell type to non-fetal lung data of 

donors for whom smoking history was known (985,420 cells, 286 samples, 164 donors, 21 

datasets), and fitted a model without smoking status covariates to the full non-fetal lung data 

(1,096,604 cells, 309 samples, 185 donors, 24 datasets).

For simplicity, we treated each cell as an independent observation. This implicitly 

combines variability in both donors and cells, and, because cells from the same donor 

are not truly independent observations, can result in inflated p-values, especially when 

there are few donors for a particular cell type. To address this, account for covariate 

interactions, and ensure robustness, we: (1) used a simple noise model (Poisson) to 

reduce overfitting of donor variability; (2) confirmed that effect directions of significant 

associations are consistent in a pseudo-bulk analysis (modeling only donor variation; 
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Methods, Supplementary Data 1-4); (3) confirmed summarized age, sex, and smoking 

associations with a model including interaction terms (Methods, Supplementary Data 1-4); 

and (4) separated significant associations that passed all above confirmations into robust 
trends and indications depending on their robustness to holding out individual datasets 

(Methods, Supplementary Data 1-4). We focused on trends or indications in cell types where 

ACE2 and TMPRSS2 are co-expressed (Fig. 3c): airway epithelial cells (basal, multiciliated, 

and secretory cells), alveolar AT1 and AT2 cells, and submucosal gland secretory cells.

We find robust trends of ACE2 expression with age, sex, and smoking status in these cell 

types (Fig. 3d, Extended Data Fig. 9, Supplementary Fig. 4-6; non-smoking model results 

in Supplementary Fig. 7-10): ACE2 expression increases with age in AT2 cells, and is 

elevated in males in airway secretory cells and alveolar AT1 and AT2 cells. ACE2 levels 

are higher in past or current smokers in basal and submucosal secretory cells, and lower in 

AT2 cells (Fig. 3d). Analysis of bulk RNA-Seq data from bronchial brushings41 indicated 

an upregulation of both ACE2 and TMPRSS2 in current vs. former smokers (Extended Data 

Fig. 10). Furthermore, we find indications of increased ACE2 expression with age and in 

males in multiciliated cells, but those rely on inclusion of the dataset with the most cells 

and samples (“Regev/Rajagopal”; Extended Data Fig. 9, Methods). All above trends and 

indications for sex and age were validated in a simplified model without smoking status on 

the full non-fetal lung dataset (Supplementary Fig. 7, Supplementary Data 5-8, Methods).

Examining joint trends of ACE2 and the protease genes within the same cell type, we 

found robust trends of ACE2 and TMPRSS2 co-expression increasing with age in AT2 

cells, in males in AT1 cells, and an indication of the two genes being elevated in males 

in multiciliated cells (ACE2 indication dependent on “Regev/Rajagopal” dataset; Fig. 3d, 

Extended Data Fig. 9). ACE2 and CTSL show robust trends of joint up-regulation in males 

in AT2 cells, and in smokers in submucosal secretory cells. Indications of joint up-regulation 

of these genes were found in males in AT1 cells, and in smokers in basal cells (Fig. 

3d, Extended Data Fig. 9, Methods). All joint trends for age and sex covariates were 

confirmed on the full non-fetal lung data using the simple model without smoking covariates 

(Supplementary Fig. 7).

An immune gene program in ACE2+TMPRSS2+ cells in airway, lung and gut

Our previous analyses revealed immune signaling genes that co-vary with ACE2 and 

TMPRSS2 in airway and lung cells13,14 . To explore these in a broader context, we identified 

tissue and cell programs related to double positive ACE2+TMPRSS2+ cells in the nasal 

epithelium, lung, and gut (Supplementary Tables 7-10). Tissue programs are shared across 

double positive cells from different cell types in one tissue; cell programs distinguish double 

positive cells from the rest of the cells of the same type (Methods).

Tissue programs were enriched in pathways related to viral infection and immune response, 

including phagosome structure, antigen processing and presentation, and apoptosis (Fig. 

4a,b, Supplementary Fig. 11a,b for selected genes, Supplementary Tables 7-10). These 

include CEACAM5 (lung, nasal, gut programs) and CEACAM642 (lung), surface attachment 

factors for coronavirus spike protein; SLPI (lung, nasal)43; PIGR (lung, gut; may promote 

antibody-dependent enhancement via IgA44); and CXCL17 (lung, nasal)45. Tissue programs 
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also had genes associated with cholesterol and lipid metabolic pathways and endocytosis 

(DHCR24, LCN2, FASN); MHC I and MHC II pathways46; preparation against cellular 

injury (interferons, extracellular RNAse: PLAC8, TXNIP); complement (C3, C4BPA); 

immune modulation (BTG1) and tight junctions (DST, CLDN3, CLDN4).

Cell programs (Fig. 4c,d, Supplementary Fig. 12a-c, Supplementary Tables 7-10) were 

enriched in many of the same genes and pathways (e.g., CEACAM5, CXCL17, SLPI), 
and further captured unique functions, including TNF signaling in lung secretory cells 

(e.g., RIPK347), lysosomal functions in lung secretory and multiciliated cells48, the 

immunoproteasome (AT1 cells, Fig. 4c), cytokines, chemokines and their receptors (nasal 

goblet cells: CSF3, CXCL1, CXCL3, IL19, CCL20; AT1 cells: IL1R1), and genes that 

encode surfactant proteins (AT2 cells, SFTPA, SFTPA2). Cell programs from multiple 

tissues (Fig. 4c,d) included genes related to TNF signaling, raising the possibility that 

anti-TNF therapy may impact the expression of ACE2 and/or TMPRSS2. Some of the genes 

encode proteins that are targets of known drugs49 (e.g., in lung secretory cells: C3, HDAC9, 

IL23A, PIK3CA, RAMP1, and SLC7A11), other gene products have been shown to interact 

with SARS-CoV-2 proteins50 (e.g., GDF1568, a central regulator of inflammation51), and 

yet others may be related to COVID-19 pathological features, including MUC152 (in tissue 

and specific cell programs), IL6ST (lung tissue and gut enterocyte programs), and IL6 (AT2 

program, Supplementary Fig. 12d). Other cell types, such as heart pericytes, are enriched for 

cells co-expressing ACE2 with IL6R or IL6ST (Supplementary Fig. 13). The immune-like 

programs of ACE2+ epithelial cells are also reflected in the regulatory features of the 

ACE2 locus by scATAC-Seq (Fig. 4f). Cell-cell interaction analysis53 (Methods) predicted 

interactions (Supplementary Table 11) between AT2 cells (overall or ACE2+TMPRSS2+) 

and myeloid cells through oncostatin, complement, IL1 receptor and CSF signaling.

Conserved expression patterns in mouse models

Preclinical studies of SARS-CoV-2 infection and treatment require model systems that 

approximate human physiology. Transgenic hACE2 mouse models have been identified as a 

valuable resource to evaluate diverse therapeutics for COVID-1954. We thus asked whether 

expression patterns of SARS-CoV-2 entry factors were similar in human and mouse model 

cell types of interest.

Ace2+Tmprss2+ and Ace2+Ctsl+ double positive cells were present primarily in club and 

multiciliated cells in the airway epithelia of healthy mice55 (Fig. 5a), consistent with 

human airways (Extended Data Fig. 3a), and increased from 2 to 4 months old (Fig. 

5a,b). Moreover, the expression patterns observed in scRNA-seq data of whole lungs from 

mice exposed daily to cigarette smoke for two months (Fig. 5c-k, Methods) are consistent 

with our observations in human airway epithelial cells (Fig. 3d, Extended Data Fig. 9a). 

Upon smoke exposure, there was a significant increase in the number Ace2+ cells and 

Ace2 expression in airway secretory cell numbers, but not AT2 cells (Fig. 5f-i). There was 

also agreement in expression patterns between the human placenta and mouse placenta 

development (Fig 1c,d, Fig. 5l, Supplementary Fig. 14).
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DISCUSSION

To the best of our knowledge, this study represents the first single-cell meta-analysis. Our 

meta-analysis provided the required power to uncover age, sex and smoking associations at 

single-cell resolution. The contrasting smoking associations of ACE2 across epithelial cell 

types show the importance of single-cell resolution, as down-regulation in AT2 cells would 

have been otherwise masked by increases in airway epithelial signal in bulk RNA-Seq56. 

Although we have aggregated over 200 donors in our dataset, effects such as race, ethnicity, 

genetic ancestry, cumulative smoking, or healthy tissue with a distal disease site may still 

confound the associations we have obtained.

Our models included tested covariates, technical covariates, and interaction terms, which 

allowed us to uncover complex associations (e.g., sex and smoking associations are typically 

stronger for younger individuals; Supplementary Fig. 5). Modeling the smoking status of 

a donor was important to reduce background variation and account for the unbalanced 

distribution of covariates. Fitting this model required aggregating many datasets, harmonized 

by a consistent cell type annotation. However, the annotation remains coarse in some cases, 

where cell labels still aggregate over considerable diversity, and can be further refined in 

the future. As the HCA grows and further datasets become available, our model could 

be extended to allow nonlinear associations with the tested covariates. Such associations 

may uncover e.g. distinct effects in the particularly affected geriatric population. While 

there is a trend of increased proportion of ACE2+TMPRSS2+ cells with age (Extended 

Data Fig. 3b,c), this cannot be modeled reliably given the compositional diversity (Fig. 

3a, Supplementary Fig. 15), potential confounders, and limited sample numbers. Further 

metadata can help address this.

Our findings in human and mouse models are consistent with respect to smoking and 

age associations. In line with our human data, we find an increase in Ace2 expression in 

maturing mice (2-4 months). Others have reported lower expression of entry factors in aged 

mice (24 months), showing potential limitations of mice as a model system.

Our comprehensive cross-tissue analysis expands on our13,14,16,57 and others’58-60 earlier 

efforts, identifying cell subsets across tissues that may be implicated in transmission 

or pathogenesis. For example, double positive cells in the submucosal glands may be 

a reservoir for viruses that escape from expulsion associated with severe cough in the 

airway luminal surface. Another intriguing hypothesis is that neurologic symptoms61-63 

and Guillain-Barré Syndrome64 may arise as an autoimmune response to myelin antigens 

expressed by infected ACE2+TMPRSS2+ and ACE2+ cells that express myelin-producing 

genes (Supplementary Fig. 2, Supplementary Table 7).

ACE2 and TMPRSS2 expression in lung, nasal and gut epithelial cells is associated 

with programs involving key immunological genes and genes related to viral infection. 

Expression of IL6, IL6R and IL6ST in lung epithelial cells raises the hypothesis that 

infection may trigger uncontrolled cytokine expression, as elevated IL-6 levels were reported 

in more severe COVID-19 patients65 . The prediction of TNF, complement, and IL1 

pathways may suggest a benefit for therapies that target these axes. The accessibility of 
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STAT and IRF binding sites in scATAC-Seq data is consistent with interferon regulation of 

ACE2 expression in epithelial cells14 and with high activity of STAT1/2 and IRF1/2/5/7/8/9 

in macrophage states increased in severe COVID-19 patients66. Future lines of inquiry could 

include investigating the impact of lysosomal genes in lung secretory and multiciliated cells 

on viral infection and of RIPK3 expression in airway cells on necroptosis.

Finally, the expression of other potential accessory proteases may help pursue therapeutic 

hypotheses related to disruption of viral processing via protease inhibition. FURIN, PCSK5 
and PCSK7 are more broadly expressed than TMPRSS2 across lung cell types (Fig. 2d) and 

across tissues (Extended Data Fig. 6i). Viral proteins may physically interact with PCSK650, 

which is significantly co-expressed with ACE2 in AT2 cells (Fig. 2b, Extended Data Fig. 

6b). Because PCSKs are localized in different membrane compartments26, they might 

process SARS-CoV-2 S-proteins at different viral stages. Altogether, this could provide 

SARS-CoV-2 with immense flexibility in entry and egress.

Our meta-analysis provides a detailed molecular and cellular map to aid in our 

understanding of SARS-CoV-2 transmission, pathogenesis and clinical associations. We 

have demonstrated here how this can be done despite restrictions on data sharing. As 

the HCA progresses, we envision such meta-analyses in the context of other diseases, for 

example by combining large healthy reference atlases with both epidemiological and genetic 

risk factors. In parallel, as new atlases are generated from COVID-19 tissues and models, 

their integration will further advance our understanding of this disease.

METHODS

Patient samples

Sample collection underwent IRB review and approval at the institutions where 

the samples were originally collected. “Adipose_Healthy_Manton_unpublished” was 

collected under IRB 2007P002165/1(ORSP-3877). Tissue samples from breast, esophagus 

muscularis, esophagus mucosa, heart, lung, prostate, skeletal muscle and skin referred to 

as “Tissue_Healthy_Regev_snRNA-seq_unpublished” were collected under ORSP-3635. 

Samples referred to as “Eye_Sanes_unpublished” were collected under Dana Farber / 

Harvard Cancer Center Protocol Number 13-416 and Massachusetts Eye and Ear Protocol 

Number 18-034H. Samples referred to as “Kidney_Healthy_Greka_unpublished” were 

collected under Massachusetts General Hospital IRB number 2011P002692. Samples 

referred to as “Liver_Healthy_Manton_unpublished” were collected under IRB 02-240; 

ORSP 1702 as well as and ORSP-2630 under ORSP-2169. Lung samples from 

smokers and non-smokers (41 samples, 10 patients, 2-6 locations each) with suffix 

“Regev/Rajagopal_unpublished” were collected under Massachusetts General Hospital 

IRB 2012P001079 / (ORSP-3900) under ORSP-3490. Healthy and fibrotic lung samples 

with suffix “Xavier_snRNA-seq_unpublished“ were collected under Massachusetts General 

Hospital IRB number 2003P000555 (CG-5242) under ORSP-3490, Medoff, 2015P000319 

(CG-5145) under ORSP-3490. Pancreas PDAC samples were collected under Fernandez-del 

Castillo, 2003P001289 (CG-4692) under ORSP-3490 Massachusetts General Hospital IRB 

number Fernandez-del Castillo, 2003P001289 (CG-4692) under ORSP-3490. Samples in 

the dataset “Barbry” were derived from a study that was approved by the Comité de 
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Protection des Personnes Sud Est IV (approval number: 17/081) and informed written 

consent was obtained from all participants involved. All experiments were performed during 

8 months, in accordance with relevant guidelines and French and European regulations. No 

deviations were made from our approved protocol named 3Asc (An Atlas of Airways at 

a single cell level - ClinicalTrials.gov identifier: NCT03437122). IPF and COPD lungs in 

the “Kaminski” dataset were obtained from patients undergoing transplant while healthy 

lungs were from rejected donor lung organs that underwent lung transplantation at the 

Brigham and Women’s Hospital or donor organs provided by the National Disease Research 

Interchange (NDRI). Patient tissues relating to the dataset “Krasnow” were obtained under 

a protocol approved by Stanford University’s Human Subjects Research Compliance Office 

(IRB 15166) and informed consent was obtained from each patient prior to surgery. The 

study protocol was approved by the Partners Healthcare Institutional Board Review (IRB 

Protocol # 2011P002419). Samples in the dataset “Kropski_Banovich” were collected under 

Vanderbilt IRB # 060165, 171657, and Western IRB#20181836. Ethics approval number 

2018/769-31. “Meyer_b” were collected under CBTM (Cambridge Biorepository for 

Translational Medicine), research ethics approval number: UK NHS REC approval reference 

number 15/EE/0152. Samples in the dataset “Linnarsson” are covered by (2018/769-31) 

approved by the Swedish Ethical Review Authority. Samples in the “Misharin” dataset 

were collected under (STU00056197, STU00201137, and STU00202458) approved by the 

Northwestern University Institutional Review Board. Samples in the “Rawlins” dataset 

were obtained from terminations of pregnancy from Cambridge University Hospitals 

NHS Foundation Trust under permission from NHS Research Ethical Committee (96/085) 

and the Joint MRC/Wellcome Trust Human Developmental Biology Resource (grant R/

R006237/1, www.hdbr.org, HDBR London: REC approval 18/LO/0822; HDBR Newcastle: 

REC approval 18/NE/0290). The studies relating to datasets “Schultze” and “Schultze_Falk” 

were approved by the ethics committees of the University of Bonn and University hospital 

Bonn (local ethics vote 076/16) and the Medizinische Hochschule Hannover (local ethics 

vote 7414/2017). Fifteen human tracheal airway epithelia in the “Schultze” dataset were 

isolated from de-identified donors whose lungs were not suitable for transplantation. Lung 

specimens were obtained from the International Institute for the Advancement of Medicine 

(Edison, NJ) and the Donor Alliance of Colorado. The National Jewish Health Institutional 

Review Board (IRB) approved the research under IRB protocols HS-3209 and HS-2240. 

Samples in the “Xu/Whitsett” dataset were provided through the federal United Network 

of Organ Sharing via the National Disease Research Interchange (NDRI) and International 

Institute for Advancement of Medicine (IIAM) and entered into the NHLBI LungMAP 

Biorepository for Investigations of Diseases of the Lung (BRINDL) at the University of 

Rochester Medical Center, overseen by the IRB as RSRB00047606. (Supplementary Table 

1, 2)

Integrated analysis of published datasets

Publicly available (Supplementary Table 1) single-cell RNA-seq datasets were downloaded 

from Gene Expression Omnibus (GEO). We searched GEO for datasets that met all of the 

following criteria: (1) provided unnormalized count data; (2) was generated using the 10X 

Genomics’s Chromium platform; and (3) profiled human samples. These samples spanned 

a wide range of tissues, including primary tissues, cultured cell lines, and chemically or 
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genetically perturbed samples. Applying these filters increases standardization of sample as 

the vast majority were prepared using the same 10X Chromium instrument and Cell Ranger 

pipelines.

Datasets comprise of one or more samples (individual gene expression matrices), which 

often correspond to individual experiments or patient samples. In total, this yielded 

2,333,199 cells from 469 samples from 64 distinct datasets (Supplementary Table 1). To 

allow comparison across samples and datasets, we mapped through a common dictionary of 

gene symbols and excluded unrecognized symbols. If a gene from an aggregated master list 

was not found in a sample, the expression was considered to be zero for every cell in that 

sample.

After all datasets were collected, we quantified the percentage of cells with >0 UMIs for 

both ACE2 and TMPRSS2 or ACE2 and CTSL. For further analyses with broad cell classes, 

we only used datasets with more than 15 double positive cells yielding 252,871 cells from 

40 samples.

For integration across datasets, we used two levels of annotations. When possible, every 

sample was annotated with its tissue of origin based on the available metadata from 

GEO. We excluded any sample for which tissue was not specified. For the smaller 

subset of 252,871 cells we then manually annotated cell clusters with broad cell type 

classes using marker genes. These clusters were generated using the harmony-pytorch 

Python implementation (version 0.1.1 (https://github.com/lilab-bcb/harmony-pytorch) of the 

Harmony scRNA-seq integration method67 for batch correction and leiden clustering from 

the Scanpy package (version 1.4.5). Clusters without clear markers distinguishing types 

were excluded from further analysis.

Data was processed using Scanpy. Individual datasets were normalized log (UMIs/10,000 

+1) by column sum and the log1p function (ln(10,000 * gij + 1) where a gene’s expression 

profile, g, is the result of the UMI count for each gene, i, for cell j, normalized by the sum 

of all UMI counts for cell j. This data normalization step was only used for generating the 

clusters and cell type annotations.

All other statistical tests for the integrated analysis were performed on the cell’s binary 

classification as a double positive or not. For example, for a cell to be considered ACE2+, it 

has >0 ACE2 transcripts. Double positive cells have >0 transcripts for both genes of interest. 

We used Fisher's exact test to test for statistical dependence between the expression of ACE2 
and TMPRSS2 or CTSL and corrected for multiple testing via Benjamini-Hochberg over all 

tests for each gene pair.

Bronchial brushings from current and former smokers

Bronchial brushings were obtained from high-risk subjects undergoing lung cancer 

screening at ~1-year intervals by white light and autofluorescence bronchoscopy and 

computed tomography (n=137 brushings from n=50 patients, GSE109743) and profiled 

via RNA-seq as described previously41. Differential expression analysis of entry factors in 

former and current smokers was performed via voom-limma68 using the model:
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Yi ∼ smoking + batcℎ + TIN + (1 ∣ patient),

where smoking denotes the encoded smoking status (“current” or “former”), batch refers 

to the experimental batch effect derived from the sequencing run, TIN represents the RNA 

integrity score, and (1 ∣ patient) is a random intercept per patient. Multiple testing correction 

was performed via Benjamini-Hochberg to obtain an FDR-corrected p-value.

Integrated co-expression analysis of high resolution cell annotations across tissues

We compiled a compendium of published and unpublished datasets consisting of 2,433,890 

cells from 21 tissues and/or organs including adipose, bone marrow, brain, breast, colon, 

cord blood, enteric nervous system, esophagus mucosa, esophagus muscularis, anterior eye, 

heart, kidney, liver, lung, nasal, olfactory epithelium, pancreas, placenta, prostate, skeletal 

muscle and skin. After the harmonization of cell type annotations, ACE2-TMPRSS2 and 

ACE2-CTSL coexpression were assessed using a logistic mixed effect model:

Y i ∼ ACE2 + (1 ∣ sample_id) (1)

where Yi was the binarized expression level of either TMPRSS2 or CTSL, and covariates 

were binarized ACE2 expression in cell i and a sample-level random intercept.

Models were fit separately for each cell type in each dataset. In order to avoid spurious 

associations in cell types with very few ACE2+ cells and due to very low expression 

of ACE2, we subsampled ACE2− cells to the number of ACE2+ cells within each cell 

type and discarded cell types containing fewer than 5 cells expressing either ACE2 or 

fewer than 5 cells expressing the other gene being tested after the subsampling procedure. 

The significance of the association between ACE2 and TMPRSS2/CTSL is controlled for 

10% FDR using the statsmodels Python package (version 0.11.1)69. Data processing was 

performed using Scanpy Python package (version 1.4.6)70 and logistic models were fit using 

lme4 R package (version 1.1.21)71.

Single-cell ATAC-Seq analysis

Library Generation and Sequencing.—We performed single-cell ATAC-seq from 

primary carina and subpleural parenchyma of one individual (n=3 samples per location). 

Libraries were generated using the 10x Chromium Controller and the Chromium Single Cell 

ATAC Library & Gel Bead Kit (#1000111) according to the manufacturer’s instructions 

(CG000169-Rev C; CG000168-Rev B) with unpublished modifications relating to cell 

handling and processing. Briefly, human lung derived primary cells were processed in 1.5ml 

DNA LoBind tubes (Eppendorf), washed in PBS via centrifugation at 400g, 5 min, 4C, lysed 

for 3 min on ice before washing via centrifugation at 500g, 5 min, 4C. The supernatant 

was discarded and lysed cells were diluted in 1x Diluted Nuclei buffer (10x Genomics) 

before counting using Trypan Blue and a Countess II FL Automated Cell Counter to validate 

lysis. If large cell clumps were observed, a 40μm Flowmi cell strainer was used prior to the 

tagmentation reaction, followed by Gel Bead-In-Emulsions (GEMs) generation and linear 

PCR as described in the protocol. After breaking the GEMs, the barcoded tagmented DNA 
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was purified and further amplified to enable sample indexing and enrichment of scATAC-seq 

libraries. The final libraries were quantified using a Qubit dsDNA HS Assay kit (Invitrogen) 

and a High Sensitivity DNA chip run on a Bioanalyzer 2100 system (Agilent).

All libraries were sequenced using Nextseq High Output Cartridge kits and a Nextseq 500 

sequencer (Illumina). 10x scATAC-seq libraries were sequenced paired-end (2 x 72 cycles).

Initial data processing and QC.: Fastq files were demultiplexed using 10x Genomics 

CellRanger ATAC mkfastq (version 1.1.0). We obtained peak-barcode matrices by aligning 

reads to GRCh38 (CR v1.2.0 pre-built reference) using CellRanger ATAC count. Peak-

barcode matrices from six channels were normalized per sequencing depth and pooled using 

CellRanger ATAC aggr.

The aggregated, depth-normalized, filtered dataset was analyzed with Signac (v0.1.6, https://

github.com/timoast/signac), a Seurat72 extension developed for the analysis of scATAC-seq 

data. All the analyses in Signac were run with a random number generator seed set as 

1234. Cells that appeared as outliers in QC metrics (peak_region_fragments ≤ 750 or 

peak_region_fragments ≥ 20,000 or blacklist_ratio ≥ 0.025 or nucleosome_signal ≥ 10 or 

TSS.enrichment ≤ 2) were excluded from the analysis.

Normalization and dimensionality reduction.: The aggregated dataset was processed with 

Latent Semantic Indexing73, i.e. datasets were normalized using term frequency-inverse 

document frequency (TF-IDF), then singular value decomposition (SVD), ran on all 

binary features, was used to embed cells in low-dimensional space. Uniform Manifold 

Approximation and Projection (UMAP)74 was then applied for visualization, using the first 

30 dimensions of the SVD space.

Gene activity matrix and differential motif activity analysis.: A gene activity matrix 

was calculated as the chromatin accessibility associated with each gene locus (extended 

to include 2kb upstream of the transcription start site, as described in the vignette 

‘Analyzing PBMC scATAC-seq’ (version: March 13, 2020, https://satijalab.org/signac/

articles/pbmc_vignette.html), using as gene annotation the genes.gtf file provided together 

with Cellranger’s atac GRCh38-1.2.0 reference genome. For the motif analysis, we note that 

because epithelial cells with an accessible ACE2 locus tend to have a higher number of 

fragments in peaks than cells with inaccessible ACE2 (Supplementary Fig. 1e), consistent 

also with higher UMIs in scRNA-seq, some of the cells with inaccessible ACE2 could be 

false negatives, reducing our power.

Clusters were annotated using label transfer from matching scRNA samples or by literature / 

expert search of marker “active” (i.e. accessible) genes. Differential motif activity analysis 

was performed using Signac’s implementation of ChromVAR75, with motif position 

frequency matrices from JASPAR202076 (http://jaspar.genereg.net/) selecting transcription 

factors motifs from human (species=9606), broadly following the vignette ‘Motif analysis 

with Signac’ (https://satijalab.org/signac/articles/motif_vignette.html). Cells were identified 

as positive for ACE2 and/or TMPRSS2 (i.e. with the loci accessible) if at least one fragment 

was overlapping with the gene locus or 2kb upstream. Differential activity scores between 
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epithelial cells positive for ACE2 (with the above-mentioned definition of ‘positive’) and 

non-expressing ACE2 was performed with the FindMarkers function of Seurat (version 

3.1.1), using as test ‘LR’ (i.e. logistic regression) and as latent variable the number of counts 

in peak. The function constructs a logistic regression model predicting group membership 

based on each motif score individually and compares this to a null model with a likelihood 

ratio test. Adjusted p-value is the result of Bonferroni correction.

Immunohistochemistry and Proximity ligation in situ hybridization (PLISH)

Proximity ligation in situ hybridization (PLISH) was performed as described previously76. 

Briefly, frozen human trachea and distal lung sections were fixed with 4.0% 

paraformaldehyde for 20 min, treated with protease (20 μg/mL proteinase K for lung or 

Pepsin for trachea for 9 min) at 37°C, and dehydrated with up-series of ethanol. The sections 

were incubated with gene-specific oligos (Supplementary Table 6) in hybridization buffer (1 

M sodium trichloroacetate, 50 mM Tris [pH 7.4], 5 mM EDTA, 0.2 mg/mL heparin) for 2 

h at 37°C. Common bridge and circle probes were added to the section and incubated for 

1 h followed by T4 ligase reaction for 2 h. Rolling circle amplification was performed by 

using phi29 polymerase (#30221, Lucigen) for 12 hours at 37°C. Fluorophore-conjugated 

detection probe was applied and incubated for 30 min at 37°C. For combination of PLISH 

and Immunostaining, sections were incubated with primary antibody for HTII-280 (Terrace 

Biotech, TB-27AHT2-280), pro-SFTPC (Millipore, ab3786) or ACTA2 (Sigma, F3777) 

for 1 h at room temperature. Sections were incubated with secondary antibody (goat 

anti-mouse IgM secondary antibody (Thermo Scientific, A21044) or donkey anti-rabbit 

IgG secondary antibody (Thermo Scientific, A32795) for 45 min at room temperature, 

then sections were mounted in medium containing DAPI. We imaged three representative 

areas per patient for three patients total for images and quantification shown in Fig. 1 and 

imaged one representative area for a single patient for Extended Data Fig. 7a,c,d,g. Images 

were captured using Olympus Confocal Microscope FV3000 with Olympus FLUOVIEW 

FV31S-SW v2.1.1.98 using 20× or 60× objective.

THS-Seq on human pediatric samples

THS-Seq was performed as previously reported18 on human pediatric samples (full 

gestation, with no known lung disease) collected at day 1 of life, 14 months, 3 years, and 9 

years (n=1 at each time point).

Integrated analysis for associating ACE2, TMPRSS2, and CTSL expression with age, sex 
and smoking status in nasal, airway and lung cells

To assess the association of age, sex, and smoking status with the expression of ACE2, 

TMPRSS2, and CTSL, we aggregated 31 scRNA-seq datasets of healthy human nasal 

and lung cells, as well as fetal samples containing the expression counts of only the 3 

genes. Aggregation of these datasets was enabled by harmonizing the cell type labels 

of individual datasets and dataset concatenation within Scanpy70 (version 1.4.5.1). We 

harmonized annotations manually on the basis of provided cell type labels together with 

data contributors using a preliminary ontology generated on the basis of 5 published datasets 
30-32,36,38 with 3 levels of annotations. Level 1 has the lowest resolution and distinguishes 

epithelial from stromal/mesenchymal, endothelial and immune cells. Level 2 breaks up each 
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of the level 1 categories in the coarsest available further observed annotations. Level 3 

in turn splits up the observed level 2 annotations where finer annotations were available. 

(Supplementary Table 2, consent to publish was obtained from all contributors). To compare 

AT2 cells and their fetal progenitors possible, we mapped progenitor cells labeled “AT2-

like” and “SpC+ progenitors” to the AT2 label. We further harmonized metadata by 

collapsing the smoking covariate into “has smoked” and “has never smoked” and by taking 

mean ages where only age ranges were given. This resulted in a dataset of 1,320,896 cells 

and 3 genes in 377 samples from 228 donors (the cell by three-gene count matrix with 

annotations is available on the Single Cell Portal (SCP1257)). We divided the data into fetal 

(136,450 cells, 41 samples, 34 donors), adult nasal (57,548 cells, 20 samples, 18 donors), 

and adult lung (1,126,898 cells, 316 samples, 187 donors) datasets based on metadata 

provided.

To get an overview of sample diversity, we clustered the samples using the proportion of 

cells in level 2 cell types as features. Clustering was performed using louvain clustering 

(resolution 0.3; louvain package version 0.6.1) on a knn-graph (k=15) computed on 

Euclidean distances over the top 5 principal components of the cell type proportion data 

within Scanpy. This produced four clusters. Sample cluster labels were assigned based on 

cell type compositions and metadata for anatomical location that was obtained from the 

published datasets and via input from the data generators.

Within non-fetal datasets we modeled the association of age, sex, and smoking status with 

gene expression for ACE2, TMPRSS2, and CTSL within each cell type using a generalized 

linear model with the log total counts per cell as offset and Poisson noise as implemented 

in statsmodels69 (version 0.11.1) and using a Wald test from Diffxpy (www.github.com/

theislab/diffxpy; version 0.7.3, batchglm version 0.7.4). Specifically, we fit the model:

Y ij ∼ age + sex + age:sex + smoking + sex:smoking + age:smoking + dataset
, (2)

which models effects of age, sex and smoking while accounting for potential interactions 

between covariates and the uneven distribution of covariates across the dataset. Here, Yij 

denotes the raw count expression of gene i in cell j, age, sex, and smoking denote the 

modeled covariates, and age:sex, sex:smoking, and age:smoking represent the interaction 

terms between these covariates. The interaction terms model whether there is a difference 

in the smoking effect in men and women, and likewise whether the age effect is different 

for smokers and non-smokers. We included the dataset term to model the technical variation 

(e.g., sampling and processing differences) between the diverse datasets, and the log total 

counts per cell was used as an offset. Here, the total counts were scaled to have a mean of 

1 across all cells before the log was taken. Due to the inclusion of interaction terms, the 

complex interaction model (2) fits the overall effects of age (kage), sex (ksex), and smoking 

(ksmoking) as linear functions of the other two covariates respectively, given by the equations:

kage(sex, smoking) = βage + sexβage:sex + smokingβage:smoking,
ksex(age, smoking) = βsex + ageβage:sex + smokingβsex:smoking,
ksmoking(age, sex) = βsmoking + ageβage:smoking + sexβsex:smoking .
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Here, βage and βage:sex represent the model coefficients for age and the interaction of age and 

sex in model (2) respectively, and age denotes the age covariate. Sex and smoking covariates 

were converted into a one-hot encoded format such that sex=0 denoted females and 

smoking=0 denoted non-smokers. As linear dependencies on covariates can be summarized 

by showing 2 values per covariate, we displayed effect sizes for the overall age, sex, and 

smoking associations by computing kage, ksex, and ksmoking for sex∈{0,1}, smoking∈{0,1}, 

and age∈{31,62} (the first and third quartiles of the age distribution). Standard errors 

for these effects were computed using the variance-covariance matrix Σ via SE = CTΣC, 

where SE is the standard error and C is the vector of covariate values used to compute 

the respective overall effect (e.g., kage). P-values were obtained using a Wald test, and 

multiple testing correction was performed over all tests on the same cell type data via 

Benjamini-Hochberg. In order to fit this model we pruned the data to contain only datasets 

that have at least 2 donors and for which smoking status metadata was provided. This 

resulted in a dataset of 985,420 cells and 286 samples from 164 donors for adult lung data. 

Only 15 donors remained for adult nasal data after this filtering, which we deemed too few 

to obtain robust results. To obtain cell-type specific associations the above model was fit 

within each cell type for all cell types with at least 1,000 cells.

While cells from different donors are not truly independent observations, model (2) treats 

them as such and thus models cellular and donor variation jointly. As donor variation tends 

to be larger than single-cell variation, when most cells come from few donors (either there 

are few donors, or few donors contribute most of the cells), this can lead to an inflation of 

p-values. To counteract this effect, we verified that significant associations are consistent 

when modeling only donor variation via pseudo-bulk analysis (Supplementary Data 1-4). 

Furthermore, we tested whether effects are dependent on few donors by holding out datasets.

Pseudo-bulk data was generated by computing the mean for each gene expression value 

and nUMI covariate for cells in the same cell type and donor. After filtering as described 

above, model (2) was fit to the data (Supplementary Data 1-4). In contrast to the single-cell 

model, pseudo-bulk analysis underestimates certainty in modeled effects as uncertainty in 

the pseudo-bulk means are not taken into account when estimating background variance. 

Thus, we used only effect directions from pseudo-bulk analysis to validate single-cell 

associations. In further analysis, we regarded only those associations as confirmed by 

pseudo-bulk analysis, where the FDR-corrected p-value in the single-cell model is below 

0.05, and the sign of the estimated effect is consistent in both the single-cell and the 

pseudo-bulk analysis.

We further separated significant associations into robust trends and indications depending 

on the holdout analysis. A significant association was regarded as a robust trend if the 

effect direction is consistent when holding out any dataset when fitting the model (without 

considering the p-value). In the case that holding out one dataset caused the maximum 

likelihood estimate of the coefficient to be reversed, we denote this as the effect no longer 
being present, which characterized the association as an indication. Two dataset holdouts led 

to indications in our analysis: the largest declined donor transplant dataset (Supplementary 

Table 2, “Regev-Rajagopal”, most cells and most samples; indication in ACE2 multiciliated 

lineage age and sex associations, and CTSL AT1 sex association), and a declined donor 
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tracheal epithelium dataset (“Seibold”, Supplementary Table 2, most donors in the smoking 

analysis; CTSL basal smoking association).

At least 4 values per covariate are required to describe a single association in model (2) (e.g., 

male non-smoker, female non-smoker, male smoker, and female smoker for the kage effect). 

To summarize these effects and present a single association per covariate, we also fit the 

simplified model:

Y ij ∼ age + sex + smoking + dataset . (3)

As in model (2), the logarithmized, scaled total counts per cell were used as an offset, data 

were filtered as described, and multiple testing correction was performed via Benjamini-

Hochberg. To increase the robustness of our reported associations, we again performed 

pseudo-bulk and holdout analysis. Additionally, to still account for covariate interactions, 

we discarded associations where the complex model (2) and the simplified model (3) results 

were inconsistent. Here, consistency was defined by two criteria: at least one model (2) 

indication or robust trend in the same direction as the model (3) effect, and no model (2) 

indication or robust trend in the opposite direction to the model (3) effect.

As metadata on smoking status was only available for a subset of the data, we also fitted a 

reduced version of models (2) and (3) without the smoking covariate on a larger dataset to 

confirm sex and age associations (Supplementary Data 5-8). The non-smoking model was 

fit on 1,096,604 cells in 309 samples from 185 donors of adult lung data. Again, log total 

counts (scaled) was used as an offset, pseudo-bulk and holdout analysis was performed, and 

associations from the simple model were tested for consistency with the complex model.

Normalizing ACE2+TMPRSS2+ double positive fractions of human lung samples

Proportions of ACE2+TMPRSS2+ cells (Extended Data Fig. 3a, Supplementary Fig. 15) 

were normalized to account for differences in total UMI counts. Normalization was done per 

donor, per cell type by calculating 
Xi, j
Ni, j

∗ 10, 000, where Xi,j is the DP fraction of cell type i 

in donor j, and Ni,j represents the median total UMI count of cells of type i in donor j.

Identification of gene programs using feature importance for a random forest trained to 
classify ACE2+TMPRSS2+ vs ACE2-TMPRSS2− cells

To infer tissue programs, we trained a random forest classifier to discriminate between 

double positive and double negative cells (excluding ACE2 and TMPRSS2; 75:25 class 

balanced test-train split), generalizing across multiple cell types in one tissue, and ranked 

genes according to their importance scores in the classifier. To infer cell programs, we 

performed differential expression analysis between double positive and double negative cells 

within each cell subset.

Importantly, these methods do not assume that ACE2+TMPRSS2+ cells form a distinct 

subset within each cell type. Rather, our goal is to leverage the variation among single 
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cells within a single type to identify gene programs that are co-regulated with ACE2 and 

TMPRSS2 within each expressing cell subset.

For each of the lung, nasal, and gut datasets, we labeled the cells with non-zero counts for 

both ACE2 and TMPRSS2 as double positive cells (DPs), and the cells with zero counts for 

both ACE2 and TMPRSS2 as double negative cells (DNs). Within each tissue, we identified 

cell types with greater than 10 DPs, and for each of these cell types, we selected the genes 

with increased expression (log fold change greater than 0) in DPs vs DNs (so that we 

focus on important ”positive” features). We trained a classifier with 75:25 train:test split 

to classify the DPs from DNs within each of these cell types using the sklearn (version 

0.21.3) 77 RandomForestClassifier function with the following parameters: n_estimators set 

to 100, the criterion as gini, and the class_weight parameter set to balanced_subsample. We 

first trained individual classifiers separately for each of the cell types, and pooled genes 

with positive feature importance values (using the feature_importance78 field in the trained 

RandomForestClassifier object) to train a final DP vs DN classifier across each tissue. 

We used the top 500 genes, as ranked by their feature importance scores, to define the 

signature for the gene expression program of DPs for the tissue. This procedure was carried 

out in lung, nasal, and gut datasets, yielding tissue-specific signatures for gene expression 

programs of DPs from each tissue.

For visualization purposes only, we generated network diagrams using the networkx (version 

2.2) tool with the ForceAtlas2 (version 0.3.5) graph layout algorithm 79. We scored genes 

that appeared in signatures for multiple tissues by their aggregated feature importance (using 

a plotting heuristic that used the sum of importance ranks for genes in individual tissues 

and by assigning a large valued rank (10000) to a gene that did not appear in a particular 

tissue) and selected the top 10 genes that were shared by each pair of tissues or shared 

by all tissues along with additional genes that included the ones unique to each tissue’s 

signature to plot in the network visualization. The GO terms enriched in the gene expression 

programs shared by DPs across tissues were found using gprofiler (version 1.0.0) 80 using 

the scanpy.queries.enrich tool.

This analysis was performed in two ways: on the original data, as well as after accounting 

for differences in distribution of the number of UMIs (nUMI) per cell between DPs and 

DNs. This was done by binning the nUMI distribution in the DPs for each tissue into a 100 

bins and then randomly sampling from the nUMI distribution for the DNs in each bin to 

match the distribution of the DPs in that bin. The nUMI distributions before and after the 

matching are shown in Supplementary Fig. 11b.

Identification of gene programs enriched in DP vs. DN cells using regression

In parallel, we used a regression framework to recover gene modules enriched in DP vs. 
DN cells (Fig. 4c,d, Supplementary Fig. 12a,b) in the nasal, lung, and gut datasets. We 

first restricted our analysis to cell subsets derived from at least two donor individuals 

that each contained a mixture of DN and DP cells (Nawijn Nasal: multiciliated, Goblet; 

Regev/Rajagopal Lung: AT1, AT2, Basal, multiciliated, Secretory; Aggregated Lung: AT2, 

multiciliated, Secretory; Regev/Xavier Colon: BEST4+ Enterocytes, Cycling TA (Transit 

Amplifying), Enterocytes, Immature Enterocytes 2, TA-2). For each of these cell subsets, we 
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then used MAST (version 1.8.2) 81 to fit the following regression model to every gene with 

cells as observations:

Yi ∼ X + (1 ∣ S),

where Yi is the expression level of gene i in cells, measured in units of log2(TP10K+1), 

X is the binary co-expression state of each cell (i.e. DP vs. DN), and S is the donor that 

each cell was isolated from. To control for donor-specific effects (i.e. batch effects), we used 

a mixed model with a random intercept that varies for each donor. To fit this model, we 

subsampled cells from DP and DN groups to ensure that both the donor distribution and the 

cell complexity (i.e. the number of genes per cell) were evenly matched between the two 

groups, as follows. First, for each subset, we restricted our analysis to donors containing 

at least two DN and two DP cells. Using these samples, we partitioned the cells into 10 

equally-sized bins based on cell complexity and subsampled DN cells from each bin to 

match the cell complexity distribution of the DP cells. Finally, we fit the mixed model 

(above), controlling for both donor and cell complexity.

To build gene modules for DP cells, we prioritized genes by requiring that they be 

expressed in at least 10% of DP cells, and to have a model coefficient greater than 0 

with an FDR-adjusted p-value less than 0.05 (for the combined coefficient in the hurdle 

model). After this filtering step, genes were ranked by their model coefficient (i.e. estimated 

effect size). The top 12 genes were selected for network visualization within each cell 

type (Fig. 4c,d, Supplementary Fig. 12a,b). In three cases (gut Cycling TA, TA-2 and 

BEST4+ cells), RP11-* antisense genes were flagged and excluded from visualizations. 

To visualize overlap across each network, we indicated whether each gene was among 

the top 250 genes from each of the other cell types. Putative drug targets were identified 

by querying the Drugbank database49. Gene set enrichment analysis was performed using 

the R package EnrichR (version 1.0)82, selecting the top 25 genes from each cell type 

for the pan-tissue analysis (“All” category; Fig. 4e), and the top 50 genes from each cell 

type for the tissue-specific analyses (“Nose”, and “Lung” categories; Fig. 4e). We note 

a few caveats/challenges/limitations that may influence our results, including non-uniform 

sampling across donors; variation in cell compositions across regions (e.g., distal lung vs 

carina), and additional cellular heterogeneity that the current level of broad subset annotation 

may not have been captured.

Cell-Cell interaction analysis

CellphoneDB 53 v.2.0.0 was run with default parameters on the 10 human lung samples 

of the Regev/Rajagopal dataset (41 samples, 10 patients, 2-6 locations each), analyzing the 

cells from each dissected region separately. For each sample (patient/location combination), 

for each cell type we distinguished double positive cells (ACE2 > 0 and TMPRSS2 > 0) 

from all others. Only interactions highlighted as significant, i.e. present in the “significant 

means” output (p <0.05) from CellphoneDB were considered. AT2 cells and myeloid cells 

were present in lung lobes samples from all 10 patients, whereas samples from 5 patients 

contained both ACE2+TMPRSS2+ double positive AT2 cells and myeloid cells.
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Co-expression patterns of additional proteases and IL6/IL6R/IL6ST

ACE2-protease co-expression (Fig. 2, Extended Data Fig. 5) and ACE2-IL6/IL6R/IL6ST 
co-expression (Supplementary Fig. 13) were tested via the logistic mixed-effects model 

described in “Integrated co-expression analysis of high resolution cell annotations across 

tissues” (Equation 1, above).

Mouse smoke exposure experiments

For these experiments, 8 to 10 week old pathogen-free female wild-type C57BL/6 mice 

were obtained from Charles River (Sulzfeld, Germany) and housed in rooms maintained at 

constant temperature and humidity with a 12 hour light cycle. Animals were allowed food 

and water ad libitum. All animal experiments were approved by the ethics committee for 

animal welfare of the local government for the administrative region of Upper Bavaria 

(Regierungspräsidium Oberbayern) and were conducted under strict governmental and 

international guidelines in accordance with EU Directive 2010/63/EU. The female C57BL/6 

mice (n=5) were whole body exposed to 100% mainstream cigarette smoke at a particle 

concentration of 500 mg/m3, generated from 3R4F research cigarettes (Filter removed, 

Tobacco Research Institute, University of Kentucky), for 50 min twice/day, 5 days/week for 

2 months to mimic human smoking habits 83. Control mice (n=3) were exposed to filtered 

air, but exposed to the same stress as mice exposed to cigarette smokè.

Extended Data

Extended Data Fig. 1. A cross-tissue survey of ACE2+TMPRSS2+ cells in published single-cell 
datasets.
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(a) Odds ratio (x axis) of ACE2+TMPRSS2+ co-expression in single-cell datasets (dots) 

from different tissues (y axis). (b) Significance (−log10(p-value) using two-sided Fisher’s 

exact test, x axis) of co-expression of ACE2+TMPRSS2+ in single-cell datasets (dots) from 

different tissues (y axis). (c,d) Proportion (x axis) of ACE2+ cells per dataset (c) and 

TMPRSS2+ cells per dataset (d) across different tissues (y axis).

Extended Data Fig. 2. A cross-tissue survey of ACE2+CTSL+ cells in published single-cell 
datasets.
(a) Proportion (x axis) of ACE2+CTSL+ cells per dataset (dots) across different tissues (y 

axis). (b) Proportion (x axis) of ACE2+CTSL+ cells within clusters annotated by broad 

cell-type categories (dots) in each of the top 7 enriched datasets (y axis; color legend, inset). 

(c) Odds ratio (x axis) of ACE2+CTSL+ co-expression in single-cell datasets (dots) from 

different tissues (y axis). (d) Significance (−log10(p-value) using two-sided Fisher’s exact 

test, x axis) of co-expression of ACE2 and CTSL in single-cell datasets (dots) from different 

tissues (y axis). (e) Proportion (x axis) of CTSL+ cells per dataset across different tissues (y 

axis).
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Extended Data Fig. 3. Cellular composition and fraction of ACE2+TMPRSS2+ cells across the 
aggregated lung dataset
(a) Boxplot of normalized donor fractions of ACE2+TMPRSS2+ (double positive - DP) cells 

per cell type. The box indicates the median and first and third quartile, whiskers extend to 

points within 1.5 times the interquartile range. For each cell type, only donors that have at 

least 100 cells of the cell type were included. Cell types with at least 10 ACE2+TMPRSS2+ 

cells in the entire dataset were labeled, the remaining cell types were grouped under ‘Other’. 

Cell type labels preceded by a “2” consist of cells that had no annotation available at level 

3 and therefore kept their level 2 annotation. Cells with only level 1 annotations were 

grouped under “Other”. (2_Airway epithelium: n=6, 2_Olfactory epithelium: n=3, 2_fetal 

airway progenitors: n=5, AT1: n=60, AT2: n=92, Basal: n=56, Multiciliated lineage: n=88, 

Secretory: n=79, Submucosal Secretory: n=35, Other: n=180 donors.)

(b) Percentage of ACE2+TMPRSS2+ cells across 377 samples and with sample composition. 

Top: Percentage ACE2+TMPRSS2+ cells in each sample, categorized by level 3 annotations. 

Bottom: Sample compositions. Samples are ordered by age, with 31-week pre-term births 

and 39-week full-term births both set to age 0. (c) Zoom in on fetal and pediatric samples 

of plot (b). Samples are ordered and labeled by age. Fetal samples are partitioned into first 

and second trimester (TM) and pediatric samples are divided into 31-week pre-term births, 

39-week full term births, 3 month, 3 year, and 10 year old children. AT1, 2: alveolar type 1, 

2. AT2 progenitor cells were grouped under AT2.
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Extended Data Fig. 4. Chromatin accessibility at the ACE2, TMPRSS and CTSL loci across lung 
cells in early life
(a) Schematic: single-cell chromatin accessibility by transposome hypersensitive sites 

sequencing (THS-Seq) from human pediatric samples (full gestation, no known lung 

disease) collected at day 1 of life, 14 months, 3 years, and 9 years (n=1 at each time 

point). (b) Accessibility (dot color log normalized gene activity scores), and % of cells with 

accessible loci (dot size) for the ACE2, TMPRSS, and CTSL loci (columns) across different 

cell types (rows) in scTHS-Seq with all time points aggregated. (c) Accessibility (dot color 

log normalized gene activity scores), and % of cells with accessible loci (dot size) of ACE2, 
TMPRSS and CTSL in AT1--AT2 cells in scTHS-Seq at day 1 of life, 14 months, 3 years, 

and 9 years (rows). (d) Number of ACE2+CTSL+ and ACE2+TMPRSS2+ cells per time 

point.
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Extended Data Fig. 5. ACE2 expression across tissues and cell types.
Shown are fractions of ACE2 expressing cells (dot size) and mean ACE2 expression level in 

expressing cells (dot color) across datasets (rows) and cell types (columns).
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Extended Data Fig. 6. Additional analyses to identify other proteases that may have a role in 
infection.
(a) Multiple proteases are co-expressed with ACE2 in another human lung scRNA-seq 

(“aggregated lung”). Scatter plot of significance (y axis, −log10(adjusted p value) by two-

sided Wald test. (Methods)) and effect size (x axis) of co-expression of each protease gene 

(dot) with ACE2 within each indicated epithelial cell type (color). Dashed line: significance 

threshold. TMPRSS2 and PCSKs that significantly co-expressed with ACE2 are marked. 

(b) ACE2-protease co-expression with PCSKs, TMPRSS2 and CTSL across lung cell types 

(“aggregated lung”). Significance (dot size, −log10(adjusted p value) by two-sided Wald 

test. (Methods)) and effect size (color) for co-expression of ACE2 with selected proteases 

(columns) across cell types (rows). (c-d) Predicted cleavage sites in the SARS-CoV-2 S-

protein S1/S2 region. (c) Multiple amino acid sequence alignment of SARS-CoV-2 S-protein 

S1/S2 region with orthologous sequences from other betacoronaviruses (top) and polybasic 

cleavage sites of other human pathogenic viruses (bottom). (d) Sequence logo plot showing 

cleavage site preference derived from MEROPS database for PCSK1, PCSK2, FURIN, 

PCSK4, PCSK5, PCSK6 and PCSK7. (e) Protease cleavage sites (triangles) predicted by 

ProP and PROSPERous in the SARS-CoV-2 spike protein. Top: Full-length SARS-CoV-2 S-

protein sequence schematic with predicted functional protein domains and motifs. Numbers: 

amino acid residues after which cleavage occurs; SP: signal peptide; NTD: N-terminal 
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domain; RBD: Receptor-binding domain; FP: Fusion peptide; FP1/2: Fusion peptide 1/2; 

HR1: Heptad repeat 1; CH: connecting helix; HR2: Heptad repeat 2; TM: Transmembrane 

domain. (f,g) Multiple proteases are expressed across lung cell types (“aggregated lung”). 

(f) Distribution of non-zero expression (y axis) for ACE2, PCSKs and TMPRSS2 across 

lung cell types (x axis). White dot: median non-zero expression. (g) Proportion of cells (y 

axis) expressing ACE2, PCSK family or TMPRSS2 across lung cell types (x axis), ordered 

by compartment. (h) ACE2+PCSK+ double positive cells across lung cell types. Fraction (y 

axis) of different ACE2+PCSK+ or ACE2+TMPRSS2+ double positive cells across lung cell 

types, ordered by compartment (x axis). Dots: different samples, line: median of non-zero 

fractions. (i,j) ACE2+PCSK+ co-expression across human tissues (collection of published 

scRNA seq datasets). (i) Percent (y axis) of different ACE2+PCSK+ or ACE2+TMPRSS2+ 

double positive cells across human tissues (x axis). Dots: different single-cell datasets, line: 

median of non-zero fractions. (j) ACE2 co-expression with PCSKs or TMPRSS2 across 

human tissues. Significance (dot size, −log10(adjusted p value) by two-sided Wald test. 

(Methods)) and effect size (dot color) of co-expression. (k) Fraction of ACE2+TMPRSS2+ 

PCSK+ cells across lung cell types (“Regev/Rajagopal dataset”). Dots: samples, line: median 

of non-zero fractions.
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Extended Data Fig. 7. ACE2, TMPRSS2, CTSL Immunofluorescence and RNA profiling
(a) Negative control of PLISH in human lung alveoli. Left shows scrambled probe detection 

in three indicated colors. Right shows HTII-280 antibody staining (red) with 2 color 

scramble probe detection. DAPI (blue) indicates nuclei. (b) Frequency of ACE2, CTLS 
and TMPRSS2 triple positive cells in each sample (n = 60) (dots) in the Regev/Rajagopal 

dataset. (c) PLISH and immunostaining in human adult lung alveoli for ACE2 (red), PRO-

SFTPC (green), DAPI (blue).

(d) Immunostaining in human adult lung alveoli. HTII-280 (green) , TMPRSS2 (red) and 

AGER (white). Blue shows DAPI in nuclei. (e) Mean expression (y axis, FPKM, from 

bulk RNA-seq, error bars: standard error) of ACE2, CTSL, TMPRSS2 in sorted cells from 

3 different human explant donors using the following markers: large and small airway 

basal cells (NGFR+), AT2 cells (HT-II 280+) and alveolar organoids (HT-II 280+). (f) 
Expression in the submucosal gland. Mean expression (color) and proportion of expressing 

cells (dot size) of ACE2, TMPRSS2 and CTSL in key cell types (rows), from scRNA-seq 

of human large airway submucosal glands. (g) PLISH and immunostaining in human large 
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airway submucosal glands. ACE2 (red), ACTA2 (green) and DAPI (blue). We imaged one 

representative area for a single patient for a,c,d,g (Methods).

Extended Data Fig. 8. An overview of the three-level lung cell ontology used for cell annotation 
harmonization.
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Extended Data Fig. 9. Age, sex, and smoking status associations with expression of ACE2, 
TMPRSS2, and CTSL across level 3 cell type annotations modeled without interaction terms.
(a) Age, sex, and smoking assocations with expression of ACE2 (blue), TMPRSS2 (yellow), 

and CTSL (green) modeled without interaction terms on 985,420 cells from 164 donors. 

Level 3 cell types are shown on the y-axes, and are subdivided by level 1 cell type 

annotations (top to bottom: epithelial, endothelial, stromal and immune cells). The effect 

size (x axis) is given as a log fold change (sex, smoking status) or the slope of log expression 

per year (age). Positive effect sizes indicate increases with age, in males, and in smokers. 

As the age effect size is given per year, it is not directly comparable to the sex and smoking 

status effect sizes. Colored bars: associations with an FDR-corrected p-value<0.05 (one-

sided Wald test on regression model coefficients), consistent effect direction in pseudo-bulk 

analysis, and consistent results using the model with interaction terms (Methods). White 

bars: associations that do not pass all of the three above-mentioned evaluation criteria. Error 

bars: standard errors around coefficient estimates. Error bars are only shown for colored 

bars (indications or robust trends) to limit figure size. Only cell types with at least 1000 

cells across donors are included. Number of cells and donors per cell type: Basal: 155877, 

105, Multiciliated lineage: 37530, 157, Secretory: 22306, 140, Rare: 2676, 71, Submucosal 

secretory: 33661, 45, AT1: 29973, 101, AT2: 155512, 104, Arterial: 3497, 37, Capillary: 

15745, 34, Venous: 7173, 33, Lymphatic EC: 5055, 76, Fibroblasts: 9112, 51, Airway 

smooth muscle: 1077, 13, B cell lineage: 11761, 90, T cell lineage: 52139, 97, Innate 

lymphoid cells: 29836, 56, Dendritic cells: 9017, 90, Macrophages: 156964, 89, Monocytes: 

42703, 96, Mast cells: 13581 cells, 88 donors. (b) Robustness of associations to holding out 

a dataset. The values show the number of held-out datasets that result in loss of association 

between a given covariate (rows) and ACE2, TMPRSS2, or CTSL expression in a given cell 

type (columns). Robust trends are determined by significant effects that are robust to holding 
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out any dataset (0 values). From left to right: results for ACE2, TMPRSS2, and CTSL. AT1, 

2: alveolar type 1, 2. EC: endothelial cell.

Extended Data Fig. 10. ACE2 and TMPRSS2 are up-regulated in bronchial brushings from 
current versus former smokers.
Boxplots of log counts per million normalized gene expression for ACE2 and TMPRSS2 
are plotted across current (red, n=70 samples) versus former (green, n=60 samples) 

smokers. Both genes are significantly up-regulated in current versus former/never (ACE2, 

FDR=0.006; and TMPRSS2, FDR=0.00004) based on a linear model using voom-

transformed data that included genomic smoking status, batch, and RNA quality (TIN) as 

covariates and patient as a random effect. Multiple testing correction was performed via 

Benjamini-Hochberg to obtain an FDR-corrected p-value. (Methods)
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Figure 1. A cross-tissue survey of ACE2+TMPRSS2+ cells shows enrichment in cells at reported 
sites of disease transmission or pathogenesis.
(a,b) Double positive cells are more prevalent in epithelial organs and cells. (a) Proportion 

of ACE2+TMPRSS2+ cells (y axis) per dataset (dots) from 21 tissues and organs (rows). (b) 

Proportion of ACE2+TMPRSS2+ cells (y axis) within cell clusters (dots) annotated by broad 

cell-type categories (rows) within each of the top 7 enriched datasets (color legend, inset). 

(c,d) Significant co-expression of ACE2+TMPRSS2+ or ACE2+CTSL+ highlights cells from 

tissues implicated in transmission or pathogenesis. Significance of co-expression (dot size 

−log10(adjusted P-value), by two-sided Wald test (Methods); red border: FDR<0.1) of 

ACE2+TMPRSS2+ (c) or ACE2+CTSL+ (d) and effect size (dot color, color bar) for finely 

annotated cell classes (columns) from diverse tissues (rows). Only tissues and cells in at 

least one significant co-expression relationship are shown (Methods). (e-h) In situ validation 

of double positive cells in the lung, airways, and submucosal gland (n = 3 donors per 

experiment, imaged three randomly chosen areas per donor). PLISH and immunostaining 

(e,g) and quantification (error bars: standard error) (f,h) in human adult lung alveoli for 

(e) ACE2 (white), TMPRSS2 (green) and CTSL (red) (total of 1487 DAPI positive cells 

examined for quantification (f)) and (g) ACE2 (white), TMPRSS2 (green) and HTII-280 

(red) (total of HTII-280 positive 482 cells examined for qualitification (h)).
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Figure 2. ACE2-protease co-expression and SARS-CoV-2 S-protein cleavage sites suggest a 
possible role for additional proteases in infection.
(a) Multiple proteases are co-expressed with ACE2 in human lung scRNA-seq. Scatter 

plot of significance (y axis, −log10(adjusted P value)), by two-sided Wald test. (Methods) 

and effect size (x axis) of co-expression of each protease gene (dot) with ACE within 

each indicated epithelial cell type (color). Dashed line: significance threshold. TMPRSS2 
and PCSKs that significantly co-expressed with ACE2 are marked. (b) ACE2-protease 

co-expression with PCSKs, TMPRSS2 and CTSL across lung cell types. Significance (dot 

size, −log10(adjusted P value), by two-sided Wald test. (Methods)) and effect size (color) 

for co-expression of ACE2 with selected proteases (columns) across cell types (rows). 

(c,d) Multiple proteases are expressed across lung cell types. (c) Distribution of non-zero 

expression (y axis) for ACE2, PCSKs and TMPRSS2 across lung cell types (x axis). 

White dot: median non-zero expression. (d) Proportion of cells (y axis) expressing ACE2, 

PCSK family or TMPRSS2 across lung cell types (x axis), ordered by compartment. (e) 
ACE2+PCSK+ double positive cells across lung cell types. Fraction (y axis) of different 

ACE2+PCSK+ or ACE2+TMPRSS2+ double positive cells across lung cell types (x axis). 

Dots: different samples, line: median of non-zero fractions. (f) ACE2-protease co-expression 

analysis for the 20 most significant human proteases in AT2 cells. Significance (dot size, 

−log10(adjusted P value), by two-sided Wald test. (Methods)) and effect size (color) for 
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co-expression of ACE2 with different proteases (columns) across cell types (rows). (g) 
Additional protease expression in ACE2+TMPRSS2+ double positive cells. Significance 

(y axis, −log10(adjusted P value), by two-sided Wald test. (Methods)) and fold change 

(x axis) of differential expression for each human protease between ACE2+TMPRSS2+ 

double positive vs double negative cells within each indicated epithelial cell types (color). 

Significantly differentially expressed proteases within AT2 cells and PCSKs across all 

epithelial cell types are highlighted.
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Figure 3. ACE2, TMPRSS2, and CTSL expression increases with age and in men, and shows cell 
type specific associations with smoking
(a) Samples in the aggregated lung and airway dataset partition to several classes by their 

cell composition. Percentage of cells (y axis) by level 2 cell annotations (Annotations 

with a preceding “1” indicate coarse annotations of cells that had no annotation at level 

2) across samples (x axis). The 377 samples are ordered by sample composition clusters 

(Methods). (b) Schematic of key lung and airway epithelial cell types highlighted in the 

study. (c) Distribution of normalized ACE2 and TMPRSS2 expression across level 3 lung 

cell types in 1,031,254 cells from 228 donors. Red shading indicates the main cell types 

that express both ACE2 and TMPRSS2. (d) Age, sex, and smoking status associations with 

expression of ACE2 (blue), TMPRSS2 (orange), and CTSL (green) in level 3 epithelial 

cells. The effect size (x axis) of the association is given as a log fold change (sex, smoking 

status) or the slope of log expression per year with age. As the age effect size is given 

per year, it is not directly comparable to the sex and smoking status effect sizes. Positive 

effect sizes indicate increases with age, in males, and in smokers. Colored bars: associations 

with an FDR-corrected p-value<0.05 (one-sided Wald test on regression model coefficients), 

consistent effect direction in pseudo-bulk analysis, and consistent results using the model 

with interaction terms (Methods). White bars: associations that do not pass all of the three 

above-mentioned evaluation criteria. Error bars: standard errors around coefficient estimates. 

Error bars are only shown for colored bars (indications or robust trends) to limit figure size. 
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Number of donors and cells per cell type: Basal: 155877, 105, Multiciliated lineage: 37530, 

157, Secretory: 22306, 140, Rare: 2676, 71, Submucosal secretory: 33661, 45, AT1: 29973, 

101, AT2: 155512 cells, 104 donors. AT1, AT2: alveolar type 1, 2; EC: endothelial cell; 

MDC: monocyte derived cell.
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Figure 4: Tissue and cell-type-specific gene modules in ACE2+TMPRSS2+ cells highlight immune 
and inflammatory features
(a,b) Tissue programs of ACE2+TMPRSS2+ cells in lung, gut, and nasal samples. (a) 

Selected tissue program genes. Node: gene; Edge: program membership. Genes are selected 

heuristically for visualization (Methods). (b) Enrichment was tested using a hypergeometric 

test exactly as performed by gprofiler in scanpy.queries.enrich (−log10(adj P-value), x axis) 

of KEGG pathway gene sets (y axis) in the full tissue programs. (c-e) Cell programs of 

ACE2+TMPRSS2+ cells. (c,d) Top 12 genes from each cell program recovered for different 

lung (c) or (d) nasal epithelial cell-type (nodes, colors). Colored concentric circles: overlap 

with a gene in the top 250 significant genes in other cell types. ACE2 and TMPRSS2 are 

included even if not among the top 12. (e) Enrichment (−log10(adj P-value), x axis) of 

KEGG disease and non-disease pathway gene sets in either highly significant genes across 

all tissues (top) or in specific tissues (lung, nose, bottom). (f) Motif activity in immune TFs 

in ACE2+ cells. Significance (−log10(adjusted p-value), x axis) of the top 10 differential 

“motif activity scores” (Methods) between epithelial ACE2+ cells or ACE2− cells (y axis). 

(Epithelial cells are: AT1, AT2, secretory, ciliated, ionocytes, and neuroendocrine cells, 

highlighted in the gray shaded area in Supplementary Fig. 1a). (n=2 locations: primary 

carina and lung lobes, n=3 samples per location, n=1 patient). Motifs are extracted from 

the JASPAR2020 database, motif code is shown in each row. Dashed line: threshold for 
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significance (adjusted p-value of 0.05). P-values were calculated by logistic regression and 

likelihood ratio test, adjusted through Bonferroni correction (see Methods).
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Figure 5: Ace2, Tmprss2 and Ctsl expression in mouse in similar cell types and follows similar 
patterns with age and smoking.
(a) Gradual increase in Ace2 expression by airway epithelial cell type with age. Mean 

expression (y axis) of Ace2 in different airway epithelial cells (x axis) of mice of three 

consecutive ages (color legend, upper right). Shown are replicate mice (dots, n=3 for 

each age), mean (bar), and error bars (standard error of the mean (SEM)). The effect of 

mouse age was tested using a two-sided Wald test (p-values). (b) Increase in proportion of 

Ace2+Ctsl+ goblet and club cells with age. Percent of Ace2+Ctsl+ cells (x axis) in different 

airway epithelial cell types (y axis) of mice of three consecutive ages (color legend, upper 

right). Shown are replicate mice (dots), mean (bar), and error bars (SEM). The effect of 

mouse age was tested using Wald test (p-values). (c-k) Increase in Ace2 expression in 

secretory cells with smoking. Mice were daily exposed to cigarette smoke or filtered air (FA) 

as control for two months after which cells from whole lung suspensions were analyzed by 

scRNA-seq (Drop-Seq). (c,d) UMAP of scRNA-seq profiles (dots) colored by experimental 

group (c) or by Ace2+ cells and indicated double positive cells (d). Alveolar epithelial cells 

(AT1 and AT2) and airway epithelial secretory and ciliated cells are marked. (f) The relative 

frequency of Ace2+ cells is increased by smoking in airway secretory cells but not AT2 

cells. Relative proportion (y axis) of Ace2+ (red) and Ace2− (grey) cells in smoking and 

control mice of different cell types (x axis) (filtered air (FA): n = 9 mice, smoke exposed: 
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n=5 mice, error bars represent 95% confidence intervals). (g, h) Expression of Ace2 is 

increased in airway secretory cells (filtered air: 187 cells, smoke exposure: 62 cells) , but 

not in AT2 cells (filtered air: 3808, smoke exposure: 1882). Distribution of Ace2 expression 

(y axis) in secretory (f) and AT2 (g) cells from control and smoking mice (x axis), (p-value 

= 1.5 10−6 by Wilcoxon rank-sum test). (i-k) Re-analysis of published bulk mRNA-Seq74 

of lungs exposed to different daily doses of cigarette smoke show increased expression of 

(i) Ace2, (j) Tmprss2, and (k) Ctsl after five months of chronic exposure. n=8 mice per 

condition. Bars show mean, error bars show standard error. (** p=0.0046, *** p=0.0002, 

**** p<0.0001, one-way ANOVA with Dunnett’s multiple comparisons test, compared to 

Air group.) (l) Expression in placenta. Mean expression (color) and proportion of expressing 

cells (dot size) of Ace2, Tmprss2 and Ctsl along with marker genes (see Supplementary Fig. 

14) in single and double positive cells from embryonic days 9.5 to 18 of mouse placenta 

development.
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