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From Odometers to Circular Systems:
A Global Structure Theorem

Matthew Foreman, Benjamin Weiss

March 22, 2017

Abstract

The main result of this paper is that two large collections of er-
godic measure preserving systems, the Odometer Based and the Cir-
cular Systems have the same global structure with respect to join-
ings. The classes are canonically isomorphic by a continuous map that
takes factor maps to factor maps, measure-isomorphisms to measure-
isomorphisms, weakly mixing extensions to weakly mixing extensions
and compact extensions to compact extensions. The first class includes
all finite entropy ergodic transformations with an odometer factor. By
results in [5], the second class contains all transformations realizable
as diffeomorphisms using the untwisted Anosov-Katok method. An
application of the main result will appear in a forthcoming paper that
shows that the diffeomorphisms of the torus are inherently unclassi-
fiable up to measure-isomorphism. Other consequences include the
existence measure distal diffeomorphisms of arbitrary countable distal
height.
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9 Open Problems 109

1 Introduction

The isomorphism problem in ergodic theory was formulated by von Neumann
in 1932 in his pioneering paper [19]. Simply put it asks to determine when
two measure preserving actions are isomorphic, in the sense that there is a
measure isomorphism between the underlying measure space that intertwines
the actions. It has been solved completely only for some special classes of
transformations. Halmos and von Neumann [13] used the unitary operators
defined by Koopman to completely characterize ergodic measure preserv-
ing transformations with pure point spectrum, these transformations can be
concretely realized (in a Borel way) as translations on compact groups. An-
other notable success was the use of the Kolmogorov entropy to distinguish
between measure preserving systems. Ornstein’s work showed that entropy
completely classifies a large class of highly random systems, such as indepen-
dent processes, mixing Markov chains and certain smooth systems such as
geodesic flows on surfaces of negative curvature.

Closely related to the isomorphism problem is the study of structural
properties of measure preserving systems. These including mixing properties
and compactness. A famous example is the Furstenberg-Zimmer structure
theorem for ergodic measure preserving transformations, which characterizes
every ergodic transformation as an inverse limit system of compact exten-
sions followed by a weakly mixing extension. This result is fundamental for
studying recurrence properties of measure preserving systems and the related
proofs of Szemeredi-type combinatorial theorems ([9]).

In this paper we present a new phenomenon, Global Structure Theory.
Most structure theorems in ergodic theory consider a single transformation in
vitro. The approach here is study whole, intact ecosystems of transformations
with their inherent relationships.

Our main result shows that two large collections of measure preserving
transformations have exactly the same structure with respect to factors and
isomorphisms (and more generally, joinings). More concretely, define the
odometer based transformations to be those finite entropy transformations
that contain a non-trivial odometer factor. Spectrally, this is equivalent to
the associated unitary operator having infinitely many finite period eigen-
values. To each odometer, we can associate a class of symbolic systems, the
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circular systems. In [5], it is shown that the circular systems coincide ex-
actly with the ergodic transformations realizable as diffeomorphisms of the
torus using the untwisted method of Approximation-by-Conjugacy, due to
Anosov-Katok ([1]).

We can make two categories by taking the objects to be these two classes
of systems and by taking morphisms to be factor maps (or more generally
joinings) that preserve the underlying timing structure. The main theorem
of this paper says that these two categories are isomorphic by a map that
takes measure-isomorphisms to measure-isomorphisms, weakly mixing exten-
sions to weakly mixing extensions and compact extensions to compact ex-
tensions. It follows that it takes distal towers to distal towers. Moreover the
map preserves the simplex of non-atomic invariant measures, takes rank one
transformations to rank one transformations and much more. (This will be
discussed further in the forthcoming [8].) In other words the global structure
of these two categories is identical.

We can get more detail by considering systems based on a fixed odometer
map and circular systems based on that odometer map and an arbitrary
fast growing coefficient sequence. Doing so gives us collections of pairwise
isomorphic categories that can be amalgamated to yield the statement above.
The main theorem is framed in this more granular setting.

Our result might be a mere curiosity, were it not for an application which
we now describe.

Foreshadowed by a remarkable early result by Feldman [4], in the late
1990’s a different type of result began to appear: anti-classification results
that demonstrate in a rigorous way that classification is not possible. This
type of theorem requires a precise definition of what a classification is. In-
formally a classification is a method of determining isomorphism between
transformations perhaps by computing (in a liberal sense) other invariants
for which equivalence is easy to determine.

The key words here are method and computing. For negative theorems,
the more liberal a notion one takes the stronger the theorem. One natural
notion is the Borel/non-Borel distinction. Saying a set X or function f is
Borel is a loose way of saying that membership in X or the computation of
f can be done using a countable (possibly transfinite) protocol whose basic
input is membership in open sets. Say that X or f is not Borel is saying
that determining membership in X or computing f cannot be done with any
amount of countable resources.
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In the context of classification problems, saying that an equivalence re-
lation E on a space X is not Borel is saying that there is no countable
amount of information and no countable transfinite protocol for determin-
ing, for arbitrary x, y ∈ X whether xEy. Any such method must inherently
use uncountable resources.1

In considering the isomorphism relation as a collection I of pairs (S, T )
of measure preserving transformations, Hjorth showed that I is not a Borel
set. However the pairs of transformations he used to demonstrate this were
inherently non-ergodic2, leaving open the essential problem:

Is isomorphism of ergodic measure preserving transformations Borel?

This question was answered by Foreman, Rudolph and Weiss in [6], where
they gave a negative answer. This answer can be interpreted as saying that
determining isomorphism between ergodic transformations is inaccessible to
countable methods that use countable amounts of information.

In the same foundational paper from 1932 where von Neumann formu-
lated the isomorphism problem he expressed the likelihood that any abstract
measure preserving transformation is isomorphic to a continuous measure
preserving transformation and perhaps even to a differentiable one. This brief
remark eventually gave rise to one of the outstanding problems in smooth
dynamics, namely:

Does every ergodic MPT have a smooth model?

By a smooth model is meant an isomorphic copy of the transformation
which is given by smooth diffeomorphism of a compact manifold preserving
a measure equivalent to the volume element. Soon after entropy was intro-
duced, A. G. Kushnirenko showed that such a diffeomorphism must have
finite entropy, and up to now this is the only restriction that is known.

This paper is the second in a series of papers whose original purpose was
to show that the variety of ergodic transformations that have smooth models
is rich enough so that the abstract isomorphism relation, when restricted
to these smooth systems, is as complicated as it is in general. We show

1Many well known classification theorems have as immediate corollaries that the re-
sulting equivalence relation is Borel. An example of this is the Spectral Theorem, which
has a consequence that the relation of Unitary Conjugacy for normal operators is a Borel
equivalence relation.

2The ergodic components of the pairs were rotations of the circle.
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this to be the case even when restricting to diffeomorphisms of the 2-torus
that preserve Lebesgue measure this is the case. In the third paper we will
complete the proof of the following theorem:

Theorem (Anti-classification of Diffeomorphisms). If M is either the torus
T2, the disk D or the annulus then the measure-isomorphism relation among
pairs (S, T ) of measure preserving C∞-diffeomorphisms of M is not a Borel
set with respect to the C∞-topology.

It was natural for us to try to adapt our earlier work to establish this
result. However we were faced at first with the following difficulty. The
transformations built in [6] were based on odometers (in the sense that the
Kronecker factor was an odometer). It is a well known open problem whether
it is possible to have any smooth transformation on a compact manifold
that has a non-trivial odometer factor. Thus proving the anti-classification
theorem in the smooth context required constructing a different collection of
hard-to-classify transformations and then showing that this collection could
be realized smoothly. This is our application of the main result of this paper.

The paper ([5]) constructed a new collection of systems, the Circular Sys-
tems, which are defined as symbolic systems constructed using the Circular
Operator, a formal operation on words. The main result in [5] has as a conse-
quence that uniform circular systems can be realized as smooth models using
the method developed by Anosov and Katok.

The primary theorem of this paper allows us to transfer the general iso-
morphism structure for odometer based systems to the isomorphism structure
for circular systems, at least up to automorphisms of the underlying odome-
ter or rotation. Namely there remains the issue of preserving the timing
mechanism. In the forthcoming [7] it is shown how to construct odometers
so that for the resulting circular systems, up to a small correction factor, all
isomorphisms preserve the underlying timing structure. This allows us to
conclude the proof of the anti-classification theorem for diffeomorphisms.

Here is a more concrete description of the results in the paper. In the
present paper we are concerned with the entire classOB of systems based on a
fixed odometer and the relations between them. The odometer is determined
by a sequence of positive integers greater than one, 〈kn : n ∈ N〉. The
the circular operator is determined by an additional sequence of integers
〈ln : n ∈ N〉. For this paper, the sequence of ln’s can be arbitrary subject to
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the requirement that
∑

1/ln <∞. However for realizing circular systems as
diffeomorphisms there is a fixed growth rate, determined by the size of the
alphabet of the odometer based system and 〈kn : n ∈ N〉, that the sequence
of ln’s must eventually exceed.

We describe OB symbolically here, but show in a forthcoming paper
that OB consists of representations of arbitrary ergodic systems with finite
entropy that have the specific odometer as a factor. In the language of
“cutting and stacking” constructions these are those constructions where no
spacers are introduced. We fix 〈ln : n ∈ N〉, and hence a sequence of circular
operators. Applying these to each of the elements of OB we obtain a second
class, CB, of circular systems. This class consists of some of the extensions
of a fixed irrational rotation which is determined by the circular operator.
As remarked above, for suitably chosen coefficient sequences, this class can
be characterized as those transformations realizable as diffeomorphisms using
the Anosov-Katok technique. We consider the two classes as categories where
the morphisms are graph joinings which are either the identity of the base
or reverse it. These are called synchronous and anti-synchronous joinings
respectively. Our main theorem then takes the form:

Theorem 1. For a fixed circular coefficient sequence 〈kn, ln : n ∈ N〉 the cate-
gories OB and CB are isomorphic by a functor F that takes synchronous join-
ings to synchronous joinings, anti-synchronous joinings to anti-synchronous
joinings, isomorphisms to isomorphisms and weakly mixing extensions to
weakly mixing extensions.3

It is natural to extend the collections of morphisms of OB and CB to gen-
eral synchronous and non-synchronous joinings. Because the ergodic joinings
are not closed under composition, in extending Theorem 1 one is forced to
consider at least some non-ergodic joinings. At the end of the paper we
discuss how to extend Theorem 1 to expanded categories that have as mor-
phisms arbitrary synchronous and anti-synchronous joinings. This involve
expanding our analysis of generic sequences to non-ergodic joinings. We also
describe some detailed analysis of the combinatorics behind the isomorphism
F .

We have provided a detailed table of contents which enumerates the con-
tents of the paper. Here is a brief summary. Much of the section following

3E. Glasner showed that the functor takes compact extensions to compact extensions.
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this one is standard, with the exception §2.6, which is exposes generic se-
quences for transformations and extends that notion to joinings. In §3, the
reader will find an explanation of our two categories and a proof that circular
systems contain a canonical rotation factor. Section 4 is primarily concerned
with defining a map \ that is a symbolic analogue of complex conjugation on
the unit circle. In sections 5 and 6 the mapping F is defined on morphisms,
while §7 contains the proof of the main result. In §8 there is a more detailed
analysis of of the dynamical properties of our mapping F which may prove
useful in the future, and in the final section we collect some problems that
are left open.

1.1 Acknowledgements

This work was inspired by the pioneering work of our co-author Dan Rudolph,
who passed away before this portion of the grand project was undertaken. We
owe an inestimable debt to J.P. Thouvenot who suggested using the Anosov-
Katok technique to produce our badly behaved transformations rather than
directly attacking the “odometer obstacle.” We would like to thank E. Glas-
ner for showing that F preserves compact extensions. Finally the first author
would like to thank Christian Rosendal for asking very useful questions about
how general our results were.

2 Preliminaries

This section establishes some of the conventions we follow in this paper.
There are many sources of background information on this including any
standard text or [20], [15]. A small portion of the material in this section
was presented in [5], but is repeated here in an attempt to be self-contained.
The reader is referred to [5] for any missing definitions.

2.1 Measure Spaces

We will call separable non-atomic probability spaces measure spaces and
denote them (X,B, µ) where B is the Boolean algebra of measurable subsets
of X and µ is a countably additive, non-atomic measure defined on B.4 We

4We will occasionally make an exception to this by calling discrete probability measures
on a finite set measures; we hope that context makes the difference clear.
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will often identify two members of B that differ by a set of µ-measure 0 and
seldom distinguish between B and the σ-algebra of classes of measurable sets
modulo measure zero unless we are making a pointwise definition and need
to claim it is well defined on equivalence classes.

We will frequently use without explicit mention the Maharam-von Neu-
mann result that every standard measure space is isomorphic to ([0, 1],B, λ)
where λ is Lebesgue measure and B is the algebra of Lebesgue measurable
sets.

If (X,B, µ) and (Y, C, ν) are measure spaces, an isomorphism between
X and Y is a bijection φ : X → Y such that φ is measure preserving and
both φ and φ−1 are measurable. We will ignore sets of measure zero when
discussing isomorphisms; i.e. we allow the domain and range of φ to be
subsets of X and Y (resp.) of measure one. A measure preserving system is
an object (X,B, µ, T ) where T : X → X is a measure isomorphism. A factor
map between two measure preserving systems (X,B, µ, T ) and (Y, C, ν, S) is a
measurable, measure preserving function φ : X → Y such that S ◦φ = φ◦T .
A factor map is an isomorphism or conjugacy between systems iff φ is a
measure isomorphism. Following common practice, we will use the word
conjugacy interchangeably with isomorphism in this context.

For a fixed measure space (X,µ) we can consider the collection of measure
preserving transformations T : X → X. These form a group that can be
endowed with a Polish topology that has basic open sets described as follows.
We fix a finite measurable partition A of X and an ε > 0 and take as a
neighborhood of T

N (T,A, ε) =def {S :
∑
a∈A

µ(Ta∆Sa) < ε}.

Details about this topology can be found in many sources including [12], [20].

2.2 Joinings

We remind the readers of the definitions. Extensive treatments of joinings
can be found in [11] or [16]. All of the definitions and basic results about
joinings necessary for this paper occur in Chapter 6 of the latter reference.

Definition 2. A joining between two measure preserving systems (X,B, µ, T )
and (Y, C, ν, S) is a measure ρ on X × Y defined on the product σ-algebra
B ⊗ C such that

9



1. ρ is T × S invariant,

2. for each set B ∈ B, ρ(B × Y ) = µ(B),

3. for each set C ∈ C, ρ(X × C) = ν(C).

The graphs of factor maps provide natural examples of joinings. We
characterize these with a definition.

Definition 3. A joining ρ is a graph joining between X and Y if and only
if for all C ∈ C and all ε > 0, there is a B ∈ B such that

ρ((B × Y )∆(X × C)) < ε.

A joining ρ between (X,B, µ, T ) and (Y, C, ν, S) is an invertible graph
joining if and only for all B ∈ B there is a C ∈ C such that

ρ((B × Y )∆(X × C)) = 0 (1)

and vice versa: for all C ∈ C, there is a B ∈ B such that equation 1 holds.

Here are some standard facts (see [11]):

Proposition 4. Let X = (X,B, µ, T ) and Y = (Y, C, ν, S). Then

1. There is a canonical one-to-one correspondence between the collection
of graph joinings of X and Y and the collection of factor maps from X
to Y . A graph joining concentrates on the graph of the factor map. We
can represent the graph joining corresponding to a measure preserving
map φ : X → Y by

ρφ =

∫
(δx × δφ(x))dµ(x).

2. There is a canonical one-to-one correspondence between the collection
of invertible graph joinings of X and Y and the collection of conjugacies
between X and Y.

3. Suppose that B′ ⊆ B and C ′ ⊆ C are Boolean algebras that generate B
and C respectively as σ-algebras. Let ρ be a joining of X with Y such
that for all ε > 0 and all C ∈ C ′ there are B1, . . . Bn ∈ B′ such that we
have ρ(

⋃
i(Bi × Y )∆(X × C)) < ε, then ρ is a graph joining.
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We note that perhaps a more proper term for an invertible graph joining
is the earlier usage diagonal joining. In view of the results of this section
we will often be careless and say that ρ is a factor map or ρ is a conju-
gacy/isomorphism to mean that ρ is a graph joining or ρ is an invertible
graph joining.

To each joining ρ of X and Y we can associate its adjoint ρ∗, the joining
of Y with X defined for B ∈ B and C ∈ C as:

ρ∗(C ×B) = ρ(B × C).

If ρ is a graph joining corresponding to a factor map π : X → Y , then ρ∗

concentrates on {(y, x) : π(x) = y}.
The following is immediate:

Proposition 5. ρ is an invertible graph joining if and only if both ρ and ρ∗

are graph joinings.

Thus we can apply Proposition 4, item 3 to both ρ and ρ∗ to get a criterion
for being the joining associated with a conjugacy.

A potential source of confusion. Proposition 4 allows us to identify graph
joinings with factor maps and invertible graph joinings with conjugacies.
These joinings are always ergodic as joinings. However, there are non-ergodic
conjugacies between ergodic measure preserving transformations. More ex-
plicitly: there are ergodic systems (X,T ) and (X,S) and non-ergodic isomor-
phisms φ : (X,T )→ (X,S).5 The associated joining ρφ is, however, ergodic
as a T × S-invariant measure.

Let (X,µ), (Y, ν) and (Z, µ̃) be measure spaces and πX : X → Y and
πZ : Z → Y be factor maps. We can define a canonical joining of X and
Z that reflects the factor structure as follows. We let {µy : y ∈ Y } and
{µ̃y : y ∈ Y } be the disintegrations of X and Z over Y respectively. The
relatively independent joining of X and Z over Y is the joining ρ:

ρ =

∫
(µy × µ̃y)dν(y).

We will sometimes write this as X ×Y Z.

5The second author has given examples of of isomorphic ergodic transformations where
every conjugacy is non-ergodic.
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We will be concerned about categories of measure preserving systems
where the morphisms are joinings. For this we must describe the composition
operation. Suppose we are given joinings ρXY between X and Y and ρY Z
between Y and Z. Then (Y, ν) is a common factor of both (X × Y, ρXY )
and (Y × Z, ρY Z) and we can consider the relatively independent joining
ρXY ×Y ρY Z .

We define the composition of ρXY and ρY Z to be the projection of the rel-
atively independent joining of ρXY and ρY Z to a measure on X×Z. Formally,
if A ⊆ X × Z and ρ is the relatively independent joining, then:

ρXY ◦ ρY Z(A) = ρ({(x, y, z) : x, z ∈ A}).

Example 6. Suppose that π0 : X → Y and π1 : Y → Z are factor maps.
If ρXY is the joining associated with π0 and ρY Z is the joining associated
with π1, then (ρ∗Y Z ◦ ρ∗XY )∗ is the joining associated with the factor map
π1 ◦ π0 : X → Z.6

The following are standard facts (e.g. in §6.2 of [11]):

Proposition 7. 1. The operation of composition of joinings is associa-
tive: if ρ1, ρ2 and ρ3 are joinings, then

(ρ1 ◦ ρ2) ◦ ρ3 = ρ1 ◦ (ρ2 ◦ ρ3).

2. Suppose that πX : X → X ′ and πZ : Z → Z ′ are factor maps Let ρ1 and
ρ2 be joinings of X, Y and Y, Z respectively. Let ρπ1 be the projection
of ρ1 to a joining of X ′ and Y via πX × id and ρπ2 be defined similarly.
Finally let (ρ1 ◦ ρ2)π be the projection of the composition of ρ1 and ρ2
to a joining of X with Z. Then:

ρπ1 ◦ ρπ2 = (ρ1 ◦ ρ2)π.

2.3 Symbolic Systems

Let Σ be a countable or finite alphabet endowed with the discrete topology.
Then ΣZ can be given the product topology, which makes it into a separable,
totally disconnected space that is compact if Σ is finite.

6In the following, in the context of factor maps π : X → Y we will be sloppy about
whether this is associated with a joining of X with Y or a joining of Y with X.
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Notation: If u = 〈σ0, . . . σn−1〉 ∈ Σ<∞ is a finite sequence of elements of Σ,
then we denote the cylinder set based at k in ΣZ by writing 〈u〉k. If k = 0 we
abbreviate this and write 〈u〉. Explicitly: 〈u〉k = {f ∈ ΣZ : f � [k, k + n) =
u}. The collection of cylinder sets form a base for the product topology on
ΣZ.

Notation: For a word w ∈ Σ<N we will write |w| for the length of w. We
will write 1〈w〉 for the characteristic function of the interval 〈w〉0 in ΣZ.

The shift map:
sh : ΣZ → ΣZ

defined by setting sh(f)(n) = f(n + 1) is a homeomorphism. If µ is a
shift invariant Borel measure then the resulting measure preserving system
(ΣZ,B, µ, sh) is called a symbolic system. The closed support of µ is a shift
invariant closed subset of ΣZ called a symbolic shift or sub-shift.

Symbolic shifts are often described intrinsically by giving a collection of
words that constitute a clopen basis for the support of an invariant measure.
Fix a language Σ, and a sequence of collections of words 〈Wn : n ∈ N〉 with
the properties that:

1. for each n all of the words in Wn have the same length qn,

2. each w ∈ Wn occurs at least once as a subword of each w′ ∈ Wn+1,

3. there is a summable sequence 〈εn : n ∈ N〉 of positive numbers such
that for each n, every word w ∈ Wn+1 can be uniquely parsed into
segments

u0w0u1w1 . . . wlul+1 (2)

such that each wi ∈ Wn, ui ∈ Σ<N and for this parsing∑
i |ui|
qn+1

< εn+1.

The segments ui in condition 2 are called the spacer or boundary portions of
w.

Definition 8. A sequence 〈Wn : n ∈ N〉 satisfying properties 1.)-3.) will be
called a construction sequence.
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Associated with a construction sequence is a symbolic shift defined as
follows. Let K be the collection of x ∈ ΣZ such that every finite contiguous
subword of x occurs inside some w ∈ Wn. Then K is a closed shift invariant
subset of ΣZ that is compact if Σ is finite.7

Formally, we have constructed a symbolic shift. To get a measure pre-
serving system we find a shift invariant measure µ concentrating on K and
write (K, µ). In [5] we define the notion of a uniform construction sequence
and show that the resulting K are uniquely ergodic.

We want to be able to unambiguously parse elements of K. For this we
will use construction sequences consisting of uniquely readable words.

Definition 9. Let Σ be a language and W be a collection of finite words in
Σ. Then W is uniquely readable iff whenever u, v, w ∈ W and uv = pws
then either p or s is the empty word.

In our constructions we will restrict our measures to a natural set:

Definition 10. Suppose that 〈Wn : n ∈ N〉 is a construction sequence for a
symbolic system K with each Wn uniquely readable. Let S be the collection
x ∈ K such that there are sequences of natural numbers 〈am : m ∈ N〉, 〈bm :
m ∈ N〉 going to infinity such that for all m there is an n, x � [−am, bm) ∈ Wn.

Note that S is a dense shift invariant Gδ set. The following lemma is routine:

Lemma 11. Fix a construction sequence 〈Wn : n ∈ N〉 for a symbolic system
K in a finite language. Then:

1. K is the smallest shift invariant closed subset of ΣZ such that for all n,
and w ∈ Wn, K has non-empty intersection with the basic open interval
〈w〉 ⊂ ΣZ.

2. Suppose that there is a unique invariant measure ν on S ⊆ K, then ν
is ergodic.

` Item 1 is clear from the definitions. If X is a Polish space, T : X → X
is a Borel automorphism and D is a T -invariant Borel set with a unique
T -invariant measure on D, then that measure must be ergodic. a

Let 〈Wn : n ∈ N〉 be a uniquely readable construction sequence, and
s ∈ S. By the unique readability, for each n either s(0) lies in a well-defined

7 The symbolic shifts built from construction sequences coincide with transformations
built by cut-and-stack constructions.
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subword of s belonging to Wn or in a spacer of a subword of s belonging to
some Wn+k.

Lemma 12. Suppose that K is built from 〈Wn : n ∈ N〉 and ν is a shift
invariant measure on K concentrating on S. Then for ν-almost every s there
is an N for all n > N , there are an ≤ 0 < bn such that s � [an, bn) ∈ Wn.

` Let Bn be the collection of s ∈ S such that for some an ≤ 0 < bn,
s � [an, bn) ∈ Wn but s(0) is in a boundary portion of s � [an, bn). By the
Ergodic Theorem and clause 3.) of the definition of a construction sequence∑
ν(Bn) <∞.
It follows from the Borel-Cantelli Lemma that for almost all s there is an

N such that for all n ≥ N , s /∈ Bn. Fix an s ∈ S and such an N . From the
definition of S there are arbitrarily large n∗ > N and an∗ ≤ 0 < bn∗ such
that s � [an∗ , bn∗) ∈ Wn∗ . Using backwards induction from n∗ to N and the
definition of Bn, this also holds for all n ∈ [N, n∗). a

2.4 Locations

By Lemma 12 for ν-almost all x and for all large enough n there is a unique
k with 0 ≤ k < qn such that s � [−k, qn − k) ∈ Wn.

Definition 13. Let s ∈ S and suppose that for some 0 ≤ k < qn, s � [−k, qn−
k) ∈ Wn. We define rn(s) to be the unique k with with this property. We will
call the interval [−k, qn−k) the principal n-block of s, and s � [−k, qn−k) its
principal n-subword. The sequence of rn’s will be called the location sequence
of s.

We interpret rn(s) = k as saying that s(0) is the kth symbol in the princi-
pal n-subword of s containing 0. We can view the principal n-subword of s as
being located on an interval I inside the principal n+ 1-subword. Counting
from the beginning of the principal n + 1-subword, the rn+1(s) position is
located at the rn(s) position in I.

Remark 14. Suppose that s ∈ S has a principal n-block for all n ≥ N . Let
N ≤ n < m. It follows immediately from the definitions that rn(s) and rm(s)
are well defined and the rm(s)th position of the principal m-block of s is in
the rn(s)th position inside the principal n-block of s.
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The next lemma tells us that an element of s is determined by knowing
any tail of the sequence 〈rn(s) : n ≥ N〉 together with a tail of the principal
subwords of s.

Lemma 15. Suppose that s, s′ ∈ S and 〈rn(s) : n ≥ N〉 = 〈rn(s′) : n ≥ N〉
and for all n ≥ N , s and s′ have the same principal n-subwords. Then s = s′.

` Since s, s′ ∈ S there are sequences 〈an, a′n, bn, b′n : n ≥ N〉 tending
to infinity such that s � [−an, bn) ∈ Wn and s′ � [a′n, b

′
n) ∈ Wn. Since

rn(s) = rn(s′) we know that an = a′n and bn = b′n. Since s and s′ have the
same principal subwords, s � [an, bn) = s′ � [a′n, b

′
n). The lemma follows. a

Remark 16. We record some consequences of Lemma 15:

1. Suppose that we are given a sequence 〈un : M ≤ n〉 with un ∈ Wn. If
we specify which occurrence of un in un+1 is the principal occurrence,
and the distances of the principle occurrence to the beginning of un+1

go to infinity, then 〈un : M ≤ n〉 determines an s ∈ S ⊆ K completely
up to a shift k with |k| ≤ qM .

2. A sequence 〈rn : N ≤ n〉 and sequence of words wn ∈ Wn comes from
an infinite word s ∈ S if both rn and qn − rn go to infinity and that
the rn+1 position in wn+1 is in the rn position in a subword of wn+1

identical to wn.

Caveat: just because 〈rn : N ≤ n〉 is the location sequence of some
s ∈ S and 〈wn : N ≤ n〉 is the sequence of principal subwords of some
s′ ∈ S, it does not follow that there is an x ∈ S with location sequence
〈rn : N ≤ n〉 and sequence of subwords 〈wn : N ≤ n〉.

3. If x, y ∈ S have the same principal n-subwords and rn(y) = rn(x) + 1
for all large enough n, then y = sh(x).

2.5 A note on inverses of symbolic shifts

We define operators we label rev(), and apply them in several contexts

Definition 17. If x is in K, we define the reverse of x by setting rev(x)(k) =
x(−k). For A ⊆ K, define:

rev(A) = {rev(x) : x ∈ A}.
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If w is a word, we define rev(w) to be the reverse of w. If we are viewing w as
sitting on an interval, we take rev(w) to sit on the same interval. Similarly,
ifW is a collection of words, rev(W) is the collection of reverses of the words
in W.

If (K, sh) is an arbitrary symbolic shift then its inverse is (K, sh−1). It
will be convenient to have all of our shifts go in the same direction, thus:

Proposition 18. The map φ sending x to rev(x) is a canonical isomorphism
between (K, sh−1) and (rev(K), sh).

We will use the notation L−1 for the system (L, sh−1) and rev(L) for the
system (rev(L), sh).

We can say more. For a fixed symbolic shift K, the canonical isomorphism
φ : L−1 → rev(L) gives rise to a canonical correspondence

ρ↔ ρ′

between joinings ρ of (K, sh) with (L, sh−1) and joinings ρ′ of (K, sh) with
(rev(L), sh).

We will also use the following remark.

Remark 19. Assume that there is a unique non-atomic measure on a shift
invariant set S ⊆ K. Then there is also a unique non-atomic shift invari-
ant measure on rev(S) and for this measure, which we denote ν−1, we have
ν(〈w〉) = ν−1(〈rev(w)〉).

2.6 Generic points and sequences

Let T be a measure preserving transformation from (X,µ) to (X,µ), where
X is a compact metric space. Let C(X) be the space of all real valued
complex functions. Then a point x ∈ X is generic for T if and only if for all
f ∈ C(X),

lim
N→∞

(
1

N

)N−1∑
0

f(T n(x)) =

∫
X

f(x)dµ(x).

The Ergodic Theorem tells us that for a given f and ergodic T equation
above holds for a set of µ-measure one. Intersecting over a countable dense
set of f gives a set of µ-measure one of generic points. For symbolic systems
K ⊆ ΣZ we can describe generic points x as being those x such that the
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µ-measure of all basic open intervals 〈u〉0 is equal to the density of k such
that u occurs in x at k.

The symbolic systems we consider will be built from construction se-
quences and are characterized by the limiting properties of finite informa-
tion. We now describe how this works in greater detail. A more complete
discussion of this can be found in [21].

Let µ be a shift invariant measure on a symbolic system K defined by a
uniquely readable construction sequence 〈Wn : n ∈ N〉 in a finite language Σ.
Assume that qn is the length of the words in Wn. By µm we will denote the
discrete measure on the finite set Σm given by µm(u) = µ(〈u〉). By µ̂n(w) we
will denote the discrete probability measure on Wn defined by

µ̂n(w) =
µqn(〈w〉)∑

w′∈Wn
µqn(〈w′〉)

.

Thus µ̂n(w) is the relative measure of 〈w〉 among all 〈w′〉, w′ ∈ Wn. The
denominator is a normalizing constant to account for spacers at stages m > n
and for shifts of size less than qn.

Explicitly, if An = {s ∈ K : s(0) is the start of a word in Wn}, then the
sets {shj(An)}qn−1j=0 are disjoint and their union has a measure that tends to
one as n grows to infinity. The set An is partitioned into |Wn| many sets by
the words w ∈ Wn and µ̂n gives their relative size in An. Since the measure of
an arbitrary finite cylinder set can be calculated along the individual columns
represented by a fixed w, it is clear that the µ̂n(w) determine uniquely the
measure µ.

Using the unique readability of words inWk a word w in Σqk+l determines
a unique sequence of words wj in Wk such that ,

w = u0w0u1w1 . . . wJuJ+1.

When w ∈ Wk+l, each uj is in the region of spacers added in Wk+l′ , l
′ ≤ l.

We will denote the empirical distribution ofWk-words in w by EmpDistk(w).
Formally:

EmpDistk(w)(w′) =
|{0 ≤ j ≤ J : wj = w′}|

J + 1
, w′ ∈ Wk.

Then EmpDist extends to a measure on P(Wk) in the obvious way.
To finitize the idea of a generic point in K we introduce the notion of a

generic sequence of words.
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Definition 20. A sequence 〈vn ∈ Wn : n ∈ N〉 is a generic sequence of words
if and only if for all k and ε > 0 there is an N for all m,n > N ,

‖EmpDistk(vm)− EmpDistk(vn)‖var < ε.

The sequence is generic for a measure µ if for all k:

lim
n→∞

‖EmpDistk(vn)− µ̂k‖var = 0

where ‖ ‖var is the variation norm on probability distributions.

It follows that if 〈vn : n ∈ N〉 is a generic sequence of words then it is
generic for a unique measure µ. Even though Definition 20 involves only
the measures µ̂k it is easy to see (using the Ergodic Theorem) that for any
u ∈ Σk, if 〈vn : n ∈ N〉 is generic then the density of the occurrences of u in
the vn will converge to µ(〈u〉).

We can summarize the exact relationship between the empirical distribu-
tions and the µqk by saying that the empirical distribution is the proportion
of occurrences of w′ ∈ Wk among the k-words that appear in vn, whereas µqk
is approximately the density of the locations of the start of k-words in vn.
Letting u ∈ Wk, d be the density of the positions where an occurrence of u
begins in vn, and ds be the density of locations of letters in some spacer ui
we see that these are related by:

d =

(
EmpDist(vn)(u)

qk

)
(1− ds)

We record the following consequence of the Ergodic Theorem for future
reference:

Proposition 21. Let K be an ergodic symbolic system with construction
sequence 〈Wn : n ∈ N〉 and measure µ. Then for any generic s the sequence
of principal subwords of s, 〈wn : n ∈ N〉, is generic for µ. In particular,
generic sequences for µ exist.

We will need a characterization of when a generic sequence of words
〈wn : n ∈ N〉 determines an ergodic measure.
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Definition 22. A sequence 〈vn : n ∈ N〉 with vn ∈ Wn is an ergodic sequence
if for any k and ε > 0 there are n0 > k, and m0 such that for all m ≥ m0, if

vm = u0w0u1w1u2 . . . uJwJuJ+1

is the parsing of vm into Wn0 words and spacers ui then there is a subset
I ⊆ {0, 1, 2 . . . J} with |I|/J > 1− ε and for all j, j′ ∈ I

‖EmpDistk(wj)− EmpDistk(wj′)‖var < ε. (3)

Notice that in the definition of an ergodic sequence 〈vn〉 we are not as-
suming that it is a generic sequence for a measure. This follow easily (see
Lemma 24), but we have not made it part of the definition to emphasize its
finitary nature. In the next lemma we use the fact that the language Σ is
finite.

Lemma 23. Any generic sequence 〈vn : n ∈ N〉 for an ergodic measure µ is
an ergodic sequence.

` Suppose we are given k and ε > 0. For all δ > 0 we can apply the Ergodic
Theorem to find an N much bigger than qk and a set B with µ(B) > 1 − δ
such that for all s ∈ B and all w ∈ Wk:∣∣∣∣∣ 1

N

N−1∑
0

1〈w〉(T
is)− µqk(〈w〉)

∣∣∣∣∣ < δ.

Fix a generic point s for µ. Let I = {i ≥ 0 : T is ∈ B}, and define an infinite
sequence of disjoint intervals of length N that cover I by inductively letting
i0 = min(I), and ij+1 = min({i ∈ I : i ≥ ij +N}). We take the intervals to
be the sequence

[i0, i0 +N − 1], [i1, i1 +N − 1], [i2, i2 +N − 1], . . .

Notice that the complement of these intervals in Z+ has density less than δ
since their union clearly covers I.

Though this is an infinite sequence of intervals, the fact our language is
finite implies that only finitely many distinct words of length N occur as
subwords of s on these intervals. For each such word w∗, the density of those
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i in the domain of w∗ such that an occurrence of a w ∈ Wk starts at i is
within δ of µqk(〈w〉).8

Next take n0 large enough that N/qn0 < δ, and parse s into words from
Wn0 and the sections of s corresponding to spacers in words in Wj for some
j ≥ n0 + 1. By taking n0 large enough we can take the density of locations
in s occurring in spacers to be arbitrarily small. Let δ′ be this density.

The words fromWn0 have length much larger than N , and we can collect
all those words w ∈ Wn0 that are (1 −

√
δ)-covered by the N -intervals we

chose above into a set A ⊆ Wn0 .
The proportion of s � Z+ not covered by words in A can be split into the

spacer section and the portion inside words w in B = Wn0 \ A. For w ∈ B
the complement of the N -intervals has density at least

√
δ. It follows that

the density of sections of s covered by elements of B is less than
√
δ.

Thus the fraction of s not covered by words in A is at most
√
δ + δ′. It

is now clear that if δ, δ′ are chosen to be sufficiently small then∑
w∈A

µ̂n0(w) > 1− ε (4)

and all w ∈ A will have the property that

‖EmpDistk(w)− µ̂k‖var < ε/2

which implies inequality 3 for pairs of words in A. Using inequality 4 and
the fact that 〈vn〉 is generic for µ gives an m0 so that for all m ≥ m0 when
vm is parsed into n0 words a (1− ε)-fraction will lie in A and this concludes
the proof. a

We will also need the converse to Lemma 23, namely that the limiting
measure defined by an ergodic sequence is, in fact, ergodic.

Lemma 24. An ergodic sequence is generic and the measure µ defined by an
ergodic sequence 〈vn : n ∈ N〉 is ergodic.

` Inequality 3 implies that for each k and w ∈ Wk, the limit of the density
of occurrences of w in vn exists as n goes to infinity. It follows (since Wk is
finite) that 〈vn : n ∈ N〉 is a generic sequence and hence it defines a unique
measure µ.

8By taking N � qk, we can account for negligible “end effects” so that∣∣∣ 1N ∑N−qk−1
0 1〈w〉(T

is)− µqk(〈w〉)
∣∣∣ < δ. We ignore end effects in the rest of the proof.
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The ergodicity of µ is equivalent to the fact that the ergodic averages of
all L2 functions converge almost everywhere to a constant. Functions of the
form 1〈w〉 where w ∈

⋃
nWn and their shifts linearly span a dense set in L2

from which it easily follows that if µ were not ergodic there would be some k,
and w ∈ Wk with (1/N)

∑N−1
0 1〈w〉(T

ix) converging µ-a.e. to a non-constant
function. This means that there is a γ > 0 and disjoint sets B0, B1 of positive
measure in K such that for all large enough N for all x0 ∈ B0, x1 ∈ B1∣∣∣∣∣ 1

N

N−1∑
0

1〈w〉(T
ix0)−

1

N

N−1∑
0

1〈w〉(T
ix1)

∣∣∣∣∣ ≥ γ. (5)

Take ε small compared to γ and µ(B0), µ(B1). Find n0,m0 as in the
definition of ergodic sequence for this k and ε. Choose N large enough that
inequality 5 holds and so that qn0/N is negligible. Finally take m ≥ n0 so
that N/qm is negligible.

The inequality 5 depends only on the initial (N + qk)-block of x0 and x1.
Thus for large enough m we can compute µ(B0) and µ(B1) by the empirical
distributions of the (N + qk)-blocks in vm.

Since N is large compared to qn0 the frequency of occurrence of w in a
block of length N + qk is determined by its frequencies in the words in Wn0

in the n0-parsing of vm. We now get a contradiction to inequality 5, since
except for an ε-fraction, these wn0-words have their k-words distributed very
close to µ̂k(w). a

If S and T are symbolic systems then a joining ρ of S and T will be a
symbolic system, but may not have well-defined construction sequence, even
if S and T do.9 Accordingly we must generalize our definition of empirical
distribution to take into account the relative locations of words in typical
(s, t) ∈ K × L. We express this by shifting one of the basic open sets and
considering words (w, shs(v)), which we view as starting at the locations
(0, s).

Let 〈Wn : n ∈ N〉 and 〈Vn : n ∈ N〉 be uniquely readable construction se-
quences for K and L in the languages Σ,Λ respectively. Assume for simplicity
that all words in Wn and Vn have the same length.

9We run into this problem when considering joinings of circular systems and their
inverses that project to the \-map on the canonical factors; these notions are defined in
future sections.
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Let n ≤ n′ < n+ l. Then we can uniquely parse a word w ∈ Wn+l as

w = u0w0u1w1 . . . wJuJ+1

where each wj ∈ Wn and each uj is in the region of spacers for words in
Wn+l′ , l

′ < l. The similar statement holds for v′k ∈ Vn′ , and v ∈ Vn+l:

v = u′0v
′
0u
′
1v
′
1 . . . v

′
Ku
′
K+1.

The definition must take into account the relative shifts of w and v, the shifts
of (wj, vk) allow spacers to occur in different places and for the possibility
that J 6= K.

Let n ≤ n′ < n+ l be natural numbers, s, s′ ∈ Z, and (w′, v′) ∈ Wn×Vn′
and (w, v) ∈ Wn+l × Vn+l. Write w and v in terms of n and n′-words as
above. For s, s′, define an occurrence of (w′, shs

′
(v′)) in (w, shs(v)) to be a

j ≤ J such that wj = w′ and if k is the location of wj in w, then v′ occurs at
k + s′ in shs(v). We note the bijection between occurrences of (w′, shs

′
(v′))

in (w, shs(v)) and occurrences of (v′, sh−s
′
(w′)) in (v, sh−s(w)).

In defining empirical distributions for joinings we generalize Definition 20.
The empirical distribution of a shifted pair is defined to be the proportion of
times it occurs, relative to the proportion of times arbitrary pairs with the
same shift occur.

Definition 25. Fix w, s, v Let A be the collection

{j : for some (w∗, v∗) ∈ Wn × Vn′ , (w∗, shs
′
(v∗)) occurs at j in (w, shs(v))}.

Assume that A 6= ∅. For w′ ∈ Wn and v′ ∈ Vn′, we define:

EmpDistn,n′,s′(w, sh
s(v))(w′, v′) =

|{0 ≤ j ≤ J : (w′, shs
′
(v′)) occurs at j}|

|A|
.

As before, EmpDistn,n′,s′(w, sh
s(v)) extends uniquely to a probability

measure on P(Wn × Vn′). Definition 25 facilitates a notion of a generic
sequence for a joining.

Definition 26. A sequence of 〈(wn, vn, sn) ∈ Wn×Vn×Z : n ∈ N〉 is called
generic iff

1.
∑ |sn|

qn
<∞ and
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2. for all n, n′, s′ and ε > 0 there is an N for all m,m′ > N ,

‖EmpDistn,n′,s′(wm, shsm(vn))−EmpDistn,n′,s′(wm′,shsm′ (vm′))‖var < ε.

The definition of an ergodic sequence of pairs is done analogously.

It is easy to check that 〈(wn, vn, sn) : n ∈ N〉 is generic/ergodic if and
only if 〈(vn, wn,−sn) : n ∈ N〉 is generic/ergodic. For ergodic joinings the
analogues of Proposition 21, and Lemmas 23 and 24 hold and are proved in
exactly the same way.

We have given these definitions in the case of a product of two sym-
bolic shifts, but they generalize immediately to products of three or more
shifts. For example, to consider three shifts with construction sequences
〈Un〉n, 〈Vn〉n, 〈Wn〉n, we would consider a sequence of the form:

〈(un, vn, wn, sn, tn) : n ∈ N〉,

where the words belong to the respective construction sequences and the sn’s
and tn’s give the shifts relative to the first coordinate.

We will be concerned with compositions of joinings, which involves prod-
ucts of three shifts. To prepare for this we need the notion of a conditional
empirical distribution.

Definition 27. Let n, n′ < n+ l. Given a fixed w∗ ∈ Wn′ and a pair (w, v) ∈
Wn+l×Vn+l and (s, s′) we define the conditional empirical distribution to be:

EmpDistn,s′((w, sh
s(v)|w∗)(v′) =

|{0 ≤ j ≤ J : (w∗, shs
′
(v′)) occurs at j}|

|{j ≤ J : for some v∗ ∈ Vn, (w∗, shs′(v∗)) occurs at j}|
for v′ ∈ Wn.

Using the same ideas we can define the empirical distribution condi-
tioned on a v∗ ∈ Vk by looking at (sh−s(w), v) and counting occurrences
of (sh−s

′
(w′), v∗) for the w′ ∈ Wk.

This definition generalizes to products of three or more systems. When
working in three or more systems, there will be multiple s’s playing the role
of s′ in Definition 27. They will refer to the position of the sequences being
counted, relative to the conditioning sequence. So for example, if K,L,M have
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construction sequences 〈Un〉n, 〈Vn〉n, 〈Wn〉n and 〈(un, vn, wn, sn, tn) : n ∈ N〉
is a generic sequence for a joining ρ of K,L and M, then

EmpDistsk,k′,s,s′(un, sh
sn(vn), shtn(wn)|v)

counts pairs (shs(u), shs
′
(w)), where (u,w) ∈ Uk ×Wk′ have been shifted by

s and s′ relative to v.

Let ρ1 be a T1×T2-invariant measure on X×Y and ρ2 a T2×T3-invariant
measure on Y × Z. Recall from Section 2.2 that the composition of ρ1 and
ρ2 is defined to be projection of the relative independent joining of ρ1 and
ρ2 over the common factor Y to a measure on X × Z. We now describe a
method for detecting generic sequences for relatively independent joinings.

Suppose that systems X and Z have a common factor Y .

(X,B, µ, T ) (Z,D, µ̃, T̃ )

(Y, C, ν, S)

HH
HHj

��
���

Let ρ = X ×Y Z be the relatively independent joining of X and Y .
Let µy, µ̃y, ρy be the distintegrations of µ, µ̃ and ρ respectively. Then the
relatively independent joining ρ is characterized by the fact that for ν-a.e y,

ρy = µy × µ̃y. (6)

Let 〈An, Ãn,A′n : n ∈ N〉 be sequences of refining partitions that generate
B,D and C respectively. Since the sequence of partitions An × Ã′n generates
B⊗D, equation 6 is equivalent to the property that for all Ak ∈ Ak, Ãk ∈ Ãk
and ν-a.e. y,

µy(Ak)× µ̃y(Ãk) = ρy(Ak × Ãk) (7)

To finitize this we approximate µy(Ak) by µ(Ak|A′m(y)) for large m, where
A′m(y) is the atom of A′m to which y belongs. We let µy(Ak) be shorthand
for the distribution 〈µy(Ak) : Ak ∈ Ak〉, and µ(Ak|A′m)(y) stands for the
conditional distribution µ(Ak|A′m(y)), Ak ∈ Ak. (We use similar notation in
Lemma 28 for the conditional distribution given by ρ, µ and µ̃ on various
partitions.)
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By Martingale convergence,10 for ε > 0 and fixed k if m sufficiently large,
then for (1− ε) proportion of the y′ in the same atom as y:

‖µy′(Ak)− µ(Ak|A′m)(y)‖var < ε

but for a collection of A′m of whose union has ν-measure less than ε.
One can deal similarly with µ̃n and ρy. We have shown:

Lemma 28. In the notation above, ρ is the relatively independent joining
of µ and µ̃ if and only if for all k, ε > 0, for all large enough m, there is a
collection of atoms Am ∈ A′m of total measure at least 1− ε for which:

‖ρ(Ak × Ãk|Am)− µ(Ak|Am)× µ̃(Ãk|Am)‖var < ε. (8)

We now express Lemma 28 in terms of sequences of finite words. Suppose
that 〈Un〉, 〈Vn〉, and 〈Wn〉 are the uniquely readable construction sequences
for X, Y and Z.

Proposition 29. Let 〈(un, vn, wn, sn, tn) ∈ Un×Vn×Wn×Z2 : n ∈ N〉 be a
sequence of words. Suppose that:

1. 〈(un, vn, sn)〉n is generic for ρ1,

2. 〈(vn, wn, tn)〉n is generic for ρ2.

3. for all ε > 0, k and s∗ for all sufficiently large k′ there is an N and a
set Gk′ ⊂ Vk′ and for each v ∈ Gk′ a set of indices Iv ⊆ [0, qk′) that
satisfies |Iv| > (1− ε)qk′ such that for all n > N :

(a)
∑

v∈Gk′
EmpDist(vn)(v) > 1− ε

and

(b) for all v ∈ Gk′ and s ∈ Iv,

‖EmpDistk,k,s,s+s∗(un, shsn(vn), shtn(wn)|v) −
EmpDistk,s(un, sh

sn(vn)|v) ∗ EmpDistk,s+s∗(vn, shtn−sn(wn)|v)‖var

is less than ε.

If ρ is the relatively independent joining of ρ1, ρ2, then 〈(un, vn, wn, sn, tn) :
n ∈ N〉 is a generic sequence for ρ.

10See (e.g.) [11], Theorem 14.26, page 261.

26



` Observe that the hypothesis 3b implies a similar equation for any k1 < k
while the other parameters are fixed. Now use hypothesis 3a with a summable
sequence of ε’s and we can conclude by the Borel-Cantelli lemma that for ν-
almost every y ∈ Y for k′ sufficiently large, if vk′(y) is the principal k′-block
of y with location rk′ , then the inequality in 3b will hold for s = rk′ and
v = vk′(y).

Now by hypotheses 1 and 2, the single empirical distributions are con-
verging to (ρ1)y and (ρ2)y respectively (where (ρi)y is the disintegration of ρi
over y).

It then follows by integration that the sequence of (un, vn, wn, sn, tn)’s is
generic for a measure ρ on X × Y × Z, which is the relatively independent
joining. a

Remark 30. It follows immediately from hypothesis 3 of Proposition 29 that
if we are given a finite set F of natural numbers then for all sufficiently large
k′ we can find an N , Gk′ and Iv as in hypothesis 3 so that (a) and (b) hold
simultaneously for all s∗ ∈ F .

An immediate corollary of this is:

Corollary 31. Suppose that 〈(un, vn, wn, sn, tn) : n ∈ N〉 satisfies the hy-
potheses of Proposition 29. Then 〈(un, shtn(wn)) : n ∈ N〉 is generic for
ρ1 ◦ ρ2.

There is a converse to Proposition 29, namely that a generic sequence
for the relatively independent joining of two odometer based system satisfies
the conditions 1-3 of the Proposition. The first two are immediate while the
third simply expresses the fact that the generic sequence sequence is actually
representing the relatively independent joining. For later use we record this
as:

Lemma 32. Given joinings ρ1 of X×Y and ρ2 of Y×Z if 〈(un, vn, wn, sn, tn) :
n ∈ N〉 is generic for the relatively independent joining ρ then it satisfies the
hypotheses of Proposition 29.

2.7 Unitary Operators

We will use spectral tools introduced by Koopman and studied by Halmos
and von Neumann. We reprise the basic facts we will use. Readers unfamiliar
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with this material can find it in [20] or [11]. Let (X,B, µ, T ) and (Y, C, ν, S)
be measure preserving systems.

If T : X → Y is a measure preserving transformation then T induces a
unitary isometry UT : L2(Y )→ L2(X) by setting

UT (f) = f ◦ T.

If T is an isomorphism then UT is invertible. Moreover if U : L2(Y )→ L2(X)
is multiplicative on bounded functions then there is a measure preserving
transformation T : X → Y such that U = UT .

If π : X → Y is a factor map, then the map f 7→ f ◦π gives an injection of
L2(Y ) into L2(X), whose range is a closed UT invariant subspace. Conversely
if M ⊆ L2(X) is a closed UT invariant subspace containing 1 that is closed
under taking complex conjugates, truncation and multiplication by elements
of M ∩ L∞(X), then there is a factor Y ⊆ X such that M = L2(Y ).

For the rest of this discussion assume that T is ergodic. Then the eigen-
values of UT all have multiplicity one and form a subgroup GT ⊆ T. The
group GT is an isomorphism invariant.

The collection of eigenfunctions generate a closed subspace of L2(X) cor-
responding to a factor K of X. This factor is called the Kronecker factor.
If H is any subgroup of GT then there is a further factor KH of K that is
canonically determined by the eigenfunctions coming from eigenvalues in H.

Assume that φ is an isomorphism from (X,T ) to (Y, S). Then GT = GS

and if KX
H , K

Y
H are the factors of X and Y determined by H ⊆ GT then Uφ

determines an unique isomorphism between KX
H and KY

H .
It follows from this that if α ∈ T is an eigenvalue of UT then there are

factors of X and Y isomorphic to rotation Rα of T by α. Moreover there is
a unique isomorphism Uπ

φ : (T,B, λ,Rα)→ (T,B, λ,Rα) that intertwines Uφ
and the projection maps of X and Y to (T,B, λ,Rα).

The analogous statement holds for odometers. If GT consists of finite
order eigenvalues and O is the corresponding odometer transformation, then
there is a unique isomorphism Uπ

φ : O → O that intertwines Uφ and the
projection maps of X and Y to O.

2.8 Stationary Codes and d̄-Distance

In this section we briefly describe a standard idea, that of a stationary code
that we will use to understand the existence of factor maps and isomorphisms.
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We review some standard facts here. A reader unfamiliar with this material
who wants to see proofs should see [17].

Definition 33. Suppose that Σ is a countable language. A code of length
2N + 1 is a function Λ : Σ[−N,N ] → Σ, where [−N,N ] is the interval of
integers starting at −N and ending at N .

Given a code Λ and an s ∈ ΣZ we define the stationary code determined
by Λ to be Λ̄(s) where:

Λ̄(s)(k) = Λ(s � [k −N, k +N ]).

Let (ΣZ,B, ν, sh) be a symbolic system. Suppose we have two codes Λ0

and Λ1 that are not necessarily of the same length. Define D = {s ∈ ΣZ :
Λ0(s)(0) 6= Λ̄1(s)(0)} and d(Λ0,Λ1) = ν(D). Then d is a semi-metric on
the collection of codes. The following is a consequence of the Borel-Cantelli
lemma.

Lemma 34. Let Suppose that 〈Λi : i ∈ N〉 is a sequence of codes such that∑
i d(Λi,Λi+1) <∞. Then there is a shift invariant Borel map S : ΣZ → ΣZ

such that for ν-almost all s, limi→∞ Λi(s) = S(s)

A shift invariant Borel map S : ΣZ → ΣZ, determines a factor (ΣZ,B, µ, sh)
of (ΣZ,B, ν, sh) by setting µ = S∗ν (i.e. µ(A) = ν ◦ S−1(A)). Hence a con-
vergent sequence of stationary codes determines a factor of (ΣZ,B, ν, sh).

Let Λ0 and Λ1 be codes. Define d̄(Λ̄0(s), Λ̄1(s)) to be

limn→∞
|{k ∈ [−N,N ] : Λ̄0(s)(k) 6= Λ̄1(s)(k)}|

2N + 1

More generally we can define the d̄ metric on Σ[a,b] by setting

d̄[a,b](x, y) =
|{k ∈ [a, b) : x(k) 6= y(k)}|

b− a
.

For x, y ∈ ΣZ, we set

d̄(x, y) = limN→∞d̄[−N,N ](x � [−N,N ], y � [−N,N ]),

provided this limit exists.
To compute distances between codes we will use the following application

of the Ergodic Theorem.
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Lemma 35. Suppose that (ΣZ, sh, ν) is ergodic and that Λ0 and Λ1 be codes.
Then for almost all s ∈ S:

d(Λ0,Λ1) = d̄(Λ̄0(s), Λ̄1(s))

We finish with a useful remark:

Remark 36. If w1 and w2 are words in a language Σ defined on an interval
I and J ⊂ I with |J |

|I| ≥ δ, then d̄I(w1, w2) ≥ δd̄J(w1, w2).

3 Odometer based and Circular Symbolic Sys-

tems

Two types of symbolic shifts play central roles for the proofs of our main
theorem. We dub them odometer based and circular systems. In this section
we give some general facts about symbolic systems with uniquely readable
construction sequences, define odometer and circular systems, and show that
every circular system has a canonical rotation factor.

3.1 Odometer Based Systems

We recall the definition of an odometer transformation. Let 〈kn : n ∈ N〉 be
a sequence of natural numbers greater than or equal to 2. Let

O =
∞∏
n=0

Z/knZ

be the 〈kn〉-adic integers. Then O naturally has a compact abelian group
structure and hence carries a Haar measure µ. We make O into a measure
preserving system O by defining T : O → O to be addition by 1 in the
〈kn〉-adic integers. Concretely, this is the map that “adds one to Z/k0Z and
carries right”. Then T is an invertible transformation that preserves the Haar
measure µ on O. Let Kn = k0 ∗ k1 ∗ k2 . . . kn−1.

The following results are standard:

Lemma 37. Let O be an odometer system. Then:

1. O is ergodic.

30



2. The map x 7→ −x is an isomorphism between (O,B, µ, T ) and (O,B, µ, T−1).

3. Odometer maps are transformations with discrete spectrum and the
eigenvalues of the associated linear operator are the Kth

n roots of unity
(n > 0).

Any natural number a can be uniquely written as:

a = a0 + a1k0 + a2(k0k1) + · · ·+ aj(k0k1k2 . . . kj−1)

for some sequence of natural numbers a0, a1, . . . aj with 0 ≤ aj < kj.

Lemma 38. Suppose that 〈rn : n ∈ N〉 is a sequence of natural numbers with
0 ≤ rn < k0k1 . . . kn−1 and rn ≡ rn+1 mod (Kn). Then there is a unique
element x ∈ O such that rn = x(0) + x(1)k0 + . . . x(n)(k0k1 . . . kn−1) for each
n.

We now define the collection of symbolic systems that have odometer
maps as their timing mechanism. This timing mechanism can be used to
parse typical elements of the symbolic system.

Definition 39. Let 〈Wn : n ∈ N〉 be a uniquely readable construction se-
quence with the properties that W0 = Σ and for all n,Wn+1 ⊆ (Wn)kn for
some kn. The associated symbolic system will be called an odometer based
system.

Thus odometer based systems are those built from construction sequences
〈Wn : n ∈ N〉 such that the words in Wn+1 are concatenations of words in
Wn of a fixed length kn. The words in Wn all have length Kn and the words
ui in equation 2 are all the empty words.

Equivalently, an odometer based transformation is one that can be built
by a cut-and-stack construction using no spacers. An easy consequence of
the definition is that for odometer based systems K, for all s ∈ K and for all
n ∈ N, rn(s) exists.

Proposition 40. Let K be an odometer based system and suppose that ν is
a shift invariant measure. Then ν concentrates on S.

` Let B = K\S. Then B is shift invariant. Suppose that ν gives B positive
measure. For s ∈ B let an(s) ≤ 0 ≤ bn(s) be the left and right endpoints of
the principal n-block of s. Then for all s ∈ B there is an N ∈ N such that:
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1. for all n,−N ≤ an or

2. for all n, bn ≤ N .

We assume that ν gives the collection B∗ of s such that there is an N ∈ N
for all n,−N ≤ an positive measure, the other case is similar.

Define f : B∗ → N by setting f(s) = least N satisfying item 1. Then f is a
Borel function. Let Bn = f−1(n). Then the Bn’s are disjoint, B∗ =

⋃
n≥0Bn

and sh−1(Bn) = Bn+1. Hence for all n,m, ν(Bn) = ν(Bm), a contradiction.
a

The next lemma justifies our terminology.

Lemma 41. Let K be an odometer based system with each Wn+1 ⊆ (Wn)kn.
Then there is a canonical factor map

π : S → O,

where O is the odometer system determined by 〈kn : n ∈ N〉.

` For each s ∈ S, we know that for all n, rn(s) is defined and both rn and
kn − rn go to infinity. By Lemma 38, the sequence 〈rn(s) : n ∈ N〉 defines a
unique element π(s) in O. It is easily checked that π intertwines sh and T .a

In the forthcoming paper [8] we show a strong converse to this result: if
T has finite entropy and an odometer factor then T can be presented by an
odometer based system.

Heuristically, the odometer transformation O parses the sequences s in
S ⊆ K by indicating where the words constituting s begin and end. Shifting
s by one unit shifts this parsing by one. We can understand elements of s as
being an element of the odometer with words in Wn filled in inductively.

We will use the following remark about the canonical factor of the inverse
of an odometer based system.

Remark 42. If π : L → O is the canonical factor map, then the function
π : L → O is also factor map from (L, sh−1) to O−1 (i.e. O with the
operation “−1”). If 〈Wn : n ∈ N〉 is the construction sequence for L, then
〈rev(Wn) : n ∈ N〉 is a construction sequence for rev(L). If φ : L−1 → rev(L)
is the canonical isomorphism given by Proposition 18, then Lemma 37 tells
us that the projection of φ to a map φπ : O → O is given by x 7→ −x.
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From this remark we immediately see:

Lemma 43. Let ρ ↔ ρ′ be the canonical correspondence between joinings
of (K, sh) and (L, sh−1) and joinings of (K, sh) and (rev(L), sh) given after
Proposition 18. Then the joining ρ concentrates on the set of pairs (s, t) such
that πK(t) = −πL(s) if and only if ρ′ concentrates on the collection of (s, t)
such that πK(s) = πL−1

(t).

3.2 Circular systems

We now define and discuss circular systems. The paper [5] showed that the
circular systems give symbolic characterizations of the smooth diffeomor-
phisms defined by the Anosov-Katok method of conjugacies. The construc-
tion sequences of circular systems have quite specific combinatorial properties
that will be important to our understanding of the Anosov-Katok systems
and their centralizers in the third paper in this series.

We call these systems circular because they are closely tied to the be-
havior of rotations by a convergent sequence of rationals αn = pn/qn. The
rational rotation by p/q permutes the 1/q intervals of the circle cyclically
along a sequence determined by some numbers ji =def p

−1i (mod q): the
interval [i/q, (i + 1)/q) is the jthi interval in the sequence.11 The operation
C which we are about to describe models the relationship between rotations
by p/q and p′/q′ when q′ is very close to q.

Let k, l, p, q be positive natural numbers with p < q relatively prime. Set

ji ≡q (p)−1i (9)

with ji < q. It is easy to verify that:

q − ji = jq−i (10)

Let Σ be a non-empty set. We define an operation C, which depends on
p, q, an integer l > 1, and on sequences w0, . . . wk−1 of words in a language
Σ ∪ {b, e} by setting:12

C(w0, w1, w2, . . . wk−1) =

q−1∏
i=0

k−1∏
j=0

(bq−jiwl−1j eji). (11)

11We assume that p and q are relatively prime and the exponent −1 is the multiplicative
inverse of p mod q.

12We use
∏

for repeated concatenation of words.

33



To start our construction we frequently take p0 = 0 and q0 = 1. In this case
we adopt the convention that j0 = 0. Hence

C(w0, w1, . . . wk−1) =
∏
j<k

bqwl−1j

=
∏
j<k

bwl−1.

Remark 44. We remark:

• Suppose that each wi has length q, then the length of C(w0, w1, . . . wk−1)
is klq2.

• Every occurrence of an e in C(w0, . . . wk−1) has an occurrence of a b to
the left of it. If p 6= 0 then every occurrence of a b has an e to the right
of it.

• Suppose that n < m and b occurs at position n in C(w0, w1, . . . wk−1)
and e occurs at m and neither occurrence is in a wi. Then there must
be some wi occurring between n and m.

The C operator automatically creates uniquely readable words, as the next
lemma shows, however we will need a stronger unique readability assumption
for our definition of circular systems.

Lemma 45. Suppose that Σ is a language, b, e /∈ Σ, 0 < p < q and that
u0, . . . uk−1, v0, . . . vk−1 and w0 . . . wk−1, are words in the language Σ∪{b, e}
of some fixed length q < l/2. Let

u = C(u0, u1, . . . uk−1)
v = C(v0, v1, . . . vk−1)
w = C(w0, w1, . . . wk−1).

Suppose that uv is written as pws where p and s are words in Σ ∪ {b, e}.
Then either p is the empty word and u = w, v = s or s is the empty word
and u = p, v = w.

` The map i 7→ ji is one-to-one. Hence each location in the word of length
klq2 is uniquely determined by the lengths of nearby sequences of b’s and e’s.
a
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In fact something stronger is true: if σ ∈ Σ occurs at place m in w then m
is uniquely determined by the knowing the w0, w1, . . . wk−1 and the kql/2 + 1
letters on either side of σ.

We now describe how to use the C operation to build a collection of sym-
bolic shifts. Our systems will be defined using a sequence of natural number
parameters kn and ln that is fundamental to the version of the Anosov-Katok
construction presented in [14].

Fix an arbitrary sequence of positive natural numbers 〈kn : n ∈ N〉.
Let 〈ln : n ∈ N〉 be an increasing sequence of natural numbers such that∑

n 1/ln <∞. From the kn and ln we define sequences of numbers: 〈pn, qn, αn :
n ∈ N〉. We begin by letting p0 = 0 and q0 = 1 and inductively set

qn+1 = knlnqn
2 (12)

(thus q1 = k0l0) and take

pn+1 = pnqnknln + 1. (13)

Then clearly pn+1 is relatively prime to qn+1.
13

Definition 46. A sequence of integers 〈kn, ln : n ∈ N〉〉 such that kn ≥ 2,∑
1/ln <∞ will be called a circular coefficient sequence.

Let Σ be a non-empty finite or countable alphabet. We will construct
the systems we study by building collections of words Wn in the alphabet
Σ ∪ {b, e} by induction as follows:

• Fix a circular coefficient sequence 〈kn, ln : n ∈ N〉〉.

• Set W0 = Σ.

• Having built Wn we choose a set Pn+1 ⊆ (Wn)kn and form Wn+1 by
taking all words of the form C(w0, w1 . . . wkn−1) with (w0, . . . wkn−1) ∈
Pn+1.

14

13pn and qn being relatively prime for n ≥ 1, allows us to define the integer ji in equation
9. For q0 = 1, Z/q0Z has one element, [0], so we set p0

−1 = p0 = 0.
14Passing fromWn toWn+1 we use C with parameters k = kn, l = ln, p = pn and q = qn

and take ji = (pn)−1i modulo qn. By Remark 44, the length of each of the words inWn+1

is qn+1.
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We will call the elements of Pn+1 prewords.

Strong Unique Readability Assumption: Let n ∈ N, and view Wn as a
collection Λn of letters. Then each element of Pn+1 can be viewed as a word
with letters in Λn. We assume that in the alphabet Λn, each Pn+1 is uniquely
readable.

Definition 47. A construction sequence 〈Wn : n ∈ N〉 will be called circu-
lar if it is built in this manner using the C-operators, a circular coefficient
sequence and each Pn+1 satisfies the strong unique readability assumption.

It follows from Lemma 45 that eachWn in a circular construction sequence
is uniquely readable.

Definition 48. A symbolic shift K built from a circular construction sequence
will be called a circular system.

For emphasis we will often write circular construction sequences as 〈Wc
n :

n ∈ N〉 and the associated circular shift Kc. We sometimes write wc to
emphasize that a word is a circular word.

We will need to analyze the words constructed by C in detail. We start
by describing the boundary and interior portions of the words.

Definition 49. Suppose that w = C(w0, w1, . . . wk−1). Then w consists of
blocks of wi repeated l − 1 times, together with some b’s and e’s that are not
in the wi’s. The interior of w is the portion of w in the wi’s. The remainder
of w consists of blocks of the form bq−ji and eji. We call this portion the
boundary of w.

In a block of the form wl−1j the first and last occurrences of wj will be

called the boundary occurrences of the block wl−1j . The other occurrences
will be the interior occurrences.

While the boundary consists of sections of w made up of b’s and e’s, not
all b’s and e’s occurring in w are in the boundary, as they may be part of a
power wl−1i .

The boundary of w constitutes a small portion of the word:

Lemma 50. The proportion of the word w written in equation 11 that belongs
to its boundary is 1/l. Moreover the proportion of the word that is within q
letters of boundary of w is 3/l.
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The next lemma was proved in [5] (Lemma 20).

Lemma 51. Let Kc be a circular system and ν be a shift invariant measure
on Kc. Then the following are equivalent:

1. ν has no atoms.

2. ν concentrates on the collection of s ∈ Kc such that {i : s(i) /∈ {b, e}}
is unbounded in both Z− and Z+.

3. ν concentrates on S.

Remark 52. Let Kc be a circular system.

1. There are only two invariant atomic measures, one concentrates on the
constant “b” sequence, the other on the constant “e” sequence.

2. for Kc, Lemma 12 can be strengthened to say that for all s ∈ S for all
large enough n, the principal n-block of s exists.

3. The symbolic shift Kc has zero topological entropy.

` A direct inspection reveals that the only periodic points in Kc are the
two fixed points constant “b” and “e”.

The second item follows because if s has a principal n-block at [an, bn)
then it has a principal n + 1-block at some [an+1, an+1 + qn+1) for an an+1

with |an+1| ≤ |an|+ (qn+1 − qn).
The fact that the topological entropy of Kc is zero follows easily from the

fact that the ln tend to infinity.

3.3 The structure of the words

The words used to form circular transformations have quite specific combi-
natorial properties. We begin with an important definition for our under-
standing of rotations; the three subscales at stage n + 1. Fix a sequence
〈Wc

n : n ∈ N〉 defining a circular system. Using equation 11 we define the
subscales of a word w∗ ∈ Wn+1:

Subscale 0 is the scale of the individual powers of wj ∈ Wc
n of the

form wl−1j ; we call each such occurrence of a wl−1j a 0-subsection
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Subscale 1 is the scale of each term in the product
∏k−1

j=0(bq−jiwl−1j eji)

that has the form (bq−jiwl−1j eji); We call these terms 1-subsections.

Subscale 2 is the scale of each term of
∏q−1

i=0

∏k−1
j=0(bq−jiwl−1j eji) that

has the form
∏k−1

j=0(bq−jiwl−1j eji); We call these terms 2-subsections.

Summary

Whole Word:
∏q−1

i=0

∏k−1
j=0(bq−jiwl−1j eji)

2-subsection:
∏k−1

j=0(bq−jiwl−1j eji)

1-subsection: (bq−jiwl−1j eji)

0-subsection: wl−1j

By contrast we will discuss n-subwords of a word w. These will be subwords
that lie inWc

n, the nth stage of the construction sequence. We will use n-block
to mean the location of the n-subword.

3.4 The canonical circle factor K
We now define a canonical factor K of a circular system and show that this
factor is isomorphic to a rotation of the circle by α, where α is the limit of
αn = pn

qn
as n goes to infinity.

Definition 53. Let 〈kn, ln : n ∈ N〉〉 be a circular coefficient sequence. Let
Σ0 = {∗}. We define a circular construction sequence such that each Wc

n has
a unique element as follows:

1. W0 = {∗} and

2. If Wc
n = {wn} then Wc

n+1 = {C(wn, wn, . . . wn)}.

Let K be the resulting circular system.

It is easy to check that K has unique ergodic non-atomic measure, since
every wn occurs exactly kn(ln − 1)qn many times in wn+1.

Let Kc be an arbitrary circular system with coefficients 〈kn, ln〉. Then Kc

has a canonical factor isomorphic to K. This canonical factor plays a role
for circular systems analogous to the role odometer transformations play for
odometer based systems.
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To see K is a factor of Kc, we define the following function:

π(x)(i) =

{
x(i) if x(i) ∈ {b, e}
∗ otherwise

(14)

We record the following easy lemma that justifies the terminology of Def-
inition 53:

Lemma 54. Let π be defined by equation 14. Then:

1. π : Kc → K is a Lipshitz map,

2. π(sh±1(x)) = sh±1(π(x)) and thus

3. π is a factor map of Kc to K and (Kc)−1 to K−1

A variant of item 3 is also true: π can be interpreted as a function from
rev(Kc) to rev(K). With this interpretation π is also a factor map. We will
call K the circle factor of any circular system with construction coefficients
〈kn, ln : n ∈ N〉.

Fix a circular coefficient sequence 〈kn, ln : n ∈ N〉, and let K and 〈Wα
n :

n ∈ N〉 be given in definition 53. Let αn = pn/qn and α = limαn.
If s ∈ S, from rn(s) we can determine the locations of the beginnings

and ends of the words wαn that contain s(0). Since |Wα
n | = 1 for all n, for all

s ∈ S the sequence 〈rn(s) : n ∈ N〉 uniquely determines s.

Theorem 55. Let ν be the unique non-atomic shift invariant measure on K.
Then

(K,B, ν, sh) ∼= (S1,D, λ,Rα)

where Rα is the rotation of the unit circle by α and B,D are the σ-algebras
of measurable sets.

` A more involved geometric proof of this fact is given in [5]. Here present
a simple algebraic proof. As usual we identify the unit circle S1 with [0, 1)
and use additive notation for the group operations.

By Lemma 12, the collection S ′ of s ∈ S such that for all large enough
n, the principal n-block of s exists, has measure one. We define a map
φ0 : S ′ → [0, 1) by a limiting process. For s such that rn(s) exists, we let

ρn(s) =
p

qn

iff
p ≡ pnrn(s) mod qn
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Claim 56. If rn is defined, then |ρn+1(s)− ρn(s)| < 2/qn.

` From equation 11, we see that the position of s(0) in an n + 1-block is
determined by the parameters i ∈ [0, qn − 1), j ∈ [0, kn − 1), l∗ ∈ [0, l − 1]
and rn, which determine its location among the 2-subsections, 1-subsections,
0-subsections and inside the n-words wn respectively. Explicitly:

rn+1(s) = i(knlnqn) + j(lnqn) + (qn − ji) + l∗qn + rn(s),

where rn(s) is the position of s(0) in its principal wn-word.
From the definition of ρn+1, and working mod 1 :

ρn+1 = rn+1(s)

(
pn+1

qn+1

)
= rn+1(s)

(
pn
qn

+
1

qn+1

)
Expanding this, using our formula for rn+1(s) and the fact that all but two
terms of rn+1(s) are divisible by qn, we get:

ρn+1 =

(
−ji

(
pn
qn

)
+ rn(s)

(
pn
qn

))
+

(
i

qn
+ δ

)
(15)

where

δ =
j

knqn
+

1

knlnqn
+

l∗

knlnqn
+
rn(s)− ji
knlnq2n

.

The first and third terms of equation 15 cancel, thus:

ρn+1 = ρn + δ.

Since δ < 2/qn, the claim follows. a

Since the sequence 1/qn is summable, for almost all s, 〈ρn(s) : n ∈ ω〉 is
Cauchy. We define

φ0(s) = lim
n
ρn(s).

It is easy to check that φ0 is one-to-one. By the unique ergodicity of the
rotation Rα, Theorem 55 will be proved when we establish:
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Claim 57. The map φ0 : S → [0, 1) satisfies:

φ0(sh(s)) = Rα(φ0(s)).

In particular, if ν is the unique invariant measure on S

(K, C, ν, sh) ∼= ([0, 1),B, λ,Rα).

` Suppose that rn(s) and rn(sh(s)) both exist. Then rn(sh(s)) = rn(s) +
1. If follows that ρn(sh(s)) = ρn(s) + pn/qn. Taking limits we see that
φ0(sh(s)) = φ0(s) + limn αn = φ0(s) + α. a

This finishes the proof of Theorem 55. a

3.5 Kronecker Factors

Both odometer transformations and irrational rotations of the circle are er-
godic discrete spectrum transformations. Because the odometer transforma-
tion based on 〈kn : n ∈ N〉 is a factor of any odometer based system T
and the rotation Rα is a factor of any circular system S, both are factors
of the respective Kronecker factors of T or S. In general it is not the whole
Kronecker factor in either case.

We make the following lemma explicit in the case of odometer based trans-
formations. In the case of systems with a circle factor the exactly analogous
results hold.

Lemma 58. Let (K,B, µ, T ) and (L, C, ν, S) be measure preserving systems.
Suppose that K has an odometer factor O and that φ : K→ L is an isomor-
phism. Then there is a unique odometer factor O∗ of L with an isomorphism
φπ : O → O∗ such that the following diagram commutes:

K L

O O∗

-
φ

?

πK

?

πL

-
φπ

If each finite order eigenvalue of L has multiplicity 1 (e.g. if L is ergodic),
then O∗ is the unique odometer factor of L isomorphic to O.
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` Since the unitary operator Uφ : L2(K) → L2(K) takes eigenfunctions to
eigenfunctions, we know that Uφ takes the subspaces of L2(K) corresponding
to O to a subspace of L2(L) corresponding to an isomorphic copy of O. The
lemma follows. a

An immediate corollary of Lemma 58 is that if K and L are ergodic
odometer based systems over the same odometer O, with projections πK and
πL, then φπ is an isomorphism between the canonical odometer factors.

We record the following consequences for later use;

Proposition 59. Suppose that K and L are both ergodic odometer based
systems with coefficients 〈kn : n ∈ N〉. Then any isomorphism φ : K → L
takes the canonical odometer factor OK of K to the canonical odometer factor
OL of L.

Similarly if Kc and Lc are both ergodic circular systems with the same
coefficient sequences 〈kn, ln : n ∈ N〉〉, then any isomorphism between Kc and
Lc takes the canonical rotation KK to the canonical rotation factor KL

` In the first case there is a unique factor of K and L corresponding to
the eigenvalues of OK and OL. Any isomorphism must preserve the factor
corresponding to these eigenvalues. The same argument works for K, as it is
isomorphic to the rotation by α = limn pn/qn. a

3.6 Uniform Systems

In [5] it is established that the strongly uniform circular systems with suf-
ficiently fast growing 〈ln : n ∈ N〉, are realizable as measure preserving
diffeomorphisms of the torus. Strongly uniform systems are those for which
each word in Wn occurs the same number of times in each word in Wn+1.
These systems carry unique non-atomic invariant measures, simplifying much
of what we do later in this paper. For example the correspondence between
the measures ν on uniform odometer systems K and νc on their uniform
circular system counterparts Kc given in equation 33, is automatic.

In the forthcoming [8] we show that arbitrary (i.e. non-uniform) circular
systems are realizable as measure preserving diffeomorphisms of the torus,
provided that the measures of the words in Wn go to zero.
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4 Details of Circular Systems

This section examines the circular systems defined in section 3.2 in more
detail. Initially we are given a circular coefficient sequence 〈kn, ln : n ∈ N〉〉
and 〈qn : n ∈ N〉 where qn satisfies the inductive definition in equation
12. When n is fixed, we again let ji = (pn)−1i modulo qn and 0 ≤ ji <
qn. Without significant loss of generality it is convenient to assume that∑

1/qn < 1/10.
To understand joinings of circular systems we will be comparing generic

elements (s, t) of circular Kc and Lc, and their parsings into subwords. We
will use the following terminology:

Definition 60. Let u, v be finite sequences of elements of Σ ∪ {b, e} having
length q. Given intervals I and J in Z of length q we can view u and v as
functions having domain I and J respectively. We will say that u is shifted
by k relative to v iff I is the shift of the interval J by k. We say that u is the
k-shift of v iff u and v are the same words and I is the shift of the interval
j by k.

4.1 Understanding the words

We elaborate on the descriptions given in Section 3.3. Our first combinatorial
lemma is the following:

Lemma 61. Let w = C(w0, . . . wkn−1) for some n and q = qn, k = kn, l = ln.
View w as a word in the alphabet Σ ∪ {b, e} lying on the interval of integers
[0, klq2).

1. If m0 and m1 are the locations of the beginnings of 0-subsections in the
same 2-subsection, then m0 ≡q m1.

2. If m0 and m1 are such that m0 is the location of the beginning of a 0-
subsection occurring in a 2-subsection

∏k−1
j=0(bq−jiwl−1j eji) and m1 at

the i beginning of a 0-subsection occurring in the next 2-subsection∏k−1
j=0(bq−ji+1wl−1j eji+1) then m1 −m0 ≡q −j1.

` To see the first point, the indices of the beginnings of 0-subsections in
the same 2-subsection differ by multiples of q coming from powers of a wj
and intervals of w of the form bq−jieji .

43



To see the second point, let u and v be consecutive 2-subsections. In
view of the first point it suffices to consider the last 0-subsection of u and
the first 0-subsection of v. But these sit on either side of an interval of the
form ejibq−ji+1 . Since ji + q − ji+1 ≡q (p)−1i − p−1(i + 1) ≡q −p−1 ≡q −j1,
we see that m0 −m1 ≡q q + ji + q − ji+1 ≡q −j1. a

Assume that u ∈ Wn+1 and v ∈ Wn+1 ∪ rev(Wn+1) and v is shifted with
respect to u. On the overlap of u and v, the 2-subsections of u split each
2-subsection of v into either one or two pieces. Since all of the 2-subsections
in both words have the same length, the number of pieces in the splitting
and the size of each piece is constant across the overlap except perhaps at
the two ends of the overlap. If u splits a 2-subsection of v into two pieces,
then we call the left piece of the pair the even piece and the right piece the
odd piece.

If v is shifted only slightly, it can happen that either the even piece or
the odd piece does not contain a 1-subsection. In this case we will say that
split is trivial on the left or trivial on the right

Lemma 62. Suppose that the 2-subsections of u divide the 2-subsections of
v into two non-trivial pieces. Then

1. the boundary portion of u occurring between each consecutive pair of
2-subsections of u completely overlaps at most one 0-subsection of v

2. there are two numbers s and t such that the positions of the 0-subsections
of v in even pieces are shifted relative to the 0-subsections of u by s and
the positions of the 0-subsections of v in odd pieces are shifted relative
to the 0 subwords of u by t. Moreover s ≡q t− j1.

` This follows easily from Lemma 61 a

In the case where the split is trivial we get Lemma 62 with just one
coefficient, s or t.

A special case Lemma 62 that we will use is:

Lemma 63. Suppose that the 2-subsections of u divide the 2-subsections of v
into two pieces and that for some occurrence of an n-subword of v in an even
(resp. odd) piece is lined up with an occurrence of some n-word in u. Then
every occurrence of an n-word in an even (resp. odd) piece of v is either:

a.) lined up with some n-subword of u or
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b.) lined up with a portion of a 2-subsection that has the form ejibq−ji.

Moreover, no n-subword in an odd (resp. even) piece of v is lined up with a
n-subword in u.

4.2 Full measure sets for circular systems

Fix a summable sequence 〈εn : n ∈ N〉 of numbers in [0, 1) and a circular
coefficient sequence 〈kn, ln : n ∈ N〉. As we argued in the proof of Lemma 50,
the proportion of boundaries that occur in words ofWc

n is always summable,
independently of the way we build Wc

n. Recall the set S ⊆ Kc given in
Definition 10, where Kc is the symbolic shift defined from a construction
sequence.

Definition 64. We define some sets that a typical generic point for a circular
system eventually avoids. Let:

1. En be the collection of s ∈ S such that s does not have a principal
n-block or s(0) is in the boundary of that n-block,

2. E0
n = {s : s(0) is in the first or last εnln copies of w in a power of the

form wln−1 where w ∈ Wn},

3. E1
n = {s : s(0) is in the first or last εnkn 1-subsections of the 2-

subsection in which s(0) is located},

4. E2
n = {s : s(0) is in the first or last εnqn 2-subsections of the principal

n+ 1-block ofs}.

Lemma 65. Assume that
∑

1/ln < ∞. Let ν be a shift invariant measure
on S ⊆ Kc, where Kc is a circular system. Then:

1. ∑
n

ν(En) <∞.

Assume that 〈εn〉 is a summable sequence, then for i = 0, 1, 2:

2. ∑
n

ν(Ei
n) <∞.
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` This is an application of the Ergodic Theorem. a

In particular we see:

Corollary 66. For ν-almost all s there is an N = N(s) such that for all
n > N ,

1. s(0) is in the interior of its principal n-block,

2. s /∈ Ei
n.

In particular, for almost all s and all large enough n:

3. if s � [−rn(s),−rn(s) + qn) = w, then

s � [−rn(s)− qn,−rn(s)) = s � [−rn(s) + qn,−rn + 2qn) = w.

4. s(0) is not in a string of the form wln−10 or wln−1kn−1.

` This follows from the Borel-Cantelli Lemma. a

The elements s of S such that some shift shk(s) fails one of the conclusions
1.)-4.) of Corollary 66 form a measure zero set. Consequently we work on
those elements of S whose whole orbit satisfies the conclusions of Corollary
66. Note, however that the N(shk(s)) depends on the shift k.

Definition 67. We will call n mature for s (or say that s is mature at stage
n) iff n is so large that s /∈ Em ∪

⋃
0≤i≤2E

i
m for all m ≥ n.

Thus if s is mature at stage n then for all m > n the principal m-block
of s exists and conclusions 1-4 of Corollary 66 hold.

Recall that in Section 3.2, we defined a canonical factor of a circular
system which we called the circle factor. Since the notion of maturity only
involves the punctuation of the words involved, it is an easy remark that for
all s ∈ S, n is mature for s just in case n is mature for π(s), where π is the
canonical factor map.

For the following definition and lemma, we view s ∈ S as a function with
domain Z, and s ∈ Wn as a function with domain [0, qn) or, sometimes, an
interval [k, k+qn). In each of these cases we use dom(s) to mean the domain
of s.
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Definition 68. We will use the symbol ∂n in multiple equivalent ways. If
s ∈ S or s ∈ Wc

m we define ∂n = ∂n(s) to be the collection of i such that
shi(s)(0) is in the boundary portion of an n-subword of s. This is well-defined
by our unique readability lemma. In the spatial context we will say that s ∈ ∂n
if s(0) is the boundary of an n-subword of s.

For s ∈ S

∂n(s) ⊆
⋃
{[l, l + qn) : l ∈ dom(s) and s � [l, l + qn) ∈ Wn}.

An integer, i ∈ ∂n(s) ⊆ Z iff shi(s), viewed as an element of Kc, belongs to
the n-boundary, ∂n.

In what follows we will be considering a generic point s and all of its
shifts. We will use the fact if s is mature at stage n, then we can detect
locally those i for which the i-shifts of s are mature.

Lemma 69. Suppose that s ∈ S, n is mature for s and n < m.

1. Suppose that i ∈ [−rm(s), qm − rm(s)). Then n is mature for shi(s) iff

(a) i /∈
⋃
n≤k≤m ∂k and

(b) shi(s) /∈
⋃
n≤k<m(E0

k ∪ E1
k ∪ E2

k).

2. For all but at most (
∑

n<k≤m 1/lk) + (
∑

n≤k<m 6εkqk+1)/qm portion of
the i ∈ [rm(s), qm − rm(s)), the point shi(s) is mature for n.

In particular, if εn−1 > supm(1/qm)
∑m−1

k=n 6εkqk+1, 1/ln−1 >
∑∞

k=n 1/lk
and n is mature for s, the upper density of those i ∈ Z for which the i-shift
of s is not mature for n is less than 1/ln−1 + εn−1.

Similarly:

Lemma 70. Suppose that s ∈ S and s has a principal n-block. Then n is
mature provided that s /∈

⋃
n≤mE

0
m ∪E1

m ∪E2
m. In particular, if n is mature

for s and s is not in a boundary portion of its principal n − 1-block or in
E0
n−1 ∪ E1

n−1 ∪ E2
n−1, then n− 1 is mature for s.
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4.3 The \ map

Proposition 59 implies that any isomorphism φ between an ergodic (Kc, sh)
and (Kc, sh−1) induces an isomorphism φπ between (K, sh) and (K, sh−1),
where K is the canonical circle factor. Because (K, sh−1) is canonically iso-
morphic with (rev(K), sh) (Proposition 18) and (K, sh) is isomorphic to the
rotation Rα of the circle, we see that (rev(K), sh) is isomorphic to the rota-
tion R−α.

We use a specific isomorphism \ : (K, sh)→ (rev(K), sh) as a benchmark
for understanding of potential maps φ : Kc → rev(Kc). If we view K as a
rotation Rα of the unit circle by α radians one can view the transformation
\ as a symbolic analogue of complex conjugation z 7→ z̄ on the unit circle,
which is an isomorphism between Rα and R−α. Copying \ over to a map
on the unit circle gives an isomorphism φ between Rα and R−α. Such an
isomorphism must be of the form

φ(z) = z̄e2πiβ

for some β. It follows immediately from this characterization that \ is an in-
volution, however for completeness we prove this directly (and symbolically)
in Proposition 79.

As usual we find it more convenient to work on the unit interval I = [0, 1)
rather than the unit circle. The complex conjugacy map z 7→ z̄ corresponds
to the map x 7→ −x on [0, 1).

We begin by recalling from equation 11 the formula for a w ∈ Wc
n+1 that

is of the form C(w0, . . . wkn−1):

w =

q−1∏
i=0

k−1∏
j=0

(bq−jiwl−1j eji) (16)

where q = qn, k = kn, l = ln and ji ≡qn (pn)−1i with 0 ≤ ji < qn. By
examining this formula we see that

rev(w) =

q∏
i=1

k∏
j=1

ejq−i rev(wk−j)
l−1bq−jq−i .
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Applying the identity in formula 10, we see that this can be rewritten as15

rev(w) =

q∏
i=1

k∏
j=1

(eq−ji rev(wk−j)
l−1bji). (17)

We can reindex again and get another form of equation 17:

rev(w) =

q−1∏
i=0

k−1∏
j=0

(eq−ji+1 rev(wk−j−1)
l−1bji+1). (18)

We can now state the basic lemma about the way w lines up with a shift
of rev(w).

Lemma 71. Let w ∈ Wc
n+1 and view w as sitting at location [0, qn+1) ⊆ Z.

Let q = qn and k = kn. Consider sh−j1(rev(w)) as being the word rev(w) in
location [j1, qn+1 + j1)) ⊆ Z. For all but at most 2kq of the occurrences of
an n-subword wj of w starting in a location r ∈ [0, qn+1), the reversed word
rev(wk−j−1) occurs in sh−j1(rev(w)) starting at r.

` The word w starts with a block of q b’s and then a block of l−1 copies of
w0, whereas rev(w) starts with a block of q− j1 e’s followed by l−1 copies of
rev(wk−1). Hence if we shift rev(w) to the right by j1 (to get sh−j1(rev(w)))
the first copy of rev(wk−1) is aligned with the first copy of w0 in w. Hence
all of the copies of rev(wk−1) in the first 1-subsection are aligned with the
copies of w0 in the first 1-subsection of w. Because the consecutive blocks of
b’s and e’s (or e’s and b’s) in the 2-subsections add up to q we see that every
copy of rev(wk−j−1) in the first 2-subsection of sh−j1(rev(w)) is aligned with
with a copy of wj.

We now argue as in Section 4.1. At the end of each 2-subsection, w has a
block of e’s of length ji, followed at the beginning of the next 2-subsection,
by a block of b’s of length q − ji+1. Together the e’s and b’s form a block
of length ji + q − ji+1, which is equivalent mod(q) to −j1. Similarly the
combined length of a block of b’s and e’s finishing and starting consecutive
2-subsections of rev(w) is equal to −j1 mod(q).

Both the beginning of the block of e’s ending the kth 2-subsection and
the end of the block of b’s starting the k + 1st 2-subsection are of distance
less than q from the location of the end of the kth 2-subsection. It follows

15We take jq = 0.
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from this and the comments in the previous paragraph, that if S1 and S2

are consecutive 2-subsections of w and S ′1 and S ′2 are the corresponding 2-
subsections of rev(w) then the beginning of the first occurrence of rev(wk−1)
in S ′2 is within 2q of the first occurrence of w0 is S2 and their locations are
equivalent mod(q). Hence inside the first 1-subsection, the 0-subsections are
lined up except for at most 2 copies of w0. This pattern is continued through
S2, giving at most 2k locations of n-blocks that are not aligned in S2.

Since there are less than q 2-subsections with potential misalignments,
the Lemma is proved. a

The next proposition gives a somewhat more detailed view into situation
of Lemma 71.

Proposition 72. Let w,w′ ∈ Wc
n+1 and suppose that

w = C(v0, v1, . . . vkn−1) and w′ = C(v′0, v′1, . . . v′kn−1).

We look at the relative positions of n-words in w and sh−j1(rev(w′)).

1. Each occurrence of vi in w is either lined up with an occurrence of
rev(v′kn−i−1) or entirely lined up with a section of ∂n inside sh−j1(rev(w′)).

2. There is a number C such that for all i the number of occurrences of
vi lined up with an occurrence of rev(v′kn−i−1) is C.

` The first part is clear from the proof of Lemma 71. The second part
follows because all of the 1-subsections in a given 2-subsection of w have the
same alignment relative to sh−j1(rev(w′)). a

Since the total number of occurrences of n-subwords in klq, the proportion
of n-subwords lined up with ∂n in sh−ji(rev(w′)) is at most 2/l.

Suppose that K is given by the canonical construction sequence 〈Wα
n :

n ∈ N〉. We define a sequence of functions 〈Λn : n ∈ N〉 and argue that they
converge to an isomorphism from K to rev(K).

We begin by defining an increasing sequence of natural numbers. Recall
the definition of the Anosov-Katok coefficients pn and qn given in equations
13 and 12. Since pn and qn are relatively prime we can define (pn)−1 in
Z/qnZ. For the following definition we will view (pn)−1 as a natural number
with 0 ≤ (pn)−1 < qn.16

16In the notation used to define C, (pn)−1 = j1. However the notation j1 is ambiguous
(it depends on n), so we use (pn)−1 in this context.
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We let A0 = 0 and
An+1 = An − (pn)−1. (19)

Lemma 73. If An is defined as above, then |An+1| < 2qn.

` This is proved inductively using the fact that qn+1 > 2qn. a

Let K be the circular system in the language Σ = {∗}, as given in Defi-
nition 53. We now define a stationary code Λn with domain S that approxi-
mates elements of rev(K) by defining

Λn(s) =

{
shAn+2rn(s)−(qn−1)(rev(s))(0) if rn(s) is defined
b otherwise

(20)

Since for all s ∈ S and all large enough n, rn(s) is defined, the default
value is only obtained for finitely many n.

Lemma 74. Λn is given by a finite code.

` To check whether rn(s) is defined one need only examine s on the interval
[−qn, qn] ⊆ Z. The relevant portion of rev(s) necessary to compute Λn(s)
is contained in s � [−qn − An, qn + An]. Hence Λn is determined by a finite
code. a

The formula in equation 20 can be understood as follows. Suppose that
s ∈ S and s has a principal n-block. Then the element s∗ defined as
sh2rn(s)−(qn−1)(rev(s)) belongs to rev(K), has a principal n-block that is the
reverse of the principal n-block of s and moreover, the principal n-block of
s∗ is exactly lined up with the principal n-block of s.

The reverse of the principal n-block of s begins with a block of qn−1 −
(pn−1)

−1 many e’s, and hence if s′ = sh(−(pn−1)−1)+2rn(s)−(qn−1)(rev(s)) then
the first n− 1-subword of the principal n-block of s′ is lined up with the first
n − 1-subword of the principal n-block of s. The rest of the terms used to
define An (coming from An−1) are used for lower order adjustments inside
this principal n-block.

Thus, a qualitative description of Λ̄n(s) can be given as follows:

1. It first reverses the principal n-block of s leaving it exactly lined up.
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2. It then adjusts the result by shifting so that the first occurrence of a re-
verse n−1-block lines up with the first n−1-subword of the principal n-
block of s. (So far we have described sh(−(pn−1)−1)+2rn(s)−(qn−1)(rev(s)).)
By Lemma 71, we get a sequence where the principal n-block of Λn(s)
has the vast majority of its n− 1-blocks lined up with the n− 1-blocks
of s: all of them except those that span a section of boundary at the
juncture of two 2-subsections of the principal n-word of s.

3. Finally it shifts by An−1 which is the cumulative adjustment at earlier
stages.

The next lemma follows from this description:

Lemma 75. Let n < m and suppose that s ∈ K has a principal m-block. Let
s′ = sh2rm−q+Am−An(rev(s)). Then at least

m−1∏
n

(1− 2

(li − 1)
)

proportion of the n-blocks in the principal m-block of s are lined up with
n-blocks in s′.

` We first consider m = n+ 1. By Lemma 71, all but 2knqn of the n-blocks
in w are aligned with the n-blocks in sh−j(rev(w)). This is proportion

1− 2knqn
knqn(ln − 1)

= 1− 2

ln − 1
.

The general result follows by induction. a

Theorem 76. Suppose that 〈kn, ln : n ∈ N〉 is a circular coefficient sequence.
Then the sequence of stationary codes 〈Λn : n ∈ N〉 converges to a shift
invariant function \ : K → ({∗} ∪ {b, e})Z that induces an isomorphism \
from K to rev(K).

` We first show that the sequence 〈Λn : n ∈ N〉 converges, which will follow
if we show that the code distances between the Λn and Λn+1 are summable.
For notational simplicity, let q = qn, k = kn, l = ln and j ≡q (pn)−1 with
0 ≤ j < q.
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Claim: There is a summable sequence of positive numbers δn such that for
almost all s, the d̄-distance between Λ̄n(s) and Λ̄n+1(s) is bounded by δn,
and Λ̄n(s) and Λ̄n+1(s) agree on all but at most δn proportion of the n-blocks
of s.

We use Lemma 35, which tells us that for a typical s ∈ S, the code
distance between Λn and Λn+1 is d̄(Λn(s),Λn+1(s)), which is defined to be
the density of

D =def {k : Λn(shk(s))(0) 6= Λn+1(sh
k(s))(0)}. (21)

Because |Wα
n = 1 for each n, there is only one possible n-subword at any

location of any element of rev(K). Thus to compute d̄-distance, it suffices
count positions where the Λm’s disagree on the locations of the n-subwords.

By Lemma 69 for a typical s ∈ S ⊆ K and all n, In =def {i : n is not
mature for shi(s)} has density at most 1/ln−1 + εn−1, hence we can neglect
these i when computing the density of D.

This allows us to assume that rn+1(s) is defined. We compute the density
of the difference between Λ̄n and Λ̄n+1 as they pass across an n+ 1-block in
s. If this number is d then the distance between Λn and Λn+1 is bounded by
the sum of d and the density of In.

As Λn+1 crosses an n+ 1-block it produces the reverse n+ 1-block shifted
by An+1. Explicitly, if w is the n+1-block of s, as Λn+1 crosses w it produces
shAn+1(rev(w)). As Λn passes across this same section, each time it crosses
an n-block w′ it produces shAn(rev(w′)). If w′ starts at r then the beginning
of this copy of shAn(rev(w′)) is r − An.

We begin by rewriting shAn+1(rev(w)) as shAn(sh−j(rev(w))) where j =
(pn)−1. By Lemma 71, all but 2kq of the n-blocks in w are aligned with
the n-blocks in sh−j(rev(w)). Hence, relative to the complement of In, the
portion of the principal n + 1-block w of s that lies in an n-block aligned
with an n-block of sh−j(rev(w)) is

k(l − 1)q2 − 2kq

k(l − 1)q2
= 1− 2

(l − 1)q
(22)

Because there is only one possible n-word, whenever shAn(rev(w′)) is aligned
with shAn(sh−j(rev(w))) they are equal.

Putting this altogether, we see that Λn and Λn+1 agree on all of the n-
subwords of the principal n+1-block of s that are aligned with sh−j(rev(w)).
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The disagreements are limited to the n-subwords that are not aligned and
the boundary. The total length of the disagreements is therefore bounded by

(2kq) ∗ q + kq2 = 3kq2.

This has proportion 3kq2/klq2 = 3/l.
Thus the distance between Λn and Λn+1 is bounded by 1/ln−1+εn−1+3/ln.

In particular the distances are summable and the sequence 〈Λ̄n : n ∈ N〉
converges almost everywhere to a function \ : K → (Σ ∪ {b, e})Z.

We now show that \ is an isomorphism between K and rev(K). Since Λ̄n

takes an n-block to a shift of the reverse n-block, it makes sense to discuss
the principal n-block of Λ̄(s). Since the rn’s cohere as in Remark 14, for
n < m, rm(Λ̄m(s)) is in the rn(Λ̄m(s))th position of the principal n-block of
Λ̄m(s) (provided both rn and rm are defined). An application of the Ergodic
Theorem shows that if Dn is defined to be the collection of s such that:

rn(Λ̄n(s)) exists and the principal n-words of Λ̄n(s) and Λ̄n+1(s) disagree

then
∑
ν(Dn) < ∞. From the Borel-Cantelli Lemma, it follows that for

almost every s for all large enough n the principal n-blocks of Λ̄n(s) and
Λ̄n+1(s) are the same, and thus that for s ∈ S, \(s) ∈ rev(K).

We now argue that if s is typical and s∗ = \(s), then s∗ ∈ rev(S). It
suffices to show that limn→∞−rn(s∗) = −∞ and limn→∞ qn − rn(s∗) =∞.17

If n is mature for s and large enough that form > n, Λ̄m(s) and Λ̄n(s) have
the same principal n-blocks, then rn(s∗) = rn(s)+An unless rn(s) ∈ [0, |An|).
Assuming that rn(s) ≥ |An|, we know from Lemma 73 that

rn(s)− 2qn−1 < r∗n(s) < rn(s).

Hence, −r∗n(s) ≤ 2qn−1−rn(s) and qn−r∗n(s) ≥ qn−rn(s). Applying Lemma
69 (using the fact that

∑
nqn−1/qn <∞, and hence

∑
|An|/qn <∞) we see

that for large n, rn(s) > |An| and that rn(s)−2qn →∞. Since qn−rn(s)→∞
we have shown that s∗ ∈ rev(S).

As noted before Theorem 55, if s ∈ S then s is determined by any tail
of the sequence 〈rn(s) : n ∈ N〉. In particular, if we know a tail of 〈rn(s∗) :

17We are adopting the convention that in defining rn(s∗) for s∗ ∈ rev(S) we count rn
from the left end of an n-block. Thus the position r in a word w ∈ Wα

n corresponds to
the position q − 1− r in rev(w).
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n ∈ N〉 we can determine s∗. Since for large n, rn(s∗) = rn(s) + An, \ is
one-to-one on a set of measure one.

We can now conclude that \ is an isomorphism. It is shift invariant since
it is a limit of stationary codes, it maps from S to rev(S), and is one-to-one
on a set of ν-measure one. If we define a measure µ on the Borel sets of
rev(K) by setting µ(A) = ν(\−1(A)), then µ is a shift invariant, non-atomic
measure on rev(S). Since S is uniquely ergodic, rev(S) is as well and thus µ
must be equal to the unique invariant measure ν. We have shown that \ is
an isomorphism between K and rev(K). a

Definition 77. We denote the limit of 〈Λ̄n : n ∈ N〉 by \ : K → rev(K).

We describe the qualitative behavior of \ in a remark that we will use
later:

Remark 78. There is a summable sequence 〈δn〉 such that for all but 1− δn
measure of s ∈ S ⊆ K, there is an interval I containing 0 in Λn(s) such
that s � I ∈ Wα

n , and moreover Λn+1(s) and Λn(s) agree on this interval. It
follows from the Borel-Cantelli Lemma that for almost all s and large enough
n, \(s) agrees with Λ̄n(s) on the principal n-block of s. Thus for a typical s
and large enough n, the map \ reverses the principal n-block while keeping its
location and then shifts it by An.

As noted at the beginning of this section, the next proposition follows
immediately from Theorem 55, however we include a symbolic proof for com-
pleteness.

Proposition 79. The map \ is an involution.

` It is immediate from the qualitative description of Λ̄n given before Lemma
75, that each Λ̄n is an involution. To see that \2 is the identity, let ε > 0. We
can choose an m0 large enough that for all m ≥ m0, Λ̄m and \ agree with Λ̄m0

on all but ε proportion of the m0-blocks and
⋃∞
m0+1 ∂k has measure ε ∗ 10−6.

Then \◦ Λ̄m0 is equal to the identity on a set of density at least 1− ε. Letting
ε→ 0 and m0 →∞ completes the argument. a
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4.4 Synchronous and Anti-synchronous joinings

Every odometer based system has a built in metronome: its odometer factor
defined in Lemma 41. Correspondingly circular systems can be timed by
their canonical rotation factor defined in Lemma 54.

Joinings between odometer based and circular systems may induce non-
trivial automorphisms of the underlying timing structure. To avoid this
complication we restrict ourselves to synchronous and anti-synchronous join-
ings: those which preserve or exactly reverse the underlying timing. We now
make this idea precise.

Both the odometer transformations and rotations of a circle have easily
understood inverse transformations and the isomorphisms between transfor-
mations and their inverses are given by the maps x 7→ −x and rev() ◦ \
respectively. If K and L are either odometer based or circular systems let Kπ

and Lπ be the corresponding odometer or rotation systems on which they
are based.

Definition 80. • Let K and L be odometer based systems with the same
coefficient sequence, and ρ a joining between K and L±1. Then ρ is
synchronous if ρ joins K and L and the projection of ρ to a joining
on Kπ × Lπ is the graph joining determined by the identity map (the
diagonal joining of the odometer factors); ρ is anti-synchronous if ρ is
a joining of K with L−1 and its projection to Kπ × (L−1)π is the graph
joining determined by the map x 7→ −x.

• Let Kc and Lc be circular systems with the same coefficient sequence
and ρ a joining between Kc and (Lc)±1. Then ρ is synchronous if ρ
joins Kc and Lc and the projection to a joining of (Kc)π with (Lc)π
is the graph joining determined by the identity map of K with L, the
underlying rotations; ρ is anti-synchronous if it is a joining of Kc with
(Lc)−1 and projects to the graph joining determined by rev() ◦ \ on
K × L−1.

There is always a synchronous joining of odometer systems with the same
underlying timing factor O:

Definition 81. Suppose that K and L are based on O. Then the relatively
independent joining of K and L over O is a synchronous joining, which we
will call the synchronous product joining. The relatively independent joining
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of K and L−1 over the map x 7→ −x we will call the anti-synchronous product
joining. We will use the same terminology for the independent joinings of
circular systems over the identity and rev() ◦ \.

5 Building the Functor F
The main result of this paper concerns two categories whose objects are
odometer based systems and circular systems respectively. The morphisms
in these categories will be graph joinings. We will show that there is a functor
taking odometer systems to circular systems that preserves the factor and
conjugacy structure. In this section we focus on defining the function from
odometer based systems to circular systems that underlies the functorial
isomorphism between these categories.

We begin by defining a function from the odometer based symbolic shifts
K to the circular symbolic shifts Kc. After having done so we define F on
the pairs (K, µ) where µ is an invariant measure on K. Finally we define F
on synchronous and anti-synchronous graph joinings.

We will use the notation that Kn =
∏

i<n ki. Then the Kn’s are the
lengths of the odometer based words in Wn and the qn’s are the lengths of
the circular words in Wc

n.

Except where otherwise stated we will assume that we are working with
a fixed circular coefficient sequence 〈kn, ln : n ∈ N〉.

Let Σ be a language and 〈Wn : n ∈ N〉 be a construction sequence for an
odometer based system with coefficients 〈kn : n ∈ N〉. Then for each n the
operation Cn is well-defined. We define a construction sequence 〈Wc

n : n ∈ N〉
and bijections cn :Wn →Wc

n by induction as follows:

1. Let Wc
0 = Σ and c0 be the identity map.

2. Suppose that Wn,Wc
n and cn have already been defined.

Wc
n+1 = {Cn(cn(w0), cn(w1), . . . cn(wkn−1)) : w0w1 . . . wkn−1 ∈ Wn+1}.

Define the map cn+1 by setting

cn+1(w0w1 . . . wkn−1) = Cn(cn(w0), cn(w1), . . . cn(wkn−1)).
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We note in case 2 the prewords are:

Pn+1 = {cn(w0)cn(w1) . . . cn(wkn−1) : w0w1 . . . wkn−1 ∈ Wn+1}.

Definition 82. Define a map F from the set of odometer based systems
(viewed as subshifts) to circular systems (viewed as subshifts) as follows.
Suppose that K is built from a construction sequence 〈Wn : n ∈ N〉. Define

F(K) = Kc

where Kc has construction sequence 〈Wc
n : n ∈ N〉.

Suppose that Kc is a circular system with coefficients 〈kn, ln : n ∈ N〉.
We can recursively recursively build functions cn

−1 from words in Σ ∪ {b, e}
to words in Σ. The result is a odometer based system 〈Wn : n ∈ N〉 with
coefficients 〈kn : n ∈ N〉.18

If K is the resulting odometer based system then F(K) = Kc. Thus we
see:

Proposition 83. The map F is a bijection between odometer based symbolic
systems with coefficients 〈kn : n ∈ N〉 and circular symbolic systems with
coefficients 〈kn, ln : n ∈ N〉.

` That F is one-to-one follows from the unique readability of words occur-
ring in the construction sequence 〈Wn : n ∈ N〉. a

Remark 84. It is clear from Definition 82 that F preserves uniformity and
strong uniformity (see [5] for these notions). In fact it preserves much more:
the simplex of non-atomic invariant measures, rank one transformations and
so on. We verify much of this in this paper and more in the forthcoming [8].

To understand the correspondence between measures on K and Kc we
will have to understand the structure of basic open intervals. Recall that we
write 〈u〉L to mean the basic open interval of K determined by u sitting on
the interval [L,L + |u|) ⊆ Z. Without the subscript L, 〈u〉 is shorthand for
〈u〉0. We adopt the same conventions for Kc, that the subscripts correspond
to the beginning of the sequence and without a subscript the sequence begins
at zero.

18We are using the strong unique readability assumption on the Pn’s to see the unique
readability of the words in the sequence 〈Wn : n ∈ N〉.
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5.1 Genetic Markers

To see that F can be extended to a map from invariant measures on odometer
based systems to invariant measures on circular systems, we begin by recall-
ing how to identify elements of a symbolic system. Suppose that 〈Wn : n ∈ N〉
is a construction sequence for an odometer based transformation K. Let
〈Wc

n : n ∈ N〉 be the corresponding circular construction sequence for Kc. By
Lemma 15 to specify a typical s ∈ K or sc ∈ Kc, it suffices to give a tail of the
sequence of principal n-blocks 〈wn(s) : N ≤ n ∈ N〉 or 〈wcn(sc) : N ≤ n ∈ N〉
along with the locations 〈rn(s) : N ≤ n〉 or 〈rn(sc) : N ≤ n〉.

Definition 85. Suppose that u, v are words in Wn and Wn+1 respectively
and u occurs as an n-subword of v in a particular location. Viewing v as a
concatenation w0w1 . . . wnk−1 of n-subwords, there is a j such that u = wj.
Let j∗n = j and call j∗n the genetic marker of u in v.

Suppose that u ∈ Wn and v ∈ Wn+k and u is an n-subword of v oc-
curring at a particular location. Then there is a sequence of words un =
u, un+1, . . . un+k−1, un+k = v such that ui is a n+ i-subword of v at a definite
location and the location of u in v is inside ui. Let j∗n+i be the genetic marker

of un+i inside un+i+1. We call the sequence ~j∗ = 〈j∗n, j∗n+1, . . . j
∗
n+k−1〉 the

genetic marker of u in v. If ~j∗ is the genetic marker of some n-word inside
and m-word, we will call it an (n,m)-genetic marker.

If u occurs as a subword of v then the genetic marker 〈j∗n, j∗n+1 . . . j
∗
n+k−1〉

of that occurrence codes its location inside v.
Suppose that s ∈ K has principal n-blocks 〈wn : n ∈ N〉. Each wn+1 is a

concatenation of words v0v1 . . . vkn−1. Let

j′n =def
rn+1(s)− rn(s)

Kn

(23)

or equivalently
rn+1(s) = rn(s) + j′nKn. (24)

Each wn+1 is a concatenation of words v0v1 . . . vkn−1, and we see that s(0)
belongs to vj′n . In particular, the genetic marker of wn inside wn+k is the
sequence 〈j′n, j′n+1, . . . j

′
n+k−1〉.

Genetic markers for regions of words in Wc
n+k: In circular words, ge-

netic markers code regions rather than subwords. Given u and v as above, we
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can consider the construction of cn+k(v) starting with the collection {cn(u) : u
is an n-subword of v}. Each of the genetic markers 〈j∗n, j∗n+1, . . . j

∗
n+k−1〉 of a

subword u of v determines a region of n-subwords of cn+k(v). More explicitly,
in the first step of the construction we put u into the (j∗n)th argument of Cn.
At the next step we put the result into the j∗n+1 argument of Cn+1 and so on.
Thus we see that there are bijections between

1. sequences 〈j∗n, j∗n+1, . . . j
∗
n+k−1〉 with 0 ≤ j∗m < km,

2. n-subwords u of v,

3. the regions of vc occupied by the occurrences of powers (uc)ln−1 where
uc is the element of Wc

n determined by 〈j∗n, j∗n+1, . . . j
∗
n+k−1〉.

Thus genetic markers give the correspondence between the regions of cn+k(v)
that are not in

⋃
n<m≤n+k ∂m and particular occurrences of an n-word u in v.

The next lemma computes the number of occurrences of a cn(u) with a
given genetic marker 〈j∗n, j∗n+1, . . . j

∗
n+k−1〉 in cn+k(v).

Lemma 86. Suppose that uc occurs in vc with genetic marker 〈j∗n, j∗n+1, . . . j
∗
n+k−1〉.

Then the number of occurrences of uc in vc with the same genetic marker
〈j∗n, j∗n+1, . . . j

∗
n+k−1〉 is

n+k−1∏
n

qi(li − 1). (25)

` Fix m and vc ∈ Wc
m. We prove equation 25 for n = m− k by induction

on k ≥ 1. If k = 1 then we have a single genetic marker j∗m−1. By formula 11
for Cm−1 we see that the j∗m−1 argument occurs in vc exactly qn(ln−1) times.

Suppose now that we know that formula 25 holds for k − 1. We show
it for k. Let n = m − k and uc be the n-subword of vc with genetic
marker〈j∗n, j∗n+1, . . . j

∗
n+k−1〉. Let wc be the subword of vc with genetic marker

〈j∗n+1, . . . j
∗
n+k−1〉. Then:

|{occurrences of uc in vc with marker 〈j∗n, j∗n+1, . . . j
∗
n+k−1〉}|

is equal to
|{occurrences of uc in wc with marker j∗n}|×

|{occurrences of wc in vc with marker 〈j∗n+1, . . . j
∗
n+k−1〉}|
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The lemma follows. a

Since particular (n,m)-genetic markers 〈j∗n, j∗n+1, . . . j
∗
n+k−1〉 correspond

to powers of uc’s that occur with the same multiplicity in vc, independently
of the marker, we see that for a given u and v:

|{occurrences of u in v}|
|{n-subwords of v}|

=
|{occurrences of cn(u) in cn+k(v)}|
|{circular n-subwords of cn+k(v)}|

(26)

We can restate equation 26 in the language of section 2.6. It says that

EmpDist(v)(u) = EmpDist(cn+k(v))(cn(u)). (27)

In particular, if we fix a set S∗ of genetic markers we can compare the
number of occurrences of a word with genetic marker in S∗ in v ∈ Wn+k with
the number of occurrences in the corresponding vc ∈ Wc

n+k. Specifically,
the number of occurrences of a word uc in vc at some genetic marker in
S∗ is |S∗| ∗

∏n+k−1
n qi(li − 1). The proportion of n-words occurring with a

genetic marker in S∗ relative to all n-words occurring in vc is the same as the
proportion of n-words with genetic markers in S∗ occurring in v relative to
the total number of genetic markers. The number of (n,m)-genetic markers
is
∏n+k−1

n ki so this proportion is equal to

|S∗|∏n+k−1
n ki

. (28)

This is simply a restatement of our discussion involving empirical distribu-
tions in Section 2.6.

We introduce some notation that allows us to compare densities of various
sets between odometer based and circular words. For sets A ⊆ [0, Km) and
Ac ⊆ [0, qm) we denote their densities by:

dm(A) = |A|/Km

dcm(Ac) = |Ac|/qm

Then dm and dcm can be viewed as discrete probability measures on the sets
[0, Km) and [0, qm) respectively.
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Lemma 87. Let n ≤ m, w ∈ Wm and wc =def cm(w) ∈ Wc
m. We view

w as sitting on the interval [0, Km) and wc as sitting on [0, qm) Let S∗ be
a collection of (n,m)-genetic markers, g the total number of (n,m)-genetic
markers and d = |S∗|/g. If:

• A = {k ∈ [0, Km) : some u ∈ Wn with genetic marker in S∗ begins at
k in w}

• Ac = {k ∈ [0, qm) : some uc ∈ Wc
n with genetic marker in S∗ begins at

k in wc},

then the following equations hold:

dm(A) =
d

Kn

(29)

dcm(Ac) =
d

qn

m−1∏
p=n

(1− 1/lp) (30)

dm(A) =

(
dcm(Ac)∏m−1

p=n (1− 1/lp)

)(
qn
Kn

)
(31)

dcm(Ac) = dm(A)

(
m−1∏
p=n

(1− 1/lp)

)(
Kn

qn

)
. (32)

` We prove equation 30. Equation 29 is similar but easier. The other two
equations follow algebraically.

The union of the boundary regions ∂p for p = n to m−1 consist exactly of
the elements of [0, qm) that are not part of any n-word. We denote the com-
plement of

⋃m−1
p=n ∂p by (

⋃m−1
p=n ∂p)̃. The various ∂p are pairwise disjoint and

for each n∗, (
⋃m−1
p=n∗ ∂p)̃ consists of the locations of entire n∗-words. Starting

with p = m−1, iteratively deleting boundary sections as p decreases to n, and
using Lemma 50 we see that the dcm-measure of (

⋃m−1
p=n ∂p)̃ is

∏m−1
p=n (1−1/lp).

Let B = {k ∈ [0, qm) : k is at the beginning of an n-word}. Then B
consists of a 1/qn portion of the regions made up of n-words; i.e. (

⋃m−1
p=n ∂p)̃.

We note that Ac ⊆ B and B is disjoint from
⋃m−1
p=n ∂p.

By Lemma 86, the number C1 of n-words occurring in wc with a given
genetic marker does not depend on the marker. Let C2 be the total number
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of n-words occurring in wc. Then:

|Ac|
|B|

=
|{n-words with genetic marker in S∗}

C2

=
|S∗| ∗ C1

g ∗ C1

= d.

We compute conditional expectations to get equation 30:

dcm(Ac) = dcm(Ac | (
m−1⋃
p=n

∂p)̃ ) dm((
m−1⋃
p=n

∂p)̃ )

= dcm(Ac | B, (
m−1⋃
p=n

∂p)̃ ) dm(B| (
m−1⋃
p=n

∂p)̃ ) dm((
m−1⋃
p=n

∂p)̃ )

= d

(
1

qn

)m−1∏
p=n

(1− 1/lp)

Equation 29 is similar and 31, 32 follow from the first two equations by
substitution. a

The following relationship between pairs of measures ν on K and νc on
Kc

νc(〈cn(u)〉) =

(
Kn

qn

)
ν(〈u〉)

(
1−

∞∑
n

νc(∂m)

)
is the limit of equation 32 as m goes to infinity. This relationship will hold for
a correspondence between measures that we build in forthcoming sections.

We note that since ∂m has a density that depends only on the circular
coefficient sequence, the measures of ∂m is the same for all invariant measures.
If we set d∂n be this density, then we can rewrite the previous equation as:

νc(〈cn(u)〉) =

(
Kn

qn

)
ν(〈u〉)

(
1−

∞∑
n

d∂n

)
(33)

A consequence of equation 33 is that for all basic open sets u, ν(〈u〉)
determines νc(〈cn(u)〉) and vice versa.

For counting arguments the following inequalities will be helpful.
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Lemma 88. Let n be a number greater than 0. Then there are constants
KU
n , K

L
n between 0 and 1 such that for all k > 0 and wc ∈ Wc

n+k and all
collections S∗ of (n, n+ k)-genetic markers,

if

Ac = {i : i is the location of a start of an n-subword of wc indexed in S∗}

then

KL
n |S∗| ≤

(
|Ac|
qn+k

)(n+k−1∏
m=0

km

)
≤ KU

n |S∗| (34)

` By equation 25 there are

|Ac| = |S∗| ∗
k−1∏
m=0

qn+m(ln+m − 1)

many i that occur at the beginning of occurrences of n-subwords with genetic
markers in S∗. Since

qn+k = knlnq
2
n

(
k−1∏
m=1

kn+mln+mqn+m

)
we have:

|Ac|
qn+k

= |S∗| ∗
(

1

qn

)( k−1∏
m=1

(1− 1

ln+m
)

)(
1∏k−1

m=0 kn+m

)
.

Since the 〈1/ln〉 is a summable sequence,
∏k−1

m=1(1−
1

ln+m
) converges as k goes

to ∞. The inequality 34 follows. a

Since Kn+k =
∏n+k−1

m=0 km, inequality 34 can be rewritten as:

KL
n

|S∗|
Kn+k

≤ |A
c|

qn+k
≤ KU

n

|S∗|
Kn+k

(35)

Infinite genetic markers: Suppose that we are given a construction se-
quence 〈Wn : n ∈ N〉 for an odometer based or circular system K, s ∈ S
and an occurrence of an n-word u in s. Then we can inductively define an
infinite sequence of words 〈um : n ≤ m ∈ N〉, letting un = u, and um+1 to be
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the m + 1-subword of s that contains um. For each n < m we get a genetic
marker 〈j∗n, j∗n+1, . . . j

∗
m−1〉, and these cohere as m goes to infinity. We define

the infinite genetic marker to be ~j∗ = 〈j∗m : n ≤ m ∈ N〉.
If an n-word u occurs inside an occurrence of an m-word v in s, then

v = um. Thus their infinite genetic markers agree on the tail 〈j∗i : m ≤ i ∈ N〉.
As in Remark 16, if we are given a sequence of words 〈um : n ≤ m〉,

with um ∈ Wm, and an infinite sequence 〈jm : n ≤ m〉 such that the genetic
marker jm denotes an instance of um in um+1 then we can find an s ∈ K with
〈um : m ≥ n〉 as a tail of its principal subwords. If K is odometer then s is
unique up to a shift of size less than or equal to Km. A similar statement
holds for circular systems.

5.2 TU and UT .

To understand the relationships between K and Kc, we define maps TU :
S → Sc and UT : Sc → S where S ⊆ K and Sc ⊆ Kc are as in definition 10.
The map TU will be one-to-one but UT will not, in general it is continuum-
to-one. Nevertheless UT ◦ TU will be the identity map.

We begin by considering a element s ∈ S. Let un be the principal n-
subword of s. The sequence 〈un : n ∈ N〉 determines a sequence of circular
words 〈ucn : n ∈ N〉 which we assemble to define TU(s). Let ~j = 〈jn : n ∈ N〉
be the infinite genetic marker of s(0). To describe TU(s) completely we need
to define 〈rcn : n ∈ N〉. Set rc0 = 0, and inductively define rcn+1 to be the (rcn)th

position in the first occurrence of an n-word with genetic marker jn in ucn+1.
Set TU(s) to be the element of Kc with principal subwords 〈ucn : n ∈ N〉 and
location sequence 〈rcn : n ∈ N〉.

We define a map UT that associates an element of K to each element of
Sc. Given such an sc ∈ Sc, let 〈ucn : n ≥ N〉 be its sequence of principal
n-subwords. For each n ≥ N, ucn occurs as uj∗n in the preword corresponding
to ucn+1. Let un = c−1n (ucn). Then the sequence of words 〈un : n ∈ N〉 and
genetic markers 〈j∗n : n ≥ N〉 determine an element of s ∈ K except for the
location of 0 in the double ended sequence. (The sequence is double ended
because s ∈ Sc.)

We determine this location arbitrarily in a manner that makes the se-
quence of un’s the principal n-blocks of s (n ≥ N) and the j∗n the sequence
of genetic markers of these n-blocks. Let 0̄ be a sequence of zeros of length
N . Then 0̄_〈j∗n : n ≥ N〉 is a well-defined member of the odometer O as-
sociated with K. From equation 24, 0̄_〈j∗n : n ≥ N〉 determines a sequence
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〈rn : n ∈ N〉. Thus by Lemma 15, the pair 〈un : n ≥ N〉 and 0̄_〈j∗n : n ≥ N〉
determines a unique element s of K which we will denote UT (sc). It is easy
to check that UT ◦ TU = id and that for each s ∈ S, there is a perfect set of
sc with UT (sc) = s.

We can get more precise information about correspondences between K
and Kc by noting that if we are given a sequence 〈un : n ∈ N〉 of principal
subwords of an s ∈ S, the genetic markers 〈jn : n ∈ N〉 define an element sc

of Kc up to a choices (sc)π ∈ K. Specifically, suppose that s∗ ∈ K is such
that the infinite genetic marker of s∗(0) is 〈jn : n ∈ N〉. Then there is an
sc ∈ Kc that has a sequence of principal n-blocks 〈ucn : n ∈ N〉.

The following lemma will be useful for understanding joinings.

Lemma 89. Let s ∈ S. Then {TU(shk(s)) : k ∈ Z} ⊆ {shk(TU(s)) :
k ∈ Z}. If s ∈ S, sc = TU(s) and u ∈ Wn, then there is a canonical
correspondence between occurrences of u in s and finite regions of sc where
uc occurs. The occurrences of uc in these finite regions have the same infinite
genetic marker 〈jm : m > n〉 in sc as u does in s.

` Given an s ∈ S and a k, the shift shk(s) and s have a tail of the principal
n-blocks 〈un : N ≤ n〉 in common. Moreover the genetic markers associated
with this tail are the same for both s and shk(s). It follows that TU(shk(s))
is a shift of TU(s).

We can describe the correspondence as follows. If u occurs in s at k, then
u is the principal n-word of shk(s). Choose an N so large that some N -word
u∗ is the principal N -word of both s and shk(s). Then (u∗)c is the principal
N -block of sc. Let ~j be the genetic marker of the occurrence of u (at k) in
u∗. The region of sc corresponding to this occurrence of u is the collection of
occurrences of uc with the genetic marker ~j in the principal N -block of sc.a

5.3 Transferring measures up and down, I

In this section we develop the tool we need for lifting measures on K to mea-
sures on Kc. This will also allow us to establish a one-to-one correspondence
between synchronous joinings on odometer systems and synchronous joinings
on the corresponding circular systems. Throughout this section we will use π
to denote either the projection of an odometer based system to its canonical
odometer factor or a circular system to its canonical circular factor.
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We begin with a proposition relating sequences of words in a construction
sequence for an odometer based system to sequences of words in a construc-
tion sequence for a circular system.

Proposition 90. Let 〈vn : n ∈ N〉 be a sequence with vn ∈ Wn. Let vcn =
cn(vn). Then:

1. 〈vn : n ∈ N〉 is an ergodic sequence iff 〈vcn : n ∈ N〉 is an ergodic
sequence.

2. 〈vn : n ∈ N〉 is a generic sequence for a measure ν iff 〈vcn : n ∈ N〉 is a
generic sequence for a measure νc. In case either sequence is generic,
the measures ν and νc satisfy equation 33.

` Both parts follow immediately from the definitions using equations 27
and 28 to relate the frequencies of k-words w ∈ Wk in n-words u ∈ Wn, for
k < n to the frequencies of ck(w) in the corresponding cn(u). Equation 33
follows from the Ergodic Theorem and Lemma 87. a

We endow that collection of invariant measures on a symbolic system
(K, sh) with the weak* topology.

Theorem 91. Let 〈Wn : n ∈ N〉 be a uniquely readable construction sequence
for an odometer based system K and 〈Wc

n : n ∈ N〉 be the associated circular
construction sequence for Kc. Then there is a canonical affine homeomor-
phism ν 7→ νc between shift invariant measures ν concentrating on K and
non-atomic, shift invariant measures νc such that equation 33 holds between
ν and νc.

` By Proposition 40 and Lemma 51 we can assume that ν and νc concentrate
on S and Sc respectively.

We begin by defining the correspondence for ergodic measures. Suppose
that we are given an ergodic measure ν and we want to associate a measure
νc. Let s ∈ S be a generic point for (K, ν). Let 〈vn : n ∈ N〉 be the sequence
of principal n-blocks of s. By Proposition 21 this sequence is generic for ν.
By Proposition 90, if we let vcn = cn(vn), then 〈vcn : n ∈ N〉 is an ergodic
sequence. Let νc be the measure associated with 〈vcn : n ∈ N〉. Then νc is
ergodic and equation 33 holds by Proposition 90.

The other direction is similar, let sc ∈ Sc be generic for νc. Propositions
21 and 90 imply that if 〈vcn : n ∈ N〉 is the sequence of principal n-blocks of
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sc and vn = c−1n (vcn), then 〈vn : n ∈ N〉 is ergodic and generic for a measure
ν. Again equation 33 holds by Proposition 90.

Suppose now that ν is an arbitrary measure on K. Write the ergodic
decomposition of ν as:

ν =

∫
νidµ(i).

We define νc by

νc =

∫
νci dµ(i)

which gives a corresponding measure on Kc. Since equation 33 holds between
corresponding ergodic components νi and νci , it holds between ν and νc.

By the ergodic decomposition theorem the map ν 7→ νc is a surjection.
Since the map is invertible, it is a bijection. The map is affine by construction.

It remains to show that it is a homeomorphism. To see that ν 7→ νc is
weak* continuous it suffices to show that for all ε > 0 and n ∈ N there is a
δ and an m such that for all invariant µ, ν, if for all u ∈ Wm

|µ(〈u〉)− ν(〈u〉)| < δ

we know that for all v ∈ Wn we have

|µc(〈vc〉)− νc(〈vc〉)| < ε.

But the equation 33 easily implies this taking m = n and

δ <

(
Kn

qn

)(
1−

∞∑
n

d∂n

)
∗ ε/4.

The argument that the inverse is continuous is the same. a

Definition 92. We will call a pair (ν, νc) constructed as in Theorem 91
corresponding measures.

Remark 93. It follows from Proposition 90 that if ν and νc are corresponding
measures on K and Kc and s ∈ K is arbitrary then s is generic for ν iff TU(s)
is generic for νc. The point s is generic just in case its sequence of principal
subwords is generic for ν. By item 2 of Proposition 90, this holds just in
case the sequence of principal subwords of TU(s) is generic; i.e. TU(s) is
generic.
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We can use Theorem 91 to characterize the possible simplexes of invari-
ant measures for circular systems. By a theorem of Downarowicz ([3], The-
orem 5), every non-empty compact metrizable Choquet simplex is affinely
homeomorphic to the simplex of invariant probability measures for a dyadic
Toeplitz flow. Note that the space of invariant probability measures is always
a compact Choquet simplex, hence this theorem is optimal.

Since Toeplitz flows are special cases of odometer based systems it follows
immediately that every non-empty compact metrizable Choquet simplex is
affinely homeomorphic to the simplex of invariant measures of a 2-symbol
odometer based system.

Let K be a compact Choquet simplex and K an odometer based system
having its simplex of invariant probability measures affinely homeomorphic
to K. Let Kc be a circular system corresponding to an odometer based
system K. Then the non-atomic measures on Kc are a Choquet simplex
isomorphic to K. There are two additional ergodic measures, the atomic
measures concentrating on the constant “b” sequence and on the constant
“e” sequence. These two atomic measures are isolated among the ergodic
measures.

In the forthcoming [8] we discuss the question of invariant measures fur-
ther and show that F preserves several other properties, such as being rank
one.

6 P−,P\, genetic markers and the \-map

Our goal is to understand the structure of synchronous and anti-synchronous
joinings between pairs of ergodic systems (K,L±1). We will use Theorem 91
to define a bijection between synchronous joinings of odometer based systems
and synchronous joinings of circular systems. This is relatively easy: to a
joining of K with L that projects to the identity we can directly associate
an odometer system (K,L)× with a measure ν such that the corresponding
measure νc on ((K,L)×)c can be identified with a measure on Kc × Lc that
projects to the identity. We carry this construction out in detail in section
7 and show that the map ν 7→ νc given by Theorem 91 gives a bijection
between synchronous joinings of the two kinds of systems.

The situation for anti-synchronous joinings of K and L−1 is more com-
plicated. In Lemma 43, we remarked that the anti-synchronous joinings of
K and L−1 can be identified with joinings of K and rev(L) that concentrate
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on {(s, t) : πs = πt}. Similarly we can identify the anti-synchronous join-
ings of Kc and (Lc)−1 with joinings of Kc with rev(Lc) that concentrate on
{(sc, tc) : πtc = \(πsc)}. We give notation for these sets:

1. Let P− be the collection of anti-synchronous joinings ρ of K and L−1.

2. Let P\ be the collection of anti-synchronous joinings ρc of Kc and
(Lc)−1.

To understand the relationship between P− and P\ we need an analogue of
Lemma 87, and the corresponding analogue of equation 33. We now describe
the tools we use to do this.

Fix construction sequences for 〈Un : n ∈ N〉 and 〈Vn : n ∈ N〉 for K and
L respectively based on 〈kn : n ∈ N〉 and Kc,Lc the corresponding circular
systems based on 〈kn, ln : n ∈ N〉.

Let (s, t) be an arbitrary point in K×L with πt = −πs and s ∈ SK, t ∈ SL.
Let 〈un : n ∈ N〉 and 〈vn : n ∈ N〉 be the sequence of principal subwords of
s and t respectively. If sc = TU(s) and tc = TU(t), then 〈ucn : n ∈ N〉 and
〈vcn : n ∈ N〉 are the sequences of principal subwords of sc and tc.

Let x = \(πsc). Then x ∈ rev(K) and set rn = rn(x).

Definition 94. Define t̂ ∈ rev(Lc) by taking 〈rev(vcn) : n ∈ N〉 as its principal
n-subword sequence and 〈rn : n ∈ N〉 as its location sequence.

We will study the relationship between P− and P\ via the function taking
(s, t) to (sc, t̂).

6.1 Genetic Markers revisited

To understand the relationship between joinings ρ in P− and ρc in P\ we
need to take into account the manner that \ shifts the reverse of the second
coordinate of a the image of a generic pair (s, t) for K × L−1 and the in-
terplay between the map \ and genetic markers. Let n < m. Suppose that
(u′, rev(v′)) is a pair of n-words coming from Un× rev(Vn) that occur aligned
inside m-words (u, rev(v)) ∈ Um × rev(Vm). If u′ and rev(v′) occur at the
same location in (u, rev(v)), then ~ju′ determines ~jv′ in the following way:

for n ≤ r < m we must have

(jv′)r = kr − (ju′)r − 1 (36)

(where ~ju′ = (jn, jn+1, . . . jm−1)).
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Definition 95. Let (u′, v′) ∈ Wn and (u, v) ∈ Wm. Define the (n,m)-genetic
marker of an occurrence of the pair (u′, rev(v′)) in (u, rev(v)) to be (~ju′ ,~jv′)
where ~ju′ is the genetic marker of u′ in u and ~jv′ is the genetic marker of v′

in v.19 We call ~ju′ and ~jv′ a conjugate pair.

Being a conjugate pair is equivalent to satisfying the numerical relationship
given in equation 36 and thus either element of a conjugate pair determines
the other. Hence for purposes of counting conjugate pairs we need only use
the first coordinates, ju′ .

Let (u, rev(v)) ∈ Um× rev(Vm) be words that occur in a pair (s, rev(t)) ∈
K× rev(L). Then the relative alignment of uc and rev(vc) in (sc, t̂ ) is deter-
mined by the \-map. This is approximated with a high degree of accuracy
by where the code Λm sends intervals. Accordingly:

Definition 96. Define the pair (u, rev(v))c to be (uc, shAm(rev(vc)).

Thus 〈(u, rev(v))c〉l determines a basic open interval in Kc×rev(Lc) which
we might also write as (〈uc〉l× rev(Lc))∩ (Kc×〈rev(vc)〉l+Am). Alternatively
we could write this as:

{(f, g) ∈ Kc × rev(Lc) : f � [l, l + qm) = uc and

g � [l + Am, l + Am + qm) = rev(vc)}.

We now have a lemma extending Lemma 72 which says that if u and v
belong to Un+1 and Vn+1 then, relative to sh−j1(rev(v)), all occurrences of
(u′)c ∈ U cn in uc are either lined up with an occurrence of a rev((v′)c) for
some (v′)c ∈ Vcn or a boundary section of sh−j1(rev(vc))). The lemma also
says that if (u′)c, rev((v′)c) are lined up then ~ju′ and ~jv′ form a conjugate
pair.20

Proposition 97. Let n < m and u ∈ Um, v ∈ Vm. Then for u′ ∈ Un, v′ ∈ Vn
we consider occurrences of (u′, rev(v′))c in (u, rev(v))c.21

1. If (u′, rev(v′))c occurs in (u, rev(v))c, then ~ju′ and ~jv′ form a conjugate
pair.

19Note that the genetic marker ~ju′ denotes a different position inside rev(v) then it does
in u.

20In this case both ~ju′ and ~jv′ are of length one.
21Since Am 6= An we are considering different shifts in (u, rev(v))c and (u′, rev(v′))c.
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2. There is a constant C = C(n,m) such that all conjugate pairs occur C
times.

3. Fix a conjugate pair (ju′ , jv′) of genetic markers of (u′, rev(v′)). If k is
a location of an occurrence of (u′)c in uc with genetic marker ~ju′, but
not a location of (u′, rev(v′))c, then the section of shAm(rev(vc)) in the
interval [k + An, k + An + qn) is contained in

⋃m
i=n+1 ∂i.

` Item 1 is immediate from the definitions.
The latter items are asking about pairs of the form ((u′)c, shAn(rev((v′)c)))

occurring in (uc, shAm(rev(vc)). Such a pair occurs at k if and only if the
pair ((u′)c, rev((v′)c)) occurs aligned in (u, shAm−An(rev(vc))) at k. Item 3 is
equivalent to saying that (u′)c is lined up with a portion of shAm−An(rev(vc))
contained in

⋃m
i=n+1 ∂i.

We fix m and prove 2 and 3 by induction on m − n. The case that
m = n+ 1 is the content of Lemma 72. Suppose that the proposition is true
for m and n+ 1, we prove it for m and n.

A pair of n + 1-circular words (w0, w1)
c lined up in the shifted pair

(uc, shAm−An+1(rev(vc))) must have conjugate genetic markers. Moreover any
there is a number C0 such that any pair with conjugate genetic markers oc-
curs lined up C0 many times.

Fix an occurrence k of an n+1-word w0 so that no word in shAm(rev(vc))
occurs at [k +An+1, k +An+1 + qn+1), i.e w0 is not lined up with the reverse
of an n+ 1-word in shAm−An+1(rev(vc)). Then w0 is lined up with a segment
of shAm−An+1(rev(vc)) that is a subset of in

⋃m
n+2 ∂i. To pass from Am−An+1

to Am − An we shift by −j1, where j1 = p−1n mod qn. Noting that each
reversed n + 1-word ends with a string of b’s of length qn, we see that after
the additional shift there can be no n-subwords inside w0 lined up with
anything besides a portion of shAm−An(rev(vc)) contained in

⋃m
n+1 ∂i.

Suppose that u′ and v′ are n-words and we have an occurrence of (u′)c

and rev((v′)c) lined up in the pair (uc, shAm−An(rev(vc))). If ~ju′ = k_0 ~j∗u′ and
~jv′ = k_1 ~j∗v′ , we let (w0, w1) be the occurrence of n + 1-subwords of (u, v)

with genetic markers ~j∗u′ and ~j∗v′ that contain u′ and v′. It follows from the
previous paragraph that the genetic markers of w0 and w1 are conjugate and
wc0, rev(wc1) are aligned in (uc, shAm−An+1(rev(vc))). By Lemma 72, k0 and k1
are conjugate and thus ~ju′ and ~jv′ are conjugate.

Further each conjugate pair occurs aligned the same number C1 of times
in the pair (wc0, sh

−j1(rev(wc1))). The number C1 is independent of w0, w1
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and k0 and k1. It follows now that given a conjugate pair of genetic markers
(~ju′ ,~jv′), the number of occurrences of a pair of circular n-words with genetic
marker ~ju′ in uc aligned with an occurrence of a circular word with genetic
marker ~jv′ is in vc is C0 ∗ C1.

To finish we note that the unaligned n-words are in two categories, those
that are not aligned because the n + 1-words that contain them are not
aligned, or those that are not aligned by the final shift −j1. In each case,
the unaligned n-words in u occur across from boundary sections in the word
shAm−An(rev(vc)). a

Thus, using the backwards C-operation to wrap words around the circle
in opposite directions introduces some slippage, but the slippage is uniform
and predictable.

Definition 98. Suppose that ~j and ~j′ are a conjugate pair of (n,m)-genetic
markers and uc ∈ U cm, vc ∈ Vcm. Let (u′)c and (v′)c have genetic markers ~j
and ~j′ in uc, vc respectively. Then the set of locations k such that (u′)c occurs
in uc starting at k with genetic marker ~j but rev((v′)c) does not occur starting
at k + An in shAm(rev(vc)) is called the (n,m)-slippage of ~j.

A location k can belong to the slippage of ~j for two mutually exclusive
reasons. Either, for some proper tail segment ~j∗ of ~j, k is part of the slippage
of the subword of uc with genetic marker ~j∗ or k is part of the slippage of
the jn inside the n+ 1 word containing u caused by sh−j1 .

Let SLn,m stand for the (n,m)-slippage of n-subwords of uc; i.e. the
locations k in uc of some n-word (u′)c such that there there is no n-word
rev((v′)c) at position k + Am. Inside an m-word uc we find multiple copies
of SLn,n+1 corresponding the location of each n + 1 word in uc. Denote the
union of these copies as SLmn,n+1. Then it follows that:

SLn,m =
m−1⋃
k=n

SLmk,k+1 ∩ {locations of n-words} (37)

and moreover the union is disjoint.
The slippage is the portion of of the words that we have no control over

when counting, so we want to be able to estimate the proportion of words in
the slippage. Let

$m
n =

|SLn,m|
|{n− subwords of uc}

(38)
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The next proposition allows us to control the (n,m)-slippage by controlling
the successive (n, n+ 1)-slippages.

Proposition 99.

1−$m
n =

m−1∏
n

(1−$i+1
i ). (39)

` We begin by noting that for n∗ between n and m, all pairs (u∗, rev(v∗)) of
n∗-words have the same proportion of slippage of n-words in (u∗, rev(v∗))c.
Thus $n∗

n is equal to the proportion of slippage of all of the n-words occuring
in pairs (u∗, rev(v∗))c of n∗-subwords of (u, rev(v))c.

The argument is similar to Lemma 87. Starting with n∗ = m − 2 and
decreasing until n∗ = n+ 1, using that fact that the union in equation 37 is
disjoint, one inductively demonstrates that:

(1−$m
n ) = (1−$n∗

n )
m−1∏
n∗

(1−$i+1
i ).

a

We can combine item 3 of Lemma 97 with equation 39 to see that if k is
in SLn,m, then [k+An, k+An + qn) is a subset of

⋃m
i=n+1 ∂

vc

i . It thus follows
from Lemma 75 that:

1−$m
n ≥

m−1∏
n

(1− 2

(li − 1)
). (40)

Because the definition of $m
n was made entirely in terms of genetic mark-

ers, the whole discussion could have been carried out simply by considering
Kc× rev(Kc). The numerics depend only on the circular coefficient sequence,
not on particular construction sequences 〈Un,Vn : n ∈ N〉.

Viewing the operator \ as the limit of the codes Λm, we can pass to
infinity and define SL∞n similarly and let $∞n be the proportion of locations
k of n-subwords of a typical s ∈ Kc such that no n-subword of \(rev(π(s)))
occurs at k + An.
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Then:

(1−$∞n ) =
∞∏
n

(1−$i+i
i )

≥
∞∏
n

(1− 2/li) (41)

> 0.

It follows that
∑∞

1 $i+1
i <∞.

We now formulate and prove the version of Lemma 87 involving the \ map.
One might expect that would require considering arbitrary pairs of genetic
markers ~j and ~j′. However, by Proposition 97, if u′ occurs in u with (n,m)-
genetic marker ~j, then the only genetic marker it can occur lined up with in
rev(v) is its conjugate pair. Similarly either of the genetic markers of aligned
words (u′)c occurring in uc and shAn(rev((v′)c)) occurring in shAm(rev(v))
determine the other member of the conjugate pair.

It follows that we need only consider pairs (u′, rev(v′)) whose genetic
markers are conjugate in (u, rev(v)). Since the map ~j to ~j′ is a bijection we
will refer to either of ~j or ~j′ as the genetic marker of a pair (u′, rev(v′)) or
equivalently (u′, rev(v′))c.

We are reduced to considering sets S∗ ⊆ {(n,m)-genetic markers} rather
than sets of pairs of genetic markers. Let n < m and let S∗ be a set of
(n,m)-genetic markers of pairs of n-words in (u, rev(v)). Let

A = {k ∈ [0, Km) : some u′ with with genetic marker

in S∗ begins at k in u}

and

Ac = {k ∈ [0, qm) : for some u′ with genetic marker in S∗,

there is a v′ such that (u′)c occurs beginning at k in uc

and rev((v′)c) occurs beginning at k + An in shAm(rev(vc))}

and define

dm(A) = |A|/Km

dcm(Ac) = |Ac|/qm
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If (u′)c occurs at k in u and rev((v′)c) occurs at k + An in shAm(v) then
(u′, rev(v′))c occurs at k in (uc, shAm(rev(vc))

Lemma 100. Let n < m and (u, v) ∈ Um × Vm. Let S∗ be a collection of
(n,m)-genetic markers, g the total number of (n,m)-genetic markers22 and
d = |S∗|/g. Then (in the notation above):

dm(A) =
d

Kn

(42)

dcm(Ac) =
d

qn

m−1∏
p=n

(1− 1/lp)(
m−1∏
i=n

(1−$i+1
i ) (43)

dm(A) =

(
dcm(Ac)∏m−1

p=n (1− 1/lp)(
∏m−1

i=n (1−$i+1
i )

)(
qn
Kn

)
(44)

dcm(Ac) = dm(A)

(
m−1∏
p=n

(1− 1/lp)

)(
m−1∏
i=n

(1−$i+1
i )

)(
Kn

qn

)
. (45)

` The proof is essentially the same as the proof of Lemma 87, indeed the
proof of equation 42 is the same. Because all genetic markers occur with the
same frequency, after allowing for the portions uc in boundary sections and in
slippage (which are disjoint), d/qn is the density of locations k of occurrences
of words with genetic markers in S∗. Once again equations 44 and 45 follow
from 42 and 43 by substitution. a

The equation relating ρ ∈ P− and ρc ∈ P\ that corresponds to equation 33
is:

ρc(〈(u, rev(v))c〉) =

(
Kn

qn

)
ρ(〈(u, v)〉)(1−

∞∑
n

ρc(∂m))(1−$∞n ).

Once again ρc(∂m) is independent of the choice of ρc. Setting d∂mρ = ρc(∂m),
we can write the previous equation as:

ρc(〈(u, rev(v))c〉) =

(
Kn

qn

)
ρ(〈(u, v)〉)(1−

∞∑
n

d∂mρ )(1−$∞n ). (46)

22As before it is easy to check that g =
∏m−1
n ki.
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Understanding empirical distributions of joinings along the natural map
involves studying how the slippage affects each pair of n-words. Fix u′ ∈
Un, v′ ∈ Vn and u ∈ Um, v ∈ Vm where n < m. Let the conjugate pair
(~j, ~j′) be the genetic marker of (u′, rev(v′)) in (u, rev(v)). Then, as re-
marked earlier ~j′ is determined by ~j, since they are a conjugate pair. Define
SLn,m(u′, rev(v′)) to be the collection of locations k ∈ SLn,m of n-subwords

of uc that have genetic marker ~j. Item 2 of Proposition 97 implies that
|SLn,m(u′, rev(v′))| is the same for all choices of (u′, rev(v′)). Since SLn,m is
the union over all possible pairs of SLn,m(u′, rev(v′)), we see that

$m
n =def

|SLn,m|
|{n− subwords of uc}|

=
|SLn,m(u′, rev(v′))|

|{subwords of uc with genetic marker ~j}|
(47)

From the definition:

EmpDistn,n,An((u, rev(v))c)((u′)c, (rev(v′))c)

is equal to

|{occurrences of (u′, rev(v′))c in (u, rev(v))c}|
|for some (u∗, v∗) ∈ Wn × Vn, (u∗, rev(v∗))c occurs in (u, rev(v))c}|

This in turn is equal to:

(1−$m
n )|{subwords of uc with genetic marker~j}|

(1−$m
n )|{n-subwords of uc}|

which in turn is equal to

EmpDistn,n,0(u, rev(v))(u′, rev(v′)).

For notational convenience we write:

EmpDist(u, rev(v))(u′, rev(v′)) =def EmpDistn,n,0(u, rev(v))(u′, rev(v′))

and
EmpDist((u, rev(v))c)((u′, rev(v′))c) =def

EmpDistn,n,An((u, rev(v))c)((u′)c, (rev(v′))c).

Summarizing:

EmpDist(u, rev(v))(u′, rev(v′)) = EmpDist((u, rev(v))c)(u′, rev(v′))c (48)
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6.2 Transferring measures up and down, II

In this section we describe the correspondence between joinings in P− and
P\. We do this by considering generic points for the joinings and transferring
them up or down.

For the reader’s convenience we repeat a definition. Let (s, t) be an
arbitrary point in K×L with πt = −πs and s ∈ SK, t ∈ SL. Let 〈un : n ∈ N〉
and 〈vn : n ∈ N〉 be the sequence of principal subwords of s and t respectively.
Then 〈ucn : n ∈ N〉 and 〈vcn : n ∈ N〉 are the sequences of principal subwords
of sc = TU(s) and tc = TU(t). If x = \(πsc), then x ∈ rev(K) and we can set
rn = rn(x). Recall that we defined t̂ ∈ rev(Lc) by taking 〈rev(vcn) : n ∈ N〉 as
its principal n-subword sequence and 〈rn : n ∈ N〉 as its location sequence.

The following follows immediately from equation 27:

Lemma 101. The sequence t is generic for an invariant measure µ on L if
and only if t̂ is generic for an invariant measure µ∗ on rev(Lc).

We will study the relationship between P− and P\ via the function taking
(s, t) to (sc, t̂). If [an, bn] is the location of the principal n-block of sc, we
define wcn to be the word (ucn, t̂n) (in the language Σ × Λ) where t̂n = t̂ �
[An + an, An + bn]. Rephrasing this, if (un, rev(vn)) are the principal n-
subwords of (s, t) then wcn = (un, rev(vn))c.

Proposition 102. The sequence 〈(un, rev(vn)) : n ∈ N〉 is a generic sequence
(resp. an ergodic sequence) if and only if 〈wcn : n ∈ N〉 is a generic sequence
(resp. an ergodic sequence).

` This follows immediately from equation 48. a

It is worth remarking that Proposition 102 can be restated in the language
of Definition 26 as saying that 〈(un, rev(vn), 0) : n ∈ N〉 is a generic sequence
if and only if 〈(ucn, rev(vcn), An) : n ∈ N〉 is a generic sequence.

The next theorem is the analogue of Theorem 91 adapted to lifting join-
ings of K with L−1 to joining of Kc with (Lc)−1. In the theorem the notation
(ν, νc) and (µ, µc) refer to pairs of corresponding measures. We assume that
K is built in the language Σ and L is built in the language Λ.

Theorem 103. Suppose that 〈Un : n ∈ N〉 and 〈Vn : n ∈ N〉 are construction
sequences for two ergodic odometer based systems (K, ν) and (L, µ) with the
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same sequence parameters 〈kn : n ∈ N〉. Let (Kc, νc) and (Lc, µc) be the
associated ergodic circular systems built with a circular coefficient sequence
〈kn, ln : n ∈ N〉. Then there is a canonical affine homeomorphism ρ 7→ ρc

between the simplex of anti-synchronous joinings ρ of (K, ν) and (L−1, µ) and
the simplex of anti-synchronous joinings of (Kc, νc) and ((Lc)−1, µc) such that
equation 46 holds between ρ and ρc.

` Suppose that we are given an anti-synchronous ergodic joining ρ between
K and L−1. Let (s, t) be generic for ρ. By lemma 23, the sequence of principal
n-blocks, 〈(un, rev(vn)) : n ∈ N〉 is ergodic. By Proposition 102 the sequence
〈wcn : n ∈ N〉 define an ergodic measure ρc. Since the 〈(un, rev(vn)) : n ∈
N〉 satisfy equation 45, the Ergodic Theorem implies that ρc and ρ satisfy
equation 46. It is easy to check that the definition of ρc is independent of
the choice of the generic pair (s, t).

For the other direction we can assume that we are given a generic pair
(sc, t̂) for an ergodic measure ρc on Kc × rev(Lc) that concentrates on pairs
(sc, rev(tc)) ∈ Kc× rev(Lc) such that π(rev(tc)) = \(π(sc)). Taking principal
subwords gives us a generic sequence 〈(ucn, t̂n) : n ∈ N〉. Each t̂n is a well-
defined word rev(vcn) in rev(Vcn).

As in the definition of UT the pair (sc, rev(t̂)) gives a pair of sequences
of genetic markers (〈jn : n ≥ N〉, 〈j′n : n ≥ N〉 for some N . Letting
un = cn

−1(ucn) and vn = cn
−1(rev(t̂n)) the sequences 〈un, jn〉 and 〈vn, j′n〉

determine a pair in K × L up to finite translations. These sequences are
defined independently of the exactly location of the zero of t̂; the small shifts
used in the definition of \ do not change the two sequences.

If we let (s, t) = (UT (sc), UT (rev(t̂))), making small adjustments if neces-
sary to make (s, t) anti-synchronous, we get an element of K×L−1. Applying
Proposition 102 again we see the theorem.

We can extend this correspondence to non-ergodic joinings ρ on K×L−1
and ρc on Kc×rev(Lc), exactly as in Theorem 91; to go up we take an ergodic
decomposition of ρ:

ρ =

∫
ρidµ(i)

and define

ρc =

∫
ρcidµ(i).

To go down we use the ergodic decomposition theorem and the measure µ(i)
to reverse this process.
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Clearly the map ρ 7→ ρc is an affine bijection. It remains to show that
it is continous. However, just as in Theorem 91, we see from equation 46,
that for each n there is a constant Cn, independent of ρ such that for all
u ∈ Un, v ∈ Vn,

ρc(〈(u, rev(v))c〉) = Cnρ(〈(u, v)〉).

This clearly implies that the map ρ 7→ ρc is a weak* homeomorphism. a

The proof of Theorem 103 shows that (s, t) is generic for ρ if and only
if the pair (sc, t̂) is generic for ρc. Moreover, the proofs of Theorems 91 and
103 are quite robust. In particular the constructions of the corresponding
measures are independent of the various choices of generic points s or sc,
(s, t) or (sc, t̂ ).

7 The Main Result

We now turn to the main results of this paper. Fix an arbitrary circular
coefficient sequence 〈kn, ln : n ∈ N〉 for the rest of the section. Let OB be the
category whose objects are ergodic odometer based systems with coefficients
〈kn : n ∈ N〉. The morphisms between objects (K, µ) and (L, ν) will be
synchronous graph joinings of (K, µ) and (L, ν) or anti-synchronous graph
joinings of (K, µ) and (L−1, ν). We call this the category of odometer based
systems.

Let CB be the category whose objects consists of all ergodic circular
systems with coefficients 〈kn, ln : n ∈ N〉. The morphisms between ob-
jects (Kc, µc) and (Lc, νc) will be synchronous graph joinings of (Kc, µc) and
(Lc, νc) or anti-synchronous graph joinings of (Kc, µc) and ((Lc)−1, νc). We
call this the category of circular systems.

Remark 104. Were we to be completely precise we would take objects in
OB to be presentations of odometer based systems by construction sequences
〈Wn : n ∈ N〉 without spacers together with suitable generic sequences and the
objects in CB to be presentations by circular construction sequences and their
generic sequences. This subtlety does not cause problems in the applications
so we ignore it.

The main theorem of this paper is the following:
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Theorem 105. For a fixed circular coefficient sequence 〈kn, ln : n ∈ N〉
the categories OB and CB are isomorphic by a function F that takes syn-
chronous joinings to synchronous joinings, anti-synchronous joinings to anti-
synchronous joinings, isomorphisms to isomorphisms and weakly mixing ex-
tensions to weakly mixing extensions.

Elaborating on Example 6:

Corollary 106. The map F preserves systems of factor maps (or alterna-
tively extensions). Explicitly: let 〈I,≤I〉 be a partial ordering, 〈Xi : i ∈ I〉 be
a family of odometer based systems and 〈πi,j : j ≤ i〉 is a commuting family
of factor maps with πi,j : Xi → Xj. Then 〈F(πi,j) : j ≤ i〉 is a commuting
family of factor maps among 〈F(Xi) : i ∈ I〉. Moreover the analogous state-
ment holds for circular systems 〈Xc

i : i ∈ I〉, factor maps 〈πi,j : j ≤ i〉 and
F−1.

Theorem 105 can be interpreted as saying that the whole isomorphism and
factor structure of systems based on the odometer 〈kn : n ∈ N〉 is canonically
isomorphic to the isomorphism and factor structure of circular systems based
on 〈kn, ln : n ∈ N〉. We call this a Global Structure Theorem.

7.1 The proof of the main theorem

Before we prove theorem 105 we owe the following lemma:

Lemma 107. Both OB and CB are categories, and the composition of syn-
chronous joinings is synchronous, the composition of two anti-synchronous
joinings is synchronous and the composition of a synchronous and an anti-
synchronous joining (in either order) is anti-synchronous.

` To see that OB and CB are categories we must see that the morphisms
are closed under composition. This is equivalent to the statement that the
composition of two synchronous or anti-synchronous joinings are synchronous
or anti-synchronous. This, in turn follows from Proposition 7 (item 2) applied
to joinings of odometers or rotations. a

We now prove Theorem 105.
` By Proposition 83 the map F gives a bijection between the objects of
OB and CB and hence it remains to define the functor on the morphisms
(i.e. joinings between systems (K, µ) and (L±1, ν)) and show that it preserves
composition.

81



7.1.1 Defining F on morphisms

We split the definition of F(ρ) into two cases according to whether ρ is
synchronous or anti-synchronous. In both cases we define F for arbitrary
joinings even though the only joinings we use as morphisms in the categories
are graph joinings; in particular the morphisms in each category are ergodic.

Case 1: ρ is synchronous:

Suppose that ρ a synchronous joining of odometer based systems K and
L with coefficient sequence 〈kn : n ∈ N〉 that are constructed with symbols
in Σ and Λ from construction sequences 〈Un : n ∈ N〉 and 〈Vn : n ∈ N〉. We
define a new construction sequence 〈Wn : n ∈ N〉 with the symbol set Σ×Λ.

Given n, we put a sequence

〈(σ0, λ0), (σ1, λ1) . . . (σKn−1, λKn−1)〉

into Wn if and only there are words u = (σ0, . . . σKn−1) ∈ Un and v =
(λ0, . . . λKn−1) ∈ Vn.

It is easy to check that 〈Wn : n ∈ N〉 is an odometer based construc-
tion sequence with coefficients 〈kn : n ∈ N〉. Let (K,L)× be the associated
odometer based system. Since ρ is synchronous, it concentrates on members
of K×L that correspond to elements of (K,L)×. We can canonically identify
ρ with a shift invariant measure ν on (K,L)×.

Let ((K,L)×)c be the circular system associated with (K,L)×. We can
apply Theorem 91 to find shift invariant measure νc on ((K,L)×)c associated
with ν that is ergodic just in case ν is ergodic. Shift invariant measures on
((K,L)×)c can be canonically identified with synchronous joinings on Kc×Lc.
Let ρc be the joining of Kc × Lc corresponding to νc. We let F(ρ) = ρc.

Explicitly: A generic sequence 〈(un, vn, 0) : n ∈ N〉 for the joining ρ,
can be viewed as a generic sequence 〈(un, vn) : n ∈ N〉 for (K,L)× and
transformed into a generic sequence 〈(ucn, vcn) : n ∈ N〉 for ((K,L)×)c. The
latter corresponds to a generic sequence of the form 〈(ucn, vcn, 0) : n ∈ N〉 for
the joining ρc. This process is clearly reversible so F is a bijection between
the synchronous joinings of OB and the synchronous joinings of CB.

We must show that if ρ is a graph joining then so is ρc. Once this is
established it follows by symmetry that if ρ is an isomorphism then ρc is
an isomorphism. Namely if ρ∗ is the adjoint joining of L with K defined as
ρ∗(A) = ρ({(s, t) : (t, s) ∈ A}), then (ρ∗)c = (ρc)∗. Hence ρ∗ is a graph
joining iff (ρc)∗ is a graph joining.
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Suppose that ρ is a graph joining. We apply Proposition 4, part 3. It
suffices to show that for all basic open sets in Kc of the form 〈uc〉0 where
uc ∈ U cn and all ε > 0, there are words vc1, v

c
2 . . . v

c
k∗ that belong to

⋃
n Vcn and

locations lc1, . . . l
c
k∗ such that:

ρc((〈uc〉0 × Lc)∆(Kc ×
⋃
〈vcj〉lcj )) < ε. (49)

Consider u such that cn(u) = uc. Because ρ is a graph joining, for all
δ > 0 we can find words v1, . . . vk′ and locations l1, . . . lk′ such that

ρ((〈u〉0 × L)∆(K×
⋃
i≤k′
〈vi〉li)) < δ. (50)

Without loss of generality we can assume that for some m ≥ n each vi is an
m-word and that each li ≤ 0.

Let (s, t) be generic for ρ and considering the pair sc = TU(s), tc = TU(t).
Then by Remark 93 (sc, tc) is generic for ρc. We will choose words vcj and
locations lcj and compute the measure in inequality 49 by computing the
density of locations representing points in the symmetric difference.
Let

B0 = {k : u occurs at k in s, but for no i does vi occur in t

at li + k}
B1 = {k : for some i, vi occurs in t at k + li but u does

not occur in s at k}

By inequality 50, B0 ∪B1 can be taken to have density less than δ.

Given words and locations {vcj , lcj : j ∈ J} we can define two sets Bc
0, B

c
1 ⊆

Z, as follows:

Bc
0 = {k : uc occurs in sc at k but for no j does vcj occurs in tc

at lcj + k}
Bc

1 = {k : for some j vcj occurs in tc at lcj + k but uc does (51)

not occur in sc at k.}

We need to find the words and locations vcj , l
c
j so that the density of Bc

0 ∪Bc
1

is less than ε.
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For each i, if −li is not the location of the beginning of an n-word in
vi then dropping 〈vi〉li reduces the measure of the symmetric difference in
inequality 50. Thus, without loss of generality we can assume that for all i,
there is an (n,m)-genetic marker ~j(i) coding the location of the n-word in
vi that starts at −li. Since B0 ∪ B1 has density less than δ, the density of k
such that either:

1. u occurs at k but for each i, k is not the position of the beginning of
an n-word with genetic marker ~j(i) in an occurrence of vi or

2. for some i, k is the position of the beginning of an n-word with genetic
marker ~j(i) in an occurrence of vi, but u does not occur at k,

has density less than δ.
We are in a position to define the vcj and the lcj . For each i we define

index sets Ji and a collection {lcj : j ∈ Ji}. We arrange the Ji’s so that they
are pairwise disjoint and for some k∗,

⋃
i Ji = {j : 1 ≤ j ≤ k∗}. For j ∈ Ji,

all of the vcj are the same and equal to cm(vi). For a fixed i, let {−lcj : j ∈ Ji}
be the collection of locations of the beginnings of n-subwords of cm(vi) that
have genetic marker ~j(i).

To compute the density of Bc
0 ∪ Bc

1, it suffices to consider an extremely
large M and compute the density of Bc

0∪Bc
1 inside the principal M -subword

(wc0, w
c
1) of (sc, tc). Let (w0, w1) be the principal M -subword of (s, t) and

cM(w0) = wc0 and cM(w1) = wc1.
We now argue as in Lemma 87. Let d0 be the density of B0 ∪ B1 in

(w0, w1) and dc0 be the density of Bc
0 ∪ Bc

1 in (wc0, w
c
1). Among all n-words

the proportion dp that begin with an element of B0 ∪ B1 is d0 ∗ Kn. The
density of k ∈ Z that start n-words in (s, t) is (1 − µ(

⋃∞
n ∂i))/qn. Letting

d∗ be the density of k /∈
⋃M
n ∂i, we see that d∗ is bounded away from 0 and

1 independently of M . The proportion dcp of circular n-subwords of (wc0, w
c
1)

that begin with a k ∈ Bc
0 ∪Bc

1 is

dc0 ∗ qn
(1− d∗)

.

Since ρ concentrates on {(s, t) : π(s) = π(t)} and ρc concentrates on {(sc, tc) :
π(sc) = π(tc)}, the n-words with a particular genetic marker in w0 occupy
the position of the same genetic marker in w1 and similarly for wc0 and wc1.
The (n,M)-genetic markers set up a one-to-one correspondence between n
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subwords u∗ of w0 and regions of wc0 that consist of occurrences of (u∗)c that
have the same genetic marker. Each of the regions of wc0 with the same
genetic marker have the same number of n-words in them.

Temporarily call an n-subword of (wc0, w
c
1) bad if it begins with a k in

Bc
0 ∪ Bc

1 and similarly for n-subwords of (w0, w1) and B0 ∪ B1. Then the
property of being bad is determined by the (n,M)-genetic marker of the n-
word: if k is the beginning of n-subword of w0 with genetic marker ~j, and k′

is the beginning of an n-subword of wc0 with the same genetic marker in wc0,
then k ∈ B0 ∪B1 if and only iff k′ ∈ Bc

0 ∪Bc
1.

It follows the proportion of bad n-subwords of (w0, w1) is the same as the
proportion of bad subwords of (wc0, w

c
1). In otherwords:

dp = dcp.

It follows that

d0 ∗Kn =
dc0 ∗ qn

(1− d∗)
.

Thus by taking δ small enough and M large enough we can make d0 as small
as we want, and thus arrange that dc0 � ε as desired.

To finish showing that F is a bijection between graph joinings in each
category and isomorphisms in each category we must also show that if ρc is a
graph joining then so is ρ. But this is very similar. Given a uc ∈ U cn, and an
ε > 0 we can find vc1, . . . v

c
k∗ and locations lc1, . . . l

c
k∗ so that inequality 49 holds.

Again we can assume that for some m, for all j, vcj ∈ Wc
m. The numbers

|lcj | determine locations in vcj of beginnings of n-words. We can augment our
collection of locations by adding more lcj ’s so that if l is the start of a location
in vcj that has the same (n,m)-genetic marker as lcj , then for some j′ we have
lcj′ = −l and vcj′ = vcj . In doing this we do not increase the density of Bc

0∪Bc
1.

Reversing the procedure above this gives words vj ∈
⋃
n Vn and locations lj

such that the density of B0 ∪ B1 is less than ε. (Note the lack of boundary
in K×L makes the computation easier by reducing the density of B0 ∪B1.)

Case 2: ρ is anti-synchronous
On the anti-synchronous joinings we take F to be the bijection between

anti-synchronous joinings of (K, µ) with (L−1, ν) and of the circular systems
(Kc, µc) with ((Lc)−1, νc) defined in Theorem 103. We show that F takes
anti-synchronous graph joinings to anti-synchronous graph joinings and vice
versa. Having done this it will follow by a symmetry argument that F sends
anti-synchronous isomorphisms to anti-synchronous isomorphisms.
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Suppose that ρ is an anti-synchronous graph joining; i.e. ρ is a graph
joining of K with L−1 that concentrates on {(s, t) : π(t) = −π(s)}. The map
x 7→ rev(x) projects to the odometer map π(x) 7→ −π(x); in particular rev(L)
is based on the same odometer that L is. By Lemma 43 we can view ρ as
a graph joining of K with rev(L) that concentrates on {(s, t) : π(s) = π(t)}.
Similarly we view ρc as concentrating on Kc × rev(Lc).

We must show that for all basic open sets in Kc of the form 〈uc〉0 where
uc ∈ U cn and all ε > 0, there are words vc1, v

c
2 . . . v

c
k∗ that belong to

⋃
n Vcn and

locations lc1, . . . l
c
k∗ such that:

ρc((〈uc〉0 × rev(Lc))∆(Kc ×
⋃
〈rev(vcj)〉lcj )) < ε.

Consider u such that cn(u) = uc. Because ρ is a graph joining for all
δ > 0 and all large enough m we can find words v1, . . . vk′ ∈ Vm and locations
l1, . . . lk′ such that

ρ((〈u〉0 × rev(L))∆(K×
⋃
〈rev(vi)〉li)) < δ. (52)

Without loss of generality we can assume that each li ≤ 0. We will take m
sufficiently large according to a restriction we define later.

Let (s, t) be generic for ρ and let t̂ be as in Definition 94. Then (sc, t̂) is
generic for ρc. We argue as before considering sets:

B0 = {k : u occurs at k in s, but for no i does rev(vi) occur in rev(t)

at li + k.} (53)

B1 = {k : for some i, rev(vi) occurs in rev(t) at k + li but u does (54)

not occur in s at k.}

Then inequality 52, shows that B0 ∪ B1 can be taken to have density less
than any positive δ.

Given words and locations {vcj , lcj : j ∈ J} we consider Bc
0, B

c
1 ⊆ Z, as

follows:

Bc
0 = {k : uc occurs in sc at k but for no j does vcj occurs in t̂

at lcj + k}
Bc

1 = {k : for some j, vcj occurs in t̂ at lcj + k but uc does

not occur in sc at k.}
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Given {(vi, li) : 1 ≤ i ≤ k′}, we need to find the words and locations vcj , l
c
j

so that the density of Bc
0 ∪Bc

1 is less than ε. As in the synchronous case, for
each i we build index sets Ji so that the Ji’s to be disjoint and have union
the interval {j : 1 ≤ j ≤ k∗} for some k∗. For all j ∈ Ji we take vcj = cm(vi).
We need to find a collection of locations {lj : j ∈ Ji}.

Fix an i ≤ k′. Without loss of generality we can assume that li is the
beginning of a reversed n-block rev(v′) in rev(vi), since otherwise, discarding
〈rev(vi)〉li makes inequality 52 sharper. If (s0, rev(t0)) ∈ K × rev(L) is an
arbitrary member of

(〈u〉0 × L) ∩ (K× 〈rev(vi)〉li)

with π(s0) = −π(t0), then there is an m-word u∗ such that s0 ∈ 〈u∗〉li . Let
~j(i) be the genetic marker of u in u∗. We note that ~j(i) does not depend on
s0, since it is determined entirely by the location of u in u∗ and u∗ must be
aligned with rev(vi).

The genetic marker ~j(i) defines a region of n-words in U cn inside an m-
word in U cm. Let Li be the collection of l that are at the beginning of an
n-word in U cn with genetic marker ~j(i) in an m-word in U cm and set

{lcj : j ∈ Ji} = {Am − l : l ∈ Li}. (55)

This determines the collection {vcj , lcj : 1 ≤ j ≤ k∗}.
We now compute the density of Bc

0∪Bc
1 in terms of the density of B0∪B1.

To do this it suffices to consider a large enough M that sc has a principal
M -block [aM , bM) and compute densities inside this principal M -block. If
this is sufficiently small we can deduce that the density of Bc

0∪Bc
1 is small in

Z. By Remark 78, we can also assume that M is so large that \ restricted to
this principal M -block is equal to Λ̄M along this M -block; equivalently the
principal M -block of t̂ is [aM + Am, bM + AM).

From Proposition 97, we know that if I is an m-sub-block of sc � [aM , bM)
then either:

1. the corresponding sub-block of t̂ is at shAm(I) or

2. I is part of the (m,M)-slippage.

By item 2 of Proposition 97, the number of m-sublocks in each case that
correspond to a given (n,M)-genetic marker does not depend on the genetic
marker. Further in the second case shAm(I) is entirely part of

⋃M
m+1 ∂i(t̂).
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We compute the density dc0 of elements of Bc
0 ∪ Bc

1 by separating them
into these two sources. Explicity, we divide into:

Slippage: Those k ∈ Bc
0 ∪ Bc

1 that begin an n-subword of a location of an
m-subword of sc that is in the (m,M)-slippage.

Mistakes: those k ∈ Bc
0 ∪Bc

1 such that k is the location of the beginning of
a circular n-subword inside sc � [aM , bM) and [k +Am, k + qm +Am) is
the location of an m-word in t̂.

We compute the density of the Mistakes and the Slippage separately. Again
we will call n-subwords that begin with elements of B0 ∪B1 or Bc

0 ∪Bc
1 bad.

Both the Mistakes and the Slippage occur at the beginning of n-subwords
of sc � [aM , bM). Define db to be density of

⋃M
n+1 ∂i in [aM , bM). Then

proportion of k ∈ [aM , bM) that begin n-subwords is:

1− db
qn

.

Of these a proportion $M
m of the n-subwords are in the Slippage. Thus the

collection of k that belong to the Slippage has density

$M
m

(
1− db
qn

)
.

Since $M
m goes to zero as m goes to infinity we can make this term as small

as desired by taking m large enough.
Let [a′M , b

′
M) be the location of the principal M -block of s (and thus of

rev(t)). Let d0 be the density of B0 ∪B1 in [a′M , b
′
M).

Suppose now that k belongs to the Mistakes. Let ~j be the (n,M)-genetic
marker of the word beginning with k in sc � [aM , bm). Then there is a unique
k′ in [a′M , b

′
M) that is at the beginning of an n-subword of s � [a′M , b

′
M) and

has genetic marker ~j. By construction, for k that are not in the Slippage:

k ∈ Bc
0 ∪Bc

1 iff k′ ∈ B0 ∪B1. (56)

Let dp be the proportion of m-subwords of s � [a′M , b
′
M) that begin with a

k ∈ B0 ∪ B1. Since every genetic marker is represented exactly the same
number of times in the complement of the slippage (Proposition 97), the
proportion of words that begin with k in the Mistakes is

dcp = dp ∗ (1−$M
m ). (57)
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If d0 is the density of B0∪B1 in [a′M , b
′
M) and dc0 is the density of the Mistakes,

then

d0 = dp/Kn (58)

dc0 = dcp

(
1− db
qn

)
(59)

Putting together equations 57, 58 and 59, we see that if we make d0 suffi-
ciently small we can make dc0 as small as desired.

Summarizing: By taking M large enough, the density of Bc
0 ∪ Bc

1 is well
approximated by the density of Bc

0 ∪ Bc
1 inside [am, bm). This is the sum of

the density of the (m,M) slippage and the density of the Mistakes. We can
make the density of the Slippage arbitrarily small by taking m large enough
and the density of the Mistakes arbitrarily small by taking δ0 sufficiently
small. This establishes the claim that if ρ is a graph joining then so is ρc.

We must show that if ρc is a graph joining then so is ρ. We suppose that
we are given a u ∈ Un, we must find {vi, li : i ≤ k′} so that equation 52 holds.
Let uc = cn(u) and approximate 〈uc〉0×rev(Lc) using {vcj , lcj : i ≤ k∗}. Again,
we can assume that the collection of locations is saturated in the sense that
if l is the start of a location in vcj that has the same (n,m)-genetic marker
as lcj , then for some j′ we have lcj′ = −l and vcj′ = vcj . In doing this we do
not increase the density of Bc

0 ∪ Bc
1. We can now use equations 57, 58 and

59 again to see that if dc0 is made sufficiently small then so is d0.

Our next claim is that ρ is an isomorphism if and only if ρc is an isomor-
phism. Recall from Proposition 5 that ρ is an isomorphism iff both ρ and ρ∗

are graph joinings. Thus if ρ is an isomorphism, both ρc and (ρ∗)c are graph
joinings. Since \ is an involution:

(ρ∗)c = (ρc)∗.

Thus if ρ is an isomorphism, so is ρc.
Reversing this line of reasoning shows that if ρc is a graph joining then ρ

is.

7.1.2 F preserves composition

To finish the proof that F is a functor we must show that F preserves compo-
sition. The argument splits into four natural cases: composing synchronous
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joinings, composing a synchronous joining with an anti-synchronous joining
on either side and composing two anti-synchronous joinings. We will care-
fully work out the case for compositions of synchronous embeddings, and
discuss the appropriate modification in the cases involving at least one anti-
synchronous embedding after Lemma 108.

The cases differ only that the shifts involved in the generic sequences
have different forms. For ergodic synchronous joinings generic sequences
can be taken to be of the form 〈(un, vn, 0) : n ∈ N〉, whereas for anti-
synchronous joinings of Kc and rev(Lc) a natural generic sequence is of the
form 〈(ucn, rev(vcn), An) : n ∈ N〉.23
Preparatory Remarks

In the characterization of the relatively independent joining ρ of ρ1 and
ρ2 given in Lemma 28 and Proposition 29, the partitions Ak,A′k and Ãk are
given by 〈uk〉s1 , 〈vk〉s2 and 〈wk〉s3 for s1, s2, s3 ∈ Z. Formally the partitions
Ak×A′k,Ak×Ãk andA′k×Ãk andAk×A′k×Ãk consist of all possible products
of these basic open sets. However, in the situation we are considering we
have synchronous and anti-synchronous joinings. For synchronous joinings
we can build a generating family for the relatively independent joining ρ of
ρ1 and ρ2 by considering products of pairs of basic open intervals in the same
locations; e.g. pairs of the form 〈uk〉s×〈wk〉s. As a consequence, for verifying
the hypotheses of Proposition 29 we can restrict our attention to the case
where s∗ = 0.

In the case of anti-synchronous joinings we need to distinguish the odome-
ter based from the circular systems. For anti-synchronous joinings of odome-
ter based systems K with M−1 we can consider only intervals of the form
〈uk〉s × 〈rev(wk)〉s+s∗ where s∗ = 0. For anti-synchronous joinings of the
circular systems Kc with Mc, asymptotically the Empirical Distances con-
centrate on words of the form 〈uck〉 × 〈rev(wck)〉Ak (where Ak is the amount
of shift for \ at scale k). Moreover, translations of sets of this form generate
the measure algebra of the anti-synchronous joining.

Thus in the proof of the next lemma, to verify the hypothesis 3 of Propo-
sition 29 we can take s∗ = 0 or s∗ = Ak depending on whether ρ1 ◦ ρ2 is
synchronous or anti-synchronous.

Fix odometer based systems K, L and M with construction sequences
〈Un : n ∈ N〉, 〈Vn : n ∈ N〉 and 〈Wn : n ∈ N〉 respectively. Let ρ1 and ρ2

23i.e. 〈(un, rev(vn))c : n ∈ N〉.
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be synchronous graph joinings of K and L, and L and M respectively and ρ
their relatively independent joining over L.

Since ρ1 and ρ2 are graph joinings so is their composition. Thus the
relatively independent joining is ergodic. Hence by Lemma 32 we can find
generic sequences for ρ1, ρ2 and ρ that satisfy the hypothesis of Proposition
29.

Lemma 108. Let 〈(un, vn, wn, 0, 0) : n ∈ N〉 be generic for ρ. Then the
sequence 〈(ucn, vcn, wcn, 0, 0) : n ∈ N〉 is generic for the relatively independent
joining ρc of ρc1 with ρc2.

Assuming the lemma, we show that F preserves compositions. Corollary
31 shows that 〈(un, wn, 0) : n ∈ N〉 is generic for ρ1 ◦ ρ2. From the way
that F is constructed, if νc = F(ρ1 ◦ ρ2), then 〈(ucn, wcn) : n ∈ N〉 is generic
for νc (viewed as a measure on a circular system). From Lemma 108 and
Corollary 31, we know that 〈(ucn, wcn, 0) : n ∈ N〉 is generic for ρc1 ◦ ρc2. Hence
F(ρ1 ◦ ρ2) = F(ρ1) ◦ F(ρ2) as desired.

It remains to prove Lemma 108.

` We claim that 〈(ucn, vcn, wcn, 0, 0) : n ∈ N〉 satisfies the hypotheses of
Proposition 29 for the joinings ρc1 and ρc2.

The first two hypotheses follow immediately: ρc1 and ρc2 are constructed
by taking the generic sequences 〈(ucn, vcn, 0) : n ∈ N〉 and 〈(vcn, wcn, 0) : n ∈ N〉
determined by 〈(un, vn, 0) : n ∈ N〉 and 〈(vn, wn, 0) : n ∈ N〉 respectively,
and the measures did not depend on the precise generic sequence taken.
Hypothesis 3 remains to be shown.

We are given ε > 0, k and s∗ and need to find (k′)c, Gc
(k′)c and the Ivc ’s

so that inequalitites 3a and 3b hold. Since ρc1 and ρc2 are synchronous, so
is the relatively independent joining. By the preparatory remarks can take
s∗, the relative location of words in K and M to be 0. Since the sequence of
(un, vn, wn, 0, 0)’s is generic for the relatively independent product of ρ1 and
ρ2, we can find k′, N,Gk′ ⊆ Vk′ and for each v ∈ Gk′ a set Iv ⊂ [0, Kk′) such
that the conditions in hypothesis 3 hold in the odometer context.24

Choose k′ so large that the density db of the boundary portions of circular
k′-words is less than ε∗ 10−6 and so that for each v ∈ Gk′ , there is an Iv with

|Iv| >
(

1− (ε ∗ 10−6)

1− db

)
∗Kk′ .

24For odometer systems, the length of the words in Uk′ ,Vk′ and Wk′ is Kk′ , for circular
systems the words at stage k′ have length qk′ .
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Let (k′)c = k′, and Gc
k′ = {vc : v ∈ Gk′}. For each vc ∈ Gc

k′ we define the
set Ivc ⊆ [0, qk′). Each Iv ⊆ [0, Kk′) and each s ∈ Iv has a genetic marker ~js
in v. We let Ivc = {sc : sc has the same genetic marker in v as some s ∈ Iv
does in v}. Equation 26 implies that

|Iv|
Kk′

=
|Ivc |
qk′

(1− db)

and thus |Ivc | > (1− ε)qk′ .
Equation 27 implies that for v ∈ Gk′ and all large n,

EmpDist(vn)(v) = EmpDist(vcn)(vc),

from which hypothesis 3a follows immediately.
Fix a vc0 ∈ Gc

k′ and an sc ∈ Ivc0 . Let v0 ∈ Gk′ correspond to vc0, and s ∈ Iv
correspond to sc. Let (uc, wc) ∈ U ck ×Wc

k. To see hypothesis 3b, we need to
compute the empirical distributions of (uc, wc), uc and wc conditioned on vc0.

Let Ac be the collection of ((u′)c, vc0, (w
′)c) ∈ U ck′ ×Vck′ ×Wc

k′ such that uc

occurs at sc in (u′)c and wc occurs at sc in (w′)c. Let Bc be the collection of
all ((u′)c, vc0, (w

′)c) ∈ U ck′ × Vck′ ×Wc
k′ . Then:

EmpDistk,k,sc,sc(u
c
n, v

c
n, w

c
n|vc0)(uc, wc) =

EmpDistk′(u
c
n, v

c
n, w

c
n)(Ac)

EmpDistk′(ucn, v
c
n, w

c
n)(Bc)

. (60)

As in the definition of F in Section 7.1.1, we can view the relatively inde-
pendent joining ρ on K×L M as concentrating on a single odometer system
(K,L,M)× and ρc, the relatively independent joining of ρc1, ρ

c
2 as concentrat-

ing on ((K,L,M)×)c, which is canonically isomorphic to Kc ×Lc Mc.
In the odometer system (K,L,M)×, consider the set A consisting of those

k′-words (u′, v0, w
′) such that u′ and w′ have u and v in position s. Then

Ac = {((u′)c, vc0, (w′)c) : (u′, v0, w
′) ∈ A}. Similarly Bc = {((u′)c, vc0, (w′)c) :

(u′, v0, w
′) ∈ B}. Equation 27 implies that

EmpDist(un, vn, wn)(A) = EmpDist(ucn, v
c
n, w

c
n)(Ac). (61)

and
EmpDist(un, vn, wn)(B) = EmpDist(ucn, v

c
n, w

c
n)(Bc). (62)

Finally noting that

EmpDistk,k,s,s(un, vn, wn|v0)(u,w) =
EmpDistk′(un, vn, wn)(A)

EmpDistk′(un, vn, wn)(B)
, (63)
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and using equations 60 and 61 we see that

EmpDistk,k,sc,sc(u
c
n, v

c
n, w

c
n|vc0)(uc, wc) = (64)

EmpDistk,k,s,s(un, vn, wn|v0)(u,w).

Arguing in the same manner we see:

EmpDistk,sc(u
c
n, v

c
n|vc0)(uc) = EmpDistk,s(un, vn|v0)(u) (65)

EmpDistk,sc(v
c
n, w

c
n|vc0)(vc) = EmpDistk,s(vn, wn|v0)(v) (66)

Since for large n,

‖EmpDistk,k,s,(un, vn, wn|v0)− EmpDistk,s(un, vn|v) ∗ EmpDistk,s(vn, wn)|v)‖
< ε,

from equations 64, 65 and 66 we get the desired conclusion that

‖EmpDistk,k,sc,sc(ucn, vcn, wcn|vv0)

−EmpDistk,s(ucn, vcn|vc0) ∗ EmpDistk,s(vcn, wcn|vc0)‖

is less than ε. a

Lemma 108 holds where one or both of the joinings ρ1 and ρ2 are anti-
synchronous as well, however the shift coefficients for the circular systems
are no longer all 0 but belong to {0,±An} depending on which joinings are
anti-synchronous. Similarly s∗ ∈ {0,±Ak}. The argument follows the same
path until it reaches equation 61. This equation relies, in turn on equation
27. The analogue of equation 27 for anti-synchronous joinings is equation 48,
which in turn carries over to the relatively independent product. The upshot
is that equations 64, 65 and 66 hold after applying the appropriate shifts of
ucn and vcn relative to ucn.

This finishes the proof of Theorem 105. a

7.2 Weakly-Mixing and Compact Extensions

We now show that F preserves weakly-mixing and compact extensions. The
fact that compact extensions are preserved is due to E. Glasner and we
reproduce the proof here with his kind permission.
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Proposition 109. Let (K, µ) and (L, ν) be ergodic and suppose that ρ and
ρc are corresponding synchronous joinings determining factor maps

π : K→ L
πc : Kc → Lc.

Then K is a weakly mixing extension of L (via π) if and only if Kc is a weakly
mixing extension of Lc (via πc).

` Recall that if π : X → Y is a factor map from (X,B, µ, T ) to (Y, C, ν, S),
then the extension is weakly-mixing if the relatively independent joining
X ×Y X of X with itself over Y is ergodic relative to Y . In case Y is
ergodic, this simply means that the relatively independent joining is ergodic.

Suppose that K and L are odometer based systems with construction
sequences 〈Wn : n ∈ N〉 and 〈Vn : n ∈ N〉 respectively. If ρ is a synchronous
factor joining of K over L, and the extension is weakly-mixing then we can
find an ergodic sequence of words 〈(un, vn, wn) ∈ Wn×Vn×Wn : n ∈ N〉 that
is generic for the relatively independent joining of ρ with itself over L, i.e.
ρ×Lρ. This sequence will satisfy the hypotheses of Proposition 29. It follows
that the sequence of (ucn, v

c
n, w

c
n)’s is also generic for an ergodic measure ν.

As we argued in Lemma 108, the (ucn, v
c
n, w

c
n)’s also satisfy the hypothesis of

Proposition 29. It follows that ν is the relatively independent joining ρc×Lρ
c.

Since ν is ergodic ρc is weakly mixing.
If, on the other hand the sequence of (un, vn, wn) is not ergodic, then the

sequence (ucn, v
c
n, w

c
n) is also not ergodic. Hence if ρc is weakly-mixing, then

ρ is weakly mixing. a

It is immediate from the Furstenberg-Zimmer structure theorem ([11],
Chapter 10, Proposition 10.14) that X is a relatively distal extension of Y if
and only if there is no intermediate extension Z of Y , with X being a non-
trivial weakly-mixing extension of Z. Thus F takes measure-distal extensions
to measure-distal extensions.

What requires more effort to establish is the following:

Proposition 110. (E. Glasner) The functor F takes compact extensions to
compact extensions.

` Glasner’s proof uses a result proved in the forthcoming [8]: If (K, µ) is
an ergodic odometer based system the X is a compact group extension of
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(K, µ) then there is a representation of X as an odometer based system with
the same coefficients.

Since X is a compact extension of Y if and only if X is a factor of a
compact group extension of Y ,25 it suffices to show that F takes compact
group extensions to compact group extensions.

To prove that F takes compact group extensions to compact group exten-
sions we use a remarkable theorem of Veech that characterizes group exten-
sions π : X → Y of ergodic systems. The criteria is that every ergodic joining
of X with itself that is the identity on Y (i.e. ρ, as a measure, concentrates
on those pairs (x1, x2) such that π(x1) = π(x2)) comes from a graph joining
which is an isomorphism of (X,B, µ, T ) that projects to the identity map on
Y .26

Explicity, Theorem 6.18, on page 136 of [11] shows that if, in the ergodic
decomposition of the relatively independent product X ×Y X, only graph
joinings appear, then X is a compact group extension. The converse follows
from Proposition 6.15, part 2 in [11], that if X is a compact group extension
of Y then every ergodic self-joining of X over Y which is the identity on Y
is a graph joining.

The map F takes ergodic joinings to ergodic joinings, and all graph join-
ings to graph joinings, and the identity joining to the identity joining. Thus
we see it preserves group extensions. a

Furstenberg [9] and Zimmer [22] independently showed that for every
ergodic system X there is an ordinal α and a tower of extensions 〈Xβ : β ≤ α〉
such that X0 is the trivial system, Xα = X and for all β < α, Xβ+1 is a
compact extension of Xβ, unless α = β + 1 where Xα is either a compact
or a weakly mixing extension of Xβ. If there is no compact extension at the
end of the tower, then X is measure-distal and 〈Xβ : β < α〉 is a distal tower
approximating X. The least ordinal such that X can be represented this way
is the distal height or distal order of X.

Let (K, µ) be an odometer based system and consider the odometer factor
O. Let (K′, µ′) be the Kronecker factor of (K, µ). Then we have

25See [10] for an explicit statement and proof.
26This first appears in [18].
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(K, µ)

(K′, µ′)

O

?

π1

?

π2

where π2 may or may not be a trivial factor map. This tower is carried by
F to

(Kc, µc)

((K′)c, (µ′)c)

Rα

?

π1

?

π2

If K′ is a non-trivial extension of O, then Glasner’s result tells us that (K′)c
is a compact extension of Rα, but is silent on the issue of whether (K′)c is
discrete spectrum; i.e. we do not know whether F takes the Kronecker factor
of K to the Kronecker factor of Kc.

Suppose now that K is given by a finite tower of factors:

O K0 K1
. . . KN−1 = K� � � �

where K0 is the Kronecker factor of K and for all i,Ki+1 is the maximal
compact extension of Ki in K. Then K is distal of height N . The map F
carries this to a tower of compact extensions

Rα Kc
0 Kc

1
. . . Kc

N−1 = Kc� � � �
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From this we see that the distal height of Kc is either N or 1 +N .
We do not know an example whether the height of Kc can be 1 + N .

However the ordinary skew product construction applied to odometers gives
examples of distal height n where O is the Kronecker factor. Hence from our
analysis we see that there are ergodic circular systems with distal height N
for all finite N .

In [2], Beleznay and Foreman proved that for all countable ordinals α
there is an ergodic measure preserving transformation T of distal height α. In
that construction there are no eigenvalues of the operator UT of finite order.
Hence if we let O be an odometer with coefficient sequence 〈kn : n ∈ N〉
going to infinity, T ×O is an ergodic transformation with distal height α and
zero entropy. In the forthcoming [8] we see that this implies that T ×O can
be presented as an odometer based transformation. By the analysis we just
gave we see that (T × O)c is a circular system with height 1 + α. In [8] we
see that (T × O)c can be realized as a smooth transformation. For infinite
α, 1 + α = α, hence we have:

Theorem 111. Let N be a finite or countable ordinal. Then there is an
ergodic measure distal diffeomorphism of T2 of distal height N .

7.3 Continuity

Fix a measure space (X,µ). As noted in Section 2.3, we can identify sym-
bolic shifts built from construction sequences with cut-and-stack construc-
tions (whose levels generate X). By fixing a countable generating set in
advance, we can make this association canonical. The levels in the cut-and-
stack construction give the relationship with arbitrary partitions of X. In
this way the usual weak topology on measure preserving transformation of
X described in Section 2.1 determines a topology on the presentations of
symbolic shifts as limits of construction sequences.

The finitary nature of the maps 〈cn : n ∈ N〉 that give bijections between
words in Wn and words in Wc

n easily shows that the map F is a continuous
map from the presentations of odometer based systems to presentations of
circular systems. Thus we have:

Corollary 112. The functor F is a homeomorphism from the objects in OB
to CB.

For the purposes of the complexity of the isomorphism relation we note:
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Corollary 113. The map F is a continuous reduction of conjugacy between
odometer based systems and circular systems.

7.4 Extending the main result

In the main result we restricted the morphisms to graph joinings, largely
because compositions of graph joinings are ergodic joinings. Unfortunately
a composition of ergodic joinings is not necessarily ergodic, and non-ergodic
joinings also arise naturally as relatively independent joinings of ergodic join-
ings. In this section we indicate how to extend our results to the broader
categories that include non-ergodic joinings as morphisms. For convenience,
we will continue to require that our objects are ergodic measure preserving
systems.

Let OB+ and CB+ be the categories that have the same objects as OB
and CB, but where the collections of morphisms are expanded to include all
synchronous and anti-synchronous joinings (rather than just graph joinings).

In Section 7.1.1, the definition of F included all such joinings (F(ρ) for
a non-ergodic ρ was defined via an ergodic decomposition). Thus without
modification we can view F as a map:

F : OB+ → CB+.

To show that F is a morphism between these categories, i.e. to show pre-
serves composition for arbitrary morphisms, we develop a more combinatorial
approach to lifting morphisms that coincides with the original definition.

We start by generalizing the notion of a generic sequence of words to
include non-ergodic measures. Suppose K is a symbolic system with a con-
struction sequence 〈Wn : n ∈ N〉. Let µ be a shift invariant measure which
we assume is supported on the set S ⊆ K (where S is given in definition 10).
The ergodic decomposition theorem gives a representation of µ as

∫
µpdλ(p),

where each µp is a shift invariant ergodic measure and λ is a probability mea-
sure on a set P parameterizing the ergodic components. For each p, there
is a generic sequence of words 〈wpn : n ∈ N〉 for the measure µp. The main
observation is that the set of probability measures on words of a fixed length
is compact. Thus for any fixed k and ε > 0, we can find a finite set Pk ⊆ P
of parameters so that for all p, there is some p′ ∈ Pk with27

‖µ̂pk − µ̂
p′

k ‖ < ε. (67)

27The notions of EmpDist and µ̂k are given in the beginning of Section 2.6.
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This gives a partition of the parameter space into sets {Ep : p ∈ Pk} such
that inequality 67 holds for all p′ ∈ Ep.

Now let n be sufficiently large such that for each p ∈ Pk, we can find an
element wpn ∈ Wn with

‖EmpDistk(wpn)− µ̂pk‖ < ε. (68)

If we denote λ(Ep) by α(p), then α(p) ≥ 0 and
∑

p∈Pk αp = 1. It is clear that
one can obtain µ̂k up to a small error from the finite data {(wpn, α(p)) : p ∈
Pk}, which is a weighted finite collection of words.

For the symbolic sequences that we are interested in, such as the circular
systems, the measure of the spacers is independent of the invariant measure
µ (see Section 5.1). This means that for all n, p, the sum

∑
w′∈Wn

µpqn(〈w′〉) is
the same. In this context using inequality 68 we can arrange the inequality:

‖(
∑
p∈Pk

α(p)EmpDistk(w
p
n))− µ̂k‖ < ε.

The measure λ is defined on the extreme points of the simplex of shift in-
variant probability measures and if we choose the finite sets Pk to consist of
points that lie in the closed support of λ then we an easily ensure that when
we go from (k, ε) to a (k′, ε′) with k′ > k, ε′ < ε that Pk′ ⊇ Pk. Taking a
sequence k →∞ and εk → 0 with

∑
εk <∞, we get a set {ν1, ν2, . . . } of er-

godic measures and finite sets Ik ⊆ Ik+1 of integers with probability measures
αk on Ik such that (

∑
i∈Ik αk(i)νi) converges to µ in the weak* topology.

Definition 114. Let nk go monotonically to infinity and {(wink , αk(i))k} be
a weighted sequence of words as above. Suppose that for each k and i ∈ Ik,
‖EmpDistk(wink)− ν̂i,k‖ < εk, then we call {(wink , αk(i))} a generic sequence
for µ.

We note that for a fixed i, as k varies {wink} is a generic sequence for
νi–which is one of the ergodic measures in the support of λ.

In a manner exactly analogous to the analysis in Section 2.6, Definition
114 can be extended to products of symbolic systems, allowing for shifting
of words in construction sequences.

Restricting our objects to ergodic systems (X,B, µ, T ), (Y, C, ν, S) and
(Z,D, µ̃, T̃ ) allows us to deal with the non-ergodic analogue of the material
discussed between Definition 25 and Lemma 32 in a relatively straightforward
way which we now discuss.
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For the analogue of Proposition 29 in the non-ergodic case let us make
the following observation. Fix a non-ergodic joining ρ of X and Y that has
ergodic decomposition ρ =

∫
ρpdλ(p), where, by the ergodicity of X and Y ,

each ρp is also a joining of X with Y . Fix a k and an ε > 0 and a cylinder
set determined by a word u ∈ WX

k , at location s∗ and let φ represent its
indicator function. For k′ large, by the Martingale convergence theorem,
there is a subset G of Y of measure close to one such that when we look at
the conditional expectation of φ with respect to the partition induced by the
principal k′-words of y ∈ G, for Ak′ and compare it to E(φ|D), the error is
small.

The element of that partition that contains y is given by a word vy ∈ WY
k′

and a location parameter sy, and the conditional expectation is:

ρ(shs
∗
(〈u〉) ∩ shsy(〈vy〉))
ν(〈vy〉)

(69)

This easily gives a set Gk′ ⊆ Wk′ with ν̂k(Gk′) > 1 − ε and a Jv ⊆ [0, qk′)
such that for v ∈ Gk′ , j ∈ Jv, formula 69 gives a good approximation to
ρy(sh

s∗(〈u〉)) for most of the y ∈ shsy(〈vy〉).
If we have a generic sequence of weighted words for ρ, then we can use it

to calculate the expression in 69. This observation makes it possible for us
to formulate Proposition 29 for non-ergodic joinings.

We are given ergodic systems X, Y, Z and are given construction se-
quences 〈Un,Vn,Wn : n ∈ N〉 such that for each n, the words in each
Un,Vn,Wn have the same length. Two joinings ρ1 of X and Y and ρ2 of
Y and Z are given. The analogue of Proposition 29 is now:

Proposition 115. Let

〈{(uink , v
i
nk
, wink , s

i
nk
, tink) : i ∈ Ik}, αk ∈ Prob(Ik) : k ∈ N〉 (70)

be a sequence of weighted words and
∑
εk < ∞. Suppose that the following

hypothesis are satisfied:

1. 〈{(uink , v
i
nk
, sink) : i ∈ Ik}, αk)〉k is generic for ρ1,

2. 〈{(vink , w
i
nk
, tink) : i ∈ Ik}, αk〉k is generic for ρ2,

3. For all ε, k, s∗ there are k′, N and a set Gk′ ⊂ WY
k′ and for each v ∈ Gk′

there is a set Jv ⊆ [0, qk′) such that
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(a)
∑

v∈Gk′
EmpDist(vnk)(v) > 1− ε

(b) |Jv| > (1− ε)qk′
(c) For all v ∈ Gk′ and s ∈ Jv, if nk > N ,

‖
∑
i∈Ik

EmpDistk0,k0,s,s+s∗(u
i
nk
, shs

i
kn (vink), sh

tikn (wnk)|v)αk(i) −∑
i∈Ik

EmpDistk0,s(u
i
nk
, shs

i
kn (vink)|v)αk(i)∗∑

i∈Ik

EmpDistk0,s+s∗(v
i
nk
, sht

i
nk
−sikn (wink)|v)αk(i)‖ < ε

Then the weighted sequence given in 70 is generic for the relatively indepen-
dent joining X ×Y Z.

The analogues of Corollary 31 and Lemma 32 are easily verified, giving us
a characterization of compositions of non-ergodic joinings and the existence
of generic sequences satisfying the hypothesis of Proposition 115.

Verifying that F preserves composition is now straightforward in the man-
ner of Section 7.1.2: the Gc

k′ and Jvc are constructed in exactly the same way.
Checking the conditional distributions of short words relative to longer words
(k vs. k′) involves counting k′-words, and these are counted using Equation
27 for each component (uk, vk, wk) separately. The weighted average is then
preserved.

8 Lagend

In this section we explore the interplay of the geometric, arithmetic and
combinatorial aspects of the manner in which F wraps the odometer based
words around the circle. The map F does not preserve the dynamics of the
odometer when transforming it into a rotation, indeed it can’t. The shift shk

of the odometer corresponds to a shift shk
c

of the rotation. The relationship
between k and kc is characterized combinatorially as an optimal wrapping
property. The latter is defined in terms of the notion of a perfect match. The
results in this section can be used to give an alternate proof of the fact that if
(K, µ) is ergodic then so is (Kc, µc) that does not use the notion of a generic
sequence of words.
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Central to our understanding circular systems is the manner in which an
sc had its n-words aligned with n-words in shk(tc). A word u occurs in sc

lined up with a word w in shk(tc) if and only if u occurs at some location l
in s and w occurs at k + l in tc.

Definition 116. Let ~x, ~y be strings in the language Σ ∪ {b, e} and u, v be
words of the same length. A k-match of u and v in ~x and ~y is a location l
in the domain of ~x such that u occurs at l in ~x and v occurs at l + k in ~y.

If wc0, w
c
1 are circular m-words then a perfect match of uc, vc in wc0, w

c
1 is

a k such that there are (n,m)-genetic markers ~ju,~jv such that uc occurs in
wc0 and vc occurs in wc1 with genetic markers ~ju and ~jv respectively and k is
a match between all occurrences of uc and vc with these genetic markers.

Thus k is a perfect match of u and v if and only if the occurrences of ~ju
in wc0 are exactly aligned with the occurrences of ~jv is wc1.

We will say that k is a match between u and v if there is a location l
such that such that k is a match between u and v at l, and that every k-
match is perfect when k has the property that for every occurrence of a pair
of words uc, vc in wc0, w

c
1, if k is a match between uc, vc then k is a perfect

match between uc, vc. The astute reader will have already recognized that
being a match or a perfect match only refers to the genetic markers and the
underlying circular factor–thus the actual identities of uc, vc, wc0 and wc1 are
not material–only the locations of the genetic markers.

The notion of a perfect match is vacuous for odometer words; for if u, v
are odometer n-words and w0, w1 are odometer m-words then u, v are the
unique pair with a genetic markers ~ju and ~jv. Moreover, if k matches any
pair of n-subwords, k matches every pair of corresponding n-subwords in the
overlap of w0 and shk(w1).

If k > 0, then the n+ 1-subwords of w1 in the overlap of w0 and shk(w1)
are split into two pieces by the n+ 1-subwords of w0; the left portion of each
of the n+ 1-subwords of w0 in the overlap coincides with the right portion of
the corresponding n+ 1-subword of w1. Call the matches in the left portion
of w0 left-matches.

Discussion. Let uc have genetic marker ~juc = (jn, jn+1, . . . jm−1) in wc0
and suppose that uc sits inside the n + 1 word (u′)c with genetic marker
(jn+1, . . . jm−1). Then words with genetic marker~ju sit inside every 2-subsection
of u′. It follows that if kc > 0 and kc is a perfect match of uc with vc hav-
ing genetic marker ~jvc = (j′n, j

′
n+1, . . . j

′
m−1) win wc1, then jn ≤ j′n. Thus

102



the relative position of vc in the n + 1-subword of wc1 with genetic marker
(j′n+1, . . . j

′
m−1) is to the right of the position of uc in (u′)c; i.e. the relative

shift is to the left to match uv with vc. For this reason, when kc > 0 we need
only consider left shifts.

It is also easy to see that perfect matches between n-words with genetic
markers ~j and ~j′ inside an m-words wc0, w

c
1 are those kc that match the first

occurrence of an n-word with genetic marker ~j in wc0 with the first occurrence
of an n-word with genetic marker ~j′ in wc1.

The next lemma says that perfect matches can be viewed as the locations
of shifts of odometer based words wrapped around the circle.

Lemma 117. Suppose that w0, w1 ∈ Wm and wci = cm(wi). Let n < m and
0 ≤ kc < qm and suppose that kc is a perfect match between some pair of
n-subwords of wc0 and wc1. Then there is a unique k such that for all genetic
markers ~j, ~j′,

• kc is a perfect match between the n-subwords of the wci with genetic
markers ~j and ~j′ iff

• k is a left match between the n-subwords of w with genetic markers ~j
and ~j′.

The Lemma has an obvious analogue for negative kc and right matches.

` Suppose that kc is a perfect match between ~j and ~j′. Call the subwords
of w0, w1 with genetic markers ~j and ~j′ u and v. Then uc, vc are perfectly
matched by kc. Let k be the distance between the locations of u and v. Since
kc ≥ 0 we have k ≥ 0. From our discussion we seen that k is a left match of
u, v. We claim that this k satisfies the lemma.

Let u′, v′ be the n+1-subwords of w0, w1 inside which u, v occur. Suppose
that u = u0u1 . . . ukn−1 and v = v0v1 . . . vkn−1, so (u′)c = C((u0)c, . . . , (ukn−1)c),
(v′)c = C((v0)c, . . . , (vkn−1)c). If ui, vj are left matched by k in u′, v′, then the
first occurrences of (ui)

c and (vj)
c are matched by kc, hence inside (u′)c, (v′)c,

kc is a perfect match of (ui)
c and (vj)

c.
The relative position of (u′)c and (v′)c is duplicated over all n+ 1-words

with genetic markers ju′ , jv′ in w0 and shk(w1). It follows that kc is a perfect
match of uc and vc inside wc0, w

c
1.

From the uniformity of the relative positions of n+1-words it also follows
that any two n-subwords of n+ 1-subwords (u∗)c, (v∗)c in positions i, j that
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are kc matched in (u′)c, (v′)c are kc-matched. Since these exactly coincide
with the n-subwords of w0, w1 that are left-matched by k, we have proved
the lemma. a

Lemma 118. Let w0 = w1 = w. Let n ∈ N and k ∈ Z.Then:

1. Let M(k) be the least M such that k < qM . Let u, v ∈ Wc
n. Then if k

matches u, v inside w ∈ Wc
m with m ≥M(k) then u, v occur inside the

same M(k)-subword of w.

2. Let m ≥M(k). Then k is a perfect match of occurrences of u, v inside
an m-word iff k is a perfect match inside the M(k) word in which they
appear.

` Use Lemmas 61 and 62. a

Item 2 means that we usually don’t have to refer to a long words when we
are discussing perfect matches of u and v and fixes the scale of the potential
perfect matches.

We can identify perfect matches numerically:

Lemma 119. Let A < qN , wc ∈ Wc
N . Then there is a (m,n)-genetic marker

~j such that A is the location of the first occurrence of some word genetic
marker ~j if and only if

A = cN−1lN−1qN−1 + cN−2lN−1qN−2 + · · ·+ cmlmqm (71)

where 0 ≤ ci < ki.

From Lemma 117, we see the correspondence between odometer trans-
lations and circular translation. We now address the question: given an
arbitrary circular translation, how does one adjust it to get an odometer
translation that gives the best fit among a given collection of n-words?

Theorem 120. Let n ∈ N and k ∈ Z. Then if {(ui, vi) : i ∈ I} ⊆ Wc
n×Wc

n,
w ∈ Wc

m (m ≥M(k)) then there is a k′ such that |k′ − k| < qm and:

1. all k′-matches of a (ui, vi) in w are perfect matches,

2. and∑
i

|k′-matches of a ui with a vi| ≥
∑

i |k-matches of a ui with a vi|
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` Without loss of generality k ≥ 0 (otherwise we reverse the role of u and
v). Words in Wm with m > M(k) start with a block of b’s of length at least
qM(k). Hence if k matches n-words u, v inside w ∈ Wc

m, they both must occur
in some M(k)-subword of w.

To see item 1, we need to show how to improve k to a k′ that is a perfect
match. Changing k will involve sacrificing some of the matches of pairs in I,
but this will be compensated by the additional multiplicity of the remaining
matches.

We prove by induction on d ≥ 1, that for all m,n with m−n = d and all
collections of pairs of m-words {(wj0, w

j
1) : j ∈ J} and all k, all m ≥M(k), all

natural number weightings {αj : j ∈ J} and all {(ui, vi) : i ∈ I} ⊆ Wc
n×Wc

n

we can find a k′ such that |k′ − k| < qm such that (a) holds and∑
j

∑
i

αj|{k′-matches of a ui and a vi in (wj0, w
j
1)}| ≥∑

j

∑
i

αj|{k-matches of a ui and a vi in (wj0, w
j
1)}|

Suppose first that d = 1. Then successive 2-subsections of m-words are
separated by boundary sections of size

ji + (q − ji+1) ≡ p−1n (mod q).

Because qn does not divide pn, given a 2-subsection ~s of wj0 there is a unique
2-subsection ~t of wj1 within which k can match n-words. Moreover this does
not depend on j, but rather the underlying locations of the words.

We start by lining up blocks of the form uln−1i with blocks of the form
vln−1i . To do this we classify the k-matches of a pair (u, v) = (ui, vi) into left
block matches if u and shk(v) align as28:

. . u* u* u* B u . . u u u u u u . .

. . v v v v v . . v v B v* v* v* . .

and right block matches if u and shk(v) align as:

. . u u u u u . . u u B u* u* u* . .

. . v* v* v* B v . . v v v v v v . .
28In both of these graphics the second row is a portion of skk(wj1) and B represents a

boundary section. These pictures are independent of j.
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Note by taking k′ to be k + lqn for some l < ln − 1 we can turn all left block
matches of all of the (ui, vi) into matches of entire uln−1i with shk(vln−1i ),
but doing so destroys completely some of the right block matches. Similarly
if we can shift to make all right block matches into matches of uln−1i with
shk(vln−1i ) by destroying left block matches.

If we examine a particular left block match of a pair (ui, vi) in some wj0
and a right block match of another pair (u′i, v

′
i) in wj1 and we change k to k′

to make uln−1i match with shk
′
(vln−1i ) then the sum of k′-matches between

(ui, vi) and (u′i, v
′
i) goes up by one: we lose the right block matches but we

gain left block matches and we gain one more match from the boundary
section.

Suppose that∑
j

∑
j

αj|{left block matches in (wj0, w
j
1)| ≥∑

j

∑
j

αj|{right block matches in (wj0, w
j
1)|

Then from the previous paragraph that if we take k′ = k + lqn for some
l < ln − 1 then we can make all left block matches have multiplicity ln − 1
(while removing right block matches) and have:∑

j

∑
i

αj|k′-matches of a ui with a vi in some (wj0, w
j
1)| ≥∑

j

∑
i

αj|k-matches of a ui with a vi in some (wj0, w
j
1)|.

If, on the other hand, the weighted sum of the right block matches is greater
than weighted sum of the left block matches, we shift the other direction to
fix all right block matches and destroy all left block matches.

Thus we can assume that we have a k such that for all (ui, vi), sh
k matches

(ln − 1)-powers of ui with (ln − 1)-powers of vi. This k would be a perfect
match except that it matches n-words across 2-subsections. Writing each
wjs = Cn(w1, . . . wkn) then shk matches blocks of the form wln−1s in one 1-
subsection of wj0 with a block of the form wln−1s′ in a (potentially) different
1-subsection of wj1. Moreover s− s′ is constant on all of these matches, since
the differences between starts of wln−1j -blocks are of length lnqn. Fix such

a pair s, s′. By changing k so that it lines up wln−1s with wln−1s′ in the first
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1-subsection we create a perfect match of n = m− 1-words and increase the
total number of matches of the form (ui, vi). This establishes the case where
d = 1.

We now do the induction step. Let d = m − n and assume the result
holds for d− 1. Suppose that we are given {αj : j ∈ J}.

We can decompose a k-match between n-subwords of wj0 and wj1 as k1+k∗

where k∗ ∈ [−qm−1 + 1, qm−1− 1] and k1 is a match of m− 1 subwords of wj0
and wj1.

Here is a picture of a pair (u′, v′) ∈ Wc
m−1 ×Wc

m−1 comparing w0 in the
upper row with the k1-shift of w1 in the lower row.

. . . . . .

. . . . . .

u* u*

B v' v' v' v' v' v' v'

u' u' u' B u* u*

Here is a picture after the k = k1 + k∗ shift of w1:

. . . . . .
. . . . . .

u' u' u' B u*
v' v' v'

u* u* u*
B v' v' v' v'

Let {(u′, v′)i′ : i′ ∈ I ′} be the collection of pairs (u′, v′) fromWc
m−1 sitting

inside a pair (wj0, w
j
1) that contain k-matches of words (ui, vi). Arguing as in

the case d = 1 we can adjust k1 to a k′1 so that it is a perfect match of m−1-
words in I ′ and, summing over I and J , the weighted sum of k′1 +k∗-matches
of pairs in I does not decrease.29

This is how the m− 1-words look after shifting by k′1 + k∗:

. . .
. . .

B
B

u' u' u'
B v' v' v' ... v' v' v'

B u' u' ... u'

The offset of the copies of u′ and v′ is k∗. Note that the boundary sections
line up.

We now are in the position of having shifted by k′1 so that the powers of
pairs {(u′, v′)i′ : i′ ∈ I ′} are lined up. The additional shift k∗ has absolute
value less than qm−1. Moreover all of the words {(u′, v′)i′ : i′ ∈ I ′} are lined
up the same way when shifted by k∗.

29We note that it is not enough to increase the weighted sum of the number of matches
of pairs in I ′, because various I ′ matches may contain different number of I-matches.
Nonetheless, arguing as in the case d − 1, one of the two possibilities for lining up the
m− 1 subwords does not decrease the weighted sum of the number of k′1 + k∗-matches of
I-words.
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We call an occurrence of a (u′, v′)i′ that is lined up in (wj0, sh
k′1(wj1)) good.

Let βj,i′ be the number of good occurrences of (u′, v′)i′ and

α′i′ =
∑
j

αjβj,i′ .

Note that∑
i′

∑
i

αi′ |(k′1 + k∗)-matches of a ui with a vi in some good occurrence of (u′, v′)i′ |

=
∑
j

∑
i

αj|(k′1 + k∗)-matches of a ui with a vi in some (wj0, w
j
1)|.

We now view the pairs {(u′, v′)i′ : i′ ∈ I ′} as sitting on the intervals
[0, qm−1 − 1] and then shifting v′ by k∗:

u'
v'

We are in a position to apply our induction hypothesis with I ′ playing the
role of J , the α′i′ ’s being the αj’s, d− 1 = (m− 1)−n and the shift being k∗.

The result is a k∗∗ such that every k∗∗-match of a (ui, vi) in a (u′, v′)i′ is
perfect and∑

i′

∑
i

αi′ |(k∗∗)-matches of a ui with a vi in some (u′, v′)i′| ≥∑
i′

∑
i

αi′|(k∗)-matches of a ui with a vi in some (u′, v′)i′|.

We note that every k′1 + k∗∗-match of a (ui, vi) in a (wj0, w
j
1) is perfect. Since∑

i′

∑
i

αi′ |(k′1 + k∗∗)-matches of a ui with a vi in some good occurrence of (u′, v′)i′ |

=
∑
j

∑
i

αj|(k′1 + k∗∗)-matches of a ui with a vi in some (wj0, w
j
1)|.

we see that∑
j

∑
i

αj|(k′1 + k∗∗)-matches of a ui with a vi in some (wj0, w
j
1)| ≥∑

j

∑
i

αj|k-matches of a ui with a vi in some (wj0, w
j
1)|.
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This completes the proof of Lemma 120. a

9 Open Problems

We finish with two open problems that we find interesting and believe to be
feasible. The first is to characterize the class of transformations isomorphic
to circular systems in Ergodic-theoretic terms. All circular systems have
common properties such that can be described in terms of rigidity sequences
or zero entropy. The suggestions is to find a complete characterization in
using this type of notion.

The second problem can be stated as follows. For the realization problem,
the underlying rotation α of a circular system must be Liouvillian; however
realization is not necessary for the results in this paper. Can an arbitrary
irrational α be the underlying rotation of a circular system?
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