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ABSTRACT OF THE DISSERTATION

Statistical criteria and procedures for controlling false positives with applications to

biological and biomedical data analysis

by

Yiling Chen

Doctor of Philosophy in Statistics

University of California, Los Angeles, 2021

Professor Jingyi Jessica Li, Chair

The need to control rates of false positives is prevalent in biological and biomedical data

analysis. Two statistical conceptualizations of rates of false positives—type I error and false

discovery rate (FDR)— are widely used in these analyses. For example, in automated cancer

detection from transcriptomics data, practitioners often need to control type I error—the

conditional probability of making a false positive as healthy—because false negatives could

lead to severe consequences such as delayed treatment or even life loss. In contrast, a

false positive leads to less serious consequences. Another example is the widely-used FDR

control in multiple-testing problems such as differential expression genes identification from

RNA sequencing data. Because discoveries are often subject to laborious and expensive

downstream validation, researchers want to control the FDR—the expected proportion of

false discoveries among discoveries—to save validation costs; in comparison, missing true

discoveries is often less concerning. Despite existing efforts, controlling rates of false positives

remain challenging. This dissertation aims to address them in three projects.

My first project involves prioritizing type I error of feature selection for binary classifi-

cation problems. Binary classification problems are prevalent in biomedical data analysis:

for example, the aforementioned automated cancer detection where the response is binary:

with or without cancer. In those cases, type I error control, i.e., false positive rate con-

trol, is critical so that the chance of missing cancer patients is under a reasonable level, a
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consideration neglected by existing model selection methods. In Chapter 2, we develop a

novel model selection criterion, Neyman-Pearson Criterion (NPC), that prioritizes the type I

error in binary classification. The theoretical model selection property of NPC is studied for

non-parametric plug-in methods. A real data study on breast cancer detection using DNA

methylation data suggests that NPC is a practical criterion that can reveal novel clinical

biomarkers for cancer diagnosis with both high sensitivity and specificity.

My second project focuses on FDR control in high-throughput data analysis from two

conditions. High-throughput data analysis commonly involves the identification of “inter-

esting” features (e.g., genes, genomic regions, and proteins), whose values differ between two

conditions. To ensure the reliability of such analysis, existing bioinformatics tools primarily

use the FDR as the criterion, the control of which typically requires p-values. However,

obtaining valid p-values is often hard or even impossible because of limited sample sizes in

high-throughput data. In Chapter 3, we propose Clipper, a p-value-free FDR control frame-

work for high-throughput data with two conditions. Through comprehensive simulation and

real-data benchmarking, Clipper outperforms existing generic FDR control methods and spe-

cific bioinformatics tools designed for various tasks, including differentially expressed gene

identification from RNA-seq data, differentially interacting chromatin region identification

from Hi-C data, and peptide identification from mass spectrometry data.

My third project focuses on FDR control in aggregating peptides identified by multi-

ple database search algorithms from mass spectrometry data. The state-of-the-art shotgun

proteomics analysis relies on database search algorithms to identify peptides and proteins

in biological samples. A key step in this process is peptide identification, which is done

via matching mass spectra that code the sequence information of a peptide against protein

databases that contain known protein sequences. Numerous database search algorithms have

been developed over time, each with distinct advantages in peptide identification. To utilize

this, in Chapter 4 we develop a statistical framework, Aggregation of Peptide Identification

Results (APIR), for combining peptide matching results from multiple database search algo-

rithms with FDR control. We demonstrate using benchmark data that APIR achieves higher

detection sensitivity than individual search algorithms do while maintaining FDR control.
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Extensive real data studies show that APIR can uncover additional biologically meaningful

proteins and post-translational modifications that are otherwise undetected by individual

search algorithms.
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3.1 High-throughput omics data analyses and generic FDR control methods. (a) Illus-

tration of four common high-throughput omics data analyses: peak calling from

ChIP-seq data, peptide identification from MS data, DEG analysis from RNA-seq

data, and DIR analysis from Hi-C data. In these four analyses, the correspond-

ing features are genomic regions (yellow intervals), peptide-spectrum matches

(PSMs; a pair of a mass spectrum and a peptide sequence), genes (columns in the

heatmaps), and chromatin interacting regions (entries in the heatmaps). (b) Il-

lustration of Clipper and five generic FDR control methods: BH-pair (and qvalue-

pair), BH-pool (and qvalue-pool), and locfdr. The input data are d features with

m and n repeated measurements under the experimental and background condi-

tions, respectively. Clipper computes a contrast score for each feature based on

the feature’s m and n measurements, decides a contrast-score cutoff, and calls the

features with contrast scores above the cutoff as discoveries. (This illustration is

Clipper for enrichment analysis with m “ n.) BH-pair or qvalue-pair computes

a p-value for each feature based on the feature’s m and n measurements, sets a

p-value cutoff, and calls the features with p-values below the cutoff as discover-

ies. BH-pool or qvalue-pool constructs a null distribution from the d features’

average (across the n replicates) measurements under the background condition,

calculates a p-value for each feature based on the null distribution and the fea-

ture’s average (across the m replicates) measurements under the experimental

condition, sets a p-value cutoff, and calls the features with p-values below the

cutoff as discoveries. The locfdr method computes a summary statistic for each

feature based on the feature’s m and n measurements, estimates the empirical

null distribution and the empirical distribution of the statistic across features,

computes a local fdr for each feature, sets a local fdr cutoff, and calls the features

with local fdr below the cutoff as discoveries. . . . . . . . . . . . . . . . . . . . . 53

xiii



3.2 Comparison of Clipper and popular bioinformatics methods in terms of FDR

control and power. (a) peptide identification on real proteomics data; (b) DEG

analysis on synthetic bulk RNA-seq data; (c) DIR analysis on synthetic Hi-C

data. In all four panels, the target FDR level q ranges from 1% to 10%. Points

above the dashed line indicate failed FDR control; when this happens, the power

of the corresponding methods is not shown, including HOMER in (a), MACS2

for target FDR less than 5% in (a), DESeq2 and DESeq2 (IHW) in (c), and

multiHICcompare and FIND in (d). In all four applications, Clipper controls the

FDR while maintaining high power, demonstrating Clipper’s broad applicability

in high-throughput data analyses. . . . . . . . . . . . . . . . . . . . . . . . . . . 69

S3.3 The p-value distributions of 16 non-DEGs that are most frequently identified by

DESeq2 at q “ 5% from 200 synthetic datasets. The p-values of these 16 genes

tend to be overly small, and their distributions are non-uniform with a mode close

to 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

S3.4 Enrichment q-values of GO terms that are found enriched in the DEGs that are

uniquely identified by Clipper in pairwise comparison of (a) Clipper vs. edgeR

and (b) Clipper vs. DESeq2. These GO terms are all related to immune response

and thus biologically meaningful. . . . . . . . . . . . . . . . . . . . . . . . . . . 96

S3.5 log10-transformed mean Hi-C interaction matrices (µX and µY in Section S3.5.5)

under the two conditions. DIR regions are highlighted in red squares. . . . . . . 97
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4.1 (a) The workflow of a typical shotgun proteomics experiment. The protein mix-

ture is first digested into peptides, short amino acid chains. The resulting peptide

mixture is separated and measured by tandem mass spectrometry (MS) as mass

spectra, which encode the chemical composition of peptides. Then database

search algorithms are used to decode these mass spectra by identifying PSMs,

peptides, proteins, modifications and etc. (b) Illustration of APIR in aggregating

three database search algorithms. We use S1„P1 to denote a PSM of mass spec-

trum S1 and peptide sequence P1 and etc. In the output of a database search

algorithm, a PSM with a higher score is marked by a darker color. Gray PSMs

are missing from the output. APIR adopts a sequential approach to aggregate

database search algorithms 1, 2, and 3. In the first round, APIR applies APIR-

adjust or q-value/PEP thresholding to identify a set of identified target PSMs

from the output of each database search algorithm. APIR then selects the al-

gorithm whose identified PSMs by APIR-adjust contain the highest number of

unique peptides and treats the corresponding identified PSMs as identified by

APIR. In this example, APIR identified equal numbers of PSMs from algorithms

1 and 3 but more unique peptides from algorithm 3; therefore, APIR selects al-

gorithm 3 in the first round. In the second round, APIR excludes all PSMs, both

identified and unidentified by the selected database search algorithm in the first

round (algorithm 3 in this example), from the output of the remaining database

search algorithms. Then it applies APIR-adjust again to find the algorithm whose

identified PSMs by APIR-adjust contain the highest number of unique peptides

(algorithm 1 in this example). APIR repeats this procedure in the subsequent

rounds until all database search algorithms are exhausted and outputs the union

of PSMs identified in each round. . . . . . . . . . . . . . . . . . . . . . . . . . . 99
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4.2 Two implementations of the target-decoy search strategy: concatenated (a) and

parallel (b). In the concatenated search, a concatenated protein database is cre-

ated by pooling original protein sequences, called “target” sequences, with the

decoy sequences; then a database search algorithm uses the concatenated protein

database to find PSMs; consequently, each mass spectra is mapped to either a

target sequence or a decoy sequence with only one matching score. In the paral-

lel search, a database search algorithm conducts two parallel searches: a target

search where each mass spectrum is matched to target sequences and a decoy

search where the mass spectrum is matched to decoy sequences; consequently,

each mass spectrum receives two matching scores from the two searches. In both

implementations, a PSM is called a target PSM or simply a PSM if it contains a

target sequence; otherwise, it is called a decoy PSM. . . . . . . . . . . . . . . . 101

4.3 Benchmarking APIR-adjust and the five popular database search algorithms—

Byonic, Mascot, SEQUEST, MaxQuant, and MS-GF+—on the complex pro-

teomics standard dataset in terms of FDR control and power. (a) Venn diagrams

of the true target PSMs identified by Byonic, Mascot, SEQUEST, MaxQuant,

and MS-GF+ at the FDR threshold q “ 1% (left) and q “ 5% (right). (b)-(c)

At the FDR threshold q P t1%, 2%, ¨ ¨ ¨ , 10%u, FDPs and power of each of the

five database search algorithms when all target PSMs are present (b) or when the

1416 target PSMs identified by all five database search algorithms at the FDR

threshold q “ 5% are removed from each database search algorithm (c). . . . . . 103
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4.4 Comparison of APIR, intersection, and union in the FDR control of aggregating

three database search algorithms. At the FDR threshold q “ 5%, each database

search algorithm’s and each aggregation method’s actual FDRs are evaluated

on 200 simulated datasets under two scenarios: the shared-true-PSMs scenario

(top) and the shared-false-PSMs scenario (bottom). (a) Venn diagrams of true

PSMs and false PSMs from one simulated dataset under either scenario. In the

shared-true-PSMs scenario, the three database search algorithms tend to identify

overlapping true PSMs but non-overlapping false PSMs. In the shared-false-

PSMs scenario where the database search algorithms tend to identify overlapping

false PSMs but non-overlapping true PSMs. (b) The FDR of each database

search algorithm and each aggregation method. Union fails to control the FDR in

the shared-true-PSMs scenario, while intersection fails in the shared-false-PSMs

scenario. APIR controls FDR in either scenario. . . . . . . . . . . . . . . . . . . 109
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4.5 On the proteomics standard, comparison of APIR and Scaffold at the FDR thresh-

old q “ 5% in terms of FDR control and power. We set both the peptide thresh-

old and the protein threshold of Scaffold to be 95%. (a) FDPs (first column),

the percentage increase in true PSMs (second column), the percentage increase

in true peptides (third column), and the percentage increase in true proteins

(fourth column) in aggregating two or three database search algorithms out of

the five (Byonic, Mascot, SEQUEST, MaxQuant, and MS-GF+). Based on the

benchmarking results in Fig. 4.3b, we applied q-value thresholding to Byonic,

Mascot, SEQUEST, and MS-GF+, and applied APIR-adjust to MaxQuant in

the first round of APIR. The percentage increase in true PSMs/peptides/proteins

is computed by treating as the baseline the maximal number of correctly iden-

tified PSMs/peptides/proteins by individual database search algorithms in the

first round of APIR. (b)-(e) Venn diagrams of true PSMs by APIR and indi-

vidual database search algorithms from four example combinations in (a). Venn

diagrams comparing APIR with (b) MaxQuant (adjusted by APIR-adjust) and

MS-GF+; with (c) SEQUEST, MaxQuant (adjusted by APIR-adjust), and MS-

GF+; with (d) SEQUEST and MS-GF+; with (e) Mascot, SEQUEST, and

MaxQuant (adjusted by APIR-adjust) demonstrate that APIR identifies almost

all true PSMs by individual database search algorithms at the same FDR thresh-

old q “ 5%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
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4.6 On the proteomics standard, comparison of APIR and Scaffold at the FDR thresh-

old q “ 1% in terms of FDR control and power. We set both the peptide threshold

and the protein threshold of Scaffold to be 99%. (a) FDPs (first column), the per-

centage increase in true PSMs (second column), the percentage increase in true

peptides (third column), and the percentage increase in true proteins (fourth

column) in aggregating two or three database search algorithms out of the five

(Byonic, Mascot, SEQUEST, MaxQuant, and MS-GF+). Based on the bench-

marking results in Fig. 4.3c, we applied q-value thresholding to Byonic, Mascot,

SEQUEST, and MS-GF+, and applied APIR-adjust to MaxQuant in the first

round of APIR. The percentage increase in true PSMs/peptides/proteins is com-

puted by treating as the baseline the maximal number of correctly identified

PSMs/peptides/proteins by individual database search algorithms in the first

round of APIR. (b) Proportion of combinations that show a non-negative per-

centage increase (green bars) in true PSMs (first column), true peptides (second

column), and true proteins (third column). . . . . . . . . . . . . . . . . . . . . 114
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4.7 On the proteomics standard, comparison of APIR and Scaffold at the FDR thresh-

old q “ 5% in terms of FDR control and power. We set the peptide threshold

to be 95% and varied the protein threshold to find the maximal number of iden-

tified peptides. (a) FDPs (first column), the percentage increase in true PSMs
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CHAPTER 1

Introduction

High-throughput technologies are widely used to provide numerical measurements of system-

wide biological features. Common examples include RNA sequencing (RNA-seq), which

allows for genome-wide profiling of transcriptome landscapes, Hi-C, which captures genome-

wide chromatin interaction regions, and mass spectrometry (MS)-based shotgun proteomics,

which globally profiles complex protein mixtures. These high-throughput technologies have

accelerated the generation of massive data, which has led to important scientific discoveries

over the years [1–3].

High-throughput datasets often contain biological features measured under more than

one condition, for example, experimental versus control or across developmental stages.

Typical analyses of such data include both prediction and statistical inference. In prediction

analyses, researchers often want to predict condition labels from biological features. A typical

example is automated disease diagnosis, which aims to train classifiers that use measurements

of biological features (such as gene expression levels measured by RNA-seq) from patients

to predict their health conditions (such as healthy patients versus diseased patients). We

refer to these problems as classification problems. In inference analyses, the most common

type aims to identify “interesting” biological features that exhibit an elevated or differential

measurement across conditions. For example, differential expression analysis based on RNA-

seq data aims to identify genes that show different expression levels between conditions.

Because such problems are formulated to test the mean difference between conditions for

each biological feature, we refer to them as multiple testing problems. My dissertation will

focus on high-throughput biomedical data with two conditions. Accordingly, we will restrict

ourselves to discussing binary classification problems and (multiple) testing problems across
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two conditions.

Although rooted in two different cultures, binary classification and (multiple) hypothesis

testing share a similar goal: to construct a binary decision rule from the data for uncovering

binary truths. In binary classification, the binary decision rule is learned by applying classi-

fication algorithms on the training data with known condition labels, and the binary truth

is whether a new data point comes from one condition or the other. In classical hypothesis

testing, which involves a single pair of null and alternative hypotheses, the binary decision

rule is constructed by comparing the observed test-statistic with its theoretical distribution

under the null hypothesis, and the binary truth is whether the null hypothesis or the alterna-

tive hypothesis holds. As an extension of the classical hypothesis testing, a multiple testing

problem involves multiple pairs of null and alternative hypotheses and constructs one rule

to decide whether each null hypothesis holds.

Given their common binary nature, both binary classification and (multiple) hypothesis

testing share two types of errors. By convention, we use “positive” to refer to class 1 in

binary classification and the fact that the alternative hypothesis holds and “negative ” to

refer to class 0 in binary classification and the fact that the null hypothesis holds. Then the

aforementioned two types of errors are false positives, which means misclassifying a class

0 data point in binary classification and false rejecting the null in hypothesis testing, and

false negatives, which means misclassifying a class 1 data point in binary classification and

mistakenly not rejecting the null in hypothesis testing.

My dissertation focuses on the control of false positives in high-throughput data analysis

with two conditions. There are two conceptualizations of the rate of false positives: type I

error and false discovery rate (FDR). Type I error is termed under the classical hypothesis

testing framework involving a single pair of the null and the alternative hypotheses. It is

defined as the conditional probability of rejecting the null hypothesis, conditioning on that

the null hypothesis is true. In multiple testing, family-wise error rate (FWER) was proposed

as an analogy of type I error and is defined as the conditional probability of making one

or more false rejection given that all null hypotheses are true. However, researchers have

found that in practice controlling FWER (under a small value such as 0.05) is too stringent
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and often leads to zero power. Motivated by this, FDR was proposed by Benjamini and

Hochberg [4] in 1995 and is nowadays the most popular statistical criterion in multiple

testing problems. FDR is defined as the expected proportion of true null hypotheses among

the “discoveries”. Here “a discovery” refers to a rejected null hypothesis; because the null

hypothesis typically represents a biologically uninteresting event (e.g., a gene has the same

expression level between cancer and healthy patients) that researchers would like to reject,

rejecting a null hypothesis is also called making a discovery, hence the name false discovery

rate.

1.1 Type I error control in feature selection under the binary

classification framework

The first part of my dissertation involves type I error control in feature selection under

the binary classification framework. It is motivated by automated disease diagnosis using

high-throughput data; our goal is to build a binary classifier that differentiates patients with

disease from healthy controls.

To realize this goal, we need to address two key issues specific to our problem. The

first one lies in the asymmetric cost between making a false positive and making a false

negative. From the patient’s point of view, diagnosing a healthy patient as diseased often

entails nothing more serious than some further health examinations. In contrast, diagnosing

a diseased patient as healthy could lead to delayed treatment or even life loss, especially in

cases of cancer diagnosis. Hence, the trained classifier needs to prioritize the more severe error

over the less severe one. The second issue is the high cost of collecting high-throughput data,

making it financially infeasible for clinical diagnosis to be made based on high-throughput

data. Fortunately, existing low-throughput technologies, which measure only a few biological

features, are cheaper and more practical. Therefore, to leverage the financial advantage of

low-throughput technologies, it is necessary to identify from high-throughput data a small

number of features for building a practical classifier.

Although numerous feature selection methods have been proposed in the field of statistics

3



and machine learning, none addresses the asymmetry in our problem [5–12]. To fill this gap,

in Chapter 2 we propose Neyman-Pearson Criterion (NPC), a model selection criterion that

prioritizes type I error in binary classification. NPC exploits the aforementioned similarity

between hypothesis testing and binary classification and translates type I error control, a

concept typically used in hypothesis testing, to binary classification. Specifically, suppose

we code the more severe condition as 0 and the less severe condition as 1. By analogy, we

define type I error in binary classification as the conditional probability of misclassifying a

datapoint as 1 given that it comes from condition 0. NPC is a model-free criterion that

adapts to nearly all classification algorithms. Given a candidate feature set, a classification

method, and a user-specified type I error threshold, we split the data into two parts, build

a binary classifier with type I error control on one part and calculate an NPC value as the

empirical type II error on the other part. Consequently, NPC allows users to select among

multiple candidate feature sets the one with the smallest type II error while controlling the

type I error under the same threshold. We studied the theoretical model selection property

of NPC for non-parametric plug-in methods. A real data study on breast cancer detection

using DNA methylation data suggests that NPC is a practical criterion that can reveal novel

clinical biomarkers for cancer diagnosis with both high sensitivity and specificity.

1.2 P-value free FDR control in multiple testing problems

The second part of my dissertation focuses on FDR control in multiple testing problems based

on high-throughput data with two conditions. Examples of such problems include differen-

tially expressed gene identification from RNA-seq data, differentially interacting chromatin

region identification from Hi-C data, and peptide identification from mass spectrometry

data. Numerous bioinformatics tools with FDR control have been developed to perform

such analyses; most of them rely on valid high-resolution p-value calculations for FDR con-

trol. Specifically, p-values are first calculated, one per biological feature (e.g., a gene), and are

thresholded using predominantly the Benjamini-Horchberg (BH) procedure [4], the Storey’s

q-values [13] or other FDR control methods [14–17]. However, the calculation of p-values
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requires either distribution assumptions, which are often questionable, or a large number of

replicates, which are often unachievable in biological data. Due to these limitations, bioin-

formatics tools often output ill-posed p-values, which consequently leads to unreliable FDR

control. Therefore, p-value-free FDR control is desirable, as it would make high-throughput

data analysis more transparent and thus improve the reproducibility of scientific research.

In Chapter 3, we propose Clipper, a model-free and p-value-free FDR control framework

for analyzing high-throughput data with two conditions [18]. Clipper applies to both en-

riched and differential features from high-throughput biological data of diverse types. In

comprehensive simulation and real-data benchmarking, Clipper outperforms existing generic

FDR control methods and specific bioinformatics tools designed for various tasks, includ-

ing differentially expressed gene identification from RNA-seq data, differentially interacting

chromatin region identification from Hi-C data, and peptide identification from mass spec-

trometry data. Our results demonstrate Clipper’s flexibility and reliability for FDR control

and its broad applications in high-throughput data analysis.

1.3 FDR control in aggregating multiple sets of high-throughput

discoveries in the context of shotgun proteomics data

The third part of my dissertation focuses on FDR control in aggregating multiple high-

throughput discoveries generated from shotgun proteomics data. Shotgun proteomics refers

to a proteomics technique that aims to identify proteins in complex mixtures using a com-

bination of high-performance liquid chromatography and tandem mass spectrometry (MS).

During the experimental flows, the protein mixtures are digested into peptides. The resulting

peptide mixture is separated and measured by tandem MS as mass spectra. Each mass spec-

trum encodes the chemical composition of a peptide and can be used to identify the amino

acid sequence, detect the post-translational modifications, and quantify the abundance of

the given peptide.

Since the development of shotgun proteomics, numerous database search algorithms have

been developed to automate mass spectrum interpretation. A database search algorithm
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takes as input the mass spectra from MS analysis and a protein database; it identifies for

each mass spectrum the “best” matching peptide sequence from the database, where the

“best” is defined based on individual algorithm’s internal matching score. We call the result-

ing match a “peptide-spectrum match” (PSM). False PSMs could occur when mass spectra

are matched to wrong peptide sequences due to issues such as low-quality spectra, data-

processing errors, and incomplete protein databases, causing problems in the downstream

protein identification and quantification. Therefore, a common goal of database search algo-

rithms is to simultaneously control the FDR and maximize the number of identified PSMs,

so as to maximize the number of proteins identified in a proteomics study.

It has been observed that different search algorithms capture distinct PSMs, which mo-

tivates the development of aggregation methods that combines the peptide identification

results from multiple search algorithms. However, existing aggregation methods suffer two

major drawbacks: the limited compatibility with various database search algorithms and

the lack of guarantee of power increase [19–23]. To fill this gap, in Chapter 4 we propose

Aggregation of Peptide Identification Results (APIR), a flexible and powerful FDR-control

framework for aggregating peptides identified by multiple database search algorithms from

mass spectrometry data. APIR is based on a simple intuition: given multiple disjoint sets

of discoveries, each with the empirical false discovery rate under a user-specified value q,

their union also has the empirical false discovery rate under q. Evaluation of APIR on a

complex protein standard shows that APIR achieves higher detection sensitivity than indi-

vidual search algorithms while maintaining FDR control. Real data studies show that APIR

uncovers disease-related proteins that are missed by individual search algorithms.

1.4 Summary

During my doctoral study, I have developed three statistical methods that control false

positives as a leading author. The details of these projects will be described in Chapter 2–4 of

this dissertation. In addition, I have other collaborative work covering a wide range of topics,

including developing Transcriptome Overlap Measure for comparing transcriptomes within
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or between different species [24], discovering oncogenes and tumor suppressor genes using

genetic and epigenetic features [25], and building an atlas of alternative polyadenylation

quantitative trait loci contributing to complex trait and disease heritability [26]. These

collaborative projects are omitted from this dissertation; interested readers can refer to the

original papers for details.
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CHAPTER 2

Type I error control in feature selection under the

binary classification framework

2.1 Introduction

With the advance of high-throughput sequencing technologies, numerous genomic datasets

have been generated and made publicly available to enable automated disease diagnosis

and help improve human understanding of disease mechanisms. Automated disease diag-

nosis based on genomic data is naturally a binary classification problem, where the binary

response variable indicates a subject’s disease status, and the predictors are genomic fea-

tures. However, genomic features are high dimensional (often of the order 104´ 107), posing

tremendous challenges for biomedical researchers to understand what features are most im-

portant for disease diagnosis. Therefore, model selection criteria are in great needs to provide

informative disease-predictive feature subsets for downstream experiments.

In binary classification (class 0 vs. class 1), three practical evaluation criteria for ac-

curacy include: the overall classification error (i.e., the probability that an observation is

misclassified), the type I error (i.e., the conditional probability of misclassifying a class 0

observation into the class 1, or 1´specificity), and the type II error (i.e., the conditional

probability of misclassifying a class 1 observation into the class 0, or 1´sensitivity). The

overall classification error is a weighted sum of the type I error and the type II error, where

the weights are the marginal probabilities of the class 0 and the class 1, respectively. Most

classification methods aim to minimize the overall classification error [27, 28]. However,

under two common application scenarios, this objective is no longer desirable. The first sce-

nario is the “asymmetric importance scenario,” where the consequence of making one type
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of error (e.g., the type I error) far exceeds that of making the other type of error (e.g., the

type II error). For instance, in the automated diagnosis of a severe disease, if we code the

diseased and healthy status as the classes 0 and 1 respectively, then the type I error is the

conditional probability of misclassifying a diseased patient as healthy, and the type II error

is the conditional probability of misclassifying a healthy patient as diseased. Having a large

type I error will clearly lead to a much more severe consequence than having a large type II

error, because misclassifying a diseased patient as healthy will result in delayed treatment

or even life loss [29–32] .

The second scenario, the “imbalanced size scenario,” is where the two classes have great

disparity in their proportions [33]. For example, a rare disease occurs only in 0.1% of the

human population [34]. If we code the rare diseased class as class 0, then classifiers trained

to minimize the overall classification error will likely lead to an undesirably large type I error

[35]. In these two scenarios, the overall classification error fails to serve the purpose both as

an optimization criterion and as an evaluation metric.

In this paper, we refer to the objective of minimizing the overall classification error as

the classical classification paradigm, and refer to the model selection criterion that compares

the overall classification error on a hold-out set as the classical criterion. To clarify, the term

“model” in “model selection” refers to a feature subset instead of a probabilistic model. An

alternative paradigm, the Neyman-Pearson (NP) classification paradigm, has been developed

in the literature [36–41] to address the two above-mentioned scenarios. The NP classification

paradigm specifically targets a prioritized control on the type I error: the type I error

is controlled with high probability under a user-specified level α , usually a small value

(e.g., .05), and the type II error is minimized under this constraint. Motivated by the

NP classification paradigm, we propose a model selection criterion, the Neyman-Pearson

Criterion (NPC), which evaluates feature subsets by implementing a prioritized control on

the type I error. In the automated diagnosis of a severe disease, the NPC is advantageous

over the classical criterion, because the latter might select genes that result in a low overall

classification error but an undesirably large type I error.

Does the NPC select a model different from the one selected by the classical criterion?
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Intuitively, the “best” q features under the NP paradigm are not necessarily the same as the

“best” q features under the classical paradigm. Under the classical paradigm, the “best”

clearly means to have the lowest overall classification error; while under the NP paradigm,

the “best” means to have the lowest type II error (subject to one type I error upper bound).

Motivated by the fact that the classical criterion ranks models (i.e., feature subsets) based

on the overall classification error on hold-out data, we design the NPC to rank models based

on the type II error on hold-out data.

Similar to the classical criterion, the NPC belongs to the validation set approach to

model selection for binary predictive problems. The validation set approach refers to a

group of the techniques that hold out a labeled dataset unused for training classifiers, and

that evaluate the trained classifiers on this set based on a certain criterion. The default

evaluation criterion for binary classification is the classical criterion. We propose to use the

NPC as a substitute when the prediction errors have asymmetric importance. A related

more data-efficient variant of the validation set approach is the cross validation, where we

randomly splits data into k folds, and for each k´1 folds, we train a classifier and report the

average performance of the k classifiers on the left-out fold. We recommend implementing

NPC in a way similar in spirit to cross validation. Besides the validation set and cross

validation approaches, many other model selection approaches exist in the literature. The

approach at the other end of the spectrum is to modify some fit measure evaluated on training

data, and they include AIC [5], BIC [6], Mallows’s Cp [7], LASSO [8], SCAD [9], MCP [10],

Elastic net [11], and Group LASSO [12], among others. Another class of common model

selection approaches concern model space search strategies, including exhaustive search,

forward stepwise selection, backward stepwise selection, marginal screening [42–49], and

interactive screening [50–54].

Previous work on NP classification has laid a good algorithmic and theoretic foundation

for our new model selection criterion. In particular, [41] developed an umbrella algorithm

that adapts popular binary classification methods (e.g., logistic regression, support vector

machine, and random forest) to the NP paradigm, enabling application of the NP paradigm

in a wide spectrum of real-world scenarios, and providing the algorithmic support for the
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NPC. On the theoretic side, [39] and [40] developed conditions for plug-in NP classifiers

to satisfy NP oracle inequalities, which was proposed in [38] as the theoretical criterion to

evaluate the performance of NP classifiers. The formulated conditions and intermediate

results in these works will lend support to establishing the model selection property of the

NPC.

The development of the NPC as a practical criterion addresses the great needs of identify-

ing a small number of genetic features to predict cancer with a high sensitivity in automated

diagnosis. For malignant cancers with low survival rates, the priority is to achieve a high

sensitivity, or equivalently a low false negative rate. The NP paradigm is naturally aligned

with this high sensitivity requirement, and the feature selection criterion should be based on

the specificity, which is exactly the goal of the NPC.

This article is organized as follows. In Section 2.2, we review the NP classification

paradigm and use Gaussian examples to analytically illustrate that the classical criterion and

the NPC can select different models on the population level. In Section 2.3, we introduce

the NPC based on a finite sample. In Section 2.4, we explore the model selection properties

of the NPC for plug-in NP classifiers. Section 2.5 contains simulation studies to verify the

numerical performance of the NPC. Section 2.6 provides an in-depth real data study to show

that the NPC identifies gene markers, among the overall predictive ones, to achieve a high

specificity in cancer diagnosis. We conclude with a discussion in Section 2.7. All the proofs

of lemmas, propositions, and theorems are relegated to the Appendix.

2.2 Background and motivation

We first introduce some mathematical notations to facilitate our discussion. Let pX, Y q be

a pair of random observations where X P X Ď Rd is a vector of features and Y P t0, 1u

indicates the class label of X. A classifier φ : X Ñ t0, 1u maps from the feature space to the

label space. A loss function assigns a cost to each misclassified instance φpXq ‰ Y , and the

risk is defined as the expectation of this loss function with respect to the joint distribution

of pX, Y q . We adopt in this work a commonly used loss function, the 0-1 loss function:
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1 pφpXq ‰ Y q, where 1p¨q denotes the indicator function. Let P and E denote the generic

probability distribution and expectation, whose meaning depends on specific contexts. Then

the risk is the overall classification error Rpφq “ E r1 pφpXq ‰ Y qs “ P pφpXq ‰ Y q, which

can be decomposed as:

Rpφq “ E r1 pφpXq ‰ Y qs “ P pφpXq ‰ Y q

“ PpY “ 0qP pφpXq ‰ Y | Y “ 0q ` PpY “ 1qP pφpXq ‰ Y | Y “ 1q

“ PpY “ 0qR0 pφq ` PpY “ 1qR1 pφq ,

where Rj pφq :“ P pφpXq ‰ Y | Y “ jq, j “ 0 and 1. The notations R0p¨q and R1p¨q denote

the (population) type I and type II errors respectively. While the classical classification

paradigm aims to mimic the classical oracle classifier ϕ˚ that minimizes the overall classifi-

cation error,

ϕ˚ “ arg min
ϕ:RdÑt0,1u

R pϕq ,

the Neyman-Pearson (NP) classification paradigm aims to mimic the α-level NP oracle clas-

sifier

ϕ˚α “ arg min
ϕ:R0pϕqďα

R1pϕq , (2.1)

where α is a user-specified type I error upper bound. It is well known that ϕ˚p¨q “ 1pηp¨q ą

1{2q, where ηpxq “ EpY |X “ xq is the regression function [55]. On the other hand, the

famous Neyman-Pearson Lemma (Lemma 1) and a correspondence between classification

and statistical hypothesis testing show that ϕ˚α in (2.1) can be constructed by thresholding

p1p¨q{p0p¨q, where p1 and p0 denote the class conditional probability density functions of the

features X.

Lemma 1 (Neyman-Pearson Lemma [56]). Let P0 and P1 be probability distributions pos-

sessing densities p0 and p1 respectively. Let P be the probability distribution of a random

feature vector X P X Ď Rd. The null and alternative hypotheses are H0 : P “ P0 and
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H1 : P “ P1. Let s˚p¨q “ p1p¨q{p0p¨q . For a given level α P p0, 1q, let C˚α P R be such that

P0 ps
˚
pXq ą C˚αq ď α and P0 ps

˚
pXq ě C˚αq ě α .

When P0 ps
˚pXq “ C˚αq “ 0, the most powerful test of level α is

ϕ˚αpXq :“ 1 ps˚pXq ą C˚αq . (2.2)

Hypothesis testing bears a strong similarity with binary classification if we consider P0

and P1 as the conditional feature distributions of the classes 0 and 1 respectively. Rejecting

H0 based on the observed s˚pXq is equivalent to classifying X as the class 1, and not

rejecting H0 is equivalent to classifying X as the class 0. The Neyman-Pearson Lemma

(Lemma 1) states that the test ϕ˚α maximizes the power at a significance level α. When

considered equivalently as a classifier, ϕ˚α in (2.2) is also the α-level NP oracle classifier.

2.2.1 Neyman-Pearson criterion (NPC) on the population level

Before introducing the sample-based version of NPC in the next section, we first define the

classical criterion and the NPC on the population level. We show that these two criteria lead

to different choices of feature subsets (i.e., models) under certain scenarios, and that NPC

may choose different feature subsets at different α values. Denote respectively by ϕ˚A and

ϕ˚αA the classical oracle classifier and the α-level NP oracle classifier that only use features

indexed by A Ď t1, . . . , du. In other words, ϕ˚A achieves

R pϕ˚Aq “ min
ϕA

PpϕApXq ‰ Y q ,

in which ϕA : X Ď Rd Ñ t0, 1u is any map that first projects X P Rd to its |A|-dimensional

sub-vector XA, comprising of the coordinates of X from the index set A, and then maps

from XA P R|A| to t0, 1u.

13



In contrast, ϕ˚αA achieves

R1 pϕ
˚
αAq “ min

ϕA
PpϕApXq‰Y |Y“0qďα

PpϕApXq ‰ Y |Y “ 1q . (2.3)

By the Neyman-Pearson lemma, ϕ˚αApxq “ 1 pp1ApxAq{p0ApxAq ą C˚αAq for some C˚αA.

Among candidate feature subsets indexed by A1, ¨ ¨ ¨ , AK , the population-level classical cri-

terion selects an Ai that achieves the smallest among
 

R
`

ϕ˚A1

˘

, . . . , R
`

ϕ˚AK
˘(

. In contrast,

for a given level α, the population-level NPC selects an Ai that achieves the smallest among
 

R1

`

ϕ˚αA1

˘

, . . . , R1

`

ϕ˚αAK
˘(

. As a concrete illustration, suppose that we want to compare

two features Xt1u,Xt2u P R (Usually, these features are denoted by X1 and X2, but we

opt to use Xt1u and Xt2u to be consistent with the notation XA), whose class conditional

distributions are Gaussian as follows:

Xt1u | pY “ 0q „ N p´5, 22
q , Xt1u | pY “ 1q „ N p0, 22

q , (2.4)

Xt2u | pY “ 0q „ N p´5, 22
q , Xt2u | pY “ 1q „ N p1.5, 3.52

q ,

and the class priors are equal, i.e., PpY “ 1q “ .5. It can be calculated that R
´

ϕ˚
t1u

¯

“

.106 and R
´

ϕ˚
t2u

¯

“ .113. Therefore, R
´

ϕ˚
t1u

¯

ă R
´

ϕ˚
t2u

¯

and feature 1 is better than

feature 2 under the classical criterion. Under NPC, the comparison is more subtle. If we set

α “ .01, R1

´

ϕ˚αt1u

¯

“ .431 is larger than R1

´

ϕ˚αt2u

¯

“ .299. However, if we set α “ .20,

R1

´

ϕ˚αt1u

¯

“ .049 is smaller than R1

´

ϕ˚αt2u

¯

“ .084. Figure 2.1 illustrates the NP oracle

classifiers in this toy example.

The example above gives clues to a general phenomenon that the ranking of feature

subsets under NPC may differ for distinct α values. For some values (e.g., α “ .20 in the

example), the classical criterion and NPC agree on the ranking, while for others (e.g., α “ .01

in the example), they disagree. Under special cases however, we can derive conditions under

which NPC gives an α-invariant feature subset ranking. In the following, we derive such a

condition for Gaussian distributions.
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Figure 2.1: A toy example in which feature ranking under NPC changes as α varies. a: α “ .01. The NP oracle classifier
based on feature 1 (or feature 2) has the type II error .431 (or .299). b : α “ .20. The NP oracle classifier based on feature 1
(or feature 2) has the type II error .049 (or .084).

Lemma 2. Suppose that two features Xt1u and Xt2u have class-conditional densities

Xt1u|pY “ 0q „ N
`

µ0
1, pσ1q

2
˘

, Xt1u|pY “ 1q „ N
`

µ1
1, pσ1q

2
˘

,

Xt2u|pY “ 0q „ N
`

µ0
2, pσ2q

2
˘

, Xt2u|pY “ 1q „ N
`

µ1
2, pσ2q

2
˘

.

That is, each feature has the same class-conditional variance under the two classes. For

α P p0, 1q , let ϕ˚αt1u or ϕ˚αt2u be the level-α NP oracle classifier using only the feature Xt1u or

Xt2u respectively, and let ϕ˚
t1u or ϕ˚

t2u be the corresponding classical oracle classifier. Then

we have simultaneously for all α,

sign
 

R1

`

ϕ˚αt2u
˘

´R1

`

ϕ˚αt1u
˘(

“sign
 

R
`

ϕ˚t2u
˘

´R
`

ϕ˚t1u
˘(

“ sign

"

|µ1
1 ´ µ

0
1|

σ1

´
|µ1

2 ´ µ
0
2|

σ2

*

,

where signp¨q is the sign function.

Lemma 3 shows a sufficient condition for a multi-dimensional Gaussian setting such that

the ranking between two feature subsets is invariant to the level α under NPC and agrees

with that under the classical criterion.

Lemma 3. Let A1, A2 Ď t1, . . . , du be two index sets. For a random vector X P Rd, let

XA1 and XA2 be sub-vectors of X comprising of coordinates with indexes in A1 and A2
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respectively, and assume they follow the class conditional distributions:

XA1 | pY “ 0q „ N pµ0
1,Σ1q , XA1 | pY “ 1q „ N pµ1

1,Σ1q ,

XA2 | pY “ 0q „ N pµ0
2,Σ2q , XA2 | pY “ 1q „ N pµ1

2,Σ2q ,

where µij P R|Aj |, i “ 0, 1, j “ 1, 2 denotes the mean vector and Σj P R|Aj |ˆ|Aj | denotes

the covariance matrix. For α P p0, 1q, let ϕ˚αA1
and ϕ˚αA2

be the α-level NP oracle classifiers

using features indexed by A1 and A2 respectively, and let ϕ˚A1
and ϕ˚A2

be the corresponding

classical oracle classifiers. Then we have for all α,

sign
`

R1

`

ϕ˚αA2

˘

´R1

`

ϕ˚αA1

˘˘

“ sign
`

R
`

ϕ˚A2

˘

´R
`

ϕ˚A1

˘˘

,

where signp¨q is defined in Lemma 2.

The conclusion in Lemma 3 is an exception rather than the rule. In general, the best fea-

ture subsets under the classical criterion and NPC do not necessarily agree on the population

level. This suggests that the classical criterion on the sample level, i.e., the empirical risk on

a hold-out set, is not suitable for model selection with asymmetric error control objectives.

This issue motivates us to develop a new practical model selection criterion under the NP

paradigm: NPC on the sample level.

2.3 Methodology

To enable the implementation of the model selection criterion NPC on the sample level, it

is necessary to have flexible construction of NP classifiers.

2.3.1 Algorithmic foundation: construction of NP classifiers

Motivated by Lemma 1, [39] used a plug-in approach to construct NP classifiers, which sat-

isfy the NP oracle inequalities [38] under low-dimensional settings (i.e., when d is small).

Under the feature independence assumption, [40] extended the NP plug-in classifiers to
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accommodate high-dimensional features. From a practical perspective, [41] developed an

umbrella algorithm that adapts the scoring-type classification methods (e.g., logistic regres-

sion, support vector machine and random forest) to the NP paradigm so that they achieve

a high probability control on the type I error under the pre-specified level α. A scoring-type

classification method needs two components: a scoring function sp¨q and a threshold C, to

construct a classifier of the form φCp¨q “ 1 psp¨q ą Cq. A good scoring-type classification

method, i.e., a method better than random guesses, should satisfy that

1´ P ps pXq ď C|Y “ 1q ą P ps pXq ą C|Y “ 0q , @C P R .

In other words, as C varies, the receiver operating characteristic (ROC) curve of this classi-

fication method is above the main diagonal line in the ROC space, which indicates random

guesses. In other words, a good scoring-type classification method should satisfy

1´R1pφCq ą R0pφCq , @C P R . (2.5)

Most commonly used classification methods satisfy this property.

To construct an NP classifier using the NP umbrella algorithm [41], we first use a mixture

of class 0 and class 1 observations to train a scoring function ŝ, and then set a threshold pC P R

based on the left-out class 0 observations to obtain a classifier 1
´

ŝp¨q ą pC
¯

. Concretely,

suppose we have a training dataset S “ S0 Y S1, where S0 “
 

X0
1, . . . ,X

0
m

(

are i.i.d. class

0 observations, S1 “
 

X1
1, . . . ,X

1
n

(

are i.i.d. class 1 observations, and S0 is independent

of S1. These sample sizes m and n are considered as fixed numbers in our methodology

development. We randomly divide class 0 observations S0 for B times into two halves

S0pbq
ts “

!

X
0pbq
1 , . . . ,X0pbq

m1

)

and S0pbq
lo “

!

X
0pbq
m1`1, . . . ,X

0pbq
m1`m2

)

, where m1 ` m2 “ m, the

subscripts “ts” and “lo” stand for train-scoring and left-out respectively, and the superscript

b P t1, . . . , Bu indicates the b-th random split on class 0 observations. The default option

in the NP umbrella algorithm takes an equal-sized split of the class 0 sample, that is, m1 “

tm{2u. To do model selection under the NP paradigm, in addition to splitting the class 0
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observations, we also randomly split class 1 observations S1 into S1pbq
ts “

!

X
1pbq
1 , . . . ,X1pbq

n1

)

and S1pbq
lo “

!

X
1pbq
n1`1, . . . ,X

1pbq
n1`n2

)

, where n1 ` n2 “ n. Note that we do not need to split

the class 1 observations in the NP umbrella classification algorithm. However, for model

selection purposes, we must make the split to get a hold-out set to evaluate the type II error

of the trained classifier. We will make a default option n1 “ tn{2u. While S1pbq
ts is used to

train the scoring function, we leave out S1pbq
lo to evaluate the type II error performance of the

trained NP classifier, which will serve as the basis of our new model selection criterion NPC.

To construct an NP classifier given a scoring-type classification method, the NP umbrella

algorithm first trains a scoring function ŝpbqp¨q on S0pbq
ts YS1pbq

ts . Second, the algorithm applies

ŝpbqp¨q to S0pbq
lo to obtain scores

!

T
pbq
i “ ŝpbq

´

X
0pbq
m1`i

¯

, i “ 1, . . . ,m2

)

, which are sorted in an

increasing order and denoted by
!

T
pbq
piq , i “ 1, . . . ,m2

)

. Third, for a user-specified type I error

upper bound α P p0, 1q and a violation rate δ1 P p0, 1q which refers to the probability of the

type I error of the trained classifier exceeding α, the algorithm chooses the order

k˚ “ min
k“1,...,m2

#

k :
m2
ÿ

j“k

ˆ

m2

j

˙

p1´ αqjαm2´j ď δ1

+

.

When m2 ě
log δ1

logp1´αq
, k˚ exists, and the umbrella algorithm chooses the threshold of the

estimated scoring function as

pCpbqα “ T
pbq
pk˚q ,

where a subscript “α” is added on pCpbq to indicate the user-specified type I error upper

bound. The resulting NP classifier is thus

φ̂pbqα p¨q “ 1

´

ŝpbqp¨q ą pCpbqα

¯

. (2.6)

Proposition 1 in [41] proves that the probability that the type I error of the classifier
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φ̂
pbq
α p¨q in (2.6) exceeds α is no more than δ1:

P
´

R0pφ̂
pbq
α q ą α

¯

ď

m2
ÿ

j“k˚

ˆ

m2

j

˙

p1´ αqjαm2´j ď δ1 , (2.7)

for every b “ 1, . . . , B. When T
pbq
i has a continuous distribution, the first inequality in (2.7)

becomes an equality. Finally, the B NP classifiers, φ̂
p1q
α , . . . , φ̂

pBq
α , will be combined into an

ensemble classifier by majority voting. The number of splits, B, is often chosen to be greater

than one to increase the stability and reduce the type II error. For details of the NP umbrella

algorithm, we refer interested readers to [41].

2.3.2 NPC on the sample level

The construction of NP classifiers depends on users’ choice of classification method, which

could be the plug-in approach [39, 40, 57] or a more general scoring-type classification method

adaptable to the NP umbrella algorithm [41]. In the following, we consider the problem of

comparing models (i.e., feature subsets) for a given scoring-type classification method.

For a feature index set A Ď t1, . . . , du, we follow the NP umbrella algorithm described

in section 2.3.1 and construct B NP classifiers, where the b-th NP classifier is based on

training data (S0pbq
ts ,S0pbq

lo and S1pbq
ts ) and a given classification method. We denote these B

NP classifiers as φ̂
p1q
αA, . . . , φ̂

pBq
αA and evaluate their type II error performance on corresponding

left-out class 1 sets S1p1q
lo , . . . ,S1pBq

lo respectively. Our sample-level NPC for model A at level

α, denoted by NPCαA, computes the average of these type II errors:

NPCαA :“
1

B

B
ÿ

b“1

NPC
pbq
αA , (2.8)

with NPC
pbq
αA :“

1

n2

n1`n2
ÿ

i“n1`1

”

1´ φ̂
pbq
αA

´

X
1pbq
i

¯ı

“
1

n2

n1`n2
ÿ

i“n1`1

1

´

ŝ
pbq
A

´

X
1pbq
iA

¯

ď pC
pbq
αA

¯

,

where ŝ
pbq
A p¨q is the scoring function trained on S0pbq

ts Y S1pbq
ts using only the features indexed

by A, and pC
pbq
αA is the threshold estimated using the procedure described in section 2.3.1.

The detailed implementation of NPC is described in Algorithm 1.
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Correspondingly, we define the sample-level classical criterion for model A as

CCA :“
1

B

B
ÿ

b“1

CC
pbq
A , (2.9)

with CC
pbq
A :“

1

m2 ` n2

#

n1`n2
ÿ

i“n1`1

”

1´ φ̂
pbq
A

´

X
1pbq
i

¯ı

`

m1`m2
ÿ

i1“m1`1

φ̂
pbq
A

´

X
0pbq
i1

¯

+

,

where φ̂
pbq
A p¨q is a classifier trained on S0pbq

ts Y S1pbq
ts .

We also define the standard errors of NPCαA and CCA as

sepNPCαAq :“

g

f

f

e

řB
b“1

´

NPC
pbq
αA ´ NPCαA

¯2

BpB ´ 1q
, (2.10)

sepCCαAq :“

g

f

f

e

řB
b“1

´

CC
pbq
αA ´ CCαA

¯2

BpB ´ 1q
. (2.11)

2.3.3 Method-specific NP oracle

Because NPCαA depends on the choice of classification methods, it does not necessarily

converge to R1pϕ
˚
αAq asymptotically, unless we use the plug-in approach and make certain

assumptions on the class-conditional densities. Here we define the method-specific NP oracle

classifier to address this concern.

Given a scoring-type classification method and a type I error upper bound α P p0, 1q,

let M denote the set of possible scoring functions for this method. We denote the “best”

scoring function in M by s : X Ñ R, in the sense that 1psp¨q ą 1{2q minimizes the overall

(population) classification error among all 1php¨q ą 1{2q for all h P M. We refer to sp¨q as

the method-specific optimal scoring function. We define a method-specific oracle classifier

with a threshold C P R as

φCpXq :“ 1 pspXq ą Cq .

We denote by C :“ tφC : C P Ru the collection of method-specific oracle classifiers given

20



Algorithm 1 Implementation of the Neyman-Pearson Criterion (NPC)

1: input:
training set: S “ S0YS1, where S0 “

 

X0
1, . . . ,X

0
m

(

are i.i.d. class 0 observations,
and S1 “

 

X1
1, . . . ,X

1
n

(

are i.i.d. class 1 observations
feature index set A Ď t1, . . . , du
left-out class 0 sample size: m2

left-out class 1 sample size: n2

type I error upper bound α P r0, 1s
type I error violation rate δ1 P p0, 1q
number of random splits B P N on S0 and S1

2: function NPC(S0,S1, A,m2, n2, α, δ1, B)
3: for k in t1, . . . ,m2u do Ź for each order k
4: vpkq Ð

řm2

j“k

`

m2

j

˘

p1´ αqjαm2´j Ź calculate the violation rate

5: return vpkq

6: k˚ Ð min tk P t1, . . . ,m2u : vpkq ď δ1u Ź pick the order whose corresponding
violation rate is under δ1

7: for b in 1, . . . , B do

8: S0pbq
lo Ð subsamplepS0,m2q Ź S0pbq

lo “

!

X
0pbq
m1`1, . . . ,X

0pbq
m1`m2

)

and m1 “ m´m2

9: S1pbq
lo Ð subsamplepS1, n2q Ź S1pbq

lo “

!

X
1pbq
n1`1, . . . ,X

1pbq
n1`n2

)

and n1 “ n´ n2

10: S0pbq
ts Ð S0zS0pbq

lo Ź S0pbq
ts “

!

X
0pbq
1 , . . . ,X0pbq

m1

)

11: S1pbq
ts Ð S1zS1pbq

lo Ź S1pbq
ts “

!

X
1pbq
1 , . . . ,X1pbq

n1

)

12: ŝ
pbq
A Ð classification algorithmpS0pbq

ts Y S1pbq
ts , Aq Ź train a scoring function

ŝ
pbq
A on S0pbq

ts Y S1pbq
ts using features with indexes in A only

13: T pbq “
!

t
pbq
1 , . . . , t

pbq
m2

)

Ð

!

ŝ
pbq
A

´

X
0pbq
pm1`1qA

¯

, . . . , ŝ
pbq
A

´

X
0pbq
pm1`m2qA

¯)

Ź apply ŝ
pbq
A to

S0pbq
lo to obtain a set of threshold candidates

14:

!

t
pbq
p1q, . . . , t

pbq
pm2q

)

Ð sortpT pbqq Ź sort elements in T in an increasing order

15: pC
pbq
αA Ð t

pbq
pk˚q Ź find the threshold corresponding to the chosen order k˚

16: φ̂
pbq
αApXq “ 1

´

ŝ
pbq
A pXAq ą pC

pbq
αA

¯

Ź construct an NP classifier based on the scoring

function ŝ
pbq
A and the threshold pC

pbq
αA

17:

!

ŷ
pbq
1 , . . . , ŷ

pbq
n2

)

Ð

!

φ̂
pbq
αAp¨q, ¨ P S

1pbq
lo

)

Ź apply the trained classifier φ̂
pbq
αAp¨q to S1pbq

lo

18: NPC
pbq
αA “

1
n2

řn2

i“1 1

´

ŷ
pbq
i ‰ 1

¯

Ź compute an empirical type II error by

calculating the proportion of misclassified observations in S1pbq
lo

19: return NPC
pbq
αA

20: return NPCαA “
1
B

řB
b“1 NPC

pbq
αA
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a classification method. Restricted to C, we define the method-specific α-level NP oracle

classifier as

arg min
φPC:R0pφqďα

R1pφq . (2.12)

The notational dependency on the classification method is suppressed.

Given a scoring-type classification method, let sp¨q be the method-specific optimal scoring

function. We denote by F the cumulative distribution function of spXq|pY “ 0q. If we set

the method-specific NP threshold Cα :“ F´1p1 ´ αq “ inftx : F pxq ě 1 ´ αu, then the

classifier φCαp¨q “ 1 psp¨q ą Cαq is the method-specific α-level NP oracle classifier, which was

defined in (2.12).

Restricting to a feature subspace A Ď t1, . . . , du, the method-specific population NPC for

A is R1 pφαAq , where φαApXq :“ φCαApXq :“ 1 psApXAq ą CαAq, in which XA is the |A|-

dimensional sub-vector of X comprising of coordinates index by A, sA is the method-specific

optimal scoring function for the feature subspace in R|A|, and CαA is defined for the feature

subspace in R|A|, similar to the Cα for the full feature space X Ď Rd.

2.4 Theoretical properties

This section investigates the model selection property for NPC. Concretely, we are interested

in the answer to this question: among K candidate models A1, . . . , AK , is it guaranteed with

high probability that NPC selects the best model? We consider K as a fixed number in the

following theory development. We also assume in this section that the number of random

splits B “ 1 in NPC, and for simplicity we suppress the super index pbq in all notations

in this section and in the Appendix proofs. While NPC is adaptive to any scoring-type

classification methods, we focus our theoretical investigation on the non-parametric plug-in

approach. We discuss ideas regarding how to investigate other classification methods in the

discussion section.
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2.4.1 Definitions and key assumptions

We assume that the feature dimensionality d is fixed and moderate as in [39]. Following

[58], for any multi-index t “ pt1, ¨ ¨ ¨ , tdq
T
P Nd and x “ px1, ¨ ¨ ¨ , xdq

T
P Rd, we define

|t| “
řd
i“1 ti, t! “ t1! ¨ ¨ ¨ td!, x

t “ xt11 ¨ ¨ ¨ x
td
d , }x} “ px2

1 ` ¨ ¨ ¨ ` x
2
dq

1{2
, and the differential

operator Dt “ Bt1`¨¨¨`td

Bx
t1
1 ¨¨¨Bx

td
d

. For all the theoretical discussions, we assume the domain of class

conditional densities p0 and p1 is r´1, 1sd. For A Ď t1, . . . , du, denote by P0A and of P1A

the probability distributions of XA|pY “ 0q and XA|pY “ 1q, with densities p0A and of p1A

respectively. Throughout this paper, we only consider nonempty subset of t1, . . . , du.

Definition 1 (Hölder function class). Let β ą 0. Denote by tβu the largest integer strictly

less than β. For a tβu-times continuously differentiable function g : Rd Ñ R, we denote by

gx its Taylor polynomial of degree tβu at a value x P Rd:

gpβqx p¨q “
ÿ

|t|ďtβu

p¨ ´ xqt

t!
Dtg pxq .

For L ą 0, the
´

β, L, r´1, 1sd
¯

-Hölder function class, denoted by Σ
´

β, L, r´1, 1sd
¯

, is

the set of tβu-times continuously differentiable functions g : Rd Ñ R that satisfy the following

inequality:
ˇ

ˇg pxq ´ gpβqx px1q
ˇ

ˇ ď L }x´ x1}
β
, for all x,x1 P r´1, 1sd .

Definition 2 (Hölder density class). The
´

β, L, r´1, 1sd
¯

-Hölder density class is defined as

PΣ

´

β, L, r´1, 1sd
¯

“

"

p : p ě 0,

ż

p “ 1, p P Σ
´

β, L, r´1, 1sd
¯

*

.

The following β-valid kernels are multi-dimensional analog of univariate higher order

kernels.

Definition 3 (β-valid kernel). Let Kp¨q be a real-valued kernel function on Rd with the

support r´1, 1sd . For a fixed β ą 0 , the function Kp¨q is a β-valid kernel if it satisfies

(1)
ş

|K|l ă 8 for any l ě 1, (2)
ş

}u}β|Kpuq|du ă 8, and (3) in the case tβu ě 1 ,
ş

utKpuqdu “ 0 for any t “ pt1, . . . , tdq P Nd such that 1 ď |t| ď tβu .

23



One example of β-valid kernels is the product kernel whose ingredients are kernels of

order β in 1 dimension:

rKpxq “ Kpx1qKpx2q ¨ ¨ ¨Kpxdq1px P r´1, 1sdq ,

where K is a 1-dimensional β-valid kernel and is constructed based on Legendre polynomials.

Such kernels have been considered in [59]. When a β-valid kernel K is constructed out of

Legendre polynomials, it is also Lipschitz and bounded. For simplicity, we assume that

all the β-valid kernels considered in the theory discussion are constructed from Legendre

polynomials.

Definition 4 (Margin assumption). A function fp¨q satisfies the margin assumption of the

order γ̄ at the level C, with respect to the probability distribution P of a random vector X,

if there exist positive constants C̄ and γ̄, such that for all δ ě 0,

P p|f pXq ´ C| ď δq ď C̄δγ̄ .

The above condition for densities was first introduced in Polonik [60], and its counterpart

in the classical binary classification was called margin condition ([61]), which is a low noise

condition. Recall that the set tx : ηpxq “ 1{2u is the decision boundary of the classical oracle

classifier, and the margin condition in the classical paradigm is a special case of Definition

4 by taking f “ η and C “ 1{2. Unlike the classical paradigm where the optimal threshold

1{2 on regression function β is known, the optimal threshold level in the NP paradigm is

unknown and needs to be estimated, suggesting the necessity of having sufficient data around

the decision boundary to detect it. This concern motivated [39] to formulate a detection

condition that works as an opposite force to the margin assumption, and [40] improved upon

it and proved its necessity in bounding the excess type II error of an NP classifier. To

establish the model selection property of NPC, a bound on the excess type II error is an

intermediate result, so we also need this assumption for our current work.

Definition 5 (Detection condition [40]). A function fp¨q satisfies the detection condition
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of the order
¯
γ at the level pC, δ˚q with respect to the probability distribution P of a random

vector X, if there exists a positive constant
¯
C, such that for all δ P p0, δ˚q,

P pC ď f pXq ď C ` δq ě
¯
Cδ¯

γ .

2.4.2 A uniform deviation result of scoring functions in sub feature space

For A Ď t1, . . . , du and |A| “ l, estimate p0A and p1A respectively from S0
ts and S1

ts by kernel

density estimators,

p̂0ApxAq “
1

m1hlm1

m1
ÿ

i“1

KA

ˆ

X0
iA ´ xA
hm1

˙

and p̂1ApxAq “
1

n1hln1

n1
ÿ

i“1

KA

ˆ

X1
iA ´ xA
hn1

˙

,

where hm1 and hn1 denote the bandwidths, and KApuAq “
ş

KpuA,uAcqduAc . We are in-

terested in deriving a high probability bound for }p̂1ApxAq{p̂0ApxAq ´ p1ApxAq{p0ApxAq}8.

Lemma 1 in [39] will be called upon to establish high probability bounds for }p̂0ApxAq ´ p1ApxAq}8

and }p̂1ApxAq ´ p1ApxAq}8. But to use that lemma, we need to translate the conditions on

the full feature space to the subspaces.

Condition 1. Suppose that the densities satisfy

(i) There exists a positive constant µmin such that p0A ě µmin for all A Ď t1, . . . , du.

(ii) There is a positive constant L such that p0A, p1A P PΣpβ, L, r´1, 1s|A|q for all A Ď

t1, . . . , du.

Lemma 4. Let Kp¨q be a β-valid kernel on Rd with the support r´1, 1sd (Definition 3). Let

u “ pv,wq where v P R and w P Rd´1. Then K 1pwq :“
ş

Kpv,wqdv is a β-valid kernel

function on Rd´1 with the support r´1, 1sd´1 .

Proposition 1. Assume condition 1 and let the kernel K be β-valid and L1-Lipschitz. Let

A Ď t1, . . . , du. Take the bandwidths hm1 “

´

logm1

m1

¯
1

2β``
and hn1 “

´

logn1

n1

¯
1

2β``
, where
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l “ |A|. For any δ3 P p0, 1q, if sample size m1 “ |S0
ts| and n1 “ |S1

ts| satisfy

d

log p2m1{δ3q

m1h`m1

ă 1^
µmin

2C0

,

d

log p2n1{δ3q

n1h`n1

ă 1, n1 ^m1 ě 2{δ3 ,

where C0 “ maxAĎt1,...,dut
?

48c1A ` 32c2A ` 2Lc3A ` L1A ` L ` C̃A
ř

1ď|q|ďtβu
1
q!
u, in which

c1A “ }p0A}8}KA}
2, c2A “ }KA}8 ` }p0A}8 `

ş

|KA||t|
βdt, c3A “

ş

|KA||t|
βdt, L1A “ 2d´lL1

and C̃A is such that C̃A ě sup1ď|q|ďtβu supxAPr´1,1sl |p
pqq
0A pxAq|. Then there exists a positive

constant rC that does not depend on A, such that we have with probability at least 1´ δ3,

}p̂1ApxAq{p̂0ApxAq ´ p1ApxAq{p0ApxAq}8 ď
rC

«

ˆ

logm1

m1

˙β{p2β``q

`

ˆ

log n1

n1

˙β{p2β``q
ff

.

2.4.3 Concentration of NPCαA around R1pϕ
˚
αAq

To establish the model selection property, an essential step is to develop a concentration result

of NPCαA around R1pϕ
˚
αAq, where ϕ˚αA was defined in (2.3). Since we have fixed the plug-in

kernel density classifiers, φ̂αApxq “ 1pŝApxAq ą pCαAq “ 1pp̂0ApxAq{p̂1ApxAq ą pCαAq denotes

the NP classifier, where pCαA is determined by the NP umbrella classification algorithm.

We always assume that the cumulative distribution function of ŝApXAq, where X „ P0, is

continuous.

Lemma 5. Let α, δ1, δ2 P p0, 1q . If m2 “ |S0
lo| ě

4
αδ1

, the classifier φ̂αA satisfies with

probability at least 1´ δ1 ´ δ2 ,

ˇ

ˇ

ˇ
R0pφ̂αAq ´R0pϕ

˚
αAq

ˇ

ˇ

ˇ
ď ξ , (2.13)

where

ξ “

d

rdα,δ1,m2 pm2 ` 1qs pm2 ` 1´ rdα,δ1,m2 pm2 ` 1qsq

pm2 ` 2qpm2 ` 1q2 δ2

` dα,δ1,m2 `
1

m2 ` 1
´ p1´ αq ,

dα,δ1,m2 “
1` 2δ1pm2 ` 2qp1´ αq `

a

1` 4δ1pm2 ` 2qp1´ αqα

2 tδ1pm2 ` 2q ` 1u
,
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and rzs denotes the smallest integer larger than or equal to z. Moreover, if m2 ě maxpδ´2
1 , δ´2

2 q,

we have ξ ď p5{2qm
´1{4
2 .

Lemma 5 and a minor modification of proof for Proposition 2.4 in [40] (which provides an

upper bound for the excess type II error) give rise to the following proposition. Essentially,

the same upper bound works for both
ˇ

ˇ

ˇ
R1pφ̂αAq ´R1pϕ

˚
αAq

ˇ

ˇ

ˇ
and R1pφ̂αAq ´R1pϕ

˚
αAq.

Proposition 2. Let α, δ1, δ2 P p0, 1q. Assume that the density ratio sAp¨q “ p1Ap¨q{p0Ap¨q

satisfies the margin assumption of order γ̄ at level C˚αA (with constant C̄) and detection

condition of order
¯
γ at level pC˚αA, δ

˚q (with constant
¯
C), both with respect to distribution

P0A. If m2 ě maxt 4
αδ1
, δ´2

1 , δ´2
2 , p2

5 ¯
Cδ˚

γ́
q´4u, the excess type II error of the classifier φ̂αA

satisfies with probability at least 1´ δ1 ´ δ2,

ˇ

ˇ

ˇ
R1pφ̂αAq ´R1pϕ

˚
αAq

ˇ

ˇ

ˇ

ď 2C̄

»

–

#

|R0pφ̂αAq ´R0pϕ
˚
αAq|

¯
C

+1{γ́

` 2}ŝA ´ sA}8

fi

fl

1`γ̄

` C˚αA|R0pφ̂αAq ´R0pϕ
˚
αAq|

ď 2C̄

«

ˆ

2

5
m

1{4
2 ¯
C

˙´1{γ́

` 2}ŝA ´ sA}8

ff1`γ̄

` C˚αA

ˆ

2

5
m

1{4
2

˙´1

.

Theorem 1. Let α, δ1, δ2, δ3, δ4 P p0, 1q, and l “ |A|. In addition to the assumptions

of Propositions 1 and 2, assume n2 ě

´

log 2
δ4

¯2

, then we have with probability at least

1´ δ1 ´ δ2 ´ δ3 ´ δ4,

|NPCαA ´R1 pϕ
˚
αAq| ď

rC

«

ˆ

logm1

m1

˙

βp1`γ̄q
2β``

`

ˆ

log n1

n1

˙

βp1`γ̄q
2β``

`m
´p 1

4
^

1`γ̄

¯
γ
q

2 ` n
´ 1

4
2

ff

,

for some positive constant rC that does not depend on A.

Under smoothness and regularity conditions and sample size requirements, Theorem 1

shows the concentration of NPCαA around R1 pϕ
˚
αAq with probability at least 1 ´ δ1 ´ δ2 ´

δ3 ´ δ4. The user-specified violation rate δ1 represents the uncertainty that the type I error

of an NP classifier φ̂αA exceeds α, leading to the underestimation of R1pϕ
˚
αAq; δ2 accounts
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for possibility of unnecessarily stringent control on the type I error, which results in the

overestimation of R1pϕ
˚
αAq; δ3 accounts for the uncertainty in training scoring function ŝAp¨q

on a finite sample; and δ4 represents the uncertainty of using leave-out class 1 observations

S1
lo to estimate R1pφ̂αAq. Note that while the δ1 parameter serves both as the input of the

NPC algorithm and as a restriction to the sample sizes, other parameters δ2, δ3 and δ4 only

have the latter role. Just like the constant C0 in Proposition 1, the generic constant rC in

Theorem 1 can be provided explicitly, but it would be too cumbersome to do so.

2.4.4 NPC model selection property for nonparametric plug-in methods

Theorem 2. Let α, δ1, δ2, δ3, δ4 P p0, 1q , and A1, . . . , AK Ď t1, . . . , du. Assume that A1 is

the best among tA1, . . . , AKu under the population-level NPC by some margin g ą 0, that is,

min
APtA2,...,AKu

R1 pϕ
˚
αAq ´R1

`

ϕ˚αA1

˘

ą g .

In addition to the assumptions in Theorem 1, assume m1,m2, n1, n2 satisfy that

rC

«

ˆ

logm1

m1

˙

βp1`γ̄q
2β`d

`

ˆ

log n1

n1

˙

βp1`γ̄q
2β`d

`m
´p 1

4
^

1`γ̄

¯
γ
q

2 ` n
´ 1

4
2

ff

ă
g

2
,

where rC is the generic constant in Theorem 1. Then with probability at least 1´Kpδ1` δ2`

δ3 ` δ4q, NPCαA1 ă minj“2,...,K NPCαAj , that is, NPC selects the best model.

2.5 Simulation studies

We verify the practical performance of NPC on the sample level in two simulation studies.

First, we demonstrate that NPC and the classical criterion select the best feature differently

in the toy example in Figure 2.1. Second, we show that NPC selects the best feature subset

(with a pre-specified size) that minimizes the population type II error with high probability,

in an exhaustive best subset selection when the total number of features is small.
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Table 2.1: The frequency that each of the two features is selected as the better feature by each criterion among 1000 samples
in the toy example (Figure 2.1).

XXXXXXXXXXXXCriteria
Features

Feature 1 Feature 2

NPC (α “ .01) 2.2% 97.8%
NPC (α “ .20) 98.7% 1.3%

Classical Criterion 74.9% 25.1%

2.5.1 The toy example on the sample level

To verify that NPC and the classical criterion select their corresponding best feature, found

in the toy example (Figure 2.1) in Section 2.2.1, with high probability on the sample level,

we design the following simulation study.

We simulate 1, 000 random samples of size n “ 2, 000 from the distribution defined in

Equation (2.4), which contains two features. This sample size is chosen to guarantee the type

I error control of NP classifiers at α “ .01. We apply the sample-level NPC (with δ “ .05)

and classical criterion defined in Equations (2.8) and (2.9) to each sample to select the

better feature. For each feature, we use the plug-in density ratio as the classification scoring

function ŝp¨q, where kernel density estimators based on a Gaussian kernel and bandwidths

selected by the R function bw.nrd0() are used to plug in the class conditional densities.

The result summarized in Table 2.1 shows that NPC with α “ .01 selects feature 2 with

high probability, while the classical criterion and NPC with α “ .20 select feature 1 with

high probability. Recall our finding on the population level: feature 2 is the better feature

when NPC at α “ .01 is used as the criterion, while feature 1 is the better feature based on

the classical criterion and NPC at α “ .20 (Section 2.2.1). This result is a numerical support

of Theorem 2.

2.5.2 Best subset selection on the sample level

We next demonstrate the performance of the sample-level NPC on selecting the best feature

subset when d, the total number of features, is small. We design the following simulation
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setting, where d “ 5 and the subsets of interest is of size 2.

X | pY “ 0q „ N pµ0,Σ0
q , X | pY “ 1q „ N pµ1,Σ1

q , (2.14)

where µ0 “ p´5,´6,´5,´3,´3qT, µ1 “ p0, 1, 1.5,´2,´2qT,

Σ0
“

»

—

—

—

—

—

—

—

—

—

–

4 .8 0 0 0

.8 4 .8 0 0

0 .8 4 0 0

0 0 0 7.355418 2.578002

0 0 0 2.578002 7.229438

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,Σ1
“

»

—

—

—

—

—

—

—

—

—

–

4 .8 0 0 0

.8 4 .8 0 0

0 1.4 12.25 0 0

0 0 0 7.355418 2.578002

0 0 0 2.578002 7.229438

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

and the class prior is PpY “ 1q “ .7.

We simulate 1, 000 random samples of size n “ 2, 500 from this distribution. We apply

the sample-level NPC (with δ “ .05) and classical criterion defined in Equations (2.8) and

(2.9) to each sample to select the best feature subset with size 2. For each feature subset, we

use the plug-in density ratio as the classification scoring function ŝp¨q, where two-dimensional

kernel density estimators constructed by the R function kde() in the ks package are used to

plug in the class conditional densities.

The result summarized in Table 2.2 shows that NPC with α “ .01 selects t2, 3u in 57.3%

of the samples and t1, 2u and t1, 3u for 31.6% and 9.4% of the time, respectively. In contrast,

the classical criterion selects t1, 2u in two thirds of the samples and t1, 3u in the other one

third samples.

On the population level, we approximate the population-level NPC and classical cri-

terion on each feature subset by applying their corresponding sample-level criteria to an

independent large sample with size 2ˆ106 from the same distribution in (2.14). The NPC is

minimized at the feature subset t2, 3u with a value .05176152, while the feature subsets t1, 2u

and t1, 3u achieve the second and third smallest NPC values of .05378549 and .10764869,

respectively. Given the small gap between the population-level NPC values of t2, 3u and

t1, 2u, it is reasonable that the sample-level NPC selects these two feature subsets with high

30



Table 2.2: The frequency that each two-feature subset is selected as the best feature subset by each criterion among 1000
samples.

hhhhhhhhhhhhhhhhhhCriteria
Feature Subsets

t1, 2u t1, 3u t2, 3u t2, 4u t2, 5u

NPC (α “ .01) 31.6% 9.4% 57.3% 0.7% 1.0%
Classical Criterion 67.0% 33.0% 0.0% 0.0% 0.0%

probability. On the other hand, the classical criterion is minimized at the feature subset

t1, 2u with a value .02167862, while the feature subsets t2, 3u and t1, 3u achieve the second

and third smallest classical criterion values of .02318542 and .04059764, respectively. This

result confirms that when the population-level NPC and classical criterion prefer different

best feature subsets, the sample-level NPC, given a reasonably large sample size, chooses the

NPC-preferred feature subset with high probability.

2.6 Real data application: selection of DNA methylation features

for breast cancer prediction

We use a real dataset containing genome-wide DNA methylation profiles of 285 breast tis-

sues measured by the Illumina HumanMethylation450 microarray technology. This dataset

includes 46 normal tissues and 239 breast cancer tissues. Methylation levels are measured

at 468, 424 CpG probes in every tissue [62]. We download the preprocessed and normal-

ized dataset from the Gene Expression Omnibus (GEO) [63] with the accession number

GSE60185. The preprocessing and normalization steps are described in detail in [62]. To

facilitate the interpretation of our analysis results, we further process the data as follows.

First, we discard a CpG probe if it is mapped to no gene or more than one genes. Second,

if a gene contains multiple CpG probes, we calculate its methylation level as the average

methylation level of these probes. This procedure leaves us with 19, 363 genes with distinct

methylation levels in every tissue. We consider the tissues as data points and the genes as

features, so we have a sample with the size n “ 285 and the number of features d “ 19, 363.

If we would like to predict whether a patient has breast cancer based on the methyla-

tion levels of genes in her breast tissue, we face a binary classification problem under the
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“asymmetric scenario,” where misclassifying a patient with cancer to be healthy leads to

more severe consequences than the other way around. Hence, we code the 239 breast cancer

tissues as the class 0 and the 46 normal tissues as the class 1. Then in this cancer diagnosis

problem, controlling the more severe false negative rate is equivalent to controlling the type

I error under the NP paradigm.

Under a high-dimensional scenario where d " n, we apply the penalized logistic regression

with an `1 penalty to generate candidate feature subsets along the solution path as the

tuning parameter of the `1 penalty decreases. We obtain 41 candidate feature subsets. For

each feature subset, we evaluate four criteria: Akaike information criterion (AIC), Bayesian

information criterion (BIC), the sample-level classical criterion (Equation (2.9)), and the

sample-level NPC with α “ .05 and δ “ .05 (Equation (2.8)). For the latter two criteria that

require sample splitting, we randomly split the sample into equal-sized training and left-out

data for B “ 100 times.

Figure 2.2 displays the trends of the four criteria on the candidate feature subsets along

the solution path. The minimum AIC is achieved at the 40th feature subset containing 30

genes, while BIC suggests choosing the 27th feature subset that contains 20 genes. The

sample-level classical criterion has small values (0´ .03) for all candidate feature subsets and

thus does not lead to a clear choice of feature subset. The sample-level NPC exhibits the

most interesting trend: it has small values at the 2nd-4th feature subsets but a sharp rise at

the 5th subset, suggesting that the difference between the 4th and 5th feature subsets greatly

alters the type II errors of the corresponding NP classifiers. The difference is the addition

of the gene ZNF646 to the 5th feature subset.

To investigate the effect of ZNF646 on the sample-level NPC trend, we remove this

gene from all subsequent feature subsets (if it is in those subsets) and re-evaluate the four

criteria. The results are shown in Figure 2.3, where the trends of AIC, BIC and the sample-

level classical criterion remain largely the same, while the rise of the sample-level NPC is

delayed to the 9th feature subset with ZNF646 removed. Again, by inspecting the genes

included in the 8th and 9th feature subsets, we find that their only difference is the addition

of the gene ERAP1.
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Figure 2.2: Four evaluation criteria on 41 candidate feature subsets identified by `1-penalized logistic regression from the
breast cancer methylation data [62]. A larger feature subset index corresponds to a smaller value of the tuning parameter of
the `1 penalty, which in most cases leads to a larger candidate feature subset. Compared with the 4th subset, the 5th subset
contains an additional gene ZNF646. For the sample-level classical criterion and NPC (with α “ .05 and δ “ .05), each error
bar shows the ˘ one standard error, defined in Equations (2.11) and (2.10), respectively.

●●

●●●

●●
●●●●

●

●●●●●

●●

●●●●●●●

●●●●●●●●●●●●
●●●

Feature Subset Index

C
ri

te
ri

o
n

 V
a

lu
e

AIC

●●

●
●●

●
●
●
●
●
●

●

●
●

●
●
●

●
●

●
●
●●

●
●
●

●
●
●
●

●●

●
●
●
●●●●●

●

Feature Subset Index

C
ri

te
ri

o
n

 V
a

lu
e

BIC

●●

●
●●

●
●

●

●
●
●

●

●
●●

●●

●●●

●●
●

●
●
●

●

●●
●●

●●●●●
●

●
●●

●

● ●

●

● ●

●

●

●

●

●

●

●

●
●

●

● ●

● ● ●

● ●

●

●

●

●

●

●
●

●
●

● ● ● ●
●

●

●
●

●

●

Feature Subset Index

C
ri

te
ri

o
n

 V
a

lu
e

Classical Criterion

●

●●
●●

●

●

●

●

●
●

●

●

●

●

●●

●●
●
●
●

●●
●
●
●●●●●

●●●●●●●●●

●

●

● ●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

● ●
●

●

● ● ● ● ●

● ● ● ● ● ●
● ● ●

●

Feature Subset Index

C
ri

te
ri

o
n

 V
a

lu
e

NPC

+ ERAP1

- ZNF646

Figure 2.3: Four evaluation criteria on the 41 candidate feature subsets in Figure 2.2 with the gene ZNF646 removed. Other
information is the same as in Figure 2.2.

Hence, we further remove ERAP1 from all feature subsets that already exclude ZNF646

and re-evaluate the four criteria. The results in Figure 2.4, show that the new rise in

the sample-level NPC is due to the addition of the pseudogene LOC121952 (also known as

METTL21EP). By removing it and repeating our procedure, we find the genes GEMIN4 and
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BATF and the microRNA MIR21 that subsequently inflate the sample-level NPC (Figures

2.5, 2.6 and 2.7). After removing all of these six genes (including pseudogenes and microR-

NAs), we observe (Figure 2.8) that the sample-level NPC no longer exhibits an obvious rise

in its trend.
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Figure 2.4: Four evaluation criteria on the 41 candidate feature subsets in Figure 2.2 with the genes ZNF646 and ERAP1
removed. Other information is the same as in Figure 2.2.
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Figure 2.5: Four evaluation criteria on the 41 candidate feature subsets in Figure 2.2 with the genes ZNF646, ERAP1, and
LOC121952 (METTL21EP) removed. Other information is the same as in Figure 2.2.

Our results suggest that the inclusion of these six genes in feature subsets deteriorates the
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Figure 2.6: Four evaluation criteria on the 41 candidate feature subsets in Figure 2.2 with the genes ZNF646, ERAP1,
LOC121952 (METTL21EP), and GEMIN4 removed. Other information is the same as in Figure 2.2.
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Figure 2.7: Four evaluation criteria on the 41 candidate feature subsets in Figure 2.2 with the genes ZNF646, ERAP1,
LOC121952 (METTL21EP), GEMIN4, and BATF removed. Other information is the same as in Figure 2.2.

type II errors of NP classifiers with α “ .05 and δ “ .05. In other words, these NP classifiers

enforce a 95% high sensitivity in detecting breast cancer (with at least 95% probability across

samples), and a significant increase in the type II error suggests that the addition of these

genes decreases the specificity of these NP classifiers.

To understand this finding, we investigate the functions of these six genes we remove, as
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Figure 2.8: Four evaluation criteria on the 41 candidate feature subsets in Figure 2.2 with the genes ZNF646, ERAP1,
LOC121952 (METTL21EP), GEMIN4, BATF, and MIR21 removed. Other information is the same as in Figure 2.2.

well as the other 35 genes in the candidate feature subsets. Among these total of 41 genes,

there are 36 protein-coding genes (4 removed), 4 microRNAs (1 removed), and 1 pseudogene

(1 removed).

We look up the functions of these 36 protein-coding genes in the Human Protein Atlas

database (https://www.proteinatlas.org), which contains a Pathology Atlas where breast

cancer relevance is specifically listed. Out of these 36 protein-coding genes, 9 genes do not yet

have available protein expression data in breast cancer, so we only consider the remaining 27

genes, which include the 4 genes (ZNF646, ERAP1, GEMIN4 and BATF ) we remove from

the candidate feature subsets. For these four removed genes, we find that only ERAP1 and

GEMIN4 exhibit protein expression in breast cancer. ZNF646 only has protein expression in

testis cancer, and the BATF protein has not been detected in any cancers in this database,

suggesting that excluding them from breast cancer diagnostic features is reasonable. For the

other 23 genes in candidate feature subsets, we find that 20 of them are expressed in proteins

in breast cancer, and the other three genes (SPARCL1, GCNT4 and CYP2S1 ) have been

reported with protein expression in ovarian cancer. Given that ovarian cancer and breast

cancer are highly correlated in heredity [64], we hypothesize that they are also related to

breast cancer diagnosis, and our hypothesis is supported by clinical research findings [65–69].
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We also investigate the functions of the four microRNAs (MIR195, MIR375, MIR21 and

MIR451 ), all of which have been reported to be associated with the diagnosis, prognosis,

and therapy of breast cancer [70–74]. and the pseudogene LOC121952 (METTL21EP).

However, we find that including MIR21 as a predictive feature would decrease the specificity

of breast cancer detection from 88.3% to 81.7% when the sensitivity is set to be high (Figure

2.7). Moreover, the pseudogene LOC121952 (METTL21EP) we remove is related to DNA

methylation and has not been reported to be associated with breast cancer.

Details of the above functional analysis results are summarized in the Supplementary Ex-

cel File. The sample-level NPC trend also shows that, in breast cancer detection with a 95%

sensitivity on this dataset, a specificity higher than 90% is achievable with only three gene

markers: HMGB2, MIR195 and SPARCL1. Especially, the inclusion of SPARCL1 signifi-

cantly increases the specificity from around 70% to more than 90%. Therefore, SPARCL1 is

a potentially powerful marker for breast cancer detection when high sensitivity id desirable.

To summarize, our real data analysis shows that the sample-level NPC provides a useful

and practical criterion for identifying genetic features, among the overall predictive ones, to

achieve high specificity in highly-sensitive cancer diagnosis.

2.7 Discussion

In this work, we develop a new model selection criterion: Neyman-Pearson Criterion (NPC),

which is tailored for asymmetric binary classification under the NP paradigm. NPC appeals

to biomedical practitioners who are interested in identifying cancer drivers but are often

constrained by experimental budgets for downstream validation. As experimental costs grow

linearly with the number of candidate genomic features, an effective procedure that ranks

models of (up to) certain sizes and accounts for the asymmetry in prediction errors, is clearly

desirable for making scientific discoveries. In disease diagnosis where a high sensitivity (or

a low false negative rate) is desirable, NPC serves as the first available criterion to select

a model that achieve a best specificity among candidate models while maintaining a high

sensitivity, a perspective different from existing ones. Apart from biomedical sciences, NPC is
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also widely applicable to engineering applications such as network security control, financial

applications such as loan screening, and social applications such as prediction of regional

and international conflicts.

In the theoretical investigation of NPC, we focused on studying plug-in methods with

nonparametric assumptions and bounded feature spaces. We leave the investigation of other

scoring-type classification methods for future studies. The main idea is to replace the concen-

tration result in Proposition 1 by a deviation result between the estimated scoring function

and the method-specific optimal scoring function. Moreover, to accommodate unbounded

feature spaces, we need to adopt the conditional versions of the margin assumption and the

detection condition, similar to those in [57].

Same as other model selection criteria including AIC and BIC, NPC has to be combined

with a proper model space search strategy when the candidate model space is very large.

For example, when the number of features d “ 10, there are 210 “ 1024 feature subsets

to search through. This is feasible for modern laptops, but when d “ 40, an exhaustive

search over all 240 feature subsets is overwhelming, not mentioning that large-scale genomic

datasets often have d in the order of 104. When d is large, forward stepwise selection, which

incrementally adds one feature at a time, is often used in practice to reduce the number

of candidate models to dpd ` 1q{2. When d far exceeds the sample size n (i.e., under the

so-called ultra-high dimensional settings), screening techniques are often used. For example,

marginal screening computes some relation between the response and each feature, one at a

time, and keeps the most “informative” features.

The current implementation of NPC relies on the NP umbrella classification algorithm

in [41], which was derived assuming independent observations. This is unwarranted in, for

example, financial time series data. For future studies, it would be interesting to generalize

the NP umbrella classification algorithm and NPC for dependent data.
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2.9 Supplementary materials: Proofs

Proof of Lemma 2

First we realize that the following three statements are equivalent:

(1) Feature importance ranking under the NP paradigm is invariant to α ;

(2) Feature importance ranking under the classical paradigm is invariant to π0 ;

(3) Feature importance ranking under the NP paradigm for @α P p0, 1q is the same as

feature importance ranking under the classical paradigm @π0 P p0, 1q.

We explore conditions for statement (1) to hold. We will divide our analysis into four

scenarios (i)-(iv) regarding distribution means.

Scenario (i): suppose µ0
1 ď µ1

1 and µ0
2 ď µ1

2. Let c1, c2 P R be such that

1´ α “ Φ

ˆ

c1 ´ µ
0
1

σ1

˙

, 1´ α “ Φ

ˆ

c2 ´ µ
0
2

σ2

˙

,

where Φp¨q denotes the cumulative distribution function of N p0, 1q . Then the NP oracle

classifier using the feature Xt1u or Xt2u can be written as

ϕ˚αt1upXq “ 1
`

Xt1u ą c1

˘

or ϕ˚αt2upXq “ 1
`

Xt2u ą c2

˘

.

These oracle classifiers have type II errors

R1

`

ϕ˚αt1u
˘

“ Φ

ˆ

c1 ´ µ
1
1

σ1

˙

, R1

`

ϕ˚αt2u
˘

“ Φ

ˆ

c2 ´ µ
1
2

σ2

˙

.
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The chain of equivalence holds

R1

`

ϕ˚αt2u
˘

ě R1

`

ϕ˚αt1u
˘

ô Φ

ˆ

c2 ´ µ
1
2

σ2

˙

ě Φ

ˆ

c1 ´ µ
1
1

σ1

˙

ô
c2 ´ µ

1
2

σ2

ě
c1 ´ µ

1
1

σ1

ô
c2 ´ µ

0
2

σ2

`
µ0

2 ´ µ
1
2

σ2

ě
c1 ´ µ

0
1

σ1

`
µ0

1 ´ µ
1
1

σ1

ô Φ´1
p1´ αq `

µ0
2 ´ µ

1
2

σ2

ě Φ´1
p1´ αq `

µ0
1 ´ µ

1
1

σ1

ô
µ1

1 ´ µ
0
1

σ1

´
µ1

2 ´ µ
0
2

σ2

ě 0 ,

Therefore,

sign
 

R1

`

ϕ˚αt2u
˘

´R1

`

ϕ˚αt1u
˘(

“ sign

"

µ1
1 ´ µ

0
1

σ1

´
µ1

2 ´ µ
0
2

σ2

*

.

Scenario (ii): suppose µ0
1 ą µ1

1 and µ0
2 ą µ1

2. Let c1, c2 P R be such that

α “ Φ

ˆ

c1 ´ µ
0
1

σ1

˙

, α “ Φ

ˆ

c2 ´ µ
0
2

σ2

˙

,

then the NP oracle classifier using the feature Xt1u or Xt2u can be written as

ϕ˚αt1upXq “ 1
`

Xt1u ă c1

˘

or ϕ˚αt2upXq “ 1
`

Xt2u ă c2

˘

.

These oracle classifiers have type II errors

R1

`

ϕ˚αt1u
˘

“ 1´ Φ

ˆ

c1 ´ µ
1
1

σ1

˙

, R1

`

ϕ˚αt2u
˘

“ 1´ Φ

ˆ

c2 ´ µ
1
2

σ2

˙

.
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The chain of equivalence holds

R1

`

ϕ˚αt2u
˘

ě R1

`

ϕ˚αt1u
˘

ô Φ

ˆ

c2 ´ µ
1
2

σ2

˙

ď Φ

ˆ

c1 ´ µ
1
1

σ1

˙

ô
c2 ´ µ

1
2

σ2

ď
c1 ´ µ

1
1

σ1

ô
c2 ´ µ

0
2

σ2

`
µ0

2 ´ µ
1
2

σ2

ď
c1 ´ µ

0
1

σ1

`
µ0

1 ´ µ
1
1

σ1

ô Φ´1
pαq `

µ0
2 ´ µ

1
2

σ2

ď Φ´1
pαq `

µ0
1 ´ µ

1
1

σ1

ô
µ1

1 ´ µ
0
1

σ1

´
µ1

2 ´ µ
0
2

σ2

ď 0 .

Hence,

sign
 

R1

`

ϕ˚αt2u
˘

´R1

`

ϕ˚αt1u
˘(

“ sign

"

´
µ1

1 ´ µ
0
1

σ1

`
µ1

2 ´ µ
0
2

σ2

*

.

Scenario (iii): suppose µ0
1 ď µ1

1 and µ0
2 ą µ1

2. Let c1, c2 P R be such that

1´ α “ Φ

ˆ

c1 ´ µ
0
1

σ1

˙

, α “ Φ

ˆ

c2 ´ µ
0
2

σ2

˙

,

then the NP oracle classifier using the feature Xt1u or Xt2u can be written as

ϕ˚αt1upXq “ 1
`

Xt1u ą c1

˘

or ϕ˚αt2upXq “ 1
`

Xt2u ă c2

˘

.

These oracle classifiers have type II errors

R1

`

ϕ˚αt1u
˘

“ Φ

ˆ

c1 ´ µ
1
1

σ1

˙

, R1

`

ϕ˚αt2u
˘

“ 1´ Φ

ˆ

c2 ´ µ
1
2

σ2

˙

.

Because Φpaq ` Φp´aq “ 1 for any a P R and Φ´1p1 ´ αq “ ´Φ´1pαq for all α P p0, 1q, we
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have the chain of equivalence

R1

`

ϕ˚αt2u
˘

ě R1

`

ϕ˚αt1u
˘

ô 1´ Φ

ˆ

c2 ´ µ
1
2

σ2

˙

ě Φ

ˆ

c1 ´ µ
1
1

σ1

˙

ô ´
c2 ´ µ

1
2

σ2

ě
c1 ´ µ

1
1

σ1

ô ´
c2 ´ µ

0
2

σ2

´
µ0

2 ´ µ
1
2

σ2

ě
c1 ´ µ

0
1

σ1

`
µ0

1 ´ µ
1
1

σ1

ô ´ Φ´1
pαq ´

µ0
2 ´ µ

1
2

σ2

ě Φ´1
p1´ αq `

µ0
1 ´ µ

1
1

σ1

ô
µ1

1 ´ µ
0
1

σ1

`
µ1

2 ´ µ
0
2

σ2

ě 0 .

Hence,

sign
 

R1

`

ϕ˚αt2u
˘

´R1

`

ϕ˚αt1u
˘(

“ sign

"

µ1
1 ´ µ

0
1

σ1

`
µ1

2 ´ µ
0
2

σ2

*

.

Scenario (iv): suppose µ0
1 ą µ1

1 and µ0
2 ď µ1

2. Let c1, c2 P R be such that

α “ Φ

ˆ

c1 ´ µ
0
1

σ1

˙

, 1´ α “ Φ

ˆ

c2 ´ µ
0
2

σ2

˙

,

then the NP oracle classifier using the feature Xt1u or Xt2u can be written as

ϕ˚αt1upXq “ 1
`

Xt1u ă c1

˘

or ϕ˚αt2upXq “ 1
`

Xt2u ą c2

˘

.

These oracle classifiers have type II errors

R1

`

ϕ˚αt1u
˘

“ 1´ Φ

ˆ

c1 ´ µ
1
1

σ1

˙

, R1

`

ϕ˚αt2u
˘

“ Φ

ˆ

c2 ´ µ
1
2

σ2

˙

.

Because Φpaq ` Φp´aq “ 1 for any a P R and Φ´1pαq “ ´Φ´1p1 ´ αq for all α P p0, 1q, we
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have the chain of equivalence

R1

`

ϕ˚αt2u
˘

ě R1

`

ϕ˚αt1u
˘

ô Φ

ˆ

c2 ´ µ
1
2

σ2

˙

ě 1´ Φ

ˆ

c1 ´ µ
1
1

σ1

˙

ô
c2 ´ µ

1
2

σ2

ě ´
c1 ´ µ

1
1

σ1

ô
c2 ´ µ

0
2

σ2

`
µ0

2 ´ µ
1
2

σ2

ě ´
c1 ´ µ

0
1

σ1

´
µ0

1 ´ µ
1
1

σ1

ô Φ´1
p1´ αq `

µ0
2 ´ µ

1
2

σ2

ě ´Φ´1
pαq ´

µ0
1 ´ µ

1
1

σ1

ô ´
µ1

1 ´ µ
0
1

σ1

´
µ1

2 ´ µ
0
2

σ2

ě 0 .

Hence,

sign
 

R1

`

ϕ˚αt2u
˘

´R1

`

ϕ˚αt1u
˘(

“ sign

"

´
µ1

1 ´ µ
0
1

σ1

´
µ1

2 ´ µ
0
2

σ2

*

.

Finally to sum up scenarios (i)-(iv), we conclude that

sign
 

R1

`

ϕ˚αt2u
˘

´R1

`

ϕ˚αt1u
˘(

“ sign

"

|µ1
1 ´ µ

0
1|

σ1

´
|µ1

2 ´ µ
0
2|

σ2

*

.

Proof of Lemma 3

By the Neyman-Pearson Lemma (Lemma 1), we can write out NP oracles ϕ˚αA1
p¨q and ϕ˚αA2

p¨q

as follows:

ϕ˚αA1
pXq “ 1

´

`

µ1
1 ´ µ

0
1

˘T
Σ´1

1 XA1 ą c1

¯

, ϕ˚αA2
pXq “ 1

´

`

µ1
2 ´ µ

0
2

˘T
Σ´1

2 XA2 ą c2

¯

,

where

c1 “
1

2

`

T1 ´ µ
0
1
TΣ´1

1 µ
0
1 ` µ

1
1
TΣ´1

1 µ
1
1

˘

, c2 “
1

2

´

T2 ´ µ
0
2
T
Σ´1

2 µ
0
2 ` µ

1
2
T
Σ´1

2 µ
1
2

¯

,
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in which Ti , i “ 1, 2, is the threshold on log density ratio. The Ti’s vary with α and are

determined as in the Neyman-Pearson Lemma . Note that

`

µ1
1 ´ µ

0
1

˘T
Σ´1

1 XA1 | pY “ 0q P R ,
`

µ1
1 ´ µ

0
1

˘T
Σ´1

1 XA1 | pY “ 1q P R ,

follow Gaussian distributions with the same variance pµ1
1 ´ µ

0
1q

T
Σ´1

1 pµ1
1 ´ µ

0
1q. Similarly,

`

µ1
2 ´ µ

0
2

˘T
Σ´1

2 XA2 | pY “ 1q P R ,
`

µ1
2 ´ µ

0
2

˘T
Σ´1

2 XA2 | pY “ 0q P R ,

follow Gaussian distributions with the same variance pµ1
2 ´ µ

0
2q

T
Σ´1

2 pµ1
2 ´ µ

0
2q.

Let ĂXt1u “ pµ
1
1 ´ µ

0
1q

T
Σ´1

1 XA1 and ĂXt2u “ pµ
1
2 ´ µ

0
2q

T
Σ´1

2 XA2 . Denote by

µ̃1
1 “ E

´

ĂXt1u|Y “ 1
¯

“
`

µ1
1 ´ µ

0
1

˘T
Σ´1

1 µ
1
1 ,

µ̃0
1 “ E

´

ĂXt1u|Y “ 0
¯

“
`

µ1
1 ´ µ

0
1

˘T
Σ´1

1 µ
0
1 ,

µ̃1
2 “ E

´

ĂXt2u|Y “ 1
¯

“
`

µ1
2 ´ µ

0
2

˘T
Σ´1

2 µ
1
2 ,

µ̃0
2 “ E

´

ĂXt2u|Y “ 0
¯

“
`

µ1
2 ´ µ

0
2

˘T
Σ´1

2 µ
0
2 ,

rσ1 “ VarpĂXt1u|pY “ 1qq “ VarpĂXt1u|pY “ 0qq “
`

µ1
1 ´ µ

0
1

˘T
Σ´1

1

`

µ1
1 ´ µ

0
1

˘

,

rσ2 “ VarpĂXt2u|pY “ 1qq “ VarpĂXt2u|pY “ 0qq “
`

µ1
2 ´ µ

0
2

˘T
Σ´1

2

`

µ1
2 ´ µ

0
2

˘

.

Note that

µ̃1
1 ´ µ̃

0
1 “

`

µ1
1 ´ µ

0
1

˘T
Σ´1

1

`

µ1
1 ´ µ

0
1

˘

ě 0 ,

µ̃1
2 ´ µ̃

0
2 “

`

µ1
2 ´ µ

0
2

˘T
Σ´1

2

`

µ1
2 ´ µ

0
2

˘

ě 0 .

Apparently, when µ̃0
1 ď µ̃1

1 and µ̃0
2 ď µ̃1

2, 1pĂXt1u ą c1q and 1pĂXt2u ą c2q are the α-level

NP oracle classifiers using respectively 1-dimensional features ĂXt1u and ĂXt2u. Applying

Lemma 2 to ĂXt1u and ĂXt2u, we conclude that the given conditions in the Lemma guarantee

invariance of importance ranking of the NP oracles regarding the level α.
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Proof of Lemma 4

Let Kp¨q be a real-valued β-valid kernel function on Rd with the support r´1, 1sd . Let

u “ pv,wq where v P R and w P Rd´1 . Define K 1pv,wq :“
ş

Kpv,wqdv. Since
ş

K 1pwqdw “
ş ş

Kppv,wqqdvdw “
ş

Kpuqdu “ 1 , and K 1p¨q is clearly supported on r´1, 1sd´1, K 1p¨q is a

real-valued kernel function on Rd´1. For all l ě 1, it follows from Jensen’s inequality and

the first property of β-valid kernel of K that

ż

|K 1
pwq|ldw “

ż

ˇ

ˇ

ˇ

ˇ

ż

Kppv,wqqdv

ˇ

ˇ

ˇ

ˇ

l

dw ď

ż ż

|Kpuq|l dvdw “

ż

|K|l ă 8 . (S2.15)

By the second property of β-valid kernel of K,

ż

}w}β |K 1
pwq| dw “

ż

}w}β
ˇ

ˇ

ˇ

ˇ

ż

Kppv,wqqdv

ˇ

ˇ

ˇ

ˇ

dw ď

ż ż

}w}β |Kppv,wqq|dvdw

ď

ż ż

}pv,wq}β |Kppv,wqq|dvdw

ż

“

ż

}u}β|Kpuq|du ă 8 . (S2.16)

By the third property of β-valid kernel of K, for all t P Nd´1 such that 1 ď |p0, tq| ď tβu, we

have

ż

wtK 1
pwqdw “

ż

wt

ż

Kppv,wqqdvdw

“

ż ż

wtKppv,wqqdvdw “

ż

pv,wqp0,tqKpuqdu “ 0 . (S2.17)

Inequalities (S2.15)-(S2.17) together show that K 1p¨q is a β-valid kernel on Rd´1 with

support r´1, 1sd´1 .

Proof of Proposition 1

Given that the kernel K is β-valid, Lemma 4 implies that KA is β-valid. Since K is L1-

Lipschitz, for all u1,u2 P Rd, we have

|Kpu1q ´Kpu2q| ď L1}u1 ´ u2} .
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Now for any u1A,u2A P Rl,

|KApu1Aq ´KApu2Aq| “

ˇ

ˇ

ˇ

ˇ

ż

Kpu1A,uAcqduAc ´

ż

Kpu2A,uAcqduAc

ˇ

ˇ

ˇ

ˇ

“

ż

|Kpu1A,uAcq ´Kpu2A,uAcq| duAc

“

ż

r´1,1sd´l
|Kpu1A,uAcq ´Kpu2A,uAcq| duAc

ď

ż

r´1,1sd´l
L1}pu1A,uAcq ´ pu2A,uAcq}duAc

“

ż

r´1,1sd´l
L1}u1A ´ u2A}duAc

“ 2d´lL1}u1A ´ u2A} ,

where the second equality follows because K is assumed to have support r´1, 1sd. Therefore,

for any u1A,u2A P Rl,

|KApu1Aq ´KApu2Aq| ď L1A}u1A ´ u2A} .

for some positive constant L1Ap“ 2d´lL1q, i.e., KA is L1A-Lipshitz.

let hm1 “

´

logm1

m1

¯
1

2β``
. By Lemma 1 in [1], there exists some constant C0A that does not

depend on m1 and δ3, such that with probability at least 1´ δ3{2,

}p̂0ApxAq ´ p0ApxAq}8 ď ε0A ,

where ε0A “ C0A

b

logp2m1{δ3q
m1h`m1

, where C0A “
?

48c1A`32c2A`2Lc3A`L
1
A`L`C̃A

ř

1ď|q|ďtβu
1
q!

,

in which c1A “ }p0A}8}KA}
2, c2A “ }KA}8 ` }p0A}8 `

ş

|KA||t|
βdt, c3A “

ş

|KA||t|
βdt,

L1A “ 2d´lL1 and C̃A is such that C̃A ě sup1ď|q|ďtβu supxAPr´1,1sl |p
pqq
0A pxAq|.

Since for fixed number of d, there are finite number of subsets, C0 “ maxAC0A is finite.

Therefore, we have with probability at least 1´ δ3{2,

}p̂0Apxq ´ p0Apxq}8 ď ε0 ,
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where ε0 “ C0

b

logp2m1{δ3q
m1h`m1

. Similarly let hn1 “

´

logn1

n1

¯
1

2β``
, there exists some constant C1

that does not depend on n1 and δ3, such that with probability at least 1´ δ3{2,

}p̂1ApxAq ´ p1ApxAq}8 ď ε1 ,

where ε1 “ C1

b

logp2n1{δ3q
n1h`n1

. Also, because for all A P t1, ¨ ¨ ¨ , du, p1A is Hölder class on

compact set, and there is a bounded number of all p1A’s, there is universal upper bound U

of }p1A}8 for all A P t1, ¨ ¨ ¨ , du. Therefore, we have with probability at least 1´ δ3,

›

›

›

›

p̂1ApxAq

p̂0ApxAq
´
p1ApxAq

p0ApxAq

›

›

›

›

8

ď

›

›

›

›

p̂1ApxAq

p̂0ApxAq
´
p1ApxAq

p̂0ApxAq

›

›

›

›

8

`

›

›

›

›

p1ApxAq

p̂0ApxAq
´
p1ApxAq

p0ApxAq

›

›

›

›

8

ď

›

›

›

›

1

p̂0ApxAq

›

›

›

›

8

}p̂1ApxAq ´ p1ApxAq}8 `

›

›

›

›

p1A

p0A

›

›

›

›

8

›

›

›

›

p0A

p̂0A

´ 1

›

›

›

›

8

ď

›

›

›

›

1

p̂0ApxAq

›

›

›

›

8

}p̂1ApxAq ´ p1ApxAq}8 `

›

›

›

›

p1A

p0A

›

›

›

›

8

›

›

›

›

p0A ´ p̂0A

p̂0A

›

›

›

›

8

ď
ε1 ` ε0U{µmin

µmin ´ ε0

“: bm1,n1 .

When n1 ^m1 ě 2{δ3 ,

ε0 ď
?

2C0

ˆ

logm1

m1

˙β{p2β``q

, ε1 ď
?

2C1

ˆ

log n1

n1

˙β{p2β``q

.

These combined with
b

logp2m1{δ3q
m1h`m1

ă
µmin

2C0
imply that

bm1,n1 ď
rC

«

ˆ

logm1

m1

˙β{p2β``q

`

ˆ

log n1

n1

˙β{p2β``q
ff

, (S2.18)

for some positive constant rC that does not depend on the subset A.
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Proof of Lemma 5

Given any feature set A , let tTiA :“ ŝApX
0
iAq,X

0
i P S0

lou be the scores by applying the

scoring function ŝAp¨q “ p̂0Ap¨q{p̂1Ap¨q to S0
lo. Sort tTiAu in an increasing order such that

Tp1qA ď, . . . , Tpm2qA . Let pC 1αA “ Tpk1qA be a score threshold using k1-th order statistic, where

k1 “ rpm2 ` 1qdα,δ1,m2s, in which

dα,δ1,m2 “
1` 2δ1pm2 ` 2qp1´ αq `

a

1` 4δ1pm2 ` 2qp1´ αqα

2 tδ1pm2 ` 2q ` 1u
,

and rzs denotes the smallest integer larger than or equal to z. Denote the corresponding NP

classifier as

φ̂1αApXq “ 1

´

ŝApXAq ą pC 1αA

¯

.

Because we use kernel density estimates and the kernels are β-valid, the scoring function

ŝAp¨q is continuous. Therefore, by Proposition 1 in [2], we have

P
´

R0

´

φ̂1αA

¯

ą α
¯

“

m2
ÿ

j“k1

ˆ

m2

j

˙

p1´ αqjαm2´j ,

P
´

R0

´

φ̂αA

¯

ą α
¯

“

m2
ÿ

j“k˚

ˆ

m2

j

˙

p1´ αqjαm2´j .

Note that by the definition of k˚,

k˚ “ min

#

k :
m2
ÿ

j“k

ˆ

m2

j

˙

p1´ αqjαm2´j ď δ1

+

.

Proposition 2.2 in [3] implies P
´

R0

´

φ̂1αA

¯

ą α
¯

ď δ1. So we also have
řm2

j“k1

`

m2

j

˘

p1 ´

αqjαm2´j ď δ1. This together with the definition of k˚ implies that k1 ě k˚, and therefore

R0pφ̂αAq ě R0pφ̂
1
αAq.

By Lemma 2.1 in [3], for any δ2 P p0, 1q , if m2 ě
4
αδ1

,

P
´ˇ

ˇ

ˇ
R0

´

φ̂1αA

¯

´R0pϕ
˚
αAq

ˇ

ˇ

ˇ
ą ξ

¯

ď δ2 ,
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where ξ is defined by

ξ “

d

rdα,δ1,m2 pm2 ` 1qs pm2 ` 1´ rdα,δ1,m2 pm2 ` 1qsq

pm2 ` 2qpm2 ` 1q2 δ2

` dα,δ1,m2 `
1

m2 ` 1
´ p1´ αq .

Let E1 :“
!

R0

´

φ̂αA

¯

ď α
)

and E2 :“
!
ˇ

ˇ

ˇ
R0

´

φ̂1αA

¯

´R0pϕ
˚
αAq

ˇ

ˇ

ˇ
ď ξ

)

. On the event E1XE2,

which has probability at least 1´ δ1 ´ δ2, we have

α “ R0pϕ
˚
αAq ě R0pφ̂αAq ě R0pφ̂

1
αAq ě R0pϕ

˚
αAq ´ ξ ,

which implies
ˇ

ˇ

ˇ
R0pφ̂αAq ´R0pϕ

˚
αAq

ˇ

ˇ

ˇ
ď ξ .

If m2 ě maxpδ´2
1 , δ´2

2 q, we have ξ ď p5{2qm
´1{4
2 , also by Lemma 2.1 of [3].

Proof of Theorem 1

Decompose |NPCαA ´R1 pϕ
˚
αAq| as follows:

|NPCαA ´R1 pϕ
˚
αAq| ď

ˇ

ˇ

ˇ
NPCαA ´R1

´

φ̂αA

¯
ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ
R1

´

φ̂αA

¯

´R1 pϕ
˚
αAq

ˇ

ˇ

ˇ
.

First we derive a bound for |NPCαA ´R1pφ̂αAq|. Let D ą 0, then conditioning on ŝAp¨q and

pCαA, by Hoeffding’s inequality, we have

P

˜
ˇ

ˇ

ˇ

ˇ

ˇ

1

n2

n1`n2
ÿ

i“n1`1

1

´

ŝApX
1
iAq ă

pCαA

¯

´ E
”

1

´

ŝApX
1
Aq ă

pCαA

¯ı

ˇ

ˇ

ˇ

ˇ

ˇ

ą D
ˇ

ˇ

ˇ
ŝAp¨q , pCαA

¸

ď2e´2n2D2

.

This implies the following unconditional result,

P

˜ˇ

ˇ

ˇ

ˇ

ˇ

1

n2

n1`n2
ÿ

i“n1`1

1

´

ŝApX
1
iAq ă

pCαA

¯

´ E
”

1

´

ŝApX
1
Aq ă

pCαA

¯ı

ˇ

ˇ

ˇ

ˇ

ˇ

ď D

¸

ě 1´ 2e´2n2D2

.
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Let 2e´2n2D2
“ δ4 and then D “

b

1
2n2

log 2
δ4

. So we have with probability at least 1´ δ4 ,

ˇ

ˇ

ˇ
NPCαA ´R1

´

φ̂αA

¯
ˇ

ˇ

ˇ
ď

c

1

2n2

log
2

δ4

.

When n2 ě plog 2
δ4
q2,

ˇ

ˇ

ˇ
NPCαA ´R1

´

φ̂αA

¯ˇ

ˇ

ˇ
ď 1?

2
n
´ 1

4
2 .

Propositions 1 and 2 imply that, it holds with probability at least 1´ δ1 ´ δ2 ´ δ3,

ˇ

ˇ

ˇ
R1

´

φ̂αA

¯

´R1 pϕ
˚
αAq

ˇ

ˇ

ˇ

ď2C̄

«

ˆ

2

5
m

1{4
2 ¯
C

˙´1{γ́

` rC

«

ˆ

logm1

m1

˙β{p2β``q

`

ˆ

log n1

n1

˙β{p2β``q
ffff1`γ̄

` C˚αA

ˆ

2

5
m

1{4
2

˙´1

ď rC

«

ˆ

logm1

m1

˙

βp1`γ̄q
2β``

`

ˆ

log n1

n1

˙

βp1`γ̄q
2β``

`m
´p 1

4
^

1`γ̄

¯
γ
q

2

ff

.

for some generic constant rC. Since we consider fixed d, there are only a finite number of

constants C˚αA , and so they are bounded from above by a single constant that does not

depend on A. Therefore, we have with probability at least 1´ δ1 ´ δ2 ´ δ3 ´ δ4,

ˇ

ˇ

ˇ
NPCαA ´R1

´

φ̂αA

¯
ˇ

ˇ

ˇ
ď rC

«

ˆ

logm1

m1

˙

βp1`γ̄q
2β``

`

ˆ

log n1

n1

˙

βp1`γ̄q
2β``

`m
´p 1

4
^

1`γ̄

¯
γ
q

2 ` n
´ 1

4
2

ff

,

for some generic constant rC that does not depend on A.

Proof of Theorem 2

By Theorem 1, the sample size requirement on m1,m2, n1, n2, and |A1| ď d, we have with

probability at least 1´ pδ1 ` δ2 ` δ3 ` δ4q,

NPCαA1 ď R1pϕ
˚
αA1
q ` |NPCαA1 ´R1pϕ

˚
αA1
q| ď R1pϕ

˚
αA1
q `

g

2
.
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Similarly for each of j “ 2, . . . , K, we have with probability at least 1´ pδ1 ` δ2 ` δ3 ` δ4q,

NPCαAj ě R1pϕ
˚
αAj
q ´ |NPCαAj ´R1pϕ

˚
αAj
q| ě R1pϕ

˚
αAj
q ´

g

2
ą R1pϕ

˚
αA1
q `

g

2
,

where the last inequality follows from the assumption

min
APtA2,...,AKu

R1 pϕ
˚
αAq ´R1

`

ϕ˚αA1

˘

ą g .

Therefore, with probability at least 1´Kpδ1 ` δ2 ` δ3 ` δ4q,

NPCαA1 ă min
j“2,...,K

NPCαAj .

In other words, NPC selects the best model A1 among tA1, . . . , AKu.
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CHAPTER 3

P-value free FDR control in independent multiple

testing problems with small sample sizes:

high-throughput enrichment and differential analyses

3.1 Introduction

High-throughput technologies are widely used to measure system-wide biological features,

such as genes, genomic regions, and proteins (“high-throughput” means the number of fea-

tures is large, at least in thousands). The most common goal of analyzing high-throughput

data is to contrast two conditions so as to reliably screen “interesting features,” where

“interesting” means “enriched” or “differential.” “Enriched features” are defined to have

higher expected measurements (without measurement errors) under the experimental (i.e.,

treatment) condition than the background (i.e., the negative control) condition. The detec-

tion of enriched features is called “enrichment analysis.” For example, typical enrichment

analyses include calling protein-binding sites in a genome from chromatin immunoprecipita-

tion sequencing (ChIP-seq) data [76, 77] and identifying peptides from mass spectrometry

(MS) data [78]. In contrast, “differential features” are defined to have different expected

measurements between two conditions, and their detection is called “differential analysis.”

For example, popular differential analyses include the identification of differentially expressed

genes (DEGs) from genome-wide gene expression data (e.g., microarray and RNA sequencing

(RNA-seq) data [79–85]) and differentially interacting chromatin regions (DIRs) from Hi-C

data [86–88] (Fig. 3.1a). In most scientific research, the interesting features only constitute

a small proportion of all features, and the remaining majority is referred to as “uninteresting
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features.”
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Figure 3.1: High-throughput omics data analyses and generic FDR control methods. (a) Illustration of four common high-
throughput omics data analyses: peak calling from ChIP-seq data, peptide identification from MS data, DEG analysis from
RNA-seq data, and DIR analysis from Hi-C data. In these four analyses, the corresponding features are genomic regions
(yellow intervals), peptide-spectrum matches (PSMs; a pair of a mass spectrum and a peptide sequence), genes (columns in
the heatmaps), and chromatin interacting regions (entries in the heatmaps). (b) Illustration of Clipper and five generic FDR
control methods: BH-pair (and qvalue-pair), BH-pool (and qvalue-pool), and locfdr. The input data are d features with m
and n repeated measurements under the experimental and background conditions, respectively. Clipper computes a contrast
score for each feature based on the feature’s m and n measurements, decides a contrast-score cutoff, and calls the features with
contrast scores above the cutoff as discoveries. (This illustration is Clipper for enrichment analysis with m “ n.) BH-pair
or qvalue-pair computes a p-value for each feature based on the feature’s m and n measurements, sets a p-value cutoff, and
calls the features with p-values below the cutoff as discoveries. BH-pool or qvalue-pool constructs a null distribution from
the d features’ average (across the n replicates) measurements under the background condition, calculates a p-value for each
feature based on the null distribution and the feature’s average (across the m replicates) measurements under the experimental
condition, sets a p-value cutoff, and calls the features with p-values below the cutoff as discoveries. The locfdr method computes
a summary statistic for each feature based on the feature’s m and n measurements, estimates the empirical null distribution
and the empirical distribution of the statistic across features, computes a local fdr for each feature, sets a local fdr cutoff, and
calls the features with local fdr below the cutoff as discoveries.

The identified features, also called the “discoveries” from enrichment or differential anal-

ysis, are subject to further investigation and validation. Hence, to reduce experimental
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validation that is often laborious or expensive, researchers demand reliable discoveries that

contain few false discoveries. Accordingly, the false discovery rate (FDR) [4] has been de-

veloped as a statistical criterion for ensuring discoveries’ reliability. The FDR technically

is defined as the expected proportion of uninteresting features among the discoveries under

the frequentist statistical paradigm. In parallel, under the Bayesian paradigm, other criteria

have been developed, including the Bayesian false discovery rate [89], the local false discov-

ery rate (local fdr) [90], and the local false sign rate [91]. Among all these frequentist and

Bayesian criteria, the FDR is the dominant criterion for setting thresholds in biological data

analysis [76, 85, 92–98] and is thus the focus of this paper.

FDR control refers to the goal of finding discoveries such that the FDR is under a pre-

specified threshold (e.g., 0.05). Existing computational methods for FDR control primarily

rely on p-values, one per feature. Among the p-value-based methods, the most classic and

popular ones are the Benjamini-Hochberg (BH) procedure [4] and the Storey’s q-value [13];

later development introduced methods that incorporate feature weights [14] or covariates

(e.g., independent hypothesis weighting (IHW) [15], adaptive p-value thresholding [16], and

Boca and Leek’s FDR regression [17]) to boost the detection power. All these methods set a

p-value cutoff based on the pre-specified FDR threshold. However, the calculation of p-values

requires either distributional assumptions, which are often questionable, or large numbers

of replicates, which are often unachievable in biological studies (see Results). Due to these

limitations of p-value-based methods in high-throughput biological data analysis, bioinfor-

matics tools often output ill-posed p-values. This issue is evidenced by serious concerns

about the widespread miscalculation and misuse of p-values in the scientific community [99].

As a result, bioinformatics tools using questionable p-values either cannot reliably control

the FDR to a target level [97] or lack power to make discoveries [100]; see Results. Therefore,

p-value-free control of FDR is desirable, as it would make data analysis more transparent

and thus improve the reproducibility of scientific research.

Although p-value-free FDR control has been implemented in the MACS2 method for

ChIP-seq peak calling [76] and the SAM method for microarray DEG identification [101],

these two methods are restricted to specific applications and lack theoretical guarantee for
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FDR control1. More recently, the Barber-Candès (BC) procedure has been proposed to

achieve theoretical FDR control without using p-values [104], and it has been shown to per-

form comparably to the BH procedure with well-calibrated p-values [105]. The BC procedure

is advantageous because it does not require well-calibrated p-values, so it holds tremendous

potential in various high-throughput data analyses where p-value calibration is challenging

[106]. For example, a recent paper has implemented the BC procedure to control the FDR

in peptide identification from MS data [107].

Inspired by the BC procedure, we propose a general statistical framework Clipper to

provide reliable FDR control for high-throughput biological data analysis, without using p-

values or relying on specific data distributions. Clipper is a robust and flexible framework

that applies to both enrichment and differential analyses and that works for high-throughput

data with various characteristics, including data distributions, replicate numbers (from one

to multiple), and outlier existence.

3.2 The Clipper methodology

Clipper is a flexible framework that reliably controls the FDR without using p-values in

high-throughput data analysis with two conditions. Clipper has two functionalities: (I)

enrichment analysis, which identifies the “interesting” features that have higher expected

measurements (i.e., true signals) under the experimental condition than the background,

a.k.a. negative control condition (if the goal is to identify the interesting features with

smaller expected measurements under the experimental condition, enrichment analysis can

be applied after the values are negated); (II) differential analysis, which identifies the inter-

esting features that have different expected measurements between the two conditions. For

both functionalities, uninteresting features are defined as those that have equal expected

measurements under the two conditions.

Clipper only relies on two fundamental statistical assumptions of biological data analysis:

1Although later works have studied some theoretical properties of SAM, they are not about the exact
control of the FDR [102, 103].
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(1) measurement errors (i.e., differences between measurements and their expectations, with

the expectations including biological signals and batch effects) are independent across all

features and experiments; (2) every uninteresting feature has measurement errors identically

distributed across all experiments. These two assumptions are used in almost all bioinfor-

matics tools and commonly referred to as the “measurement model” in statistical genomics

[108].

In the following subsections, we will first introduce notations and assumptions used in

Clipper. Then we will detail how Clipper works and discuss its theoretical guarantee in

three analysis tasks: the enrichment analysis with equal numbers of replicates under two

conditions (m “ n), the enrichment analysis with different numbers of replicates under two

conditions (m ‰ n), and the differential analysis (when m` n ą 2)..

3.2.1 Notations and assumptions

To facilitate our discussion, we first introduce the following mathematical notations. For

two random vectors X “ pX1, . . . , Xmq
J and Y “ pY1, . . . , Ynq

J, or two sets of random

variables X “ tX1, . . . , Xmu and Y “ tY1, . . . , Ynu, we write X K Y or X K Y if Xi is

independent of Yj for all i “ 1, . . . ,m and j “ 1, . . . , n. To avoid confusion, we use cardpAq

to denote the cardinality of a set A and |c| to denote the absolute value of a scalar c. We

define a_ b :“ maxpa, bq.

Clipper only requires two inputs: the target FDR threshold q P p0, 1q and the input data.

Regarding the input data, we use d to denote the number of features with measurements

under two conditions, and we use m and n to denote the numbers of replicates under the

two conditions. For each feature j “ 1, . . . , d, we use Xj “ pXj1, . . . , Xjmq
J P Rm and

Y j “ pYj1, . . . , Yjnq
J P Rn to denote its measurements under the two conditions, where R

denotes the set of non-negative real numbers. We assume that all measurements are non-

negative, as in the case of most high-throughput experiments. (If this assumption does not

hold, transformations can be applied to make data satisfy this assumption.)

Clipper has the following assumptions on the joint distribution ofX1, . . . ,Xd,Y 1, . . . ,Y d.
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For j “ 1, . . . , d, Clipper assumes that Xj1, . . . , Xjm are identically distributed, so are

Yj1, . . . , Yjn. Let µXj “ ErXj1s and µY j “ ErYj1s denote the expected measurement of feature

j under the two conditions, respectively. Then conditioning on tµXju
d
j“1 and tµY ju

d
j“1,

Xj1, ¨ ¨ ¨ , Xjm, Yj1, ¨ ¨ ¨ , Yjn are mutually independent ; (3.1)

Xj KXk,Y j K Y k and Xj K Y k , @j, k “ 1, . . . , d.

An enrichment analysis aims to identify interesting features with µXj ą µY j (with Xj

and Y j defined as the measurements under the experimental and background conditions,

respectively), while a differential analysis aims to call interesting features with µXj ‰ µY j.

We define N :“ tj : µXj “ µY ju as the set of uninteresting features and denote N :“

cardpN q. In both analyses, Clipper further assumes that an uninteresting feature j satisfies

Xj1, ¨ ¨ ¨ , Xjm, Yj1, ¨ ¨ ¨ , Yjn are identically distributed , @j P N . (3.2)

Clipper consists of two main steps: construction and thresholding of contrast scores.

First, Clipper computes contrast scores, one per feature, as summary statistics that reflect

the extent to which features are interesting. Second, Clipper establishes a contrast-score

cutoff and calls as discoveries the features whose contrast scores exceed the cutoff.

To construct contrast scores, Clipper uses two summary statistics tp¨, ¨q : Rm ˆ Rn Ñ R

to extract data information regarding whether a feature is interesting or not:

tdiff
px,yq :“ x̄´ ȳ ; (3.3)

tmax
px,yq :“ max px̄, ȳq ¨ sign px̄´ ȳq , (3.4)

where x “ px1, . . . , xmq
J P Rm, y “ py1, . . . , ynq

J P Rn, x̄ “
řm
i“1 xi{m, ȳ “

řn
i“1 yi{n, and

signp¨q : R Ñ t´1, 0, 1u with signpxq “ 1 if x ą 0, signpxq “ ´1 if x ă 0, and signpxq “ 0

otherwise.
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3.2.2 Enrichment analysis with equal numbers of replicates (m “ n)

Under the enrichment analysis, we assume that Xj P Rm and Y j P Rn are the measurements

of feature j, j “ 1, . . . , d, under the experimental and background conditions with m and

n replicates, respectively. We start with the simple case when m “ n. Clipper defines a

contrast score Cj of feature j in one of two ways:

Cj :“ tdiff
pXj,Y jq difference contrast score , (3.5)

or

Cj :“ tmax
pXj,Y jq maximum contrast score . (3.6)

Accordingly, a large positive value of Cj bears evidence that µXj ą µY j. Motivated by

Barber and Candès [104] and Arias-Castro and Chen [105], Clipper proposes the following

BC procedure to control the FDR under the target level q P p0, 1q.

Definition 3.6 (Barber-Candès (BC) procedure for thresholding contrast scores [104]).

Given contrast scores tCju
d
j“1, C “ t|Cj| : Cj ‰ 0 ; j “ 1, . . . , du is defined as the set of

non-zero absolute values of Cj’s. The BC procedure finds a contrast-score cutoff TBC based

on the target FDR threshold q P p0, 1q as

TBC :“ min

"

t P C :
cardptj : Cj ď ´tuq ` 1

cardptj : Cj ě tuq _ 1
ď q

*

(3.7)

and outputs
 

j : Cj ě TBC
(

as discoveries.

Theorem 3. Suppose that the input data satisfy the Clipper assumptions (3.1)–(3.2) and

m “ n. Then for any q P p0, 1q and either definition of constrast scores in (3.5) or (3.6),

the contrast-score cutoff TBC found by the BC procedure guarantees that the discoveries have

the FDR under q:

FDR “ E

«

card
` 

j P N : Cj ě TBC
(˘

cardptj : Cj ě TBCuq _ 1

ff

ď q ,

where N “ tj : µXj “ µY ju denotes the set of uninteresting features.

The proof of Theorem 3 (Supp. Section S3.5.7) requires two key ingredients: Lemma 6,
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which states important properties of contrast scores, and Lemma 7 from [109], which states a

property of a Bernoulli process with independent but not necessarily identically distributed

random variables. The cutoff TBC can be viewed as a stopping time of a Bernoulli process.

Lemma 6. Suppose that the input data that satisfy the Clipper assumptions (3.1)–(3.2) and

m “ n, and that Clipper constructs contrast scores tCju
d
j“1 based on (3.5) or (3.6). Denote

Sj “ sign pCjq P t´1, 0, 1u. Then tSju
d
j“1 satisfy the following properties:

(a) S1, . . . , Sd are mutually independent ;

(b) PpSj “ 1q “ PpSj “ ´1q for all j P N ;

(c) tSjujPN K C.

Lemma 7. Suppose that Z1, . . . , Zd are independent with Zj „ Bernoullipρjq, and minj ρj ě

ρ ą 0. Let J be a stopping time in reverse time with respect to the filtration tFju, where

Fj “ σ ptpZ1 ` ¨ ¨ ¨ ` Zjq, Zj`1, ¨ ¨ ¨ , Zduq , (3.8)

with σp¨q denoting a σ-algebra. Then

E
„

1` J

1` Z1 ` ¨ ¨ ¨ ` ZJ



ď ρ´1.

Here we give a brief intuition about how Lemma 7 bridges Lemma 6 and Theorem 3 for

FDR control. First we note that the false discovery proportion (FDP), whose expectation is

the FDR, satisfies
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FDP :“
card

` 

j P N : Cj ě TBC
(˘

card ptj : Cj ě TBCuq _ 1
(3.9)

“
card

` 

j P N : Cj ě TBC
(˘

card ptj P N : Cj ď ´TBCuq ` 1
¨

card
` 

j P N : Cj ď ´T
BC
(˘

` 1

card ptj : Cj ě TBCuq _ 1
(3.10)

ď
card

` 

j P N : Cj ě TBC
(˘

card ptj P N : Cj ď ´TBCuq ` 1
¨

card
` 

j : Cj ď ´T
BC
(˘

` 1

card ptj : Cj ě TBCuq _ 1
(3.11)

ď
card

` 

j P N : Cj ě TBC
(˘

card ptj P N : Cj ď ´TBCuq ` 1
¨ q , (3.12)

where the last inequality follows from the definition of TBC (3.7).

By its definition, if TBC exists, it is positive. This implies that Clipper would never

call the features with Cj “ 0 as discoveries. Here we sketch the idea of proving Theorem

3 by considering a simplified case where C is fixed instead of being random; that is, we

assume the features with non-zero contrast scores to be known. Then, without loss of

generality, we assume C “ t1, . . . , du. Then we order the absolute values of uninteresting

features’ contrast scores, i.e., elements in t|Cj| : j P N u, from the largest to the smallest,

denoted by |Cp1q| ě |Cp2q| ě ¨ ¨ ¨ ě |CpNq|. Let J “
ř

jPN 1
`

|Cj| ě TBC
˘

, the number of

uninteresting features whose contrast scores have absolute values no less than TBC. When

J ą 0, |Cp1q| ě ¨ ¨ ¨ ě |CpJq| ě TBC. Define Zk “ 1
`

Cpkq ă 0
˘

, k “ 1, . . . , N . Then for each

order k, the following holds

Cpkq ě TBC
ðñ

ˇ

ˇCpkq
ˇ

ˇ ě TBC and Cpkq ą 0 ðñ k ď J and Zk “ 0 ;

Cpkq ď ´T
BC
ðñ

ˇ

ˇCpkq
ˇ

ˇ ě TBC and Cpkq ă 0 ðñ k ď J and Zk “ 1 .
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Then the upper bound of FDP becomes

cardptj P N : Cj ě TBCuq

cardptj P N : Cj ď ´TBCuq ` 1
¨ q “

řN
k“1 1

`

Cpkq ě TBC
˘

1`
řN
k“1 1

`

Cpkq ď ´TBC
˘ ¨ q

“

řJ
k“1 1

`

Cpkq ě TBC
˘

1`
řJ
k“1 1

`

Cpkq ď ´TBC
˘ ¨ q

“
p1´ Z1q ` ¨ ¨ ¨ ` p1´ ZJq

1` Z1 ` ¨ ¨ ¨ ` ZJ
¨ q

“

ˆ

1` J

1` Z1 ` ¨ ¨ ¨ ` ZJ
´ 1

˙

¨ q .

By Lemma 6(a)–(b), Zk
i.i.d.
„ Bernoullip0.5q, which together with Lemma 6(c) satisfy the

condition of Lemma 7 and make ρ “ 0.5. Then by Lemma 7, we have

FDR “ ErFDPs ď E
„

1` J

1` Z1 ` ¨ ¨ ¨ ` ZJ
´ 1



¨ q ď pρ´1
´ 1q ¨ q “ q ,

which is the statement of Theorem 3. The complete proof of Theorem 3 is in Supp. Section

S3.5.7.

3.2.2.1 An optional, heuristic fix if the BC procedure makes no discoveries

Although the BC procedure has theoretical guarantee of FDR control, it lacks power when

the number of replicates m “ n, the target FDR threshold q, and the number of features

d are all small (see Ge et al. [18] for evidence). As a result, the BC procedure may lead

to no discoveries. In that case, Clipper implements a heuristic fix—an approximate p-

value Benjamini-Hochberg (aBH) procedure—to increase the power. The aBH procedure

constructs an empirical null distribution of contrast scores by additionally assuming that

uninteresting features’ contrast scores follow a symmetric distribution around zero; it then

computes approximate p-values of features based on the empirical null distribution, and

finally it uses the BH procedure [4] to threshold the approximate p-values.

Definition 3.7 (The aBH procedure). Given contrast scores tCju
d
j“1, an empirical null

distribution is defined on E :“ tCj : Cj ă 0; j “ 1, . . . , du Y t´Cj : Cj ă 0; j “ 1, . . . , du.
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The aBH procedure defines the approximate p-value of feature j as

pj :“

ř

cPE 1pc ě Cjq

cardpEq _ 1
.

Then it applies the BH procedure with the target FDR threshold q to tpju
d
j“1 to call discoveries.

3.2.3 Enrichment analysis with any numbers of replicates m and n

When m ‰ n, the BC procedure cannot guarantee FDR control because Lemma 6 no longer

holds. To control the FDR in a more general setting (m “ n or m ‰ n), Clipper con-

structs contrast scores via permutation of replicates across conditions. The idea is that,

after permutation, every feature becomes uninteresting and can serve as its own negative

control.

Definition 3.8 (Permutation). We define σ as permutation, i.e., a bijection from the set

t1, ¨ ¨ ¨ ,m ` nu onto itself, and we rewrite the data X1, . . . ,Xd,Y 1, . . . ,Y d into a matrix

W:

W “

»

—

—

—

–

W11 ¨ ¨ ¨ W1m W1pm`1q ¨ ¨ ¨ W1pm`nq

...
...

Wd1 ¨ ¨ ¨ Wdm Wdpm`1q ¨ ¨ ¨ Wdpm`nq

fi

ffi

ffi

ffi

fl

:“

»

—

—

—

–

X11 ¨ ¨ ¨ X1m Y11 ¨ ¨ ¨ Y1n

...
...

Xd1 ¨ ¨ ¨ Xdm Yd1 ¨ ¨ ¨ Ydn

fi

ffi

ffi

ffi

fl

.

We then apply σ to permute the columns of W and obtain

Wσ :“

»

—

—

—

–

W1σp1q ¨ ¨ ¨ W1σpmq W1σpm`1q ¨ ¨ ¨ W1σpm`nq

...
...

Wdσp1q ¨ ¨ ¨ Wdσpmq Wdσpm`1q ¨ ¨ ¨ Wdσpm`nq

fi

ffi

ffi

ffi

fl

,

from which we obtain the permuted measurements
 

pXσ
j ,Y

σ
j q
(d

j“1
, where

Xσ
j :“

`

Wjσp1q, . . . ,Wjσpmq

˘J
,

Y σ
j :“

`

Wjσpm`1q, . . . ,Wjσpm`nq

˘J
. (3.13)
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In the enrichment analysis, if two permutations σ and σ1 satisfy that

tσp1q, ¨ ¨ ¨ , σpmqu “ tσ1p1q, ¨ ¨ ¨ , σ1pmqu ,

then we define σ and σ1 to be in one equivalence class. That is, permutations in the same

equivalence class lead to the same division of m`n replicates (from the two conditions) into

two groups with sizes m and n. In total, there are
`

m`n
m

˘

equivalence classes of permutations.

We define σ0 as the identity permutation such that σ0piq “ i for all i P t1, ¨ ¨ ¨ ,m`nu. In

addition, Clipper randomly samples h equivalence classes σ1, . . . , σh with equal probabilities

without replacement from the other hmax :“
`

m`n
m

˘

´ 1 equivalence classes (after excluding

the equivalence class containing σ0). Note that hmax is the maximum value h can take.

Clipper then obtains
 

pXσ0
j ,Y

σ0
j q, pX

σ1
j ,Y

σ1
j q, ¨ ¨ ¨ , pX

σh
j ,Y

σh
j q

(d

j“1
, where pXσ`

j ,Y
σ`
j q

are the permuted measurements based on σ`, ` “ 0, . . . , h. Then Clipper computes T σ`j :“

tdiffpXσ`
j ,Y

σ`
j q to indicate the degree of “interestingness” of feature j reflected by pXσ`

j ,Y
σ`
j q.

Note that Clipper chooses tdiff instead of tmax because empirical evidence shows that tdiff leads

to better power. Sorting tT σ`j u
h
`“0 gives

T
p0q
j ě T

p1q
j ě ¨ ¨ ¨ ě T

phq
j .

Then Clipper defines the contrast score of feature j, j “ 1, . . . , d, in one of two ways:

Cj :“

$

&

%

T
p0q
j ´ T

p1q
j if T

p0q
j “ T σ0

j

T
p1q
j ´ T

p0q
j otherwise

difference contrast score , (3.14)

or

Cj :“

$

’

’

’

&

’

’

’

%

ˇ

ˇ

ˇ
T
p0q
j

ˇ

ˇ

ˇ
if T

p0q
j “ T σ0

j ą T
p1q
j

0 if T
p0q
j “ T

p1q
j

´

ˇ

ˇ

ˇ
T
p0q
j

ˇ

ˇ

ˇ
otherwise

maximum contrast score . (3.15)

The intuition behind the contrast scores is that, if Cj ă 0, then 1pT
p0q
j “ T σ0

j q “ 0,
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which means that at least one of T σ1
j , . . . , T σhj (after random permutation) is greater than

T σ0
j calculated from the original data (identity permutation), suggesting that feature j is

likely an uninteresting feature in enrichment analysis. Motivated by Gimenez and Zou [110],

we propose the following procedure for Clipper to control the FDR under the target level

q P p0, 1q.

Definition 3.9 (Gimenez-Zou (GZ) procedure for thresholding contrast scores [110]). Given

h P t1, ¨ ¨ ¨ , hmaxu and contrast scores tCju
d
j“1, C “ t|Cj| : Cj ‰ 0 ; j “ 1, . . . , du is defined

as the set of non-zero absolute values of Cj’s. The GZ procedure finds a contrast-score cutoff

TGZ based on the target FDR threshold q P p0, 1q as:

TGZ :“ min

"

t P C :
1
h
` 1

h
card ptj : Cj ď ´tuq

card ptj : Cj ě tuq _ 1
ď q

*

(3.16)

and outputs
 

j : Cj ě TGZ
(

as discoveries.

Theorem 4. Suppose that the input data that satisfy the Clipper assumptions (3.1)–(3.2).

Then for any q P p0, 1q and either definition of contrast scores in (3.14) or (3.15), the

contrast-score cutoff TGZfound by the GZ procedure (3.16) guarantees that the discoveries

have the FDR under q:

FDR “ E

«

card
` 

j P N : Cj ě TGZ
(˘

card ptj : Cj ě TGZuq _ 1

ff

ď q ,

where N denotes the set of uninteresting features.

The proof of Theorem 4 (Supp. Section S3.5.7) is similar to that of Theorem 3 and

requires two key ingredients: Lemma 7, which is also used in the proof of Theorem 3, and

Lemma 8, which is similar to Lemma 6 and is about the properties of signs of tCju
d
j“1. The

cutoff TGZ can also be viewed as a stopping time of a Bernoulli process.

Lemma 8. For input data that satisfy the Clipper assumptions (3.1) and (3.2), Clipper con-

structs contrast scores tCju
d
j“1 based on (3.15) or (3.14). Denote Sj “ sign pCjq P t´1, 0, 1u.

Then tSju
d
j“1 and tCju

d
j“1 satisfy the following properties:
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(a) S1, . . . , Sd are mutually independent ;

(b) PpSj “ 1q ď 1
h`1

for all j P N ;

(c) tSjujPN K C.

We note that the GZ procedure is also applicable to the enrichment analysis with equal

numbers of replicates, i.e., m “ n (Section 3.2.2). We will compare the GZ procedure against

the BC procedure in our results.

3.2.4 Differential analysis with m` n ą 2

For differential analysis, Clipper also uses permutation to construct contrast scores. When

m ‰ n, the equivalence classes of permutations are defined the same as for the enrichment

analysis with m ‰ n. When m “ n, there is a slight change in the definition of equivalence

classes of permutations: if σ and σ1 satisfy that

tσp1q, ¨ ¨ ¨ , σpmqu “ tσ1p1q, ¨ ¨ ¨ , σ1pmqu or tσ1pm` 1q, ¨ ¨ ¨ , σ1p2mqu ,

then we say that σ and σ1 are in one equivalence class. In total, there are htotal :“
`

m`n
m

˘

(when m ‰ n) or
`

2m
m

˘

{2 (when m “ n) equivalence classes of permutations. Hence, to have

more than one equivalence class, we cannot perform differential analysis with m “ n “ 1; in

other words, the total number of replicates m` n must be at least 3.

Then Clipper randomly samples σ1, . . . , σh with equal probabilities without replacement

from the hmax :“ htotal ´ 1 equivalence classes that exclude the class containing σ0, i.e.,

the identity permutation. Note that hmax is the maximum value h can take. Next, Clipper

computes T σ`j :“
ˇ

ˇtdiffpXσ`
j ,Y

σ`
j q

ˇ

ˇ, where Xσ`
j and Y σ`

j are the permuted data defined in

(3.13), and it defines Cj as the contrast score of feature j, j “ 1, . . . , d, in the same ways as

in (3.14) or (3.15).

Same as in the enrichment analysis with m ‰ n, Clipper also uses the GZ procedure

[110] to set a cutoff on contrast scores to control the FDR under the target level q P p0, 1q,

following Theorem 4.
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3.2.5 Clipper variant algorithms

For nomenclature, we assign the following names to Clipper variant algorithms, each of which

combines a contrast score definition with a thresholding procedure.

‚ Clipper-diff-BC: difference contrast score Cj “ tdiffpXj,Y jq (3.5) and BC procedure

(Definition 3.6);

‚ Clipper-diff-aBH: difference contrast score Cj “ tdiffpXj,Y jq and aBH procedure

(Definition 3.7);

‚ Clipper-diff-GZ: difference contrast score τj “ T
p0q
j ´ T

p1q
j (3.14) and GZ procedure

(Definition 3.9);

‚ Clipper-max-BC: maximum contrast score Cj “ tmaxpXj,Y jq (3.6) and BC proce-

dure;

‚ Clipper-max-aBH: maximum contrast score Cj “ tmaxpXj,Y jq and aBH procedure;

‚ Clipper-max-GZ: maximum contrast score τj “ T
p0q
j (3.15) and GZ procedure.

3.2.6 R package “Clipper”

In the R package Clipper, the default implementation is as follows. Based on the power

comparison results in our manuscripts Ge et al. [18], Clipper uses Clipper-diff-BC as the

default algorithm for the enrichment analysis with equal numbers of replicates; when there

are no discoveries, Clipper suggests users to increase the target FDR threshold q or to use the

Clipper-diff-aBH algorithm with the current q. For the enrichment analysis with different

numbers of replicates under two conditions or the differential analysis, Clipper uses the

Clipper-max-GZ algorithm by default.
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3.3 Clipper has broad applications in omics data analyses

We then demonstrate the use of Clipper in four omics data applications: peptide identifi-

cation from MS data, DEG identification from RNA-seq data, and DIR identification from

Hi-C data. The first two applications are enrichment analyses, and the last two are differ-

ential analyses. In each application, we compared Clipper with mainstream bioinformatics

methods to demonstrate Clipper’s superiority in FDR control and detection power.

Peptide identification from MS data (enrichment analysis I)

The state-of-the-art proteomics studies use MS experiments and database search algorithms

to identify and quantify proteins in biological samples. In a typical proteomics experiment,

a protein mixture sample is first digested into peptides and then measured by tandem MS

technology as mass spectra, which encode peptide sequence information. “Peptide identi-

fication” is the process that decodes mass spectra and converts mass spectra into peptide

sequences in a protein sequence database via search algorithms. The search process matches

each mass spectrum to peptide sequences in the database and outputs the best match, called

a “peptide-spectrum match” (PSM). The identified PSMs are used to infer and quantify pro-

teins in a high-throughput manner.

False PSMs could occur when mass spectra are matched to wrong peptide sequences

due to issues such as low-quality spectra, data-processing errors, and incomplete protein

databases, causing problems in the downstream protein identification and quantification

[111]. Therefore, a common goal of database search algorithms is to simultaneously control

the FDR and maximize the number of identified PSMs, so as to maximize the number of

proteins identified in a proteomics study [78, 112, 113]. A widely used FDR control strategy

is the target-decoy search, where mass spectra of interest are matched to peptide sequences in

both the original (target) database and a decoy database that contains artificial false protein

sequences. The resulting PSMs are called the target PSMs and decoy PSMs, respectively.

The decoy PSMs, i.e., matched mass spectrum and decoy peptide pairs, are known to be

false and thus used by database search algorithms to control the FDR. Mainstream database
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search algorithms output a q-value for each PSM, target or decoy. Discoveries are the target

PSMs whose q-values are no greater than the target FDR threshold q.

We used the first comprehensive benchmark dataset from an archaea species Pyrococcus

furiosus to examine the FDR control and power of a popular database search algorithm

Mascot [78] (Supp. Section S3.5.4). Using this benchmark dataset (Supp. Section S3.5.5), we

demonstrate that, as an add-on, Clipper improves the power of Mascot. Specifically, Clipper

treats mass spectra as features. For each mass spectrum, Clipper considers its measurement

under the experimental condition as the ´ log10-transformed q-value of the target PSM that

includes it, and its measurement under the background condition as the ´ log10-transformed

q-value of the decoy PSM that includes it. Then Clipper decides which mass spectra and their

corresponding target PSMs are discoveries (Supp. Section S3.5.6). Based on the benchmark

dataset, we examined the empirical FDR, i.e., the FDP calculated based on the true positives

and negatives, and the power of Mascot with or without Clipper as an add-on, for a range

of target FDR thresholds: q “ 1%, 2%, . . . , 10%. Fig. 3.2a shows that although Mascot and

Mascot+Clipper both control the FDR, Mascot+Clipper consistently improves the power,

thus enhancing the peptide identification efficiency of proteomics experiments.

While preparing this manuscript, we found a recent work [107] that used a similar idea

to identify PSMs without using p-values. Clipper differs from this work in two aspects: (1)

Clipper is directly applicable as an add-on to any existing database search algorithms that

output q-values; (2) Clipper is not restricted to the peptide identification application.

DEG identification from RNA-seq data (differential analysis I)

RNA-seq data measure genome-wide gene expression levels in biological samples. An impor-

tant use of RNA-seq data is the DEG analysis, which aims to discover genes whose expression

levels change between two conditions. The FDR is a widely used criterion in DEG analysis

[79–84].

We compared Clipper with two popular DEG identification methods DESeq2 [80] and

edgeR [79] (Supp. Section S3.5.4). Specifically, we applied Clipper to two gene expression
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matrices, one per condition, to identify DEGs (Supp. Section S3.5.6). To verify the FDR

control of Clipper, DESeq2, and edgeR, we generated realistic semi-synthetic data from real

RNA-seq data of classical and non-classical human monocytes [114], i.e., two conditions

(Supp. Section S3.5.5). With ground truths (true DEGs and non-DEGs), the semi-synthetic

data allow evaluating each method’s FDR and power for a range of target FDR thresholds:

q “ 1%, 2%, . . . , 10%. Fig. 3.2b shows that Clipper consistently controls the FDR and

achieves high power. In contrast, edgeR controls the FDR but has lower power than Clipper

does, while DESeq2 fails to control the FDR. To explain this DESeq2 result, we examined

the p-value distributions of 16 non-DEGs that were most frequently identified from 200

synthetic datasets by DESeq2 at the target FDR threshold q “ 0.05. Our results in Fig. S3.3

show that the 16 non-DEGs’ p-values are non-uniformly distributed with a mode close to 0.

Such unusual enrichment of overly small p-values makes these non-DEGs mistakenly called

discoveries by DESeq2.

IHW is a popular procedure for boosting the power of p-value-based FDR control meth-

ods by incorporating feature covariates [15]. We used IHW as an add-on for DESeq2 and

edgeR by adding every gene’s mean expression across replicates and conditions as that gene’s

covariate, as suggested in [115]. The result in Supp. Fig. 3.2c shows that DESeq2+IHW and

edgeR+IHW are similar to DESeq2 and edgeR, respectively, in FDR control and power.
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Figure 3.2: Comparison of Clipper and popular bioinformatics methods in terms of FDR control and power. (a) peptide
identification on real proteomics data; (b) DEG analysis on synthetic bulk RNA-seq data; (c) DIR analysis on synthetic Hi-C
data. In all four panels, the target FDR level q ranges from 1% to 10%. Points above the dashed line indicate failed FDR
control; when this happens, the power of the corresponding methods is not shown, including HOMER in (a), MACS2 for target
FDR less than 5% in (a), DESeq2 and DESeq2 (IHW) in (c), and multiHICcompare and FIND in (d). In all four applications,
Clipper controls the FDR while maintaining high power, demonstrating Clipper’s broad applicability in high-throughput data
analyses.
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DIR analysis of Hi-C data (differential analysis II)

Hi-C experiments are widely used to investigate spatial organizations of chromosomes and

map chromatin interactions across the genome. A Hi-C dataset is often processed and

summarized into an interaction matrix, whose rows and columns represent manually binned

chromosomal regions and whose pi, jq-th entry represents the measured contact intensity

between the i-th and j-th binned regions. The DIR analysis aims to identify pairs of genomic

regions whose interaction intensities differ between conditions. Same as DEG analysis, DIR

analysis also uses the FDR as a decision criterion [86–88].

We compared Clipper with three popular DIR identification methods: diffHic [88], FIND

[87], and multiHiCcompare [86] (Supp. Section S3.5.4). Specifically, we applied Clipper to

DIR identification by treating pairs of genomic regions as features and interaction intensities

as measurements. To verify the FDR control of Clipper (Supp. Section S3.5.6), diffHiC,

FIND, and multiHiCcompare, we generated realistic synthetic data from real interaction

matrices of ENCODE cell line GM12878 [116] with true spiked-in DIRs to evaluate the FDR

and power (Supp. Section S3.5.5). We examined the actual FDR and power in a range of

target FDR thresholds: q “ 1%, 2%, . . . , 10%. Fig. 3.2c shows that Clipper and diffHic are

the only two methods that consistently control the FDR, while multiHiCcompare and FIND

fail by a large margin. In terms of power, Clipper outperforms diffHic except for q “ 0.01

and 0.02, even though Clipper has not been optimized for Hi-C data analysis. This result

demonstrates Clipper’s general applicability and strong potential for DIR analysis.

Discussion

In this paper, we proposed a new statistical framework, Clipper, for identifying interesting

features with FDR control from high-throughput data. Clipper avoids the use of p-values and

makes FDR control more reliable and flexible. We used comprehensive simulation studies

to verify the FDR control by Clipper under various settings. We demonstrate that Clip-

per outperforms existing generic FDR control methods by having higher power and greater
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robustness to model misspecification. We further applied Clipper to three popular bioin-

formatics analyses: peptide identification from MS data, DEG identification from RNA-seq

data, and DIR identification from Hi-C data. Our results indicate that Clipper can provide

a powerful add-on to existing bioinformatics tools to improve the reliability of FDR control

and thus the reproducibility of scientific discoveries.

We validated the FDR control by Clipper using extensive and concrete simulations, in-

cluding both model-based and real-data-based data generation with ground truths. In con-

trast, in most bioinformatics method papers, the FDR control was merely mentioned but

rarely validated. Many of them assumed that using the BH procedure on p-values would

lead to valid FDR control; however, the reality is often otherwise because p-values would be

invalid when model assumptions were violated or the p-value calculation was problematic.

Here we voice the importance of validating the FDR control in bioinformatics method de-

velopment, and we use this work as a demonstration. We believe that Clipper provides a

powerful booster to this movement. As a p-value-free alternative to the classic p-value-based

BH procedure, Clipper relies less on model assumptions and is thus more robust to model

misspecifications, making it an appealing choice for FDR control in diverse high-throughput

biomedical data analyses.

Clipper is a flexible framework that is easily generalizable to identify a variety of interest-

ing features. The core component of Clipper summarizes each feature’s measurements under

each condition into an informative statistic (e.g., the sample mean); then Clipper combines

each feature’s informative statistics under two conditions into a contrast score to enable FDR

control. The current implementation of Clipper only uses the sample mean as the informa-

tive statistic to identify the interesting features that have distinct expected values under

two conditions. However, by modifying the informative statistic, we can generalize Clipper

to identify the features that are interesting in other aspects, e.g., having different variances

between two conditions. Regarding the contrast score, Clipper makes careful choices be-

tween two contrast scores, difference and maximum, based on the number of replicates and

the analysis task (enrichment vs. differential). Future studies are needed to explore other

contrast scores and their power with respect to data characteristics and analysis tasks.
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We have demonstrated the broad application potential of Clipper in various bioinformat-

ics data analyses. Specifically, when used as an add-on to established, popular bioinformatics

methods such as Mascot for peptide identification, Clipper guaranteed the desired FDR con-

trol and in some cases boosted the power. However, many more careful thoughts are needed

to escalate Clipper into standalone bioinformatics methods for specific data analyses, for

which data processing and characteristics (e.g., peak lengths, GC contents, proportions of

zeros, and batch effects) must be appropriately accounted for before Clipper is used for the

FDR control [117, 118]. We expect that the Clipper framework will propel future develop-

ment of bioinformatics methods by providing a flexible p-value-free approach to control the

FDR, thus improving the reliability of scientific discoveries.
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3.5 Supplementary Material

S3.5.1 Review of generic FDR control methods

To facilitate our discussion, we introduce the notations for data. For feature j “ 1, . . . , d,

we use Xj “ pXj1, . . . , Xjmq
J P Rm and Y j “ pYj1, . . . , Yjnq

J P Rn to denote its mea-

surements under the experimental and background conditions, respectively. We assume
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that Xj1, . . . , Xjm are identically distributed, so are Yj1, . . . , Yjn. Let µXj “ ErXj1s and

µY j “ ErYj1s denote the expected measurement of feature j under the two conditions, re-

spectively. Then we denote by X̄j the sample average of Xj1, ¨ ¨ ¨ , Xjm and by Ȳj the sample

average of Yj1, ¨ ¨ ¨ , Yjn.

S3.5.2 P-value-based methods

Here we describe the details of p-value-based FDR control methods, including BH-pair, BH-

pool, qvalue-pair, and qvalue-pool. Each of these four methods first computes p-values using

either the pooled approach or the paired approach, and it then relies on the BH procedure

[1] or Storey’s qvalue procedure [2] for FDR control. In short, every p-value-based method

is a combination of a p-value calculation approach and a p-value thresholding procedure.

Below we introduce two p-value calculation approaches (paired and pooled) and two p-value

thresholding procedures (BH and Storey’s qvalue).

P-value calculation approaches

The paired approach. The paired approach examines one feature at a time and compares

its measurements between two conditions. Besides the ideal implementation, i.e., the correct

paired approach that uses the correct model to calculate p-values, we also include commonly-

used flawed implementations that either misspecify the distribution, i.e., the misspecified

paired approach, or misformulate the two-sample test as a one-sample test, i.e., the 2as1

paired approach.

Here we use the negative binomial distribution as an example to demonstrate the ideas

of the correct, misspecified, and 2as1 paried approaches. Suppose that for each feature j,

its measurements under each condition follow a negative binomial distribution, and the two

distributions under the two conditions have the same dispersion; that is, Xj1, ¨ ¨ ¨ , Xjm
i.i.d.
„

NB pµXj, θjq ; Yj1, ¨ ¨ ¨ , Yjn
i.i.d.
„ NB pµY j, θjq, where θj is the dispersion parameter such that

the variance VarpXjiq “ µXj ` θjµ
2
Xj.

‚ The correct paired approach assumes that the two negative binomial distributions have
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the same dispersion parameter θj, and it uses the two-sample test for the null hypoth-

esis H0 : µXj “ µY j against the alternative hypothesis H1 : µXj ą µY j (enrichment

analysis) or H1 : µXj ‰ µY j (differential analysis).

‚ The misspecified paired approach misspecifies the negative binomial distribution as

Poisson, and it uses the two-sample test for the null hypothesis H0 : µXj “ µY j against

the alternative hypothesis H1 : µXj ą µY j (enrichment analysis) or H1 : µXj ‰ µY j

(differential analysis).

‚ The 2as1 paired approach bluntly assumes µY j “ Ȳj, and it performs the one-sample

test based onXj1, . . . , Xjm for the null hypotheses H0 : µXj “ Ȳj against the alternative

hypothesis H1 : µXj ą Ȳj (enrichment analysis) or H1 : µXj ‰ Ȳj (differential analysis).

The pooled approach. The pooled approach pools all features’ average measurements

under the background condition
 

Ȳj
(d

j“1
to form a null distribution, and it calculates a p-

value for each feature j by comparing X̄j to the null distribution. Specifically, in enrichment

analysis, the p-value of feature j is computed as:

pj “
card

` 

k : Ȳk ě X̄j

(˘

d
.

In differential analysis, the p-value of feature j is computed as:

pj “ 2 ¨min

˜

card
` 

k : Ȳk ě X̄j

(˘

d
,

card
` 

k : Ȳk ď X̄j

(˘

d

¸

.

P-value thresholding procedures for FDR control

Definition S3.10 (BH procedure for thresholding p-values [1]). The features’ p-values

p1, . . . , pd are sorted in an ascending order pp1q ď pp2q ď . . . ď ppdq. Given the target FDR

threshold q, the Benjamini–Hochberg (BH) procedure finds a p-value cutoff TBH as

TBH :“ ppkq, where k “ max

"

j “ 1, . . . , d : ppjq ď
j

d
q

*

. (S3.17)

74



Then BH outputs
 

j : pj ď TBH
(

as discoveries.

Definition S3.11 (Storey’s qvalue procedure for thresholding p-values [2]). The features’

p-values p1, . . . , pd are sorted in an ascending order pp1q ď pp2q ď . . . ď ppdq. Let π̂0 denote

an estimate of the probability P pthe i-th feature is uninterestingq (see Storey [2] for details).

Storey’s qvalue procedure defines the q-value for ppdq as

q̂pppdqq :“
π̂0 ¨ d ¨ ppdq

card
` 

k : pk ď ppdq
(˘ “ π̂0 ¨ ppdq .

Then for j “ d´ 1, d´ 2, . . . , 1, the q-value for ppjq is defined as:

q̂pppjqq :“ min

˜

q̂pppj`1qq,
π̂0 ¨ d ¨ ppjq

card
` 

k : pk ď ppjq
(˘

¸

.

Then Storey’s qvalue procedure outputs tj : q̂ppjq ď qu as discoveries.

We use function qvalue from R package qvalue (v 2.20.0; with default estimate π̂0) to

calculate q-values.

Definition S3.12 (SeqStep+ procedure for thresholding p-values [3]). Define Hj
0 as the null

hypothesis for feature j and pj as the p-value for Hj
0, j “ 1, . . . , d. Order the null hypotheses

H1
0 , . . . , H

d
0 from the most to the least promising (here more promising means more likely to

be interesting) and denote the resulting null hypotheses and p-values as H
p1q
0 , . . . , H

pdq
0 and

pp1q, . . . , ppdq. Given any target FDR threshold q, a pre-specified constant s P p0, 1q, and

subset K Ď t1, . . . , du, the SeqStep+ procedure finds a cutoff ĵ as

ĵ :“ max

#

j P K :
1` card

` 

k P K, k ď j : ppkq ą s
˘(

card
` 

k P K, k ď j : ppkq ď s
˘(

_ 1
ď

1´ s

s
q

+

(S3.18)

Then SeqStep+ rejects
!

H
pjq
0 : ppjq ď s, j ď ĵ, j P K

)

. If the orders of the null hypotheses

are independent of the p-values, the SeqStep+ procedure ensures FDR control.

The GZ procedure (Definition 3.9) used in Clipper is a special case of the SeqStep+

procedure with s “ 1{ph`1q. Recall that given the number of non-identical permutations h P
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t1, ¨ ¨ ¨ , hmaxu and contrast scores tCju
d
j“1, the GZ procedure sorts t|Cj|u

d
j“1 in a decreasing

order:

|Cp1q| ě |Cp2q| ě ¨ ¨ ¨ ě |Cpdq| . (S3.19)

To see the connection between the GZ procedure and SeqStep+, we consider the null hy-

pothesis for the j-th ordered feature, j “ 1, . . . , d, as H
pjq
0 : µXpjq “ µY pjq and define the

corresponding p-value ppjq :“
rpT

σ0
pjq
q

h`1
, where rpT σ0

pjqq is the rank of T σ0

pjq in tT σ0

pjq, ¨ ¨ ¨ , T
σh
pjqu in a

descending order. We also define K :“ tj “ 1, . . . , d : Cj ‰ 0u as the subset of features with

non-zero Cj’s. Finally, we input the p-values, null hypothesis orders in (S3.19), s “ 1{ph`1q,

q and K into the SeqStep+ procedure, and we obtain the GZ procedure.

The BC procedure (Definition 3.6) is a further special case with h “ 1, ppjq :“
`

1pCpjq ą 0q ` 1
˘

{2,

and K :“ tj “ 1, . . . , d : Cj ‰ 0u.

S3.5.3 Local-fdr-based methods

The FDR is statistical criterion that ensures the reliability of discoveries as a whole. In

contrast, the local fdr focuses on the reliability of each discovery. The definition of the local

fdr relies on some pre-computed summary statistics zj for feature j, j “ 1, . . . , d. In the

calculation of local fdr, tz1, . . . , zdu are assumed to be realizations of an abstract random

variable Z that represents any feature. Let p0 or p1 denote the prior probability that any

feature is uninteresting or interesting, with p0`p1 “ 1. Let f0pzq :“ PpZ “ z | uninterestingq

or f1pzq :“ PpZ “ z | interestingq denote the conditional probability density of Z at z given

that Z represents an uninteresting or interesting feature. Thus by Bayes’ theorem, the

posterior probability of any feature being uninteresting given its summary statistic Z “ z is

Ppuninteresting | Z “ zq “ p0f0pzq{fpzq , (S3.20)

where fpzq :“ p0f0pzq ` p1f1pzq is the marginal probability density of Z. Accordingly, the

local fdr of feature j is defined as follows.

Definition S3.13 (Local fdr [4]). Given notations defined above, the local fdr of feature j
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is defined as

local-fdrj :“ f0pzjq{fpzjq .

Because p0 ď 1, local-fdrj is an upper bound of the posterior probability of feature j being

uninteresting given its summary statistic zj, defined in (S3.20).

Note that another definition of the local fdr is the posterior probability Ppuninteresting | zq

in (S3.20) [5]. Although this other definition is more reasonable, we do not use it but choose

Definition S3.13 because the estimation of p0 is ususally difficult. Another reason is that

uninteresting features are the dominant majority in high-throughput biological data, so p0

is often close to 1.

We define local-fdr-based methods as a type of FDR control methods by thresholding

local fdrs of features under the target FDR threshold q. Although the local fdr is different

from FDR, it has been shown that thresholding the local fdrs at q will approximately control

the FDR under q [4]. This makes local-fdr-based methods competitors against Clipper and

p-value-based methods.

Every local-fdr-based method is a combination of a local fdr calculation approach and a

local fdr thresholding procedure. Below we introduce two local fdr calculation approaches

(empirical null and swapping) and one local fdr thresholding procedure. After the combina-

tion, we have two local-fdr-based methods: locfdr-emp and locfdr-swap.

Local fdr calculation approaches

With z1, . . . , zd, the calculation of local fdr defined in Definition S3.13 requires the estimation

of f0 and f , two probability densities. f is estimated by nonparametric density estimation,

and f0 is estimated by either the empirical null approach [4] or the swapping approach, which

shuffles replicates between conditions [5]. With the estimated f̂ and f̂0, the estimated local

fdr of feature j is

{local-fdrj :“ f̂0pzjq{f̂pzjq . (S3.21)

The empirical null approach. This approach assumes a parametric distribution, typically
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the Gaussian distribution, to estimate f0. Then with the density estimate f̂ , the local fdr is

estimated for each feature j. The implementation of this approach depends on the numbers

of replicates.

‚ In 1vs1 enrichment and differential analyses, we define zj as

zj :“
Dj

b

1
d

řd
j“1

`

Dj ´ D̄
˘2
,

where Dj “ Xj1 ´ Yj1 and D̄ “
řd
j“1Dj{d.

‚ In 2vs1 enrichment and differential analyses, we define zj as

zj :“
X̄j ´ Yj1
b

s2Xj
2

,

where s2
Xj “

ř2
i“1pXji ´ X̄jq

2.

‚ In mvsn enrichment and differential analyses with m,n ě 2, we define zj as the two-

sample t-statistic with unequal variances:

zj :“
X̄j ´ Ȳj

b

s2Xj
m
`

s2Y j
n

,

where s2
Xj “

1
m´1

řm
i“1pXji ´ X̄jq

2 and s2
Y j “

1
n´1

řn
i“1pYji ´ Ȳjq

2 are the sample

variances of feature j under the experimental and background conditions.

Then t{locfdrju
d
j“1 are estimated from tzju

d
j“1 by function locfdr in R package locfdr (v

1.1-8; with default arguments).

The swapping approach. This approach swaps rm{2s replicates under the experimen-

tal condition with rn{2s replicates under the background condition. Then it calculates the

summary statistic for each feature on the swapped data, obtaining z11, . . . , z
1
d. Finally, it

estimates f0 and f by applying kernel density estimation to z11, . . . , z
1
d and z1, . . . , zd, re-

spectively (by function kde in R package ks). With f̂0 and f̂ , t{locfdrju
d
j“1 are calculated by
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Definition S3.13.

The implementation of this approach depends on the numbers of replicates. Below are

three special cases included in this work.

‚ In 1vs1 enrichment and differential analyses, the swapping approach is inapplicable

because interesting features would not become uninteresting after the swapping.

‚ In 2vs1 enrichment and differential analyses, we define zj and z1j as

zj “
Xj1 `Xj2

2
´ Yj1 ,

z1j “
Xj1 ` Yj1

2
´Xj2 .

‚ In 3vs3 enrichment and differential analyses with, we define zj and z1j as

zj “
Xj1 `Xj2

2
´
Yj1 ` Yj2

2
,

z1j “
Xj1 ` Yj1

2
´
Xj2 ` Yj2

2
.

Then we apply kernel density estimation to tzju
d
j“1 and

 

z1j
(d

j“1
to obtain f̂ and f̂0, respec-

tively. By (S3.21), we calculate t{locfdrju
d
j“1.

The local fdr thresholding procedure

Definition S3.14 (locfdr procedure). Given the local fdr estimates t {local-fdrju
d
j“1 and the

target FDR threshold q, the locfdr procedure outputs tj “ 1, . . . , d : {local-fdrj ď qu as discov-

eries.
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S3.5.4 Bioinformatic methods with FDR control functionality

Mascot for peptide identification from MS data

Mascot uses probability-based scoring to identify PSMs from mass-spectrometry data. We

ran Mascot in Proteome Discoverer 2.3.0.523 (ThermoScientific) with the following settings:

10 ppm precursor tolerance; 0.6 Da fragment tolerance; static modifications: methylthio

(C); dynamic modifications: deamination (NQ), oxidation (M). We ran Percolator [6] in

conjunction with Mascot with the target/decoy selection mode set to “separate.” For Mascot,

for a range of target FDR thresholds (q P t1%, 2%, . . . , 10%u), we identified the target PSMs

with Mascot q-values no greater than q as discoveries. To prepare the input for Clipper, we

set peptide and protein FDRs to 100% to obtain the entire lists of target PSMs and decoy

PSMs with their Mascot q-values.

Differentially expressed gene (DEG) methods for bulk RNA-seq data

edgeR edgeR models each gene’s read counts by using a negative binomial regression,

where the condition is incorporated as an indicator covariate, and the condition’s coefficient

represents the gene-wise differential expression effect [7]. We used R package edgeR version

3.30.0.

DESeq2 DESeq2 uses a similar negative binomial regression as edgeR to model each gene’s

read counts under two conditions. DESeq2 differs from edgeR mainly in their estimation of

the dispersion parameter in the negative binomial distribution [8]. We used the R package

DESeq2 version 1.28.1.

Differentially interacting chromatin regions (DIR) methods for Hi-C data

MultiHiCcompare MultiHiCcompare relies on a non-parametric method to jointly nor-

malize multiple Hi-C interaction matrices [9]. It uses a generalized linear model to detect

DIRs. MultiHiCcompare is an extension of the HiCcompare package [10]. We used R package
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multiHiCcompare version 1.6.0.

diffHic diffHic uses the statistical framework of the edgeR package to model biological

variability and to test for significant differences between conditions [11]. We used R package

diffHic version 1.20.0.

FIND FIND uses a spatial Poisson process to detect chromosomal regions that display

a significant difference between two regions’ interaction intensity and their neighbouring

interaction intensities [12]. We used R package FIND version 0.99.

S3.5.5 Benchmark data generation in omics data applications

Real MS standard data

The data generation information will be published in a future manuscript. Interested readers

should contact Dr. Leo Wang at lewang@coh.org.

Bulk RNA-seq data with synthetic spike-in DEGs

We used the human monocyte RNA-Seq dataset including 17 samples of classical monocytes

and 17 samples of nonclassical monocytes [13]. Each sample contains expression levels of

d “ 52,376 genes.

(i) We first performed normalization on all 34 samples using the edgeR normalization

method Trimmed Mean of M-values (TMM) [14]. We denote the resulting normalized

read count matrix of classical and non-classical monocytes by Xcl and Xncl, respectively.

Following the convention in bioinformatics, the columns and rows of Xcl and Xncl

represent biological samples and genes, respectively.

(ii) To define true DEGs, we first computed the log fold change of gene j by logfcj “

log2

“

pX̄ncl
j ` 1q{pX̄cl

j ` 1q
‰

for j “ 1, . . . , d, where Xcl
i and Xncl

i denote the i-th row

vector of Xcl and Xncl respectively and ¯̈ denotes the average of elements in a vector.
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We added the pseudo-count of 1 to avoid division by 0. We defined true DEGs as those

with logfcj ě 4 or logfcj ď ´4.

(iii) We generated synthetic data with 3 samples under both the experimental and back-

ground conditions, a typical design in bulk RNA-seq experiments. Specifically, if gene

j is a DEG, we randomly sampled without replacement 3 values from Xcl
j as counts

under the experimental condition, and another 3 values from Xncl
j as counts under the

background condition. If gene j is not a DEG, we randomly sampled 6 values without

replacement from pXcl
j ,X

ncl
j q and randomly split them into 3 and 3 counts under two

conditions.

(iv) We repeated Step (iii) for 200 times to generate 200 synthetic datasets.

The human monocyte RNA-Seq data set is available in the NCBI Sequence Read Archive

(SRA) under accession number SRP082682 (https://www.ncbi.nlm.nih.gov/Traces/study/?acc=srp082682).

Hi-C data with synthetic spike-in DIRs

The real Hi-C interaction matrix contains the pairwise interaction intensities of 250 binned

genomic regions in Chromosome 1. It is from the cell line GM12878 and available in the

NCBI Gene Expression Omnibus(GEO) under accession number GSE63525. We denote the

real interaction matrix as Xreal. Because Xreal is symmetric, we only focus on its upper

triangular part.

(i) Among the p250ˆ250´250q{2 “ 31,125 upper triangular entries (i.e., region pairs), we

selected 404 entries as true up-regulated DIRs, and 550 entries as true down-regulated

DIRs (Fig. S3.5).

(ii) Next, for the pi, jq-th entry, we generated a log fold change, denoted by fij, between

the two conditions as follows. We simulated fij from truncated Normalp100{|i´j|, 0.52q

with support r0.05,8q if the pi, jq-th entry is up-regulated, or from truncated Normalp´100{|i´

j|, 0.52q with support p´8,´0.05s if the pi, jq-th entry is down-regulated; if the pi, jq-th

entry is not differential, we set fij “ 0.
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(iii) Then we specify the mean measurement of the pi, jq-th entry under the two conditions

as µXij “ rX
realsij and µY ij “ rX

realsij ¨ e
fij , respectively.

(iv) We generated synthetic read counts of the pi, jq-th entry from NBpµXij, 1000´1q and

NBpµY ij, 1000´1q respectively under the two conditions.

(v) We repeated Step (iv) for 200 times to generate 200 synthetic datasets.

S3.5.6 Implementation of Clipper in omics data applications

Below we briefly introduce the implementation of Clipper in the four omics data applications.

All the results were obtained by running using R package Clipper (see package vignette

for details: https://github.com/JSB-UCLA/Clipper/blob/master/vignettes/Clipper.

pdf).

Peptide identification from mass spectrometry data

(i) We consider each mass spectrum as a feature and its target/decoy PSM as a repli-

cate under the experimental/background condition respectively. Then we consider

´ log10pq-value` 0.01q as the measurement of each PSM, where the q-value is output

by Mascot. Doing so, we summarized the Mascot output into a d ˆ pm ` nq matrix,

where d is the number of mass spectra, and m and n are the numbers of experimental

and control samples, respectively. We then applied Clipper to perform an enrichment

analysis to obtain a contrast score Cj for each mass spectrum j. If the mass spectrum

has no decoy or background measurement, we set Cj “ 0. In our study, m “ n “ 1, so

the default Clipper implementation is Clipper-diff-BC.

(ii) For any target FDR threshold q, Clipper gives a cutoff Tq on contrast scores.

(iii) The target PSMs whose mass spectra have contrast scores greater than or equal to Tq

are called discoveries.
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DEG identification from bulk RNA-seq data

(i) We consider each gene as a feature and the class label—classical and non-classical

human monocytes—as the two conditions. Then we consider log2-transformed read

counts with a pseudocount 1 as measurements. Doing so, we summarized the gene

expression matrix into a d ˆ pm ` nq matrix, where d is the number of genes, and m

and n are the numbers of samples under the two conditions, respectively. We then

applied Clipper to perform a differential analysis to obtain a contrast score Cj for each

gene. In our study, m “ n “ 3, so the default Clipper implementation is Clipper-max-

GZ with h “ 1.

(ii) For any target FDR threshold q, Clipper gives a cutoff Tq on contrast scores.

(iii) The genes with contrast scores greater than or equal to Tq are called discoveries.

DIR identification from Hi-C data

(i) We consider each pair of genomic regions as a feature and manually created two con-

ditions. Then we consider log-transformed read counts as measurements. Doing so,

we summarized the gene expression matrix into a d ˆ pm ` nq matrix, where d is the

total pairs of genomic regions, and m and n are the numbers of samples under the two

conditions, respectively. We then applied Clipper to perform a differential analysis to

obtain a contrast score Cj for each pair of genomic regions. In our study, m “ n “ 2,

so the default Clipper implementation is Clipper-max-GZ with h “ 1.

(ii) For any target FDR threshold q, Clipper gives a cutoff Tq on contrast scores.

(iii) The pairs of genomic regions with contrast scores greater than or equal to Tq are called

discoveries.
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S3.5.7 Proofs

Proof of Theorem 1

We first prove Theorem 3, which relies on Lemmas 6 and 7. Here we only include the proof

of Lemma 6 and defer the proof of Lemma 7 to Section S3.5.7.

Proof of Lemma 6. Here we prove that Lemma 6 holds when Cj is constructed using (3.5);

the proof is similar when Cj is constructed using (3.6).

When input data satisfy (3.1) and (3.2) and m “ n, properties (a) and (b) can be derived

directly. To prove property (c), it suffices to prove that for any j P N with Cj ‰ 0, Sj is

independent of |Cj|.

Note that X̄j and Ȳj are i.i.d for j P N when m “ n. Hence for any measurable set

A Ă r0,`8q,

P pSj “ 1, |Cj| P Aq “ P
`

tdiff
pXj,Y jq P A

˘

“ P
`

tdiff
pY j,Xjq P A

˘

“ P pSj “ ´1, |Cj| P Aq .

The first equality holds because tdiffpXj,Y jq “ Cj “ |Cj| when Sj “ 1. The second equality

holds because tdiffpXj,Y jq and tdiffpY j,Xjq are identically distributed when j P N . The

third equality holds because tdiffpY j,Xjq “ ´Cj; if ´Cj P A, then Sj “ ´1.

Because P pSj “ 1, |Cj| P Aq ` P pSj “ ´1, |Cj| P Aq “ P p|Cj| P Aq, it follows that

P pSj “ 1, |Cj| P Aq “
1

2
P p|Cj| P Aq “ PpSj “ 1qP p|Cj| P Aq ,

where the last equality holds because PpSj “ 1q “ 1{2 by property (b).

Hence, Sj and |Cj| are independent @j P N .

Proof of Theorem 3. Define a random subset of N as M :“ N ztj P N : Cj “ 0u “ tj P N :

Sj ‰ 0u.

First note that by Lemma 6(b), PpSj “ ´1q “ PpCj ă 0q “ 1{2 for all j P M Ă N .

Assume without loss of generality that M “ t1, . . . , d1u. We order t|Cj| : j P Mu,
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from the largest to the smallest, denoted by |Cp1q| ě |Cp2q| ě ¨ ¨ ¨ ě |Cpd1q|. Let J “

ř

jPN 1
`

|Cj| ě TBC
˘

, the number of uninteresting features whose contrast scores have ab-

solute values no less than TBC. When J ą 0, |Cp1q| ě ¨ ¨ ¨ ě |CpJq| ě TBC. Define

Zk “ 1
`

Cpkq ă 0
˘

, k “ 1, . . . , d1. Then for each order k, the following holds

Cpkq ě TBC
ðñ

ˇ

ˇCpkq
ˇ

ˇ ě TBC and Cpkq ą 0 ðñ k ď J and Zk “ 0 ;

Cpkq ď ´T
BC
ðñ

ˇ

ˇCpkq
ˇ

ˇ ě TBC and Cpkq ă 0 ðñ k ď J and Zk “ 1 .

Then

cardptj PM : Cj ě TBCuq

cardptj PM : Cj ď ´TBCuq ` 1
“

řd1

k“1 1
`

Cpkq ě TBC
˘

1`
řd1

k“1 1
`

Cpkq ď ´TBC
˘

“

řJ
k“1 1

`

Cpkq ě TBC
˘

1`
řJ
k“1 1

`

Cpkq ď ´TBC
˘

“
p1´ Z1q ` ¨ ¨ ¨ ` p1´ ZJq

1` Z1 ` ¨ ¨ ¨ ` ZJ

“
1` J

1` Z1 ` ¨ ¨ ¨ ` ZJ
´ 1 .

Because tSjujPN is independent of C (Lemma 6(c)), Lemma 6(a)-(b) still holds after C1, . . . , Cd1

are reordered as Cp1q, . . . , Cpd1q. Thus Z1, . . . , Zd1 are i.i.d. from Bernoullip1{2q. To summa-

rize, it holds that

tZjujPM

ˇ

ˇ

ˇ
M i.i.d.

„ Bernoullip1{2q .

Then by applying Lemma 7 and making ρ “ 0.5, we have:

E

«

cardp
 

j PM : Cj ě TBC
(

q

cardptj PM : Cj ď ´TBCuq ` 1

ˇ

ˇ

ˇ

ˇ

ˇ

M

ff

ď 1 (S3.22)
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Then

FDR “ E

«

cardp
 

j P N : Cj ě TBC
(

q

cardptj : Cj ě TBCuq _ 1

ff

“ E

«

cardp
 

j P N : Cj ě TBC
(

q

cardptj P N : Cj ď ´TBCuq ` 1
¨

cardp
 

j P N : Cj ď ´T
BC
(

q ` 1

cardptj : Cj ě TBCuq _ 1

ff

ď E

«

cardp
 

j P N : Cj ě TBC
(

q

cardptj P N : Cj ď ´TBCuq ` 1
¨

cardp
 

j : Cj ď ´T
BC
(

q ` 1

cardptj : Cj ě TBCuq _ 1

ff

ď q ¨ E

«

cardp
 

j P N : Cj ě TBC
(

q

cardptj P N : Cj ď ´TBCuq ` 1

ff

ď q ¨ E

«

E

«

cardp
 

j PM : Cj ě TBC
(

q

cardptj PM : Cj ď ´TBCuq ` 1

ˇ

ˇ

ˇ

ˇ

ˇ

M

ffff

ď q,

where M is random subset of N such that for each j P M, |Cj| ą 0. The last inequality

follows from (S3.22).

Proof of Theorem 2

We then prove Theorem 4, which relies on Lemmas 7 and 8. Here we introduce the proof of

Lemma 8 and defer the proof of Lemma 7 to Section S3.5.7.

Proof of Lemma 8. With input data satisfying (3.1) and (3.2), Cj constructed from (3.14)

or (3.15), property (a) can be derived directly.

To show property (b), note that for each uninteresting feature j P N , Xj and Y j

are from the same distribution; thus tT σ`j u
h
`“0 are identically distributed. Define an event

Ej :“
!

řh
`“0 1pT

σ`
j “ T

p0q
j q “ 1

)

, which indicates that T
p0q
j , the maximizer of tT σ`j u

h
`“0, is

unique. Then conditional on Ej, the maximizer is equally likely to be any of t0, . . . , hu, and

it follows that PpSj “ 1 | Ejq “ PpT σ0
j “ T

p0q
j | Ejq “ 1{ph ` 1q. Conditioning on that Ej

does not happen, PpSj “ 1 | Ecj q “ 0 . Thus PpSj “ 1q “ PpSj “ 1 | EjqPpEjq ` PpSj “
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1 | Ecj qPpEcj q ď 1{ph` 1q .

The proof of property (c) is similar to the Proof of Lemma 6(c). It suffices to show that

for any j P N with Cj ‰ 0 (that is, Ej occurs), Sj is independent of |Cj|. As Xj and Y j are

from the same distribution, tT σ`j u
h
`“0 are identically distributed. Hence for any measurable

set A Ă r0,`8q,

P pSj “ 1, |Cj| P A | Ejq “ P
´

T σ0
j “ T

p0q
j , |Cj| P A

ˇ

ˇ

ˇ
Ej
¯

“
1

h
P
´

T σ0
j ‰ T

p0q
j , |Cj| P A

ˇ

ˇ

ˇ
Ej
¯

“
1

h
P pSj “ ´1, |Cj| P A | Ejq .

The first equality holds because T σ0
j “ T

p0q
j when Sj “ 1. The second equality holds

because tT σ`j u
h
`“0 are identically distributed when j P N . The third equality holds because

T σ0
j ‰ T

p0q
j when Sj “ ´1.

Because P pSj “ 1, |Cj| P A | Ejq ` P pSj “ ´1, |Cj| P A | Ejq “ P p|Cj| P A | Ejq, it fol-

lows that

P pSj “ 1, |Cj| P A | Ejq “
1

h` 1
P p|Cj| P A | Ejq “ PpSj “ 1 | EjqP p|Cj| P A | Ejq ,

where the last equality holds because PpSj “ 1 | Ejq “ 1{ph` 1q.

Hence, Sj and |Cj| are independent @j P N with Cj ‰ 0.

Proof of Theorem 4. Define a random subset of N as M :“ N ztj P N : Cj “ 0u “ tj P

N : Sj ‰ 0u. Assume without loss of generality that M “ t1, . . . , d1u. We order t|Cj| :

j P Mu, from the largest to the smallest, denoted by |Cp1q| ě |Cp2q| ě ¨ ¨ ¨ ě |Cpd1q|. Let

J “
ř

jPN 1
`

|Cj| ě TGZ
˘

, the number of uninteresting features whose contrast scores have

absolute values no less than TGZ. When J ą 0, |Cp1q| ě ¨ ¨ ¨ ě |CpJq| ě TGZ. Define
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Zk “ 1
`

Cpkq ă 0
˘

, k “ 1, . . . , d1. Then for each order k, the following holds:

Cpkq ě TGZ
ðñ

ˇ

ˇCpkq
ˇ

ˇ ě TGZ and Cpkq ą 0 ðñ k ď J and Zk “ 0 ;

Cpkq ď ´T
GZ
ðñ

ˇ

ˇCpkq
ˇ

ˇ ě TGZ and Cpkq ă 0 ðñ k ď J and Zk “ 1 .

Then it follows that

cardptj PM : Cj ě TGZuq

cardptj PM : Cj ď ´TGZuq ` 1
“

řd1

k“1 1
`

Cpkq ě TGZ
˘

1`
řd1

k“1 1
`

Cpkq ď ´TGZ
˘

“

řJ
k“1 1

`

Cpkq ě TGZ
˘

1`
řJ
k“1 1

`

Cpkq ď ´TGZ
˘

“
p1´ Z1q ` ¨ ¨ ¨ ` p1´ ZJq

1` Z1 ` ¨ ¨ ¨ ` ZJ

“
1` J

1` Z1 ` ¨ ¨ ¨ ` ZJ
´ 1 .

Because tSjujPN is independent of C (Lemma 6(c)), Lemma 6(a)-(b) still holds after C1, . . . , Cd1

are reordered as Cp1q, . . . , Cpd1q. Thus Z1, . . . , Zd1 are i.i.d. from Bernoullipρkq. To summarize,

it holds that

tZjujPM

ˇ

ˇ

ˇ
M i.i.d.

„ Bernoullipρkq .

Then by applying Lemma 7 and making ρ “ h{ph` 1q, we have:

E
„

cardptj PM : Cj ě TGZuq

cardptj PM : Cj ď ´TGZuq ` 1



ď 1{h . (S3.23)
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Then

FDR “ E

«

cardp
 

j P N : Cj ě TGZ
(

q

cardptj : Cj ě TGZuq _ 1

ff

“ E

«

cardp
 

j P N : Cj ě TGZ
(

q

cardptj P N : Cj ď ´TGZuq ` 1
¨

cardp
 

j P N : Cj ď ´T
GZ
(

q ` 1

cardptj : Cj ě TGZuq _ 1

ff

ď h ¨ E

«

cardp
 

j P N : Cj ě TGZ
(

q

cardptj P N : Cj ď ´TGZuq ` 1
¨

1
h
cardp

 

j : Cj ď ´T
GZ
(

q ` 1
h

cardptj : Cj ě TGZuq _ 1

ff

ď hq ¨ E

«

cardp
 

j P N : Cj ě TGZ
(

q

cardptj P N : Cj ď ´TGZuq ` 1

ff

ď hq ¨ E

«

E

«

cardp
 

j PM : Cj ě TGZ
(

q

cardptj PM : Cj ď ´TGZuq ` 1

ˇ

ˇ

ˇ

ˇ

ˇ

M

ffff

ď q ,

where the second inequality follows from the definition of TGZ (3.16) and the last inequality

follows from (S3.23).

Proof of Lemma 2

Finally, we derive Lemma 7 by following the same proof same as in [15], which relies on

Lemma 9 and Corollary 1.

Lemma 9. Suppose that Z1, . . . , Zd
i.i.d.
„ Bernoullipρq. Let J be a stopping time in reverse

time with respect to the filtration tFju, where Fj “ σ ptpZ1 ` ¨ ¨ ¨ ` Zjq, Zj`1, ¨ ¨ ¨ , Zduq with

σp¨q denoting a σ-algebra, and the variables Z1, . . . , Zj are exchangeable with respect to tFju.

Then

E
„

1` J

1` Z1 ` ¨ ¨ ¨ ` ZJ



ď ρ´1.

Proof of Lemma 9. Define

Yj “ Z1 ` ¨ ¨ ¨ ` Zj P Fj
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and define the process

Mj “
1` j

1` Z1 ` ¨ ¨ ¨ ` Zj
“

1` j

1` Yj
P Fj.

In [3], it is shown that ErMds ď ρ´1. Therefore, by the optional stopping time theorem it

suffices to show that tMju is a supermartingale with respect to tFju. As tZ1, . . . , Zj`1u are

exchangeable with respect to Fj`1, we have

P pZj`1 “ 1 |Fj`1q “
Yj ` 1

1` j
.

Therefore, if Yj`1 ą 0,

E rMj |Fj`1s “
1` j

1` Yj`1

¨ P pZj`1 “ 0 |Fj`1q `
1` j

1` Yj`1 ´ 1
¨ P pZj`1 “ 1 |Fj`1q

“
1` j

1` Yj`1

¨
1` j ´ Yj`1

1` j
`

1` j

1` Yj`1 ´ 1
¨
Yj`1

1` j

“
1` j ´ Yj`1

1` Yj`1

` 1

“
1` pj ` 1q

1` Yj`1

“Mj`1.

If instead Yj`1 “ 0, then trivially Yj “ 0, and Mj “ 1` j ă 2` j “Mj`1. This proves that

tMju is a supermartingale with respect to tFju as desired.

Corollary 1. Suppose that A Ď t1, . . . , du is fixed, while Z1, . . . , Zd
i.i.d.
„ Bernoullipρq.

Let J be a stopping time in reverse time with respect to the filtration tFju, where Fj “

σ
´

t
ř

kďj,kPA Zku Y tZk : j ă k ă d, k P Au
¯

with σp¨q denoting a σ-algebra, and the vari-

ables tZk : k ď j, k P Au are exchangeable with respect to Fj. Then

E

«

1` card ptk : k ď J, k P Auq
1`

ř

kďJ,kPA Zk

ff

ď ρ´1.
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Proof of Corollary 1. Let A “ tj1, . . . , jmu where 1 ď j1 ă ¨ ¨ ¨ ă jm ď d. Then by consider-

ing the i.i.d. sequence

Zj1 , . . . , Zjm

in place of Z1, . . . , Zd, we see that this result is equivalent to Lemma 9.

Proof of Lemma 7. [From [3]] We may assume ρ ă 1 to avoid the trivial case. We first

introduce a different definition for tZju
d
j“1 by defining a random set A Ď t1, . . . , du where

for each j, independently,

P pj P Aq “ 1´ ρj
1´ ρ

.

We then define random variables Q1, . . . , Qd
i.i.d.
„ Bernoullipρq, which are generated indepen-

dently of the random set A. Finally, we define

Zj “ Qj ¨ 1 pj P Aq ` 1 pj R Aq . (S3.24)

Then tZju
d
k“1 are mutually independent and P pZj “ 1q “ 1 ´ Ppj P Aq ¨ PpQj “ 0q “ ρj,

that is, Zj „ Bernoullipρjq. This new definition of tZju
d
j“1 meet all the conditions required

by Lemma 7, so that we can apply this new definition in the following proof.

As Zj “ Qj ¨ 1 pj P Aq ` 1 pj R Aq for all j, we have

1` J

1` Z1 ` ¨ ¨ ¨ ` ZJ
“

1` card ptj ď J : j P Auq ` card ptj ď J : j R Auq
1`

ř

jďJ,jPAQj ` card ptj ď J : j R Auq
ď

1` card ptj ď J : j P Auq
1`

ř

jďJ,jPAQj

,

(S3.25)

where the last step uses the identify a`c
b`c

ď a
b

whenever 0 ă b ď a and c ě 0. Therefore, it

will be sufficient to prove that

E

«

1` card ptj ď J : j P Auq
1`

ř

jďJ,jPAQj

ˇ

ˇ

ˇ

ˇ

ˇ

A

ff

ď ρ´1, (S3.26)

To prove (S3.26), first let rQj “ Qj ¨ 1pj P Aq, and define a filtration tF 1
ju where F 1

j is the
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σ-algebra generated as

F 1
j “ σ

´!

rQ1 ` ¨ ¨ ¨ ` rQj, rQj`1, ¨ ¨ ¨ , rQd,A
)¯

.

Next for any j, by (S3.24) we see that

Z1 ` ¨ ¨ ¨ ` Zj, Zj`1, . . . , Zd P F 1
j ñ Fj Ď F 1

j,

so J is a stopping time (in reverse time) with respect to F 1
j. Finally, since the Qj’s are

independent of A, (S3.26) follows from Corollary 1 after conditioning on A.
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Figure S3.3: The p-value distributions of 16 non-DEGs that are most frequently identified by DESeq2 at q “ 5% from 200
synthetic datasets. The p-values of these 16 genes tend to be overly small, and their distributions are non-uniform with a mode
close to 0.
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Figure S3.4: Enrichment q-values of GO terms that are found enriched in the DEGs that are uniquely identified by Clipper in
pairwise comparison of (a) Clipper vs. edgeR and (b) Clipper vs. DESeq2. These GO terms are all related to immune response
and thus biologically meaningful.
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Figure S3.5: log10-transformed mean Hi-C interaction matrices (µX and µY in Section S3.5.5) under the two conditions. DIR
regions are highlighted in red squares.
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CHAPTER 4

FDR control in aggregating peptides identified by

multiple database search algorithms from mass

spectrometry data

4.1 Introduction

Proteomics studies have discovered essential roles of proteins in complex disease such as

neurodegenerative disease [119] and cancer [120–122]. These studies have demonstrated

the potential of using proteomics to identify clinical biomarkers for disease diagnosis and

therapeutic targets for disease treatment. In recent years, proteomics analytical technolo-

gies, particularly tandem mass spectrometry (MS)-based shotgun proteomics, have advanced

immensely, thus enabling high-throughput identification and quantification of proteins in bi-

ological samples. Compared to prior technologies, shotgun proteomics has simplified sample

preparation and protein separation, reduced time and cost, and saved procedures that may

result in sample degradation and loss [123]. In a typical shotgun proteomics experiment, a

protein mixture is first enzymatically digested into peptides, i.e., short amino acid chains

up to approximately 40-residue long; the resulting peptide mixture is then separated and

measured by tandem MS into tens of thousands of mass spectra. Each mass spectrum en-

codes the chemical composition of a peptide; thus, the spectrum can be used to identify the

peptide’s amino acid sequence and post-translational modifications, as well as to quantify

the peptide’s abundance with additional weight information (Fig. 4.1a).

Since the development of shotgun proteomics, numerous database search algorithms

have been developed to automatically covert mass spectra into peptide sequences. Pop-
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Figure 4.1: (a) The workflow of a typical shotgun proteomics experiment. The protein mixture is first digested into peptides,
short amino acid chains. The resulting peptide mixture is separated and measured by tandem mass spectrometry (MS) as mass
spectra, which encode the chemical composition of peptides. Then database search algorithms are used to decode these mass
spectra by identifying PSMs, peptides, proteins, modifications and etc. (b) Illustration of APIR in aggregating three database
search algorithms. We use S1„P1 to denote a PSM of mass spectrum S1 and peptide sequence P1 and etc. In the output of a
database search algorithm, a PSM with a higher score is marked by a darker color. Gray PSMs are missing from the output.
APIR adopts a sequential approach to aggregate database search algorithms 1, 2, and 3. In the first round, APIR applies
APIR-adjust or q-value/PEP thresholding to identify a set of identified target PSMs from the output of each database search
algorithm. APIR then selects the algorithm whose identified PSMs by APIR-adjust contain the highest number of unique
peptides and treats the corresponding identified PSMs as identified by APIR. In this example, APIR identified equal numbers
of PSMs from algorithms 1 and 3 but more unique peptides from algorithm 3; therefore, APIR selects algorithm 3 in the first
round. In the second round, APIR excludes all PSMs, both identified and unidentified by the selected database search algorithm
in the first round (algorithm 3 in this example), from the output of the remaining database search algorithms. Then it applies
APIR-adjust again to find the algorithm whose identified PSMs by APIR-adjust contain the highest number of unique peptides
(algorithm 1 in this example). APIR repeats this procedure in the subsequent rounds until all database search algorithms are
exhausted and outputs the union of PSMs identified in each round.

ular database search algorithms include SEQUEST [112], Mascot [78], MaxQuant [124],

Byonic [113], and MS-GF+ [125], among many others. A database search algorithm takes as

input the mass spectra from a shotgun proteomics experiment and a protein database that

contains all known protein sequences. For each mass spectrum, the algorithm identifies the

best matching peptide sequence, a subsequence of a protein sequence, from the database;

we call this process “peptide identification,” whose result is a “peptide-spectrum match”

99



(PSM). However, due to data imperfection (such as low-quality mass spectra, mistakes in

data processing, and incomplete protein database), the resulting PSMs often consist of many

false PSMs, causing issues in the downstream, system-wide identification and quantification

of proteins [126].

To ensure the accuracy of PSMs, the false discovery rate (FDR) has been used as the

most popular statistical criterion [127–136]. Technically, the FDR is defined as the expected

proportion of false PSMs among the identified PSMs; in other words, a small FDR indicates

good accuracy of PSMs. However, controlling the FDR is only one side of the story. Because

shotgun proteomics experiments are costly, a common goal of database search algorithms is to

identify as many true PSMs as possible to maximize the experimental output, in other words,

to maximize the identification power given a target, user-specified FDR threshold (e.g., 1%

or 5%). To achieve this goal, existing database search algorithms have predominantly relied

on the target-decoy search strategy [126] to estimate the FDR.

The key idea of the target-decoy search strategy is to generate a negative control of

PSMs by matching mass spectra against artificially created, false protein sequences, called

“decoy” sequences. Decoy sequences can be created in multiple ways, and a typical way

is to reverse each protein sequence to obtain a corresponding decoy sequence. Given the

decoy sequences, the target-decoy search strategy can be implemented as the concatenated

search or parallel search. In the concatenated search, a concatenated protein database is

created by pooling original protein sequences, called “target” sequences, with the decoy

sequences; then a database search algorithm uses the concatenated protein database to find

PSMs; consequently, each mass spectra is mapped to either a target sequence or a decoy

sequence with only one matching score (Fig. 4.2a). In the parallel search, a database search

algorithm conducts two parallel searches: a target search where each mass spectrum is

matched to target sequences and a decoy search where the mass spectrum is matched to

decoy sequences; consequently, each mass spectrum receives two matching scores from the

two searches (Fig. 4.2b). In both implementations, a PSM is called a target PSM or simply a

PSM if it contains a target sequence; otherwise, it is called a decoy PSM. Finally, a database

search algorithm uses the decoy PSMs, i.e., the PSMs known to be false, to estimate the
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FDR [126, 131]. In technical terms, each target PSM receives a q-value from an algorithm

such as Byonic, Mascot, SEQUEST, and MS-GF+ [78, 112, 113, 125] or a posterior error

probability (PEP) from an algorithm such as MaxQuant [124] (see Online Methods). Both

q-value and PEP are related to the FDR so that users can control the FDR under a threshold

q if they keep only the target PSMs with q-values or PEPs not exceeding q; however, the

FDR control is only guaranteed when the q-values and PEPs are valid [130].
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Figure 4.2: Two implementations of the target-decoy search strategy: concatenated (a) and parallel (b). In the concatenated
search, a concatenated protein database is created by pooling original protein sequences, called “target” sequences, with the
decoy sequences; then a database search algorithm uses the concatenated protein database to find PSMs; consequently, each
mass spectra is mapped to either a target sequence or a decoy sequence with only one matching score. In the parallel search,
a database search algorithm conducts two parallel searches: a target search where each mass spectrum is matched to target
sequences and a decoy search where the mass spectrum is matched to decoy sequences; consequently, each mass spectrum
receives two matching scores from the two searches. In both implementations, a PSM is called a target PSM or simply a PSM
if it contains a target sequence; otherwise, it is called a decoy PSM.

It has been observed that, with the same input mass spectra and FDR threshold, different

database search algorithms may find largely distinct sets of target PSMs [19–23]. There are
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two possible reaons of this phenomenon. One is that different algorithms find different sets

of true PSMs by design. The other is that some algorithms have identified excessive false

PSMs due to failed FDR control. It is important to disentangle these two reasons because, if

the former is true, we may aggregate the distinct sets of target PSMs to increase the peptide

identification power; otherwise, we must refine the output of the algorithms that have failed

to control the FDR before performing the aggregation.

To leverage database search algorithms’ distinct advantages, statistical methods have

been developed to aggregate search results from multiple database search algorithms. We re-

fer to these methods as aggregation methods. Existing aggregation methods include Scaffold

[22], MSblender [136], FDRAnalysis [137], iProphet [135], ConsensusID [134], and PepArML

[127]. Among these six methods, except FDRAnalysis that has been shown infeasible for

high-throughput proteomics [19], the rest have two major drawbacks: (1) limited compat-

ibility with database search algorithms and (2) lack of guarantee to identify more pep-

tides. About the first drawback, these aggregation methods unanimously limit the choices of

database search algorithms. In particular, only Scaffold supports Byonic, which demonstrates

superior performance in both FDR control and power on our newly generated proteomics

standard dataset (see Results and Fig. 4.3a and b for details). Moreover, none of these

aggregation methods support some recently published database search algorithms such as

TagGraph [138] or Bolt [139] (see Online Methods for a list of database search algorithms

compatible with each aggregation method). As for the second drawback, although empir-

ical evidence shows that, on some datasets, these aggregation methods may identify more

target PSMs than those identified by individual database search algorithms, none of these

aggregation methods is guanranteed to do so.

In addition to the above aggregation methods developed for proteomics data, generic

statistical methods developed for aggregating rank lists are in theory applicable to aggre-

gating the target PSM lists output by different database search algorithms. However, none

of these methods have been used for proteomics data, nor are they guaranteed to increase

the identified target PSMs given an FDR threshold. Therefore, the field calls for a robust,

powerful, and flexible aggregation method that allows researchers to reap the benefits of the
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Figure 4.3: Benchmarking APIR-adjust and the five popular database search algorithms—Byonic, Mascot, SEQUEST,
MaxQuant, and MS-GF+—on the complex proteomics standard dataset in terms of FDR control and power. (a) Venn diagrams
of the true target PSMs identified by Byonic, Mascot, SEQUEST, MaxQuant, and MS-GF+ at the FDR threshold q “ 1%
(left) and q “ 5% (right). (b)-(c) At the FDR threshold q P t1%, 2%, ¨ ¨ ¨ , 10%u, FDPs and power of each of the five database
search algorithms when all target PSMs are present (b) or when the 1416 target PSMs identified by all five database search
algorithms at the FDR threshold q “ 5% are removed from each database search algorithm (c).

diverse and ever-growing database search algorithms.

Here we develop Aggregate Peptide Identification Results (APIR), a statistical framework
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that aggregates peptide identification results from multiple database search algorithms with

FDR control. APIR is the first statistical framework that is universally adaptive to database

search algorithms outputting PSMs with scores (e.g., q-values or PEPs) and is guaranteed to

identify at least the same number of, if not more, peptides than individual database search

algorithm. APIR is a robust, flexible, and powerful framework that enhances the power

while controlling the FDR of peptide identification from shotgun proteomics data.

4.2 APIR methodology

APIR aims to combine the PSMs identified from multiple database search algorithms with

valid FDR control. Aside from an FDR threshold q (e.g., 5%), from the output of each

database search algorithm, APIR inputs a list of target PSMs with scores and a list of

decoy PSMs with scores. APIR is a sequential FDR control framework that relies on APIR-

adjust, a core component of APIR, to control FDR in each step. Below we introduce the

details of APIR by first introducing APIR-adjust and then the general framework based on

APIR-adjust for aggregating search results.

4.2.1 APIR-adjust: FDR control on the target PSMs identified by individual

search algorithms

The core component of APIR is APIR-adjust, an FDR-control method that re-identifies

target PSMs from a single database search algorithm. APIR-adjust takes as input an FDR

threshold q, a list of target PSMs with scores, and a list of decoy PSMs with scores. APIR-

adjust then outputs identified target PSMs.

We first define the target coverage proportion as the proportion of target PSMs whose

mass spectra also appear among the decoy PSMs. Depending on the database search algo-

rithms and the implementation of target-decoy search strategy (concatenated or parallel),

the target coverage proportion could vary from 0 to 1. When the target coverage proportion

is high, most of the target PSMs could be one-to-one paired with decoy PSMs by their mass

spectra so that in each pair, the decoy PSM score serves as a negative control for the target
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PSM score. When the proportion is low, we cannot form many pair-decoy score pairs but

to use decoy PSM scores collectively as a negative control. We thus design two approaches,

tailored specifically for these two scenarios, into APIR-adjust.

Here we introduce notations to facilitate our discussion. Suppose a database search

algorithm outputs m target PSMs with scores T1, . . . , Tm and n decoy PSMs with scores

D1, . . . , Dn. Also, suppose that among the m target PSMs, the first s ď minpm,nq target

PSMs can be paired one-to-one with decoy PSMs; accordingly, the target coverage proportion

is s{m. Without loss of generality, we rearrange decoy PSM indices such that the i-th decoy

PSM shares the same mass spectrum with the i-th target PSM for 1 ď i ď s.

When the target coverage proportion is relatively high (s{m ě 40%), APIR-adjust iden-

tifies target PSMs using Clipper in Chapter 3, a p-value-free statistical framework for FDR

control on high-throughput data by contrasting two conditions. Specifically, Clipper con-

structs a contrast score Ci “ Ti´Di if i “ 1, . . . , s and Ci “ 0 if i “ s`1, . . . ,m; then it finds

a cutoff Cthre “ min
!

t P t|Ci| : Ci ‰ 0u : |i:Ciď´t|`1
maxp|i:Ciět|,1q

ď q
)

, and outputs ti : Ci ě Cthreu as

the indices of identified target PSMs. Based on Clipper, APIR-adjust requires two assump-

tions to control the FDR: first, T1, . . . , Tm, D1, . . . , Dn are mutually independent, and second,

Ti and Di are identically distributed if the i-th target PSM is false. See the original paper

for detailed proofs that guarantee FDR control [18].

When the target coverage proportion is relatively low (s{m ă 40%), APIR-adjust uses

the pooled approach, a p-value-based approach described in Section S3.5.2, to identify target

PSMs. By assuming that the scores of decoy PSMs and false target PSMs are independently

and identically distributed, the p-value-based approach constructs a null distribution by

pooling Dj, j “ 1, . . . , n. Then APIR-adjust computes a p-value for the i-th target PSM as

the tail probability right of Ti, i.e., pi “ |tj : Dj ě Tiu|{n, i “ 1, . . . ,m, and controls FDR

using the Benjamini-Horchberg procedure [4].
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4.2.2 APIR: a sequential framework for aggregating multiple search algorithms’

identified target PSMs with FDR control

Suppose we are interested in aggregating K algorithms. Let Wk denote the set of target

PSMs output by the k-th algorithm, k “ 1, . . . , K. APIR adopts a sequential approach that

consists of K rounds.

‚ In the first round, APIR applies APIR-adjust or q-value/PEP thresholding to each

algorithm’s output with the FDR threshold q. Denote the identified target PSMs from

the k-th algorithm by U1k Ă Wk. Define J1 P t1, ¨ ¨ ¨ , Ku to be the algorithm such that

U1J1 contains the highest number of unique peptides among U11, . . . , U1K . We use the

number of unique peptides rather than the number of PSMs because peptides are more

biologically relevant than PSMs.

‚ In the second round, APIR first excludes all target PSMs output by the J1-th algo-

rithm, identified or unidentified in the first round, i.e., WJ1 , from the outputs of the

remaining database search algorithms, resulting in reduced sets of candidate target

PSMs W1zWJ1 , . . . , WKzWJ1 . Then APIR applies APIR-adjust with FDR threshold

q to these reduced sets except WJ1zWJ1 “ H. Denote the resulting sets of identified

target PSMs by U2k Ă pWkzWJ1q, k P t1, . . . , KuztJ1u. Again APIR finds the J2-th

algorithm such that U2J2 contains the most unique peptides.

‚ APIR repeats this in the subsequent rounds. In Round ` with ` ě 2, APIR first

excludes all target PSMs output by the selected `´ 1 database search algorithms from

the outputs of remaining database search algorithms and applies APIR-adjust. That

is, APIR applies APIR-adjust with FDR threshold q to identify a set of identified

PSMs U`k from WkzpWJ1 Y ¨ ¨ ¨ YWJ`´1
q, the reduced candidate pool of algorithm k

after the previous ` ´ 1 rounds, for algorithms k P t1, ¨ ¨ ¨ , KuztJ1, ¨ ¨ ¨ , J`´1u. Then

APIR finds the algorithm, which we denote by J`, such that U`J` contains the most

unique peptides.

‚ Finally, APIR outputs U1J1 Y ¨ ¨ ¨ Y UKJK as the identified target PSMs.
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By adopting this sequential approach, APIR is guaranteed to identify at least as many, if

not more, unique peptides as those identified by a single database search algorithm; under

reasonable assumptions, APIR controls the FDR of the identified target PSMs under q. See

Fig. 4.1b for graphical illustration and Section S4.6.10 for the the theoretical guarantee of

FDR control by APIR.

4.3 Results

To benchmark existing database search algorithms and aggregation methods including APIR,

we generated the first publicly available complex proteomics standard dataset that ap-

proaches the dynamic range of a typical proteomics experiment from Pyrococcus Furiosus

(Pfu). We also designed simulation studies to benchmark APIR against naive aggregation

approaches: intersection and union. To demonstrate the power of APIR, we applied it to

five real datasets, including the proteomics standard dataset, three acute myeloid leukemia

(AML) datasets, and a triple-negative breast cancer (TNBC) dataset. Notably, out of the

three AML datasets, we generated two from bone marrow samples of acute myeloid leukemia

(AML) patients with either enriched or depleted leukemia-stem-cells (LSC) for studying the

disease mechanisms of AML.

4.3.1 Byonic, Mascot, SEQUEST, MaxQuant and MS-GF+ capture unique

true PSMs on the proteomics standard dataset, but MaxQuant fails to

control the FDR

We first benchmarked five popular database search algorithms: Byonic [113], Mascot [78],

SEQUEST [112], MaxQuant [124], and MS-GF+ [125] on the proteomics standard dataset.

Specifically, we ran tandem MS analysis to generate 49, 303 mass spectra from Pfu. We

then generated a reference database by concatenating the Pfu database, the Uniprot Human

database, and two contaminant databases: the contaminant repository for affinity purifi-

cation (the CRAPome) [140] and the contaminant database from MaxQuant. During the

process, we performed in silico digestion to remove the overlapping peptides between Pfu
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and human from the human database. Finally, we input the resulting database and the Pfu

mass spectra into a database search algorithm. We consider a target PSM, a peptide, or a

protein as true if the database search algorithm reports its master protein as from either Pfu

or the two contaminants and as false otherwise. See Methods for experimental details about

the generation of this benchmark data and how we benchmark these five database search

algorithms.

Our results in Fig. 4.3a show that individual database search algorithms indeed capture

unique PSMs. At both q “ 1% and 5%, all five database search algorithms identify unique

true target PSMs. Notably, at q “ 1%, the number of true target PSMs identified by Byonic

alone (2, 720) is nearly four times the number of overlapping PSMs among the five database

search algorithms (727). At q “ 5%, Byonic again identifies more unique true target PSMs

(1, 903) than the overlap among the five database search algorithms (1, 416). Additionally,

MaxQuant and MS-GF+ also demonstrate their distinctive advantages: MaxQuant identifies

147 and 520 unique true PSMs while MS-GF+ identifies 153 and 218 at q “ 1% and 5%

respectively. In contrast, SEQUEST and Mascot show little advantage in the presence

of Byonic: Byonic nearly covers the identified true PSMs from SEQUENST and Mascot

(Fig. 4.3a). Our results confirm some database search algorithms’ distinctive advantages in

identifying unique PSMs, which aligns well with existing literature [19–23, 141].

In terms of FDR control, the four database search algorithms—Byonic, Mascot, SE-

QUEST, and MS-GF+—demonstrate robust FDR control as they keep FDP on the bench-

mark data under the FDR thresholds q P t1%, . . . , 10%u. In contrast, except at small values

of q such as 1% or 2%, MaxQuant fails FDR control by a large margin (Fig. 4.3b).

4.3.2 For individual database search algorithms, APIR-adjust shows robust

FDR control and power advantage on the proteomics standard dataset

To demonstrate the use of APIR-adjust, we applied it as an add-on to the five database search

algorithms for adjusting their identified target PSMs on the proteomics standard dataset.

We examined the FDP and power for a range of FDR thresholds: q P t1%, 2%, . . . , 10%u.
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Our results in Fig. 4.3a show that APIR-adjust controls FDR without sacrificing power when

applied to Byonic, Mascot, SEQUEST, or MS-GF+. As for MaxQuant, even though APIR-

adjust fails to control the FDR when q is small (q ď 5%), the FDPs of adjusted MaxQuant

results are much closer to the target level than the FDPs of the original results. When q is

above 5%, APIR-adjust enables MaxQuant to achieve a good FDR control.

Even with valid q-values or PEPs, q-value/PEP thresholding could only work when all

target PSMs with q-values smaller than or equal to q are present in the output of database

search algorithms. In other words, q-values are no longer guaranteed to control the FDR after

a subset of target PSMs are removed. To verify this, we apply q-value/PEP thresholding

after excluding from each database search algorithm the 1416 shared true PSMs that are

identified at the FDR threshold q “ 5% (Fig. 4.3a). Our results in Fig. 4.3 show that

thresholding the q-values of MS-GF+ could no longer control the FDR. In contrast, because

APIR-adjust ignores the FDR-control property of q-values and treats them as scores, APIR-

adjust demonstrates a robust FDR control even with missing target PSMs.

Shared-true-PSMs
scenario

Shared-false-PSMs
scenario

Overlap of true PSMs
a b

S1
S2
S3
Union
Intersect
APIR

4.50 4.49 4.51 10.0 0 4.580

5

10

15

4.37 4.31 4.26 2.52 49.1 4.64

0

20

40

60

5

S1

S2 S3

62

160
373

118

16 39 18

S1

S2 S3

47

0
0

0

27 0 21

S1

S2 S3

173

40
6

37

163 27 162

S1

S2 S3

2

1
7

0

0 2 0

Count
high

low

Overlap of false PSMs

FD
R 

(%
)

FD
R 

(%
)

Figure 4.4: Comparison of APIR, intersection, and union in the FDR control of aggregating three database search algorithms.
At the FDR threshold q “ 5%, each database search algorithm’s and each aggregation method’s actual FDRs are evaluated on
200 simulated datasets under two scenarios: the shared-true-PSMs scenario (top) and the shared-false-PSMs scenario (bottom).
(a) Venn diagrams of true PSMs and false PSMs from one simulated dataset under either scenario. In the shared-true-PSMs
scenario, the three database search algorithms tend to identify overlapping true PSMs but non-overlapping false PSMs. In the
shared-false-PSMs scenario where the database search algorithms tend to identify overlapping false PSMs but non-overlapping
true PSMs. (b) The FDR of each database search algorithm and each aggregation method. Union fails to control the FDR
in the shared-true-PSMs scenario, while intersection fails in the shared-false-PSMs scenario. APIR controls FDR in either
scenario.
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4.3.3 For aggregating multiple database search algorithms, APIR has verified

FDR control and power advantage in simulation and on the proteomics

standard dataset

Next, we validated the FDR control of APIR using simulation studies. We compared APIR

with two naive aggregation approaches: intersection or union. A popular misconception ex-

ists that if each database search algorithm controls FDR well, taking their intersection guar-

antees FDR control while taking their union does not [127]. To clarify this misconception, we

generated target PSMs with scores from three toy database search algorithms under two sim-

ulation scenarios: shared-true-PSMs and shared-false-PSMs. Under the shared-true-PSMs

scenario, the three toy database search algorithms tend to identify overlapping true PSMs

but non-overlapping false PSMs. In comparison, under the shared-false-PSMs scenario, the

toy database search algorithms tend to identify overlapping false PSMs but non-overlapping

true PSMs (Fig. 4.4a). Under both scenarios, we first applied APIR-adjust to each toy

database search algorithm. Then we aggregated their results using intersection, union, or

APIR and compared their FDR-control performances.

Our results in Fig. 4.4b confirm that APIR-adjust controls FDR of individual database

search algorithms and APIR controls FDR in aggregating them. In contrast, intersection

fails to control the FDR under the shared-false-PSMs scenario, and union fails under the

shared-true-PSMs scenario. It is not hard to see mathematically that the FDR of union

is approximately upper bounded by q times the number of database search algorithms.

In contrast, the maximum FDR of intersection could potentially approach 1. See Online

Methods for details of the simulation.

We further demonstrate that APIR controls FDR and improves power on the complex

protein standard. Because running database search algorithms is time-consuming, we expect

users to aggregate typically no more than three database search algorithms. Therefore, we

examined 20 combinations in total, with 10 combinations of two database search algorithms

out of five and 10 combinations of three database search algorithms out of five at two

FDR threshold q P t1%, 5%u. We compared APIR with Scaffold because it is the only
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existing aggregation software that is compatible with Byonic. Notably, Scaffold does not

aim to control the FDR; instead, it relies on two sets of scores to ensure the quality of

identified PSMs: a peptide identification probability, which is the probability of the peptide

present in the sample and is thresholded by a peptide threshold, and a protein identification

probability, which is the probability of the protein present in the sample and is thresholded

by a protein threshold. Moreover, Scaffold requires both thresholds to be specified before it

outputs search results. Thus Scaffold is not directly comparable with APIR in terms of FDR

control. Accordingly, we conducted the following two comparisons: in the first comparison,

we implemented Scaffold by setting both the peptide threshold and the protein threshold to

be q FDR; in the second comparison, we set the peptide threshold to be q and varies the

protein threshold to maximize the number of peptides. See Online Methods for details.

For each combination under either comparison, we examined the FDP in identified PSMs

and compared power increase by computing the percentage increase in identified true PSMs,

true peptides or true proteins. The percentage increase in true PSMs, peptides, or proteins is

computed by treating as the baseline the maximal number of true identified PSMs, peptides,

or proteins by individual database search algorithms in the first round of APIR. For example,

if we aim to aggregate Byonic and MaxQuant on the proteomics standard dataset, based

on our benchmarking results in Fig. 4.3b we would choose to apply q-value thresholding to

Byonic and apply APIR-adjust to MaxQuant to identify PSMs in the first round. Then

when we calculate percentage increases in identified true PSMs, the baseline would be the

larger value between the number of correctly identified PSMs by thresholding the PEPs of

Byonic and the number of correctly identified PSMs by applying APIR-adjust to MaxQuant.

Because of the trade-off between FDR and power, it is reasonable to compare power only

when FDR is controlled. Therefore, it is unfair to compare APIR with the original MaxQuant

in terms of power since the latter fails to control the FDR on the proteomics standard dataset.

When calculating the percentage increase in true proteins, we identify proteins from the

identified PSMs using the majority rule (See Methods for details on protein identification

and quantification).

In our first comparison, we set both the peptide threshold and the protein threshold of
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Scaffold to be q. Our results in Fig. 4.5 and Fig. 4.6 show that at either FDR threshold

q “ 5% or 1%, APIR controls FDR of PSM identification; it also improves power of peptide

identification compared to individual database search algorithms in nearly all combinations.

The exceptions occur when APIR aggregates Mascot or SEQUEST with Byonic and results

in zero power improvement. The reason, as shown in Fig. 4.3a, is that Byonic nearly covers

all true PSMs output by either Mascot or SEQUEST. Consequently, APIR calls the PSMs

identified by Byonic as discoveries in the first round and fails to identify any more PSMs

from either Mascot or SEQUEST in the subsequent rounds. In contrast to APIR’s stable

FDR control and power improvement, Scaffold demonstrates good FDR control but highly

unstable power improvement. Specifically, Scaffold fails to identify more PSMs, peptides or

proteins than the most powerful database search algorithm in all combinations but one at

q “ 5% and in more than half of the combinations at q “ 1%.

In our second comparison, we set the peptide threshold to be q and varied the protein

threshold to maximize the number of unique peptides. Our results in Fig. 4.7 and Fig. 4.8

show that at both FDR thresholds q “ 5% and 1%, Scaffold demonstrates a slightly inflated

FDP in many combinations. In terms of power, although our implementation favors Scaffold,

it still fails to outperform the most powerful individual database search algorithm in more

combinations than APIR. Our results confirm the stable performance of APIR. See Online

Methods for details on how we implemented Scaffold.

4.3.4 APIR empowers peptide identification by aggregating the search results

from Byonic, Mascot, SEQUEST, MaxQuant, and MS-GF+ on four real

datasets

We next applied APIR to four real datasets: two phospho-proteomics (explained below)

datasets of AML that we generated (phospho AML1 and phospho AML2) for studying the

properties of leukemia stem cells in AML pateints; a published phospho-proteomics dataset

of triple-negative breast cancer (TNBC) from Fang et al. [142] that studies the drug effect

of genistein on breast cancer; and a published nonphospho-proteomics dataset of AML from
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Figure 4.5: On the proteomics standard, comparison of APIR and Scaffold at the FDR threshold q “ 5% in terms of
FDR control and power. We set both the peptide threshold and the protein threshold of Scaffold to be 95%. (a) FDPs (first
column), the percentage increase in true PSMs (second column), the percentage increase in true peptides (third column), and
the percentage increase in true proteins (fourth column) in aggregating two or three database search algorithms out of the
five (Byonic, Mascot, SEQUEST, MaxQuant, and MS-GF+). Based on the benchmarking results in Fig. 4.3b, we applied
q-value thresholding to Byonic, Mascot, SEQUEST, and MS-GF+, and applied APIR-adjust to MaxQuant in the first round of
APIR. The percentage increase in true PSMs/peptides/proteins is computed by treating as the baseline the maximal number
of correctly identified PSMs/peptides/proteins by individual database search algorithms in the first round of APIR. (b)-(e)
Venn diagrams of true PSMs by APIR and individual database search algorithms from four example combinations in (a). Venn
diagrams comparing APIR with (b) MaxQuant (adjusted by APIR-adjust) and MS-GF+; with (c) SEQUEST, MaxQuant
(adjusted by APIR-adjust), and MS-GF+; with (d) SEQUEST and MS-GF+; with (e) Mascot, SEQUEST, and MaxQuant
(adjusted by APIR-adjust) demonstrate that APIR identifies almost all true PSMs by individual database search algorithms at
the same FDR threshold q “ 5%.
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Figure 4.6: On the proteomics standard, comparison of APIR and Scaffold at the FDR threshold q “ 1% in terms of
FDR control and power. We set both the peptide threshold and the protein threshold of Scaffold to be 99%. (a) FDPs (first
column), the percentage increase in true PSMs (second column), the percentage increase in true peptides (third column), and
the percentage increase in true proteins (fourth column) in aggregating two or three database search algorithms out of the
five (Byonic, Mascot, SEQUEST, MaxQuant, and MS-GF+). Based on the benchmarking results in Fig. 4.3c, we applied
q-value thresholding to Byonic, Mascot, SEQUEST, and MS-GF+, and applied APIR-adjust to MaxQuant in the first round of
APIR. The percentage increase in true PSMs/peptides/proteins is computed by treating as the baseline the maximal number of
correctly identified PSMs/peptides/proteins by individual database search algorithms in the first round of APIR. (b) Proportion
of combinations that show a non-negative percentage increase (green bars) in true PSMs (first column), true peptides (second
column), and true proteins (third column).
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Figure 4.7: On the proteomics standard, comparison of APIR and Scaffold at the FDR threshold q “ 5% in terms of FDR
control and power. We set the peptide threshold to be 95% and varied the protein threshold to find the maximal number of
identified peptides. (a) FDPs (first column), the percentage increase in true PSMs (second column), the percentage increase in
true peptides (third column), and the percentage increase in true proteins (fourth column) in aggregating two or three database
search algorithms out of the five (Byonic, Mascot, SEQUEST, MaxQuant, and MS-GF+). Based on the benchmarking results in
Fig. 4.3b, we applied q-value thresholding to Byonic, Mascot, SEQUEST, and MS-GF+, and applied APIR-adjust to MaxQuant
in the first round of APIR. The percentage increase in true PSMs/peptides/proteins is computed by treating as the baseline the
maximal number of correctly identified PSMs/peptides/proteins by individual database search algorithms in the first round of
APIR. (b) Proportion of combinations that show a non-negative percentage increase (green bars) in true PSMs (first column),
true peptides (second column), and true proteins (third column).
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Figure 4.8: On the proteomics standard, comparison of APIR and Scaffold at the FDR threshold q “ 1% in terms of FDR
control and power. We set the peptide threshold to be 99% and varied the protein threshold to find the maximal number of
identified peptides. (a) FDPs (first column), the percentage increase in true PSMs (second column), the percentage increase in
true peptides (third column), and the percentage increase in true proteins (fourth column) in aggregating two or three database
search algorithms out of the five (Byonic, Mascot, SEQUEST, MaxQuant, and MS-GF+). Based on the benchmarking results in
Fig. 4.3b, we applied q-value thresholding to Byonic, Mascot, SEQUEST, and MS-GF+, and applied APIR-adjust to MaxQuant
in the first round of APIR. The percentage increase in true PSMs/peptides/proteins is computed by treating as the baseline the
maximal number of correctly identified PSMs/peptides/proteins by individual database search algorithms in the first round of
APIR. (b) Proportion of combinations that show a non-negative percentage increase (green bars) in true PSMs (first column),
true peptides (second column), and true proteins (third column).
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Raffel et al. [143] (nonphospho AML) that also compares the stem cells with non-stem cells in

AML patients. Phospho-proteomics is a branch of proteomics; while traditional proteomics

aims to capture all peptides in a sample, phospho-proteomics focuses on phosphorylated

ones, also called phosphopeptides, because phosphorylation regulates essentially all cellular

processes [144]. On each dataset, we applied APIR and examined its performance at two

FDR thresholds q P t1%, 5%u in four aspects: the percentage increase in PSMs, peptides,

peptides with modifications, and proteins, which we calculated in a similar fashion to what

we did on the proteomics standard dataset.

Our results in Fig. 4.9 and 4.10 show that APIR improved power on all four levels across

all four datasets at both FDR thresholds q P t1%, 5%u. Specifically, at both FDR thresholds,

APIR consistently improved power on the peptide level on all four datasets, a result that

aligned with our expectation because APIR is guaranteed to do so. Interestingly, on both

the peptide level and the peptide-with-modification level, APIR also achieved improved

power across 20 combinations on all four datasets at both FDR thresholds, with only one

exception: APIR fell short by a negligible 0.1% when aggregating the search results from

Byonic, Mascot and SEQUEST on the TNBC dataset at the FDR threshold q “ 5%. On the

protein level, APIR still managed to outperform single database search algorithms across

all combinations on both phospho-proteomics AML datasets and in more than half of the

combinations on either the TNBC dataset or the nonphospho-proteomics AML dataset. Our

results demonstrate that APIR could boost the power of mass spectrometry data analysis.

4.3.5 APIR identifies biologically meaningful proteins from a phospho AML

datasets and a TNBC dataset

We investigated the biological functions of additional proteins that APIR found on the

phospho AML datasets and the TNBC dataset.

On both phospho AML1 and AML2 datasets, APIR identified biologically meaningful

proteins that were missed by unadjusted individual database search algorithms. On phospho

AML1, APIR identified across the 20 combinations 80 additional proteins at the FDR thresh-
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Figure 4.9: Power improvement of APIR over individual database search algorithms at the FDR threshold q “ 5%. The
percentage increase in PSMs (first column), the percentage increase in peptides (second column), the percentage increase in
peptides with modifications (third column), and the percentage increase in true proteins (fourth column) of APIR in aggregating
two or three database search algorithms out of the five (Byonic, Mascot, SEQUEST, MaxQuant, and MS-GF+) at the FDR
threshold q “ 5% on the phospho-proteomics AML datasets (a)-(b), the TNBC dataset (c) and the nonphospho-proteomics
AML dataset (d). The percentage increase in PSMs/peptides/peptides with modifications/proteins is computed by treating
as the baseline the maximal number of PSMs/peptides/peptides and modifications/proteins by individual database search
algorithms in the first round of APIR.

old q “ 1% and 121 additional proteins at the FDR threshold q “ 5%, including transcription

intermediary factor 1-alpha (TIF1α), phosphatidylinositol 4,5-bisphosphate 5-phosphatase

A (PIB5PA), sterile alpha motif domain containing protein 3 (SAMD3), homeobox protein
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Figure 4.10: Power improvement of APIR over individual database search algorithms at the FDR threshold q “ 1%. The
percentage increase in PSMs (first column), the percentage increase in peptides (second column), the percentage increase in
peptides with modifications (third column), and the percentage increase in true proteins (fourth column) of APIR in aggregating
two or three database search algorithms out of the five (Byonic, Mascot, SEQUEST, MaxQuant, and MS-GF+) at the FDR
threshold q “ 1% on the phospho-proteomics AML datasets (a)-(b), the TNBC dataset (c) and the nonphospho-proteomics
AML dataset (d). The percentage increase in PSMs/peptides/peptides with modifications/proteins is computed by treating
as the baseline the maximal number of PSMs/peptides/peptides and modifications/proteins by individual database search
algorithms in the first round of APIR.

Hox-B5 (HOXB5), small ubiquitin-related modifier 2 (SUMO-2), transcription factor jun-D

(JUND), glypican-2 (GPC2), dnaJ homolog subfamily C member 21 (DNAJC21), mRNA

decay activator protein ZFP36L2 (ZFP36L2), leucine-rich repeats and immunoglobulin-like

domains protein 1 (LRIG-1), and mitochondrial intermembrane space import and assembly
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protein 40 (CHCHD4). High levels of TIF1α are associated with oncogenesis and disease

progression in a variety of cancer lineages such as AML [145–151]. PIB5PA has been shown

to have a tumor-suppressive role in human melanoma [152]. Its high expression has been cor-

related with limited tumor progression and better prognosis in breast cancer patients [153].

SMAD3 is known to play key roles in the development and progression of various types of

tumor [154–159]. HOXB5 is among the most affected transcription factors by the genetic

mutations that initiate AML [160–162]. SUMO-2 has been found to play a key role in regu-

lating CBX2, which is overexpressed in several human tumors, including leukemia and whose

expression is correlated with lower overall survival [163]. JUND has been shown to play a

central role in the oncogenic process leading to adult T-cell leukemia [164]. GPC2 has been

identified as an oncoprotein and a candidate immunotherapeutic target in high-risk neurob-

lastoma [165]. DNAJC21 mutations have been linked to cancer-prone bone marrow failure

syndrome [166]. ZFP36L2 has been found to induce AML cell apoptosis and inhibits cell

proliferation [167]; its mutation has been associated with the pathogenesis of acute leukemia

[168]. LRIG-1 has been found to regulate the self-renewing ability of leukemia stem cells in

AML [169]. CHCHD4 plays key roles in regulating tumor proliferation [170]. On phospho

AML2, APIR has identified 62 additional proteins at FDR 1% and 19 additional proteins at

FDR 5%, including JUND and myeloperoxidase (MPO). MPO is expressed in hematopoi-

etic progenitor cells in prenatal bone marrow, which are considered initial targets for the

development of leukemia [171–173].

On the TNBC dataset, APIR identified 92 proteins that were not found by unadjusted

single database search algorithms at the FDR threshold q “ 1% and 69 such proteins at FDR

q “ 5%. In particular, at the FDR threshold q “ 1%, APIR has uniquely identified BRCA2,

DNA repair associated (BRCA2), and Fanconi anemia complementation group E (FANCE).

BRCA2 is a well-known breast cancer susceptibility gene. An inherited genetic mutation

inactivating the BRCA2 gene can be found in people with TNBC [174–179]. FANC-BRCA

pathway, including FANCE and BRCA2, is known for its roles in DNA damage response.

Inactivation of the FANC–BRCA pathway has been identified in ovarian cancer cell lines and

sporadic primary tumor tissues [180, 181]. Additionally, at both FDR thresholds, we have
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identified JUND and roundabout guidance receptor 4 (ROBO4); the latter regulates tumor

growth and metastasis in multiple types of cancer, including breast cancer [182–185]. Our

results demonstrate APIR’s strong potential in identifying novel disease-related proteins.

4.3.6 APIR identifies differentially expressed peptides that are biologically mean-

ingful from a phospho AML datasets

An important use of proteomics data is the differential expression (DE) analysis, which aims

to identify proteins whose expression levels change between two conditions. The ideal unit

of measurements is proteins; however, due to the difficulties in quantifying protein levels

from tandem MS data, an alternative approach has been proposed and used, which identifies

differentially expressed peptides first and then investigates their corresponding proteins along

with their modifications. Because it is less error-prone to quantify peptides than quantify

proteins, doing so could dramatically reduce errors in the DE analysis.

Here we compared APIR with MaxQuant and MS-GF+ by performing DE analysis on the

phospho AML1 dataset. We focused on this dataset instead of the TNBC dataset or the non-

phospho AML dataset because the phosphos AML datasets are unpublished. The phospho

AML1 dataset contains six bone marrow samples: three enriched with leukemia stem cells

(LSCs), two depleted of LSCs, and one control. To simplify our DE analysis, we selected two

enriched and two depleted samples as shown in Fig. 4.11a. Specifically, we first applied APIR

to aggregate the search results by MaxQuant and MS-GF+ on the phospho AML1 dataset

using all six samples. Then we applied DESeq2 to identify DE peptides from the peptide level

results of APIR, APIR-adjusted MaxQuant, and APIR-adjusted MS-GF+ using the four se-

lected samples. Our results in Fig. 4.11 show that at the FDR threshold 5%, we identified

318 DE peptides from 224 proteins based on APIR, 251 DE peptides from 180 proteins based

on MaxQuant, and 242 DE peptides from 190 proteins based on MS-GF+ respectively. In

particular, APIR has identified 6 leukemia related proteins: the promyelocytic leukemia zinc

finger (PLZF), Serine/threonine-protein kinase B-raf (B-raf), Signal transducer and activator

of transcription 5B (STAT5B), Promyelocytic Leukemia Protein (PML), cyclin-dependent
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kinase inhibitor 1B (CDKN1B), and retinoblastoma-associated protein (RB1), all of which

belong to the AML KEGG pathway or the chronic myeloid leukemia KEGG pathway [186–

188]. In particular, PLZF and CDKN1B were uniquely identified from the APIR aggregated

results but not by either APIR-adjusted MaxQuant or APIR-adjusted MS-GF+.

We next investigated the phosphorylation on the identified DE peptides of PLZF or

CDKN1B. With regard to PLZF, APIR has identified phosphorylation at Threonine 282,

which is known to activate cyclin-A2 [189], a core cell cycle regulator of which the deregula-

tion seems to be closely related to chromosomal instability and tumor proliferation [190–192].

As for CDKN1B, APIR has identified phosphorylation at Serine 140. Previous studies have

revealed that ATM phosphorylation of CDKN1B at Serine 140 is important for stabiliza-

tion and enforcement of the CDKN1B-mediated G1 checkpoint in response to DNA damage

[193]. A recent study shows that inability to phosphorylate CDKN1B at Serine 140 is asso-

ciated with enhanced cellular proliferation and colony formation [194]. Our results illustrate

that APIR could assist in discovering interesting proteins and relevant post-translational

modifications.

APIR
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STAT5BPML

RB1

MaxQuant MS−GF+

Channels Sample description

1           P5337 LSC depleted
2           P5337 LSC enriched
3           P5340 LSC depleted
4           P5340 LSC enriched
5           P5340 LSC enriched
6           Control

a b

Figure 4.11: Comparison of APIR with MaxQuant and MS-GF+ by DE analysis on the phospho AML1 dataset. (a) Sample
description of the phospho AML1 dataset. This dataset contains six bone marrow samples from two patients: P5337 and
P5340. From P5337, one LSC enriched sample and one LSC depleted sample were taken. From P5340, two LSC enriched
samples and one LSC depleted sample were taken. We ignored one LSC enriched sample from P5340 and the control sample
while conducting DE analysis (crossed out). (b) Venn diagrams of proteins from the identified DE peptides based on APIR
aggregating MaxQuant and MS-GF+, APIR-adjusted MaxQuant and APIR-adjusted MS-GF+. APIR has identified 6 leukemia-
related proteins: PLZF, B-raf, STAT5B, PML, CDKN1B, and RB1, all of which belong to the AML KEGG pathway or the
chronic myeloid leukemia KEGG pathway. Note that PLZF and CDKN1B were uniquely identified from the APIR aggregated
results.
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4.4 Discussion

We developed a statistical framework APIR to identify PSMs with FDR control from multiple

database search algorithms. The core component of APIR is APIR-adjust, an FDR-control

method that re-identifies PSMs from a single database search algorithm without restric-

tive distribution assumptions. Based on APIR-adjust, APIR aggregates target PSMs from

multiple database search algorithms with FDR control. APIR offers a great advantage of

flexibility: APIR is compatible with any database search algorithm that outputs scores. The

reason lies in that APIR is a sequential approach based on a simple idea: given multiple

disjoint sets of discoveries with each FDP smaller than or equal to q, their union also has

FDP smaller than or equal to q. This sequential approach not only allows APIR to cir-

cumvent the need to impose restrictive distribution assumptions on each database search

algorithm’s scores, but also ensures that APIR would identify at least as many, if not more,

unique peptides as a single database search algorithm does. By assessing APIR on the first

publicly available complex proteomics standard dataset, we verify that APIR consistently

improves the sensitivity of peptide identification analysis with FDR control of PSMs. Our

extensive studies on leukemia and TNBC data suggest that APIR could lead to discoveries

of additional disease-relevant peptides and proteins that are otherwise missed by individual

database search algorithms.

The current implementation of APIR controls FDR on the PSM levels. However, in

shotgun proteomics experiments, PSMs serve merely as an intermediate to identify peptides

and proteins, the real molecules of biological interest; thus, an ideal FDR control should

occur on the peptide or protein level. Besides, FDR control on the PSM level does not

entail FDR control on the peptide or protein level because the same peptide sequences could

be coded into multiple PSMs, and a protein consists of multiple peptides. To realize FDR

control of peptides or proteins, APIR-adjust needs to be carefully modified. Take the FDR

control on the peptide level as an example. One possible modification would be to engineer

a score for each peptide from the scores of PSMs that contain this peptide. Future studies

are needed to explore possible ways of engineering a peptide score. Once we modify APIR-
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adjust to control the FDR on the peptide level or the protein level, the current sequential

approach of APIR still applies: in each round, we apply the modified APIR-adjust to identify

peptides or proteins and exclude the peptides or proteins output by the selected database

search algorithm from the previous round.
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4.6 Supplementary Material

S4.6.1 Complex proteomics standard dataset generation

The complex proteomics standard (CPS) (part number 400510) was purchased by Agilent

(Agilent, Santa Clara, CA, USA). CPS contains soluble proteins extracted from the archaeon

Pyrococcus furiosus (Pfu). All other chemicals were purchased from Sigma Aldrich (Sigma

Aldrich, St. Louis, MO, USA). The fully sequenced genome of Pfu encodes for approxi-

mately 2000 proteins that cover a wide range of size, pI, concentration levels, hydropho-

bic/hydrophilic character, etc. CPS (500ug total protein) was dissolved in 100uL of 0.5 M

tri-etrhylammonium bicarbonate (TEAB) and 0.05% sodium dodecyl sulfate (SDS) solution.

Proteins were reduced using tris(2-carboxyethyl)phosphine hydrochloride (TCEP) (4 uL of

50mM solution added in the protein mixture and sample incubated at 60 0 C for 1hour)

and alkylated using methyl methyl methanethiosulfonate (MMTS) (2 uL of 50mM solution

added in the protein mixture and sample incubated at room temperature for 15 minutes). To

enzymatically digest the proteins, 20ug trypsin dissolved 1:1 in ultrapure water was added

in the sample and this was incubated overnight (16 hours) in dark at 37 0 C. The tryptic

peptides were cleaned with C-18 tips (part number 87784) from Thermo Fisher Scientific

(Thermo Fisher Scientific, Waltham, MA, USA) following the manufacturer’s instructions.
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Peptides were LC-MS analysed using the Ultimate 3000 uPLC system (EASY-Spray col-

umn, part number ES803A, Thermo Fisher Scientific) hyphenated with the Orbitrap Fusion

Lumos mass spectrometry instrument (Thermo Fisher Scientific). Peptides were fragmented

using low energy CID and detected with the linear ion trap detector.

On this complex proteomics standard dataset, we benchmarked the five database search

algorithms—SEQUEST [1], Mascot [2], MaxQuant [3], Byonic [4], and MS-GF+ [5]—in

terms of peptide identification. Specifically, we first generated a reference database by con-

catenating the Uniprot Pyrococcus furiosus (Pfu) database, the Uniprot Human database,

and two contaminant databases: the CRAPome [6] and the contaminant databases from

MaxQuant. During the process, we performed in silico digestion of Pfu proteins and re-

moved human proteins that contained Pfu peptides from the reference database. We then

input the Pfu mass spectra and the resulting database into a database search algorithm. We

consider a target PSM as true if the database search algorithm reports its master protein

as from Pfu or the two contaminants and false if from the human. The in silico digestion

was performed in Python using the pyteomics.parser function from pyteomics with the

following settings: Trypsin digestion, two allowed missed cleavages, minimum peptide length

of six [7, 8].

S4.6.2 TNBC data and non-phospho AML data availability

‚ The raw MS data files of the TNBC dataset is available at the PRoteomics IDEntifi-

cations Database (PRIDE) with the dataset identifier PXD002735 [9].

‚ The raw MS data files of the non-phospho dataset is available at the (PRIDE) with

the dataset identifier PXD008307 [9].

S4.6.3 Existing aggregation methods

Scaffold Scaffold (Proteome Software, Portland, Oregan, USA) adopts a Bayesian ap-

proach to aggregate probabilities of the individual database search algorithm results into

a single probability for each PSM. One of its key step is to generate for each database
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search algorithm a peptide probability model that estimates the probability of an individual

spectrum being correctly assigned to a peptide based on that database search algorithm’s

score. To realize this, Scaffold designs a different statistical model for the internal scores

from each database search algorithm [10], making it difficult to generalize its approach to

other database search algorithms. Scaffold supports Byonic (Protein Metrics), Mascot (Ma-

trix Science), Mascot Distiller (Matrix Science), MaxQuant/Andromeda (Max Planck Insti-

tute), Peaks (Bioinformatics Solutions), and Proteome Discoverer (Thermo Fisher Scientific)

database search algorithms including Byonic, SEQUEST, and Mascot.

MSblender MSblender is an open-source software that uses a probability mixture model to

model the scores of correct and incorrect PSMs. In particular, the correct PSM scores across

database search algorithms are assumed to follow a two-component (by default) multivari-

ate Gaussian [11]. Search engines that are compatible with MSblender include SEQUEST

(Thermo Fisher Scientific), X!Tandem [12], OMSSA [13], InsPecT [14], MyriMatch [15],

MSGFDB [16] (http://www.marcottelab.org/index.php/MSblender#Prerequisites).

ConsensusID ConsensusID is part of the OpenMS Proteomics Pipeline [17]. It adopts

a probabilistic approach to aggregate the top-scoring PSM results from several database

search algorithms. A key feature of this tool is its sequence similarity scoring mechanism,

which is a method to estimate the scores for PSMs in cases when the peptide is missing from

the high-ranking results of a database search algorithm. It involves fitting the scores from

each database search algorithm as a two-component mixture model. The two components

are a Gumbel distribution for the incorrect PSMs and a normal distribution for the correct

PSMs [18]. Although the paper Nahnsen et al. [18] claims that ConsensusID supports all

database search algorithms, the OpenMS pipeline only supports the following search algo-

rithms: Comet [19], CompNovo [20], Crux [21], Mascot (Thermo Fisher Scientific), MS-GF+

[5], MyriMatch [15], OMSSA [13], PepNovo [22], X!Tandem [12].
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PepArML PepArML is an unsupervised, model-free, machine-learning-based method to

aggregate search results. It is compatible with Mascot [2], Tandem [12] with native, K-

score, and s-score [23] scoring, OMSSA [13], MyriMatch [15], InSpecT [14], and MS-GF [24]

spectral probability scores.

iProphet The iProphet software is an open-source software within the Trans Proteomic

Pipeline (TPP) suite. It is used between PeptideProphet [25] and ProteinProphet [26]. It

calculates peptide level probabilities via mixture models. The TPP suite is compatible with

COMET [19], X!Tandem [12], SEQUEST (Thermo Fisher Scientific), MS-GF+ [5], InSpecT

[14], OMSSA [13], MyriMatch [15], ProbID [27], Mascot (Matrix Science), Phenyx [28].

S4.6.4 Implementation of database search algorithms on the proteomics stan-

dard

Byonic, SEQUEST, and Mascot Byonic, SEQEUST, and Mascot were each run in

Proteome Discoverer 2.3.0.523 (ThermoScientific). The following settings were used for all

5 database search algorithms: 10 ppm precursor tolerance; 0.6 Da fragment tolerance; static

modifications: methylthio (C); dynamic modifications: deamination (NQ), oxidation (M).

Percolator was used in conjunction with both SEQUEST and Mascot, and the target decoy

mode was set to separate. To acquire the total list of identified PSMs, peptides, and proteins,

internal FDRs for all database search algorithms were set to 100%.

MaxQuant MaxQuant was implemented with the following settings: 10 ppm precursor

tolerance; 0.6 Da fragment tolerance; static modifications: methylthio (C); dynamic modifi-

cations: deamination (NQ), oxidation (M); second peptide search: True. To acquire the total

list of identified PSMs, peptides, and proteins, the internal FDR was set to 100%. MaxQuant

outputs a posterior error probability (PEP) for each target PSM and decoy PSM.

MS-GF+ MS-GF+ was implemented with the following settings: 10 ppm precursor tol-

erance; static modifications: methylthio (C); dynamic modifications: deamination (NQ),
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oxidation (M). To acquire the total list of identified PSMs, peptides, and proteins, the in-

ternal FDR was set to 100%.

S4.6.5 Implementation of database search algorithms on the phospho AML

datasets

Byonic, SEQUEST, and Mascot The phospho AML spectra were searched with the

following settings: 10ppm precursor tolerance; 0.02 Da fragment tolerance; static modifica-

tions: TMT6plex (N-term, K), Carbamindomethyl (C); dynamic modifications: Oxidation

(M), Phopho (STY).

S4.6.6 Implementation of database search algorithms on the TNBC dataset

Byonic, SEQUEST, and Mascot The Genistein spectra were searched with the follow-

ing settings: 20ppm precursor tolerance; 0.02 Da fragment tolerance; static modifications:

TMT6plex (N-term, K), Carbamindomethyl (C); dynamic modifications: Oxidation (M),

Phopho (STY).

S4.6.7 Implementation of database search algorithms on the non-phospho AML

dataset

Byonic, SEQUEST, and Mascot The non-phospho spectra were searched with the

following settings: 10ppm precursor tolerance; 0.6 Da fragment tolerance; (digestion enzyme

Lys-c - do I need to state if this is reflected in experimental condition) static modifications:

TMT6plex (N-term, K), Carbamindomethyl (C); dynamic modifications: Oxidation (M).

S4.6.8 Implementation of Scaffold

We used Scaffold to combine the search results of Byonic, Mascot, SEQUEST, MaxQuant,

and MS-GF+ on the proteomics standard. For each combination of database search algo-

rithms, the result files were inputted into Scaffold Q+ (version 4.10.0, Proteome Software
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Inc., Portland, OR) to generate peptide and protein identification probabilities. Peptide

probabilities were assigned by the Scaffold Local FDR algorithm, protein groups were gen-

erated using standard experiment wide protein grouping, and protein probabilities were

assigned by the Protein Prophet algorithm [26]. To compare Scaffold with APIR which

aims to control FDR at the PSM level, we implemented Scaffold in two ways. In the

first implementation, we set both the peptide threshold and the protein threshold to be

q FDR, where q is the FDR threshold of APIR. In the second comparison, we set the pep-

tide threshold to be q FDR and varied the protein threshold among all default thresholds:

20%, 50%, 80%, 90%, 95%, 99%, 99.9%, 1% FDR, 2% FDR, 3% FDR, 5% FDR and 10% FDR

to maximize the number of identified peptides.

S4.6.9 DE peptides analysis of the phospho AML1 dataset

Here we describe how we performed DE analysis on the phospho AML1 dataset. This dataset

contains six bone marrow samples: one LSC enriched sample and one LSC depleted sample

from patient P5337, two LSC enriched samples and one LSC depleted sample from patient

P5340, and one control.

Using all six samples from the phospho AML1 dataset, we first applied APIR to combine

the search results by MaxQuant and MS-GF+. Then we applied APIR to adjust the search

results of MaxQuant and MS-GF+ separately. Next, we selected fours sample: the two

samples from P5337 and the LSC depleted sample from P5340 and one of the two LSC

enriched samples from patient P5340, as shown in Fig. 4.11a. We treated the LSC enriched

samples and the LSC depleted samples as from two conditions and applied DESeq2 with

FDR threshold 5% for DE analysis [29]. We use package DESeq2 version 1.28.1.

S4.6.10 Theoretical results of APIR

To facilitate our discussion, we start with notations for the mathematical abstraction of

APIR, followed by assumptions and proofs.

Let Ω denote the set of all possible PSMs from a tandem MS experiment and Wk Ă Ω
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denote the set of target PSMs output by the k-th database search algorithm, k “ 1, . . . , K.

Let Sk denote the set containing scores of the PSMs inWk. The exact definition of Sk depends

on the implementation of APIR-adjust: Clipper or the pooled approach. Specifically, if

APIR-adjust adopts Clipper, Sk “ tCi : i P Wku Ă R, where Ci is the contrast score of

Clipper (See Section 4.2.1). If APIR-adjust adopts the pooled approach, Sk “ tpi : i P

Wku Ă R, where pi is the p-value calculated using the pooled approach (See Section 4.2.2).

We define W :“ tw : w Ă Ωu to be the power set of Ω and S :“ ts : s Ă Ru to be the power

set of R.

Here we introduce the mathematical abstraction of APIR-adjust. Given an FDR thresh-

old q P p0, 1q and a set of target PSMs W with their scores S from a single database search

algorithm, we define Pq : W ˆ S ÑW as an identification procedure that takes W and S as

input and outputs a subset of W with FDR controlled under q.

Next, we introduce a selection procedure, denoted by Q, that finds the index of the “best”

set among multiple sets of identified PSMs, where “best” in default APIR means having the

most unique peptides. Specifically,

Q : W ˆ ¨ ¨ ¨ ˆW´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
any finite number

Ñ t1, . . . , Ku

takes as input multiple sets of identified PSMs by APIR-adjust, each from a distinct database

search algorithm, and outputs the index of the database search algorithm whose set is selected

as the best. In case the “best” set is not unique, Q randomly selects one of the “best” sets

and outputs its index.
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Then APIR consists of K rounds:

Round 1 :

U11 :“ Pq pW1, S1q ;

...

U1K :“ Pq pWK , SKq ;

,

/

/

/

/

.

/

/

/

/

-

K sets of identified PSMs

J1 :“ Q ptU1k : k “ 1, ¨ ¨ ¨ , Kuq ; the index of the selected algorithm

...

Round ` :

U`1 :“ Pq
`

W1z
`

Y
`´1
k1“1WJk1

˘

, S1

˘

;

...

U`K :“ Pq
`

WKz
`

Y
`´1
k1“1WJk1

˘

, SK
˘

;

,

/

/

/

/

.

/

/

/

/

-

K sets of identified PSMs

J` “ Q ptU`k : k ‰ J1, ¨ ¨ ¨ , J`´1uq ; the index of the selected algorithm

...

Round K :

UK1 :“ Pq
`

W1z
`

Y
K´1
k1“1WJk1

˘

, S1

˘

;

...

UKK :“ Pq
`

WKz
`

Y
K´1
k1“1WJk1

˘

, SK
˘

;

,

/

/

/

/

.

/

/

/

/

-

K sets of identified PSMs

JK “ Q ptUKk : k ‰ J1, ¨ ¨ ¨ , JK´1uq ; the index of the selected algorithm

and outputs YK`“1U`J` as the final set of identified PSMs. Let V`k denote the number of false

PSMs in U`k, `, k “ 1, . . . , K. Because U1J1 , . . . , UKJK are mutually disjoint, to show FDR

control we only need to show that

E

»

–

řK
`“1 V`J`

´

řK
`“1 |U`J` |

¯

_ 1

fi

fl ď q , (S4.1)

where a_ b means maxpa, bq.

To facilitate our theoretical discussion, we would like to emphasize the source of ran-

domness and how we represent them in our notations. First, both tWku
K
k“1 and tSku

K
k“1

are random because the shotgun proteomics technology is innately random. Consequently,
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the mass spectra from tandem MS experiments could vary in terms of numbers and quality,

leading to random lists of target/decoy PSMs and random scores output by database search

algorithms. By convention, we use capital letters “W” and “S” to represent a random set

of PSMs and a random set of scores respectively. Second, Pq and Q could be random or

deterministic functions. Third, tU`k : `, k “ 1, ¨ ¨ ¨ , Ku are random due to the random input

of Pq; therefore, they are also represented by capital U . For similar reasons, tJ1u
K
k“1 are also

random. Lastly, as a result, notations such as WJ` and SJ` have two layers of randomness:

random PSM sets and scores represented by W and S and random database search algo-

rithm index J`. Notably, although a capital letter, K is deterministic because it represents

the number of database search algorithms we want to aggregate.

Here we introduce assumptions of APIR for FDR control. Conditioning on Wk, let

µk :“ ErSks denote the set of expected scores output by algorithm k. We impose three sets

of assumptions respectively on tWk, µk, Sku
K
k“1, Pq and Q.

As for tWk, µk, Sku
K
k“1, we require

(A.1) conditioning on tWk, µku
K
k“1, S1, . . . , SK are mutually independent. That is, given

the set of target PSMs and their expected scores, the observed scores are mutually

independent subject to independent sources of randomness.

As for Pq, we assume the following.

(A.2) Conditioning on tWk, µku
K
k“1 and given any subset ĂWk Ă Wk for any k “ 1, . . . , K, we

obtain PqpĂWk, Skq. Let rUk :“ PqpĂWk, Skq and rVk denote the number of false PSMs in

rUk. Then ErrVk{p|rUk| _ 1q | tWk, µku
K
k“1s ď q for all k “ 1, . . . , K. That is, Pq controls

FDR when applied to any subset of target PSMs from each of the K database search

algorithms. Notably, this assumption is guaranteed for APIR-adjust if the assumptions

in Section 4.2.1 hold.

(A.3) Following (A.2), if we assume that rVk{p|rUk| _ 1q is independent of |rUk|{p
řK
k“1 |

rUk| _ 1q

for k “ 1, . . . , K . That is, the FDP of the discoveries, i.e., identified PSMs from a
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subset of the target PSMs, from algorithm k is independent of the proportion of the

discoveries from algorithm k among all discoveries.

Finally, we assume the following about Q.

(A.4) Conditioning on tWk, µku
K
k“1, tJ`u

K
`“1 is independent of tSku

K
k“1. That is, the output of

procedure Q is conditionally independent of the randomness of the scores output by

the K algorithms.

We start our proof by first showing that conditioning on tWk “ wku
K
k“1, tµku

K
k“1 and

tJk “ jku
`
k“1,

tJ``1, ¨ ¨ ¨ , JKu K
V`j`

|U`j` | _ 1
. (S4.2)

Because V`j`{p|U`j` | _ 1q is the FDP of Pqpwj`zpY`´1
k1“1wjk1 q, Sj`q, the randomness of V`j`{p|U`j` | _ 1q

results solely from the randomness of scores in Sj` . By (A.4), Sj` is independent of tJ``1, ¨ ¨ ¨ , JKu

conditioning on tWk, µku
K
k“1 and J1, . . . , J`. Equation (S4.2) follows accordingly.

We can then show FDR control in the `-th round conditioning on tWk, µku
K
k“1 and tJ`u

K
`“1:

E
„

V`J`
|U`J` | _ 1

ˇ

ˇ

ˇ

ˇ

W1 “ w1, ¨ ¨ ¨ ,WK “ wK , tµku
K
k“1, J1 “ j1, ¨ ¨ ¨ , JK “ jK



“E
„

V`j`
|U`j` | _ 1

ˇ

ˇ

ˇ

ˇ

W1 “ w1, ¨ ¨ ¨ ,WK “ wK , tµku
K
k“1, J1 “ j1, ¨ ¨ ¨ , JK “ jK



“E
„

V`j`
|U`j` | _ 1

ˇ

ˇ

ˇ

ˇ

W1 “ w1, ¨ ¨ ¨ ,WK “ wK , tµku
K
k“1, J1 “ j1, ¨ ¨ ¨ , J` “ j`



ďq ,

where the last equality results from (S4.2). The last inequality holds by (A.2).
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Finally, we prove (S4.1):
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(S4.3)

ď
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E
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E
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|U`J` |

p|U1J1 | ` ¨ ¨ ¨ ` |UKJK |q _ 1

ˇ

ˇ

ˇ

ˇ

tWk, µk, Jku
K
k“1



¨ q

ď q ,

where (S4.3) holds as a result of (A.3).

S4.6.11 Post-processing

Master protein recommendation For a given PSM, database search algorithms may

disagree on its master protein, causing difficulties in downstream analysis. APIR tackles this

issue using a majority vote. Specifically, APIR selects the most frequently reported master

protein across database search algorithms for the given PSM. If there is a tie, APIR outputs

all tied master proteins.

Post-translational Modification recommendation For a given PSM, how APIR ag-

gregates its modifications across database search algorithms depends on the type of mod-

ifications: static or variable. Static modifications occur universally at every instance of a

specified amino acid residue or terminus. For example, tandem mass tags occur at every

N-termimal. Since static modifications are known and could be specified in the database

search process, different database search algorithms will agree in terms of the locations and

types of static modifications. Therefore, for any PSM, APIR simply outputs its static mod-

ifications by any database search algorithm based on user specification. The default static
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modification used by APIR includes cysteine carbamidomethylation and tandem mass tags

at N-terminal and lysine.

Unlike static modifications, variable modifications do not apply to all instances of an

amino acid residue. For example, phosphorylation typically occurs at only one or few ser-

ines in a peptide with many serines. Because variable modifications are hard to detect,

database search algorithms may disagree in the types (such as phosphorylation versus oxi-

dation) and/or sites of modifications; however, they always agree on the number of modi-

fications. Suppose database search algorithms report M modifications for the given PSM.

To handle these potential disagreements, APIR uses one of the two strategies to recom-

mend variable modifications for a given PSM: PhosphoSitePlus (PSP)-free or PSP-based.

In a PSP-free modification recommendation, APIR first counts the number of database

search algorithms that report each modification—a combination of modification type and

site. Then APIR reports the top M most frequently reported variable modifications. A

PSP-based modification strategy is similar to PSP-free except for the handling of tied phos-

phorylation sites. When there is a tie among phosphorylation sites, APIR reports the most

frequently studied phosphorylation sites by searching the literature hits on PhosphoSitePlus(

https://www.phosphosite.org/) (PSP), a manually curated and interactive resource for

studying protein modifications. In particular, PSP has cataloged and counted existing liter-

ature and experiments by phosphorylation. Based on PSP, APIR reports the modification

with the highest number of high-throughput literature hits if there is a tie between phospho-

rylations. If doing so fails to identify a unique modification, APIR compares their numbers

of Cell Signaling Technology mass spectrometry studies that found the given phosphory-

lation and report the highest-numbered phosphorylation. If this fails to provide a unique

modification, APIR will report the ties.

Abundance aggregation At the PSM level, APIR first averages a PSM’s abundance

across database search algorithms. Then APIR performs normalization by scaling aij, which

denotes the averaged abundance of PSM i in channel j, by 106{p
ř

i aijq so that resulting

normalized samples will have total abundance 106.
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To obtain the abundance at the peptide level, APIR averages the abundance of PSMs

containing the same peptide and then performs a scaling across channels such that its cross-

channel average equals 100. Specifically, let bij denotes the averaged abundance of peptide

i in sample j. The normalized abundance would be 100bij{p
ř

j bijq.

To obtain the abundance at the protein level, APIR averages the abundance of PSMs

with the same recommended master protein and then performs the same row normalization

as it does at the peptide level.

S4.6.12 Simulation studies

Here we describe how we conducted the simulation studies. Suppose that we have a total

of 104 mass spectra and that target PSMs and decoy PSMs are ordered in such a way

that the i-th target PSM shares the same mass spectrum as the i-th decoy PSM. Among

the 104 target PSMs, 1500 are true PSMs, and the rest are false. Let Ti1, Ti2, Ti3 denote

the scores of the i-th target PSM by toy database search algorithm 1, 2, 3 respectively and

Di1, Di2, Di3 denote the scores of the i-th decoy PSM. In addition, we generate M1, M2,

and M3 Ă t1, 2, . . . , 104u by randomly sampling without replacement 1000, 2000, and 3000

indices from t1, 2, . . . , 104u. We generate 200 simulated datasets under either the shared-

true-PSMs scenario or the shared-false-PSMs scenario using the following procedures.

Under the shared-true-PSMs scenario, if the i-th target PSM is true, we generate Xi

from the exponential distribution with mean 8, Yi from the exponential distribution with

mean 1 and set Ti1 “ Ti2 “ Ti3 “ Xi and Di1 “ Di2 “ Di3 “ Yi; if the i-th target PSM

is false, we generate Ti1, Ti2, Ti3, Di1, Di2, Di3 independently from exponential with mean 1.

Under the shared-false-PSMs scenario, if the i-th target PSM is true, we generate Ti1, Ti2, Ti3

independently from exponential with mean 4 and Di1, Di2, Di3 independently from exponen-

tial with mean 1; if the i-th target PSM is false, we first generate Xi and Yi independently

from the exponential distribution with mean 1 and then set Ti1 “ Ti2 “ Ti3 “ Xi and

Di1 “ Di2 “ Di3 “ Yi. Under either scenario, we set Tij to be a missing value if i PMj so

that each algorithm captures unique target PSMs.
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We examine the actual FDRs of APIR-adjust on each toy database search algorithm and

of aggregation methods: union, intersection, and APIR at the FDR threshold q “ 5%. For

each FDR-control method, we calculate an FDP—the proportion of identified PSMs that

are false—on each simulated data and average those 200 FDPs to compute the FDR. To

obtain the FDP of APIR-adjust, we apply APIR-adjust (in this case, Clipper because the

coverage target proportion is 100%) with the FDR threshold q “ 5% to each toy database

search algorithm. To obtain the FDP of union/intersection, we take the union/intersection

of the three sets of identified target PSMs by APIR-adjust, one per each toy database search

algorithm. To obtain the FDP of APIR, we apply the default APIR to aggregate the three

toy database search algorithms with the FDR threshold q “ 5%.
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[98] Ye Zheng and Sündüz Keleş. “FreeHi-C simulates high-fidelity Hi-C data for bench-

marking and data augmentation”. In: Nature Methods 17.1 (2020), pp. 37–40.

[99] Joses Ho et al. “Moving beyond P values: data analysis with estimation graphics”.

In: Nature methods 16.7 (2019), pp. 565–566.

[100] Dongyuan Song and Jingyi Jessica Li. “PseudotimeDE: inference of differential gene

expression along cell pseudotime with well-calibrated p-values from single-cell RNA

sequencing data”. In: bioRxiv (2020).

[101] Virginia Goss Tusher, Robert Tibshirani, and Gilbert Chu. “Significance analysis

of microarrays applied to the ionizing radiation response”. In: Proceedings of the

National Academy of Sciences 98.9 (2001), pp. 5116–5121.

[102] Jesse Hemerik and Jelle J Goeman. “False discovery proportion estimation by permu-

tations: confidence for significance analysis of microarrays”. In: Journal of the Royal

Statistical Society: Series B (Statistical Methodology) 80.1 (2018), pp. 137–155.

147



[103] Jesse Hemerik, Aldo Solari, and Jelle J Goeman. “Permutation-based simultaneous

confidence bounds for the false discovery proportion”. In: Biometrika 106.3 (2019),

pp. 635–649.

[104] Rina Foygel Barber and Emmanuel J Candès. “Controlling the false discovery rate

via knockoffs”. In: The Annals of Statistics 43.5 (2015), pp. 2055–2085.

[105] Ery Arias-Castro and Shiyun Chen. “Distribution-free multiple testing”. In: Electronic

Journal of Statistics 11.1 (2017), pp. 1983–2001.

[106] Yoav Benjamini. “Selective inference: The silent killer of replicability”. In: Issue 2.4

2.4 (2020).

[107] Kristen Emery et al. “Multiple Competition-Based FDR Control and Its Application

to Peptide Detection”. In: International Conference on Research in Computational

Molecular Biology. Springer. 2020, pp. 54–71.

[108] Abhishek K Sarkar and Matthew Stephens. “Separating measurement and expression

models clarifies confusion in single cell RNA-seq analysis”. In: BioRxiv (2020).

[109] Rina Foygel Barber, Emmanuel J Candès, et al. “A knockoff filter for high-dimensional

selective inference”. In: The Annals of Statistics 47.5 (2019), pp. 2504–2537.

[110] Jaime Roquero Gimenez and James Zou. “Improving the Stability of the Knockoff

Procedure: Multiple Simultaneous Knockoffs and Entropy Maximization”. In: arXiv

preprint arXiv:1810.11378 (2018).

[111] Boris Bogdanow, Henrik Zauber, and Matthias Selbach. “Systematic errors in peptide

and protein identification and quantification by modified peptides”. In: Molecular &

Cellular Proteomics 15.8 (2016), pp. 2791–2801.

[112] Michael P Washburn, Dirk Wolters, and John R Yates. “Large-scale analysis of the

yeast proteome by multidimensional protein identification technology”. In: Nature

biotechnology 19.3 (2001), pp. 242–247.

148



[113] Marshall Bern, Yong J Kil, and Christopher Becker. “Byonic: advanced peptide and

protein identification software”. In: Current protocols in bioinformatics 40.1 (2012),

pp. 13–20.

[114] Claire R Williams et al. “Empirical assessment of analysis workflows for differential

expression analysis of human samples using RNA-Seq”. In: BMC bioinformatics 18.1

(2017), p. 38.

[115] Keegan Korthauer et al. “A practical guide to methods controlling false discoveries

in computational biology”. In: Genome biology 20.1 (2019), pp. 1–21.

[116] ENCODE Project Consortium et al. “An integrated encyclopedia of DNA elements

in the human genome”. In: Nature 489.7414 (2012), pp. 57–74.

[117] Jonathan Thorsen et al. “Large-scale benchmarking reveals false discoveries and count

transformation sensitivity in 16S rRNA gene amplicon data analysis methods used in

microbiome studies”. In: Microbiome 4.1 (2016), p. 62.

[118] Charlotte Soneson and Mark D Robinson. “Bias, robustness and scalability in single-

cell differential expression analysis”. In: Nature methods 15.4 (2018), p. 255.

[119] Oscar Alzate. Neuroproteomics. CRC Press, 2009.

[120] John M Koomen et al. “Proteomic contributions to personalized cancer care”. In:

Molecular & Cellular Proteomics 7.10 (2008), pp. 1780–1794.

[121] Mark A Eckert et al. “Proteomics reveals NNMT as a master metabolic regulator of

cancer-associated fibroblasts”. In: Nature 569.7758 (2019), pp. 723–728.

[122] Gali Yanovich et al. “Clinical proteomics of breast cancer reveals a novel layer of

breast cancer classification”. In: Cancer research 78.20 (2018), pp. 6001–6010.

[123] Marjorie L Fournier et al. “Multidimensional separations-based shotgun proteomics”.

In: Chemical reviews 107.8 (2007), pp. 3654–3686.

[124] Jürgen Cox and Matthias Mann. “MaxQuant enables high peptide identification rates,

individualized ppb-range mass accuracies and proteome-wide protein quantification”.

In: Nature biotechnology 26.12 (2008), pp. 1367–1372.

149



[125] Sangtae Kim and Pavel A Pevzner. “MS-GF+ makes progress towards a universal

database search tool for proteomics”. In: Nature communications 5 (2014), p. 5277.

[126] Joshua E Elias and Steven P Gygi. “Target-decoy search strategy for increased confi-

dence in large-scale protein identifications by mass spectrometry”. In: Nature methods

4.3 (2007), pp. 207–214.

[127] Nathan Edwards, Xue Wu, and Chau-Wen Tseng. “An unsupervised, model-free,

machine-learning combiner for peptide identifications from tandem mass spectra”.

In: Clinical Proteomics 5.1 (2009), pp. 23–36.

[128] Kyowon Jeong, Sangtae Kim, and Nuno Bandeira. “False discovery rates in spectral

identification”. In: BMC bioinformatics 13.16 (2012), pp. 1–15.

[129] Kristen Emery et al. “Multiple competition-based FDR control for peptide detection”.

In: arXiv preprint arXiv:1907.01458 (2019).

[130] Lukas Käll et al. “Posterior error probabilities and false discovery rates: two sides of

the same coin”. In: Journal of proteome research 7.01 (2008), pp. 40–44.

[131] Lukas Käll et al. “Assigning significance to peptides identified by tandem mass spec-

trometry using decoy databases”. In: Journal of proteome research 7.01 (2008), pp. 29–

34.

[132] Oliver Serang and William Noble. “A review of statistical methods for protein identi-

fication using tandem mass spectrometry”. In: Statistics and its interface 5.1 (2012),

p. 3.

[133] Alexey I Nesvizhskii. “A survey of computational methods and error rate estimation

procedures for peptide and protein identification in shotgun proteomics”. In: Journal

of proteomics 73.11 (2010), pp. 2092–2123.

[134] Sven Nahnsen et al. “Probabilistic consensus scoring improves tandem mass spectrom-

etry peptide identification”. In: Journal of proteome research 10.8 (2011), pp. 3332–

3343.

150



[135] David Shteynberg et al. “iProphet: multi-level integrative analysis of shotgun pro-

teomic data improves peptide and protein identification rates and error estimates”.

In: Molecular & cellular proteomics 10.12 (2011).

[136] Taejoon Kwon et al. “MSblender: A probabilistic approach for integrating peptide

identifications from multiple database search engines”. In: Journal of proteome re-

search 10.7 (2011), pp. 2949–2958.

[137] David C Wedge et al. “FDRAnalysis: a tool for the integrated analysis of tandem

mass spectrometry identification results from multiple search engines”. In: Journal of

proteome research 10.4 (2011), pp. 2088–2094.

[138] Arun Devabhaktuni et al. “TagGraph reveals vast protein modification landscapes

from large tandem mass spectrometry datasets”. In: Nature biotechnology 37.4 (2019),

pp. 469–479.

[139] Amol Prakash et al. “Bolt: A new age peptide search engine for comprehensive MS/MS

sequencing through vast protein databases in minutes”. In: Journal of The American

Society for Mass Spectrometry 30.11 (2019), pp. 2408–2418.

[140] Dattatreya Mellacheruvu et al. “The CRAPome: a contaminant repository for affinity

purification–mass spectrometry data”. In: Nature methods 10.8 (2013), pp. 730–736.

[141] Joao A Paulo. “Practical and efficient searching in proteomics: a cross engine com-

parison”. In: Webmedcentral 4.10 (2013).

[142] Yi Fang et al. “Quantitative phosphoproteomics reveals genistein as a modulator of

cell cycle and DNA damage response pathways in triple-negative breast cancer cells”.

In: International journal of oncology 48.3 (2016), pp. 1016–1028.

[143] Simon Raffel et al. “BCAT1 restricts αKG levels in AML stem cells leading to IDH

mut-like DNA hypermethylation”. In: Nature 551.7680 (2017), pp. 384–388.

[144] Sean J Humphrey, David E James, and Matthias Mann. “Protein phosphorylation:

a major switch mechanism for metabolic regulation”. In: Trends in Endocrinology &

Metabolism 26.12 (2015), pp. 676–687.

151



[145] Wen-Wei Tsai et al. “TRIM24 links a non-canonical histone signature to breast can-

cer”. In: Nature 468.7326 (2010), pp. 927–932.

[146] Zhibin Cui et al. “TRIM24 overexpression is common in locally advanced head and

neck squamous cell carcinoma and correlates with aggressive malignant phenotypes”.

In: PloS one 8.5 (2013), e63887.

[147] Anna C Groner et al. “TRIM24 is an oncogenic transcriptional activator in prostate

cancer”. In: Cancer cell 29.6 (2016), pp. 846–858.

[148] Haiying Li et al. “Overexpression of TRIM24 correlates with tumor progression in

non-small cell lung cancer”. In: PloS one 7.5 (2012), e37657.

[149] Xiao Liu et al. “Overexpression of TRIM24 is associated with the onset and progress

of human hepatocellular carcinoma”. In: PloS one 9.1 (2014), e85462.

[150] Jianwei Wang et al. “Knockdown of tripartite motif containing 24 by lentivirus sup-

presses cell growth and induces apoptosis in human colorectal cancer cells”. In: On-

cology Research Featuring Preclinical and Clinical Cancer Therapeutics 22.1 (2014),

pp. 39–45.

[151] C Li et al. “Knockdown of TRIM24 suppresses growth and induces apoptosis in acute

myeloid leukemia through downregulation of Wnt/GSK-3β/β-catenin signaling”. In:

Human & Experimental Toxicology 39.12 (2020), pp. 1725–1736.

[152] Yan Ye et al. “PI (4, 5) P2 5-phosphatase A regulates PI3K/Akt signalling and has a

tumour suppressive role in human melanoma”. In: Nature communications 4.1 (2013),

pp. 1–15.

[153] Laura J Van’t Veer et al. “Gene expression profiling predicts clinical outcome of breast

cancer”. In: nature 415.6871 (2002), pp. 530–536.

[154] Sang-Uk Han et al. “Loss of the Smad3 expression increases susceptibility to tumori-

genicity in human gastric cancer”. In: Oncogene 23.7 (2004), pp. 1333–1341.

152



[155] Patrick Ming-Kuen Tang et al. “Smad3 promotes cancer progression by inhibiting

E4BP4-mediated NK cell development”. In: Nature communications 8.1 (2017), pp. 1–

15.

[156] C Liu et al. “MicroRNA-34b inhibits pancreatic cancer metastasis through repressing

Smad3”. In: Current molecular medicine 13.4 (2013), pp. 467–478.

[157] Maj Petersen et al. “Smad2 and Smad3 have opposing roles in breast cancer bone

metastasis by differentially affecting tumor angiogenesis”. In: Oncogene 29.9 (2010),

pp. 1351–1361.

[158] Nicholas I Fleming et al. “SMAD2, SMAD3 and SMAD4 mutations in colorectal

cancer”. In: Cancer research 73.2 (2013), pp. 725–735.

[159] Jianfei Xue et al. “Sustained activation of SMAD3/SMAD4 by FOXM1 promotes

TGF-β–dependent cancer metastasis”. In: The Journal of clinical investigation 124.2

(2014), pp. 564–579.
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