
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Behavior Prediction of Intelligent Agents in and Around Safe Autonomous Vehicles

Permalink
https://escholarship.org/uc/item/98c482j0

Author
Deo, Nachiket

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/98c482j0
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Behavior Prediction of Intelligent Agents in and Around Safe Autonomous
Vehicles

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in

Electrical & Computer Engineering (Signal and Image Processing)

by

Nachiket Deo

Committee in charge:

Professor Mohan M. Trivedi, Chair
Professor Nikolay A. Atanasov
Professor Manmohan Chandraker
Professor Garrison W. Cottrell
Professor Bhaskar D. Rao

2022

Copyright

Nachiket Deo, 2022

All rights reserved.

The Dissertation of Nachiket Deo is approved, and it is acceptable in quality

and form for publication on microfilm and electronically.

University of California San Diego

2022

iii

DEDICATION

To my parents,
for their unshakeable and sometimes inexplicable faith in me.

iv

EPIGRAPH

”It’s tough to make predictions, especially about the future”
– Yogi Berra

v

TABLE OF CONTENTS

Dissertation Approval Page . iii

Dedication . iv

Epigraph . v

Table of Contents . vi

List of Figures . xi

List of Tables . xviii

Acknowledgements . xx

Vita . xxiii

Abstract of the Dissertation . xxv

Chapter 1 Introduction . 1
1.1 Research themes . 2

1.1.1 Predicting Trajectories of Surrounding agents 2
1.1.2 Predicting Driver Behavior during Control Transitions 5

1.2 Contributions and Outline . 7

Part I Predicting Trajectories of Surrounding Agents . 10

Chapter 2 A Unified Framework for Maneuver Recognition & Trajectory Prediction 11
2.1 Introduction . 11

2.1.1 Contributions . 13
2.2 Related Research . 14

2.2.1 Data-driven trajectory prediction . 14
2.2.2 Maneuver-based trajectory prediction . 15
2.2.3 Interaction-aware trajectory prediction . 16

2.3 Overview . 17
2.4 Maneuver Recognition Module . 20

2.4.1 Maneuver classes . 20
2.4.2 Hidden Markov Models . 21

2.5 Trajectory Prediction Module . 22
2.5.1 Motion Models . 23
2.5.2 Probabilistic Trajectory Prediction . 24

2.6 Vehicle Interaction Module . 26
2.7 Experimental Evaluation . 28

2.7.1 Dataset . 28
2.7.2 Evaluation Measures and Experimental Settings 31

vi

2.7.3 Ablative Analysis . 34
2.7.4 Analysis of execution time . 35
2.7.5 Qualitative Analysis of Predictions . 35
2.7.6 Vehicle Interaction Model Case Studies . 38

2.8 Conclusions . 39

Chapter 3 Convolutional Social Pooling and Maneuver Based LSTMs 41
3.1 Introduction . 41

3.1.1 Contributions . 43
3.2 Related Research . 44

3.2.1 Maneuver based models: . 44
3.2.2 Interaction aware models: . 44
3.2.3 Recurrent networks for motion prediction: . 45

3.3 Formulation . 46
3.3.1 Frame of reference . 46
3.3.2 Inputs and outputs . 47
3.3.3 Probabilistic motion prediction . 47
3.3.4 Maneuver classes . 48

3.4 Proposed Model . 48
3.4.1 LSTM Encoder . 48
3.4.2 Convolutional Social Pooling . 50
3.4.3 Maneuver based LSTM decoder . 51
3.4.4 Training and Implementation details . 52

3.5 Experimental Evaluation . 52
3.5.1 Dataset . 52
3.5.2 Evaluation metrics . 53
3.5.3 Compared models . 53
3.5.4 Results . 54
3.5.5 Fully connected vs. convolutional social pooling 57
3.5.6 Qualitative analysis of predictions . 57

3.6 Conclusions . 61

Chapter 4 Trajectory Prediction Conditioned on Grid-based Plans 62
4.1 Introduction . 62

4.1.1 Contributions . 66
4.2 Preliminaries . 67
4.3 Proposed Approach . 70

4.3.1 Inferring goals and paths by learning rewards 72
4.3.2 Reward model . 74
4.3.3 Trajectories conditioned on plans . 76

4.4 Experimental Evaluation . 81
4.4.1 Datasets . 81
4.4.2 Metrics . 82
4.4.3 Comparison with the state of the art . 84

vii

4.4.4 Ablations . 86
4.4.5 Runtime . 90
4.4.6 Qualitative examples . 90

4.5 Conclusions . 91

Chapter 5 Trajectory Prediction Conditioned on Lane-Graph Traversals 93
5.1 Introduction . 93

5.1.1 Contributions . 95
5.2 Related Research . 96

5.2.1 Graph representation of HD maps . 96
5.2.2 Multimodal trajectory prediction . 97
5.2.3 Goal-conditioned trajectory prediction . 97

5.3 Formulation . 98
5.3.1 Trajectory representation . 98
5.3.2 Representing HD maps as lane graphs . 99
5.3.3 Output representation . 100

5.4 Proposed Model . 101
5.4.1 Encoding scene and agent context . 101
5.4.2 Discrete policy for graph traversal . 102
5.4.3 Decoding trajectories conditioned on traversals 103

5.5 Experimental Evaluation . 105
5.5.1 Experimental settings . 105
5.5.2 Metrics . 105
5.5.3 Comparison to the state of the art . 105
5.5.4 Encoder ablations . 107
5.5.5 Decoder ablations . 107

5.6 Conclusions . 108
5.A Appendix: Implementation details . 110

5.A.1 Map representation . 110
5.A.2 GRU encoders . 111
5.A.3 Agent-node attention . 111
5.A.4 GNN layers . 111
5.A.5 Policy header . 112
5.A.6 Trajectory decoder . 112
5.A.7 Training . 112
5.A.8 Ranking Clustered Trajectories . 113
5.A.9 Decoder ablation details . 113

Part II Predicting Driver Behavior during Control Transitions 115

Chapter 6 Predicting Take-Over Readiness of Drivers using Vision Sensors 116
6.1 Introduction . 116

6.1.1 Contributions . 117
6.2 Related Research . 120

viii

6.2.1 Driver behavior analysis . 120
6.2.2 Driver distraction estimation . 121
6.2.3 Take-over time and quality studies . 122

6.3 Experimental Setup . 122
6.4 Human ratings for observable driver readiness . 124

6.4.1 Protocol for collecting ratings . 124
6.4.2 Dataset Description . 126
6.4.3 Normalization of ratings . 126
6.4.4 Observable Readiness Index . 127
6.4.5 Inter-rater agreement analysis . 127
6.4.6 Qualitative analysis of ratings . 131

6.5 Model for Estimating ORI . 131
6.5.1 Frame-wise feature extraction . 133
6.5.2 Correlation of extracted features with ORI . 134
6.5.3 Proposed LSTM model . 135

6.6 Experimental Evaluation . 137
6.6.1 Metrics and baselines . 138
6.6.2 Results . 138
6.6.3 Inference time . 139

6.7 Qualitative analysis . 141
6.7.1 Effect of key-frame weighting model . 141
6.7.2 Effect of feature streams . 143

6.8 Conclusions . 144

Chapter 7 Predicting Take-over Time for Autonomous Driving with Real-World
Data . 145

7.1 Introduction . 145
7.1.1 Contributions . 147

7.2 Related Research . 148
7.2.1 Vision based driver behavior analysis . 148
7.2.2 Take-over time analysis in autonomous driving 149
7.2.3 Take-over time prediction for autonomous driving 150

7.3 Dataset & Labels . 151
7.3.1 Controlled Data Study (CDS) . 151
7.3.2 Annotation . 152
7.3.3 Data Augmentation . 153

7.4 Models for Predicting Takeover Times . 156
7.4.1 Frame-wise feature extraction . 156
7.4.2 LSTM models for take-over time prediction . 158

7.5 Experimental Evaluation . 164
7.5.1 Comparison of LSTM models for TOT prediction 164
7.5.2 Effect of data augmentation and transfer learning 166
7.5.3 Effect of hand, gaze and foot activity features 167
7.5.4 Quantitative results on test set . 171

ix

7.5.5 Qualitative examples . 171
7.6 Conclusions . 171

Chapter 8 Conclusions . 173

Bibliography . 175

x

LIST OF FIGURES

Figure 1.1. Modeling agent-agent interaction: The locations and motion of
nearby agents affects the future trajectories of vehicles and pedestri-
ans. Throughout part I, we present trajectory prediction models that
incorporate agent-agent interaction. 3

Figure 1.2. Multimodal trajectory prediction: We develop models that output
a multimodal distribution over future trajectories conditioned on
maneuver classes (chapter 3) or routes sampled from a discrete policy
exploring a grid representation of the scene (chapter 4) or graph
representation of the scene (chapter 5). 4

Figure 1.3. Predicting driver behavior during control transitions: We
learn a holistic representation of the driver’s state using CNNs for
driver gaze, hand and foot activity recognition. The outputs of the
CNNs are aggregated over a time window using LSTM models to
encode driver activity prior to takeover requests. We then predict the
takeover readiness of the driver (pictured here) based on the encoding,
or predict the driver’s reaction times to get their eyes on the road,
hands on the wheel and foot on the pedal, if a takeover request is
issued at a given instance. 5

Figure 2.1. From surround perception to behavior prediction: We propose
a unified model for trajectory prediction that leverages the instanta-
neous motion of the vehicles, the maneuver being performed by the
vehicles and inter-vehicle interactions, while working purely with data
captured using vehicle mounted sensors. The above figure shows the
data captured by 8 surround cameras (top), the track histories of
surrounding vehicles, the mean predicted trajectories (bottom left) and
a heat map of the predicted distribution in the ground plane (bottom
right). 12

Figure 2.2. Overview of the proposed model: Track histories of all surround-
ing vehicles are obtained via a multi-perspective tracker and projected
to the ground plane in the ego vehicle’s frame of reference. The model
consists of three interacting modules: The maneuver recognition mod-
ule assigns confidence values to possible maneuvers being performed
by each vehicle. The trajectory prediction module outputs future
trajectories for each maneuver class. The vehicle interaction module
assigns the true recognized maneuver for each vehicle by combining the
confidence values provided by the maneuver recognition module and
the feasibility of predicted trajectories given the relative configuration
of all vehicles . 18

xi

Figure 2.3. Maneuver Classes for Freeway Traffic: We bin the trajectories
of surrounding vehicles in the ego-vehicle frame of reference into 10
maneuver classes: 4 lane pass maneuvers, 2 overtake maneuvers, 2
cut-in maneuvers and 2 maneuvers involving drifting into ego vehicle
lane. 20

Figure 2.4. Dataset: Examples of annotated frames from the evaluation set (top
left and top right) and trajectories belonging to all maneuver classes
projected in the ground plane (bottom). We can observe that the
trajectory patterns implicitly capture lane information 29

Figure 2.5. Predictions made by CV, M-VGMM and C-VGMM models:
(a): Better prediction of lateral motion in overtakes by the proba-
bilistic models. (b): Early detection of overtakes by the HMM. (c):
Deceleration near the ego vehicle predicted by the C-VGMM. (d):
Effect of lane information implicitly encoded by the M-VGMM and
C-VGMM . 36

Figure 2.6. Effect of the VIM: Each case shows from left to right: The ground
truth, predictions made independently for each vehicle, uncertainty of
the independent predictions, predictions made with the VIM, uncer-
tainties of the VIM predictions . 37

Figure 3.1. Multimodal predictions for highway traffic: Imagine the blue
vehicle is an autonomous vehicle in the traffic scenario shown. Our
proposed model allows it to make multimodal predictions of future
motion of it’s surrounding vehicles, along with prediction uncertainty
shown here for the red vehicle . 42

Figure 3.2. Formulation. Top: The co-ordinate system used for trajectory pre-
diction. The vehicle being predicted is shown in black, neighboring
vehicles considered are shown in blue. Bottom: Lateral and longitudi-
nal maneuver classes . 46

Figure 3.3. Proposed Model: The encoder is an LSTM with shared weights that
learns vehicle dynamics based on track histories. The convolutional
social pooling layers learn the spatial interdependencies of of the tracks.
Finally, the maneuver based decoder outputs a multimodal predictive
distribution for the future motion of the vehicle being predicted 49

xii

Figure 3.4. Fully connected and convolutional social pooling. Top: All
training instances with vehicles at odd locations in ego lane of social
tensor removed from train set; all instances with vehicles even locations
removed from test set. Bottom: RMS values of prediction error for FC
social pooling and convolutional social pooling for original datasets
and datasets from experiment. Convolutional social pooling is more
robust to missing spatial patterns in the social tensor 56

Figure 3.5. Comparison of uni-modal and multimodal predictions: The
figure shows the true trajectory (top, black), CS-LSTM predictive
distributions (middle, blue) and CS-LSTM(M) predictive distributions
(bottom, red) for three consecutive frames of a lane change maneuver.
The heat maps are generated by plotting the Gaussian components
for each maneuver at each time step in the prediction horizon 58

Figure 3.6. Surrounding vehicles affect predictions: This figure shows the
effect of surrounding vehicles on predictive distribution generated by
the model. The heat maps are generated by plotting the Gaussian
components for each maneuver at each time step in the prediction
horizon . 60

Figure 4.1. Forecasts generated by P2T: We address the problem of forecasting
agent trajectories in unknown scenes. The inputs to our model (left)
are snippets of the agents’ past trajectories, and a bird’s eye view
representation of the scene around them. Our model infers potential
goals of the agents (left-middle) and paths to these goals (middle)
over a coarse 2-D grid defined over the scene by modeling the agent
as a MaxEnt policy exploring the grid. It generates continuous valued
trajectories conditioned on the grid-based plans sampled from the
policy (middle-right). Finally it outputs K predicted trajectories by
clustering the sampled trajectories (right). 65

Figure 4.2. P2T: P2T consists of three modules: (1) a fully convolutional reward
model, that outputs transient path state rewards and terminal goal
state rewards on a coarse 2-D grid, (2) a MaxEnt RL policy for
the learned path and state rewards, that can be sampled to generate
multimodal plans on the 2-D grid, and (3) an attention based trajectory
generator, that outputs continuous valued trajectories conditioned on
the sampled plans. 71

Figure 4.3. Reward model: CNNfeat extracts features from the static scene. We
concatenate these with feature maps capturing the agent’s motion.
CNNp and CNNg learn path and goal rewards from the features. . . . 76

xiii

Figure 4.4. Plan encoder: For each state in a sampled plan, we encode the scene
features, surrounding agent states and the location co-ordinates of the
grid cell and term it ϕS(s). This is then fed into bidirectional GRU
to encode the the entire sampled plan. Our GRU decoder generates
output trajectories by attending to the plan encoding. 79

Figure 4.5. Sample quality metrics. MinADEK , MinFDEK and miss rate fail
to penalize a diverse set of trajectories that don’t conform to the scene
(left). The off-road rate (middle) and off-yaw (right) metrics address
this by penalizing predicted points that fall off the drivable area or
onto oncoming traffic. Warm colors indicate higher errors. 82

Figure 4.6. Ablation of grid based plans: Models with (left) and without
(right) the plan encoder and grid based policy. Without the grid based
plan, the trajectory decoder attends to all features within the grid . . 86

Figure 4.7. Qualitative examples from NuScenes. From top to bottom:
Inputs, goal SVFs, path SVFs and predictions 88

Figure 4.8. Qualitative examples from SDD. From top to bottom: Inputs,
goal SVFs, path SVFs and predictions . 89

Figure 5.1. Drawbacks of rasterized HD maps: Rasterization of HD map
elements in the bird’s eye view can lead to occlusion of scene elements
(left). Encoding rasterized HD maps with CNN layers yields a grid
representation of the state space for sampling plans as described in
the previous chapter. Sampling from a grid based policy can lead to
redundant samples (right). 94

Figure 5.2. Overview of our approach. We encode HD maps and agent tracks
using a graph representation of the scene. However, instead of ag-
gregating the entire scene context into a single vector and learning
a one-to-many mapping to multiple trajectories, we condition our
predictions on selectively aggregated context based on paths traversed
in the graph by a discrete policy. 95

Figure 5.3. PGP: PGP consists of three modules trained end-to-end. The graph
encoder (top) encodes agent and map context as node encodings of a
directed lane-graph. The policy header (bottom-left) learns a discrete
policy for sampled graph traversals. The trajectory decoder (bottom-
right) predicts trajectories by selectively attending to node encodings
along paths traversed by the policy and a sampled latent variable. . 100

xiv

Figure 5.4. Qualitative comparison of decoders: MTP (column 2) predicts
trajectories that often veer off-road (1○- 3○, 6○). The decoder purely
conditioned on latent variables (column 3) lacks lateral diversity and
predicts trajectories along a single route, even missing the correct
route in 6○. The decoder conditioned purely on traversals (column
4) predicts diverse routes, but lacks longitudinal diversity (1○, 2○, 5○).
Finally, the decoder conditioned on goals rather than path traversals
(column 5) predicts spurious goals that may not be reachable (3○, 4○).
Our model (column 6) predicts scene-compliant trajectories over a
diverse set of routes. In cases with few plausible routes (e.g. 5○), it uses
its prediction budget of K trajectories to generate more longitudinal
diversity. 109

Figure 6.1. Overview of our approach: We wish to continuously estimate the
driver’s readiness to take-over control from an autonomous vehicle
based on feed from vision and depth sensors capturing the driver’s
complete state. We define a continuous ground truth value for take-
over readiness of the driver based on ratings provided by multiple
human raters observing sensor feed. We term this the ‘Observable
Readiness Index (ORI)’.We process the sensor feed frame-by-frame
using models for driver activity analysis and propose an LSTM model
to learn the temporal dependencies in the frame-wise features. Our
model continuously estimates the ORI of the driver. 118

Figure 6.2. Experimental setup: Our testbed is equipped with 4 high resolution
cameras, a depth sensor and infrared sensors for foot pedals. This
figure shows views used for driver face and gaze analysis (top-left),
hand activity analysis (middle-left), pose analysis (top-right), foot
analysis (middle-right) with IR sensor locations, depth sensor output
(bottom) . 123

Figure 6.3. Interface for collecting ratings: The raters observe video feed
from the pose and foot cameras and assign a rating for each 2 second
segment of video. 125

Figure 6.4. Examples frames from the dataset (showing pose view): The
dataset driver behaviors such as vigilant driving, talking to a co-
passenger, gesturing, operating the infotainment unit, drinking a
beverage and interacting with a cell-phone or tablet 127

xv

Figure 6.5. Example ratings: Assigned (top), normalized, (middle) and aver-
aged and interpolated (bottom) ratings provided by two raters for 3
sequences from the expansion set. The percentile based normalization
scheme removes rater bias while retaining the trend of the ratings.
Finally averaging and interpolating gives the continuously varying
ORI for the sequences . 130

Figure 6.6. Frame-wise features capturing driver state: We extract frame-
wise features capturing driver’s gaze, hand activity, pose and foot
activity from the synchronized feed of our cameras and depth sensors.
Existing convolutional neural network (CNN) based approaches [23,
139,178,186] are used for extracting these frame-wise features. 132

Figure 6.7. Feature correlation: Frame-wise correlation of gaze, hand and foot
features with ORI ratings . 135

Figure 6.8. Models: LSTM models used for estimating ORI 136

Figure 6.9. Effect of key-frame weighting model: Three example clips with
ground truth ORI (top), ORI predicted by vanilla LSTM (bottom),
ORI predicted with key-frame weighting (middle). Key-frame weight-
ing allows the model to focus on the most relevant frames in the
sequence and generate a smoother, more reliable rating, compared to
the noisier, more reactive vanilla LSTM. 141

Figure 6.10. Importance of gaze and hand cues: This figure shows two example
clips with ratings predicted based purely on gaze cues, hand cues and
all features combined. The first example shows a case where the gaze
features fail to correctly predict the ORI, where the hand features can
be used to correct the error. The second example shows a failure case
of hand features, that could be corrected based on the gaze features.
The model trained on the combined feature streams correctly predicts
the ground truth rating for both cases. 142

Figure 7.1. Role of take-over time (TOT) prediction: We propose a model
for predicting TOT during control transitions based on driver behavior.
The proposed model can be used in conjunction with time-to-collision
estimation to determine whether to issue a take-over request and
transfer control to the human, or to deploy active safety measures for
collision avoidance. 146

Figure 7.2. Take-over time statistics from the CDS: We plot the mean values
(with error bars) of the different take-over related event timings for
each secondary activity. 153

xvi

Figure 7.3. TOT dataset augmentation scheme: We increase the number of
samples in our TOT prediction dataset by an order of magnitude by
considering augmented TORs between the actual TOR and the first
of the three takeover completion cues. 154

Figure 7.4. Overview of the proposed approach: We extract frame-wise
descriptors of driver gaze, hand and foot activity. We propose an
LSTM model for predicting TOT based on a sequence of the extracted
features over a 2 second window. 157

Figure 7.5. LSTMs: Baseline LSTM model architecture. 158

Figure 7.6. ID LSTMs: Independent LSTMs model architecture. 160

Figure 7.7. LSTMs + MM: LSTM with multi-modal outputs model architecture. 161

Figure 7.8. ID LSTMs + MM: Independent LSTMs with multi-modal outputs
model architecture. 162

Figure 7.9. ORI pretraining: We use a transfer learning approach to first train
a model for ORI estimation [39] (Step 1), and then refine the model’s
weights on the target TOT prediction task (Step 2). 167

Figure 7.10. Qualitative examples: Predicted TOT for each of the 8 secondary
activities in the CDS dataset. 170

xvii

LIST OF TABLES

Table 2.1. Dataset Statistics . 30

Table 2.2. Quantitative results showing ablative analysis of our proposed model 33

Table 3.1. RMSE and negative log-likelihood values over a 5 second prediction
horizon . 55

Table 4.1. Results on SDD test set for split used in [154] . 84

Table 4.2. Results on SDD test set for split used in [106] . 84

Table 4.3. Results on NuScenes test set for the prediction challenge 85

Table 4.4. Ablations on SDD . 87

Table 4.5. Ablations on NuScenes . 87

Table 4.6. Inference time . 90

Table 5.1. Comparison to the state of the art on nuScenes 106

Table 5.2. Encoder ablations . 106

Table 5.3. Decoder ablations . 106

Table 5.4. Lateral diversity metrics (K=10) . 107

Table 5.5. Longitudinal diversity metrics (K=10) . 107

Table 6.1. Secondary activities in collected dataset . 128

Table 6.2. Rater agreement analysis based on intra-class correlation co-efficients
(ICC) . 130

Table 6.3. Mean absolute error (MAE) of predicted ORI values with respect to
assigned values . 140

Table 6.4. Average inference times for components of our model 140

Table 7.1. Sizes of different takeover time prediction datasets. 156

Table 7.2. TOT prediction errors for the CDS validation set comparing model
architectures. 165

Table 7.3. Effect of data augmentation and ORI pretraining 165

xviii

Table 7.4. TOT prediction errors for different times of interest on the CDS vali-
dation set for a variety of feature combinations. 168

Table 7.5. Prediction errors for different models on the takeover time test set. . . 169

xix

ACKNOWLEDGEMENTS

As I conclude what has been a long and rewarding journey, I’d like to express my

deepest gratitude to my mentors, colleagues, family and friends. Their advice, love and

support have shaped who I am, and the way I think. Quite simply, this dissertation would

not exist without them.

First and foremost, I must thank my advisor, Prof. Mohan Trivedi. Throughout the

past six years he has been an exceptional mentor, a role model, and my greatest advocate.

He provided me the space to explore my research interests and patiently offered words of

encouragement, and constructive criticism through countless failures. His enthusiasm and

optimism were the perfect foil to my perfectionistic tendencies. As my colleague Akshay

Rangesh aptly put - the best antidote to imposter syndrome is a brief meeting with Prof.

Trivedi. I hope to emulate his deep commitment to his research statement and to the

success and well-being of his students.

I would also like to thank my thesis committee, Prof. Chandraker, Prof. Rao, Prof.

Cottrell and Prof. Atanasov. Though our interactions were brief, they played a huge role

in improving this work. In particular, I recall Prof. Rao’s advice on developing deeper

insights rather than a large breadth of work, during my preliminary exam. I also recall

Prof. Chandraker’s advice on developing better metrics for evaluating prediction models,

which helped shape some of my most recent work.

I’ve had the privilege to work with some incredible colleagues at LISA. In particular,

I owe a great debt of gratitude to Akshay Rangesh and Kevan Yuen. Much of this work

directly builds upon the testbed, models and code that they meticulously developed. My

co-authors - Daniela Ridel, Kaouther Messaoud and Ross Greer. Our collaborations were

some of the most fulfilling experiences during my PhD and I learned a lot from them. I

would also like to thank all my other friends and colleagues from LISA: Larry Ly, Sujitha

Martin, Eshed Ohn-Bar, Sourabh Vora, Ishan Gupta, Borhan Vasli, Aida Khosroshahi,

Bowen Zhang, Kirill Pirozhenko, Ole Salscheider, Walter Zimmer, Eduardo Romera, Jason

xx

Isa, Maitrayee Keskar, Anish Gopalan, Akshay Gopalkrishnan and Lulua Rakla.

I had the opportunity to spend a wonderful winter (remotely) interning with the

machine learning and prediction teams at Motional. I would like to thank my hosts, Oscar

Beijbom and Eric Wolff for all the brainstorming sessions, help with writing and reviving

the code for the CoRL rebuttal. Hopefully we’ll get to meet in person soon.

Most importantly, I’m deeply grateful to my family. Their love and support sustains

all my endeavors. I’m incredibly privileged to have been born in a loving family, who

valued learning and curiosity, who supported my move to a different country and my

pursuit of a PhD. I’m particularly thankful to my parents, grandparents, both uncles and

aunt. I am who I am because of the values you inculcated.

I’m also thankful for my friends. In particular, Sourabh, Rishi, Megha and Sahil -

I could not have asked for a better set of roommates as I moved to a new country and

tried to find my bearings. The early years were a struggle, but I fondly recall the company.

My oldest friends, Chirag, Ashutosh, Sagar, Keyur and Iyer - our weekend calls and AoE

sessions kept me sane during the pandemic.

I’d like to thank my partner Nala for being by my side through the ups and downs

of the PhD experience, for grounding me, and reminding me that I’m more than just my

work, and for going on so many impromptu (and some planned) adventures with me.

And last but not the least, I’d like to thank my dogs Goldie and Luna for being a

boundless source of joy and love. Their happy tail wags as they unfailingly greet me at

the door can melt away any amount of stress.

Publication acknowledgements:

Chapter 2, in full, is a reprint of the material as it appears in: ”How would surround

vehicles move? a unified framework for maneuver classification and motion prediction,”

Nachiket Deo, Akshay Rangesh, and Mohan M. Trivedi, IEEE Transactions on Intelligent

Vehicles 2018. The dissertation author was the primary investigator and author of this

xxi

paper.

Chapter 3, in part, is a reprint of the material as it appears in: ”Convolutional

Social Pooling for Vehicle Trajectory Prediction,” Nachiket Deo, and Mohan M. Trivedi,

CVPR Workshops 2018. The dissertation author was the primary investigator and author

of this paper.

Chapter 4, in part, is a reprint of the material as it appears in: ”Trajectory Forecasts

in Unknown Enviroments Conditioned on Grid-based Plans,” Nachiket Deo, and Mohan

M. Trivedi, arXiv:2001.00735 (2020). The dissertation author was the primary investigator

and author of this paper.

Chapter 5, in part, is a reprint of the material as it appears in: ”Multimodal

Trajectory Prediction Conditioned on Lane-Graph Traversals,” Nachiket Deo, Eric Wolff

and Oscar Beijbom, CoRL 2021. The dissertation author was the primary investigator

and author of this paper.

Chapter 6, in full, is a reprint of the material as it appears in: ”Looking at the

driver/rider in autonomous vehicles to predict take-over readiness,” Nachiket Deo and

Mohan M. Trivedi, IEEE Transactions on Intelligent Vehicles 2019. The dissertation

author was the primary investigator and author of this paper.

Chapter 7, in part, is based on ”Take-over Time Prediction for Autonomous Driving

in the Real-World: Robust Models, Data Augmentation, and Evaluation,” Akshay Rangesh,

Nachiket Deo, Ross Greer, Pujitha Gunaratne, Mohan M. Trivedi, currently submitted to

IEEE Transactions on Human Machine Systems. The dissertation author was one of the

primary investigators and authors of this paper.

xxii

VITA

2015 B. Tech and M. Tech in Electrical Engineering, Indian Institute of Technology
Bombay

2017 M. S. in Electrical and Computer Engineering (Signal and Image Processing),
University of California San Diego

2016–2022 Graduate Student Researcher, University of California San Diego

2022 Ph. D. in Electrical and Computer Engineering (Signal and Image Processing),
University of California San Diego

PUBLICATIONS

N. Deo, E. Wolff, and O. Beijbom. ”Multimodal trajectory prediction conditioned on
lane-graph traversals.” Conference on Robot Learning, PMLR, 2022.

R. Greer, J. Isa, N. Deo, A. Rangesh, and M. M. Trivedi. ”On Salience-Sensitive Sign
Classification in Autonomous Vehicle Path Planning: Experimental Explorations with a
Novel Dataset.” Winter Conference on Applications of Computer Vision Workshops, 2022.

A. Rangesh, N. Deo, R. Greer, P. Gunaratne, and M. M. Trivedi. ”Autonomous Vehicles
that Alert Humans to Take-Over Controls: Modeling with Real-World Data.” IEEE
International Conference on Intelligent Transportation Systems (ITSC), 2021.

A. Rangesh, N. Deo, R. Greer, P. Gunaratne, and M. M. Trivedi. ”Predicting Take-over
Time for Autonomous Driving with Real-World Data: Robust Data Augmentation, Models,
and Evaluation.” arXiv preprint arXiv:2107.12932 (2021).

R. Greer, N. Deo, and M. Trivedi. ”Trajectory prediction in autonomous driving with a
lane heading auxiliary loss.” IEEE Robotics and Automation Letters, 2021.

K. Messaoud, N. Deo, M. M. Trivedi, and F. Nashashibi. ”Trajectory prediction for
autonomous driving based on multi-head attention with joint agent-map representation.”
IEEE Intelligent Vehicles Symposium (IV), 2021.

D. Ridel, N. Deo, D. Wolf, and M. Trivedi. ”Scene compliant trajectory forecast with
agent-centric spatio-temporal grids.” IEEE Robotics and Automation Letters, 2020.

N. Deo, and M. M. Trivedi. ”Trajectory forecasts in unknown environments conditioned
on grid-based plans.” arXiv preprint arXiv:2001.00735 (2020).

N. Deo, and M. M. Trivedi. ”Looking at the driver/rider in autonomous vehicles to predict
take-over readiness.” IEEE Transactions on Intelligent Vehicles, 2019.

xxiii

D. A. Ridel, N. Deo, D. Wolf, and M. Trivedi. ”Understanding pedestrian-vehicle inter-
actions with vehicle mounted vision: An LSTM model and empirical analysis.” IEEE
Intelligent Vehicles Symposium (IV), 2019.

N. Deo, and M. M. Trivedi. ”Scene induced multi-modal trajectory forecasting via
planning.” IEEE International Conference on Robotics and Automation (ICRA) Workshops,
2019.

N. Deo, N. Meoli, A. Rangesh, and M. Trivedi. ”On control transitions in autonomous
driving: A framework and analysis for characterizing scene complexity.” IEEE/CVF
International Conference on Computer Vision Workshops, 2019.

A. Rangesh, N. Deo, K. Yuen, K. Pirozhenko, P. Gunaratne, H. Toyoda, and M. M.
Trivedi. ”Exploring the situational awareness of humans inside autonomous vehicles.”
IEEE International Conference on Intelligent Transportation Systems (ITSC), 2018.

N. Deo, and M. M. Trivedi. ”Multi-modal trajectory prediction of surrounding vehicles
with maneuver based lstms.” IEEE Intelligent Vehicles Symposium (IV), 2018.

N. Deo, A. Rangesh, and M. M. Trivedi. ”How would surround vehicles move? a unified
framework for maneuver classification and motion prediction.” IEEE Transactions on
Intelligent Vehicles, 2018.

N. Deo and M. M. Trivedi. ”Convolutional social pooling for vehicle trajectory prediction.”
IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2018.

N. Deo, and M. M. Trivedi. ”Learning and predicting on-road pedestrian behavior around
vehicles.” IEEEInternational Conference on Intelligent Transportation Systems (ITSC),
2017.

N. Deo, A. Rangesh, and M. Trivedi. ”In-vehicle hand gesture recognition using hidden
markov models.” IEEE International Conference on Intelligent Transportation Systems
(ITSC), 2016.

xxiv

ABSTRACT OF THE DISSERTATION

Behavior Prediction of Intelligent Agents in and Around Safe Autonomous
Vehicles

by

Nachiket Deo

Doctor of Philosophy in Electrical & Computer Engineering (Signal and Image Processing)

University of California San Diego, 2022

Professor Mohan M. Trivedi, Chair

Autonomous vehicles operate in highly interactive environments. They share the

road with humans and human driven vehicles, and they may share control with humans

in the cabin. Consider scenarios such as freeway merges, unsignalized intersections or

unprotected turns. These require cooperating with other on-road agents and predicting

their intent and future motion. Similarly, consider scenarios in partial or conditional

autonomy where control needs to be transferred to a human driver. It is critical to predict

the driver’s takeover readiness and reaction times to ensure safe transfer of control. The

goal of this dissertation is to develop models for predicting agent behavior in and around

xxv

autonomous vehicles. We present our contributions in two parts.

In part I, we address the task of trajectory prediction of surrounding agents. We

propose models that incorporate multi-agent behavior, generalize to novel scene layouts,

and output a multimodal distribution over future trajectories. Concretely, our contributions

are: (i) A unified framework for maneuver classification and trajectory prediction for

highway traffic. (ii) An LSTM encoder-decoder with convolutional social pooling for

modeling agent-agent interaction, and maneuver conditioned decoders for predicting a

multimodal distribution. (iii) P2T: a model that infers goals and path preferences of agents

in novel scenes using a discrete grid-based policy and predicts scene compliant trajectories.

(iv) PGP: a model that predicts trajectories conditioned on paths traversed by a discrete

policy in a graph representation of the scene, leading to computational efficiency and

better accuracy.

In part II we focus on agents inside the autonomous vehicle. We address control

transitions where control needs to be transferred from the vehicle to a human driver via a

takeover request. Given the driver’s gaze, hand and foot activity prior to the takeover

request, we predict their readiness and reaction times during takeovers. Our contributions

are: (i) a metric for the driver’s takeover readiness based purely on observable cues and

a model to estimate it, (ii) a model for predicting takeover time and analysis using a

real-world dataset of control transitions.

xxvi

Chapter 1

Introduction

Autonomous driving is one of the most exciting technological challenges of our

times. Not only is it a rich source of unsolved engineering problems, but it also promises to

make our roads safer and transportation more accessible. Spurred by advances in computer

vision and deep learning, as well as the availability of high quality datasets, there has been

incredible progress in perception for autonomous driving. Autonomous vehicles now have

the ability to understand the scene around them by detecting, tracking and segmenting

objects from raw sensor data, as well as the scene within them through driver gaze, hand

and foot analysis using driver facing cameras.

However, perception alone isn’t sufficient for autonomous vehicles to make safety

critical decisions. Autonomous vehicles need to operate in highly interactive environments.

They need to share the road with humans and human driven vehicles, and they might

need to share control with humans in the cabin. Consider scenarios such as merging

onto the highway, making lane changes, passing through unsignalized intersections, or

making unprotected turns. These require cooperating with other on-road agents, reasoning

about their goals and intents and predicting their future motion. Similarly, autonomous

vehicles need to cooperate with humans within the cabin in cases of partial or conditional

autonomy. Consider scenarios where control needs to be transferred from the autonomous

vehicle to the human driver. It is critical to predict the driver’s takeover readiness and

1

reaction times to ensure safe transfer of control. Behavior prediction of agents thus serves

as a bridge between perception and planning.

The goal of this dissertation is to develop models for predicting agent behavior for

autonomous driving. We present our contributions in two parts. Part I focuses on agents

around the autonomous vehicle that share the road with it. Part II focuses on agents in

the autonomous vehicle, with whom it might need to share controls. For agents around the

autonomous vehicle, we address the task of trajectory prediction. Given the past locations

of all agents in the scene and a structured representation of static scene elements, we

predict the future locations of agents over a 5 to 10 second prediction horizon. For agents

in the autonomous vehicles, we address the tasks of takeover readiness estimation, and

takeover time prediction. We consider control transitions in conditionally autonomous

vehicles where control needs to be transferred from the autonomous vehicle to the human

driver via a takeover request. Given the driver’s gaze, hand and foot activity prior to the

takeover request, we predict their takeover readiness and reaction times to get their eyes

on the road, hands on the wheel and foot on the pedal.

1.1 Research themes

1.1.1 Predicting Trajectories of Surrounding agents

Modeling agent-agent interaction: Drivers and pedestrians cooperate with other

drivers and pedestrians while navigating through traffic. Their motion is affected by

nearby agents. Consider the examples shown in Figure 1.1. The speed of a vehicle on

freeways is limited by the speed of its leading vehicle. The locations and speeds of vehicles

in adjacent lanes determine the feasibility of lane changes. Finally, unprotected turns

are affected by cross-traffic and pedestrians crossing the intersection. Throughout part

I of this dissertation, we develop models that incorporate agent-agent interaction into

trajectory prediction. In chapter 2, we propose a vehicle interaction module that jointly

2

Figure 1.1. Modeling agent-agent interaction: The locations and motion of nearby
agents affects the future trajectories of vehicles and pedestrians. Throughout part I, we
present trajectory prediction models that incorporate agent-agent interaction.

assigns feasible maneuver classes for all vehicles around the ego-vehicle. In chapter 3, we

propose convolutional social pooling, a more robust alternative to social pooling proposed

in [3] for modeling agent-agent interaction. In chapters 4 and 5, we use attention [6,175] to

selectively model the effect of agents along specific routes that the target agent may take.

Scene compliant trajectory prediction: Static scene elements such as the network of

lanes and their curvature, the locations of crosswalks and sidewalks, as well as locations

of buildings and parked cars contain useful cues to infer goals and path preferences of

surrounding agents. Vehicles tend to move along lane centerlines, stop at stop lines and

cross walks and make legal lane changes to adjacent lanes. Pedestrians tend to walk

along sidewalks and crosswalks. Trajectory prediction models need to encode the static

scene to accurately predict trajectories over long prediction horizons. In particular, we

need models that can generalize to novel configurations of scene elements and still predict

scene-compliant trajectories. In chapters 4 and 5, we model routes taken by agents in

a given scene using a discrete policy exploring a grid (chapter 4) or graph (chapter 5)

3

Figure 1.2. Multimodal trajectory prediction: We develop models that output a
multimodal distribution over future trajectories conditioned on maneuver classes (chapter
3) or routes sampled from a discrete policy exploring a grid representation of the scene
(chapter 4) or graph representation of the scene (chapter 5).

representation of the scene. This allows us to encode local scene elements at each grid

cell, or node of the graph, rather than encoding the entire scene as a whole. This leads to

better generalization to unknown scenes with a different configuration of scene elements,

and scene compliant trajectories.

Multimodal trajectory prediction: In a given scene, drivers and pedestrians could

have one of multiple plausible goals. Additionally, they could take one of multiple paths

to their goals. Thus, the distribution of future trajectories of these agents is multimodal.

The modes of the distribution correspond to different goals, routes and motion profiles

along routes. Predicting a single trajectory or a unimodal distribution over trajectories

can suffer from mode averaging. This can often lead to egregious predictions. For example,

going straight and making a right turn can both be reasonable predictions, however their

average trajectory might veer offroad. We thus develop models that output a multimodal

distribution over future trajectories as shown in Figure 1.2. In chapter 3, we predict a

multimodal distribution over maneuver classes for vehicle motion on freeways. In chapters

4 and 5, we learn a learn a discrete policy that explores a grid or graph representation of

4

Figure 1.3. Predicting driver behavior during control transitions: We learn a
holistic representation of the driver’s state using CNNs for driver gaze, hand and foot
activity recognition. The outputs of the CNNs are aggregated over a time window using
LSTM models to encode driver activity prior to takeover requests. We then predict the
takeover readiness of the driver (pictured here) based on the encoding, or predict the
driver’s reaction times to get their eyes on the road, hands on the wheel and foot on the
pedal, if a takeover request is issued at a given instance.

the scene. The learned policy induces a multimodal distribution over plausible goals and

routes to these goals. We then predict trajectories conditioned on these routes leading to

a multimodal trajectory distribution.

1.1.2 Predicting Driver Behavior during Control Transitions

Holistic representation of driver activity: In conditionally autonomous vehicles, a

driver can could be engaged in several non-driving tasks while the vehicle operates in

autonomous mode. The nature of this non driving task can affect the driver’s preparedness

to takeover control when a takeover request is issued. Since we wish to develop models

to predict takeover readiness and takeover time, it is crucial that we learn a useful

representation of driver activity prior to the takeover request. We use multiple driver

monitoring cameras and IR sensors and estimate frame by frame features using CNNs

developed in prior work [22,137,139,177,184,186]. These include the driver’s gaze zones,

hand locations, the hand’s distance to the steering wheel, held objects, body pose keypoint

locations and the foot’s distance to the pedals. We then use RNNs to encode these features

5

over a time window. Through ablations we show the relative utility of each of these cues

for predicting takeover readiness (chapter 6) and reaction times (chapter 7) of the driver.

Metrics for takeover readiness using purely observable cues: We wish to predict

takeover readiness of drivers when a takeover request is issued purely using cameras. While

wearable sensors such as electroencephalogram (EEG) or photoplethysmography (PPG)

sensors provide the most faithful representation of the driver’s state, they are too intrusive

to be viable in commercial vehicles. An important question then, is whether it is even

possible to define a metric for the driver’s takeover readiness based on observable cues. In

chapter 6, we collect subjective ratings of driver takeover readiness from multiple human

observers viewing feed from driver monitoring cameras and show that there is remarkable

consistency in the trend of ratings assigned by observers. We leverage this wisdom of the

crowd by normalizing and averaging the ratings assigned by multiple raters, and using the

resulting value as the ground truth metric for the driver’s takeover readiness, termed the

observable readiness index (ORI). We then train an LSTM model to predict this takeover

readiness metric based on driver activity prior to the takeover request.

Predicting takeover time with real-world data: In chapter 7, we go a step further

and predict reaction times of the driver during control transitions, termed takeover time.

Specifically, we predict the time it takes the driver to get their eyes on the road, hands

on the wheel and foot on the pedal post takeover request. While this is a more objective

metric of takeover readiness, training models to predict takeover time require a dataset of

takeovers performed by drivers. Chapter 7 presents a large realworld dataset of takeover

events in autonomous vehicles as well as a data augmentation scheme, since such data is

expensive to collect. We present LSTM models for predicting takeover time trained using

the augmented dataset, and also show the utility of pretraining the model to predict ORI

before takeover time prediction.

6

1.2 Contributions and Outline

The remainder of this dissertation is organized into 6 chapters. The key contribu-

tions of each chapter are summarized as follows.

• A unified framework for maneuver classification and trajectory prediction:

In chapter 2, we propose a unified framework for surrounding vehicle maneuver

classification and motion prediction that exploits multiple cues, namely, the estimated

motion of vehicles, an understanding of typical motion patterns of freeway traffic and

inter-vehicle interaction. We report our results in terms of maneuver classification

accuracy and mean and median absolute error of predicted trajectories against the

ground truth for real traffic data collected using vehicle mounted sensors on freeways.

We perform an ablative analysis to analyze the relative importance of each cue for

trajectory prediction. Additionally, we provide an analysis of execution time for the

components of the framework is presented. Finally, we present multiple case studies

analyzing the outputs of our model for complex traffic scenarios.

• Convolutional Social Pooling and Maneuver-based LSTMs: In chapter 3, we

propose an LSTM encoder-decoder model that uses convolutional social pooling as

an improvement to social pooling layers for robustly learning inter-dependencies in

vehicle motion. Additionally, our model outputs a multimodal predictive distribution

over future trajectories based on maneuver classes. We evaluate our model using the

publicly available NGSIM US-101 and I-80 datasets. Our results show improvement

over the state of the art in terms of RMS values of prediction error and negative

log-likelihoods of true future trajectories under the model’s predictive distribution.

We also present qualitative analysis of the model’s predicted distributions.

• Trajectory Prediction Conditioned on Grid-based Plans: In chapter 4, we

address the problem of predicting pedestrian and vehicle trajectories in unknown

7

scenes, conditioned on their past motion and scene structure. Unlike prior approaches

that directly learn one-to-many mappings from observed context to multiple future

trajectories, we propose to condition trajectory forecasts on plans sampled from a

grid based policy learned using maximum entropy inverse reinforcement learning

(MaxEnt IRL). We reformulate MaxEnt IRL to allow the policy to jointly infer

plausible agent goals, and paths to those goals on a coarse 2-D grid defined over the

scene. We propose an attention based trajectory generator that generates continuous

valued future trajectories conditioned on state sequences sampled from the MaxEnt

policy. Quantitative and qualitative evaluation on the publicly available Stanford

drone and NuScenes datasets shows that our model generates trajectories that are

diverse, representing the multimodal predictive distribution, and precise, conforming

to the underlying scene structure over long prediction horizons.

• Trajectory Prediction Conditioned on Lane-graph Traversals: Accurately

predicting the future motion of surrounding vehicles requires reasoning about the

inherent uncertainty in driving behavior. This uncertainty can be loosely decoupled

into lateral (eg, keeping lane, turning) and longitudinal (eg, accelerating, braking).

In chapter 5, we present a novel method that combines learned discrete policy

rollouts with a trajecotry decoder focused on subsets of a lane graph representation

of the scene. The policy rollouts explore different routes given current observations,

ensuring that the model captures lateral variability. Longitudinal variability is

captured by a latent variable model decoder that is conditioned on various subsets

of the lane graph. Our model achieves state-of-the-art performance on the nuScenes

prediction dataset, and qualitatively demonstrates high scene compliance. Detailed

ablations highlight the importance of the policy rollouts and the decoder architecture.

• Predicting Take-Over Readiness of Drivers using Vision Sensors: In chapter

6, we propose a data-driven approach for estimating the driver’s take-over readiness

8

based purely on observable cues from in-vehicle vision sensors. We present an

extensive naturalistic driving dataset of drivers in a conditionally autonomous vehicle

operating in freeway traffic. We collect subjective ratings for the driver’s take-over

readiness from multiple human observers viewing the sensor feed. Analysis of the

ratings in terms of intra-class correlation coefficients (ICCs) shows a high degree of

consistency in the ratings across raters. We define a metric for the driver’s take-over

readiness termed the ‘Observable Readiness Index (ORI)’ based on the ratings.

Finally, we propose an LSTM model for continuous estimation of the driver’s ORI

based on a holistic representation of the driver’s state, capturing gaze, hand, pose

and foot activity.

• Predicting Take-over Time for Autonomous Driving with Real-World

Data: In chapter 7, we present a model for predicting takeover time during control

transitions based on driver gaze, hand and foot activity prior to takeover requests.

Our model is trained and evaluated using a real-world dataset of control transitions in

an autonomous vehicle with drivers engaged in various non-driving activities. Since

such a dataset is costly to collect, we introduce a scheme for data augmentation.

We perform ablations on driver activity cues (gaze, hand and foot), as well as

model architectures, showing that a takeover time prediction model supported by

augmented data can be used to produce continuous estimates of take-over times

without delay, suitable for complex real-world scenarios.

9

Part I

Predicting Trajectories of

Surrounding Agents

10

Chapter 2

A Unified Framework for Maneuver
Recognition & Trajectory Prediction

2.1 Introduction

For successful deployment in challenging traffic scenarios, autonomous vehicles need

to ensure the safety of its passengers and other occupants of the road, while navigating

smoothly without disrupting traffic or causing discomfort to its passengers. Existing

tactical path planning algorithms [118,162,172] hinge upon reliable estimation of future

motion of surrounding vehicles over a prediction horizon of up to 10 s. While approaches

leveraging vehicle-to-vehicle communication [61,161,163], offer a possible solution, these

would require widespread adoption of autonomous driving technology in order to become

viable. In order to safely share the road with human drivers, an autonomous vehicle needs

to have the ability to predict the future motion of surrounding vehicles purely based on

perception. Thus, we address the problem of surrounding vehicle motion prediction purely

based on data captured using vehicle mounted sensors.

Prediction of surrounding vehicle motion is an extremely challenging problem due

to a large number of factors that affect the future trajectories of vehicles. Prior works

addressing the problem seem to incorporate three cues in particular: the instantaneous

estimated motion of surrounding vehicles, an understanding of typical motion patterns

of traffic and inter-vehicle interaction. A large body of work uses the estimated state

11

Figure 2.1. From surround perception to behavior prediction: We propose a
unified model for trajectory prediction that leverages the instantaneous motion of the
vehicles, the maneuver being performed by the vehicles and inter-vehicle interactions, while
working purely with data captured using vehicle mounted sensors. The above figure shows
the data captured by 8 surround cameras (top), the track histories of surrounding vehicles,
the mean predicted trajectories (bottom left) and a heat map of the predicted distribution
in the ground plane (bottom right).

12

of motion of surrounding vehicles along with a kinematic model to make predictions

of their future trajectories [4, 8, 65, 69, 77, 131, 159, 167]. While these approaches are

computationally efficient, they become less reliable for long term prediction, since they

fail to model drivers as decision making entities capable of changing the motion of

vehicles over long intervals. An alternative is offered by probabilistic trajectory prediction

approaches [75,88,156,157,170,180] that learn typical motion patterns of traffic from a

trajectory dataset. However these approaches are prone to poorly modeling safety critical

motion patterns that are under represented in the training data. Many works address these

shortcomings of motion models and probabilistic models by defining a set of semantically

interpretable maneuvers [5, 13, 45, 49, 68, 80, 104, 113, 158]. A separate motion model or

probabilistic model can then be defined for each maneuver for making future predictions.

Finally some works leverage inter-vehicle interaction for trajectory prediction [78,89].

While many promising solutions have been proposed, they seem to have the following

limitations. (i) Most works consider a restrictive setting such as only predicting longitudinal

motion, a small subset of motion patterns, or specific cases of inter-vehicle interaction,

whereas many of the biggest challenges for vehicle trajectory prediction originate from the

generalized setting of simultaneous prediction of the complete motion of all vehicles in

the scene. (ii) Many approaches have been evaluated using simulated data, or based on

differential GPS, IMU readings of target vehicles, whereas evaluation using real traffic data

captured using perceptual vehicle mounted sensors is more faithful to the setting being

considered. (iii) There is a lack of a unifying approach that combines each of the three

cues mentioned above and analyzes their relative importance for trajectory prediction.

2.1.1 Contributions

In this chapter, we propose a framework for holistic surrounding vehicle trajectory

prediction based on three interacting modules: A hidden Markov model (HMM) based

maneuver recognition module for assigning confidence values for maneuvers being performed

13

by surrounding vehicles, a trajectory prediction module based on the amalgamation of an

interacting multiple model (IMM) based motion model and maneuver specific variational

Gaussian mixture models (VGMMs), and a vehicle interaction module that considers

the global context of surrounding vehicles and assigns final predictions by minimizing

an energy function based on outputs of the other two modules. We work with vehicle

tracks obtained using 8 vehicle mounted cameras capturing the full surround and generate

the mean predicted trajectories and prediction uncertainties for all vehicles in the scene

as shown in Figure 2.1. We evaluate the model using real data captured on Californian

freeways. The main contributions of this chapter are:

1. A unified framework for surrounding vehicle trajectory prediction that exploits

instantaneous vehicle motion, an understanding of typical motion patterns of traffic

and inter-vehicle interaction.

2. Ablations for determining the relative importance of each cue in trajectory prediction.

3. Evaluation based on real traffic data captured using vehicle mounted sensors.

2.2 Related Research

2.2.1 Data-driven trajectory prediction

Data driven trajectory prediction approaches can be broadly classified into clustering

based approaches and probabilistic approaches. Clustering based approaches [64, 113,174,

174] cluster the training data to give a set of prototype trajectories. Partially observed

trajectories are matched with a prototype trajectory based on distance measures such as

DTW, LCSS or Hausdorff distance, and the prototype trajectory used as a model for future

motion. The main drawback of clustering based approaches is the deterministic nature of

the predictions. Probabilistic approaches in contrast, learn a probability distribution over

motion patterns and output the conditional distribution over future motion given partial

14

trajectories. These have the added advantage of associating a degree of uncertainty to

the future predictions. Gaussian Processes are the most popular approach for modeling

trajectories [75, 88,170]. Other approaches include [156] and [157] where the authors use

Gaussian mixture regression for predicting the longitudinal and lateral motion of vehicles

respectively. Of particular interest is the work by Weist et al. [180] who use variational

Gaussian mixture models (VGMMs) to model the conditional distribution over snippets of

trajectory futures given snippets of trajectory history. This approach is much leaner and

computationally efficient as compared to Gaussian process regression and was shown to be

effective at predicting the highly non-linear motion in turns at intersections. While Weist

et al. use the velocity and yaw angle of the predicted vehicle obtained from its Differential

GPS data, we extend this approach by learning VGMMs for freeway traffic using positions

and velocities of surrounding vehicles estimated using vehicle mounted sensors, similar to

our prior work on pedestrian trajectory prediction [36].

2.2.2 Maneuver-based trajectory prediction

Classification of vehicle motion into semantically interpretable maneuver classes has

been extensively addressed in both advanced driver assistance systems as well as naturalistic

drive studies [5, 13, 45,49,68,80,88,104,113,157,158,170]. Most approaches involve using

heuristics [68] or training classifiers such as SVMs [5,104], HMMs [13,49,88,113], LSTMs [80]

and Bayesian networks [158] using motion based features such as speed, acceleration, yaw

rate and other context information such as lane position, turn signals, distance from

leading vehicle. The works most closely related to our approach are those that use the

recognized maneuvers to make predictions of future trajectories. Houenou et al. [68]

classify a vehicle’s motion as a keep lane or lane change maneuver based on distance to

nearest lane marking and predict the future trajectory by fitting a quintic polynomial

between the current motion state of the vehicle and a pre-defined final motion state for

each maneuver class. Schreier et al. [158] classify vehicle motion into one of six different

15

maneuver classes using a Bayesian network based on multiple motion and context based

features. A class specific motion model is then defined for each maneuver to generate

future trajectories. Most similar in principle to our approach are [156], [170] and [88]

where separate probabilistic prediction models are trained for each maneuver class. Tran

and Firl [170] define a separate Gaussian process for three maneuver classes and generate

a multi-modal distribution over future trajectories using each model. However, only case

based evaluation has been presented. Laugier et al. [88] also define separate Gaussian

processes for 4 different maneuvers that are classified using a hierarchical HMM. While they

report results for maneuver classification on real highway data, they evaluate trajectory

prediction in the context of risk assessment simulated data. Schlechtriemen et al. [157] use

a random forest classifier to classify maneuvers into left or right lane changes or keep lane.

They use a separate Gaussian mixture regression model for making predictions of lateral

movement of vehicles for each class, reporting results on real highway data. Along similar

lines, but without maneuver classes, they also predict longitudinal motion for surrounding

vehicles [156]. Contrary to this approach, we make predictions for the complete motion of

vehicles based on maneuver class, since detection of certain maneuvers like overtakes can

help predict both lateral and longitudinal motion of vehicles.

2.2.3 Interaction-aware trajectory prediction

Relatively few works address the effect of inter-vehicle interaction in trajectory

prediction. Kafer et al. [78] jointly assign maneuver classes for two vehicles approaching

an intersection using a polynomial classifier that penalizes cases which would lead to near

collisions. Closer to our proposed approach, Lawitzky et al. [89] consider the much more

complex case of assigning maneuver classes to multiple interacting vehicles in a highway

setting. However, predicted trajectories and states of vehicle motion are assumed to be

given, and results reported using a simulated setting. Contrarily, our evaluation considers

the combined complexity due to multiple interacting vehicles as well the difficulty of

16

estimating their future motion. We note that inter-vehicle interaction is implicitly modeled

in [157] by including relative positions and velocities of nearby vehicles as features for

maneuver classification and trajectory prediction.

2.3 Overview

Figure 2.2 shows our proposed approach. We restrict our setting to purely per-

ception based prediction of surrounding vehicle motion, without any vehicle-to-vehicle

communication. The ego vehicle is equipped with 8 cameras that capture the full surround.

All vehicles within 40 m of the ego vehicle in the longitudinal direction are tracked for

motion analysis and prediction. While vehicle tracking is not the focus of this work, we

refer readers to a multi-perspective vision based vehicle trackers described in [49,140]. The

tracked vehicle locations are then projected to the ground plane to generate track histories

of the surrounding vehicles in the frame of reference of the ego vehicle.

The goal of our model is to estimate the future positions and the associated

prediction uncertainty for all vehicles in the ego vehicle’s frame of reference over the next tf

seconds, given a th second snippet of their most recent track histories. The model essentially

consists of three interacting modules, namely the trajectory prediction module, the maneuver

recognition module and the vehicle interaction module. The trajectory prediction module

is the most crucial among the three and can function as a standalone block independent of

the remaining two modules. It outputs a linear combination of the trajectories predicted

by a motion model that leverages the estimated instantaneous motion of the surrounding

vehicles and a probabilistic trajectory prediction model which learns motion patterns of

vehicles on freeways from a freeway trajectory training set. We use constant velocity

(CV), constant acceleration (CA) and constant turn rate and velocity (CTRV) models

in the interacting multiple model (IMM) framework as the motion models since these

capture most instances of freeway motion, especially in light traffic conditions. We use

17

F
ig
u
re

2
.2
.
O
v
e
rv

ie
w

o
f
th

e
p
ro

p
o
se
d

m
o
d
e
l:

T
ra

ck
h

is
to

ri
es

of
al

l
su

rr
ou

n
d

in
g

ve
h

ic
le

s
ar

e
ob

ta
in

ed
v
ia

a
m

u
lt

i-
p

er
sp

ec
ti

v
e

tr
ac

ke
r

an
d

p
ro

je
ct

ed
to

th
e

gr
ou

n
d

p
la

n
e

in
th

e
eg

o
v
eh

ic
le

’s
fr

am
e

of
re

fe
re

n
ce

.
T

h
e

m
o
d

el
co

n
si

st
s

of
th

re
e

in
te

ra
ct

in
g

m
o
d

u
le

s:
T

h
e

m
an

eu
ve

r
re

co
gn

it
io

n
m

o
d

u
le

as
si

gn
s

co
n

fi
d

en
ce

va
lu

es
to

p
os

si
b

le
m

an
eu

ve
rs

b
ei

n
g

p
er

fo
rm

ed
b
y

ea
ch

ve
h

ic
le

.
T

h
e

tr
a

je
ct

or
y

p
re

d
ic

ti
on

m
o
d

u
le

ou
tp

u
ts

fu
tu

re
tr

a
je

ct
or

ie
s

fo
r

ea
ch

m
an

eu
ve

r
cl

as
s.

T
h

e
ve

h
ic

le
in

te
ra

ct
io

n
m

o
d

u
le

as
si

gn
s

th
e

tr
u

e
re

co
gn

iz
ed

m
an

eu
ve

r
fo

r
ea

ch
ve

h
ic

le
b
y

co
m

b
in

in
g

th
e

co
n

fi
d

en
ce

va
lu

es
p

ro
v
id

ed
b
y

th
e

m
an

eu
ve

r
re

co
gn

it
io

n
m

o
d

u
le

an
d

th
e

fe
as

ib
il

it
y

of
p

re
d

ic
te

d
tr

a
je

ct
or

ie
s

gi
ve

n
th

e
re

la
ti

ve
co

n
fi

gu
ra

ti
on

of
al

l
ve

h
ic

le
s

18

Variational Gaussian Mixture Models (VGMM) for probabilistic trajectory prediction

owing to promising results for vehicle trajectory prediction at intersections shown in [180].

The motion model becomes unreliable for long term trajectory prediction, especially

in cases involving a greater degree of decision making by drivers such as overtakes, cut-ins

or heavy traffic conditions. These cases are critical from a safety stand-point. However,

since these are relatively rare occurrences, they tend to be poorly modeled by a monolithic

probabilistic prediction model. Thus we bin surrounding vehicle motion on freeways into

10 maneuver classes, with each class capturing a distinct pattern of motion that can be

useful for future prediction. The intra-maneuver variability of vehicle motion is captured

through a VGMM learned for each maneuver class. The maneuver recognition module

recognizes the maneuver being performed by a vehicle based on a snippet of it’s most

recent track history. We use hidden Markov models (HMM) for this purpose. The VGMM

corresponding to the most likely maneuver can then be used for predicting the future

trajectory. Thus the maneuver recognition and trajectory Prediction modules can be used

in conjunction for each vehicle to make more reliable predictions.

Up to this point, our model predicts trajectories of vehicles independent of each

other. However the relative configuration of all vehicles in the scene can make certain

maneuvers infeasible and others more likely. This makes it a useful cue for trajectory

prediction especially in heavy traffic. The vehicle interaction module (VIM) leverages this

cue. The maneuver likelihoods and predicted trajectories for the K likeliest maneuvers for

each vehicle being tracked are passed to the VIM. The VIM consists of a Markov random

field that optimizes an energy function over the discrete space of maneuver classes for

all vehicles in the scene. The energy function takes into account the confidence values

for all maneuvers given by the HMM and the feasibility of the maneuvers given the

relative configuration of all vehicles. Minimizing the energy function gives the recognized

maneuvers and corresponding trajectory predictions for all vehicles in the scene.

19

Figure 2.3. Maneuver Classes for Freeway Traffic: We bin the trajectories of
surrounding vehicles in the ego-vehicle frame of reference into 10 maneuver classes: 4 lane
pass maneuvers, 2 overtake maneuvers, 2 cut-in maneuvers and 2 maneuvers involving
drifting into ego vehicle lane.

2.4 Maneuver Recognition Module

2.4.1 Maneuver classes

We define 10 maneuver classes for surrounding vehicle motion on freeways in the

ego-vehicle’s frame of reference. Figure 2.3 illustrates the maneuver classes.

1. Lane Passes : Lane pass maneuvers involve vehicles passing the ego vehicle without

interacting with the ego vehicle lane. These constitute a majority of the surrounding

vehicle motion on freeways and are relatively easy cases for trajectory prediction

owing to approximately constant velocity profiles. We define 4 different lane pass

maneuvers as shown in Figure 2.3

2. Overtakes : Overtakes start with the surrounding vehicle behind the ego vehicle in

the ego lane. The surrounding vehicle changes lane and accelerates in order to pass

the ego vehicle. We define 2 different overtake maneuvers, depending on which side

the the surrounding vehicle overtakes.

3. Cut-ins : Cut-ins involve a surrounding vehicle passing the ego vehicle and entering

the ego lane in front of the ego-vehicle. Cut-ins and overtakes, though relatively

20

rare, can be critical from a safety stand-point and also prove to be challenging cases

for trajectory prediction. We define 2 different cut-ins depending on which side the

surrounding vehicle cuts in from.

4. Drift into Ego Lane: Another important maneuver class is when a surrounding

vehicle drifts into the ego vehicle lane in front or behind the ego vehicle. This is also

important from a safety standpoint as it directly affects how sharply the ego vehicle

can accelerate or decelerate. A separate class is defined for drifts into ego-lane in

front and to the rear of the ego vehicle.

2.4.2 Hidden Markov Models

Hidden Markov models (HMMs) have previously been used for maneuver recognition

[13,49,113] due to their ability to capture the spatial and temporal variability of trajectories.

HMMs can be thought of as combining two stochastic models, an underlying Markov

chain of states characterized by state transition probabilities and an emission probability

distribution over the feature space for each state. The transition probabilities model

the temporal variability of trajectories while the emission probabilities model the spatial

variability, making HMMs a viable approach for maneuver recognition.

Previous works [49, 113] use HMMs for classifying maneuvers after they have been

performed, where the HMM for a particular maneuver is trained using complete trajectories

belonging to that maneuver class. In our case, the HMMs need to classify a maneuver

based on a small th second snippet of the trajectory. Berndt et al. [13] address the problem

of maneuver classification based on partially observed trajectories by using only the initial

states of a trained HMM to fit the observed trajectory. However, this approach requires

prior knowledge of the starting point of the maneuver. In our case, the trajectory snippet

could be from any point in the maneuver, and not necessarily the start. We need the

HMM to classify a maneuver based on any intermediate snippet of the trajectory. We thus

21

divide the trajectories in our training data into overlapping snippets of th seconds and

train the maneuver HMMs using these snippets.

For each maneuver, we train a separate HMM with a left-right topology with only

self transitions and transitions to the next state. The state emission probabilities are

modeled as mixtures of Gaussians with diagonal covariances. The x and y ground plane

co-ordinates and instantaneous velocity are used as features for training the HMMs. The

parameters of the HMMs: the state transition probabilities and the means, variances and

weights of the mixture components are estimated using the Baum-Welch algorithm [9].

For a car i, the HMM for maneuver k outputs the log likelihood:

Li
k = log(P (xi

h,y
i
h,vx

i
h,vy

i
h|m

i = k; Θk)) (2.1)

where xi
h, yi

h are the x and y locations of vehicle i over the last th seconds and

vx
i
h, vy

i
h are the velocities along the x and y directions over the last th seconds. mi is the

maneuver assigned to car i and Θk are the parameters of the HMM for maneuver k

2.5 Trajectory Prediction Module

The trajectory prediction module predicts the future x and y locations of sur-

rounding vehicles over a horizon of tf seconds and assigns an uncertainty to the predicted

locations in the form of a 2×2 covariance matrix. It averages the predicted future locations

and covariances given by a motion model and a probabilistic trajectory prediction model.

The outputs of the trajectory prediction module for a prediction instant tpred are

xf (t) =
1

2

(
xfmotion(t) + xf prob(t)

)
(2.2)

yf (t) =
1

2

(
yfmotion(t) + yf prob(t)

)
(2.3)

22

Σf (t) =
1

2

(
Σfmotion(t) + Σf prob(t)

)
(2.4)

where tpred ≤ t ≤ tpred + tf

2.5.1 Motion Models

We use the interacting multiple model (IMM) framework for modeling vehicle

motion, similar to [69,167]. The IMM framework combines an ensemble of Bayesian filters

for motion estimation and prediction by weighing the models with probability values. The

probability values are estimated at each time step based on the transition probabilities of

an underlying Markov model and how well each model fits the observed motion prior to

that time step. We use the following motion models in our ensemble:

1. Constant velocity (CV): The CV model maintains an estimate of the position and

velocity of the surrounding vehicles under the constraint that the vehicles move with

a constant velocity. We use a Kalman filter for estimating the state and observations

of the CV model. The CA model captures a majority of freeway vehicle motion.

2. Constant acceleration (CA): The constant acceleration model maintains estimates of

the the vehicle position, velocity and acceleration under the constant acceleration

assumption using a Kalman Filter. The CA model can be useful for describing

freeway motion especially in dense traffic.

3. Constant turn rate and velocity (CTRV): The CTRV model maintains estimates of

the the vehicle position, orientation and velocity magnitude under the constant yaw

rate and velocity assumption. Since the state update for the CTRV model is non-

linear, we use an extended Kalman filter for estimating the state and observations.

The CTRV model can be useful for modeling motion during lane changes

23

2.5.2 Probabilistic Trajectory Prediction

We formulate probabilistic trajectory prediction as estimating the distribution:

P (vxf ,vyf |xh,yh,vxh,vyh,m) (2.5)

i.e. the conditional distribution of the vehicle’s predicted velocities given the

vehicles past positions, velocities and maneuver class. In particular, we are interested in

estimating the conditional expected values [v̂xf ; v̂yf] and conditional covariance Σvf of

the distribution 2.5. The predicted locations and xf prob, yf prob can then be obtained by

taking the cumulative sum of the predicted velocities, which can be represented using an

accumulator matrix A

[xf prob;yf prob] = A[v̂xf ; v̂yf] (2.6)

Similarly, the uncertainty of prediction Σprob can be obtained using the expression:

Σf prob = AΣvfA
T (2.7)

We use the framework proposed by Weist et al. [180] for estimating the conditional

distribution 2.5. (xh,yh,vxh,vyh) and (vxf ,vyf) are represented in terms of their Chebyshev

coefficients, ch and cf . The joint distribution P (cf , ch|m) for each maneuver class is

estimated as the predictive distribution of a variational Gaussian mixture model (VGMM).

The conditional distribution P (cf |ch,m) can then be estimated in terms of the parameters

of the predictive distribution. We briefly review the the expressions for P (cf , ch|m) and

P (cf |ch,m). However, the reader is encouraged to refer to [180] for more details.

VGMMs are the Bayesian analogue to standard GMMs, where the model parameters,

{π, µ1, µ2, ... µK , Λ1, Λ2, ... ΛK} are given conjugate prior distributions. The prior over

24

mixture weights π is a Dirichlet distribution

P (π) = Dir(π|α0) (2.8)

The prior over each component mean µk and component precision Λk is an independent

Gauss-Wishart distribution

P (µk,Λk) = N (µk|m0k , (β0kΛk)−1)W(Λk|W0k , ν0k) (2.9)

The parameters of the posterior distributions are estimated using the Variational Bayesian

Expectation Maximization algorithm [17]. The predictive distribution for a VGMM is

given by a mixture of Student’s t-distributions

P (ch, cf) =
1

sum(α)

K∑
k=1

αkSt(ch, cf |mk,Lk, νk + 1− d) (2.10)

where d is the number of degrees of freedom of the Wishart distribution and

Lk =
(νk + 1− d)βk

1 + βk

Wk (2.11)

For a new trajectory history ch, the conditional predictive distribution P (cf |ch) is given

25

by:

P (cf |ch) =
1

sum(α̂)

K∑
k=1

α̂kSt (cf |ch, m̂k,Lk, νk + 1− d) (2.12)

where (2.13)

ν̂k = νk + 1− d (2.14)

α̂k =
αkSt(ch|mk,ch ,Lk,ch , ν̂k)∑K
j=1 αjSt(ch|mj,ch ,Lj,ch , ν̂j)

(2.15)

m̂k = mk,cf + Σk,cfchΣ
−1
k,chch

(ch −mk,ch) (2.16)

L̂−1
k =

ν̂k
ν̂k + d− 2

(
1 + ∆T

k

Σk,chch

ν̂k
∆k

)
Σ∗

k (2.17)

∆k = (ch −mk,ch) (2.18)

Σ∗
k = Σk,cfcf −Σk,cfchΣk,chc

−1
h
Σk,chcf (2.19)

Σk =
ν̂k + d− 2

ν̂k + d
L−1

k (2.20)

2.6 Vehicle Interaction Module

The vehicle interaction module is tasked with assigning discrete maneuver labels to

all vehicles in the scene at a particular prediction instant based on the confidence of the

HMM in each maneuver class and the feasibility of the future trajectories of all vehicles

based on those maneuvers given the current configuration of all vehicles in the scene. We

set this up as an energy minimization problem. For a given prediction instant, let there be

N surrounding vehicles in the scene with the top K maneuvers given by the HMM being

considered for each vehicle. The minimization objective is given by:

y∗ = arg min
y

n∑
i=1

K∑
k=1

yik
[
Ehmm

ik + λEego
ik

]
+ λ

n∑
i=1

K∑
k=1

n∑
j=1
j ̸=i

K∑
l=1

yiky
j
lE

vi
ijkl (2.21)

26

s.t.

∑
k

yik = 1 ∀i (2.22)

yik =


1, if car i is assigned maneuver k

0, otherwise

(2.23)

The objective consists of three types of energies, the individual Energy terms Ehmm
ik ,

Eego
ik and the pairwise energy terms Evi

ijkl. The individual energy terms Ehmm
ik are given

by the negative of the log likelihoods provided by the HMM. Higher the confidence of

an HMM in a particular maneuver, lower is −Li
k and thus the individual energy term.

The individual energy term Eego
ik takes into account the interaction between surrounding

vehicles and the ego vehicle. We define the Eego
ik as the reciprocal of the closest point of

approach for vehicle i and the ego vehicle over the entire prediction horizon, given that it

is performing maneuver k, where the ego vehicle position is always fixed to 0, since it is

the origin of the frame of reference. Similarly, the pairwise energy term Evi
ijkl is defined as

the reciprocal of the minimum distance between the corresponding predicted trajectories

for the vehicles i and j, assuming them to be performing maneuvers k and l respectively .

The terms Eego
ik and Evi

ijkl penalize predictions where at any point in the prediction horizon,

two vehicles are very close to each other. This term leverages the fact that drivers tend to

follow paths with low possibility of collisions with other vehicles. The weighting constant

λ is experimentally determined through cross-validation.

The minimization objective in the formulation shown in Eq. 2.21, 2.22 and 2.23

has quadratic terms in y values. In order to leverage integer linear programming for

minimizing the energy, we modify the formulation as follows:

27

y∗, z∗ = arg min
y,z

n∑
i=1

K∑
k=1

yik
[
Ehmm

ik + λEego
ik

]
+ λ

n∑
i=1

K∑
k=1

n∑
j=1
j ̸=i

K∑
l=1

zi,jk,lE
vi
ijkl (2.24)

s.t.

∑
k

yik = 1 ∀i (2.25)

yik ∈ 0, 1 (2.26)

zi,jk,l ≤ yik (2.27)

zi,jk,l ≤ yjl (2.28)

zi,jk,l ≥ yik + yjl − 1 (2.29)

This objective can now be optimized using integer linear programming. The optimal

values y∗ give the maneuver assignments for all vehicles. These assigned maneuvers are

used by the trajectory prediction module to make future predictions for all vehicles.

2.7 Experimental Evaluation

2.7.1 Dataset

We evaluate our framework using real freeway traffic data captured using the

testbed described in [142]. The vehicle is equipped with 8 RGB video cameras, LIDARs

and RADARs synchronously capturing the full surround at a frame rate of 15 fps. Our

complete dataset consists of 52 video sequences extracted from multiple drives spanning ap-

proximately 45 minutes. The sequences were chosen to capture varying lighting conditions,

vehicle types, and traffic density and behavior.

The 4 longest video sequences, of about 3 minutes each were ground-truthed

by human annotators and used for evaluation. Three sequences from the evaluation

28

Figure 2.4. Dataset: Examples of annotated frames from the evaluation set (top left and
top right) and trajectories belonging to all maneuver classes projected in the ground plane
(bottom). We can observe that the trajectory patterns implicitly capture lane information

set represent light to moderate or free-flowing traffic conditions, while the remaining

sequence represents heavy or stop-and-go traffic. The video feed from the evaluation

set was annotated with detection boxes and vehicle track-ids for each of the 8 views.

All tracks were then projected to the ground plane and assigned a maneuver class label

corresponding to the 10 maneuver classes described in Section 2.4.1. If a vehicle track was

29

Table 2.1. Dataset Statistics

Maneuver
Number of

trajectories

Number of

trajectory snippets

Lane Pass (Left Forward) 59 9500

Lane Pass (Left Back) 75 10332

Lane Pass (Right Forward) 110 10123

Lane Pass (Right Back) 48 12523

Overtake (Left) 8 1629

Overtake (Right) 17 2840

Cut-in (Left) 8 1667

Cut-in (Right) 19 3201

Drift into ego lane (Front) 11 1317

Drift into ego lane (Rear) 8 553

comprised by multiple maneuvers, the start and end-point of each maneuver was marked.

A multi-perspective tracker [49] was used for assigning vehicle tracks for the remaining

48 sequences. These tracks were only used for training the models. Figure 2.4 shows the

track annotations as well as the complete set of trajectories for each maneuver. Since each

trajectory is divided into overlapping snippets of th = 3 seconds for training and testing

our models, we report the data statistics in terms of the total number of trajectories as

well as the number of trajectory snippets for each maneuver class in Table 2.1

We report all results using a leave on sequence cross-validation scheme. For each

of the 4 evaluation sequences, the HMMs and VGMMs are trained using data from the

remaining 3 evaluation sequences as well as the 48 training sequences. Additionally, we

use two simple data-augmentation schemes for increasing the size of our training datasets

in order to reduce overfitting in the models:

1. Lateral inversion: We flip each trajectory along the lateral direction in the ego frame

to give an instance of a different maneuver class. For example, a left cut-in on lateral

inversion becomes a right cut in.

2. Longitudinal shifts: We shift each of the trajectories by ± 2, 4 and 6 m in the

30

longitudinal direction in the ego frame to give additional instances of the same

maneuver class. We avoid lateral shifts since this would interfere with lane information

that is implicitly learned by the probabilistic model.

2.7.2 Evaluation Measures and Experimental Settings

Our models predict the future trajectory over a prediction horizon of 5 seconds for

each 3 second snippet of track history based on the maneuver classified by the HMMs or

by the VIM. We use the following evaluation measures for reporting our results:

1. Mean Absolute Error : This measure gives the average absolute deviation of the

predicted trajectories from the underlying ground truth trajectories. To compare

how the models perform for short term and long term predictions, we report this

measure separately for prediction instants up to 5 seconds into the future, sampled

with increments of 1 second. The mean absolute error captures the effect of both

the number of errors made by the models as well as the severity of the errors.

2. Median Absolute Error : We also report the median values of the absolute deviations

for up to 5 seconds into the future with 1 second increments, as was done in [156].

The median absolute error better captures the distribution of the errors made by

the models while sifting out the effect of a few drastic errors.

3. Maneuver classification accuracy : We report maneuver classification accuracy for

configurations using the maneuver recognition module or the VIM.

4. Execution time: We report the average execution time per frame, where each frame

involves predicting trajectories of all vehicles being tracked at a particular instant.

In order to analyze the effect of each of our proposed modules, we compare the

trajectory prediction results for following systems

31

• Motion model (IMM): We use the trajectories predicted by the IMM based motion

model as our baseline.

• Monolithic VGMM (M-VGMM): We consider the trajectories predicted by our

trajectory prediction module, where the probabilistic model used is a single monolithic

VGMM. This alleviates the need for the maneuver recognition module, since the

same model makes predictions irrespective of the maneuver being performed

• Class VGMMs (C-VGMM): Here we consider separate VGMMs for each maneuver

class in the trajectory prediction module. We use the VGMM corresponding to

the maneuver with the highest HMM log likelihood for making the prediction. In

this case, maneuver predictions for each vehicle are made independent of the other

vehicles in the scene. To keep the comparison with the M-VGMM fair, we use 8

mixture components for each maneuver class for the C-VGMMs, while we use a

single VGMM with 80 mixture components for the M-VGMM, ensuring that both

models have the same complexity.

• Class VGMMs with Vehicle Interaction Module (C-VGMM + VIM): We finally

consider the effect of using the vehicle interaction module. In this case, we use the

C-VGMMs with the maneuver classes for each of the vehicles in the scene assigned

by the vehicle interaction module

We report our results for the complete set of trajectories in the evaluation set. Additionally,

we also report results on the subsets of overtake and cut-in maneuvers and stop-and-go

traffic. Since overtakes and cut-ins are rare safety critical maneuvers with significant

deviation from uniform motion, these are challenging cases for trajectory prediction.

Similarly, due to the high traffic density in stop-and-go scenarios, vehicles affect each

others motion to a much greater extent as compared to free-flowing traffic, making it a

challenging scenario for trajectory prediction.

32

T
a
b
le

2
.2
.

Q
u

an
ti

ta
ti

ve
re

su
lt

s
sh

ow
in

g
ab

la
ti

ve
an

al
y
si

s
of

ou
r

p
ro

p
os

ed
m

o
d

el

M
e
tr
ic

S
e
tt
in
g

A
ll

T
ra

je
ct
o
ri
e
s

O
v
e
rt
a
k
e
s
a
n
d

C
u
t-
in
s

S
to

p
-a
n
d
-G

o
T
ra

ffi
c

P
re

d
ic

ti
on

H
or

iz
on

(s
)

IM
M

M
-V

G
M

M
C

-V
G

M
M

C
-V

G
M

M

+
V

IM
IM

M
M

-V
G

M
M

C
-V

G
M

M
IM

M
C

-V
G

M
M

C
-V

G
M

M

+
V

IM

M
e
a
n

A
b
so

lu
te

E
rr
o
r

(m
)

1
0.

25
0
.2
4

0
.2
4

0
.2
4

0.
29

0.
32

0
.2
9

0.
22

0.
20

0
.2
0

2
0.

72
0.

70
0
.6
9

0
.6
9

0.
83

0.
87

0
.8
2

0.
68

0.
65

0
.6
4

3
1.

25
1.

19
1
.1
8

1
.1
8

1.
47

1.
46

1
.3
9

1.
21

1.
17

1
.1
4

4
1.

78
1.

70
1.

68
1
.6
6

2.
17

2.
05

1
.9
4

1.
74

1.
68

1
.6
5

5
2.

36
2.

24
2.

20
2
.1
8

2.
90

2.
68

2
.4
9

2.
29

2.
21

2
.1
7

M
e
d
ia
n

A
b
so

lu
te

E
rr
o
r

(m
)

1
0.

19
0
.1
7

0
.1
7

0
.1
7

0
.2
3

0
.2
3

0
.2
3

0.
15

0
.1
3

0
.1
3

2
0.

55
0
.5
2

0
.5
2

0
.5
2

0.
68

0
.6
5

0
.6
5

0.
48

0.
46

0
.4
5

3
0.

96
0.

92
0
.9
1

0
.9
1

1.
24

1.
13

1
.1
2

0.
89

0.
87

0
.8
3

4
1.

38
1.

32
1.

30
1
.2
9

1.
92

1.
71

1
.6
8

1.
32

1.
29

1
.2
7

5
1.

85
1.

77
1
.7
2

1
.7
2

2.
64

2.
27

2
.1
2

1.
8

1.
78

1
.7
5

C
la
ss
.
a
cc

.
(%

)
-

-
-

83
.4

9
8
4
.2
4

-
-

55
.8

9
-

84
.8

4
8
7
.1
9

E
x
e
c.

ti
m
e
(s
)

-
0
.0
3
4
6

0.
12

41
0.

08
91

0.
15

46
-

-
-

-
-

-

33

2.7.3 Ablative Analysis

Table 2.2 shows the quantitative results of our ablation experiments. We note from

the results on the complete evaluation set that the probabilistic trajectory prediction

models outperform the IMM. The M-VGMM has lower values for both mean as well as

median absolute error as compared to the IMM suggesting that the probabilistic model

makes fewer as well as less drastic errors on an average. We get further improvements in

mean and median absolute deviations using the C-VGMMs suggesting that subcategorizing

trajectories into maneuver classes leads to a better probabilistic prediction model.

This is further highlighted based on the prediction results for the challenging

maneuver classes of overtakes and cut-ins. We note that the C-VGMM significantly

outperforms the CV and M-VGMM models both in terms of mean and median absolute

deviation for overtakes and cut-ins. This trend becomes more pronounced as the prediction

horizon is increased. This suggests that the motion model is more error prone due to the

non-uniform motion in overtakes and cut-ins while these rare classes get underrepresented

in the distribution learned by the monolithic M-VGMM. Both of these issues get addressed

through the C-VGMM. We analyze this further by considering specific cases of predictions

made by the IMM, M-VGMM and C-VGMM in Section 2.7.5

Comparing the maneuver classification accuracies for the case of C-VGMM and

C-VGMM + VIM, we note that the VIM corrects some of the maneuvers assigned by

the HMM. This in turn leads to improved trajectory prediction as seen from the mean

and median absolute error values. We note that this effect is more pronounced in case of

stop-and-go traffic, since the dense traffic conditions cause more vehicles to affect each

others motion leading to a greater proportion of maneuver class labels to be re-assigned by

the VIM. Section 2.7.6 analyses cases where the VIM reassigns maneuver labels assigned

by the HMM due to the relative configuration of all vehicles in the scene.

34

2.7.4 Analysis of execution time

Table 2.2 also shows the average execution time per frame for the 4 system con-

figurations considered. As expected, the IMM baseline has the lowest execution time

since all other configurations build upon it. We note that the C-VGMM runs faster than

the M-VGMM in spite of having the overhead of the HMM based maneuver recognition

module. This is because the M-VGMM is a much bulkier model as compared to any single

maneuver C-VGMM. Thus in spite of involving an extra step, the maneuver recognition

module allows us to choose a much leaner model, effectively reducing the execution time

while improving performance. The VIM is a more time intensive overhead and almost

doubles the run time of the C-VGMM. However, even in it’s most complex setting, the

proposed framework can be deployed at a frame rate of almost 6 fps, which is more than

sufficient for the application being considered.

2.7.5 Qualitative Analysis of Predictions

Figure 2.5 shows the trajectories predicted by the CV, M-VGMM and C-VGMM

models for 8 different instances.

Figure 2.5a shows two prediction instants where the vehicle is just about to start

the non-linear part of overtake maneuvers. We observe that the IMM makes erroneous

predictions in both cases. However, both the M-VGMM and C-VGMM manage to predict

the non-linear future trajectory.

Figure 2.5b shows two prediction instants in the early part of overtake maneuvers.

We note that both the IMM and M-VGMM make errors in prediction. However the

position of the surrounding vehicle along with the slight lateral motion provide enough

context to the maneuver recognition module to detect the overtake maneuver early. Thus,

the C-VGMM manages to predict that the surrounding vehicle would move to the adjacent

lane and accelerate in the longitudinal direction, although there is no such cue from the

35

(a) (b)

(c) (d)

Figure 2.5. Predictions made by CV, M-VGMM and C-VGMM models: (a):
Better prediction of lateral motion in overtakes by the probabilistic models. (b): Early
detection of overtakes by the HMM. (c): Deceleration near the ego vehicle predicted by
the C-VGMM. (d): Effect of lane information implicitly encoded by the M-VGMM and
C-VGMM

36

(a) Infeasible lane pass is correctly changed to cut-in

(b) Infeasible overtake correctly changed to tail-gating

(c) Infeasible left overtake changed to the correct overtake direction

Figure 2.6. Effect of the VIM: Each case shows from left to right: The ground
truth, predictions made independently for each vehicle, uncertainty of the independent
predictions, predictions made with the VIM, uncertainties of the VIM predictions

37

vehicles existing state of motion

Figure 2.5c shows two instants the trajectory of a vehicle that decelerates as it

approaches the ego vehicle from the front. This trajectory corresponds to the drift into

ego-lane maneuver class. In the first case (left), the vehicle has not started decelerating,

causing the IMM to assign a high probability to the CV model. The IMM thus predicts

the vehicle to keep moving at a constant velocity and come dangerously close to the

ego vehicle. Similarly, the M-VGMM makes a poor prediction since these maneuvers

are underrepresented in the training data. The C-VGMM however manages to correctly

predict the surrounding vehicle to decelerate. In the second case (right), we observe that

the car has already started decelerating. This allows the IMM to assign a greater weight

to the CA model and correct its prediction

Finally Figure 2.5d shows two interesting instances of the lane pass right back

maneuver that is well represented in the training data. The vehicle makes a lane change

in both of these instances. The IMM poorly predicts these trajectories. However both the

M-VGMM and C-VGMM correctly predict the vehicle to merge into the lane, suggesting

that the probabilistic models may have implicitly encoded lane information.

2.7.6 Vehicle Interaction Model Case Studies

Figure 2.6 shows three cases where the recognized maneuvers and predicted tra-

jectories are affected by the VIM. In each case, the green plots show the ground truth of

future tracks, the blue plots show the predictions made for each vehicle independently and

the red plots show the predictions based on the VIM. Additionally we plot the prediction

uncertainties for either case.

Consider the first case in Figure 2.6a, in particular vehicle 3. We note from the

blue plot that the HMM predicts the vehicle to perform a lane pass. However the the

vehicle’s path forward is blocked by vehicles 1 and 5. The VIM thus infers vehicle 3 to

perform a cut-in in with respect to the ego-vehicle in order to overtake vehicle 5.

38

In Figure 2.6b, the HMM predicts vehicle 18 to overtake the ego-vehicle from the

right. However, we can see that the right lane is occupied by vehicles 11, 3 and 2. These

vehicles yield high values of pairwise energies with vehicle 18 for the overtake maneuver.

The VIM thus correctly manages to predict that vehicle 18 would end up tail-gating by

assigning it the maneuver drift into ego lane (rear).

Finally Figure 2.6c shows a very interesting case where the HMM predicts vehicle

1 to overtake the ego vehicle from the left. Again, the left lane is occupied by other

vehicles making the overtake impossible to execute from the left. However, compared

to the previous case, these vehicles are slightly further away and can be expected to

yield relatively smaller energy terms as compared to case (b). However, these terms are

enough to offset the very slight difference in the HMM’s confidence values between the

left and right overtake since both maneuvers do seem plausible if we consider vehicle 1

independently. Thus the VIM reassigns the maneuver for vehicle 1 to a right overtake,

making the prediction closely match the ground truth.

2.8 Conclusions

In this chapter, we presented a unified framework for surrounding vehicle maneuver

recognition and motion prediction using vehicle mounted perceptual sensors, that leverages

the instantaneous motion of vehicles, an understanding of motion patterns of freeway

traffic and the effect of inter-vehicle interactions. The proposed framework outperforms

an interacting multiple model based trajectory prediction baseline and runs in real time.

We presented an ablative analysis for the relative importance of each cue for

trajectory prediction. In particular, we showed that probabilistic modeling of surrounding

vehicle trajectories is a more versatile approach, and leads to better predictions compared

to using motion models, especially for safety critical trajectories around the ego vehicle.

Additionally, subcategorizing trajectories based on maneuvers leads to better modeling

39

of motion patterns. Finally, incorporating a model for interactions between surrounding

vehicles to simultaneously predict each of their motion leads to better predictions as

compared to predicting each vehicle’s motion independently.

The proposed approach could be treated as a general framework, where improve-

ments could be made to each of the three interacting modules.

Acknowledgements

Chapter 2, in full, is a reprint of the material as it appears in: ”How would surround

vehicles move? a unified framework for maneuver classification and motion prediction,”

Nachiket Deo, Akshay Rangesh, and Mohan M. Trivedi, IEEE Transactions on Intelligent

Vehicles 2018. The dissertation author was the primary investigator and author of this

paper.

40

Chapter 3

Convolutional Social Pooling and
Maneuver Based LSTMs

3.1 Introduction

In the previous chapter, we introduced a unified framework for predicting the

trajectories of surrounding vehicles in highway traffic that leverages vehicle maneuvers and

models interaction between vehicles. While we obtain promising results, the framework

suffers from a few limitations.

• Independently trained modules: The framework uses three independently trained

modules for maneuver recognition, trajectory prediction and modeling vehicle inter-

action that are applied sequentially during inference. The errors made by upstream

modules are propagated downstream during inference but not addressed during

training. The upstream modules (e.g. the maneuver recognition module) are trained

agnostic to their effect on the overall prediction error. On the other hand, the

downstream modules (e.g. the trajectory prediction module) lack robustness to

errors made by the upstream modules.

• Redundant encoders: The past trajectories of surrounding vehicles are inde-

pendently encoded, by the parameters of the HMMs in the maneuver recognition

modules, and by the parameters of the VGMMs in the trajectory prediction module.

41

Figure 3.1. Multimodal predictions for highway traffic: Imagine the blue vehicle
is an autonomous vehicle in the traffic scenario shown. Our proposed model allows it to
make multimodal predictions of future motion of it’s surrounding vehicles, along with
prediction uncertainty shown here for the red vehicle

Both tasks are tightly linked and could use shared feature encoders.

• Modeling relative motion: The trajectory prediction module predicts the relative

motion of surrounding vehicles with respect to the ego-vehicle. The predictive

distribution does not decouple ego-vehicle motion and surrounding vehicle motion.

We implicitly predict both, the ego-vehicle’s trajectory as well as the surrounding

vehicles’ trajectories. This can be a problem, since path planners would have control

over the ego-vehicle’s future trajectory, but not on the surrounding vehicles’.

• Unimodal predictions: Finally, the predictive distribution from the model is

unimodal, characterized by the most likely maneuver class for each surrounding

vehicle. Driver behavior tends to be inherently multimodal, where a driver could

42

make one of many decisions under the same traffic circumstances. A model that

predicts a multimodal distribution over future trajectories as shown in Figure 3.1,

would help path planners in autonomous vehicles to plan for contingencies rather

than being overly confident in the most likely maneuver.

3.1.1 Contributions

In this chapter, we address the above limitations by leveraging the modularity and

end-to-end trainability of deep learning models. Instead of independently trained modules

for maneuver recognition, trajectory prediction and modeling vehicle interaction, we

propose a single model consisting of differentiable components performing these functions.

Following the success of long-short term memory (LSTM) networks in modeling non-linear

temporal dependencies in sequence learning and generation tasks [3, 28,56], we propose an

LSTM encoder-decoder model for vehicle trajectory prediction. Our model can be trained

end-to-end via gradient based learning, and is characterized by:

1. Shared LSTM encoders: We use LSTM encoders with shared weights for encoding

the past trajectories of all surrounding vehicles. The LSTM encodings are then used

for both maneuver recognition and trajectory prediction.

2. Convolutional social pooling: We propose a novel social pooling layer as an

alternative to that proposed in [3]. We apply convolutional and max-pooling layers

instead of a fully connected layer to social-tensors of LSTM states that encode

the past motion of neighboring vehicles. Through our experiments, we show that

convolutional social pooling is more robust to varying spatial configurations of agents

than fully connected social pooling.

3. Maneuver based decoder: We propose an LSTM decoder that generates the

probability distribution over future motion for six maneuver classes and assigns a

probability to each maneuver class. This accounts for the multimodal nature of

43

vehicle motion. We propose a loss function that allows us to train the model without

collapsing the modes of the predictive distribution.

3.2 Related Research

3.2.1 Maneuver based models:

Classification of vehicle motion into meaningful maneuvers has been extensively

addressed in both advanced driver assistance systems as well as naturalistic drive studies.

Of particular interest are works that use recognized maneuvers to make better predictions

of future trajectories [35,68,88,157,158,170]. These approaches usually involve a maneuver

recognition module for classifying maneuvers and maneuver specific trajectory prediction

modules. Maneuver recognition modules are typically classifiers that use past positions and

motion states of the vehicles, and context cues as features. Heuristic based classifiers [68],

Bayesian networks [158], hidden Markov models [35,88], random forest classifiers [157] and

recurrent neural networks have been used for maneuver recognition. Trajectory prediction

modules output the future locations of the vehicle given its maneuver class. Polynomial

fitting [68], maneuver specific motion models [158], Gaussian processes [88, 170], and

Gaussian mixture models [35] have been used for trajectory prediction.

3.2.2 Interaction aware models:

Interaction aware models for motion prediction take into account the effect of

inter-vehicle interaction on the motion of vehicles. Two different approaches can be found

for incorporating inter-vehicle interaction. The first set of approaches [7, 35] use hand

crafted cost functions based on the relative configuration of vehicles and make optimal

predictions of future motion with respect to these cost functions. Cost function based

approaches do not depend on training data and can generalize to new traffic configurations.

However, they can be limited by how well the hand-crafted cost function is designed.

The second approach to incorporate inter-vehicle interaction is to implicitly learn it from

44

trajectory data of real traffic. However, due to the large variation in traffic configurations,

this approach requires a large dataset for generalization. This approach has been used in

prior works for the case of two vehicles approaching an intersection [78], and lateral motion

prediction on highways [157]. We use the data-driven approach for inter-vehicle interaction

in this work, since it it not limited by the design of a hand-crafted cost function, and also

due to the availability of large datasets of real freeway traffic [30,31].

3.2.3 Recurrent networks for motion prediction:

Since motion prediction can be viewed as a sequence classification or sequence

generation task, a number of recurrent neural network (RNN) based approaches have been

proposed in recent times for maneuver classification and trajectory prediction. Khosroshahi

et al. [80] and Phillips et al. [130] use LSTMs to classify vehicle maneuvers at intersections.

Kim et al. [81] propose an LSTM that predicts the location of vehicles in an occupancy

grid at intervals of 0.5 s, 1 s and 2 s into the future. Contrary to this approach, our

model outputs a continuous, multimodal probability distribution of future locations of the

vehicles up to a prediction horizon of 5 s. Lee at al. [90] propose a model that combines

conditional variational auto-encoders (CVAE) with RNN encoder-decoders for trajectory

prediction. While this allows for multimodal predictions by sampling the CVAE, the

model can only provide samples from the predictive distribution rather than an estimate

of the distribution itself. In their seminal work, Alahi et al. [3] propose social LSTMs,

which jointly model and predict the motion of pedestrians in dense crowds through the

use of a social pooling layer. We improve upon this approach by using convolutional

social pooling. We also incorporate the lane structure of freeways into our social pooling

layer. Finally, Kuefler et al. [87] use a gated recurrent unit (GRU) based policy using the

behavior cloning and generative adversarial imitation learning paradigms to generate the

acceleration and yaw-rate values of a bicycle model of vehicle motion. We compare our

trajectory prediction results with those reported in [87].

45

Figure 3.2. Formulation. Top: The co-ordinate system used for trajectory prediction.
The vehicle being predicted is shown in black, neighboring vehicles considered are shown
in blue. Bottom: Lateral and longitudinal maneuver classes

3.3 Formulation

We formulate motion prediction as estimating the probability distribution of the

future positions of a vehicle conditioned on its track history and the track histories of

vehicles around it, at each time instant t.

3.3.1 Frame of reference

We use a stationary frame of reference, with the origin fixed at the vehicle being

predicted at time t as shown in Fig. 3.2. The y-axis points in the direction of motion of

the freeway, and the x-axis is the direction perpendicular to it. This makes our model

independent of how the vehicle tracks were obtained, and in particular, can be applied

to the case of on-board sensors on an autonomous vehicle. This also makes the model

46

independent of the curvature of the road, and can be applied anywhere on a freeway as

long as an on-board lane estimation algorithm is available.

3.3.2 Inputs and outputs

The inputs to our model are track histories

X = [x(t−th), ...,x(t−1),x(t)] (3.1)

where,

x(t) = [x
(t)
0 , y

(t)
0 , x

(t)
1 , y

(t)
1 , ..., x(t)

n , y(t)n] (3.2)

are the x and y co-ordinates at time t of the vehicle being predicted and all vehicles within

±90 feet in the longitudinal direction and within the two adjacent lanes of the vehicle

being predicted, as shown in Fig. 3.2.

The output of the model is a probability distribution over

Y = [y(t+1), ...,y(t+tf)] (3.3)

where,

y(t) = [x
(t)
0 , y

(t)
0] (3.4)

are the future co-ordinates of the vehicle being predicted

3.3.3 Probabilistic motion prediction

Our model estimates the conditional distribution P(Y|X). In order to have the

model produce multimodal distributions, we expand it in terms of maneuvers mi, giving:

P(Y|X) =
∑
i

PΘ(Y|mi,X)P(mi|X) (3.5)

47

where,

Θ = [Θ(t+1), ...,Θ(t+tf)] (3.6)

are the parameters of a bivariate Gaussian distribution at each time step in the future,

corresponding to the means and variances of future locations.

3.3.4 Maneuver classes

We consider three lateral and two longitudinal maneuver classes as shown in Fig.

3.2. The lateral maneuvers consist of left and right lane changes and a lane keeping

maneuver. Since lane changes involve preparation and stabilization, we define a vehicle

to be in a lane changing state for ± 4s w.r.t. the actual cross-over. The longitudinal

maneuvers are split into normal driving and braking. We define a vehicle to be performing

a braking maneuver if it’s average speed over the prediction horizon is less than 0.8 times

its speed at the time of prediction. We define our maneuvers in this manner since these

maneuver classes are communicated by vehicles to each other through turn signals and

brake lights, which will be included as a cue in future work.

3.4 Proposed Model

Fig. 3.3 shows our proposed model. It consists of an LSTM encoder, convolutional

social pooling layers and a maneuver based LSTM decoder.

3.4.1 LSTM Encoder

We use an LSTM encoder for learning the dynamics of vehicle motion. For each

instant, snippets of the most recent th frames of track history are passed through the

LSTM encoder for the vehicle being predicted, and all the vehicles surrounding it. The

LSTM states for each vehicle are updated frame by frame over the th past frames. The

final LSTM state for each vehicle can be expected to encode the state of motion of that

48

F
ig
u
re

3
.3
.
P
ro

p
o
se
d

M
o
d
e
l:

T
h

e
en

co
d

er
is

an
L

S
T

M
w

it
h

sh
ar

ed
w

ei
gh

ts
th

at
le

ar
n

s
ve

h
ic

le
d

y
n

am
ic

s
b

as
ed

on
tr

ac
k

h
is

to
ri

es
.

T
h

e
co

n
vo

lu
ti

on
al

so
ci

al
p

o
ol

in
g

la
ye

rs
le

ar
n

th
e

sp
at

ia
l

in
te

rd
ep

en
d

en
ci

es
of

of
th

e
tr

ac
k
s.

F
in

al
ly

,
th

e
m

an
eu

ve
r

b
as

ed
d

ec
o
d

er
ou

tp
u

ts
a

m
u

lt
im

o
d

al
p

re
d

ic
ti

ve
d

is
tr

ib
u

ti
on

fo
r

th
e

fu
tu

re
m

ot
io

n
of

th
e

ve
h

ic
le

b
ei

n
g

p
re

d
ic

te
d

49

vehicle. The LSTMs used for each vehicle have shared weights. This allows for a direct

correspondence between the components of the LSTM states for all the vehicles.

3.4.2 Convolutional Social Pooling

While the LSTM encoder captures the vehicle motion dynamics, it fails to capture

the interdependencies of the motion of all vehicles in the scene. Social pooling, proposed

in [3], addresses this by pooling the LSTM states of all the agents around the agent being

predicted into a social tensor. This is done by defining a spatial grid around the agent being

predicted and populating the grid with LSTM states based on the spatial configuration

of the agents in the scene. Fig. 3.3 shows an example of a social tensor. Using this

social tensor as the input to the model in addition to the LSTM state of the agent being

predicted, has been shown to improve the accuracy of future motion prediction [3, 90].

This makes sense since the model now gets access to the motion states of surrounding

agents and their spatial configuration.

However, all previous instances of social pooling [3, 90] apply a fully connected

layer to the social tensor. This is inefficient since it breaks up the spatial structure of the

social tensor. Cells adjacent to each other in space become equivalent to cells far away

from each other in the fully connected layer. This can lead to problems in generalization

to a test set especially if the agents can be in various different spatial configurations. For

example, let’s suppose the training set doesn’t have a single instance of an LSTM state at

spatial location (m,n) of the social tensor. When such an instance is now encountered in

the test set, the model will fail to generalize. In particular, this will hold even if there are

training instances of LSTM states at spatial grid locations (m + 1, n) and (m,n + 1), say,

in spite of these instances clearly being helpful due to spatial locality.

As a remedy, we propose the use of convolutional and pooling layers over the social

tensor, termed convolutional social pooling. The equivariance of the convolutional layers

can be expected to help learn locally useful features within the spatial grid of the social

50

tensor, and the max-pooling layer can be expected to add local translational invariance,

both of which help address the problem described above. This phenomenon has been

further explored in section 3.5.5.

We set up our social tensor by defining a grid based on the lanes. A 13× 3 spatial

grid is defined around the vehicle being predicted, where each column corresponds to a

single lane, and the rows are separated by a distance of 15 feet which approximately equals

one car length. The social tensor is formed by populating this grid with surrounding car

locations. We then apply two convolutional layers and a pooling layer to the social tensor

as shown in Fig. 3.3 to obtain the social context encoding. Additionally, the LSTM state

of the predicted vehicle is passed through a fully connected layer to obtain the vehicle

dynamics encoding. The two encodings are concatenated to form the complete trajectory

encoding, which is then passed to the decoder.

3.4.3 Maneuver based LSTM decoder

We use an LSTM based decoder for generating the predictive distribution for future

motion over the next tf frames. We address the inherent multimodality of driver behavior

by predicting the distribution for each of the six maneuver classes described in section

3.3.4 along with the probability for each maneuver class. The decoder has two softmax

layers that output the lateral and longitudinal maneuver probabilities. These can be

multiplied to give the values of P(mi|X) from Eqn. 3.5. Additionally, an LSTM is used to

generate the parameters of a bivariate Gaussian distribution over tf frames to give the

predictive distribution for vehicle motion. In order to obtain maneuver specific distributions

PΘ(Y|mi,X) from Eqn, 3.5, we concatenate the trajectory encoding with a one-hot vector

corresponding to the lateral maneuver class and a one-hot vector corresponding to the

longitudinal maneuver class.

51

3.4.4 Training and Implementation details

We train the model end to end. Ideally, we would like to minimize the negative log

likelihood

−log

(∑
i

PΘ(Y|mi,X)P(mi|X)

)
(3.7)

of the term from from Eqn. 3.5 over all the training data points. However, each training

instance only provides the realization of one maneuver class that was actually performed.

Thus we minimize the negative log likelihood

−log (PΘ(Y|mtrue,X)P(mtrue|X)) (3.8)

over all training instances, instead.

We train the model using Adam [82] with learning rate 0.001. The encoder LSTM

has 64 dimensional state while the decoder has a 128 dimensional state. The sizes of the

convolutional social pooling layers are as shown in Fig. 3.3. The fully connected layer for

obtaining the vehicle dynamics encoding has size 32. We use the leaky-ReLU activation

with α=0.1 for all layers. The model is implemented using PyTorch [127].

3.5 Experimental Evaluation

3.5.1 Dataset

We use the publicly available NGSIM US-101 [30] and I-80 [31] datasets for our

experiments. Each dataset consists of trajectories of real freeway traffic captured at 10 Hz

over a time span of 45 minutes. Each dataset consists of 15 min segments of mild, moderate

and congested traffic conditions. The dataset provides the co-ordinates of vehicles projected

to a local co-ordinate system, as defined in section 3.3.1. We split the complete dataset

into train and test sets. The test set consists of a fourth of the trajectories from each of

the 3 subsets of the US-101 and I-80 datasets. We split the trajectories into segments of 8

52

s, where we use 3 s of track history and a 5 s prediction horizon. These 8 s segments are

sampled at the dataset sampling rate of 10 Hz. However we downsample each segment by

a factor of 2 before feeding them to the LSTMs, to reduce the model complexity.

3.5.2 Evaluation metrics

We report results in terms of the root of the mean squared error (RMSE) of

the predicted trajectories with respect to the true future trajectories, over a prediction

horizon of 5 seconds, as done in [87]. For the LSTM models generating bivariate Gaussian

distributions, the means of the Gaussian components are used for RMSE calculation. For

models generating multimodal predictive distributions, we use the mode with the highest

probability for calculating the RMSE.

While RMSE provides a tangible measure for the predictive accuracy of models,

it has limitations while evaluating multimodal predictions. RMSE is skewed in favor of

models that average modes. In particular, this average may not represent a good prediction.

For example, a driver intending to overtake another vehicle may do so by switching to

the immediate left or the immediate right lane, while at the same time accelerating. The

average of these two modes would be to accelerate while maintaining lane.

To address this limitation, we additionally report the negative log-likelihood (NLL)

of the true trajectories under the predictive distributions generated by the models. While

the NLL values cannot be directly interpreted as a physical quantity, they allow us to

compare uni-modal and multimodal predictive distributions.

3.5.3 Compared models

We compare the following baselines and system settings:

• Constant Velocity (CV): We use a CV Kalman filter as our simplest baseline

• C-VGMM + VIM: We use maneuver based variational Gaussian mixture models

with a Markov random field based vehicle interaction module described in [35] as

53

our second baseline. We modify the model to use the maneuver classes described in

this work to allow for a fair comparison

• GAIL-GRU: We consider the generative adversarial imitation learning model

described in [87]. Since the same datasets have been used in both works, we use the

results reported by the authors in the original article. There is a caveat that the

GAIL-GRU trajectories were generated by running the policy one vehicle at a time,

while all surrounding vehicles move according to the ground-truth of the NGSIM

dataset. Thus, the model has access to the true trajectories of adjacent vehicles over

the prediction horizon.

• Vanilla LSTM (V-LSTM): This simply uses the track history of the predicted

vehicle in the encoder LSTM and generates a unimodal output distribution with the

LSTM decoder

• LSTM with fully connected social pooling (S-LSTM): This uses the fully connected

social pooling described in [3] and generates a unimodal output distribution

• LSTM with convolutional social pooling (CS-LSTM): This uses convolutional social

pooling and generates a unimodal output distribution

• LSTM with convolutional social pooling and maneuvers (CS-LSTM(M)): This is

the complete model described in this chapter, including the maneuver based decoder

generating a multimodal predictive distribution

3.5.4 Results

Table 3.1 shows the RMSE and NLL values for the models being compared. S-

LSTM, CS-LSTM, and CS-LSTM(M) outperform the baselines [35, 87] in terms of RMSE

and NLL values, showing the effectiveness of the proposed model.

54

Table 3.1. RMSE and negative log-likelihood values over a 5 second prediction horizon

Metric
Horizon

(s)
CV

C-VGMM

+ VIM

[35]

GAIL-

GRU

[87]

V-LSTM S-LSTM CS-LSTM

CS-

LSTM

(M)

RMSE

(m)

1 0.73 0.66 0.69 0.68 0.65 0.61 0.62

2 1.78 1.56 1.51 1.65 1.31 1.27 1.29

3 3.13 2.75 2.55 2.91 2.16 2.09 2.13

4 4.78 4.24 3.65 4.46 3.25 3.10 3.20

5 6.68 5.99 4.71 6.27 4.55 4.37 4.52

NLL

1 3.72 2.02 - 1.17 1.01 0.89 0.58

2 5.37 3.63 - 2.85 2.49 2.43 2.14

3 6.40 4.62 - 3.80 3.36 3.30 3.03

4 7.16 5.35 - 4.48 4.01 3.97 3.68

5 7.76 5.93 - 4.99 4.54 4.51 4.22

We note that the vanilla LSTM and CV models produce higher RMSE values

compared to the other models. Each of the other models use some information about the

motion of neighboring vehicles. This shows that inter-vehicle interaction is a useful cue for

motion prediction, consistent with the results reported in [3, 35, 90].

We also note that CS-LSTM outperforms the S-LSTM in terms of both RMSE

and NLL values. This suggests that convolutional social pooling better models the

interdependencies of vehicle motion compared to a fully connected social pooling layer.

We further analyze this in the following section.

Finally, we note that CS-LSTM(M) leads to higher RMSE values compared to

CS-LSTM. This could, in part, be due to misclassified maneuvers, since the RMSE values

for CS-LSTM(M) are calculated using the trajectory corresponding to the maneuver

with the highest probability. However we note that CS-LSTM(M) achieves significantly

lower NLL values compared to CS-LSTM. Thus the predictive distribution generated by

CS-LSTM(M) better fits the true trajectories compared to that generated by CS-LSTM.

This points to the multimodal nature of the task.

55

Figure 3.4. Fully connected and convolutional social pooling. Top: All training
instances with vehicles at odd locations in ego lane of social tensor removed from train set;
all instances with vehicles even locations removed from test set. Bottom: RMS values of
prediction error for FC social pooling and convolutional social pooling for original datasets
and datasets from experiment. Convolutional social pooling is more robust to missing
spatial patterns in the social tensor

56

3.5.5 Fully connected vs. convolutional social pooling

We conjectured in section 3.4.2 that fully connected social pooling as described

in [3] would poorly generalize to a test set with even slight differences in spatial patterns of

agents in the scene as collected in the social tensor, and that convolutional social pooling

would remedy this. The reduced prediction error from section 3.5.4 seems to suggest that

this is true. However to further analyze this, we set up the following experiment. We

remove all instances from the train set corresponding to the odd grid locations of vehicles

from the ego lane, and remove all instances from the test set corresponding to even grid

locations as shown in Fig. 3.4. Thus, we have a train and test set with zero overlap in

terms of spatial configurations of the social tensors. However, we have plenty of spatially

similar but not identical configurations common to both. We plot the RMS values of

prediction error for this new train and test set, for fully connected social pooling and

convolutional social pooling models. We see that the performance of the fully connected

social pooling model drastically drops, almost to the point of the vanilla LSTM shown

in section 3.5.4. The performance drop with convolutional social pooling is less severe in

comparison. This suggests that using convolutional and pooling layers to aggregate social

context is a much more robust approach compared to using a fully connected layer.

3.5.6 Qualitative analysis of predictions

In this section we qualitatively analyze the predictions made by our model to gain

insights into its behavior in various traffic configurations.

Uni-modal vs. multimodal predictions:

Figure 3.5 shows a comparison of the unimodal predictive distribution generated

by CS-LSTM and the multimodal distribution generated by CS-LSTM(M). The plots

show three consecutive frames during a lane change maneuver from left to right. The top

row shows the track history and the true future trajectory. The middle row shows the

57

F
ig
u
re

3
.5
.

C
o
m
p
a
ri
so

n
o
f
u
n
i-
m
o
d
a
l
a
n
d

m
u
lt
im

o
d
a
l
p
re
d
ic
ti
o
n
s:

T
h

e
fi

gu
re

sh
ow

s
th

e
tr

u
e

tr
a

je
ct

or
y

(t
op

,
b

la
ck

),
C

S
-L

S
T

M
p

re
d

ic
ti

ve
d

is
tr

ib
u

ti
on

s
(m

id
d

le
,

b
lu

e)
an

d
C

S
-L

S
T

M
(M

)
p

re
d

ic
ti

ve
d

is
tr

ib
u

ti
on

s
(b

ot
to

m
,

re
d

)
fo

r
th

re
e

co
n

se
cu

ti
ve

fr
am

es
of

a
la

n
e

ch
an

ge
m

an
eu

ve
r.

T
h

e
h

ea
t

m
ap

s
ar

e
ge

n
er

at
ed

b
y

p
lo

tt
in

g
th

e
G

au
ss

ia
n

co
m

p
on

en
ts

fo
r

ea
ch

m
an

eu
ve

r
at

ea
ch

ti
m

e
st

ep
in

th
e

p
re

d
ic

ti
on

h
or

iz
on

58

predictive distribution generated by CS-LSTM and the bottom row shows the predictive

distribution generated by CS-LSTM(M). We can clearly observe two modes in the predictive

distribution of CS-LSTM(M). The mode corresponding to the lane change becomes more

and more prominent further into the maneuver while the mode corresponding to the keep

lane maneuver fades away. We further note that for all three cases, the mode corresponding

to the lane change closely matches the true future trajectory. However, the unimodal

distribution generated by CS-LSTM shows an average of the two modes and also has

greater variance. This illustrates why the CS-LSTM achieves lower RMSE values while

leading to higher NLL values as compared to CS-LSTM(M).

Effect of surrounding vehicles on predictions:

Figure 3.6 shows six different scenarios of traffic. Each figure shows a plot of track

histories over the past 3 seconds and the mean predicted trajectories over the next 5

seconds for each maneuver class. The thickness of the plots of the predicted trajectories

is proportional to the probabilities assigned to each maneuver class. Additionally, each

figure shows a heat map of the complete predicted distribution.

Fig 6(a) shows the effect of the leading vehicle on the predictions made by the

model. The first example (top-left) shows an example of free flowing traffic, where the

predicted vehicle and the leading vehicle are moving at approximately the same speed. In

the second example (top-middle), we note from the track histories that the leading vehicles

are slowing down compared to the predicted vehicle. We see that the model predicts the

vehicle to brake, although it’s current motion suggests otherwise. Conversely, in the third

example (top-right), we see that the vehicle being predicted is almost stationary, while the

leading vehicles are beginning to move. The model predicts the vehicle to accelerate, as is

expected in stop-and-go traffic.

Fig 6(b) shows the effect of vehicles in the adjacent lane on the model’s predictions.

The three examples show the same scenario separated by 0.5 s. We note that the vehicle

59

F
ig
u
re

3
.6
.
S
u
rr
o
u
n
d
in
g
v
e
h
ic
le
s
a
ff
e
ct

p
re
d
ic
ti
o
n
s:

T
h

is
fi

gu
re

sh
ow

s
th

e
eff

ec
t

of
su

rr
ou

n
d

in
g

ve
h

ic
le

s
on

p
re

d
ic

ti
ve

d
is

tr
ib

u
ti

on
ge

n
er

at
ed

b
y

th
e

m
o
d

el
.

T
h

e
h

ea
t

m
ap

s
ar

e
ge

n
er

at
ed

b
y

p
lo

tt
in

g
th

e
G

au
ss

ia
n

co
m

p
on

en
ts

fo
r

ea
ch

m
an

eu
ve

r
at

ea
ch

ti
m

e
st

ep
in

th
e

p
re

d
ic

ti
on

h
or

iz
on

60

being predicted is in a congested lane, with its leading vehicle slowing down. We also note

that the adjacent left lane is congested. On the other hand, the adjacent right lane is

moving at a much faster speed. Based on this, the model assigns a high probability to

the predicted vehicle staying in lane and braking, as expected. However, it also assigns a

small probability to an overtake by moving to the right lane. We can observe that the

model assigns a greater probability to the overtake as the adjacent vehicle moves further

away, clearing up the lane.

3.6 Conclusions

In this chater, we presented an LSTM encoder-decoder based model for vehicle

trajectory prediction for reasoning about the interdependencies neighboring vehicles’

motion. Our model uses an improved social pooling layer using convolutional connections

as opposed to fully connected layers that more robustly models and better generalizes the

various spatial configurations of interacting agents in a scene. We term this convolutional

social pooling. Our proposed model outperforms the reported state of the art on two large

publicly available datasets of vehicle trajectories. It outputs multimodal distributions for

future motion of vehicles based on maneuver classes. Through qualitative analysis we show

how modeling the multimodal distribution of future trajectories addresses mode averaging

in unimodal predictions. We also show how the predictions are affected by neighboring

vehicle motion, modeled implicitly by our convolutional social pooling layers.

Acknowledgements

Chapter 3, in part, is a reprint of the material as it appears in: ”Convolutional

Social Pooling for Vehicle Trajectory Prediction,” Nachiket Deo, and Mohan M. Trivedi,

CVPR Workshops 2018. The dissertation author was the primary investigator and author

of this paper.

61

Chapter 4

Trajectory Prediction Conditioned
on Grid-based Plans

4.1 Introduction

Chapters 2 and 3 addressed trajectory prediction of surrounding vehicles on multi-

lane highways. Highway traffic is a relatively easy setting for trajectory prediction for a

few reasons. First, all vehicles of interest have the same direction of motion and there

is very little variation in the static scene. This allows us to model vehicle motion in the

Frenet frame as described in section 3.3.1. It also allows us to predict future trajectories

purely using past trajectories of agents, without encoding the static scene. All agents

of interest are vehicles, which follow similar dynamics. Finally, multimodality of future

trajectories can be modeled using a small set of maneuver classes.

In the next 2 chapters, we shift our focus to urban environments with mixed traffic

consisting of vehicles, pedestrians and bicyclists. Agent motion can no longer be binned

into pre-defined maneuver classes. Additionally, the static scene strongly affects the motion

of agents. For example, vehicle motion is regulated by lanes, making lane curvature and

connectivity important cues for predicting vehicle motion. Pedestrians prefer to walk on

sidewalks and crosswalks, making the locations of these scene elements important cues

for predicting pedestrian motion. We thus address the problem of predicting the future

trajectories of agents, conditioned on their track history and a bird’s eye view representation

62

of the static scene around them. In particular, we wish to forecast trajectories in unknown

scenes, where prior observations of trajectories are unavailable. This is a challenging task

due to a number of factors:

• Unknown goals and path preferences: Without prior observations of agent

trajectories in a scene, goals and path preferences of agents need to be inferred purely

from the scene layout.

• Scene-compliance: Predicted trajectories need to conform to the inferred goals and

paths in the scene layout. Scene elements such as roads, sidewalks, crosswalks and

buildings can be found in a variety of configurations. Thus, there’s high variability

in the inputs to the trajectory forecasting model.

• Non-linearity of agent trajectories: Drivers and pedestrians can make several

decisions over long prediction horizons, leading to highly non-linear trajectories.

Thus, there’s high variability in the outputs of the trajectory forecasting model.

• Multimodality: Finally, the distribution of future trajectories is highly multimodal.

Unlike highway traffic, multimodality of agent motion in urban scenes cannot be

explained away by a small set of maneuvers. In any given scene, an agent can have

one of multiple potential goals, with multiple paths to each goal. Regression based

approaches lead to mode averaging as shown in [37, 60,90]. This leads to trajectory

forecasts that may not conform to the underlying scene and go off-road.

Recent work has addressed multimodality of the distribution of future trajectories

by learning one-to-many mappings from input context to multiple trajectories. Mixture

models [25, 32, 37, 38, 67, 109, 149,199] assign a mixture component to each mode of the

trajectory distribution. They output mean trajectories and probabilities for each mixture

component, along with prediction uncertainty. Alternatively, conditional generative

models [14, 15, 60, 90, 147, 148, 154, 195] map input context and a sample from a simple

63

latent distribution to a trajectory output. They can be sampled from indefinitely, to

output multiple trajectories. Both, conditional generative models and mixture models

need to learn a mapping from a high dimensional input space (variable scene and agent

configuration) to a high dimensional output space (continuous valued trajectories).

Several recent works thus incorporate inductive bias into the predicted modes

by conditioning on agent goals [105, 106, 194], lane center-lines [27, 101, 191] or anchor

trajectories obtained by clustering a training dataset of trajectories [26,129]. However, over

long prediction horizons, agents can take multiple paths to the same goal location, and

can change lanes. Finally anchor trajectories learned by clustering a training dataset may

not generalize to novel scene configurations not seen in the training set. We thus need an

approach to add inductive bias to the model that generalizes to novel scene configurations

and accounts for variable paths that agents can follow.

A completely different approach to motion prediction can be found in [84, 183,192,

198] pioneered by Ziebart et al. [198]. Agents are modeled as Markov decision processes

(MDPs) exploring a 2-D grid defined over the scene. A reward map for the MDP is

learned via maximum-entropy inverse reinforcement learning (MaxEnt IRL) [197]. MDPs

are naturally suited to model the agent’s sequential decision making. Additionally, since

the reward is learned from local scene cues at each grid location, it can be transferred

to unknown scenes with a different configuration of scene elements. However, MaxEnt

IRL approaches suffer from two limitations: First, they require a pre-defined absorbing

goal state, limiting them to applications where goals of agents are known beforehand.

As opposed to this, we need to infer goals of agents. Second, they only provide future

locations of the agent in the grid, without mapping them to specific times 1. This does

not take into account the agent’s dynamics.

1We refer to agent locations without assigned times as paths, and agent locations with assigned times
as trajectories

64

F
ig
u
re

4
.1
.
F
o
re
c
a
st
s
g
e
n
e
ra

te
d
b
y
P
2
T
:

W
e

ad
d

re
ss

th
e

p
ro

b
le

m
of

fo
re

ca
st

in
g

ag
en

t
tr

a
je

ct
or

ie
s

in
u

n
k
n

ow
n

sc
en

es
.

T
h

e
in

p
u

ts
to

ou
r

m
o
d

el
(l
ef
t)

ar
e

sn
ip

p
et

s
of

th
e

ag
en

ts
’

p
as

t
tr

a
je

ct
or

ie
s,

an
d

a
b

ir
d

’s
ey

e
v
ie

w
re

p
re

se
n
ta

ti
on

of
th

e
sc

en
e

ar
ou

n
d

th
em

.
O

u
r

m
o
d

el
in

fe
rs

p
ot

en
ti

al
go

al
s

of
th

e
ag

en
ts

(l
ef
t-
m
id
d
le
)

an
d

p
at

h
s

to
th

es
e

go
al

s
(m

id
d
le
)

ov
er

a
co

ar
se

2-
D

gr
id

d
efi

n
ed

ov
er

th
e

sc
en

e
b
y

m
o
d

el
in

g
th

e
ag

en
t

as
a

M
ax

E
n
t

p
ol

ic
y

ex
p

lo
ri

n
g

th
e

gr
id

.
It

ge
n

er
at

es
co

n
ti

n
u

ou
s

va
lu

ed
tr

a
je

ct
or

ie
s

co
n

d
it

io
n

ed
on

th
e

gr
id

-b
as

ed
p

la
n

s
sa

m
p

le
d

fr
om

th
e

p
ol

ic
y
(m

id
d
le
-r
ig
h
t)

.
F

in
al

ly
it

ou
tp

u
ts

K
p

re
d

ic
te

d
tr

a
je

ct
or

ie
s

b
y

cl
u

st
er

in
g

th
e

sa
m

p
le

d
tr

a
je

ct
or

ie
s
(r
ig
ht
).

65

4.1.1 Contributions

We seek to leverage the transferability of grid based MaxEnt IRL approaches, while

allowing for sampling of continuous valued trajectories similar to conditional generative

models. We present P2T (Plans-to-Trajectories), a planning based approach to generate

long-term trajectory forecasts in unknown scenes. Our approach relies on two key ideas.

1. Joint inference of goals and paths by learning rewards: We reformulate the

maximum entropy inverse reinforcement learning framework to learn transient path

state rewards and terminal goal state rewards. Our reformulation allows for joint

inference of goals, and paths to goals. This alleviates the need for a pre-defined

absorbing goal state in the original formulation [197].

2. Trajectories conditioned on plans: We refer to state sequences sampled from the

MaxEnt policy as plans. We propose an attention based trajectory generator that

outputs continuous valued trajectories conditioned on sampled plans, rather than

a latent variable. Compared to conditional generative models, our model outputs

trajectories that better conform to the underlying scene over longer prediction

horizons. Additionally, the state sequences of the MaxEnt policy allow for better

interpretability compared to the latent space of a conditional generative model

We evaluate our model on two publicly available trajectory datasets: the Stanford

drone dataset [150] (SDD) consisting of pedestrians, bicyclists, skateboarders and slow

moving vehicles at various locations on a university campus, and the NuScenes dataset [21]

consisting of vehicles navigating complex urban traffic. We report results in terms of mini-

mum over K average displacement error (MinADEK), final displacement error (MinFDEK)

and miss rate (MRK) metrics reported in prior work [27,60,90,148,154,195], as well as

sample quality metrics such as off-road rate [117] and off-yaw rate [59]. Our model achieves

state of the art results on several metrics, while being competitive on others. In particu-

66

lar, it significantly outperforms existing approaches in terms of sample quality metrics,

forecasting trajectories that are both diverse as well as precise. Figure 4.1 shows forecasts

generated by P2T for two example scenarios from the NuScenes and Standord drone

datasets. We make our code publicly available at https://github.com/nachiket92/P2T.

4.2 Preliminaries

In this section, we briefly review maximum entropy inverse reinforcement learning

(MaxEnt IRL) for path forecasting, conditioned on pre-defined goal states [84,183,198].

MDP formulation: We consider a Markov decision processM = {S,A, T , r}, for a finite

horizon setting with N steps. S is the state space consisting of cells in a 2-D grid defined

over the scene. A is the action space consisting of 4 discrete actions, {up, down, left, right},

to move to adjacent cells. We assume deterministic dynamics, where T : S × A → S is

the state transition function. Finally, r : S → R−
0 is the reward function mapping each

state to a real value less than or equal to 0. We assume that the initial state sinit and the

goal state sgoal of the MDP are known.

MaxEnt IRL objective: Under the maximum entropy distribution, the probability of

observing a state action sequence τ = {(s1, a1), (s2, a2), . . . (sN , aN)} is proportional to the

exponential of its reward.

P (τ) =
1

Z
exp (r(τ)) =

1

Z
exp

(
N∑
i=1

r(si)

)
, (1)

where Z the normalizing constant. MaxEnt IRL involves learning a reward function rθ(s)

parametrized by a set of parameters θ, operating on a set of features extracted for each

state s. The objective is to learn a reward function that maximizes the log likelihood of

observing a training set of demonstrations T = {τ1, τ2, . . . τK}

67

https://github.com/nachiket92/P2T

arg max
θ

Lθ = arg max
θ

∑
τ∈T

log

(
1

Zθ

exp(rθ(τ))

)
. (2)

This can be solved using stochastic gradient descent, with the gradient of the log likelihood

Lθ simplifying to

dLθ

dθ
=
∑
τ∈T

(Dτ −Dθ)
drθ
dθ

, (3)

where, Dτ are the state visitation frequencies (SVFs) for the training demonstration τ

and Dθ are the expected SVFs for the MaxEnt policy given the current set of reward

parameters θ. If a deep neural network is used to model the reward function rθ(s), drθ
dθ

can

be obtained using backpropagation as described in [182]. Dθ is obtained using Algorithm

1 and Algorithm 2.

Approximate value iteration: Algorithm 1 involves solving for the MaxEnt policy πθ,

given the current reward function rθ, and the goal state sgoal. πθ represents the probability

of taking action a, given state s. The policy can be stationary, ie., independent of the

time step πθ(a|s), or non-stationary π
(n)
θ (a|s). We use a non-stationary policy as used

in [93,196]. Algorithm 1 involves iterative updates of the state and action log partition

functions V (s) and Q(s, a). These can be interpreted as soft estimates of the expected

future reward given state s and the expected future reward given state-action pair (s, a)

respectively. V (s) is initialized to 0 for sgoal and −∞ for all other states. V (s) and Q(s, a)

are then iteratively updated over N steps, while holding V (sgoal) fixed at 0. For each step,

πθ is given by

π
(n)
θ (a|s) = exp

(
Q(n)(s, a)− V (n)(s)

)
. (4)

Holding V (sgoal) fixed to 0, while initializing all other V (s) values to −∞ ensures that

the MDP ends at sgoal.

Policy propagation: Algorithm 2 involves calculating the SVFs. It involves repeatedly

68

applying πθ for N steps, starting with the initial state distribution, to give SVF at each

step. The SVF corresponding to the goal state is set to 0 at each step, since the goal

state absorbs any probability mass that reaches it. The expected SVF Dθ is obtained by

summing the SVFs over the N steps.

Algorithm 1. Approx. value iteration (goal conditioned)

Inputs: rθ, sgoal

1: V (N)(s)← −∞, ∀s ∈ S

2: for n = N, ..., 2, 1 do

3: V (n)(sgoal)← 0

4: Q(n)(s, a) = rθ(s) + V (n)(s′), s′ = T (s, a)

5: V (n−1)(s) = logsumexpa Q(n)(s, a)

6: π
(n)
θ (a|s) = exp

(
Q(n)(s, a)− V (n)(s)

)
7: end for

Algorithm 2. Policy propagation (goal conditioned)

Inputs: πθ, sinit, sgoal

1: D(1)(s)← 0, ∀s ∈ S

2: D(1)(sinit)← 1

3: for n = 1, 2..., N do

4: D(n)(sgoal)← 0

5: D(n+1)(s) =
∑

s′,a π
(n)
θ (a|s′)D(n)(s′), T (s′, a) = s

6: end for

7: D(s) =
∑

n D
(n)(s)

Path forecasting conditioned on goals: The MaxEnt policy π∗
θ , for the converged

reward model rθ, can be sampled from, to give path forecasts on the 2-D grid from the sinit

to sgoal. Since π∗
θ is stochastic, the policy can explore multiple paths within the scene to

the goal state. However, for most cases of pedestrian or vehicle trajectory forecasting, sgoal

69

is unknown, and needs to be inferred. Additionally, sampling π∗
θ only provides future paths,

without mapping them to specific times. A step for the MDP need not correspond to a

fixed time interval. Different agents can have different speeds. Agents can also accelerate

or decelerate over the course of the 10s prediction horizon.

4.3 Proposed Approach

We leverage the transferability of grid based MaxEnt IRL, while not requiring

knowledge of sgoal, and generate continuous valued trajectories, mapped to specific times in

the future. Figure 4.2 provides an overview of P2T, our proposed approach. P2T consists

of three components.

The first component is a reward model, comprised by convolutional and pooling

layers. At each cell on a coarse 2-D grid, the reward model maps local scene context and

motion features capturing the agent’s track history, to a transient path state reward and a

terminal goal state reward. Section 4.3.2 describes the reward model in greater detail.

The next component is a MaxEnt policy independent of pre-defined goal states.

We reformulate MaxEnt IRL to allow for inference of goal and path states, given the path

and goal rewards learned by the reward model (see section 4.3.1). We obtain a single

policy that can be sampled to generate paths to different plausible goals on the 2-D grid.

We refer to each state sequence sampled from the policy as a plan.

The final component of P2T is an attention based trajectory generator, that outputs

continuous valued trajectories conditioned on the sampled plans. The trajectory generator

encodes the track history of the agent using a gated recurrent unit (GRU), and the

sampled plans using a bidirectional GRU (BiGRU). Finally, a GRU decoder equipped with

soft-attention [6], attends to the plan encoding to output trajectories over the prediction

horizon. Section 4.3.3 describes the trajectory generator in greater detail.

70

F
ig
u
re

4
.2
.
P
2
T

:
P

2T
co

n
si

st
s

of
th

re
e

m
o
d

u
le

s:
(1

)
a

fu
ll

y
co

n
vo

lu
ti

on
al

re
w

ar
d

m
o
d

el
,

th
at

ou
tp

u
ts

tr
an

si
en

t
p

at
h

st
at

e
re

w
ar

d
s

an
d

te
rm

in
al

go
al

st
at

e
re

w
ar

d
s

on
a

co
ar

se
2-

D
gr

id
,

(2
)

a
M

ax
E

n
t

R
L

p
ol

ic
y

fo
r

th
e

le
ar

n
ed

p
at

h
an

d
st

at
e

re
w

ar
d

s,
th

at
ca

n
b

e
sa

m
p

le
d

to
ge

n
er

at
e

m
u

lt
im

o
d

al
p

la
n

s
on

th
e

2-
D

gr
id

,
an

d
(3

)
an

at
te

n
ti

on
b

as
ed

tr
a

je
ct

or
y

ge
n

er
at

or
,

th
at

ou
tp

u
ts

co
n
ti

n
u

ou
s

va
lu

ed
tr

a
je

ct
or

ie
s

co
n

d
it

io
n

ed
on

th
e

sa
m

p
le

d
p

la
n

s.

71

4.3.1 Inferring goals and paths by learning rewards

We wish to relax the requirement of prior knowledge of sgoal in MaxEnt IRL.

Certain locations in a scene are likelier to be goals of agents. For pedestrians, these can

be points where paths and sidewalks exit the scene, entrances to buildings, or parked cars.

For vehicles, these can be points where lanes exit the scene, stop signs or parking lots.

Goals are also likelier to be along the direction of the agent’s motion. Rather than always

terminating at a predefined goal, we would like our policy to induce a distribution over

possible goal states. This would allow us to sample paths from the policy terminating at

different goals in the scene. We propose to do this by learning path and goal state rewards,

conditioned on the scene and past motion of the agent, and learning a policy unconstrained

by sgoal. We reformulate the MDP and modify the approximate value iteration algorithm.

MDP formulation:

• State space: Potentially any cell location on the 2-D grid could be the goal of the

agent, or a point on their future path. We define the state space S = {Sp,Sg}. Sp is

the set of path states and Sg is the set of goal states. Each cell location on the 2-D

grid has an associated path state belonging to Sp and a goal state belonging to Sg.

The policy terminates on reaching any goal state.

• Action space: A = {up, down, left, right, end}. The up, down, left and right

actions allow transitions from path states to adjacent path states. Additionally, we

define an end action that transitions the MDP from a path state to the goal state at

the same cell location.

• Transition function: T : Sp × A → S maps path state and action pairs to

other path states and goal states. Since goal states are terminal, the MDP has no

transitions out of a goal state.

72

• Rewards: We learn two functions, rpθ corresponding to path rewards, and rgθ

corresponding to goal rewards.

Approximate value iteration with inferred goals:

Algorithm 3 depicts our modified approximate value iteration, unconstrained on

sgoal. Unlike algorithm 1, we do not hold the V (sgoal) fixed at 0 to enforce goal directed

behavior. Instead, we use rgθ to learn a policy that induces a multimodal distribution over

potential goal states. The inputs to algorithm 3 are the learned rewards rgθ and rpθ . We

initialize V (s) to −∞ for all path states Sp. This is because we want the MDP to end up

at some goal state within the N step finite horizon. Since the goal states are terminal, the

MDP receives the goal rewards only once. We thus hold V (s) fixed to rgθ(s) for all goal

states Sg. We then iteratively update the state-action log partition function Q(n)(s, a) and

the state log partition function V (n)(s) for path states Sp over N steps. At each step, the

MaxEnt policy is obtained by taking the ratio of the exponent of Q(n)(s, a) and V (n)(s).

Policy propagation with inferred goals:

Algorithm 4 depicts policy propagation independent of sgoal. This is almost identical

to algorithm 2. The only difference is, we do not set the goal state SVFs to 0, as in line 4

of algorithm 2. This is because we use the goal SVFs to train the reward model for rgθ ,

using equation (3). We use a frame of reference centered at the agent’s location at the

time of prediction. Thus, sinit is always the path state at the center of the grid.

73

Algorithm 3. Approx. value iteration (inferred goals)

Inputs: rgθ , rpθ

1: V (N)(s)← −∞, ∀s ∈ Sp

2: for n = N, ..., 2, 1 do

3: V (n)(s)← rgθ(s), ∀s ∈ Sg

4: Q(n)(s, a) = rpθ(s) + V (n)(s′), ∀s ∈ Sp, s′ = T (s, a)

5: V (n−1)(s) = logsumexpa Q(n)(s, a), ∀s ∈ Sp

6: π
(n)
θ (a|s) = exp

(
Q(n)(s, a)− V (n)(s)

)
7: end for

Algorithm 4. Policy propagation (inferred goals)

Inputs: πθ, sinit

1: D(1)(s)← 0, ∀s ∈ S

2: D(1)(sinit)← 1

3: for n = 1, 2..., N do

4: D(n+1)(s) =
∑

s′,a π
(n)
θ (a|s′)D(n)(s′), T (s′, a) = s

5: end for

6: D(s) =
∑

n D
(n)(s)

4.3.2 Reward model

We define a reward model consisting purely of convolutional and pooling layers.

This allows us to learn a mapping from local patches of the scene to path and goal rewards.

The equivariance of the convolutional layers allows the reward model to be transferred to

novel scenes with a different configuration of scene elements. Figure 4.3 shows our reward

model. It consists of three sets of convolutional layers.

CNNfeat serves as a scene feature extractor, operating on the birds eye view

74

representation I of the static scene around the agent:

ϕI = CNNfeat (I) . (5)

The spatial dimensions of the scene features ϕI equal the size of the 2-D grid corresponding

to our state space S. In addition to scene features, we want our goal and path rewards to

depend on the past motion of the agent. Thus, similar to [192], we concatenate the scene

features with feature maps encoding the agent’s motion, and the locations of the grid cells:

ϕM = [|v|, x, y] . (6)

Here, |v| is the speed of the agent. This value is replicated over the entire feature map.

x and y are the locations of each grid cell in the agent-centric frame of reference, with

the origin at the agent’s current location and the x-axis aligned along the agent’s current

direction of motion. CNNp and CNNg map the scene and motion features to path and

goal rewards respectively:

rpθ = CNNp (ϕI , ϕM) . (7)

rgθ = CNNg (ϕI , ϕM) . (8)

Implementation details:

We represent the scene as a 200 × 200 bird’s eye view image around the agent.

CNNfeat consists of the first two ImageNet pretrained blocks of ResNet34 [63]. This

downsamples the spatial dimension of the feature maps to 50× 50. This is followed by

a 2× 2 convolutional layer with depth 32 and stride 2, to aggregate context at each cell

location. This gives 32 scene feature maps over a 25 × 25 grid. CNNp and CNNg have

identical architectures consisting of two 1 × 1 convolutional layers. The first layer has

depth 32, and the second layer has depth 1 to give a single path or goal reward value

75

Figure 4.3. Reward model: CNNfeat extracts features from the static scene. We
concatenate these with feature maps capturing the agent’s motion. CNNp and CNNg learn
path and goal rewards from the features.

at each cell. We apply the log-sigmoid activation at the outputs of CNNp and CNNg to

restrict reward values between −∞ and 0.

Training:

The reward model is trained to maximize the log-likelihood Lθ of agent paths in the

train set shown in equation (2), with gradients given by equation (3). The state visitation

frequencies Dθ for both path and goal states are obtained using algorithms 3 and 4. We

use Adam [82] with learning rate 0.0001 to train the reward model.

4.3.3 Trajectories conditioned on plans

Consider the optimal MaxEnt policy π∗
θ obtained using algorithm 3 for the converged

reward model. Consider state sequences or plans sampled from π∗
θ , with the ith plan given

by

s(i) =
[
s
(i)
1 , s

(i)
2 , . . . , s

(i)
N

]
. (9)

We expect the sampled plans to end at a diverse set of goal states, and explore various

paths to these goals. Additionally, each plan S(i) can be expected to conform to the

76

underlying scene and model the agent’s sequential decision making. However, the plans by

themselves do not capture the dynamics of the agent’s motion. A fast moving agent can

make more progress along a plan compared to a slow moving agent over a fixed prediction

horizon Tf . The dynamics of the agent’s motion can be estimated using a snippet of their

most recent track history, over time Th,

x = [x−Th
, . . . , x1, x0] , (10)

where the xt’s correspond to past location, velocity, acceleration and yaw-rate of the agent,

with the subscript t representing time and t = 0 the prediction instant.

We thus seek a model that, for each sampled plan s(i), and track history x, generates

a continuous valued trajectory y(i) over a prediction horizon Tf ,

y(i) =
[
y
(i)
1 , y

(i)
2 , . . . , y

(i)
Tf

]
, (11)

where yt is the future location of the agent at time t. We propose a trajectory generator

modeled as a recurrent neural network encoder-decoder, equipped with soft attention [6].

The trajectory generator has the following components.

• Motion encoder: We encode the track history x using a GRU encoder, where the

state of the GRU at time t is given by

hmt = GRUm

(
hmt−1 , ex (xt)

)
. (12)

Here ex(·) is a fully connected embedding layer. The GRU state at the prediction

instant, hm0 , can be expected to encode the motion of the agent.

• Plan encoder: The plan encoder (Fig. 4.4) encodes local scene features, nearby

agent states and location co-ordinates along sampled state sequences. The plan

77

encoding serves as an inductive bias for the decoder to output trajectories that

conform to the paths and goals inferred by the policy. For scene features, we use the

outputs ϕI of CNNfeat from the reward model (equation 5). For surrounding agent

states, we populate their grid locations with the agents’ velocity, acceleration and

yaw-rate. For each state s
(i)
n in a sampled plan s(i), we embed the scene features,

agent states and location co-ordinates at the grid cell corresponding to s
(i)
n , using fully

connected layers and concatenate the outputs to give the state encoding ϕs

(
s
(i)
n

)
.

We use a bidirectional GRU (BiGRU) encoder to aggregate the state encodings over

the entire plan. The state of the BiGRU at step n is given by

h(i)
sn = BiGRUs

(
h(i)
sn−1

, h(i)
sn+1

, ϕs

(
s(i)n

))
. (13)

• Attention based decoder: We use a GRU decoder equipped with a soft attention

module to generate the output trajectories y(i). Our core idea is to allow the decoder

to attend to specific states of the sampled plan s(i) as it generates trajectories along

the plan. Thus, the decoder can attend to just the first few states of sampled plans,

as it generates the future trajectories for a slow moving agent. On the other hand, it

can attend to later states while generating a fast moving agent’s trajectories.

We initialize the state of the decoder using the final state of the motion encoder,

hdec1 = hm0 . (14)

This provides the decoder a representation of the agent’s motion. The decoder state

is then updated over the prediction horizon, with the outputs at each time-step

giving the predicted locations.

78

Figure 4.4. Plan encoder: For each state in a sampled plan, we encode the scene
features, surrounding agent states and the location co-ordinates of the grid cell and term
it ϕS(s). This is then fed into bidirectional GRU to encode the the entire sampled plan.
Our GRU decoder generates output trajectories by attending to the plan encoding.

h
(i)
dect

= GRUdec

(
h
(i)
dect−1

,Att
(
h
(i)
dect−1

, h(i)
s1:N

))
, (15)

y
(i)
t = oy(h

(i)
dect

), (16)

where Att(·) is the attention module and oy(·) is a fully connected layer operating

on the decoder states.

Sampling and clustering:

The trajectory generator outputs a trajectory conditioned on each sampled plan.

This allows us to indefinitely sample trajectories from our model. Since the MaxEnt policy

induces a multimodal distribution over path and goal states, the sampled trajectories

also represent a multimodal predictive distribution. However, sampling by itself can be

inefficient, with several sampled state sequences and trajectories being identical or very

79

similar. In order to provide downstream path planners with a succinct representation of the

trajectory distribution, we cluster the sampled trajectories using the K-means algorithm

to output a set of K predicted trajectories. The number of clusters K can be varied as

required by the downstream path planner, without having to re-train the model.

Implementation details:

As per the standard benchmarks for both datasets, we use track history of 3.2

seconds and a prediction horizon of 4.8 seconds SDD [150], while a track history of 2

seconds and a prediction horizon of 6 seconds for NuScenes [21]. We assume an agent

centric frame of reference with the x-axis aligned along the agent’s direction of motion at

t = 0. We use a 32 sized state vector for each of the GRUs. The motion encoder uses an

embedding layer of size 16, while the plan encoder uses embedding layers of size 16, 32

and 16 for grid locations, scene features and surrounding agent states respectively. Our

attention module is a multi-layer perceptron (MLP) with one hidden layer of size 32.

Training:

To train the model, we sample 200 plans and corresponding trajectories from the

trajectory generator and cluster them to give K output trajectories
[
y(1), y(2), . . . , y(K)

]
.

We use K = 10 for NuScenes and K = 20 for SDD. We minimize the minimum over K

average displacement error (MinADEK) over the training set.

MinADEK = min
i∈{1,...,K}

1

Tf

Tf∑
t=1

∥∥∥yGT
t − y

(i)
t

∥∥∥
2
, (17)

where yGT is the ground truth future trajectory of the agent. The MinADEK loss has been

used in prior work for training models for multimodal trajectory forecasting [32,60,154]. For

a model generating multiple trajectories, it avoids penalizing plausible future trajectories

that do not correspond to the ground truth. To speed up convergence, we pre-train

80

the model to minimize the average displacement error between yGT and the trajectory

predicted by the model conditioned on the ground truth plan of the agent ySGT . We use

Adam, with learning rate 0.0001 for training the trajectory generator

4.4 Experimental Evaluation

4.4.1 Datasets

Stanford drone dataset: The Stanford drone dataset (SDD) [150] consists of trajectories

of pedestrians, bicyclists, skateboarders and vehicles captured using drones at 60 different

scenes on the Stanford university campus. The dataset provides bird’s eye view images of

the scenes, and locations of tracked agents in the scene’s pixel co-ordinates. The dataset

contains a diverse set of scene elements like roads, sidewalks, walkways, buildings, parking

lots, terrain and foliage. The roads and walkways have different configurations, including

roundabouts and four-way intersections. We use the dataset split defined in the TrajNet

benchmark [153] and used in prior work [14,154,195], for defining our train, validation and

test sets. The dataset is split based on scenes. Thus, the train, validation and test sets

all have different scenes from the 60 total scenes. This allows us to evaluate our model

on unknown scenes where it hasn’t seen prior trajectory data. Note that we consider

all trajectories in the train, validation and test scenes of SDD as per [14, 16, 154, 195].

Subsequent work [105, 106] has reported results on a subset of trajectories primarily

consisting of pedestrians. We report results on this split separately.

NuScenes: The NuScenes dataset [21] comprises 1000 scenes, each of which is a 20

second record, capturing complex urban traffic over a wide variety of road layouts and lane

structures. The dataset was captured using vehicle mounted camera and lidar sensors while

driving through Boston and Singapore, and contains hand annotated vehicle detection

boxes and tracks at a 2 Hz. In particular, we train and evaluate our model using the official

benchmark split for the NuScenes prediction challenge consisting of vehicle trajectories.

81

Figure 4.5. Sample quality metrics. MinADEK , MinFDEK and miss rate fail to
penalize a diverse set of trajectories that don’t conform to the scene (left). The off-road
rate (middle) and off-yaw (right) metrics address this by penalizing predicted points that
fall off the drivable area or onto oncoming traffic. Warm colors indicate higher errors.

In addition to trajectories, NuScenes provides high definition bird’s eye view maps of the

scene, including drivable area masks, cross-walks, side-walks and lane center-lines along

with their connectivity and directions. We use a 50m × 50m crop of the HD map around

the vehicle of interest as the scene representation for our model. It extends 40m along the

agent’s direction of motion, 10m behind and ± 25m laterally.

4.4.2 Metrics

Deviation from ground-truth: For evaluating a trajectory forecasting model, we need a

metric for how much the forecasts deviate from the ground truth future trajectory. However,

since our model generates forecasts from a multimodal distribution, we need a metric that

does not penalize plausible trajectories generated by the model that don’t correspond to

the ground truth. Thus, we use the minimum of K average displacement error (MinADEK),

final displacement error (MinFDEK) and miss rate within 2 meters (MRK,2) as metrics,

as utilized in prior work on multimodal trajectory forecasting [14,27,60,90,148,154,195].

MinADEK (eq. 18) computes the average prediction error in terms of L2 norm between

the ground truth future trajectory, and the forecast trajectory closest to it. MinFDEK

82

is similar to MinADEK , but only considers the prediction error for the final predicted

location. Finally, a set of K predictions is considered a missed prediction if none of the

K trajectories are within 2 meters of the ground truth over the entire prediction horizon.

MRK,2 computes the fraction of missed predictions in the test set.

Sample quality metrics: While MinADEK , MinFDEK and MRK,2 avoid penalizing

plausible future trajectories that don’t conform to the ground truth, they also do not

penalize implausible future trajectories as long as one of the K trajectories is close to

the ground truth. Thus a model that generates a very diverse set of K trajectories by

random guessing can achieve low MinADEK , MinFDEK and MRK,2 values, even if the

trajectories do not conform to the underlying scene. Thus, while these metrics serve as

good measures of the ’recall’ of the model for the multimodal predictive distribution,

they serve as poor measures for the model’s ’precision’. We refer readers to Rhinehart

et al. [147] for a detailed discussion on the diversity-precision trade-off. To evaluate the

precision of trajectories generated by our model, we additionally report results on two

recently proposed sample quality metrics.

• Off-road rate: The off-road rate metric proposed by Niedoba et al. [117] computes

the fraction of all predicted points that fall outside the road. For the NuScenes

dataset, we use the drivable area mask to compute off-road rate. For SDD, we hand

label the bird’s eye view images in the test set, assigning each pixel as a path or

an obstacle. Paths include roads, sidewalks, walkways etc., while obstacles include

buildings, terrain, parked cars and road dividers.

• Off-yaw metric: For vehicles moving through city streets, the off-road rate metric

fails to penalize predictions that fall onto oncoming traffic or illegal lanes. We thus

additionally report the off-yaw metric proposed by Greer et al. [59], for the NuScenes

dataset. The off-yaw metric computes the deviation between the direction of motion

83

Table 4.1. Results on SDD test set for split used in [154]

Model MinADE5 MinADE20 MinFDE5 MinFDE20
Off-road

rate

S-GAN [60] - 27.25 - 41.44 -

Desire [90] 19.25 - 34.05 - -

MATF [195] - 22.59 - 33.53 -

SoPhie [154] - 16.27 - 29.38 -

CF-VAE [14] - 12.60 - 22.30 -

HBA-flow [16] - 10.80 - 19.80 -

P2T (ours) 15.90 10.97 30.48 18.40 0.06

Table 4.2. Results on SDD test set for split used in [106]

Model MinADE5 MinADE20 MinFDE5 MinFDE20
Off-road

rate

PECNet [106] 12.79 9.96 29.58 15.88 -

Y-Net [105] 11.49 7.85 20.23 11.85 -

P2T (ours) 12.81 8.76 23.95 14.08 0.06

of the nearest lane and the yaw of predicted points. Similar to Greer et al., we only

penalize deviations above 45◦ to avoid penalizing lane changes.

Figure 4.5 illustrates how the off-road rate and off-yaw rate can penalize a set of diverse

but imprecise forecasts that MinADEK , MinFDEK and MRK,2 metrics fail to penalize.

4.4.3 Comparison with the state of the art

We compare our model with prior and concurrently developed models that represent

the state of the art for the Stanford drone and NuScenes.

SDD: Table 4.1 reports results on SDD based on the dataset split used in [154]. While

most prior works have reported MinADEK and MinFDEK for K=20, Desire [90] has

results reported for K=5. We report metrics for both values of K here for our models.

Note that the error values are in pixels in the bird’s eye view image co-ordinates. We also

report off-road rate values on SDD for our models based on per pixel path/obstacle labels

84

Table 4.3. Results on NuScenes test set for the prediction challenge

Model MinADE5 MinADE10 MR5,2 MR10,2
Off-road

rate

Off-yaw

metric

Physics oracle [129] 3.70 3.70 0.88 0.88 0.12 -

CoverNet [129] 2.62 1.92 0.76 0.64 0.13 -

MTP [32] 2.44 1.57 0.70 0.55 0.11 0.11

M-SCOUT [24] 1.92 1.92 0.78 0.78 0.10 -

Trajectron++ [155] 1.88 1.51 0.70 0.57 0.25 -

SG-Net [179] 1.86 1.40 0.67 0.52 0.04 -

MHA-JAM [109] 1.81 1.24 0.59 0.46 0.07 -

cxx [101] 1.63 1.29 0.69 0.60 0.08 -

Multipath [26] 1.63 1.50 0.75 0.74 0.38 0.37

P2T (Ours) 1.45 1.16 0.64 0.46 0.03 0.04

for the SDD test set. Our model achieves the lowest MinFDEK values, while only being

closely outperformed by the HBA-Flow model on MinADEK .

Table 4.2 reports results on the dataset split used by Mangalam et al. [105,106].

This uses a subset of trajectories in SDD, primarily consisting of pedestrians. Our model

outperforms PECNet [106]. However, the recently proposed Y-Net [105] achieves lower

MinADEK and MinFDEK values. Similar to our models, Y-Net also conditions trajectories

on goals and intermediate waypoints of agents in the scene, suggesting the importance of

modeling the static scene for trajectory forecasts.

NuScenes: Table 4.3 reports results on the NuScenes prediction benchmark 2. We

compare our models with the physics oracle and CoverNet [129] baselines released with

the benchmark, and the winning entries of the NuScenes prediction challenge, cxx [101],

MHA-JAM [109] and Trajectron++ [155]. Additionally, we also consider the simple yet

effective MTP [32] and Multipath [26] models as implemented and reported on NuScenes

by Greer et al. [59]. Since NuScenes requires a single set of trajectories to evaluate metrics

for K=5 and K=10, we merge the clustered trajectories for K=5 and K=10. To remove

duplicates, we discard trajectories from the set of 10 closest to each trajectory in the

2URL: https://eval.ai/web/challenges/challenge-page/591/leaderboard/1659, results as of May 26,
2021

85

https://eval.ai/web/challenges/challenge-page/591/leaderboard/1659

Figure 4.6. Ablation of grid based plans: Models with (left) and without (right) the
plan encoder and grid based policy. Without the grid based plan, the trajectory decoder
attends to all features within the grid

set of 5 in terms of displacement error. The set of 5 trajectories is nominally assigned a

higher score than the set of 10 trajectories. The benchmark does not include results for

the off-yaw metric. However, we report the metric for our models and those from [59].

Our model achieves state of the art results on almost metrics on the NuScenes

benchmark. In particular, it achieves significantly lower off-road rate and off-yaw metrics

compared to previous methods, while still maintaining low MinADEK and miss rate values.

The low MinADEK and miss rates suggest that our model generates a diverse set of

trajectories. The low off-road and off-yaw metrics suggest that conditioning trajectories

on plans sampled from the MaxEnt policy lead to more scene compliant trajectories. We

investigate this further in section 4.4.4.

4.4.4 Ablations

We additionally report results for the following ablations of our model.

• Grid-based plans: To analyze the effect of conditioning trajectories on the grid

based plans, we consider an ablation of our model without the MaxEnt policy

and plan encoder (Figure 4.6). In this case, the trajectory decoder attends to all

features in the grid, rather than just those along the sampled state sequence. To

86

T
a
b
le

4
.4
.

A
b

la
ti

on
s

on
S

D
D

M
o
d

el
C

N
N

f
ea

t
R

ew
ar

d

la
ye

rs

G
ri

d
-b

as
ed

p
la

n
s

T
ra

je
ct

or
y

ge
n

er
at

or
M

in
A

D
E
5

M
in

A
D

E
2
0

M
in

F
D

E
5

M
in

F
D

E
2
0

O
ff

ro
ad

ra
te

L
V

M
✓

✓
18

.2
8

12
.1

7
36

.7
1

20
.9

8
0.

11

P
2T

C
S

✓
✓

✓
21

.7
0

16
.1

0
38

.2
5

25
.2

2
0.

09

P
2T

B
C

✓
✓

✓
15

.9
3

11
.5

6
3
0
.2
9

19
.5

1
0
.0
6

P
2T

I
R
L

✓
✓

✓
✓

1
5
.9
0

1
0
.9
7

30
.4

8
1
8
.4
0

0
.0
6

T
a
b
le

4
.5
.

A
b

la
ti

on
s

on
N

u
S

ce
n

es

M
o
d

el
C

N
N

f
ea

t
R

ew
ar

d

la
ye

rs

G
ri

d
-b

as
ed

p
la

n
s

T
ra

je
ct

or
y

ge
n

er
at

or
M

in
A

D
E
5

M
in

A
D

E
1
0

M
R

5
,2

M
R

1
0
,2

O
ff

ro
ad

ra
te

O
ff

-y
aw

m
et

ri
c

L
V

M
✓

✓
1.

77
1.

27
0.

80
0.

63
0.

10
0.

12

P
2T

C
S

✓
✓

✓
4.

18
4.

05
0.

93
0.

92
0
.0
2

0.
07

P
2T

B
C

✓
✓

✓
1.

47
1
.1
5

0.
67

0.
49

0.
04

0.
07

P
2T

I
R
L

✓
✓

✓
✓

1
.4
5

1.
16

0
.6
4

0
.4
6

0.
03

0
.0
4

87

Figure 4.7. Qualitative examples from NuScenes. From top to bottom: Inputs,
goal SVFs, path SVFs and predictions

keep memory usage tractable, we maxpool the features using a 2×2 kernel before

attention layers. In order to sample a diverse set of trajectories, we additionally

condition the trajectory decoder with a latent variable z sampled from a univariate

Gaussian distribution. We refer to this ablation as the latent variable model (LVM).

• Trajectory generator: Next, we consider a model without the trajectory generator.

To output continuous valued trajectories along sampled plans, we fit a smoothing

spline along the sampled grid locations and propagate a constant speed trajectory

along the spline using the target agent’s velocity at the prediction instant. We refer

to this model as P2TCS.

• Reward Layers: Finally, we consider an ablation without the reward layers to

88

Figure 4.8. Qualitative examples from SDD. From top to bottom: Inputs, goal
SVFs, path SVFs and predictions

analyze the usefulness of using IRL. Instead of learning the reward, we learn a

behavior cloning policy that directly maps the scene and motion features to action

probabilities at each grid cell. We refer to this model as P2TBC .

Tables 4.4 and 4.5 report results for ablation studies on SDD and NuScenes

respectively. We note that for both datasets, our complete proposed model (P2TIRL)

outperforms the LVM across all metrics. In particular, the high off-road and off-yaw

metrics for the LVM compared to the other three models suggest that the LVM generates

more trajectories that veer off the road or violate lane direction. This shows that the

inductive bias due to grid based plans leads to trajectories that are more scene compliant.

Conversely, P2TCS achieves comparable offroad and off-yaw metrics as P2TIRL. However

it does poorly in terms of the MinADE, MinFDE and miss rate metrics. Thus, although

89

Table 4.6. Inference time

Component Time

Reward model 2 ms

Solve for MaxEnt policy (Algorithm 3) 28 ms

Sample MaxEnt Policy 28 ms

Trajectory Generator 12 ms

Clustering 9 ms

Total 79 ms

its trajectories are scene compliant, they deviate significantly from the ground truth,

suggesting the limitation of the constant speed model compared to the attention based

GRU decoder for modeling agent dynamics. Finally, P2TIRL slightly outperforms the

behavior cloning model P2TBC on most metrics, with the difference being more prominent

for SDD than for NuScenes.

4.4.5 Runtime

In table 4.6 we provide inference times for each component of the model. Inference

is performed using an NVIDIA GeForce GTX 1080 Ti GPU. We also implement algorithms

1 and 2 using vectorized operations on the GPU. For each prediction instance, we sample

1000 state sequences from MaxEnt policy, generating 1000 trajectories, which are finally

clustered to output K trajectories. The runtimes reported here are for K=10. We

note inference can be performed in 79 ms (or 12Hz) for the complete proposed model

which will allow for real-time deployment, given access to rasterized birds eye view scene

representations and past tracks of agents.

4.4.6 Qualitative examples

Figures 4.7 and 4.8 show qualitative examples from the NuScenes and Stanford

drone datasets. We show the input scene and past tracks of agents, heat maps for goal and

path state visitation frequencies for the MaxEnt policy and the final set of 10 clustered

90

trajectories from the trajectory generator. We note that the MaxEnt policy explores

plausible path and goal states in the 2-D grid for a variety of scene configurations. For

the Nuscenes dataset, this corresponds to reachable lanes for the target agent. Note

that the policy accurately infers which lanes correspond to the direction of motion rather

than oncoming traffic. For SDD, the policy shows a preference for paths and roads while

avoiding terrain or obstacles. We also note that the path and goal SVFs are multimodal.

Finally, the predicted trajectories closely map to the states explored by the policy, leading

to a diverse set of scene compliant predictions over a variety of scene configurations.

4.5 Conclusions

We introduced an approach to forecast trajectories of pedestrians and vehicles in

unknown scenes conditioned on plans sampled from a grid based MaxEnt IRL policy.

We reformulated MaxEnt IRL to learn a policy that can jointly infer goals and paths

of agents on a coarse 2-D grid defined over the scene. We showed that our policy infers

plausible goals of agents and paths to these goals that conform to the underlying scene.

Additionally, we showed that our policy induces a multi-modal distribution over path and

goal states. Next, we introduced an attention based trajectory generator that outputs

continuous valued trajectories conditioned on state sequences sampled from our MaxEnt

policy. Trajectories sampled from our trajectory generator are diverse and conform to the

scene, outperforming prior approaches on the TrajNet benchmark split of the Stanford

drone dataset and the NuScenes prediction benchmark. With an inference time of 79 ms,

the proposed model can readily be deployed in conjunction with on board detectors [141],

trackers [135,140] and HD Maps for autonomous driving.

91

Acknowledgements

Chapter 4, in part, is a reprint of the material as it appears in: ”Trajectory Forecasts

in Unknown Enviroments Conditioned on Grid-based Plans,” Nachiket Deo, and Mohan

M. Trivedi, arXiv:2001.00735 (2020). The dissertation author was the primary investigator

and author of this paper.

92

Chapter 5

Trajectory Prediction Conditioned
on Lane-Graph Traversals

5.1 Introduction

High definition (HD) maps of driving scenes provide a succinct representation of

the road topology and traffic rules, and have been a critical component of recent trajectory

prediction models as well as public autonomous driving datasets [21, 27]. The first few

works that utilized HD maps for prediction [25,26,32] encoded HD maps using a rasterized

bird’s eye view (BEV) image and convolutional layers. This was the approach we used

in the previous chapter for encoding the scene in P2T. While this approach exploits the

expressive power of modern CNN architectures, it has a few drawbacks:

• Computational inefficiency: HD map elements are originally stored using polylines

for lanes and polygons for cross-walks, sidewalks and stop-lines. Rasterization of

map elements into a BEV image leads to a dense representation which then needs to

be encoded by the CNN backbone. Additionally, square receptive fields of CNNs are

an inefficent way to aggregate relevant scene context for prediction, which tends to

be along lanes.

• Large state space: Rasterization and encoding with CNN layers leads to a grid

representation of the state space explored by the policy in P2T. While this generalizes

93

Figure 5.1. Drawbacks of rasterized HD maps: Rasterization of HD map elements
in the bird’s eye view can lead to occlusion of scene elements (left). Encoding rasterized
HD maps with CNN layers yields a grid representation of the state space for sampling
plans as described in the previous chapter. Sampling from a grid based policy can lead to
redundant samples (right).

well to novel scene layouts, it leads to a large state space. This in turn leads to

slower inference while solving for and sampling from the grid-based policy.

• Occlusion: Rasterization of the HD map can lead to occlusion of scene elements,

especially when multiple lanes cross each other at intersections. Figure 5.1 shows

examples of occluded HD map elements in the rasterized BEV representation.

• Sample inefficiency: Sampling plans from the grid-based policy can often lead

to redundant samples. Fig 5.1 shows an example of a lane centerline with the grid

state space overlayed on it. Distinct paths explored by the policy all correspond to

the same behavior of following the lane.

As an alternative to rasterized HD maps, the recently proposed VectorNet [53] and

LaneGCN [95] models directly encode structured HD maps, representing lane polylines as

nodes of a graph. VectorNet aggregates context using attention [175], while LaneGCN

proposes a dilated variant of graph convolution [83] to aggregate context along lanes. These

approaches achieve state-of-the-art performance using lightweight encoders with fewer

parameters than rasterization-based approaches. However, the above methods encode

the entire scene into a single context vector as shown in Fig.5.2. The context vector is

then used by a multimodal prediction header [26,32] to output multiple plausible future

94

Figure 5.2. Overview of our approach. We encode HD maps and agent tracks using
a graph representation of the scene. However, instead of aggregating the entire scene
context into a single vector and learning a one-to-many mapping to multiple trajectories,
we condition our predictions on selectively aggregated context based on paths traversed in
the graph by a discrete policy.

trajectories. The prediction header thus needs to learn a complex mapping, from the entire

scene context to multiple future trajectories, often leading to predictions that go off the

road or violate traffic rules. In particular, the prediction header needs to account for both

lateral or route variability (e.g. will the driver change lane, will they turn right etc.) as

well as longitudinal variability (e.g. will the driver accelerate, brake, maintain speed).

5.1.1 Contributions

Our core insight is that the graph structure of the scene can additionally be

leveraged to explicitly model the lateral or route variability in trajectories. We propose a

novel approach for trajectory prediction termed Prediction via Graph-based Policy (PGP).

Our approach relies on two key ideas.

1. Predictions conditioned on graph traversals: Instead of using a grid based

policy to sample routes in the scene, we represent the HD map as a graph, where

nodes represent lane centerlines and edges represent connectivity of the lanes. We

learn a discrete policy that explores the graph, such that sampled traversals represent

plausible routes that the agent of interest could follow. We then selectively aggregate

part of the scene along sampled traversals for each prediction, as shown in Fig. 5.2.

95

By more directly selecting the subset of the graph that is used for each prediction,

we lessen the representational demands on the output decoder. Additionally, the

probabilistic policy leads to a diverse set of sampled paths and captures the lateral

variability of the multimodal trajectory distribution. Finally, the graph representation

leads to a more compact state space, a lightweight map encoder and efficient sampling

compared to a grid representation of the scene.

2. Latent variable for longitudinal variability: To account for longitudinal vari-

ability of trajectories, we additionally condition our predictions with a sampled

latent variable. This allows our model to predict distinct motion profiles even for

identical path traversals. We show through our experiments that this translates to

greater longitudinal variability of predictions.

We summarize our main contributions on multimodal motion prediction using HD maps:

• A novel method combining discrete policy roll-outs with a lane-graph subset decoder.

• State-of-the-art performance on the nuScenes motion prediction challenge.

• Extensive ablations demonstrating the ability to capture lateral (route) and longitu-

dinal (motion) variations.

5.2 Related Research

5.2.1 Graph representation of HD maps

Most self-driving cars have access to HD vector maps, which include detailed

geometric information about objects such as lanes, crosswalks, stop signs, and more.

VectorNet [53] encodes the scene using a hierarchical representation of map objects and

agent trajectories. Each component is represented as a sequence of vectors, which are

then processed by a local graph network. The resulting features are aggregated via global

96

attention layers. LaneGCN [95] extracts a lane graph from the HD map, and uses a graph

convolutional network to compute lane features. These features are combined with both

agent and lane features in a fusion network. Both methods utilize the entire graph for

making predictions, relying on the header to identify the most relevant features.

5.2.2 Multimodal trajectory prediction

Researchers have proposed a variety of ways to model the multiple possible future

trajectories that vehicles may take. One approach is to model the output as a probability

distribution over trajectories, using either regression [32], ordinal regression [26], or

classification [129]. Another approach models the output as a spatial-temporal occupancy

grid [190]. Sampling methods use stochastic policy roll outs [147,148] or latent variable

models that map a latent variable sampled from a simple distribution to a predicted

trajectory. Latent variable models are trained as GANs [60, 195], CVAEs [90, 155], or

directly using the winner-takes-all regression loss [103]. These models must learn a one-to-

many mapping from the entire input context (except the random variable) to multiple

trajectories, and can lead to predictions that are not scene compliant.

5.2.3 Goal-conditioned trajectory prediction

Rather than learning a one to many mapping from the entire context to multiple

future trajectories, methods such as TnT [194], LaneRCNN [189], and PECNet [105]

condition each prediction on goals of the driver. Conditioning predictions on future goals

makes intuitive sense and helps leverage the HD map by restricting goals to be near the

lanes. However, one limitation is that over moderate time horizons, there can be multiple

paths that reach a given goal location. Additionally, certain plausible goal locations might

be unreachable due to constraints in the scene that are not local to the goal location, e.g.,

a barrier that blocks a turn lane. In contrast, our method conditions on paths traversed in

a lane graph, which ensures that the inferred goal is reachable. Furthermore, the traversed

97

path provides a stronger inductive bias than just the goal location.

A similar stream of work conditions on candidate lane centerlines as goals (e.g.,

WIMP [79], GoalNet [191], CXX [101]). While the lane centerline provides more local

context than just the goal, accounting for lane changes can be difficult. Additionally,

routes need to be deterministically chosen, with multiple trajectories predicted along the

selected route. Our approach allows for probabilistic sampling of both routes and motion

profiles. In scenes with just a single plausible route, our model can use its prediction

budget of K trajectories purely for different plausible motion profiles.

Closest to this work is P2T [40] from the previous chapter. P2t predicts trajectories

conditioned on paths explored by an IRL policy over a grid defined over the scene. However,

we use a rasterized BEV image for the scene in P2T, which leads to inefficient encoders

and loss of connectivity information due to occlusions. Additionally, P2T cannot generate

different motion profiles along a sampled path.

5.3 Formulation

We predict trajectories of vehicles of interest, conditioned on their past trajectory,

the past trajectories of nearby vehicles and pedestrians, and the HD map of the scene. We

represent the scene and predict trajectories in the bird’s eye view and use an agent-centric

frame of reference aligned along the agent’s instantaneous direction of motion.

5.3.1 Trajectory representation

We assume access to past trajectories of agents in the scene obtained from on-board

detectors and multi-object trackers. We represent the past trajectory of agent i as a

sequence of motion state vectors si−th:0
= [si−th

, ..., si−1, s
i
0] over the past th time steps. Each

sit = [xi
t, y

i
t, v

i
t, a

i
t, ω

i
t, I i], where xi

t, y
i
t are the BEV location co-ordinates, vit, a

i
t and ωi

t are

the speed, acceleration and yaw-rate of the agent at time t, and I i is an indicator with

value 1 for pedestrians and 0 for a vehicles. We nominally assign the index 0 to the target

98

vehicle, and timestamp 0 to the time of prediction.

5.3.2 Representing HD maps as lane graphs

Nodes: We represent the HD map as a directed graph G(V,E). The network of lane cen-

terlines captures both, the direction of traffic flow, and the legal routes that each driver can

follow. We seek to use both as inductive biases for our model. We thus use lane centerlines

as nodes (V) in our graph. We consider all lane centerlines within a fixed area around the

target vehicle. To ensure that each node represents a lane segment of a similar length, we

divide longer lane centerlines into smaller snippets of a fixed length, and discretize them

to a set of N poses. Each snippet corresponds to a node in our graph, with a node v repre-

sented by a sequence of feature vectors f v
1:N = [f v

1 , ..., f
v
N]. Here each f v

n = [xv
n, y

v
n, θ

v
n, Ivn],

where xv
n, yvn and θvn are the location and yaw of the nth pose of v and Ivn is a 2-D bi-

nary vector indicating whether the pose lies on a stop line or crosswalk. Thus, our node

features capture both the geometry as well as traffic control elements along lane centerlines.

Edges: We constrain edges (E) in the lane graph such that any traversed path through

the graph corresponds to a legal route that a vehicle can take in the scene. We consider

two types of edges. Successor edges (Esuc) connect nodes to the next node along a lane. A

given node can have multiple successors if a lane branches out at an intersection. Similarly,

multiple nodes can have the same successor if two or more lanes merge. To account for lane

changes, we additionally define proximal edges (Eprox) between neighboring lane nodes

if they are within a distance threshold of each other and their directions of motion are

within a yaw threshold. The yaw threshold ensures that proximal edges are not erroneously

assigned in intersections where multiple lanes cross each other.

99

Figure 5.3. PGP: PGP consists of three modules trained end-to-end. The graph encoder
(top) encodes agent and map context as node encodings of a directed lane-graph. The
policy header (bottom-left) learns a discrete policy for sampled graph traversals. The
trajectory decoder (bottom-right) predicts trajectories by selectively attending to node
encodings along paths traversed by the policy and a sampled latent variable.

5.3.3 Output representation

To account for multimodality of the distribution of future trajectories, we output

a set of K trajectories [τ 11:tf , τ
2
1:tf

, ..., τK1:tf] for the target vehicle consisting of future x-y

locations over a prediction horizon of tf time steps. Each of the K trajectories represents

a mode of the predictive distribution, ideally corresponding to different plausible routes or

different motion profiles along the same route.

100

5.4 Proposed Model

Fig. 5.3 provides an overview of our model. It consists of three interacting modules

trained end-to-end. The graph encoder (Sec. 5.4.1) forms the backbone of our model. It

outputs learned representations for each node of the lane graph, incorporating the HD map

as well as surrounding agent context. The policy header (Sec. 5.4.2) outputs a discrete

probability distribution over outgoing edges at each node, allowing us to sample paths in

the graph. Finally, our attention based trajectory decoder (Sec. 5.4.3) outputs trajectories

conditioned on paths traversed by the policy and a sampled latent variable.

5.4.1 Encoding scene and agent context

Inspired by the simplicity and effectiveness of graph based encoders for trajectory

prediction [53,95], we seek to encode all agent features and map features as node encodings

of our lane graph G(V,E).

GRU encoders. Both, agent trajectories and lane polylines form sequences of features

with a well defined order. We first independently encode both sets of features using gated

recurrent unit (GRU) encoders. We use three GRU encoders for encoding the target vehicle

trajectory s0−th:0
, surrounding vehicle trajectories si−th:0

and node features f v
1:N . These

output the motion encoding hmotion, agent encodings hi
agent and initial node encodings

hv
node respectively.

Agent-node attention. Drivers co-operate with other drivers and pedestrians to navigate

through traffic. Thus, surrounding agents serve as a useful cue for trajectory prediction.

Of particular interest are agents that might interact with the target vehicle’s route.

We thus update node encodings with nearby agent encodings using scaled dot product

attention [175]. We only consider agents within a distance threshold of each lane node to

update the node encoding. This allows our trajectory decoder (Sec 5.4.3) to selectively

focus on agents that might interact with specific routes that the target vehicle might take.

101

We obtain keys and values by linearly projecting encodings hi
agent of nearby agents, and

the query by linearly projecting hv
node. Finally, the updated node encoding is obtained by

concatenating the output of the attention layer with the original node encoding.

GNN layers. With the node encodings updated with nearby agent features, we exploit

the graph structure to aggregate local context from neighboring nodes using graph neural

network (GNN) layers. We experiment with graph convolution (GCN) [83] and graph

attention (GAT) [176] layers. For the GNN layers, we treat both successor and proximal

edges as equivalent and bidirectional. This allows us to aggregate context along all

directions around each node. The outputs of the GNN layers serve as the final node

encodings learned by the graph encoder.

5.4.2 Discrete policy for graph traversal

Every path in our directed lane graph corresponds to a plausible route for the

target vehicle. However, not every route is equally likely. For example, the past motion of

the target vehicle approaching an intersection might indicate that the driver is preparing

to make a turn rather than go straight. A slow moving lane make it likelier for the target

vehicle to change lane rather than maintain lane.

We seek to learn a policy πroute for graph traversal such that sampled roll-outs of

the policy correspond to likely routes that the target vehicle would take in the future. We

represent our policy as a discrete probability distribution over outgoing edges at each node.

We additionally include edges from every node to an end state to allow πroute to terminate

at a goal location. The edge probabilities are output by the policy header shown in Fig.

5.3. The policy header uses an MLP with shared weights to output a scalar score for each

edge (u, v) given by

score(u, v) = MLP
(
concat(hmotion, h

u
node, h

v
node,1(u,v)∈Esuc)

)
. (5.1)

102

The scoring function thus takes into account the motion of the target vehicle as

well as local scene and agent context at each edge. We then normalize the scores using a

softmax layer for all outgoing edges at each node to output the policy for graph traversal,

πroute(v|u) = softmax({score(u, v)|(u, v) ∈ E}). (5.2)

We train the policy header using behavior cloning. For each prediction instance,

we use the ground truth future trajectory to determine which nodes were visited by the

vehicle. We can naively assign each pose in the future trajectory to the closest node in the

graph. However, this can lead to erroneous assignment of nodes in intersections, where

multiple lanes intersect. We thus only consider lane nodes whose direction of motion is

within a yaw threshold of the target agent’s pose. An edge (u, v) is treated as visited if

both nodes u and v are visited. We use negative log likelihood of the edge probabilities

for all edges visited by the ground truth trajectory (Egt), as the loss function for training

the graph traversal policy, given by

LBC =
∑

(u,v)∈Egt

−log(πroute(v|u)). (5.3)

5.4.3 Decoding trajectories conditioned on traversals

Sampling roll-outs of πroute yields plausible future routes for the target vehicle. We

posit that the most relevant context for predicting trajectories is along these routes and

propose a trajectory decoder that selectively aggregates context along the sampled routes.

Given a sequence of nodes [v1, v2, ..., vM] corresponding to a sampled policy roll-out,

our trajectory decoder uses multi-head attention [175] to aggregate map and agent context

over the node sequence. We linearly project the target vehicle’s motion encoding to obtain

the query, while we linearly project the node features [hv1
node, h

v2
node, ..., h

vM
node] to obtain keys

and values for computing attention. The multi-head attention layer outputs a context

103

vector C encoding the route. Each distinct policy roll-out yields a distinct context vector,

allowing us to predict trajectories along a diverse set of routes.

Diversity in routes alone does not account for the multimodality of future trajectories.

Drivers can brake, accelerate and follow different motion profiles along a planned route. To

allow the model to output distinct motion profiles, we additionally condition our predictions

with a sampled latent vector z. Unlike routes, vehicle velocities and accelerations vary on

a continuum. We thus sample z from a continuous distribution. We use the multivariate

standard normal distribution for simplicity.

Finally, to sample a trajectory τ k1:tf from our model, we sample a roll-out of πroute

and obtain Ck, we sample zk from the latent distribution and concatenate both with hmotion

and pass them through an MLP to output τ k1:tf the future locations over tf timesteps,

τ k1:tf = MLP(concat(hmotion, Ck, zk)). (5.4)

The sampling process can often be redundant, yielding similar or repeated trajectories.

However our light-weight encoder and decoder heads allows us to sample a large number

of trajectories in parallel. To obtain a final set of K modes of the trajectory distribution,

we use K-means clustering and output the cluster centers as our final set of K predictions

[τ 11:tf , τ
2
1:tf

, ..., τK1:tf]. We train our decoder using the winner takes all average displacement

error with respect to the ground truth trajectory (τ gt) in order to not penalize the diverse

plausible trajectories output by our model,

Lreg = mink
1

tf

tf∑
t=1

∥τ kt − τ gtt ∥2. (5.5)

We train our model end-to-end using a multi-task loss combining losses from Eq.

5.3 and Eq. 5.5,

L = LBC + Lreg. (5.6)

104

5.5 Experimental Evaluation

5.5.1 Experimental settings

We evaluate our method on nuScenes [21], a self-driving car dataset collected in

Boston and Singapore. nuScenes contains 1000 scenes, each 20 seconds, with ground

truth annotations and HD maps. Vehicles have manually-annotated 3D bounding boxes,

which are published at 2 Hz. The prediction task is to use the past 2 seconds of object

history and the HD map to predict the next 6 seconds. We use the standard split from

the nuScenes software kit [119].

5.5.2 Metrics

To evaluate our model, we use the standard metrics on the nuScenes leaderboard

[119]. The minimum average displacement error (ADE) over the top K predictions

(MinADEK). The miss rate (MissRateK,2) only penalizes predictions that are further than

2 m from the ground truth. The offroad rate measures the fraction of predictions that

are off the road. Since all examples in nuScenes are on the road, this should be zero.

Additionally, we report metrics measuring sample diversity of a set of K predictions. To

measure lateral diversity, we report the average number of distinct final lanes reached, and

the variance of final heading angle of the target vehicle (σ2
yaw) for the set of K trajectories.

To measure longitudinal diversity, we report the variance of average speeds (σ2
speed) and

accelerations (σ2
acc) for the set of K trajectories.

5.5.3 Comparison to the state of the art

We report our results on the standard benchmark split of nuScenes in table 5.1,

comparing with the top performing entries on the nuScenes leaderboard. We achieve state

of the art results on almost all metrics, significantly outperforming the previous best entry

P2T [40] on the MinADEK and MissRate metrics, while achieving comparable off-road

105

Table 5.1. Comparison to the state of the art on nuScenes

Model MinADE5 MinADE10 MissRate5,2 MissRate10,2 Offroad rate

CoverNet [129] 1.96 1.48 0.67 - -

Trajectron++ [155] 1.88 1.51 0.70 0.57 0.25

SG-Net [179] 1.86 1.40 0.67 0.52 0.04

MHA-JAM [109] 1.81 1.24 0.59 0.46 0.07

CXX [101] 1.63 1.29 0.69 0.60 0.08

P2T [40] 1.45 1.16 0.64 0.46 0.03

PGP (Ours) 1.30 1.00 0.61 0.37 0.03

Table 5.2. Encoder ablations

Graph structure Agent-node

attention

GNN

layers

MinADEK MissRateK,2 Offroad rate
Esuc Eprox K=5 K=10 K=5 K=10

✓ 1.35 1.03 0.64 0.41 0.04

✓ ✓ 1.33 1.01 0.63 0.38 0.03

✓ ✓ ✓ 1.30 1.00 0.61 0.37 0.03

✓ ✓ ✓ GCN × 1 1.31 1.01 0.62 0.39 0.04

✓ ✓ ✓ GCN × 2 1.31 1.01 0.61 0.39 0.04

✓ ✓ ✓ GAT × 1 1.30 1.00 0.62 0.38 0.03

✓ ✓ ✓ GAT × 2 1.31 1.01 0.61 0.37 0.03

rate. This suggests that our model achieves better coverage of the modes of the trajectory

distribution, while still predicting trajectories that are scene-compliant.

Table 5.3. Decoder ablations

Decoder MinADE5 MinADE10 MissRate5,2 MissRate10,2 Offroad rate

MTP [32] 1.59 1.12 0.57 0.48 0.08

Latent var (LV) only 1.38 1.08 0.65 0.43 0.05

Traversal only 1.37 1.10 0.65 0.44 0.04

Goals + LV 1.33 1.02 0.60 0.42 0.06

Traversals + LV 1.31 1.01 0.61 0.37 0.03

106

Table 5.4. Lateral diversity metrics (K=10)

Decoder # distinct final lanes σ2
yaw

LV only 1.22 0.11

Traversals + LV 1.41 0.13

Table 5.5. Longitudinal diversity metrics (K=10)

Decoder σ2
speed σ2

acc

Traversal only 2.33 5.28

Traversals + LV 4.07 6.65

5.5.4 Encoder ablations

We analyze the effects of our graph structure and components of the graph encoder

by performing ablations on the graph encoder reported in table 5.2. In particular we

analyze the effect of including proximal edges, modeling surrounding agents with agent-node

attention and finally aggregating local context using GCN [83] or GAT [176] layers. We

get improvement across all metrics by adding proximal edges, and agent-node attention,

suggesting the importance of modeling lane changes and agent context. Somewhat

surprisingly, adding GNN layers gives ambiguous results with GCN layers achieving

slightly worse results and GAT layers performing on par with the encoder without GNN

layers. This could be because the multi-head attention layer aggregates context across the

entire traversed path, making the GNNs redundant.

5.5.5 Decoder ablations

We next analyze the effect of our traversal and latent variable based decoder. We

compare several decoders, all built on top of our proposed encoder with both types of edges,

agent-node attention and 2 GAT layers. First, we consider the multimodal regression

header from MTP [32]. Next we consider ablations of our decoder without the graph

traversals and without the latent variable conditioning. Finally, we consider a model that

107

conditions predictions on sampled goals at different node locations, instead of traversals.

Table 5.3 reports quantitative results while Fig. 5.4 shows qualitative examples comparing

the decoders. We make the following observations.

MTP generally fares worse compared to the other decoders, particularly in terms

of offroad rate. We note from Fig. 5.4 that while it generates a diverse set of trajectories,

several veer off-road.

The decoders conditioned purely on the latent variable or purely on traversals both

fare worse in terms of MinADE and MissRate compared to our decoder conditioned on

both. From the sample diversity metrics (Tables 5.4 and 5.5) and qualitative examples

(Fig.5.4) we observe that this is for different reasons. The ‘LV only’ decoder generates

diverse motion profiles, but almost always predicts trajectories along a single route, leading

to poor lateral diversity of trajectories. On the other hand, the ’Traversal only’ decoder

predicts trajectories over a variety of routes, but lacks diversity in terms of motion profiles.

Finally, the ‘Goals + LV’ decoder also fares worse compared to our ‘Traversals +

LV’ decoder, again, especially in terms of off-road rate. Qualitatively, we observe that

this is due to two types of errors. First, it tends to predict spurious goals which aren’t

reachable for the target vehicle (Fig.5.4 3○, 4○), and second, while it predicts correct goals,

it generates trajectories that don’t follow accurate paths to those goals (Fig.5.4 2○, 6○).

5.6 Conclusions

We presented a novel method for multimodal trajectory prediction conditioned on

paths traversed in a lane graph of the HD map by a discrete policy, and a sampled latent

variable. Through experimental analysis and ablation studies using the publicly available

nuScenes dataset, we showed that

• Selectively conditioning predictions on lane-graph traversals leads to trajectories

that are (i) diverse in terms of routes, and (ii) precise and scene compliant with the

108

Figure 5.4. Qualitative comparison of decoders: MTP (column 2) predicts trajecto-
ries that often veer off-road (1○- 3○, 6○). The decoder purely conditioned on latent variables
(column 3) lacks lateral diversity and predicts trajectories along a single route, even missing
the correct route in 6○. The decoder conditioned purely on traversals (column 4) predicts
diverse routes, but lacks longitudinal diversity (1○, 2○, 5○). Finally, the decoder conditioned
on goals rather than path traversals (column 5) predicts spurious goals that may not be
reachable (3○, 4○). Our model (column 6) predicts scene-compliant trajectories over a
diverse set of routes. In cases with few plausible routes (e.g. 5○), it uses its prediction
budget of K trajectories to generate more longitudinal diversity.

109

lowest offroad-rates.

• Additionally conditioning predictions on sampled latent variables leads to trajectories

that are diverse in terms of motion profiles.

• Both put together lead to state of the art results in terms of MinADE and MissRate

metrics.

Acknowledgements

Chapter 5, in part, is a reprint of the material as it appears in: ”Multimodal

Trajectory Prediction Conditioned on Lane-Graph Traversals,” Nachiket Deo, Eric Wolff

and Oscar Beijbom, CoRL 2021. The dissertation author was the primary investigator

and author of this paper.

5.A Appendix: Implementation details

Here, we provide the implementation details for the model architecture and experi-

ments from Chapter 5. We implement our model using Pytorch [127]. Here, we provide

details of our model architecture, ablations and training.

5.A.1 Map representation

The nuScenes map API provides lane polylines, their successors, and polygons for

cross-walks and stop lines. We consider map elements within an area of [-50, 50] m laterally

and [-20, 80] m longitudinally around the target vehicle. This ensures that most ground

truth trajectories lie within the area of interest. We split longer lane centerlines into

snippets of maximum length 20m, and discretize the polylines at a 1m resolution. Each

snippet corresponds to a node in the graph. This ensures that each lane node represents

a lane segment of similar length. The node resolution (20m) and pose resolution (1m)

for the polylines were experimentally chosen. There is a trade-off associated with the

110

resolution of lane nodes: A finer resolution would provide a more informative set of inputs,

but would lead to a graph with a greater number of nodes (and a greater number of poses

per node) increasing encoder complexity.

5.A.2 GRU encoders

We embed both agent and node features using linear layers of size 16, followed by

a leaky ReLU non-linearity. We use GRUs with depth 1 and hidden state dimension 32 on

top of the embeddings for both the agent and node encoders.

5.A.3 Agent-node attention

We use scaled dot-product attention with a single attention head for the agent-node

attention layers. We use 32 × 32 weight matrices for projecting the node and agent

encodings for obtaining the queries, and keys and values respectively. The outputs of the

attention layer are concatenated with the original node encodings and passed through a

linear layer of size 32, followed by a leaky ReLU non-linearity to obtain updated node

encodings of the same size as the original node encodings.

5.A.4 GNN layers

We use Pytorch geometric1 for implementing the GCN and GAT layers of our

model. For GCN layers, we use the layer-wise propagation rule from [83]. Our adjacency

matrix includes both successor and proximal edges (treated as bidirectional), as well as

self loops. The outputs at each node have the same dimension, 32, as the inputs. For GAT

layers, we use the layer-wise propagation rule from [176]. We use a single attention head,

with the outputs again having the same dimension as the inputs.

1https://github.com/rusty1s/pytorch geometric

111

https://github.com/rusty1s/pytorch_geometric

5.A.5 Policy header

The policy header is implemented as an MLP with 2 hidden layers of size 32 each

and a scalar output. The input to the policy header for each edge is a vector of size 98,

consisting of the source node encoding, destination node encoding and motion encoding of

the target agent each of size 32, and a one-hot encoding for the edge type of size 2.

5.A.6 Trajectory decoder

We aggregate context along nodes traversed by the policy using a multi-head scaled

dot-product attention layer. The attention layer has 32 parallel attention heads, and

outputs a context vector C of size 128. We model the latent variable as a multivariate

standard normal distribution. z ∼ N (0, I), where I is a 5×5 identity matrix. We output a

trajectory for each sampled Ck, zk and hmotion using an MLP with a hidden layer of size

128, and output of size 24 (x and y co-ordinates over the prediction horizon of 6 seconds at

2 Hz). We sample 200 trajectories from the model and cluster to obtain K=10 trajectories

during training to compute the winner takes all regression loss Lreg.

5.A.7 Training

We train the model using Adam, with learning rate 1e-4, and a batch size of 32.

For the first few epochs of training, since πroute does not produce meaningful traversals, we

use the ground truth traversal for sampling trajectories and computing Lreg. We pre-train

the model using the ground truth traversal for 100 epochs. We then finetune using paths

sampled from πroute for 100 epochs. We train our model using an AWS ”p3-8xlarge”

instance with 4 NVIDIA Tesla V100 GPUs. Each pre-training epoch takes roughly 1

minute and each finetuning epoch takes roughly 5 minutes for nuScenes.

112

5.A.8 Ranking Clustered Trajectories

The nuScenes leaderboard2 requires a single set of ranked or scored predictions for

computing the MinADEk and MissRate metrics for k = 1, 5 and 10. We rank our set of 10

clustered trajectories based on Ward’s merging cost3. We obtain the two clusters with the

minimum merging cost. The trajectory corresponding to the smaller of the two clusters is

assigned rank 10. The two clusters are then merged, with the merged cluster assuming

the identity of the larger cluster. This process is then repeated to assign ranks 9 through

1. Using Ward’s merging cost ensures that the top k trajectories cover a diverse set of

modes for all values of k.

5.A.9 Decoder ablation details

MTP: For the MTP header, we first aggregate context over the entire graph using a

multi-head scaled dot-product attention layer identical to our trajectory decoder, with

32 parallel attention heads and an output context vector C of size 128. We then use two

fully connected layers of size 240 and 10 respectively to output K=10 trajectories, and K

probabilities.

LV only: For the LV only decoder, similar to the MTP header, we first aggregate context

over the entire graph using a multi-head attention layer with 32 attention heads and

output C of size 128. The decoder then outputs trajectories conditioned on C, hmotion and

a sample zk of the latent variable using the final MLP layer.

Traversal only: The traversal only decoder is identical to the trajectory decoder of our

complete model, except for the final MLP layer, which outputs trajectories conditioned

only on Ck and hmotion and not on the sampled latent variable zk.

Goals + LV: The Goals + LV decoder consists of two output headers: A goal prediction

header that outputs a scalar score at each node normalized using a softmax layer to give

2https://eval.ai/web/challenges/challenge-page/591/leaderboard/1659
3https://en.wikipedia.org/wiki/Ward%27s method

113

https://eval.ai/web/challenges/challenge-page/591/leaderboard/1659
https://en.wikipedia.org/wiki/Ward%27s_method

goal probabilities, and a trajectory decoder that outputs goal conditioned trajectories.

We model the goal prediction header using an MLP with 2 hidden layers, each of size 32,

and a scalar output. The input to the goal prediction header at each node is obtained by

concatenating hnode and hmotion. The trajectory decoder consists of a multi-head attention

layer with 32 heads that aggregates context over the entire graph to output a context

vector C of size 128. C is concatenated with hmotion, a sampled latent vector zk and the

node encoding of a sampled goal huk
node and passed through an MLP with a hidden layer of

size 128, and output size 24 corresponding to a goal conditioned trajectory.

114

Part II

Predicting Driver Behavior during

Control Transitions

115

Chapter 6

Predicting Take-Over Readiness of
Drivers using Vision Sensors

6.1 Introduction

The overarching goal of autonomous vehicle research is the development of fully

automated systems capable of driving in any traffic scenario. The occupants of such a

vehicle would then be mere passengers, without access to controls. However, to safely

develop the technology to achieve this goal, there needs to be shared control between the

vehicle and a human driver. This can be seen in the 5 levels of vehicle automation defined

by the Society of Automotive Engineers (SAE) [145], with levels 2 to 4 corresponding to

some form of shared control. Conditionally autonomous vehicles (level 3), can operate

autonomously under specific traffic scenarios like lane keeping on freeways while maintaining

a desired speed. Such vehicles are now commercially available [1, 2]. However, a human

occupant, behind the wheel, is expected to monitor the automated system and be prepared

for take-over requests. These are cases where control needs to be transferred from the

vehicle to the human during failure modes of the system. Continuous estimation of this

occupant’s take-over readiness is thus critical for safe and timely transfer of control. In

the remainder of this chapter, we use the term ’driver’ in the context of conditionally

autonomous vehicles to refer to the occupant responsible for taking over control.

Prior research [11, 94, 96, 97, 99, 181] has addressed the closely related problem

116

of estimating driver distraction under manual driving conditions. Driver distraction

has been defined as the diversion of the driver’s attention away from activities critical

for safe driving toward a competing activity, which may result in insufficient or no

attention to activities critical for safe driving [144]. Conditionally autonomous driving

raises the possibility of drivers engaging in secondary activities unobserved during manual

driving, as well as more freely engaging in previously known secondary activities. While

sophisticated computer vision algorithms have been proposed for driver activity analysis

[18,34,46,51,52,62,91,92,112,122–124,136,138,139,164–166,168,169,173,177,178,184,186],

relatively few works [20,54,110,146,188] have addressed the problem of mapping driver

activity to take-over readiness.

This could be attributed to two main challenges. First, there is a lack of natural-

istic driving datasets observing driver activity in conditionally autonomous vehicles. A

comprehensive naturalistic driving dataset capturing a large range of driver behaviors

would allow for data-driven approaches to map driver activity to take-over readiness.

Second, defining the ground truth for take-over readiness is a challenging task. Data-driven

approaches hinge on the availability of ground-truth of the quantity being estimated.

While electroencephalogram (EEG) sensors allow for the most faithful representation of

the driver’s brain activity [76,98,171,193], they are too intrusive to be viable in commercial

vehicles. Another approach used in recent studies [20] is to define take-over readiness based

on take-over time and take-over quality in experimental trials with take-over requests

issued to drivers performing secondary activities. However, the nature of the task restricts

such experiments to simulator settings.

6.1.1 Contributions

In this chapter, we propose a data-driven approach to estimate the take-over

readiness of drivers in conditionally autonomous vehicles, based purely on the outputs

of non-intrusive sensors observing the driver. Figure 6.1 summarizes our approach. Our

117

F
ig
u
re

6
.1
.
O
v
e
rv

ie
w

o
f
o
u
r
a
p
p
ro

a
ch

:
W

e
w

is
h

to
co

n
ti

n
u

ou
sl

y
es

ti
m

at
e

th
e

d
ri

ve
r’

s
re

ad
in

es
s

to
ta

k
e-

ov
er

co
n
tr

ol
fr

om
an

au
to

n
om

ou
s

ve
h

ic
le

b
as

ed
on

fe
ed

fr
om

v
is

io
n

an
d

d
ep

th
se

n
so

rs
ca

p
tu

ri
n

g
th

e
d

ri
ve

r’
s

co
m

p
le

te
st

at
e.

W
e

d
efi

n
e

a
co

n
ti

n
u

ou
s

gr
ou

n
d

tr
u

th
va

lu
e

fo
r

ta
ke

-o
ve

r
re

ad
in

es
s

of
th

e
d

ri
ve

r
b

as
ed

on
ra

ti
n

gs
p

ro
v
id

ed
b
y

m
u

lt
ip

le
h
u

m
an

ra
te

rs
ob

se
rv

in
g

se
n

so
r

fe
ed

.
W

e
te

rm
th

is
th

e
‘O

b
se

rv
ab

le
R

ea
d

in
es

s
In

d
ex

(O
R

I)
’.

W
e

p
ro

ce
ss

th
e

se
n

so
r

fe
ed

fr
am

e-
b
y
-f

ra
m

e
u

si
n

g
m

o
d

el
s

fo
r

d
ri

ve
r

ac
ti

v
it

y
an

al
y
si

s
an

d
p

ro
p

os
e

an
L

S
T

M
m

o
d

el
to

le
ar

n
th

e
te

m
p

or
al

d
ep

en
d

en
ci

es
in

th
e

fr
am

e-
w

is
e

fe
at

u
re

s.
O

u
r

m
o
d

el
co

n
ti

n
u

ou
sl

y
es

ti
m

at
es

th
e

O
R

I
of

th
e

d
ri

ve
r.

118

main contributions are as follows:

1. Naturalistic dataset with autonomous driving: We capture a 2 hour 10

min dataset of drivers behind the wheel of a commercially available conditionally

autonomous vehicle. This is captured using multiple high resolution cameras and

depth sensors observing the driver. We use this data to train and evaluate our models.

To the best of our knowledge, this is the first study evaluating take-over readiness of

drivers using a naturalistic driving dataset from a conditionally autonomous vehicle.

2. Human ratings for take-over readiness: The goal of this work is to continuously

estimate the take-over readiness of drivers using vision sensors. To test the feasibility

of this approach, we collect ratings from multiple human raters viewing the sensor

feed and analyze inter-rater agreement. Our experiments show a high consistency in

the trend of the ratings across raters, rather than their absolute value. We normalize

for rater bias using a percentile based approach. The mean value of the normalized

ratings, averaged across raters, is then treated as the ground truth for our models.

We term this the Observable Readiness Index (ORI).

3. LSTM model for estimating take-over readiness: We process the sensor

streams frame by frame to analyze the drivers gaze [177], pose [23], hand [139,186]

and foot activity, giving a holistic representation of the driver’s state. We propose a

Long Short Term Memory (LSTM) network to model the temporal dependency of

the frame-wise representations. The LSTM continuously outputs the driver’s ORI

based on 2 seconds of past activity. Additionally, the model can recognize key-frames

from the sensor streams that are most predictive of the driver’s take-over readiness.

119

6.2 Related Research

6.2.1 Driver behavior analysis

Driver behavior analysis based on vision sensors has been extensively addressed in

prior research [18,34,51,52,91,112,122–124,136,138,139,164,166,168,169,173,177,178,

184,186]. A large body of literature [51,52,91,164,166,173,177,178] has focused on the

driver’s gaze estimation, being a useful cue for estimating the driver’s attention. While

early works [91,165,166] have relied on head pose estimation for determining the driver’s

gaze, most recent approaches use a combination of head and eye cues [46, 51,52,164,173].

Recent work [177,178] employing convolutional neural networks (CNNs) has allowed for

generalizable estimation of driver gaze zones, across drivers and small variations in camera

placement. Driver hand activity has also been the subject of a large number of research

studies, being closely linked to the motor readiness of the driver. Common challenges

involved in detecting the driver’s hands such as fast varying illumination conditions, self

occlusions, truncation have been outlined in [33]. Many approaches have been proposed

for detection, tracking and gesture analysis of the driver’s hands while addressing some

of these challenges [18,34,112,122–124,136]. Recent CNN models proposed by Yuen et

al. [186] and Rangesh et al. [139] allow for accurate localization of the driver’s hands in

image co-ordinates and in 3-D respectively, and allow for further analysis such as hand

activity classification and detection of objects held by the driver. A few works have

also addressed driver foot activity analysis [138, 168, 169], being a complimentary cue

to hand activity, for estimation of the driver’s motor readiness. There has also been

significant research that builds upon cues from driver gaze, hand and foot analysis for

making higher level inferences such as driver activity recognition [10,19,120], driver intent

prediction [72,73,107,121] and driver distraction detection [11,94,96,97,99,181].

120

6.2.2 Driver distraction estimation

While very little literature exists on estimating the take-over readiness of drivers in

autonomous vehicles, prior work [11,94,96,97,99,181] has addressed the closely related

problem of driver distraction estimation in manually driven vehicles. Driver distraction

estimation poses the same key challenges as take-over readiness estimation: defining a

ground-truth metric for the quantity being estimated, and proposing models that map

driver behavior to this metric. Here, we review the approaches used in prior work for

addressing these challenges. Bergasa et al. [11] extract face and gaze features such as

PERCLOS [41], eye closure duration, blink frequency and face position and map them to

the driver’s vigilance level based on fuzzy rule expressions. Liang et al. [96,97] and Liu

et al. [99] define the ground-truth for driver distraction as a binary variable, determined

based on experimental conditions. The driver is considered distracted for trials involving

the driver performing a secondary activity and not distracted for baseline trials, not

involving secondary activities. Binary classifiers trained on features capturing the driver’s

head and eye activity and driving performance to detect driver distraction, with support

vector machines (SVMs) used in [97], Bayesian networks used in [96] and extreme learning

machines (ELMs) used in [99]. Wollmer et al. [181] use subjective ratings provided by the

drivers to define the ground truth distraction levels. They train an LSTM for classifying

the ground truth distraction level using features based on driving performance and head

pose of the driver. Li and Busso [94] use ratings provided by observers viewing the driver,

rather than self evaluation by drivers. This allows for ratings that vary with time, and

also allows for multiple raters to assign the rating. We use a similar approach for defining

the ground-truth value for take-over readiness.

121

6.2.3 Take-over time and quality studies

A few recent studies [20,54,110,146,188] have addressed the case of conditionally

autonomous driving under simulator settings. Gold et al. [54] analyzed reaction times and

take-over quality of drivers prompted with a take-over request 5 seconds and 7 seconds

before a hazardous event, showing that drivers achieve faster reaction times for the 5

second interval, but poorer quality of take-overs. Mok et al. [110] conducted a study with

drivers performing a distracting secondary activity, prompted with take-over requests 2

sec, 5 sec and 8 sec before a hazardous event. Their results showed comparable take-over

quality for the 5 and 8 second settings, while being considerably poorer for the 2 second

setting. However the drivers reported greater trust in the automation for the 8 second

setting. Rezvani et al. [146] also analyzed take-over quality and trust in the automation,

with the focus being on user interface design for issuing take-over requests, rather than

time before take-overs. Zeeb et al. [188] analyzed the relationship between driver gaze

activity and take-over time and quality, showing that drivers preferring less frequent, longer

glances at the secondary activity achieved slower take-overs, more prone to collisions,

compared to drivers that preferred more frequent, but shorter glances. More recently,

Braunagel et al. [20] presented a model for classifying take-over readiness of drivers based

on driver gaze and encodings of the driver’s secondary activity and situation complexity.

They defined the ground-truth for take-over readiness as a binary value, based on the

quality of the performed take-overs. Our work differs from this approach on two counts;

we evaluate our models using naturalistic driving data, and we train our models on more

detailed descriptors of the driver’s behavior.

6.3 Experimental Setup

We use our testbed LISA-T [134], built on top of a Tesla Model S, for our

experiments. The vehicle has automatic cruise control and auto-steer capabilities for

122

Figure 6.2. Experimental setup: Our testbed is equipped with 4 high resolution
cameras, a depth sensor and infrared sensors for foot pedals. This figure shows views
used for driver face and gaze analysis (top-left), hand activity analysis (middle-left), pose
analysis (top-right), foot analysis (middle-right) with IR sensor locations, depth sensor
output (bottom)

123

freeway driving. The testbed is equipped with a suite of non-intrusive sensors monitoring

the driver’s state. Four high resolution cameras observe the driver’s face, hands, body pose

and feet. These allow for computer vision algorithms to analyze the driver’s gaze activity,

hand activity, objects held and body posture. Additionally, a depth sensor observing

the driver allows for analysis of the 3-D distances of the driver’s hands from the vehicle

controls. Figure 6.2 shows the camera views and depth sensor outputs. The testbed is

also equipped with infrared sensors on its brake and gas pedals to measure the distance of

the driver’s foot from each pedal. All sensors are synchronized and record at a frame rate

of 30 frames per second.

6.4 Human ratings for observable driver readiness

We collect subjective ratings provided by multiple human observers viewing video

feed from our testbed, where the raters assign a value for the driver’s readiness to take-over.

The human ratings serve as a sanity check for our approach based on non-intrusive sensors.

A high degree of agreement across raters would point to a measure for driver take-over

readiness that could be estimated purely based on visual cues. Secondly, the ratings

address the problem of ground-truth generation. The average rating provided by the raters

can be used as the ground truth for training and evaluating a machine learning algorithm

to estimate this measure of take-over readiness.

6.4.1 Protocol for collecting ratings

We chose a pool of 5 raters with driving experience and working knowledge of the

Tesla autopilot system for assigning the subjective ratings. The raters were shown multiple

30 second video clips of drivers with the car driving in autonomous mode. Figure 6.3

shows the interface used. The raters were shown synchronized feed from the pose camera

and foot camera. These two views were chosen in order to capture the complete state of

the driver with the minimum number of views, so as to not overwhelm the raters.

124

Figure 6.3. Interface for collecting ratings: The raters observe video feed from the
pose and foot cameras and assign a rating for each 2 second segment of video.

The raters were given the following prompt:“You will now be shown video clips

of drivers behind the wheel of a vehicle operating in autonomous mode in freeway traffic.

Rate on a scale of 1 to 5, with 1 being low and 5 being high, the readiness of the driver to

take-over control from the vehicle for each 2 second video segment.” We chose a discrete

rating scale rather than a continuous scale to minimize rater confusion and expedite

the rating process. We used discrete, fixed length time steps rather than flexible time

boundaries for the same reason. The raters were allowed to replay the segments as well as

update their previous ratings.

To prevent rater fatigue, in a single session, a rater rated a maximum of 25 clips,

each 30 seconds long. To account for the learning effect on raters, the first two clips in

every session were used to prime raters for the task. The ratings for these two clips were

discarded. The two priming clips were chosen such that one clip had primarily vigilant

behavior, typically rated high by the raters, and one clip had the driver performing a

distracting secondary activity, typically rated low.

125

6.4.2 Dataset Description

The complete dataset includes 260 clips, each 30 seconds long, amounting to 2

hours and 10 minutes of data. Among these clips, 20 were rated by the entire pool of 5

raters. We refer to this subset as the common set. We use the common set to analyze the

agreement across raters and to normalize for rater bias. The remaining 240 clips were rated

by 2 different raters from the rater pool. We refer to this set as the expansion set. We use

both, the common set and the expansion set, for training and evaluating our models.

The entire dataset involves naturalistic drives with 11 drivers, with the car operating

in autonomous mode on Californian multi-lane freeways. 7 drivers were male, while 4

were female. 5 drivers were in the age group of 20 to 30 years, 3 in the age group of

30 to 40, 1 in the age group of 40 to 50, and 2 drivers were over 50 years of age. All

drivers were familiarized with the Tesla auto-pilot functionality prior to data collection.

The data includes a wide range of driver behavior including vigilant driving, talking

to a co-passenger, gesturing, operating the infotainment unit, drinking a beverage and

interacting with a cell-phone or tablet. Table 6.1 lists the observed secondary activities in

our data, in terms of the nomenclature used in the SHRP2 NEST database [125]. Figure

6.4 shows example frames from the pose view.

6.4.3 Normalization of ratings

One source of noise in the assigned ratings is rater bias. Raters can be strict or

lax, and can use a varying range of values. We normalize for rater bias using a percentile

based approach. We use the common set for normalization of the ratings. We pool and

sort ratings provided by each rater on the common set to obtain rater specific look-up

tables. We then pool and sort ratings of all raters to obtain a combined look-up table. To

normalize a specific rater’s ratings, we find the percentile range of the assigned value in the

rater’s look-up table. We then replace it with the average of all values in that percentile

126

Figure 6.4. Examples frames from the dataset (showing pose view): The dataset
driver behaviors such as vigilant driving, talking to a co-passenger, gesturing, operating
the infotainment unit, drinking a beverage and interacting with a cell-phone or tablet

range in the combined look-up table. This percentile based lookup can be applied to the

entire dataset, including the expansion set.

6.4.4 Observable Readiness Index

We average the normalized ratings across raters to give a single rating for each

2 second interval in the clips. To obtain a continuously varying value representing the

driver’s take-over readiness, we interpolate these values over all frames using bi-cubic

interpolation. We term this normalized and interpolated value the Observable Readiness

Index (ORI), since it was assigned based purely on observable cues.

6.4.5 Inter-rater agreement analysis

We use intraclass correlation co-efficients (ICCs) as formulated by McGraw et.

al. [108], to evaluate inter-rater agreement. We model the human ratings as a two-way

127

Table 6.1. Secondary activities in collected dataset

Secondary task based on

SHRP2 NEST nomenclature [125]
Present in collected data?

Talking/Singing to Self ✓

Talking/Singing to Passenger(s) ✓

Dancing ✗

Reading ✓

Writing ✗

Holding object ✓

Manipulating object ✓

Reaching for object ✓

Talking/listening on handheld phone ✓

Adjusting steering wheel buttons ✓

Adjusting/monitoring center stack controls ✓

Adjusting/monitoring other devices ✓

Looking for object internal to vehicle ✓

Looking at object external to vehicle ✓

Eating/drinking ✓

Grooming (combing hair, removing glasses) ✓

random-effect model without interaction, assuming n observations and k raters. Under

this model, the rating xij assigned by rater j to clip i can be expanded as,

xij = µ + ri + cj + eij, (6.1)

where, µ is the global average rating, ri’s are the deviations based on the content of the

rated clips, and cj ’s are the deviations due to rater bias. The ri’s and cj ’s are independent,

with mean 0 and variance σ2
r and σ2

c respectively. And finally, eij is the normally distributed

measurement error with zero mean and variance σ2
e

We report the following ICC values for the normalized and unnormalized ratings,

as defined in [108]:

128

• ICC(C,1): This is given by the expression

ICC(C, 1) =
σ2
r

σ2
r + σ2

e

, (6.2)

and can be interpreted as the degree of consistency of the rating values. This is

independent of the rater bias, and has a high value if the trend of ratings across

raters is consistent.

• ICC(A,1): This is given by the expression

ICC(A, 1) =
σ2
r

σ2
r + σ2

c + σ2
e

. (6.3)

This is the degree of absolute agreement of rater values, and has a high value only if

the raters are in agreement in terms of the actual value of the ratings.

• ICC(A,k): This is given by the expression

ICC(A, k) =
σ2
r

σ2
r + σ2

c+σ2
e

k

. (6.4)

This can be interpreted as the reliability of the average rating provided by k different

raters. In our case, k = 5 for the common set, and k = 2 for the expansion set.

All ICC values are bounded between 0 and 1. The σ values are estimated using

two-way analysis of variances (ANOVA). Koo and Li [85] prescribe that ICC values less

than 0.5, between 0.5 and 0.75, between 0.75 and 0.9, and greater than 0.90 are indicative

of poor, moderate, good, and excellent reliability, respectively.

Table 6.2 shows the ICC values for the common and expansion sets, with and

without normalization. As expected, the ICC(C,1) values are higher than the ICC(A,1)

values due to the rater bias term σ2
c in the denominator for ICC(A,1). However, we note

that normalization considerably improves the ICC(A,1) values for both the common and

129

Table 6.2. Rater agreement analysis based on intra-class correlation co-efficients (ICC)

Dataset Normalization ICC(C,1) ICC(A,1) ICC(A,k)

0.584 0.415 0.780
Common Set

✓ 0.580 0.582 0.874

0.608 0.517 0.682
Expansion Set

✓ 0.637 0.627 0.772

Figure 6.5. Example ratings: Assigned (top), normalized, (middle) and averaged and
interpolated (bottom) ratings provided by two raters for 3 sequences from the expansion
set. The percentile based normalization scheme removes rater bias while retaining the
trend of the ratings. Finally averaging and interpolating gives the continuously varying
ORI for the sequences

expansion sets, without affecting the ICC(C,1) values. This shows that the normalization

maintains the trend (σ2
r) of the ratings while reducing rater bias (σ2

c). Finally, the last

column shows the ICC(A,k) values, which represent the reliability of the average rating

provided by all raters. As expected, this value is higher for the common set, rated by

5 raters as compared to the expansion set rated by 2 raters. However, both sets after

normalization have an ICC(A,k) rating that falls within the range indicative of ‘good

reliability’ of the ORI values as prescribed by Koo and Li [85].

130

6.4.6 Qualitative analysis of ratings

Figure 6.5 shows 3 examples of ratings from the expansion set. The top row shows

the ratings assigned by raters 1 and 4. We observe that rater 1 is strict and rarely assigns

a rating greater than 3. On the other hand, rater 4 is much more liberal, primarily

assigning ratings from 3 to 5. However, we can observe the similarity in the trend of

the ratings assigned by the two raters. The middle row shows the ratings after applying

the percentile based normalization. We observe that normalization reassigns the ratings

to a similar range of values while maintaining their trend, thereby removing rater bias.

Finally, the bottom row shows the continuously varying ORI, obtained after averaging

and interpolation of the normalized ratings.

6.5 Model for Estimating ORI

We wish to continuously estimate the driver’s ORI based on recent feed from the

sensors observing the driver. We pose this as a regression problem. At each instant, we

treat the past two seconds of sensor feed as the input and the ORI value as the output.

The raw sensor feed has high dimensionality due to the multiple high resolution

cameras and depth sensors. To reduce the input dimensionality, we use existing models

for driver behavior analysis [23, 139, 177, 186] based on convolutional neural networks

(CNNs). These models perform frame-wise analysis of the camera and depth sensor feed

to extract features corresponding to driver gaze, hand activity, foot activity and pose.

Figure 6.6 summarizes the inputs and outputs of the frame-wise feature extraction models.

Since all sensor streams are synchronized, the features can be concatenated to obtain a

frame-by-frame representation of the driver’s state.

While the CNNs extract a holistic frame-wise representation, driver activity spans

across multiple frames. We thus need a model that can reason about the temporal

dependencies of the features to estimate the ORI value. Due to their effectiveness at

131

F
ig
u
re

6
.6
.
F
ra

m
e
-w

is
e
fe
a
tu

re
s
ca

p
tu

ri
n
g
d
ri
v
e
r
st
a
te
:

W
e

ex
tr

ac
t

fr
am

e-
w

is
e

fe
at

u
re

s
ca

p
tu

ri
n

g
d

ri
ve

r’
s

ga
ze

,
h

an
d

ac
ti

v
it

y,
p

os
e

an
d

fo
ot

ac
ti

v
it

y
fr

om
th

e
sy

n
ch

ro
n

iz
ed

fe
ed

of
ou

r
ca

m
er

as
an

d
d

ep
th

se
n

so
rs

.
E

x
is

ti
n

g
co

n
vo

lu
ti

on
al

n
eu

ra
l

n
et

w
or

k
(C

N
N

)
b

as
ed

ap
p

ro
ac

h
es

[2
3,

13
9,

17
8,

18
6]

ar
e

u
se

d
fo

r
ex

tr
ac

ti
n

g
th

es
e

fr
am

e-
w

is
e

fe
at

u
re

s.

132

modeling long-term temporal dependencies in various sequence modeling tasks [43, 56,57,

102,187], we propose a model based on Long Short-Term Memory (LSTM) networks [66]

for estimating ORI.

6.5.1 Frame-wise feature extraction

Gaze Analysis: We use the model proposed by Vora et al. [177] for gaze analysis. The

inputs to the model are frames from the face camera. The face detector described in [184]

is used for accurate localization of the driver’s eye region. The cropped image of the

driver’s eye region is then passed through a CNN classifier, which outputs the driver’s

gaze zone. We consider 9 different gaze zones: {forward, left shoulder, left mirror, lap,

speedometer, infotainment unit, rear-view mirror, right mirror, right shoulder} shown in

Figure 6.6. The CNN uses a softmax output layer, giving frame-wise probabilities for each

gaze zone. We use this 9 dimensional vector to represent driver gaze for each frame.

Hand Analysis (Camera-based): We use the model proposed by Yuen and Trivedi [186],

for hand analysis based on feed from the hand camera. The model localizes the elbow

and wrist joints of the driver using part affinity fields [23]. The model is trained for

robustness under rapidly changing lighting conditions and variability in hand posture

during naturalistic drives. Additionally, the model classifies hand activity for each hand

using a CNN classifier. The CNN uses as input a cropped image near the localized wrist

joints and outputs a hand-activity class. Four activity classes are considered for the left

hand: {on lap, in air (gesturing), hovering wheel, on wheel}. Six classes are considered

for the right hand: {on lap, in air (gesturing), hovering wheel, on wheel, interacting

with infotainment unit, on cup-holder}. We obtain an 18 dimensional feature vector

corresponding to the x and y co-ordinates of the 4 joints, the 4 dimensional output of the

left hand activity classier and the 6 dimensional output of the right hand activity classifier

for each frame of the hand camera.

Hand Analysis (Depth-based): We use HandyNet, proposed by Rangesh and Trivedi

133

[139], for hand analysis using the depth sensor. The model performs instance segmentation

on each frame of the depth sensor to output the locations of the driver’s hands. This allows

for computation of the distance of the driver’s hands from the vehicle controls in 3-D.

Additionally, the model also classifies the object held by the driver, if any. We consider 4

different object classes: {no object, cell-phone/tablet, beverage/food, other item}. Thus, for

each frame of the depth sensor, we obtain a 5 dimensional feature vector, corresponding

to the distance to the wheel, and the 4 dimensional output of the hand object classifier.

Pose Analysis: The driver’s body posture can be a useful additional cue for estimating

their readiness to take over. We capture the driver’s pose for each frame by using

OpenPose [23] proposed by Cao et al. The model is capable of localizing 18 body key-point

locations. For our task, we only consider the the 10 upper body key-points visible in

the pose camera view, as shown in Figure 6.6. The x and y co-ordinates of the 10 body

key-points give a 20 dimensional feature vector for each frame of the pose camera.

Foot Analysis: To obtain a representation of the driver’s foot activity, we use the outputs

of the IR pedal sensors. These give the distance of the driver’s foot to the gas and brake

pedal for each frame.

6.5.2 Correlation of extracted features with ORI

Figure 6.7 shows the frame-wise correlation of features with the ORI values. We

note that in general, hand features seem to have higher correlation with ORI compared to

gaze or foot features. In particular, the presence of a hand-held phone or tablet has a strong

negative correlation with the rated ORI values. On the other hand, the driver’s hands

being free (without holding any object) has a high positive correlation with ORI. In terms

of activity classes, gesturing and interacting with the infotainment unit are negatively

correlated with ORI, whereas the hands hovering or being on the wheel are positively

correlated. Although the gaze features have a lower correlation with ORI as compared

to hand features, we note that the gaze zones corresponding to sensing the vehicle’s

134

Figure 6.7. Feature correlation: Frame-wise correlation of gaze, hand and foot features
with ORI ratings

surroundings such as looking forward or viewing the mirrors are correlated positively with

ORI. On the other hand, gaze zones corresponding to driver distraction such as looking at

the lap (or hand-held device), infotainment unit or speedometer have negative correlation.

The only exception to this seems to be the right shoulder gaze zone, which is negatively

correlated with ORI. This could be because the driver may look to the right to interact

with the co-passenger in the front seat, which can be seen as a distracting activity. Finally,

we note that the distances of the hands and feet from the vehicle controls are negatively

correlated with the rated ORI, which is reasonable since these affect the motor-readiness.

6.5.3 Proposed LSTM model

In its simplest form, we can define an LSTM model for processing the sequence

of frame-wise features as shown in Figure 6.8a. An LSTM is a recurrent neural network.

It updates its state at each time-step based on its state at the previous time-step and

the frame-wise features at the current time-step. The final state of the LSTM can be

135

(a) Vanilla LSTM (b) LSTM with key-frame weighting

Figure 6.8. Models: LSTM models used for estimating ORI

expected to encode the driver’s activity spanning over 2 seconds of context by processing

the temporal dependencies of the frame-wise features. The final state of the LSTM is then

processed by an output layer to give the scalar valued ORI.

Key-frame weighting

While the LSTM reasons over the complete 2 second sequence of frame-wise features,

driver activity in certain parts of the sequence can be more strongly predictive of their

readiness to take over. For example, a driver may for a split second, interact with their

phone or the infotainment unit, while otherwise appearing vigilant in terms of hand, eye

and foot activity. While this activity may not span 2 seconds, it is indicative of driver

distraction and low readiness to take over. Human raters viewing the driver would take

this into consideration and weight this part of the video clip more strongly for assigning

their ratings. We thus need a model capable of assigning greater weight to key-frames in

the sequence of features, to determine the final rating.

We propose the model shown in Figure 6.8b for key-frame weighting. The LSTM

outputs two values at each time step, the rating for that frame and the weight for that

frame. The frame-wise weights are normalized using a softmax layer. A dot product of

the normalized weights and the frame-wise ratings gives the ORI value for the sequence.

136

This allows the model to assign a greater weight to key-frames in the sequence of features.

We use a bidirectional LSTM [58] instead of a unidirectional LSTM. This allows for

information to flow from the entire 2 second sequence to LSTM states at each time step.

This allows the model to relatively weigh the current frame with respect to the other

frames in the sequence in order to determine the frame-wise weight. Note that we do

not provide explicit supervision in terms of key-frames in the sequence, but incorporate a

mechanism in the model to learn them, via the dot product between frame-wise ratings

and frame-wise weights. The model is trained end-to-end to minimize the error between

the predicted rating and the assigned rating. Our approach can be considered similar to

the attention mechanism [6] in LSTM encoder-decoder models, with an attention based

decoder applied for a single step.

Implementation details

We use bi-directional LSTMs with a 32 dimensional state vector for both the

forward and backward LSTMs. We use a sigmoid activation for the frame-wise ratings,

giving a predicted ORI value between 0 and 1. The ground truth ORI ratings ranging

from 1 to 5 are shifted and scaled to map them to the 0 to 1 range. We train the model

by minimizing mean absolute error on the train set. We use Adam [82] with learning rate

0.001 to train the model. The models are trained using Pytorch [127].

6.6 Experimental Evaluation

For our experiments, we split our dataset of 260 video clips, into a train set,

validation set and a test set. The train set consists of 172 video clips from 22 different

drives, the validation set consists of 32 video clips from 5 drives and the test set consists

of 56 clips from 6 drives. The train, validation and test sets were selected from different

drives. The test set includes data from 6 different drivers, 3 of whom were not present in

the train or validation sets. Since each clip is 30 seconds long, with the sensors recording

137

at 30 fps, this gives us about 154,000 training samples, 28,000 validation samples and

50,000 test samples. We train our models to minimize the mean absolute error between

the predicted and assigned ORI values on the train set. We select the model with the

minimum mean absolute error on the validation set for reporting results on the test set.

6.6.1 Metrics and baselines

We report the mean absolute error (MAE) between the predicted and assigned

ORI values for the test set. We compare the following models:

• Frame-wise SVM baseline: We use a linear SVM trained purely using the frame-wise

features as the simplest baseline. This allows us to evaluate the effect of using

temporal context for estimating ORI.

• Vanilla LSTM: We report results using a vanilla LSTM as shown in Figure 6.8a.

• LSTM with key-frame weighting: We additionally consider a model with key-frame

weights, but with unidirectional LSTMs

• Bi-LSTM with key-frame weighting: Finally, we report results using our complete

model with bidirectional LSTMs and key-frame weights shown in Figure 6.8b.

For a fair comparison with our proposed model using bidirectional LSTMs, we use LSTMs

with 64 dimensional states for the unidirectional LSTMs, while using LSTMs with 32

dimensional states for the forward and backward components of the bidirectional LSTM.

Additionally we perform ablations with the feature streams to analyze the importance of

gaze, hand, pose and foot features for estimating the driver’s ORI.

6.6.2 Results

Table 6.3 shows the MAE values for the three models compared, trained using one

or more feature streams. We note that the LSTM models achieve a significantly lower

138

MAE than the frame-wise baseline for most combinations of feature streams, showing that

modeling temporal context is useful for estimating the ORI. We also note that key-frame

weighting consistently leads to lower errors for different features, compared to the vanilla

LSTM, with the Bi-LSTM outperforming the uni-directional LSTM. The top four rows of

Table 6.3 shows the MAE values for models trained on a single feature stream of gaze,

hand, pose or foot features. All models achieve an MAE of within 1 point of the average

rating assigned by the human raters on the 5 point scale. This shows that each feature

stream has useful cues for estimating ORI. Comparing the features, we see that the hand

features seem to have the most useful cues for estimating ORI, closely followed by the gaze

features. The last three rows of the table show the MAE values achieved by combining the

feature streams. We note that combining the hand and gaze features significantly lowers

the MAE compared to single feature models. The pose and foot features lead to further

improvements, giving the lowest MAE value of 0.449.

6.6.3 Inference time

The results reported in section 6.6.2 were generated offline at the data capture rate

of 30 Hz. However, we report the inference times for all feature extractors and the LSTM

model here for completeness, since the proposed model would need to be deployed real

time in conditionally autonomous vehicles. Table 6.4 shows the average inference times

in ms for the components of our model, obtained using an Nvidia GTX 1080 Ti system.

We note that the camera based hand [186] and gaze analysis [178] models run faster than

the data capture rate. However, the rate determining step for gaze analysis is the face

detector [184] used for localizing the driver’s eyes, whereas the rate determining step for

hand analysis is the depth based CNN [139]. The LSTM model for estimating ORI is a

lightweight model with very little additional run time. Thus, the models could be deployed

at about 15 Hz, which is half the data capture rate.

139

Table 6.3. Mean absolute error (MAE) of predicted ORI values with respect to assigned
values

Features used Frame

SVM

Vanilla

LSTM

LSTM

keyframe wts

Bi-LSTM

keyframe wtsGaze Hand Pose Foot

✓ 0.779 0.621 0.578 0.581

✓ 0.639 0.571 0.573 0.572

✓ 0.836 0.855 0.831 0.823

✓ 0.986 1.018 1.043 1.001

✓ ✓ 0.611 0.470 0.463 0.457

✓ ✓ ✓ 0.602 0.468 0.463 0.456

✓ ✓ ✓ ✓ 0.699 0.467 0.456 0.449

Table 6.4. Average inference times for components of our model

Component Run time

Face detector 62 ms

Gaze analysis 6 ms

Hand analysis (Camera based) 25 ms

Hand analysis (Depth based) 55 ms

Pose analysis 45 ms

Foot analysis -

LSTM for estimating ORI 3 ms

140

Figure 6.9. Effect of key-frame weighting model: Three example clips with ground
truth ORI (top), ORI predicted by vanilla LSTM (bottom), ORI predicted with key-frame
weighting (middle). Key-frame weighting allows the model to focus on the most relevant
frames in the sequence and generate a smoother, more reliable rating, compared to the
noisier, more reactive vanilla LSTM.

6.7 Qualitative analysis

6.7.1 Effect of key-frame weighting model

We qualitatively analyze the ratings produced by a vanilla LSTM and our proposed

model. Figure 6.9 shows ratings for three example clips. The top row (blue) shows the

ground truth ratings, provided by the raters. The middle row (red) shows ratings predicted

by the model with key-frame weighting. The bottom row (green) shows ratings predicted

by a vanilla LSTM model. We observe that while both models manage to predict the trend

of the ground truth ratings, the vanilla LSTM produces a noisy estimate, rapidly varying

in short intervals. On the other hand the model with key-frame weighting produces a much

smoother rating. This can be explained by the sparsity of key-frames in the sequence.

Since the model primarily relies on a subset of the most important sections of the sequence

to assign an ORI rating, it leads to a smoother, more reliable output throughout the

sequence compared to the vanilla LSTM, which is more reactive.

141

Figure 6.10. Importance of gaze and hand cues: This figure shows two example
clips with ratings predicted based purely on gaze cues, hand cues and all features combined.
The first example shows a case where the gaze features fail to correctly predict the ORI,
where the hand features can be used to correct the error. The second example shows a
failure case of hand features, that could be corrected based on the gaze features. The
model trained on the combined feature streams correctly predicts the ground truth rating
for both cases.

142

6.7.2 Effect of feature streams

We also compare the ratings generated by models trained purely using the gaze

or hand features, with those generated by the combined feature stream model to analyze

the importance of each cue for estimating the ORI. Figure 6.10 shows the ratings for two

example clips. The top row (blue) shows the ground truth ratings, provided by the raters.

The second (yellow) and third (green) rows show ratings predicted based purely on gaze

and hand features respectively. Finally, the bottom row (red) shows the ratings predicted

by the model trained using all feature streams. Additionally, we also show snapshots from

the pose camera at different instants to provide context.

The first example shows the driver drinking water from a bottle. For the interval

from 0-20 seconds in the clip, the driver has the bottle in their hand. However, they have

their eyes on the road. We note that the gaze model overestimates the ORI value for this

interval, while the hand model underestimate the ORI. The rating from the combined

model closely matches the ground truth value. At 22 seconds, the driver has a bottle in

their hand while looking away from the road to put it away. All models assign a low value

for this instant. At 26 seconds, the driver is attentive, with their hands close to the wheel.

All models correctly assign a high rating at this instant.

The second example shows the driver viewing the screen of a hand held device, and

later viewing the screen of the infotainment unit. We see that both events correspond to

dips in the ORI ratings assigned by the raters. We observe that the hand model correctly

assigns a low rating for the first case, due to the presence of a hand held device. However,

it fails to capture the dip in ORI due to the driver glancing at the infotainment unit. The

gaze and combined models, on the other hand correctly predict both dips in the ORI value.

143

6.8 Conclusions

In this chapter, we proposed an approach to characterize the observable take-over

readiness of drivers in autonomous vehicles, and a machine learning model to estimate it.

We collected subjective ratings for driver take-over readiness from observers viewing

the sensor feed. Analysis of the assigned ratings in terms of intra-class correlation

coefficients showed high consistency in the ratings assigned by the raters, suggesting that

human raters agree upon an observable measure for the driver’s take-over readiness. We

normalized the ratings for rater bias and averaged across raters to extract this measure,

which we termed the observable readiness index (ORI).

We presented a model for estimating the ORI, based on CNNs for extracting

frame-wise representations of the driver’s gaze, hand , pose and foot activity and an LSTM

for learning their temporal dependencies. Our best model achieved an MAE of 0.449 on

the five point rating scale, showing that the ORI can be reliably estimated. Ablation

of feature streams showed the usefulness of hand, gaze, pose and foot activity analysis

for estimating the ORI. Finally, we proposed a modification to vanilla LSTMs, to allow

for detecting key-frames in the input sequence most predictive of the driver’s take-over

readiness. Our experiments showed that this leads to lower MAE of the predicted ORI,

and leads to a smoother, more reliable prediction.

Acknowledgements

Chapter 6, in full, is a reprint of the material as it appears in: ”Looking at the

driver/rider in autonomous vehicles to predict take-over readiness,” Nachiket Deo and

Mohan M. Trivedi, IEEE Transactions on Intelligent Vehicles 2019. The dissertation

author was the primary investigator and author of this paper.

144

Chapter 7

Predicting Take-over Time for
Autonomous Driving with Real-
World Data

7.1 Introduction

In this chapter, we address take-over time (TOT), defined as the interval of

time between a take-over request (TOR) and the human driver assuming control. More

specifically, we define the assumption of control as the completion of three behaviors:

1. Hands-on-wheel: hand(s) return to the vehicle’s steering control.

2. Foot-on-pedal: foot returns (from floorboard or hovering) to make contact with

any driving pedal.

3. Eyes-on-road: gaze is directed forward, toward the active driving scene.

We work with the assumption that these three cues are necessary to consider the driver

both attentive to the scene and in control of the vehicle. We do note that the three cues may

not be sufficient to consider the driver attentive and in control. This would additionally

depend on factors such as the driver’s situational awareness and the corrective or stabilizing

maneuver performed post TOR. We limit the scope of this chapter to predicting the time

taken for the above three cues, as a first step towards analysis of control transitions using

145

Figure 7.1. Role of take-over time (TOT) prediction: We propose a model for
predicting TOT during control transitions based on driver behavior. The proposed model
can be used in conjunction with time-to-collision estimation to determine whether to issue
a take-over request and transfer control to the human, or to deploy active safety measures
for collision avoidance.

146

real-world autonomous driving data. Analysis of situational awareness and corrective

maneuvers will be addressed in future work.

As depicted in Fig. 7.1, the transition of control from an autonomous agent to

the human driver should be a function of both the surrounding scene and the state of

the driver. The surrounding scene can be concisely expressed using a metric such as

time-to-collision (TTC), whereas the state of the driver can be captured by the predicted

TOT. Combined, this forms a criterion for safe control transitions:

TOT + ε < TTC, (7.1)

where ε is a marginal allowance that represents the time it takes for the human driver to

gain situational awareness and perform a corrective maneuver. A system that takes the

state of the driver into account can decide between handing over control if the driver is

ready, versus coming to a safe and smooth halt if not. While there are many approaches to

accurately estimate TTC, TOT prediction (especially in the real world) remains unexplored.

7.1.1 Contributions

In this chapter, we present a long short-term memory (LSTM) model for predicting

TOT based on driver behavior prior to the TOR. We train and evaluate our model

using a real world dataset of control transitions captured using a commercially available

conditionally autonomous vehicle. Our contributions are as follows:

1. TOT prediction with limited real-world data: Capturing real-world takeover

events in autonomous vehicles is expensive and time-consuming. Thus generating a

large enough dataset for training machine learning models can be a challenge. To

address this, we propose a data-augmentation scheme to increase the number of

training samples by an order of magnitude. Additionally we use transfer learning, and

pre-train our TOT prediction models to estimate the driver’s observable take-over

147

readiness index (ORI) [39].

2. Multimodal TOT prediction: There is inherent uncertainty in predicting the

future. The driver could perform multiple plausible sequences of actions after the

issued TOR. To model this, we extend the model proposed in [133] to output a

multimodal distribution over TOT.

3. Extensive evaluation: We present a more extensive set of ablation experiments,

particularly focused on the above two contributions. We also present additional

qualitative analysis of TOT estimates beyond [133].

7.2 Related Research

7.2.1 Vision based driver behavior analysis

A large body of literature has addressed driver behavior analysis using in-cabin

vision sensors. The most commonly addressed task is driver gaze estimation [51, 52, 74, 91,

114,115,143,164,166,173,177,178], since the driver’s gaze closely relates to their attention to

driving and non-driving tasks. Early works relied on head pose estimation [91,114,165,166]

or a combination of head and eye features [46,51,52,164,173] for estimating the driver’s

gaze. More recent work [74,115,143,177,178] uses convolutional neural networks (CNNs)

to directly map regions around the driver’s eyes to gaze zones. In this work, we use the

CNN model proposed by Vora et al. [178] driver gaze analysis.

Driver hand and foot activity has also been the subject of prior work, being useful

cues to gauge the driver’s motor readiness. Several approaches have been proposed for

detection, tracking and gesture analysis of the driver’s hands [18,33,34,112,122–124,136]

using in vehicle cameras and depth sensors. Recently proposed CNN models [139, 186]

accurately localize the driver’s hands in image co-ordinates and in 3-D respectively, and

further classify hand-activity and held objects. We build upon the model proposed by

Yuen et al. [186] in this work, for driver hand analysis. Relatively few works have addressed

148

the driver’s foot activity [138,168,169]. However, we believe this is a significant cue for

TOT estimation, especially since we estimate the foot-on-pedal time after the TOR. We

use the model proposed by Rangesh et al. [137] for driver foot activity analysis.

There has also been significant research that builds upon cues from driver gaze, hand

and foot analysis for driver activity recognition [10,19,120,151,152], driver intent or behavior

prediction [44,47,72,73,107,121,160] and driver distraction detection [11,94,96,97,99,181].

Of particular interest is recent work [39], where the authors map driver gaze, hand and foot

activity to the driver’s observable take-over readiness index (ORI) obtained via subjective

ratings assigned by multiple human observers. We use ORI estimation as a transfer

learning task for pre-training our TOT prediction model.

7.2.2 Take-over time analysis in autonomous driving

Take-over time in partial and conditionally autonomous vehicles has been the

subject of several recent studies [29,42,50,54,55,70,86,111,116,128,132]. The primary

focus of these studies has been to analyze the effect of various human and environmental

factors on take-over time and quality. The independent variables analyzed for their effect

on TOT are as follows:

TOT budget (or time to collision): This corresponds to the time window between

the TOR and the imminent collision or system boundary. Gold et al. [54] compare TOT

and take-over quality for two different TOT budgets of 5s and 7s. They report longer

TOTs for the 7s budget but better take-over quality. Mok et al. [111] report a similar

finding while comparing TOT budgets of 2s, 5s, and 8s, with the 2s case corresponding to

significantly worse take-over quality and collision rates.

Traffic density: Radlmayr et al. [132] and Gold et al. [55] analyze the effect of traffic

density on TOT and take-over quality, with both studies reporting longer TOTs and worse

take-over quality in situations involving high traffic density.

149

Driver age: Korber et al. [86] and Clark and Feng [29] analyze the effect of driver age on

TOT by comparing a group of young drivers with a group of old drivers. Korber et al. [86]

report similar TOTs, but different modus operandi – older drivers brake harder and more

often leading to higher TTC. Clark and Feng [29] report lower TOTs for the young group

for a TOT budget of 4.5s, and lower TOTs for the old group for a 7.5s TOT budget.

TOR modality: Petermeijer et al. [128] and Huang et al. [70] compare different modalities

for issuing the TOR. Auditory and tactile TORs are considered in [128] while auditory,

tactile and visual TORs and their combinations are considered in [70]. Both studies report

the lowest TOTs for multimodal TORs. Dogan et al. [42] analyze the effect of providing

the driver anticipatory information about the vehicle and traffic state prior to the TOR,

but report similar TOTs with and without the anticipatory information.

Non-driving-related tasks (NDRTs): Several prior works [42, 50, 116, 132] have

consistently reported worse take-over times or take-over quality when the driver is engaged

in a NDRT prior to the take-over, whether the NDRT places visual, cognitive or motor-

control based demand on the driver. In this chapter, we thus primarily focus on the effect

of driver behavior and NDRTs on TOT. In particular, we map the observed NDRTs to

feature descriptors of driver gaze, hand and foot activity using vision based models for

driver behavior analysis and predict TOT based on these feature descriptors.

7.2.3 Take-over time prediction for autonomous driving

While the studies described in the previous section analyze take-over times under

various experimental conditions, closest to our work are recently proposed machine learning

models [12, 20,48,71,100,126] that predict TOT prior to the control transition.

Braunagel et al. [20] and Du et al. [48] propose binary classifiers that output

whether or not the driver is ready to take-over. Gaze activity, NDRT label and a label

for situation complexity are used as input features in [20], while gaze activity, heart rate

variability, galvanic skin response, traffic density and TOT budget are used as inputs

150

in [48]. Pakdamanian et al. [126] propose a three class classifier over TOT intervals based

on driver gaze activity, heart rate variability, galvanic skin response, NDRT label and

vehicle signals. Lotz and Weissenberger [100] compare various classifiers over 4 TOT

intervals trained using features capturing driver’s head orientation and gaze activity, along

with TTC. Hwang et al. [71] propose a regression model based on hidden Markov models

that outputs TOT based on vehicle signals prior to the TOR. Finally, Berghofer et al. [12]

propose a regression model for TOT prediction based on driver gaze activity and driver

characteristics such as age, gender, sleepiness, attitude towards highly automated driving

and previous experiences with automated driving.

Our work differs from previously proposed TOT prediction models on two counts.

First, we use fine-grained descriptors of driver gaze, hand and foot activity obtained purely

using non-intrusive vision sensors as inputs to our TOT prediction model. Second, we

train and evaluate our models using a large real-world dataset of take-overs captured in

a conditionally autonomous vehicle. Prior work on TOT prediction has been limited to

the simulator setting [20, 48, 71, 100, 126]. Berghofer et al. [12] do use a real world dataset.

However, they use a ’Wizard of Oz’ setting where a safety driver with access to vehicle

controls plays the role of the autonomous vehicle.

7.3 Dataset & Labels

7.3.1 Controlled Data Study (CDS)

To capture a diverse set of real-world take-overs, we conduct a large-scale study

under controlled conditions. More specifically, we enlist a representative population of

89 subjects to drive a Tesla Model S testbed mounted with three driver-facing cameras

that capture the gaze, hand, and foot activity of the driver. In this controlled data study

(CDS), we required each subject to drive the testbed for approximately an hour in a

pre-determined section of the roadway, under controlled traffic conditions. During the

151

drive, each test subject is asked to undertake a variety of distracting secondary activities

while the autopilot is engaged, following which an auditory take-over request (TOR) is

issued at random intervals. This initiates the control transition during which the driver

is instructed to take control of the vehicle and resume the drive. Each such transition

corresponds to one take-over event, and our CDS produces 1,375 take-over events in total.

7.3.2 Annotation

Automated video segmentation: Each driving session is first segmented into 30 second

windows surrounding known take-over events, consisting of 20 seconds prior to the take-over

request (TOR) and 10 seconds after the take-over event.

Event annotations: For each 30 second clip corresponding to a take-over event, we

manually annotate the three times after the take-over request corresponding to when

the driver’s eyes are on the road, hands are on the wheel, and foot is on the pedal. We

also label the secondary activity being performed by the driver during each take-over

event, assigning one of 8 possible activity labels: (1) No secondary activity, (2) talking to

co-passenger, (3) eyes closed, (4) texting, (5) phone call, (6) using infotainment unit, (7)

counting change, (8) reading a book or magazine.

TOT statistics by secondary activity: Figure 7.2 shows the average times correspond-

ing to eyes on road, hands on wheel and foot on pedal for each of the 8 secondary activities.

It also shows the overall take-over time, which is the maximum of the three markers for

each event. We note that texting, phone-calls, counting change and reading correspond

to longer average take-over times, as compared to talking to the co-passenger or using

the infotainment unit, which can be reasonably expected. Counter to intuition, the ‘eyes

closed behind the wheel’ activity has low take-over times. This is mainly because the

drivers are merely ‘acting’ to be asleep, since actual sleep could not have been achieved

given the duration and nature of each trial. We also note that the ‘hands on wheel’ event

152

Figure 7.2. Take-over time statistics from the CDS: We plot the mean values (with
error bars) of the different take-over related event timings for each secondary activity.

seems to take much longer on average, as compared to eyes on road or foot on pedal. This

reinforces the need for driver hand analysis, which is also a key predictor of the driver’s

observable readiness index (see next section). Finally, we note that for the more distracting

secondary activities (reading, texting, phone calls, counting change), even the foot on

pedal times are longer compared to the other secondary activities, although the secondary

activities do not involve the driver’s feet. Thus, there seems to be a delay corresponding

to the driver shifting attention from secondary activity to the primary activity of driving.

7.3.3 Data Augmentation

Takeover time data is very limited and expensive to capture and label. This is

illustrated by the size of the CDS dataset (1,375 unique takeover events). We propose a

new data augmentation scheme to increase the number of samples in the dataset by an

order of magnitude in order to train our LSTM based TOT prediction models.

153

Figure 7.3. TOT dataset augmentation scheme: We increase the number of samples
in our TOT prediction dataset by an order of magnitude by considering augmented TORs
between the actual TOR and the first of the three takeover completion cues.

154

Figure 7.3 illustrates our data augmentation scheme. We term each take-over

event in the CDS dataset a raw sample. Each raw sample has annotated timestamps

corresponding to the take-over request (ttor), as well as the time taken by the driver to get

their eyes on the road (teyes), hands on the wheel (thands) and foot on the pedals (tfoot)

after the TOR. We wish to learn a model that maps a 2 second window of driver activity

prior to the TOR to the take-over times, {teyes, thands, tfoot}.

The raw samples alone are insufficient to train a machine learning model from scratch.

We thus mine augmented training samples from each takeover event. An augmented training

sample is characterized by an augmented TOR at time toff after the actual ttor. We use a

2 second window of driver activity before the augmented TOR as the input to the model

while the corresponding takeover times are given by {teyes− toff , thands− toff , tfoot− toff}.

If the driver’s hands, eyes, or foot are already in position at ttor + toff , the corresponding

takeover time is set to 0.

An augmented training sample maps the driver’s state at an intermediate timestamp

during the takeover event, to their reaction times from that timestamp. While this doesn’t

correspond to an actual TOR, it still serves as useful data for training our TOT prediction

model as we show in Section 7.5. Intuitively, the driver can be expected to be less and less

distracted by a non-driving activity as toff is increased, leading to shorter takeover times.

Thus the augmented samples provide additional instances where the driver is increasingly

prepared to takeover control from the vehicle.

We capture data at a frame rate of 30 Hz. Thus, toff can be varied from 0 to

the maximum of {teyes, thands, tfoot} using increments of 1/30 seconds to yield multiple

augmented samples per takeover event. With the proposed augmentation scheme, we get

datasets vastly larger in size, as depicted in Table 7.1. The augmentation scheme is only

applied to the training split. The validation and test splits are left untouched.

155

Table 7.1. Sizes of different takeover time prediction datasets.

Dataset Number of samples

Raw dataset: CDS (R) 1,375

Augmented dataset: CDS (A) 47,461

7.4 Models for Predicting Takeover Times

It is important to preserve both the diverse and sequential nature of all features

related to driver behavior while designing a holistic take-over time (TOT) prediction

framework. High level tasks such as TOT prediction are influenced by low level driver

behaviors. Figure 7.4 provides an overview of our proposed approach for estimating

TOT. Our approach consists of two major components. The first component is a set of

convolutional neural networks (CNNs) for extracting frame-wise descriptors of driver gaze,

hand and foot activity from the raw camera feed. We describe these is greater detail in

section 7.4.1. The second component is an LSTM model for estimating TOT based on a

sequence of frame-wise features over a pre-defined time window. We describe the different

variants of our LSTM based models in section 7.4.2.

7.4.1 Frame-wise feature extraction

Gaze activity: We use the model proposed by Vora et al. [177] for driver gaze analysis.

The inputs to the model are frames from the face camera. We use a face detector [184] for

localizing the driver’s eyes. A cropped bounding box around the driver’s eyes is passed

through a CNN, which outputs the driver’s gaze zone. We consider 8 gaze zones: {forward,

left mirror, lap, speedometer, infotainment unit, rear-view mirror, right mirror, over the

shoulder}. The CNN outputs frame-wise probabilities for each gaze zone. We use this 8

dimensional vector to represent driver’s gaze features.

Hand activity: We use the model proposed by Yuen and Trivedi [185] for driver hand

analysis. The model localizes the elbow and wrist joints of the driver using part affinity

156

Figure 7.4. Overview of the proposed approach: We extract frame-wise descriptors
of driver gaze, hand and foot activity. We propose an LSTM model for predicting TOT
based on a sequence of the extracted features over a 2 second window.

fields [23]. A cropped bounding box around the driver’s wrist is passed through a CNN

to output probabilities corresponding to 6 hand activities for each hand: {on lap, in air,

hovering over steering wheel, on steering wheel, on cupholder, interacting with infotainment

unit}. We extend the model to additionally output hand-held object probabilities. We

consider 7 object categories: {no-object, phone, tablet, food, beverage, book, other}. By

running the models on images from a stereo camera pair, we also obtain 3-d coordinates for

the driver’s wrist locations and the steering wheel using triangulation. We then calculate

the distance of each hand (wrist) of the driver to the steering wheel in 3-d. The hand

activity probabilities, hand object probabilities and 3-d distance to steering wheel together

form the hand activity features for each frame.

Foot activity: We use the model proposed by Rangesh and Trivedi [137] for driver

foot analysis. Each frame from the foot camera feed is passed through a CNN to output

probabilities over 5 foot activity classes: {away from pedal, on brake, on gas, hovering

over brake, hovering over gas}. These probabilities represent the foot activity features.

157

Figure 7.5. LSTMs: Baseline LSTM model architecture.

7.4.2 LSTM models for take-over time prediction

Baseline LSTM: This is the simplest (baseline) version of all TOT models. The input

features are first transformed using a fully-connected (FC) layer of size 16 (plus non-

linearity), which is then fed to an LSTM with a hidden state of size 32 at each timestep

as shown in figure 7.5. The LSTM layer receives the transformed input features at each

timestep and updates its internal representation known as the hidden state. In all our

experiments, we choose a 2 second window of features as input to our models. After

2 seconds worth of inputs and updates, the hidden state of the LSTM after the latest

timestep is passed through an output transformation (FC layer plus non-linearity) to

158

predict the three times of interest.

We apply a simple L1 loss to train this network. Let oe, of , and oh be the outputs

produced by the model. Assuming te, tf , and th are the target eyes on road time, foot on

pedal time, and hands on wheel time respectively, the total loss is:

L =
1

N

N∑
i=1

|tie − oie|+
1

N

N∑
i=1

|tif − oif |+
1

N

N∑
i=1

|tih − oih|. (7.2)

The entire model is trained using an Adam optimizer with a learning rate of 0.001

for 10 epochs.

Independent LSTMs: Figure 7.6 shows the independent LSTM model architecture.

This model is the same as the baseline LSTM model, except for one major difference:

each target output time has its own independent LSTM. The reasoning behind this is

to accommodate different hidden state update rates for different driver behaviors, for

example – eyes on road behavior is generally faster (short term) than hands on wheel

behavior (mid/long term). Having multiple independent LSTMs allows each one to update

at different rates, thereby capturing short/mid/long term behaviours separately.

Although each branch has its own LSTM cell, the input and output transformations

are still shared between the three LSTMs as the feature inputs to the three branches are

the same. This tends to reduce overfitting based on our experiments.

We use the identical loss (eq. 7.2) and optimizer settings as the baseline LSTM for

training the independent LSTMs model.

LSTM with Multi-modal Outputs: This model shown in figure 7.7 is largely based

on the baseline LSTM with one addition: multi-modal outputs. Instead of just producing

one output for each of the three targets, we output K(= 3) outputs per target and

their associated probabilities. We do this to model the inherent multi-modality and

subjectiveness of takeover times. For example, given similar history of behavior, one driver

may respond faster in taking control of the vehicle than another. Producing multiple

159

Figure 7.6. ID LSTMs: Independent LSTMs model architecture.

160

Figure 7.7. LSTMs + MM: LSTM with multi-modal outputs model architecture.

161

Figure 7.8. ID LSTMs + MM: Independent LSTMs with multi-modal outputs model
architecture.

162

probable outputs (and their probabilities) could possibly address this ambiguity and

provide more usable information to any downstream controller.

Unlike the previous models, this model is trained using a minimum of K loss,

where L1 losses are only applied to the output modes closest to the ground truth target.

Additionally, the output probabilities are refined using cross-entropy. Let oe(k), of(k),

oh(k) and q(k) denote the kth set of outputs and corresponding probability produced by

the model. Assuming te, tf , and th are the target eyes on road time, foot on pedal time,

and hands on wheel time respectively, the total loss is:

L =
1

N

N∑
i=1

min
k

(
|tie−oie(k)|+|tif−oif (k)|+|tih−oih(k)|

)
−λ 1

N

N∑
i=1

K∑
k=1

pi(k) log(qi(k)), (7.3)

where pi(k) is a one-hot categorical probability distribution given by

pi(k) = 1

(
arg minl

(
|tie − oie(l)|+ |tif − oif (l)|+ |tih − oih(l)|

)
= k

)
, (7.4)

and λ is a coefficient used for relatively weighting the L1 and cross-entropy losses.

As before, the entire model is trained using an Adam optimizer with a learning

rate of 0.001 for 10 epochs. We use λ = 1 for simplicity.

Independent LSTMs with Multi-modal Outputs: The final proposed model uses

a combination of independent LSTMs and multi-modal outputs described before. One

difference to the original independent LSTMs model is that we now concatenate the hidden

states of all three LSTMs and transform them together to produce the target outputs. This

is done because probabilities are assigned to the joint of all three target times, and thus

need to be operated on together. We use the identical loss (equation 7.3) and optimizer

settings as the LSTM with multi-modal outputs for training the independent LSTMs with

163

multi-modal outputs.

7.5 Experimental Evaluation

7.5.1 Comparison of LSTM models for TOT prediction

First, we conduct an experiment to assess the effects of different model architectures.

All proposed models (from Section 7.4.2) were trained on CDS train set with augmented

data, and then evaluated on the validation set. We use individual and overall mean

absolute errors (MAEs) as metrics for comparison. Table 7.2 contains results from this

experiment. In addition to the LSTM models, as a sanity check, we include a simple

baseline that always predicts a constant value for all take-over time markers, corresponding

to the maximum value for each marker from the train set. From these results, we note

that all LSTM models considerably outperform the constant value baseline showing that

there is a learnable signal in the data and the usefulness of using a machine learning

model. We observe that the independent LSTMs model consistently outperforms other

models. At first glance, the multi-modal models tend to perform worse than the ones

without multi-modal outputs. To further analyze the source of these errors, we provide

the best-of-K MAEs for these models in Table 7.2. The best-of-K MAEs simply mean

that instead of choosing the most probable set of predictions for error calculation, we

use the set that produces the least error i.e. assume perfect classification. The best-of-K

numbers are vastly superior to the ones without multi-modal outputs. This indicates that

in most cases, at least one of K(= 3) sets of predictions is highly accurate. However,

accurate probability assignment for these K modes (i.e. classification) remains error-prone.

Nevertheless, we believe that having multiple probable outputs instead of one less accurate

one could be beneficial for downstream controllers.

164

T
a
b
le

7
.2
.

T
O

T
p

re
d

ic
ti

on
er

ro
rs

fo
r

th
e

C
D

S
va

li
d

at
io

n
se

t
co

m
p

ar
in

g
m

o
d

el
ar

ch
it

ec
tu

re
s.

M
o
d

el

ty
p

e
(s

)

O
ve

ra
ll

M
A

E
(s

)

E
ye

s
on

ro
ad

M
A

E
(s

)

F
o
ot

on
p

ed
al

M
A

E
(s

)

H
an

d
s

on
w

h
ee

l

M
A

E
(s

)

T
ak

eo
ve

r
ti

m
e

M
A

E
(s

)

C
on

st
an

t
p

re
d

ic
ti

on
(M

ax
ov

er
tr

ai
n

se
t

st
at

s)
3.

92
71

2.
45

40
2.

98
80

6.
33

92
6.

19
69

L
S

T
M

1
0.

51
04

0.
33

53
0.

50
29

0.
71

26
0.

80
98

ID
L

S
T

M
s2

0
.5
0
7
3

0
.3
2
6
6

0
.4
8
4
1

0
.7
1
1
3

0
.7
9
1
2

L
S

T
M

+
M

M
3

0.
55

89
0.

35
82

0.
52

62
0.

79
21

0.
89

08

ID
L

S
T

M
s

+
M

M
0.

53
19

0.
34

15
0.

50
19

0.
75

24
0.

84
41

L
S

T
M

+
M

M
(b

es
t

of
K

)
0.

39
21

0.
23

93
0.

42
04

0.
51

67
0.

62
65

ID
L

S
T

M
s

+
M

M
(b

es
t

of
K

)
0.

39
11

0.
23

44
0.

38
75

0.
55

13
0.

65
86

1
b

as
el

in
e

L
S

T
M

m
o
d

el
2

In
d

ep
en

d
en

t
L

S
T

M
s

3
M

u
lt

i-
m

o
d

al
ou

tp
u

ts
(w

it
h
K

=
3

m
o
d

es
)

T
a
b
le

7
.3
.

E
ff

ec
t

of
d

at
a

au
gm

en
ta

ti
on

an
d

O
R

I
p

re
tr

ai
n

in
g

T
ra

in
in

g

d
at

as
et

(s
)

O
ve

ra
ll

M
A

E
(s

)

E
ye

s
on

ro
ad

M
A

E
(s

)

F
o
ot

on
p

ed
al

M
A

E
(s

)

H
an

d
s

on
w

h
ee

l

M
A

E
(s

)

T
ak

eo
ve

r
ti

m
e

M
A

E
(s

)

C
D

S
(R

)1
0.

57
99

0.
36

76
0.

54
35

0.
82

85
0.

85
76

C
D

S
(A

)2
0
.5
0
7
3

0.
32

66
0.

48
41

0.
71

13
0.

79
12

O
R

I3
→

C
D

S
(A

)
(F

ig
.

7.
9)

0.
51

84
0
.3
2
4
6

0.
51

82
0
.7
0
5
4

0
.7
7
2
9

1
ra

w
d

at
as

et
2

au
gm

en
te

d
d

at
as

et
3

O
R

I
es

ti
m

at
io

n
d

at
as

et

165

7.5.2 Effect of data augmentation and transfer learning

Next, we conduct experiments to assess the effects of our data augmentation and

transfer learning schemes. To isolate these effects, we use the same ID LSTMs model for

all experiments. We compare the following training schemes:

• CDS (R): First, as a baseline, we train a model purely using the raw CDS data

without augmentation.

• CDS (A): Next, we train a model using the augmented training dataset using the

augmentation scheme described in section 7.3.3. The number of training samples for

the raw and augmented datasets are shown in table 7.1

• ORI → CDS (A): Finally, we consider a model pre-trained to estimate the

observable take-over readiness index (ORI) proposed in [39]. The ground truth ORI

values are obtained via subjective ratings assigned by multiple human observers

rating how ready a driver is to take-over control from the vehicle based on the past

two seconds of video feed from the driver facing cameras. The ratings are normalized

and averaged to account for rater bias as described in [39]. The process for transfer

learning from ORI estimation to TOT prediction is shown in Fig 7.9.

Results from these experiments are presented in Table 7.3. As before, we use

individual and overall mean absolute errors (MAEs) as metrics for comparison. From

Table 7.3, we notice that training on the augmented dataset (as proposed in Section 7.3.3)

consistently and considerably improves performance as compared to the raw dataset. We

believe that doing so prevents overfitting, provides regularization, smooths the outputs

of model, and adds new training samples that would be cumbersome or impossible to

capture. Finally, we observe that training the model for observable readiness index (ORI)

estimation [39], followed by transfer learning on TOT prediction improves some metrics.

166

Figure 7.9. ORI pretraining: We use a transfer learning approach to first train a
model for ORI estimation [39] (Step 1), and then refine the model’s weights on the target
TOT prediction task (Step 2).

This highlights the commonality between the two tasks - features from learning one task

can improve performance in the other.

7.5.3 Effect of hand, gaze and foot activity features

Finally, we conduct an experiment to assess the relative importance of different

input features and their combinations. To isolate effects from features, we train the same

ID LSTMs model with different input feature combinations. We use individual and overall

mean absolute errors (MAEs) as metrics for comparison. Table 7.4 contains results from

this experiment. We notice that hand features are the most important, followed by foot and

gaze features respectively. This might be because gaze dynamics are relatively predictable

during takeovers as the first thing drivers tend to do is look at the road to assess the

167

Table 7.4. TOT prediction errors for different times of interest on the CDS validation set for a
variety of feature combinations.

Features

F1 G2 H3 S4 O5

Overall

MAE (s)

Eyes on road

MAE (s)

Foot on pedal

MAE (s)

Hands on wheel

MAE (s)

Takeover time

MAE (s)

✓ 0.5735 0.3587 0.5018 0.8599 0.8856

✓ 0.5811 0.3332 0.5690 0.8411 0.8837

✓ 0.5560 0.3729 0.5384 0.7565 0.9012

✓ ✓ 0.5420 0.3783 0.5109 0.7369 0.8315

✓ ✓ 0.5217 0.3702 0.4973 0.7177 0.8621

✓ ✓ ✓ 0.5182 0.3747 0.4857 0.7141 0.7983

✓ ✓ ✓ 0.5202 0.3244 0.5220 0.7163 0.7920

✓ ✓ ✓ ✓ 0.5213 0.3299 0.5124 0.7215 0.7921

✓ ✓ ✓ ✓ 0.5384 0.3222 0.5059 0.7870 0.8475

✓ ✓ ✓ ✓ 0.5088 0.3277 0.5074 0.7144 0.7918

✓ ✓ ✓ ✓ ✓ 0.5073 0.3266 0.4841 0.7113 0.7912

1 foot features: probabilities for all 5 foot activities, namely - away from pedal, on break, on
gas, hovering over break, and hovering over gas
2 gaze features: probabilities for all 8 gaze zones, namely - front, speedometer, rearview, left
mirror, right mirror, over the shoulder, infotainment, and eyes closed/looking down
3 hand features: probabilities for all 6 hand activities (left and right hand), namely - on lap, in
air, hovering over steering wheel, on steering wheel, cupholder, and infotainment
4 stereo hand features: distance of left and right hand from the steering wheel
5 hand-object features: probabilities for all 7 hand object categories (left and right hand),
namely - no object, cellphone, tablet/iPad, food, beverage, reading, and others

situation, leading to less variance in eyes-on-road behavior. Next, we notice that adding

more informative hand feature like 3D distances to the steering wheel and hand-object

information improves the performance further. Hand-objects in particular seem to vastly

improve the performance in general. This makes sense as hand-objects are the strongest

cue related the secondary activities of drivers. Adding stereo hand features improves the

results, but not by much. Adding foot features also tends to reduce the errors considerably,

illustrating the importance of having a foot camera. In conclusion, one could get close to

peak performance by utilizing 3 cameras - 1 foot, 1 hand, and 1 face camera respectively.

Hand features are most informative, followed by foot and gaze features respectively.

168

T
a
b
le

7
.5
.

P
re

d
ic

ti
on

er
ro

rs
fo

r
d

iff
er

en
t

m
o
d

el
s

on
th

e
ta

ke
ov

er
ti

m
e

te
st

se
t.

M
o
d

el

ty
p

e
(s

)

O
ve

ra
ll

M
A

E
(s

)

E
ye

s
on

ro
ad

M
A

E
(s

)

F
o
ot

on
p

ed
al

M
A

E
(s

)

H
an

d
s

on
w

h
ee

l

M
A

E
(s

)

T
ak

eo
ve

r
ti

m
e

M
A

E
(s

)

C
on

st
an

t
p

re
d

ic
ti

on
(M

ax
ov

er
tr

ai
n

se
t

st
at

s)
4.

08
35

2.
67

90
3.

15
40

6.
41

75
6.

20
73

L
S

T
M

1
0.

52
42

0
.2
3
6
5

0.
50

07
0.

87
10

0.
94

57

ID
L

S
T

M
s2

0
.5
2
0
8

0.
24

97
0
.4
6
5
0

0
.8
0
5
5

0
.9
1
4
4

L
S

T
M

+
M

M
3

0.
53

39
0.

26
35

0.
52

65
0.

81
17

0.
93

07

ID
L

S
T

M
s

+
M

M
0.

55
26

0.
26

65
0.

51
80

0.
87

34
0.

94
18

ID
L

S
T

M
s

(7
5%

4)
0.

53
48

0.
25

57
0.

50
13

0.
84

74
0.

97
79

ID
L

S
T

M
s

(9
0%

5)
0.

52
82

0.
25

14
0.

48
51

0.
84

82
0.

94
24

1
b

as
el

in
e

L
S

T
M

m
o
d

el
2

In
d

ep
en

d
en

t
L

S
T

M
s

3
M

u
lt

i-
m

o
d

al
ou

tp
u

ts
(w

it
h
K

=
3

m
o
d

es
)

4
75

%
of

th
e

d
at

as
et

u
se

d
fo

r
tr

ai
n

in
g

5
90

%
of

th
e

d
at

as
et

u
se

d
fo

r
tr

ai
n

in
g

169

Figure 7.10. Qualitative examples: Predicted TOT for each of the 8 secondary
activities in the CDS dataset.

170

7.5.4 Quantitative results on test set

In this section, we present quantitative error metrics on the held out test set,

separate from the validation set, for all proposed models in Table 7.5. As before, we see

that ID LSTMs is the best performing model. We also notice that hands-on-wheel MAEs

are usually the largest due to large variance in hand behaviors, and large absolute values

associated with hands-on-wheel time. We also show results for ID LSTMs when trained on

75% and 90% of available training data. This helps us gauge the expected improvement in

performance as more training data is added. Based on Table 7.5, we can expect meager

improvements as more data is added. This indicates diminishing returns.

7.5.5 Qualitative examples

We also provide qualitative examples of predictions made by the ID-LSTMs model,

with the drivers performing each of the 8 secondary activities (Figure 7.10). Each example

shows the 5 camera views at the instant where the TOR is issued. The true values of

the 3 takeover times (eyes on road, hands on wheel, foot on pedal) are shown in the plot

as solid circular markers, while the corresponding predicted values are shown as hollow

circular markers of the same color. Finally, we show the ground truth takeover time as a

solid purple line and the predicted takeover time as a dashed purple line. We note that

the model accurately predicts short takeover times when the driver is attentive, talking

or operating the infotainment unit, and longer takeover times when the driver is texting,

making a phone call, counting coins or reading.

7.6 Conclusions

This chapter presented one of the largest real-world studies on takeover time

prediction and control transitions in general. We introduced a dataset of take-over events

captured via controlled driving studies in a commercially available partially autonomous

171

vehicle, with a large pool of test subjects performing a variety of secondary activities

prior to the control transition. We proposed a machine learning model for take-over time

prediction based on driver gaze, hand and foot activity prior to the issue of take-over

requests. We also proposed a data augmentation and transfer learning scheme for best

utilizing the limited number of take-over events in our dataset. Our experiments show

that our model can reliably predict takeover times for various secondary activities being

performed by the drivers. In particular, we showed the usefulness of analyzing driver hand,

foot and gaze activity prior to issuing the take-over request. We also showed the utility of

our transfer learning and data augmentation schemes for best utilizing limited training

data with control transitions. We believe that this study outlines the sensors, datasets,

methods and models that can benefit the intermediate stages of automation by accurately

assessing driver behavior, and predicting takeover times - both of which can be used to

smoothly transfer control between human and automation.

Acknowledgements

Chapter 7, in part, is based on ”Take-over Time Prediction for Autonomous Driving

in the Real-World: Robust Models, Data Augmentation, and Evaluation,” Akshay Rangesh,

Nachiket Deo, Ross Greer, Pujitha Gunaratne, Mohan M. Trivedi, currently submitted to

IEEE Transactions on Human Machine Systems. The dissertation author was one of the

primary investigators and authors of this paper.

172

Chapter 8

Conclusions

The goal of this dissertation was to equip autonomous vehicles with foresight – to

allow them to interact and cooperate with humans in and around them as well as human

driven vehicles that share the roads with them. We developed models for predicting

the behavior of surrounding pedestrians and vehicles to aid safe path planning. We also

developed models for predicting driver behavior during takeovers to ensure safe and smooth

control transitions. Concretely, we made the following contributions.

In chapters 2 and 3, we addressed vehicle motion prediction on multi-lane

highways. In chapter 2, we proposed a unified framework for maneuver recognition and

trajectory prediction. We showed that vehicle motion prediction on highways can be

simplified by breaking it down into two tasks, predicting discrete maneuvers and predicting

continuous trajectories conditioned on these maneuvers. We showed that maneuver

conditioned trajectory prediction better models rare but safety critical behaviors such as

overtakes and cut-ins. We also showed that jointly modeling the behavior of all vehicles in

the scene leads to better prediction that modeling each agent’s behavior independently.

In chapter 3, we improved upon the framework proposed in chapter 2, by proposing

differentiable and end-to-end trainable modules for encoding agent motion, modeling agent-

agent interaction, and predicting vehicle maneuvers and maneuver-conditioned trajectories.

Our key contributions were convolutional social pooling to robustly model agent-agent

173

interaction and maneuver based LSTM decoders for predicting multimodal trajectory

distributions over maneuver classes.

In chapters 4 and 5, we addressed the more complex task of predicting agent

trajectories in urban environments, where static scene elements play a major role in

regulating agent motion. In chapter 4, we leveraged a grid-based discrete policy to infer

goal and path preferences of agents in unknown scenes and proposed a trajectory generator

the outputs continuous trajectories conditioned on roll-outs of the policy. We showed that

conditioning predictions on our grid based policy led to a diverse set of scene-compliant

trajectories over long prediction horizons. In chapter 5, we improved upon our grid-based

policy by encoding the scene as a graph, defined over the lane network. We proposed a

model consisting of a discrete policy that explores the lane graph and a trajectory decoder

that predicts future trajectories conditioned on graph traversals sampled from the policy.

We showed that this led to more accurate predictions with a much lighter and faster model

than the one in chapter 4.

Finally, in chapters 6 and 7, we proposed models for predicting driver behavior

during control transitions. In chapter 6, we proposed a metric for driver takeover readiness

based purely on observable cues, using subjective ratings assigned by multiple human

observers. We also proposed an LSTM model for predicting the driver’s takeover readiness

based on gaze, hand and foot activity. Our analysis showed a high degree of consistency

in the ratings assigned by multiple human raters. Our analysis also showed the utility of

driver gaze, hand, pose and foot activity for predicting the driver’s takeover readiness. In

chapter 7, we went a step further and proposed a model to predict the reaction times of

the driver during takeovers based on their gaze, hand and foot activity using a real world

dataset of control transitions in an autonomous vehicle. We proposed a data augmentation

scheme and a transfer learning approach to address the limited training data with real

takeovers and showed the utility of both through our experiments.

174

Bibliography

[1] Automated driving at a new level: the audi ai traffic jam
pilot. https://www.audi-mediacenter.com/en/press-releases/
automated-driving-at-a-new-level-the-audi-ai-traffic-jam-pilot-9300. Accessed:
2018-10-31.

[2] Introducing navigate on autopilot. https://www.tesla.com/blog/
introducing-navigate-autopilot. Accessed: 2017-10-31.

[3] Alexandre Alahi, Kratarth Goel, Vignesh Ramanathan, Alexandre Robicquet, Li Fei-
Fei, and Silvio Savarese. Social lstm: Human trajectory prediction in crowded spaces.
In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pages 961–971, 2016.

[4] Samer Ammoun and Fawzi Nashashibi. Real time trajectory prediction for collision
risk estimation between vehicles. In International Conference on Intelligent Computer
Communication and Processing, pages 417–422. IEEE, 2009.

[5] Georges S Aoude, Brandon D Luders, Kenneth KH Lee, Daniel S Levine, and
Jonathan P How. Threat assessment design for driver assistance system at inter-
sections. In 13th international ieee conference on intelligent transportation systems,
pages 1855–1862. IEEE, 2010.

[6] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation
by jointly learning to align and translate. In 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings, 2015.

[7] Mohammad Bahram, Constantin Hubmann, Andreas Lawitzky, Michael Aeber-
hard, and Dirk Wollherr. A combined model-and learning-based framework for
interaction-aware maneuver prediction. IEEE Transactions on Intelligent Trans-
portation Systems, 17(6):1538–1550, 2016.

[8] Alexander Barth and Uwe Franke. Where will the oncoming vehicle be the next
second? In IEEE Intelligent Vehicles Symposium (IV), pages 1068–1073, 2008.

[9] Leonard E Baum, Ted Petrie, George Soules, and Norman Weiss. A maximization
technique occurring in the statistical analysis of probabilistic functions of markov
chains. The annals of mathematical statistics, 41(1):164–171, 1970.

175

https://www.audi-mediacenter.com/en/press-releases/automated-driving-at-a-new-level-the-audi-ai-traffic-jam-pilot-9300
https://www.audi-mediacenter.com/en/press-releases/automated-driving-at-a-new-level-the-audi-ai-traffic-jam-pilot-9300
https://www.tesla.com/blog/introducing-navigate-autopilot
https://www.tesla.com/blog/introducing-navigate-autopilot

[10] Ardhendu Behera, Alexander Keidel, and Bappaditya Debnath. Context-driven
multi-stream lstm (m-lstm) for recognizing fine-grained activity of drivers. In Pattern
Recognition, pages 298–314, 2019.

[11] Luis Miguel Bergasa, Jesús Nuevo, Miguel A Sotelo, Rafael Barea, and Maŕıa Elena
Lopez. Real-time system for monitoring driver vigilance. IEEE Transactions on
Intelligent Transportation Systems, 7(1):63–77, 2006.

[12] Frauke Berghöfer, Christian Purucker, Frederik Naujoks, Katharina Wiedemann,
and Claus Marberger. Prediction of take-over time demand in highly automated
driving. results of a naturalistic driving study prediction of take-over time demand
in conditionally automated driving-results of a real world driving study. Proceedings
of the Human Factors and Ergonomics Society Europe, 2019.

[13] Holger Berndt, Jorg Emmert, and Klaus Dietmayer. Continuous driver intention
recognition with hidden markov models. In IEEE International Conference on
Intelligent Transportation Systems (ITSC), pages 1189–1194, 2008.

[14] Apratim Bhattacharyya, Michael Hanselmann, Mario Fritz, Bernt Schiele, and
Christoph-Nikolas Straehle. Conditional flow variational autoencoders for structured
sequence prediction. arXiv preprint arXiv:1908.09008, 2019.

[15] Apratim Bhattacharyya, Bernt Schiele, and Mario Fritz. Accurate and diverse
sampling of sequences based on a “best of many” sample objective. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 8485–8493, 2018.

[16] Apratim Bhattacharyya, Christoph-Nikolas Straehle, Mario Fritz, and Bernt Schiele.
Haar wavelet based block autoregressive flows for trajectories. In DAGM German
Conference on Pattern Recognition, pages 275–288. Springer, 2020.

[17] Christopher M Bishop. Pattern recognition and machine learning, volume 4. Springer.

[18] Guido Borghi, Elia Frigieri, Roberto Vezzani, and Rita Cucchiara. Hands on the
wheel: a dataset for driver hand detection and tracking. In Automatic Face &
Gesture Recognition (FG 2018), 2018 13th IEEE International Conference on, pages
564–570. IEEE, 2018.

[19] Christian Braunagel, Enkelejda Kasneci, Wolfgang Stolzmann, and Wolfgang Rosen-
stiel. Driver-activity recognition in the context of conditionally autonomous driving.
In Intelligent Transportation Systems (ITSC), 2015 IEEE 18th International Con-
ference on, pages 1652–1657. IEEE, 2015.

[20] Christian Braunagel, Wolfgang Rosenstiel, and Enkelejda Kasneci. Ready for take-
over? a new driver assistance system for an automated classification of driver
take-over readiness. IEEE Intelligent Transportation Systems Magazine, 9(4):10–22,
2017.

176

[21] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice Erin Liong, Qiang
Xu, Anush Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A
multimodal dataset for autonomous driving. In IEEE/CVF conference on computer
vision and pattern recognition, pages 11621–11631, 2020.

[22] Zhe Cao, Gines Hidalgo, Tomas Simon, Shih-En Wei, and Yaser Sheikh. OpenPose:
realtime multi-person 2D pose estimation using Part Affinity Fields. In arXiv
preprint arXiv:1812.08008, 2018.

[23] Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh. Realtime multi-person 2d
pose estimation using part affinity fields. In CVPR, 2017.

[24] Sandra Carrasco, D Fernández Llorca, and MA Sotelo. Scout: Socially-consistent
and understandable graph attention network for trajectory prediction of vehicles
and vrus. In IEEE Intelligent Vehicles Symposium (IV), pages 1501–1508, 2021.

[25] Sergio Casas, Wenjie Luo, and Raquel Urtasun. Intentnet: Learning to predict
intention from raw sensor data. In Conference on Robot Learning (CoRL), pages
947–956, 2018.

[26] Yuning Chai, Benjamin Sapp, Mayank Bansal, and Dragomir Anguelov. Multipath:
Multiple probabilistic anchor trajectory hypotheses for behavior prediction. In
Conference on Robot Learning (CoRL), pages 86–99. PMLR, 2020.

[27] Ming-Fang Chang, John Lambert, Patsorn Sangkloy, Jagjeet Singh, Slawomir Bak,
Andrew Hartnett, De Wang, Peter Carr, Simon Lucey, Deva Ramanan, et al.
Argoverse: 3d tracking and forecasting with rich maps. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 8748–8757, 2019.

[28] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representa-
tions using rnn encoder-decoder for statistical machine translation. arXiv preprint
arXiv:1406.1078, 2014.

[29] Hallie Clark and Jing Feng. Age differences in the takeover of vehicle control and
engagement in non-driving-related activities in simulated driving with conditional
automation. Accident Analysis & Prevention, 106:468–479, 2017.

[30] James Colyar and John Halkias. Us highway 101 dataset. Federal Highway Adminis-
tration (FHWA), Tech. Rep. FHWA-HRT-07-030, 2007.

[31] James Colyar and John Halkias. Us highway i-80 dataset. Federal Highway Admin-
istration (FHWA), Tech. Rep. FHWA-HRT-07-030, 2007.

[32] Henggang Cui, Vladan Radosavljevic, Fang-Chieh Chou, Tsung-Han Lin, Thi Nguyen,
Tzu-Kuo Huang, Jeff Schneider, and Nemanja Djuric. Multimodal trajectory predic-
tions for autonomous driving using deep convolutional networks. In IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pages 2090–2096, 2019.

177

[33] Nikhil Das, Eshed Ohn-Bar, and Mohan M Trivedi. On performance evaluation of
driver hand detection algorithms: Challenges, dataset, and metrics. In Intelligent
Transportation Systems (ITSC), 2015 IEEE 18th International Conference on, pages
2953–2958. IEEE, 2015.

[34] Nachiket Deo, Akshay Rangesh, and Mohan Trivedi. In-vehicle hand gesture recog-
nition using hidden markov models. In Intelligent Transportation Systems (ITSC),
2016 IEEE 19th International Conference on, pages 2179–2184. IEEE, 2016.

[35] Nachiket Deo, Akshay Rangesh, and Mohan M Trivedi. How would surround vehicles
move? a unified framework for maneuver classification and motion prediction. IEEE
Transactions on Intelligent Vehicles, 3(2):129–140, 2018.

[36] Nachiket Deo and Mohan M Trivedi. Learning and predicting on-road pedestrian
behavior around vehicles. In IEEE International Conference on Intelligent Trans-
portation Systems (ITSC), pages 1–6, 2017.

[37] Nachiket Deo and Mohan M Trivedi. Convolutional social pooling for vehicle
trajectory prediction. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, pages 1468–1476, 2018.

[38] Nachiket Deo and Mohan M Trivedi. Multi-modal trajectory prediction of surround-
ing vehicles with maneuver based lstms. In IEEE Intelligent Vehicles Symposium
(IV), pages 1179–1184, 2018.

[39] Nachiket Deo and Mohan M Trivedi. Looking at the driver/rider in autonomous
vehicles to predict take-over readiness. IEEE Transactions on Intelligent Vehicles,
5(1):41–52, 2019.

[40] Nachiket Deo and Mohan M Trivedi. Trajectory forecasts in unknown environments
conditioned on grid-based plans. arXiv preprint arXiv:2001.00735, 2020.

[41] David F Dinges and Richard Grace. Perclos: A valid psychophysiological measure of
alertness as assessed by psychomotor vigilance. US Department of Transportation,
Federal Highway Administration, Publication Number FHWA-MCRT-98-006, 1998.

[42] Ebru Dogan, Mohamed-Cherif Rahal, Renaud Deborne, Patricia Delhomme, Andras
Kemeny, and Jérôme Perrin. Transition of control in a partially automated vehicle:
Effects of anticipation and non-driving-related task involvement. Transportation
research part F: traffic psychology and behaviour, 46:205–215, 2017.

[43] Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach,
Subhashini Venugopalan, Kate Saenko, and Trevor Darrell. Long-term recurrent
convolutional networks for visual recognition and description. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 2625–2634, 2015.

178

[44] Anup Doshi and Mohan Trivedi. A comparative exploration of eye gaze and head
motion cues for lane change intent prediction. In 2008 IEEE Intelligent Vehicles
Symposium, pages 49–54. IEEE, 2008.

[45] Anup Doshi and Mohan M Trivedi. Tactical driver behavior prediction and intent
inference: A review. In IEEE International Conference on Intelligent Transportation
Systems (ITSC), pages 1892–1897, 2011.

[46] Anup Doshi and Mohan M Trivedi. Head and eye gaze dynamics during visual
attention shifts in complex environments. Journal of vision, 12(2):9–9, 2012.

[47] Katherine Driggs-Campbell, Victor Shia, and Ruzena Bajcsy. Improved driver
modeling for human-in-the-loop vehicular control. In 2015 IEEE International
Conference on Robotics and Automation (ICRA), pages 1654–1661. IEEE, 2015.

[48] Na Du, Feng Zhou, Elizabeth M Pulver, Dawn M Tilbury, Lionel P Robert, Anuj K
Pradhan, and X Jessie Yang. Predicting driver takeover performance in conditionally
automated driving. Accident Analysis & Prevention, 148:105748, 2020.

[49] Jacob Velling Dueholm, Miklas Strøm Kristoffersen, Ravi Kumar Satzoda,
Thomas Baltzer Moeslund, and Mohan Manubhai Trivedi. Trajectories and maneu-
vers of surrounding vehicles with panoramic camera arrays. IEEE Transactions on
Intelligent Vehicles, 1(2):203–214, 2016.

[50] Alexander Eriksson and Neville A Stanton. Takeover time in highly automated vehi-
cles: noncritical transitions to and from manual control. Human factors, 59(4):689–
705, 2017.

[51] Lex Fridman, Philipp Langhans, Joonbum Lee, and Bryan Reimer. Driver gaze region
estimation without use of eye movement. IEEE Intelligent Systems, 31(3):49–56,
2016.

[52] Lex Fridman, Joonbum Lee, Bryan Reimer, and Trent Victor. ‘owl’and ‘lizard’:
patterns of head pose and eye pose in driver gaze classification. IET Computer
Vision, 10(4):308–314, 2016.

[53] Jiyang Gao, Chen Sun, Hang Zhao, Yi Shen, Dragomir Anguelov, Congcong Li,
and Cordelia Schmid. Vectornet: Encoding hd maps and agent dynamics from
vectorized representation. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2020.

[54] Christian Gold, Daniel Damböck, Lutz Lorenz, and Klaus Bengler. “take over!” how
long does it take to get the driver back into the loop? In Proceedings of the Human
Factors and Ergonomics Society Annual Meeting, volume 57, pages 1938–1942. SAGE
Publications Sage CA: Los Angeles, CA, 2013.

179

[55] Christian Gold, Moritz Körber, David Lechner, and Klaus Bengler. Taking over
control from highly automated vehicles in complex traffic situations: the role of
traffic density. Human factors, 58(4):642–652, 2016.

[56] Alex Graves. Generating sequences with recurrent neural networks. arXiv preprint
arXiv:1308.0850, 2013.

[57] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recognition
with deep recurrent neural networks. In International Conference on Acoustics,
Speech and Signal processing (ICASSP), pages 6645–6649. IEEE, 2013.

[58] Alex Graves and Jürgen Schmidhuber. Framewise phoneme classification with
bidirectional lstm and other neural network architectures. Neural Networks, 18(5-
6):602–610, 2005.

[59] Ross Greer, Nachiket Deo, and Mohan Trivedi. Trajectory prediction in autonomous
driving with a lane heading auxiliary loss. Robotics and Automation Letters (RA-L),
2021.

[60] Agrim Gupta, Justin Johnson, Li Fei-Fei, Silvio Savarese, and Alexandre Alahi.
Social gan: Socially acceptable trajectories with generative adversarial networks. In
IEEE/CVF conference on computer vision and pattern recognition (CVPR), pages
2255–2264, 2018.

[61] Michael R Hafner, Drew Cunningham, Lorenzo Caminiti, and Domitilla Del Vecchio.
Cooperative collision avoidance at intersections: Algorithms and experiments. IEEE
Transactions on Intelligent Transportation Systems, 14(3):1162–1175, 2013.

[62] John HL Hansen, Kazuya Takeda, Sanjeev M Naik, Mohan M Trivedi, Gerhard U
Schmidt, Yingying Jennifer Chen, and Wade Trappe. Signal processing for smart
vehicle technologies: Part 2 [from the guest editors]. IEEE SIgnal ProcESSIng
MagazInE, 34(2):18–21, 2017.

[63] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In IEEE/CVF conference on computer vision and pattern
recognition (CVPR), pages 770–778, 2016.

[64] Christoph Hermes, Christian Wohler, Konrad Schenk, and Franz Kummert. Long-
term vehicle motion prediction. In IEEE intelligent vehicles symposium (IV), pages
652–657, 2009.

[65] Jrg Hillenbrand, Andreas M Spieker, and Kristian Kroschel. A multilevel collision
mitigation approach—its situation assessment, decision making, and performance
tradeoffs. IEEE Transactions on intelligent transportation systems, 7(4):528–540,
2006.

[66] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural compu-
tation, 9(8):1735–1780, 1997.

180

[67] Joey Hong, Benjamin Sapp, and James Philbin. Rules of the road: Predicting
driving behavior with a convolutional model of semantic interactions. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 8454–8462, 2019.

[68] Adam Houenou, Philippe Bonnifait, Véronique Cherfaoui, and Wen Yao. Vehicle
trajectory prediction based on motion model and maneuver recognition. In IEEE/RSJ
international conference on intelligent robots and systems (IROS), pages 4363–4369,
2013.

[69] Dongliang Huang and Henry Leung. Em-imm based land-vehicle navigation with
gps/ins. In IEEE International Conference on Intelligent Transportation Systems
(ITSC), pages 624–629, 2004.

[70] Gaojian Huang, Clayton Steele, Xinrui Zhang, and Brandon J Pitts. Multimodal
cue combinations: a possible approach to designing in-vehicle takeover requests for
semi-autonomous driving. In Proceedings of the Human Factors and Ergonomics
Society Annual Meeting, volume 63, pages 1739–1743. SAGE Publications Sage CA:
Los Angeles, CA, 2019.

[71] Steven Hwang, Ashis G Banerjee, and Linda Ng Boyle. Predicting driver’s transition
time to a secondary task given an in-vehicle alert. IEEE Transactions on Intelligent
Transportation Systems, 2020.

[72] Ashesh Jain, Hema S Koppula, Bharad Raghavan, Shane Soh, and Ashutosh Saxena.
Car that knows before you do: Anticipating maneuvers via learning temporal driving
models. In Proceedings of the IEEE International Conference on Computer Vision,
pages 3182–3190, 2015.

[73] Ashesh Jain, Avi Singh, Hema S Koppula, Shane Soh, and Ashutosh Saxena. Recur-
rent neural networks for driver activity anticipation via sensory-fusion architecture.
In Robotics and Automation (ICRA), 2016 IEEE International Conference on, pages
3118–3125. IEEE, 2016.

[74] S. Jha and C. Busso. Probabilistic estimation of the gaze region of the driver
using dense classification. In 2018 21st International Conference on Intelligent
Transportation Systems (ITSC), pages 697–702, Nov 2018.

[75] Joshua Joseph, Finale Doshi-Velez, Albert S Huang, and Nicholas Roy. A bayesian
nonparametric approach to modeling motion patterns. Autonomous Robots, 31(4):383
– 400, 2011.

[76] Tzyy-Ping Jung, Scott Makeig, Magnus Stensmo, and Terrence J Sejnowski. Esti-
mating alertness from the eeg power spectrum. IEEE transactions on biomedical
engineering, 44(1):60–69, 1997.

[77] Nico Kaempchen, Kristian Weiss, Michael Schaefer, and Klaus CJ Dietmayer. Imm
object tracking for high dynamic driving maneuvers. In IEEE Intelligent Vehicles
Symposium (IV), pages 825–830, 2004.

181

[78] Eugen Käfer, Christoph Hermes, Christian Wöhler, Helge Ritter, and Franz Kum-
mert. Recognition of situation classes at road intersections. In IEEE International
Conference on Robotics and Automation (ICRA), pages 3960–3965, 2010.

[79] Siddhesh Khandelwal, William Qi, Jagjeet Singh, Andrew Hartnett, and Deva
Ramanan. What-if motion prediction for autonomous driving. arXiv preprint
arXiv:2008.10587, 2020.

[80] Aida Khosroshahi, Eshed Ohn-Bar, and Mohan Manubhai Trivedi. Surround vehicles
trajectory analysis with recurrent neural networks. In IEEE International Conference
on Intelligent Transportation Systems (ITSC), pages 2267–2272, 2016.

[81] ByeoungDo Kim, Chang Mook Kang, Jaekyum Kim, Seung Hi Lee, Chung Choo
Chung, and Jun Won Choi. Probabilistic vehicle trajectory prediction over occu-
pancy grid map via recurrent neural network. In IEEEInternational Conference on
Intelligent Transportation Systems (ITSC), pages 399–404, 2017.

[82] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[83] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convo-
lutional networks. In International Conference on Learning Representations (ICLR),
2017.

[84] Kris M Kitani, Brian D Ziebart, James Andrew Bagnell, and Martial Hebert. Activity
forecasting. In European Conference on Computer Vision (ECCV), pages 201–214.
Springer, 2012.

[85] Terry K Koo and Mae Y Li. A guideline of selecting and reporting intraclass
correlation coefficients for reliability research. Journal of chiropractic medicine,
15(2):155–163, 2016.

[86] Moritz Körber, Christian Gold, David Lechner, and Klaus Bengler. The influence of
age on the take-over of vehicle control in highly automated driving. Transportation
research part F: traffic psychology and behaviour, 39:19–32, 2016.

[87] Alex Kuefler, Jeremy Morton, Tim Wheeler, and Mykel Kochenderfer. Imitating
driver behavior with generative adversarial networks. In IEEE Intelligent Vehicles
Symposium (IV), pages 204–211, 2017.

[88] Christian Laugier, Igor E Paromtchik, Mathias Perrollaz, Mao Yong, John-David
Yoder, Christopher Tay, Kamel Mekhnacha, and Amaury Nègre. Probabilistic
analysis of dynamic scenes and collision risks assessment to improve driving safety.
IEEE Intelligent Transportation Systems Magazine, 3(4):4–19, 2011.

[89] Andreas Lawitzky, Daniel Althoff, Christoph F Passenberg, Georg Tanzmeister, Dirk
Wollherr, and Martin Buss. Interactive scene prediction for automotive applications.
In IEEE Intelligent Vehicles Symposium (IV), pages 1028–1033, 2013.

182

[90] Namhoon Lee, Wongun Choi, Paul Vernaza, Christopher B Choy, Philip HS Torr,
and Manmohan Chandraker. Desire: Distant future prediction in dynamic scenes
with interacting agents. In IEEE/CVF conference on computer vision and pattern
recognition (CVPR), pages 336–345, 2017.

[91] Sung Joo Lee, Jaeik Jo, Ho Gi Jung, Kang Ryoung Park, and Jaihie Kim. Real-time
gaze estimator based on driver’s head orientation for forward collision warning
system. IEEE Transactions on Intelligent Transportation Systems, 12(1):254–267,
2011.

[92] Marco Leo, G Medioni, M Trivedi, Takeo Kanade, and Giovanni Maria Farinella.
Computer vision for assistive technologies. Computer Vision and Image Understand-
ing, 154:1–15, 2017.

[93] Sergey Levine. Reinforcement learning and control as probabilistic inference: Tutorial
and review. arXiv preprint arXiv:1805.00909, 2018.

[94] Nanxiang Li and Carlos Busso. Predicting perceived visual and cognitive distractions
of drivers with multimodal features. IEEE Transactions on Intelligent Transportation
Systems, 16(1):51–65, 2015.

[95] Ming Liang, Bin Yang, Rui Hu, Yun Chen, Renjie Liao, Song Feng, and Raquel
Urtasun. Learning lane graph representations for motion forecasting. In European
Conference on Computer Vision (ECCV), 2020.

[96] Yulan Liang and John D Lee. A hybrid bayesian network approach to detect
driver cognitive distraction. Transportation research part C: emerging technologies,
38:146–155, 2014.

[97] Yulan Liang, Michelle L Reyes, and John D Lee. Real-time detection of driver
cognitive distraction using support vector machines. IEEE transactions on intelligent
transportation systems, 8(2):340–350, 2007.

[98] Chin-Teng Lin, Chun-Hsiang Chuang, Chih-Sheng Huang, Shu-Fang Tsai, Shao-
Wei Lu, Yen-Hsuan Chen, and Li-Wei Ko. Wireless and wearable eeg system for
evaluating driver vigilance. IEEE Transactions on biomedical circuits and systems,
8(2):165–176, 2014.

[99] Tianchi Liu, Yan Yang, Guang-Bin Huang, Yong Kiang Yeo, and Zhiping Lin. Driver
distraction detection using semi-supervised machine learning. IEEE transactions on
intelligent transportation systems, 17(4):1108–1120, 2016.

[100] Alexander Lotz and Sarah Weissenberger. Predicting take-over times of truck drivers
in conditional autonomous driving. In International Conference on Applied Human
Factors and Ergonomics, pages 329–338. Springer, 2018.

183

[101] Chenxu Luo, Lin Sun, Dariush Dabiri, and Alan Yuille. Probabilistic multi-modal
trajectory prediction with lane attention for autonomous vehicles. arXiv preprint
arXiv:2007.02574, 2020.

[102] Thang Luong, Ilya Sutskever, Quoc Le, Oriol Vinyals, and Wojciech Zaremba.
Addressing the rare word problem in neural machine translation. In Proceedings
of the 53rd Annual Meeting of the Association for Computational Linguistics and
the 7th International Joint Conference on Natural Language Processing (Volume 1:
Long Papers), pages 11–19, 2015.

[103] Osama Makansi, Eddy Ilg, Ozgun Cicek, and Thomas Brox. Overcoming limitations
of mixture density networks: A sampling and fitting framework for multimodal future
prediction. In IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2019.

[104] Hiren M Mandalia and Mandalia Dario D Salvucci. Using support vector machines
for lane-change detection. In Proceedings of the human factors and ergonomics
society annual meeting, volume 49, pages 1965–1969, 2005.

[105] Karttikeya Mangalam, Yang An, Harshayu Girase, and Jitendra Malik. From goals,
waypoints & paths to long term human trajectory forecasting. In IEEE/CVF
International Conference on Computer Vision (ICCV), pages 15233–15242, 2021.

[106] Karttikeya Mangalam, Harshayu Girase, Shreyas Agarwal, Kuan-Hui Lee, Ehsan
Adeli, Jitendra Malik, and Adrien Gaidon. It is not the journey but the destination:
Endpoint conditioned trajectory prediction. In European Conference on Computer
Vision (ECCV), pages 759–776. Springer, 2020.

[107] Sujitha Martin, Sourabh Vora, Kevan Yuen, and Mohan Manubhai Trivedi. Dynamics
of driver’s gaze: Explorations in behavior modeling and maneuver prediction. IEEE
Transactions on Intelligent Vehicles, 3(2):141–150, 2018.

[108] Kenneth O McGraw and Seok P Wong. Forming inferences about some intraclass
correlation coefficients. Psychological methods, 1(1):30–46, 1996.

[109] Kaouther Messaoud, Nachiket Deo, Mohan M Trivedi, and Fawzi Nashashibi. Tra-
jectory prediction for autonomous driving based on multi-head attention with joint
agent-map representation. In IEEE Intelligent Vehicles Symposium (IV), pages
165–170, 2021.

[110] Brian Mok, Mishel Johns, Key Jung Lee, David Miller, David Sirkin, Page Ive, and
Wendy Ju. Emergency, automation off: Unstructured transition timing for distracted
drivers of automated vehicles. In 2015 IEEE 18th International Conference on
Intelligent Transportation Systems, pages 2458–2464. IEEE, 2015.

[111] Brian Ka-Jun Mok, Mishel Johns, Key Jung Lee, Hillary Page Ive, David Miller,
and Wendy Ju. Timing of unstructured transitions of control in automated driving.
In 2015 IEEE intelligent vehicles symposium (IV), pages 1167–1172. IEEE, 2015.

184

[112] Pavlo Molchanov, Shalini Gupta, Kihwan Kim, and Jan Kautz. Hand gesture
recognition with 3d convolutional neural networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition workshops, pages 1–7, 2015.

[113] Brendan Tran Morris and Mohan Manubhai Trivedi. Trajectory learning for activity
understanding: Unsupervised, multilevel, and long-term adaptive approach. IEEE
transactions on pattern analysis and machine intelligence, 33(11):2287–2301, 2011.

[114] Erik Murphy-Chutorian and Mohan Manubhai Trivedi. Hyhope: Hybrid head
orientation and position estimation for vision-based driver head tracking. In 2008
IEEE Intelligent Vehicles Symposium, pages 512–517. IEEE, 2008.

[115] Rizwan Ali Naqvi, Muhammad Arsalan, Ganbayar Batchuluun, Hyo Sik Yoon, and
Kang Ryoung Park. Deep learning-based gaze detection system for automobile
drivers using a nir camera sensor. Sensors, 18(2):456, 2018.

[116] Frederik Naujoks, Christian Purucker, Katharina Wiedemann, and Claus Marberger.
Noncritical state transitions during conditionally automated driving on german
freeways: Effects of non–driving related tasks on takeover time and takeover quality.
Human factors, 61(4):596–613, 2019.

[117] Matthew Niedoba, Henggang Cui, Kevin Luo, Darshan Hegde, Fang-Chieh Chou,
and Nemanja Djuric. Improving movement prediction of traffic actors using off-road
loss and bias mitigation. In Machine Learning for Autonomous Driving (ML4AD)
Workshop, NeurIPS, 2019.

[118] Julia Nilsson, Jonatan Silvlin, Mattias Brannstrom, Erik Coelingh, and Jonas
Fredriksson. If, when, and how to perform lane change maneuvers on highways.
IEEE Intelligent Transportation Systems Magazine, 8(4):68–78, 2016.

[119] nuScenes Contributors. nuScenes. https://www.nuscenes.org/, 2020.

[120] Eshed Ohn-Bar, Sujitha Martin, Ashish Tawari, and Mohan M Trivedi. Head, eye,
and hand patterns for driver activity recognition. In Pattern Recognition (ICPR),
2014 22nd International Conference on, pages 660–665. IEEE, 2014.

[121] Eshed Ohn-Bar, Ashish Tawari, Sujitha Martin, and Mohan M Trivedi. Predicting
driver maneuvers by learning holistic features. In Intelligent Vehicles Symposium
Proceedings, 2014 IEEE, pages 719–724. IEEE, 2014.

[122] Eshed Ohn-Bar and Mohan Trivedi. In-vehicle hand activity recognition using
integration of regions. In Intelligent Vehicles Symposium (IV), 2013 IEEE, pages
1034–1039. IEEE, 2013.

[123] Eshed Ohn-Bar and Mohan M Trivedi. Beyond just keeping hands on the wheel:
Towards visual interpretation of driver hand motion patterns. In Intelligent Trans-
portation Systems (ITSC), 2014 IEEE 17th International Conference on, pages
1245–1250. IEEE, 2014.

185

https://www.nuscenes.org/

[124] Eshed Ohn-Bar and Mohan Manubhai Trivedi. Hand gesture recognition in real
time for automotive interfaces: A multimodal vision-based approach and evaluations.
IEEE transactions on intelligent transportation systems, 15(6):2368–2377, 2014.

[125] Justin M Owens, Linda Angell, Jonathan M Hankey, James Foley, and Kazutoshi
Ebe. Creation of the naturalistic engagement in secondary tasks (nest) distracted
driving dataset. Journal of safety research, 54:33–e29, 2015.

[126] Erfan Pakdamanian, Shili Sheng, Sonia Baee, Seongkook Heo, Sarit Kraus, and
Lu Feng. Deeptake: Prediction of driver takeover behavior using multimodal data. In
Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems,
pages 1–14, 2021.

[127] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
Automatic differentiation in pytorch. 2017.

[128] Sebastiaan Petermeijer, Pavlo Bazilinskyy, Klaus Bengler, and Joost De Winter.
Take-over again: Investigating multimodal and directional tors to get the driver back
into the loop. Applied ergonomics, 62:204–215, 2017.

[129] Tung Phan-Minh, Elena Corina Grigore, Freddy A Boulton, Oscar Beijbom, and
Eric M Wolff. Covernet: Multimodal behavior prediction using trajectory sets.
In IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
14074–14083, 2020.

[130] Derek J Phillips, Tim A Wheeler, and Mykel J Kochenderfer. Generalizable intention
prediction of human drivers at intersections. In IEEE Intelligent Vehicles Symposium
(IV), pages 1665–1670, 2017.

[131] Aris Polychronopoulos, Manolis Tsogas, Angelos J Amditis, and Luisa Andreone.
Sensor fusion for predicting vehicles’ path for collision avoidance systems. IEEE
Transactions on Intelligent Transportation Systems, 8(3):549–562, 2007.

[132] Jonas Radlmayr, Christian Gold, Lutz Lorenz, Mehdi Farid, and Klaus Bengler.
How traffic situations and non-driving related tasks affect the take-over quality in
highly automated driving. In Proceedings of the human factors and ergonomics
society annual meeting, volume 58, pages 2063–2067. Sage Publications Sage CA:
Los Angeles, CA, 2014.

[133] Akshay Rangesh, Nachiket Deo, Ross Greer, Pujitha Gunaratne, and Mohan M
Trivedi. Autonomous vehicles that alert humans to take-over controls: Modeling
with real-world data. arXiv preprint arXiv:2104.11489, 2021.

[134] Akshay Rangesh, Nachiket Deo, Kevan Yuen, Kirill Pirozhenko, Pujitha Gunaratne,
Heishiro Toyoda, and Mohan M Trivedi. Exploring the situational awareness of
humans inside autonomous vehicles. In International Conference on Intelligent
Transportation Systems (ITSC). IEEE, 2018.

186

[135] Akshay Rangesh, Pranav Maheshwari, Mez Gebre, Siddhesh Mhatre, Vahid
Ramezani, and Mohan M Trivedi. Trackmpnn: A message passing graph neu-
ral architecture for multi-object tracking. arXiv preprint arXiv:2101.04206, 2021.

[136] Akshay Rangesh, Eshed Ohn-Bar, and Mohan M Trivedi. Hidden hands: Tracking
hands with an occlusion aware tracker. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops, pages 19–26, 2016.

[137] Akshay Rangesh and Mohan Trivedi. Forced spatial attention for driver foot ac-
tivity classification. In Proceedings of the IEEE/CVF International Conference on
Computer Vision Workshops, pages 0–0, 2019.

[138] Akshay Rangesh and Mohan Trivedi. Forced spatial attention for driver foot activity
classification. In Proceedings of the IEEE International Conference on Computer
Vision Workshops, pages 0–0, 2019.

[139] Akshay Rangesh and Mohan M Trivedi. Handynet: A one-stop solution to detect,
segment, localize & analyze driver hands. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops, pages 1103–1110, 2018.

[140] Akshay Rangesh and Mohan Manubhai Trivedi. No blind spots: Full-surround
multi-object tracking for autonomous vehicles using cameras and lidars. IEEE
Transactions on Intelligent Vehicles, 4(4):588–599, 2019.

[141] Akshay Rangesh and Mohan Manubhai Trivedi. Ground plane polling for 6dof
pose estimation of objects on the road. IEEE Transactions on Intelligent Vehicles,
5(3):449–460, 2020.

[142] Akshay Rangesh, Kevan Yuen, Ravi Kumar Satzoda, Rakesh Nattoji Rajaram,
Pujitha Gunaratne, and Mohan M Trivedi. A multimodal, full-surround vehic-
ular testbed for naturalistic studies and benchmarking: Design, calibration and
deployment. arXiv preprint arXiv:1709.07502, 2017.

[143] Akshay Rangesh, Bowen Zhang, and Mohan M Trivedi. Driver gaze estimation in
the real world: Overcoming the eyeglass challenge. In 2020 IEEE Intelligent Vehicles
Symposium (IV), pages 1054–1059. IEEE, 2020.

[144] Michael A Regan, Charlene Hallett, and Craig P Gordon. Driver distraction and
driver inattention: Definition, relationship and taxonomy. Accident Analysis &
Prevention, 43(5):1771–1781, 2011.

[145] SAE International. Taxonomy and definitions for terms related to driving automation
systems for on-road motor vehicles, 2018.

[146] Tara Rezvani, Katherine Driggs-Campbell, Dorsa Sadigh, S Shankar Sastry, Sanjit A
Seshia, and Ruzena Bajcsy. Towards trustworthy automation: User interfaces that
convey internal and external awareness. In 2016 IEEE 19th International Conference
on Intelligent Transportation Systems (ITSC), pages 682–688. IEEE, 2016.

187

[147] Nicholas Rhinehart, Kris M Kitani, and Paul Vernaza. R2p2: A reparameterized
pushforward policy for diverse, precise generative path forecasting. In European
Conference on Computer Vision (ECCV), pages 772–788, 2018.

[148] Nicholas Rhinehart, Rowan McAllister, Kris Kitani, and Sergey Levine. Precog:
Prediction conditioned on goals in visual multi-agent settings. In IEEE/CVF
International Conference on Computer Vision, pages 2821–2830, 2019.

[149] Daniela Ridel, Nachiket Deo, Denis Wolf, and Mohan Trivedi. Scene compliant
trajectory forecast with agent-centric spatio-temporal grids. IEEE Robotics and
Automation Letters, 5(2):2816–2823, 2020.

[150] Alexandre Robicquet, Amir Sadeghian, Alexandre Alahi, and Silvio Savarese. Learn-
ing social etiquette: Human trajectory understanding in crowded scenes. In European
conference on computer vision (ECCV), pages 549–565. Springer, 2016.

[151] Alina Roitberg, Monica Haurilet, Simon Reiß, and Rainer Stiefelhagen. Cnn-based
driver activity understanding: Shedding light on deep spatiotemporal representations.
In 2020 IEEE 23rd International Conference on Intelligent Transportation Systems
(ITSC), pages 1–6. IEEE, 2020.

[152] Alina Roitberg, Chaoxiang Ma, Monica Haurilet, and Rainer Stiefelhagen. Open set
driver activity recognition. In Intelligent Vehicles Symposium (IV). IEEE, 2020.

[153] A Sadeghian, V Kosaraju, A Gupta, S Savarese, and A Alahi. Trajnet: Towards a
benchmark for human trajectory prediction. arXiv preprint, 2018.

[154] Amir Sadeghian, Vineet Kosaraju, Ali Sadeghian, Noriaki Hirose, and Silvio Savarese.
Sophie: An attentive gan for predicting paths compliant to social and physical
constraints. arXiv preprint arXiv:1806.01482, 2018.

[155] Tim Salzmann, Boris Ivanovic, Punarjay Chakravarty, and Marco Pavone. Trajec-
tron++: Dynamically-feasible trajectory forecasting with heterogeneous data. In
European Conference on Computer Vision (ECCV), pages 683–700, 2020.

[156] Julian Schlechtriemen, Andreas Wedel, Gabi Breuel, and Klaus-Dieter Kuhnert.
A probabilistic long term prediction approach for highway scenarios. In IEEE
International Conference on Intelligent Transportation Systems (ITSC), pages 732–
738, 2014.

[157] Julian Schlechtriemen, Florian Wirthmueller, Andreas Wedel, Gabi Breuel, and
Klaus-Dieter Kuhnert. When will it change the lane? a probabilistic regression
approach for rarely occurring events. In IEEE Intelligent Vehicles Symposium (IV),
pages 1373–1379, 2015.

188

[158] Matthias Schreier, Volker Willert, and Jürgen Adamy. Bayesian, maneuver-based,
long-term trajectory prediction and criticality assessment for driver assistance sys-
tems. In IEEE International Conference on Intelligent Transportation Systems
(ITSC), pages 334–341, 2014.

[159] Robin Schubert, Eric Richter, and Gerd Wanielik. Comparison and evaluation of
advanced motion models for vehicle tracking. In IEEE International Conference on
Information Fusion, pages 1–6, 2008.

[160] Victor A Shia, Yiqi Gao, Ramanarayan Vasudevan, Katherine Driggs Campbell,
Theresa Lin, Francesco Borrelli, and Ruzena Bajcsy. Semiautonomous vehicular
control using driver modeling. IEEE Transactions on Intelligent Transportation
Systems, 15(6):2696–2709, 2014.

[161] Sayanan Sivaraman and Mohan M Trivedi. Towards cooperative, predictive driver
assistance. In IEEE Conference on Intelligent Transportation Systems (ITSC), pages
1719–1724, 2013.

[162] Sayanan Sivaraman and Mohan Manubhai Trivedi. Dynamic probabilistic drivability
maps for lane change and merge driver assistance. IEEE Transactions on Intelligent
Transportation Systems, 15(5):2063–2073, 2014.

[163] Han-Shue Tan and Jihua Huang. Dgps-based vehicle-to-vehicle cooperative collision
warning: Engineering feasibility viewpoints. IEEE Transactions on Intelligent
Transportation Systems, 7(4):415–428, 2006.

[164] Ashish Tawari, Kuo Hao Chen, and Mohan M Trivedi. Where is the driver look-
ing: Analysis of head, eye and iris for robust gaze zone estimation. In Intelligent
transportation systems (ITSC), 2014 IEEE 17th international conference on, pages
988–994. IEEE, 2014.

[165] Ashish Tawari, Sujitha Martin, and Mohan Manubhai Trivedi. Continuous head
movement estimator for driver assistance: Issues, algorithms, and on-road evaluations.
IEEE Transactions on Intelligent Transportation Systems, 15(2):818–830, 2014.

[166] Ashish Tawari and Mohan M Trivedi. Robust and continuous estimation of driver
gaze zone by dynamic analysis of multiple face videos. In Intelligent Vehicles
Symposium Proceedings, 2014 IEEE, pages 344–349. IEEE, 2014.

[167] Rafael Toledo-Moreo and Miguel A Zamora-Izquierdo. Imm-based lane-change
prediction in highways with low-cost gps/ins. IEEE Transactions on Intelligent
Transportation Systems, 10(1):180–185, 2009.

[168] Cuong Tran, Anup Doshi, and Mohan M Trivedi. Pedal error prediction by driver
foot gesture analysis: A vision-based inquiry. In Intelligent Vehicles Symposium
(IV), 2011 IEEE, pages 577–582. IEEE, 2011.

189

[169] Cuong Tran, Anup Doshi, and Mohan Manubhai Trivedi. Modeling and prediction of
driver behavior by foot gesture analysis. Computer Vision and Image Understanding,
116(3):435–445, 2012.

[170] Quan Tran and Jonas Firl. Online maneuver recognition and multimodal trajectory
prediction for intersection assistance using non-parametric regression. In IEEE
Intelligent Vehicles Symposium (IV), pages 918–923, 2014.

[171] Mohan M Trivedi et al. Attention monitoring and hazard assessment with bio-sensing
and vision: Empirical analysis utilizing cnns on the kitti dataset. arXiv preprint
arXiv:1905.00503, 2019.

[172] Simon Ulbrich and Markus Maurer. Towards tactical lane change behavior planning
for automated vehicles. In IEEE International Conference on Intelligent Transporta-
tion Systems (ITSC), pages 989–995, 2015.

[173] Borhan Vasli, Sujitha Martin, and Mohan Manubhai Trivedi. On driver gaze
estimation: Explorations and fusion of geometric and data driven approaches. In
Intelligent Transportation Systems (ITSC), 2016 IEEE 19th International Conference
on, pages 655–660. IEEE, 2016.

[174] Dizan Vasquez and Thierry Fraichard. Motion prediction for moving objects: a
statistical approach. In IEEE International Conference on Robotics and Automation
(ICRA), volume 4, pages 3931–3936, 2004.

[175] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances
in neural information processing systems (NeurIPS), 2017.

[176] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. Graph attention networks. In International Conference on
Learning Representations (ICLR), 2018.

[177] Sourabh Vora, Akshay Rangesh, and Mohan M Trivedi. On generalizing driver
gaze zone estimation using convolutional neural networks. In Intelligent Vehicles
Symposium (IV), 2017 IEEE, pages 849–854. IEEE, 2017.

[178] Sourabh Vora, Akshay Rangesh, and Mohan Manubhai Trivedi. Driver gaze zone
estimation using convolutional neural networks: A general framework and ablative
analysis. IEEE Transactions on Intelligent Vehicles, 3(3):254–265, 2018.

[179] Chuhua Wang, Yuchen Wang, Mingze Xu, and David J Crandall. Stepwise goal-driven
networks for trajectory prediction. arXiv preprint arXiv:2103.14107, 2021.

[180] Jürgen Wiest, Matthias Höffken, Ulrich Kreßel, and Klaus Dietmayer. Probabilistic
trajectory prediction with gaussian mixture models. In IEEE Intelligent Vehicles
Symposium (IV), pages 141–146, 2012.

190

[181] Martin Wollmer, Christoph Blaschke, Thomas Schindl, Björn Schuller, Berthold
Farber, Stefan Mayer, and Benjamin Trefflich. Online driver distraction detection
using long short-term memory. IEEE Transactions on Intelligent Transportation
Systems, 12(2):574–582, 2011.

[182] Markus Wulfmeier, Peter Ondruska, and Ingmar Posner. Maximum entropy deep
inverse reinforcement learning. arXiv preprint arXiv:1507.04888, 2015.

[183] Markus Wulfmeier, Dominic Zeng Wang, and Ingmar Posner. Watch this: Scalable
cost-function learning for path planning in urban environments. In IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 2089–
2095, 2016.

[184] Kevan Yuen, Sujitha Martin, and Mohan M Trivedi. Looking at faces in a vehicle: A
deep cnn based approach and evaluation. In International Conference on Intelligent
Transportation Systems (ITSC), pages 649–654. IEEE, 2016.

[185] Kevan Yuen and Mohan M Trivedi. Looking at hands in autonomous vehicles: A
convnet approach using part affinity fields. arXiv preprint arXiv:1804.01176, 2018.

[186] Kevan Yuen and Mohan M Trivedi. Looking at hands in autonomous vehicles:
A convnet approach using part affinity fields. IEEE Transactions on Intelligent
Vehicles, 2019.

[187] Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent neural network
regularization. arXiv preprint arXiv:1409.2329, 2014.

[188] Kathrin Zeeb, Axel Buchner, and Michael Schrauf. What determines the take-over
time? an integrated model approach of driver take-over after automated driving.
Accident Analysis & Prevention, 78:212–221, 2015.

[189] Wenyuan Zeng, Ming Liang, Renjie Liao, and Raquel Urtasun. Lanercnn: Dis-
tributed representations for graph-centric motion forecasting. arXiv preprint
arXiv:2101.06653, 2021.

[190] Wenyuan Zeng, Wenjie Luo, Simon Suo, Abbas Sadat, Bin Yang, Sergio Casas, and
Raquel Urtasun. End-to-end interpretable neural motion planner. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

[191] Lingyao Zhang, Po-Hsun Su, Jerrick Hoang, Galen Clark Haynes, and Micol
Marchetti-Bowick. Map-adaptive goal-based trajectory prediction. In Conference on
Robot Learning (CoRL), pages 1371–1383. PMLR, 2021.

[192] Yanfu Zhang, Wenshan Wang, Rogerio Bonatti, Daniel Maturana, and Sebastian
Scherer. Integrating kinematics and environment context into deep inverse reinforce-
ment learning for predicting off-road vehicle trajectories. In Conference on Robot
Learning (CoRL), pages 894–905, 2018.

191

[193] Zutao Zhang, Dianyuan Luo, Yagubov Rasim, Yanjun Li, Guanjun Meng, Jian Xu,
and Chunbai Wang. A vehicle active safety model: vehicle speed control based on
driver vigilance detection using wearable eeg and sparse representation. Sensors,
16(2):242, 2016.

[194] Hang Zhao, Jiyang Gao, Tian Lan, Chen Sun, Ben Sapp, Balakrishnan Varadarajan,
Yue Shen, Yi Shen, Yuning Chai, Cordelia Schmid, et al. Tnt: Target-driven
trajectory prediction. In Conference on Robot Learning (CoRL), pages 895–904.
PMLR, 2021.

[195] Tianyang Zhao, Yifei Xu, Mathew Monfort, Wongun Choi, Chris Baker, Yibiao
Zhao, Yizhou Wang, and Ying Nian Wu. Multi-agent tensor fusion for contextual
trajectory prediction. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 12126–12134, 2019.

[196] Brian D Ziebart, J Andrew Bagnell, and Anind K Dey. Modeling interaction via
the principle of maximum causal entropy. In International Conference on Machine
Learning (ICML), 2010.

[197] Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, and Anind K Dey. Maximum
entropy inverse reinforcement learning. In AAAI, volume 8, pages 1433–1438, 2008.

[198] Brian D Ziebart, Nathan Ratliff, Garratt Gallagher, Christoph Mertz, Kevin Peterson,
J Andrew Bagnell, Martial Hebert, Anind K Dey, and Siddhartha Srinivasa. Planning-
based prediction for pedestrians. In 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 3931–3936. IEEE, 2009.

[199] Alex Zyner, Stewart Worrall, and Eduardo Nebot. Naturalistic driver intention and
path prediction using recurrent neural networks. IEEE Transactions on Intelligent
Transportation Systems, 2019.

192

	Dissertation Approval Page
	Dedication
	Epigraph
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Research themes
	Predicting Trajectories of Surrounding agents
	Predicting Driver Behavior during Control Transitions

	Contributions and Outline

	Predicting Trajectories of Surrounding Agents
	A Unified Framework for Maneuver Recognition & Trajectory Prediction
	Introduction
	Contributions

	Related Research
	Data-driven trajectory prediction
	Maneuver-based trajectory prediction
	Interaction-aware trajectory prediction

	Overview
	Maneuver Recognition Module
	Maneuver classes
	Hidden Markov Models

	Trajectory Prediction Module
	Motion Models
	Probabilistic Trajectory Prediction

	Vehicle Interaction Module
	Experimental Evaluation
	Dataset
	Evaluation Measures and Experimental Settings
	Ablative Analysis
	Analysis of execution time
	Qualitative Analysis of Predictions
	Vehicle Interaction Model Case Studies

	Conclusions

	Convolutional Social Pooling and Maneuver Based LSTMs
	Introduction
	Contributions

	Related Research
	Maneuver based models:
	Interaction aware models:
	Recurrent networks for motion prediction:

	Formulation
	Frame of reference
	Inputs and outputs
	Probabilistic motion prediction
	Maneuver classes

	Proposed Model
	LSTM Encoder
	Convolutional Social Pooling
	Maneuver based LSTM decoder
	Training and Implementation details

	Experimental Evaluation
	Dataset
	Evaluation metrics
	Compared models
	Results
	Fully connected vs. convolutional social pooling
	Qualitative analysis of predictions

	Conclusions

	Trajectory Prediction Conditioned on Grid-based Plans
	Introduction
	Contributions

	Preliminaries
	Proposed Approach
	Inferring goals and paths by learning rewards
	Reward model
	Trajectories conditioned on plans

	Experimental Evaluation
	Datasets
	Metrics
	Comparison with the state of the art
	Ablations
	Runtime
	Qualitative examples

	Conclusions

	Trajectory Prediction Conditioned on Lane-Graph Traversals
	Introduction
	Contributions

	Related Research
	Graph representation of HD maps
	Multimodal trajectory prediction
	Goal-conditioned trajectory prediction

	Formulation
	Trajectory representation
	Representing HD maps as lane graphs
	Output representation

	Proposed Model
	Encoding scene and agent context
	Discrete policy for graph traversal
	Decoding trajectories conditioned on traversals

	Experimental Evaluation
	Experimental settings
	Metrics
	Comparison to the state of the art
	Encoder ablations
	Decoder ablations

	Conclusions
	Appendix: Implementation details
	Map representation
	GRU encoders
	Agent-node attention
	GNN layers
	Policy header
	Trajectory decoder
	Training
	Ranking Clustered Trajectories
	Decoder ablation details

	Predicting Driver Behavior during Control Transitions
	Predicting Take-Over Readiness of Drivers using Vision Sensors
	Introduction
	Contributions

	Related Research
	Driver behavior analysis
	Driver distraction estimation
	Take-over time and quality studies

	Experimental Setup
	Human ratings for observable driver readiness
	Protocol for collecting ratings
	Dataset Description
	Normalization of ratings
	Observable Readiness Index
	Inter-rater agreement analysis
	Qualitative analysis of ratings

	Model for Estimating ORI
	Frame-wise feature extraction
	Correlation of extracted features with ORI
	Proposed LSTM model

	Experimental Evaluation
	Metrics and baselines
	Results
	Inference time

	Qualitative analysis
	Effect of key-frame weighting model
	Effect of feature streams

	Conclusions

	Predicting Take-over Time for Autonomous Driving with Real-World Data
	Introduction
	Contributions

	Related Research
	Vision based driver behavior analysis
	Take-over time analysis in autonomous driving
	Take-over time prediction for autonomous driving

	Dataset & Labels
	Controlled Data Study (CDS)
	Annotation
	Data Augmentation

	Models for Predicting Takeover Times
	Frame-wise feature extraction
	LSTM models for take-over time prediction

	Experimental Evaluation
	Comparison of LSTM models for TOT prediction
	Effect of data augmentation and transfer learning
	Effect of hand, gaze and foot activity features
	Quantitative results on test set
	Qualitative examples

	Conclusions

	Conclusions
	Bibliography

