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A B S T R A C T

By means of 3D-DEM cyclic simple shear simulations at constant volume, this paper analyzes the evolution of
the internal structure during cyclic liquefaction of dense granular media. Upon liquefaction, the granular system
undergoes a fast transition to a regime where the fluid-like shear strain develops. This regime is characterized
by low shear modulus, decreasing dilatancy, and reduced shear viscosity. We analyze the internal structure by
means of several micro- and meso-scale descriptors, including coordination number, fabric anisotropy, number
of clusters, a fraction of maximum cluster size, and a percolation index. We select a typical post-liquefaction
cycle in which we highlight several particular states that naturally divide the cycle into different periods.
During liquefaction, the system deforms significantly with an enhanced number of binary collisions initially
and particle clusters subsequently. Both the coordination number and percolation index increase while fabric
anisotropy oscillates. The fluid-like to solid-like transition is characterized by a well-defined value of the
coordination number (3.6) when the particles percolate across the system. From the analysis of the micro-
and meso-scale behaviors, we further discuss two possible criteria for exiting the fluid-like state based on the
excess pore pressure.
1. Introduction

The cyclic liquefaction of saturated soils is a topic of paramount
importance because of its widespread engineering applications. It usu-
ally occurs in response to sustained cyclic shearing of small amplitude
and transitions to a fluid-like state with catastrophic loss of shear
strength and large irreversible strains (Castro, 1975; Ishihara, 1993).
Conventional triaxial or simple shear tests on either constant-volume
or saturated undrained condition of soil samples have been performed
to study these phenomena, inducing extensive investigation on the liq-
uefaction triggering (Ishihara, 1993; Wu et al., 2004; Kokusho, 2013),
effects of initial and loading conditions on liquefaction resistance (Vaid
and Sivathayalan, 1996; Yang and Sze, 2011; Vargas et al., 2020),
and reliquefaction (Yamada et al., 2010; Fardad Amini et al., 2021),
among others. As most conventional laboratory studies only involve
the measurements of stresses and strains at the sample scale, the lique-
faction induced by cyclic shearing is inferred from these macroscopic
quantities.

Obviously, the liquefaction behavior as modeled from the measured
variables at the sample scale reflects the internal structure at the micro
and meso scales. There is a growing interest in the micromechanics of
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granular materials, mostly from the grain-scale approach, for a better
understanding of the soil response. It has the potential to found the soil
behavior on fundamental research by deriving coarse-grained laws from
the collective behavior of grains (Radjaï et al., 2017). This renewed
interest in micromechanics is not just a luxury; it reflects a real need
for enhanced understanding and predictive modeling of soils (Mitchell
et al., 2005). The micromechanical approach can provide valuable
insights and physical grounds for developing physics-based constitutive
models. Undrained cyclic shearing of isotropically consolidated sand is
an example of complex behaviors that leads to degradation of mean
effective stress. In particular, each loading reversal following a dilative
phase involves a large amount of contraction that significantly reduces
the mean effective stress (Ishihara et al., 1975). Several constitutive
models are proposed to reproduce this phenomenon by properly for-
mulating the dilatancy (e.g., Papadimitriou et al., 2001; Dafalias and
Manzari, 2004; Zhang and Wang, 2012; Tasiopoulou and Gerolymos,
2016; Liao and Yang, 2021). However, the micromechanical origins of
this phenomenon and thus the validity of the mechanisms considered
in constitutive models have so far remained unexplored. In addition,
cyclic liquefaction usually occurs at very small mean effective stress
266-352X/© 2022 Elsevier Ltd. All rights reserved.
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and with significant shear strain accumulation. The constitutive models
that can simulate such large deformations in the plasticity framework
assume that significant plastic shear strains occur when the mean
effective stress is low and thus shear stiffness is small (Elgamal et al.,
2003; Wang et al., 2014; Barrero et al., 2020; Yang et al., 2022a; Liao
and Yang, 2021). Although this approach has met particular success,
there remain open questions regarding the quantitative description of
the transition between solid-like and fluid-like states and the effective
viscosity of the liquefied state.

Answering these questions needs a detailed investigation of the
evolution of granular microstructure under cyclic shearing. Some spe-
cial experimental techniques have been used in cyclic shearing, such
as scanning electronic microscopy (Ni et al., 2021), to correlate the
initial fabric to liquefaction resistance. However, the insight gained
from laboratory studies can be significantly enhanced by using the
widely adopted numerical approach of discrete element method (DEM).
The particle dynamics DEM (Cundall and Strack, 1979) simulates mo-
tions of the particles by accounting for frictional contact interactions
between particles (Radjaï and Dubois, 2011), allowing thereby the
investigation of the mechanical response of granular materials from
both macroscopic and grain-scale perspectives. Its application to cyclic
liquefaction dates back to Ng and Dobry (1994). Several subsequent
DEM studies have revealed that cyclic liquefaction is accompanied by
a sudden falloff of the coordination number (Sitharam, 2003; Wang
and Wei, 2016; Wei et al., 2018; Barrero et al., 2018) and the so-
called redundancy index (Huang et al., 2018; Martin et al., 2020), large
rearrangements of granular fabric (Huang et al., 2018; Yang et al.,
2021; Rahman et al., 2021), a fragile force network (Wei et al., 2018;
Huang et al., 2019a; Yang et al., 2021) and a rolling contact fraction
exceeding the sliding contact fraction (Gu et al., 2020). Some other
studies (Huang et al., 2019b; Martin et al., 2020) have focussed on
the mesoscale structures such as loop-like clusters encompassed by
contacts, leading to the observation that the largest particle cluster
declines in both size and dimensions in the liquefaction state.

Most DEM studies of liquefaction mainly focus on the process of
entering the liquefaction state, i.e., the transition from a solid-like
state to a fluid-like state. This transition during cyclic shearing occurs
instantaneously. Before entering the liquefaction state, most contacts
in the granular system are lost, and the contact network collapses,
thereby inducing large fluctuations of the internal structure. Because
of the abrupt nature of these changes, the transition from the solid-like
state to the fluid-like state is not well defined from the viewpoint of the
microscale and mesoscale descriptors (Yang et al., 2021). An alternative
approach, for not very loose samples, consists in assessing the exit
from the fluid-like state in cyclic shearing, i.e., the transition from the
fluid-like state back to the solid-like state. Some recent studies (Wei
et al., 2018; Huang et al., 2019a,b; Yang et al., 2021) have analyzed
the reconstruction of the internal structure of the liquefied granular
system from the microscale and mesoscale descriptors. For example,
in a two-dimensional (2D) DEM study, Wei et al. (2018) pointed out
a critical coordination number value of 2.0 as the transition point
between flow state and hardening state under shearing and suggested a
unique hardening state line defined by void-based fabric anisotropies.
But the link between these variables and the macroscopic behavior
requires further investigation.

In this paper, we use three-dimensional (3D) DEM simulations to
perform constant-volume cyclic simple shearing of granular materials
with the goal of obtaining a quantitative description of microstructural
evolution during cyclic liquefaction and its correlation with macro-
scopic variables. Samples of spherical particles are prepared under
isotropic compression and then cyclically sheared for a long time
both in pre-liquefaction and post-liquefaction periods. We first present
the details of sample preparation and simulation protocols. Then, we
analyze the transition between the solid-like and the fluid-like states
from the macroscopic perspective. The internal structure evolution
is then explored via several microscale and mesoscale descriptors to
highlight the transition between the fluid-like and the solid-like states.
Finally, we discuss the mechanisms underlying a stress-based criterion
2

for exiting the fluid-like state.
2. Numerical procedure

An in-house 3D particle dynamics DEM program, named GRFlow3D
(Mutabaruka, 2013), is used in this work. The granular system is
simulated using spheres interacting via soft-contact laws. The contact
interactions between spheres consist of normal collision, tangential
sliding, rolling, and torsion. The key quantity is the elastic deflection
between particles, from which the corresponding normal force is de-
termined using a linear spring–dashpot model. The simulation involves
two stages: (1) building a particle assembly via isotropic compression
and (2) applying cyclic simple shearing to the assembly under constant
volume conditions.

The sample consists of 8000 spherical particles with weak polydis-
persity, i.e., 𝑑max∕𝑑min = 2 where 𝑑min = 1 mm and 𝑑max refer to the

inimum and maximum particle diameters, respectively. Between 𝑑min
nd 𝑑max, the particle size follows a uniform distribution of particle
olumes, thus the number of particles belonging to a size class of
iameter 𝑑 is proportional to 𝑑−3 (Mutabaruka et al., 2019). When
he particles are generated, they are placed randomly on a three-
imensional (3D) sparse lattice to avoid overlap. This 3D lattice is
ontained in a rectangular biperiodic cell whose top and bottom sides
re rigid walls, and four lateral sides are periodic boundaries. Then,
he sample is compressed isotropically by translating the six sides of
he cell. The gravity is set to zero. The tangential friction coefficient 𝜇𝑡
s tuned to prepare a sample with a targeted void ratio 𝑒 and then is
et to 0.5 in the subsequent shearing process. A simple computational
rocedure modified from Thornton (Thornton, 2015) is adopted to
repare samples comparable with those in experiments, as detailed
n Yang et al. (2021). Following this procedure, setting 𝜇𝑡 = 0 and 0.5
ill lead to samples with void ratios of 0.561 and 0.725, respectively,
sually deemed close to the lowest accessible void ratio 𝑒min and the
argest accessible void ratio 𝑒max (Kuhn et al., 2014). Fig. 1(a) displays
n isotropically compressed sample with 𝑒 = 0.626 or relative density
r ≃ 59 % under a mean pressure 𝑝0 = 100 kPa.

During cyclic shearing, the sample volume is maintained constant
y fixing four lateral sides and the bottom wall while keeping the
ample height constant. Cyclic simple shearing is imposed by moving
he top wall horizontally at a constant velocity 𝑣𝑥 along the 𝑥 axis (see
ig. 1(b)). This numerical setting with periodic lateral side boundaries
s different from the Cambridge- or NGI-type simple shear devices; here
he lateral sides of the sample are not rotated by horizontal movement
f the top wall. To eliminate slippage between the walls and the sample,
layer of particles is glued to the top and bottom walls as indicated

y the dark gray spheres in Fig. 1(b). The shear direction is reversed
ach time the magnitude of shear stress 𝜏, extracted from the calculated
tress tensor (see below), reaches a target amplitude 𝜏amp. The total
train needed to reach this amplitude is not constant and depends on
he state of liquefaction, as we shall see below.

To choose the shear rate, we consider the inertial number 𝐼 =
�̇�𝑑

√

𝜌∕𝑝, where �̇� = |𝑣𝑥|∕ℎ is the shear strain rate with ℎ the sample
height, 𝜌 the solid density of the particles, and 𝑑 the mean particle
diameter. The inertial number represents the shear rate normalized
by the relaxation rate under the action of the average pressure 𝑝.
The shear is practically quasistatic if 𝐼 < 10−3 (MiDi, 2004). During
constant-volume cyclic shearing, 𝐼 varies due to the changes of 𝑝.

hen the sample liquefies, 𝑝 degrades to vanishingly small values due
o unjamming, and hence 𝐼 may increase beyond 10−3 whatever its
alue before unjamming. In this study, we set 𝑣𝑥 = 0.01 m∕s so that

�̇� ≃ 0.38 s−1, which is consistent with Martin et al. (2020). For this
choice, the simulation is faster while shearing is quasistatic during
jammed (solid-like) states. The higher values of 𝐼 at unjamming occur
as a result of unstable deformation and sudden decrease of 𝑝, which
is an intrinsic feature of cyclic liquefaction only and not influenced by
the loading rate.

The simulation parameters are given in Table 1. The rolling and
torsion stiffness and friction coefficients are set to small nonzero values
in order to make the rotations slightly dissipative as a simple way
to account for the effects due to aspherical particle shape or surface

roughness (Radjaï and Dubois, 2011).



Computers and Geotechnics 148 (2022) 104800M. Yang et al.
Fig. 1. Illustration of particle arrangements and boundary conditions for a sample composed of 8000 particles: (a) at the end of sample preparation; (b) during constant-height
cyclic shearing. The dark gray particles in (b) are glued to the top and bottom walls of the simulation cell.
Table 1
DEM parameters.

Description Value

Particle density, 𝜌 2650 kg∕m3

Normal stiffness, 𝑘𝑛 106 N∕m
Normal viscosity, 𝑐𝑛 1.15 kg∕s
Tangential stiffness, 𝑘𝑡 0.8𝑘𝑛
Tangential viscosity, 𝑐𝑡 0.2𝑐𝑛
Tangential friction coefficient, 𝜇𝑡 0.5
Rolling stiffness, 𝑘𝑟 0.1𝑘𝑛
Rolling viscosity, 𝑐𝑟 0.05𝑐𝑛
Rolling friction coefficient, 𝜇𝑟 0.1
Torsion stiffness, 𝑘𝑜 0.1𝑘𝑛
Torsion viscosity, 𝑐𝑜 0.05𝑐𝑛
Torsion friction coefficient, 𝜇𝑜 0.1

3. Macroscopic response

The stress tensor 𝝈 of the granular packing is determined from the
contact forces and particle positions over a selected volume 𝑉 :

𝝈 = 1
𝑉

∑

𝑐∈𝑁𝑐

𝒍𝑐 ⊗ 𝒇 𝑐 (1)

where 𝒍𝑐 is the branch vector connecting the centers of two particles for
interior contact or connecting the particle center and the contact point
for exterior contact, 𝒇 𝑐 is the contact force, ⊗ denotes the dyadic tensor
product, and the summation runs over all the contacts 𝑁𝑐 belonging to
𝑉 . In the simple shear test, the shear stress 𝜏 and mean effective stress
𝑝 are given by 𝜏 = 𝜏𝑧𝑥 and 𝑝 = (𝜎𝑥𝑥 + 𝜎𝑦𝑦 + 𝜎𝑧𝑧)∕3, respectively.

Although pore water is not explicitly incorporated in these DEM
simulations, the excess pore pressure in the equivalent truly undrained
system can be deduced from the variation 𝛥𝑢 = 𝑝0 − 𝑝 of the pore
pressure, which is simply the amount of load not supported by the
particles and therefore supported by the saturating fluid. The excess
pore pressure ratio is given by 𝑟𝑢 = 𝛥𝑢∕𝑝0 = 1−𝑝∕𝑝0. The shear strain 𝛾
is the ratio 𝑥𝑤∕ℎ, where 𝑥𝑤 is the cumulative horizontal displacement
of the top wall. The number of cycles 𝑁 is used as a time variable
instead of running time 𝑡, where a fractional cycle number is defined by
interpolation between two successive cycles. A cycle starts with 𝛾 = 0,
approaches a quarter when 𝛾 reaches the positive amplitude, becomes
a half when 𝛾 drops back to zero, and attains the third quarter with
negative value of 𝛾.

Fig. 2 displays the simulated macroscopic response of a dense sam-
ple subjected to constant-volume cyclic simple shearing, including the
stress path of shear stress 𝜏 versus mean effective stress 𝑝, and the shear
stress–strain curves. The simulation starts from 𝑝 = 100 kPa, 𝜏 = 0 kPa,
3

and 𝛾 = 0. As 𝜏 oscillates between −𝜏amp and 𝜏amp, 𝑝 declines at an
increasing rate and then decreases significantly upon reverse loading
after a dilative phase (𝑝 increasing) while the shear strain develops at
the same time. When 𝑝 drops below 1 kPa or 𝑟𝑢 exceeds 0.99, the system
is deemed liquefying or staying in the fluid-like state (Shamoto et al.,
1997) and this threshold is considered to be a simple and practical
liquefaction criterion (Ishihara, 1993). The first time that 𝑟𝑢 reaches
0.99 is named ‘initial liquefaction’, and the shear process before and
after this point are referred to as pre- and post-liquefaction periods,
respectively. In the post-liquefaction period, the stress path gets trapped
in a typical ‘butterfly’ shape and the corresponding stress–strain loops
keep expanding at each cycle — a manifestation of the so-called ‘cyclic
mobility’.

A post-liquefaction loading cycle, named cycle C, is highlighted in
Fig. 2, where the stress path follows the ‘butterfly’ shape and 𝛾 oscillates
at an amplitude of ≃ 3%. To explore this post-liquefaction cycle, several
particular states are selected to divide this cycle into smaller intervals.
In particular, S1 refers to the state with 𝜏 = −𝜏amp; S2 refers to the state
when 𝜏 changes its sign from negative to positive; S3 is defined as the
state when 𝑝 approaches its local minimum 𝑝min, after which 𝑝 starts
to increase, corresponding to the phase transformation (PT) point; S4
is the state when 𝑝 increases to 1 kPa (or 𝑟𝑢 decreases back to 0.99),
i.e., the practical stress-based criterion for exiting the fluid-like state.
S5, S6, S7, and S8 are similar to S1, S2, S3, and S4, respectively, but in the
other half of the selected cycle. The state S9 ends this shearing cycle. It
should be noted that we do not mark the state representing the entrance
in the fluid-like state (i.e., 𝑟𝑢 increasing to 0.99), which occurs between
S1 and S2 or S5 and S6. This is because upon reverse shearing from
S1 or S5, the initially well-connected contact network ‘instantaneously’
breaks down at such a level of 𝑟𝑢, inducing network collapse prior to
the fluid-like state. The corresponding state for 𝑟𝑢 = 0.99 is very close
to S2 or S6.

Fig. 2(b) shows that most of the shear strain happens in the fluid-like
state (between S2 and S4 or S6 and S8), which is referred to as ‘fluid-
like shear strain’ (Shamoto et al., 1997). This observation is consistent
with laboratory findings and provides here a basis for mechanics-based
modeling of post-liquefaction shear strain (Elgamal et al., 2003; Zhang
and Wang, 2012; Barrero et al., 2020). For example, Elgamal et al.
(2003) proposed that at low confinement levels near liquefaction, a
constant-volume perfectly plastic phase to be activated and the stress
state remains at PT (S3 or S7), until a user-defined octahedral shear
strain increment is accumulated. However, Fig. 2(b) indicates that
the majority of the fluid-like shear strain is not developed at PT but
between S3 and S4 or between S7 and S8, namely after PT and while 𝑝
remains quite low. Our finding also contradicts Shamoto et al. (1997)
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Fig. 2. Macroscopic response of a constant-volume cyclic simple shear test on a dense sample for 𝑒 = 0.626 and 𝑝0 = 100 kPa: (a) stress path; (b) stress–strain response. The
highlighted post-liquefaction cycle is named cycle C.
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and Zhang and Wang (2012) who assumed the development of fluid-
like shear strain at zero effective confining stress as the inset window
of Fig. 2(a) does not show the existence of zero 𝑝. In fact, the granular
system does go through a collisional phase with a fragile contact
network but does not completely lose its strength (Ishihara, 1993), as
reflected also by the chaotic stress path in the inset window. We adopt
S4 or S8 (corresponding to 𝑟𝑢 = 0.99) roughly as the exit criterion from
his chaotic region, implying the regain of a stable contact network.
ne may question this choice for exiting the fluid-like state given that

he inset window of Fig. 2(a) does not seem to correspond to anything
ritical near S4 or S8. While this looks to be the case in the macroscopic
esponse, we will return to this point when we present the simulation
ata on the internal structure evolution of the granular system in the
iquefaction region.

It is recognized that a granular system transitions from solid-like
o fluid-like behavior once it liquefies by developing a rapid and
ignificant accumulation of shear strain with minimal change in the
tress state. It is not clear whether at this state the system flows
ike a fluid sustaining no shear stress in the limit of vanishing shear
ate, namely ‘zero-stress flow’ (Heussinger and Barrat, 2009), or it still
resents a finite shear stress value (‘yield-stress flow’) but not large
nough to maintain a jammed state. One should not confuse ‘yield-
tress flow’ here with ‘hardening state’ described in some previous
tudies (Shamoto et al., 1997; Zhang and Wang, 2012; Wei et al.,
018) since the latter refers to solid-like states. In our nearly quasi-
tatic simulations, the evolution of 𝜏 and 𝑝 in the post-liquefaction
ycle C is presented in Fig. 3, with the interesting region near S2
ighlighted in the inset. Consistently with the inset to Fig. 2(a), 𝑝 does
ot vanish thoroughly. Between S2 and S3, 𝜏 fluctuates mildly around
ero, implying the alternate appearance of zero-stress flow and yield-
tress flow. This alternating behavior disappears after S3 as 𝜏 starts then
o increase steadily. One can thus conclude that the yield-stress flow
ather than the zero-stress flow dominates in liquefaction, producing
ost of the shear strain that is developed.

In each post-liquefaction cycle, 𝑝 tends to zero in the fluid-like state,
ith its lowest value denoted by 𝑝min. Fig. 4 displays the variation of
min reached in post-liquefaction period for cyclic shear simulations
f three samples with different values of the void ratio ‘cyclic stress
atio’ CSR = 0.25, defined as the ratio 𝜏amp∕𝑝0. We see that the looser
amples show slightly lower values of 𝑝min, and 𝑝 never vanishes. For
he three samples, 𝑝min decreases during the first several cycles of the
ost-liquefaction period, but then it nearly levels off.

Regarding the state change of the granular system approaching
fluid-like state, one may question its rate-dependent nature. Some

aboratory experiments (Hwang et al., 2006; Chen et al., 2013, 2016)
ave studied the fluid characteristics of liquefying sand and identified it
s a shear-thinning non-Newtonian fluid characterized by a decreasing
4

Fig. 3. Evolution of shear stress and mean effective stress in cycle C as a function of
normalized time 𝛩 = 360𝑡∕𝑇 where 𝑇 is the time period of the shear cycle.

Fig. 4. Variation of the lowest pressure 𝑝min reached in the post-liquefaction period
against the number of cycles from initial liquefaction 𝑁 −𝑁IL for three samples with
ifferent void ratios all subjected to CSR = 0.25.

iscosity with increasing shear rate. To explore the effect of shear rate
n the macroscopic response near the fluid-like to solid-like transition,
e recorded from the post-liquefaction cycle C a state A soon after S1
nd then we sheared the dense sample for a range of different shear
ates. The corresponding stress–strain response and stress ratio versus
ean stress are presented in Fig. 5. A smaller shear rate induces a

arger shear strain development in fluid-like state (between S2 and S3)
nd a lower 𝑝min. Near and after S4 (𝑝 ≃ 1 kPa), the stress ratio 𝜏∕𝑝

levels off for the smaller shear rates but not for the highest rate. This
implies that the system sheared for 𝑣𝑥 = 0.1 m∕s has not yet reached the
typical butterfly shape at 𝑆 since its values are not yet steady (for a
4
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Fig. 5. Effect of shear rate on the (a) stress–strain response and (b) stress ratio versus mean stress in the first half of post-liquefaction cycle C.
unique value of 𝜏∕𝑝 preserved along the butterfly shape). Interestingly,
the shear rate does not noticeably affect the saturated value of 𝜏∕𝑝.

Generally, the granular system encompasses both solid-like and
fluid-like features, either of which is dominant in a certain loading
period. From the perspective of solid mechanics, the shear modulus
𝐺 and dilatancy 𝐷 are the most interesting properties. The shear
modulus is defined as the ratio 𝛥𝜏∕𝛥𝛾 of shear stress increment 𝛥𝜏
and shear strain increment 𝛥𝛾. However, estimating dilatancy 𝐷 is
quite challenging and requires special techniques (e.g., Martin et al.,
1975; Hu et al., 2020) in the constant-volume simulations, especially
in the liquefaction state. It is defined as the plastic volumetric strain
increment induced by a plastic shear strain increment:

𝐷 =
d𝜀p

v
| d𝛾p

|

=
d𝜀v − d𝜀e

v
| d𝛾 − d𝛾e

|

, (2)

where the superscripts p and e refer to plastic and elastic, respectively,
and 𝜀v is the volumetric strain. Under the constant-volume condition
(d𝜀v = 0), we may neglect d𝛾e, which is significantly smaller than
plastic shear strain. Hence, the expression of 𝐷 can be further simplified
as

𝐷 = −
d𝜀e

v
| d𝛾 − d𝛾e

|

≃ −
d𝜀e

v
| d𝛾|

= −
d𝑝

𝐾e
| d𝛾|

(3)

where 𝐾e is the elastic bulk modulus of the granular assembly. Previous
studies based on the Hertz contact law (Agnolin and Roux, 2007; Khalili
et al., 2017) suggest a power relation between 𝐾e and 𝑝, i.e., 𝐾e ∝ 𝑝𝑛,
with the exponent 𝑛 having a value between 0.33 and 0.4. In the case
of the linear contact law, one expects 𝑛 = 0, i.e., independence of
pressure (Pouragha and Wan, 2018). But there is a dependence for large
deformations due to new contacts gained as the pressure increases,
i.e., a dependence on the contact density (the number of contacts per
unit volume). Since the contact density does not change significantly,
this dependence is neglected in estimating 𝐷. Thus one can deduce
from Eq. (3) the following expression:

𝐷 ∝ 𝐷′ =
d𝑝
| d𝛾|

. (4)

The flow behavior can also be described in terms of effective shear
and normal viscosities defined by 𝜂𝑡 = 𝜏∕�̇� and 𝜂𝑛 = 𝜎𝑛∕�̇�, respectively,
where 𝜎𝑛 is the vertical effective stress. These effective viscosities are
particularly relevant to the liquefied states and it is expected that they
are small in the fluid-like states and increase in the solid-like states.
The viscous and frictional points of view for the description of granular
flows are equivalent as recently highlighted by both experiments and
numerical simulations (Boyer et al., 2011; Amarsid et al., 2017), but
they have never been used for liquefaction. The effective viscosities can
be normalized by 𝜌𝑑2�̇�, which represents a reference viscosity defined
from the natural physical quantities 𝜌, 𝑑 and �̇� of the system (Amarsid
et al., 2017):

𝑐𝑡 =
𝜂𝑡 , 𝑐𝑛 =

𝜂𝑛 . (5)
5

𝜌𝑑2�̇� 𝜌𝑑2�̇�
The variations of 𝐺, 𝐷′, 𝑐𝑡, and 𝑐𝑛 against 𝑝 are presented in Fig. 6,
with cycle C highlighted with the same color codes as in Fig. 2. As
expected, 𝐺 decreases significantly when the sample liquifies (𝑝 ≤
1 kPa), corresponding to a fluid-like behavior. Compared with the
values in non-liquefied region, 𝐷′ also exhibits a diminishing trend
when 𝑝 ≤ 1 kPa, except in the first part of reverse shearing (from S1
to S2 for example) presenting a large amount of contraction. The much
smaller values of 𝐺 and 𝐷′ in the fluid-like region (𝑝 ≤ 1 kPa) compared
with those outside this region support the proposition of Barrero et al.
(2020) to significantly reduce both plastic modulus and dilatancy for
simulating liquefaction-induced shear strains.

Regarding the effective viscosities, we observe in Fig. 6(c) and
(d) variations over more than five orders of magnitude. 𝑐𝑡 is a linear
function of 𝑝 for 𝑝 > 0.1 kPa in the loading scenario, where the behavior
is solid-like. For 𝑝 < 0.1 kPa, 𝑐𝑡 falls off dramatically as 𝑝 declines,
and remains nearly constant in the fluid-like state. Unlike 𝑐𝑡, 𝑐𝑛 always
presents a strongly linear relation with 𝑝. The proportionality of 𝑐𝑡 and
𝑐𝑛 with 𝑝 in the solid-like state is consistent with the numerical findings
of Amarsid et al. (2017) and Vo et al. (2020). Indeed, dimensional
analysis implies 𝑐𝑡 = 𝜇∕𝐼2 and 𝑐𝑛 = 1∕𝐼2 where 𝜇 = 𝜏∕𝑝 is the apparent
friction coefficient. While variations of 𝜇 can affect the relation between
𝑐𝑡 and 𝑝, 𝑐𝑛 mainly depends on 𝑝. For a given shear rate and large
values of 𝑝, 𝜇 is nearly constant and equal to the critical-state value
𝜇𝑐 of the internal friction coefficient. Hence, 𝑐𝑡 ≃ 𝜇𝑐∕𝐼2 ∝ 𝑝. Fig. 6(c)
clearly shows that the effective granular shear viscosity can be used as
a marker of transition between fluid-like and solid-like states.

The simulated data for different shear rates were observed to be
different in Fig. 5(b). We find that the same data collapse well in
the quasi-static range (𝐼 < 10−3) when considered in the parametric
space of 𝑐𝑡 and 𝐼 , as shown in Fig. 7. The black fitting line confirms
a power-law relation between 𝑐𝑡 and 𝐼 , as discussed in the previous
paragraph. They differ, however, for 𝐼 > 10−3 where increasingly
higher values of 𝐼 and lower values of 𝑐𝑡 are reached as the shear rate
increases, supporting thereby the shear-thinning nature of the flow in
the fluid-like state.

4. Micro- and meso-scale response

We now consider two microscopic and two mesoscale quantities to
represent the internal structure of the granular system, focusing on
their evolutions prior to and after the transition between solid-like
and fluid-like states in the post-liquefaction period. The two micro-
scopic descriptors are the geometrical coordination number 𝑧g and
fabric anisotropy 𝑎𝑐 . 𝑧g is defined as the average number of contacts
per particle excluding floaters (particles without contacts) (Thornton,
2015):

𝑧g =
2𝑁𝑐

0
, (6)
𝑁𝑝 −𝑁𝑝
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Fig. 6. Variations of (a) shear modulus 𝐺 ≃ 𝛥𝜏∕𝛥𝛾, (b) dilatancy 𝐷 ∝ 𝐷′ ≃ −𝛥𝑝∕|𝛥𝛾|, (c) effective normalized shear viscosity 𝑐𝑡, and (d) effective normalized normal viscosity 𝑐𝑛
based on shear strain increment |𝛥𝛾| ≃ 0.001% and �̇� = 0.38 s−1.
Fig. 7. Effect of shear rate on the relation between normalized shear viscosity 𝑐𝑡 and
inertial number 𝐼 .

where 𝑁𝑝 is the number of particles and 𝑁0
𝑝 is the number of floaters. 𝑧g

can approximate the level of static redundancy in the system, namely
the difference between the total number of constraints and the total
number of degrees of freedom. As we use a nonzero resistance to rolling
and torsion at the contacts between particles, each contact contributes
six constraints, i.e. three force components and three moments, which
are the unknowns of the isostatic problem. The isostatic (Roux, 2000)
coordination number based on 6𝑁𝑐 = 6(𝑁𝑝 − 𝑁0

𝑝 ), i.e., by equating
the number of degrees of freedom and the number of constraints,
implies 𝑧g = 2 in our system (Yang et al., 2022b). To reveal the
vectorial nature of the contact network, the deviatoric invariant of
fabric anisotropy tensor was used to quantify the degree of geometrical
anisotropy related to the directional distribution of contact normals 𝒏,
6

namely

𝑎𝑐 = sign(𝑆𝑐 )
√

3
2
𝒂𝑐 ∶ 𝒂𝑐 . (7)

𝒂𝑐 is the fabric anisotropy tensor defined by

𝒂𝑐 =
15
2
(𝝓𝑐 −

1
3
𝑰), (8)

where 𝑰 is the second-order identity tensor and 𝝓𝑐 is the fabric tensor
related to 𝒏 (Oda, 1982):

𝝓𝑐 =
1
𝑁𝑐

∑

𝑐∈𝑁𝑐

𝒏⊗ 𝒏. (9)

𝑆𝑐 is the normalized first joint invariant (Guo and Zhao, 2013) between
the deviatoric stress tensor 𝐬 = 𝝈 − 𝑝𝑰 and fabric anisotropy tensor 𝒂𝑐 ,
given by

𝑆𝑐 =
𝒂𝑐 ∶ 𝐬

√

𝒂𝑐 ∶ 𝒂𝑐
√

𝐬 ∶ 𝐬
. (10)

Generally 𝑆𝑐 quantifies the level of coaxiality between 𝐬 and 𝒂𝑐 , with
𝑆𝑐 = 1.0 corresponding to the case of proportionality.

The mesoscale quantities describe features pertaining to particle
clusters. We define a 𝑘-cluster as a group of touching particles with
their internal contacts bearing a normal force 𝑓𝑛 > 𝑘⟨𝑓𝑛⟩, where ⟨𝑓𝑛⟩ is
the average normal force and 𝑘 is a pre-defined force threshold. Thus,
on one hand, one can come up with the number of 𝑘-clusters denoted
as 𝑁cluster, and the fraction of the maximum 𝑘-cluster size (Martin
et al., 2020) with respect to the total number of particles, denoted
as 𝑓MC. On the other hand, one can compare the dimensions of the
maximum 𝑘-cluster, namely force transmission network for 𝑘 > 0, with
the corresponding dimensions of the granular system, from which the
percolation index is derived as 𝜉𝑖∕𝐿𝑖 (𝑖 = 𝑥, 𝑦, 𝑧 in 3D) (Bi et al., 2011;
Huang et al., 2019b). Here 𝜉𝑖 and 𝐿𝑖 refer to the dimensions of the
largest 𝑘-cluster and the granular system along 𝑖-direction, respectively.
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Fig. 8. Evolutions of micro- and meso-scale descriptors in the whole cyclic shearing period: (a) coordination number 𝑧g; (b) fabric anisotropy 𝑎𝑐 ; (c) particle 𝑘-cluster with 𝑘 = 1;
d) percolation index 𝜉𝑧∕𝐿𝑧 with 𝑘 = 1.
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n the following, we set 𝑘 = 1, namely the strong force transmission
etwork (Radjai et al., 1998). Given the in-sync variations of the three
ercolation indices, only 𝜉𝑧∕𝐿𝑧 is presented for simplicity.

Fig. 8 displays the evolutions of the four types of descriptors in
he whole cyclic shearing process. The states of |𝜏| = 𝜏amp and 𝜏 ≃ 0
re highlighted by markers. According to the initial liquefaction (IL),
amely the first time that 𝑟𝑢 reaches the limit 0.99, the process is
ivided into pre- and post-liquefaction periods. All these quantities
hange mildly in the pre-liquefaction period and oscillate significantly
n the post-liquefaction period due to the transition between solid-
ike and solid-like states. During the whole process, the solid-like state
t |𝜏| = 𝜏amp shows an overall decrease in 𝑧g, an increase in 𝑎𝑐 , a
ecrease in the number of clusters, and a decrease in the maximum
luster size with percolation index nearly unchanged and equal to 1.
he liquefaction states associated with 𝜏 ≃ 0 in the post-liquefaction
eriod correspond to low values of 𝑧g and percolation index, implying
fluid-like behavior.

Fig. 9 presents evolutions of these micro- and mesoscale quantities
n the selected post-liquefaction cycle C of Fig. 2. Upon reverse loading
rom S1 (or S5) to S2 (or S6), a sudden drop in 𝑧g is observed in
ig. 9(a), implying the collapse of the geometrical contact network.
his is consistent with the rise in the number of clusters in Fig. 9(c)
hich indicates more isolated smaller particle clusters. The vanishing
f 𝑓MC and 𝜉𝑧∕𝐿𝑧 in Figs. 9(c) and (d), respectively, further confirms
he absence of a percolating strong force-transmitting network when
he system initially falls into liquefaction. The computed value of
𝑐 in Fig. 9(b) also oscillates significantly, indicating the out-of-sync
non-proportionality) between internal structure and external loading,
eaning that the system is in a state that is unable to maintain a solid

tructure. Since the reverse loading induces the instability so rapidly,
t is not reasonable to introduce critical values of micro and meso
7

escriptors to characterize the solid-like to fluid-like transition. s
Following the reverse loading after S2 (or S6), the liquefied granular
ystem tends to reconstruct its contact network gradually. This process
s featured by increasing 𝑧g, oscillating but overall decreasing 𝑎𝑐 (in
bsolute value), decreasing 𝑁cluster, and increasing 𝑓MC, as shown in
ig. 9. The phase transformation state (minimum 𝑝 at S3 or S7) is
ot associated with the minimum of 𝑧g, where the former lags behind
he latter, contradicting the observations in some monotonic shearing
tudies of Barnett et al. (2020) and Rahman et al. (2021). This might
e due to the collapsing contact network near these states where
0
𝑝 ∕𝑁𝑝 noticeably affects the relation between 𝑝 and 𝑧g: 𝑝 ∝ 𝑧g(1 −
0
𝑝 ∕𝑁𝑝)⟨𝑙𝑓𝑛⟩ (Yang et al., 2021). As we shall see below, the minimum

alue of pressure corresponds to the isostatic value 𝑧g = 2. A quick
ncrease of 𝑧g occurs from S2, where 𝑧g is below 2, to S3, where 𝑧g = 2.
his increase of 𝑧g despite a decrease of 𝑝 indicates the complexity of
onlinear microstructural changes in the liquefaction state. The gain of
ontacts is accompanied by a change of sign of 𝑎𝑐 (rotation of the fabric
ensor) and its decrease in absolute value. This observation clearly
hows that the isostatic coordination number plays a key role in cyclic
hearing of granular materials.

Slightly after 𝛩 = 90◦ or 𝛾 = 0, 𝑎𝑐 , 𝑓MC, and 𝜉𝑧∕𝐿𝑧 present an
ncreasing trend while 𝑁cluster decreases more rapidly. This signals
he stable formation of interconnected network (Huang et al., 2019a)
tarting to propagate across the whole system. The practical criterion
𝑢 = 0.99 to exit the fluid-like state (S4 or S8) corresponds to a local
lateau of 𝑧g (≃ 3.6), where the largest force transmission network
ercolates across the granular system from both compressive and ex-
ensional directions, indicating a full regain of contact network. But
igs. 9(a) and (d) suggest that the fluid-like to solid-like transition
appens earlier than S4 or S8, questioning the choice of 𝑟𝑢 = 0.99. We
ill return to this issue later.

By comparing Figs. 9(a) and (d), one can observe certain correlation
n the evolutions of 𝑧g and 𝜉𝑧∕𝐿𝑧, especially near the transition between

olid-like and fluid-like states. Fig. 10 presents 𝜉𝑧∕𝐿𝑧 vs 𝑧g in the cyclic
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Fig. 9. Evolutions of micro- and meso-scale descriptors in the post-liquefaction cycle C: (a) coordination number 𝑧g; (b) fabric anisotropy 𝑎𝑐 ; (c) particle 𝑘-cluster with 𝑘 = 1; (d)
percolation index 𝜉𝑧∕𝐿𝑧 with 𝑘 = 1.
Fig. 10. Percolation index 𝜉𝑧∕𝐿𝑧 with 𝑘 = 1 versus coordination number 𝑧g during the
cyclic shearing (colored points come from the post-liquefaction cycle C).

shearing process. The coincidence between 𝑧g ≃ 3.6 and abrupt jump of
𝜉𝑧∕𝐿𝑧 to 1 confirms the claim that 𝑧g ≃ 3.6 is the critical value for the
percolation of the contact network across the granular system (Yang
et al., 2021, 2022b). This allows the use of 𝑧g as a simple criterion to
judge whether the granular system is able to provide the geometrical
contact network supporting significant force transmission.

Besides the aforementioned descriptors, Fig. 11 presents the particle
connectivity diagram expressing the distribution of fractions 𝑃𝑐 of
particles with exactly 𝑐 contacts, in the post-liquefaction cycle C. The
states with higher levels of 𝑝 (> 1 kPa), including S1, S4, and S5,
are associated with 𝑃𝑐 distributions having the peak at 𝑐 = 4 and
longer tail for 𝑐 > 4 – the common manifestation of a stable contact
network. The onset of liquefaction (S2) occurs with a sudden change in
𝑃𝑐 distribution, exhibiting the highest proportion of floaters (lowest 𝑧g).
It represents the weakest state of the granular system. The continuous
8

Fig. 11. Connectivity diagram expressing the fractions 𝑃𝑐 of particles with exactly 𝑐
contacts in the post-liquefaction cycle C.

shearing brings the system to the collisional regime (near S3) where
the dynamic events such as binary collisions (𝑃1) and unstable chains
(𝑃2) prevail. These events preclude particle clusters (𝑃𝑐≥3) and the
nucleation of the contact work.

5. Linking micro/meso to macro

In the last Section, we discussed the evolutions of micro and meso-
scale descriptors during the fluid-like to solid-like transition, which
present general agreement with the usual stress-based criterion for
liquefaction. In this study, 𝑟𝑢 = 0.99 corresponds to a mean stress
threshold 𝑝th = 1 kPa. Although the choice of 𝑝th or 𝑟𝑢 is arbitrary,
it seems to work in many scenarios (Ishihara, 1993; Kokusho, 2013;
Barrero et al., 2020; Yang et al., 2022a). Nevertheless, its micro- and
meso-scale foundation needs to be clarified.
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Fig. 12. Micro- and meso-scale descriptors versus mean stress during cyclic shearing: (a) coordination number 𝑧g; (b) fabric anisotropy 𝑎𝑐 ; (c) percolation index 𝜉𝑧∕𝐿𝑧. 𝑝th ranges
between 0.05 and 3 kPa.
Fig. 12 shows the variations of micro and meso-scale descriptors
including 𝑧g, 𝑎𝑐 , and 𝜉∕𝐿 against the mean stress 𝑝 during the whole
cyclic shearing, with the post-liquefaction cycle C highlighted. In the
post-liquefaction loading period from S3 (or S7) to S5 (or S9), Fig. 12(a)
indicates a plateau of 𝑧g when 𝑝 ranges between 0.1 and 3 kPa. In the
beginning of this range, the values of both 𝑧g ≃ 3.6 and 𝜉∕𝐿 ≃ 1 reveal
that the contact network is fully rebuilt. But we do not know whether
the internal structure is aligned with the external loading. The inset of
stress path of Fig. 2(a) shows a constant shear stress ratio 𝜏∕𝑝 when
𝑝 evolves from 0.05 kPa. At the same time, we observe an evolving
positive 𝑎𝑐 in Fig. 12(b). These observations contain two implications.
The first implication is that the fabric tensor 𝒂𝑐 and deviatoric stress
tensor 𝐬 are coaxial since 𝑎𝑐 is positive. The second implication is
that the internal structure is not fully organized to follow the external
loading since 𝑎𝑐 is not yet saturated. In this range, the number of
contacts increases in the compressive direction but declines in the
extensional direction to maintain a nearly constant 𝑧g and an increasing
𝑎𝑐 , the so-called ‘anisotropic gain/loss of contacts’ (Yang et al., 2021).
When the system exits this range and the stress path evolves along
the butterfly shape, one can see that 𝑎𝑐 does not change noticeably
along the loading and 𝑧g increases slightly, implying that the number
of contacts increases in both compressive and extensional directions,
corresponding to isotropic gain of contacts.

The evolution of the micro and meso-scale variables suggest two
options for the definition of 𝑝th. If one cares about the thorough per-
colation of the contact network, the first instance of 𝜉∕𝐿 ≃ 1 suggests
𝑝th ≃ 0.1 kPa. If one considers the full alignment (proportionality) of
internal structure with the external loading, then the first time 𝑎𝑐 gets
saturated we have 𝑝th ≃ 3 kPa. Both choices of 𝑝th are associated with
the same value of 𝑧g.

Table 2 summarizes the micro/meso/macro-scale meanings of the
particular states in a post-liquefaction cycle. While the phase trans-
formation state (S and S ) is clearly defined as the transition from
9
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Table 2
Summary of the meanings of the selected particular states in the post-liquefaction cycle
C.

State ID Micro Meso Macro

S1, S5 & S9 Highest 𝑧g & 𝑎𝑐 𝜉𝑧∕𝐿𝑧 ≃ 1 |𝜏| = 𝜏amp

S2 & S6 Lowest 𝑧g 𝜉𝑧∕𝐿𝑧 ≃ 0 𝜏 changing its sign
S3 & S7 Isostatic 𝑧g 𝜉𝑧∕𝐿𝑧 ≃ 0 Lowest 𝑝
S4 & S8 𝑧g ≃ 3.6 𝜉𝑧∕𝐿𝑧 ≃ 1 𝑟𝑢 ≃ 0.99

compression to dilation, the corresponding microscale descriptors 𝑧g
and 𝑎𝑐 take special values. 𝑧g reaches its isostatic value (for the lowest
pressure) and 𝑎𝑐 takes a value between 0.4 and 0.5.; see Figs. 9(a)
and (b). This value of anisotropy is the average anisotropy ⟨𝑎𝑐⟩ =
(𝑧max−𝑧min)∕(𝑧max+𝑧min) of a system in which 𝑧g oscillates between 𝑧min
and 𝑧max (Radjai et al., 2012). The observed limits in the liquefaction
state are 𝑧min ≃ 1.5 and 𝑧max ≃ 4, yielding ⟨𝑎𝑐⟩ ≃ 0.45.

6. Conclusion

In this study, we performed 3D-DEM constant-volume cyclic simple
shear simulations to investigate the cyclic liquefaction of granular
materials. The simulated macroscopic response shows general agree-
ment with experiments. The initial solid-like granular system becomes
fluid-like after a few loading cycles. The transition from solid-like
to fluid-like behavior corresponds to sudden collapse of the load-
bearing contact network happens rapidly. In contrast, the transition
from fluid-like to solid-like behavior takes place during a long process
of rebuilding of the contact network and was more specifically at the
focus of this paper. For that we selected a typical post-liquefaction
cycle and identified several particular states that divide the cycle into
distinct periods. Once the granular system liquefies as a result of shear
reversal, it goes through a short period featured by low shear modulus,
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Fig. 13. Coordination number versus shear strain during cyclic shearing.

decreasing dilatancy, and reduced shear viscosity. The majority of fluid-
like shear strain develops during the dilation period. Our simulations
do not show null mean effective stress in liquefaction state for loose
and dense samples.

We analyzed the internal structure evolution during the whole
shearing process by means of several micro- and mesoscale descriptors:
the coordination number, the fabric anisotropy, the number of strong
stress-transmitting clusters, the fraction of maximum cluster size, and a
percolation index defined from the extension of the largest cluster. The
onset of liquefaction is accompanied by low coordination number, large
oscillations of fabric anisotropy, increasing number of particle clusters,
and vanishing of the largest force-transmitting network. Along with
shear deformation, the contact network is gradually rebuilt through a
sequence of binary collisions and nucleation of particle clusters. The
fluid-like to solid-like transition, i.e., exiting the fluid-like state, is
characterized by the well-defined value 3.6 of the coordination number
and by the percolation index equal to 1. During this transition, the
fabric anisotropy tends to align with external loading. Another key
observation was that the lowest values of the coordination number
are not reached at the phase transformation point where the lowest
pressure is reached. Instead, we observe that upon shear stress sign
change in the liquefaction state the coordination number undergoes a
sudden increase to its isostatic value with pressure having its lowest
value. The sudden decrease of anisotropy in the same process is clearly
a consequence of the gain of contacts along the direction of extensional
deformation as a result of shear stress sign change. After this fast
change of the microstructure, a longer period of contact network rebuilt
is observed during which most of shear strain is developed.

These findings can be used to improve stress-based criteria in con-
tinuum models of cyclic liquefaction. Moreover, micromechanical mod-
els can also be developed by using microscale variables such as co-
ordination number and fabric anisotropy as internal variables. In this
case, it will be important to clearly distinguish the short-time effect of
shear stress sign change, resulting in a nearly discontinuous increase
of the coordination number, from the more progressive rebuilding of
the contact network. Furthermore, the accumulation of shear strain in
successive cycles reveals a memory effect that was not discussed in this
paper. For instance, Fig. 13 shows the evolution of the coordination
number as a function of the cumulative shear strain. We see that there is
no apparent evolution of the specific values of the coordination number
despite the observed increasing shear strain with successive cycles. The
memory of the granular configuration may well be hidden in more
subtle variables at the mesoscopic scale, e.g. the size and distribution
of clusters. Some trends can be observed in Fig. 8, but a more detailed
investigation is necessary in the future.
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